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Abstract

The main goal of this paper is to develop a concept of approximate
differentiability of higher order for subsets of the Euclidean space that
allows to characterize higher order rectifiable sets, extending somehow
well known facts for functions. We emphasize that for every subset A

of the Euclidean space and for every integer k ≥ 2 we introduce the
approximate differential of order k of A and we prove it is a Borel map
whose domain is a (possibly empty) Borel set. This concept could be
helpful to deal with higher order rectifiable sets in applications.
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1 Introduction

For notation and terminology, see the dedicated section in the Introduction.

Motivation. This paper deals with the class of subsets of the n dimensional
Euclidean space that can be covered, up to a set of H

m measure zero, by
countably many m dimensional submanifolds of class k, for some integer k ≥ 1.
These sets are called countably (H m,m) rectifiable of class k; see the definition
of Higher order rectifiability later in this section. Evidently, this class of sets
finds applications in the study of differentiability properties of “singular sub-
manifolds” in geometry and analysis. In what follows, we mention some of these
applications.

In Calculus of Variations, solutions of problems involving elliptic functionals
can be efficiently modeled using the class of varifolds, originally introduced by
Almgren in the 60’s (the classical reference is [All72]). Even just considering
the class of integral varifolds V in Rn whose first variation with respect to area
is represented by integrating a function1 in Lloc

∞ (‖V ‖,Rn) (usually called mean
curvature), it is well known that there are examples whose support does not
locally correspond to a graph of a function of class 1, on a set of positive H m

measure (see [All72, 8.1(2)] for a 1 dimensional example). However, combining
the recent result in [Men13] with [All72, 8.3], we can deduce that the support
of an integral varifold V with mean curvature in Lloc

m (‖V ‖,Rn) is countably

1See [Fed69, 2.4.12] for the definition of Lebesgue spaces.
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(H m,m) rectifiable of class 2. Yet, it is unknown if “class 2” in the previous
assertion can be replaced by “class k, for every integer k ≥ 1”, in case the first
variation of V with respect to area equals zero.

The level sets of maps between Euclidean spaces with distributional deriva-
tives up to order k representable by integration can be covered, up to a set of
H m measure zero, by countably many submanifolds of class k of the appropriate
dimension, see [BHS05, 1.6].

In Convex Geometry, [Alb94, Theorem 3] asserts that if for a convex subset
of the n dimensional Euclidean space we define the m-th stratum as the set
of points where the normal cone has dimension at least n − m, then the m-
th stratum is countably (H m,m) rectifiable of class 2. This result has been
recently extended to every closed subsets of Euclidean space in [MS17].

Finally we mention the work in [Del12] in the context of Legendrian currents
and the work in [Kol16] in relation to the notion of discrete curvatures for sets.

Results of the present paper. The main contribution of this paper is to
introduce a notion of approximate differentiability of higher order for subsets of
the Euclidean space and to use it in order to characterize higher order rectifiable
sets. For functions whose domain is a subset of the Euclidean space this is a well
known fact, established in [Whi51], [Fed69, § 3.1] and [Isa87]. More specifically
these results can be combined to get the following result, see 2.11 and 2.12.

1.1 Theorem (Federer, Isakov, Whitney). If 1 ≤ m < n and k ≥ 1 are
integers, 0 ≤ α ≤ 1, A ⊆ Rm is L m measurable and f : A→ Rn−m is L m

xA
measurable, then f is approximately differentiable2 of order (k, α) at L m a.e.
a ∈ A if and only if there exist countably many functions gj : Rm → Rn−m of
class (k, α) such that

L m
(

A ∼
⋃∞

j=1{x : gj(x) = f(x)}
)

= 0.

In this paper we establish this result for subsets of Euclidean space. In fact,
employing the notion of approximate differentiability of higher order for sets
introduced in 3.8 we can prove, in 3.23 and 5.6, the following result.

1.2 Theorem. If 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1, A ⊆ Rn is
H m measurable and H m(A) < ∞, then A is approximately differentiable of
order (k, α) at H m a.e. a ∈ A if and only if A is (H m,m) rectifiable of class
(k, α).

It is worth to compare this result with other results in the literature. Firstly,
this result can be seen as a generalization to the case of higher order rectifiability
of the well known fact in Geometric Measure Theory that (H m,m) rectifiable
sets3 of class 1 can be characterized among all the H m measurable subsets
of Rn with finite H m measure through the existence of an m dimensional
“measure theoretic tangent space” at H

m a.e. points of the set. There are
essentially two natural ways to define this notion of measure theoretic tangency.
One uses a blow up procedure and the other one uses densities of Hausdorff
measures.

2For the definition of approximate differentiability for functions, see 2.3.
3By [Fed69, 3.2.29] the notion of rectifiability of class 1 coincides with the classical notion

of rectifiability phrased in terms of images of Lipschitzian maps, see [Fed69, 3.2.14].
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1.3 Definition (Simon4). Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn and
a ∈ Rn. Anm dimensional plane T ∈ G(n,m) is them dimensional approximate
tangent plane of A at a if and only if there exists 0 < θ <∞ such that

lim
r→0+

r−m

∫

A

f((x− a)/r)dH mx = θ

∫

T

fdH m whenever f ∈ K (Rn).

1.4 Definition (Federer5). Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn and
a ∈ Rn. A vector v ∈ Rn is an (H m

xA,m) approximate tangent vector at a if
and only if Θ∗m(H m

x A∩E(a, v, ǫ), a) > 0 for every ǫ > 0. An m dimensional
plane T ∈ G(n,m) is the m dimensional approximate tangent plane of A at a
if and only if T equals the set of all (H m

xA,m) approximate tangent vectors
at a.

In 1.3 and in 1.4 it is not difficult to see thatm and T are uniquely determined
by A and a. Either employing the notion in 1.3 or the one in 1.4, the following
well known result holds.

1.5 Theorem (Federer6, Simon7). Suppose 1 ≤ m ≤ n are integers and A ⊆
Rn is H m measurable with H m(A) < ∞. Then A is (H m,m) rectifiable of
class 1 if and only if A admits the m dimensional approximate tangent plane at
H m a.e. a ∈ A.

Suppose now A ⊆ Rn and a ∈ Rn. The definition of approximate differen-
tiability of order 1 introduced in 3.8 (see also 3.19) is equivalent to require the
existence of a measure theoretic tangent space at a, denoted by ap Tan(A, a). If
A is H

m measurable and H
m(A) <∞, the sets of points of A where the afore-

mentioned approximate tangent spaces are m dimensional subspaces, coincide
up to a set of H m measure zero (notice 3.21, 3.14, 3.4 and 3.17).

The problem of generalizing 1.5 to the case of higher order rectifiability was
addressed in [AS94]. In that paper a notion of differentiability of order 2 and
order (1, α) for every 0 < α ≤ 1, is introduced by means of a blow up procedure
similar to 1.3. However, as it is pointed out in [AS94, pp. 7–8], examples show
that (H m,m) rectifiable sets of class 2 may fail to be differentiable of order 2
in the sense of [AS94] at H

m a.e. points. Therefore, in order to generalize 1.5,
additional technical hypotheses on the structure of the sets are needed in the
main theorems [AS94, 3.5, 3.12]. These facts suggest the possibility to consider a
different notion of (approximate) differentiability of order greater than 1 and in
the present paper we accomplish such goal. Our notion is based on the approach
of 1.4 (see also 3.9), rather than 1.3.

For every integer k ≥ 2, the notion of approximate differentiability of order k
for a subset A ⊆ Rn naturally induces a notion of approximate differential of
order k, ap Dk A, of A; see 3.20. For every A ⊆ Rn, this is always a Borel
map with values in

⊙k
(Rn,Rn) whose domain is a (possibly empty) Borel

subset of Rn, see 5.5. Moreover the approximate differential of order 2 naturally
induces a notion of “approximate second fundamental form”. In fact, for every
a ∈ dmn ap D2A this can be defined as the symmetric bilinear form

ap D2A(a)| ap Tan(A, a) × ap Tan(A, a).

4See [Sim83, 11.2, 11.4] and [FM99, 2.2].
5See [Fed69, 3.2.16].
6See [Fed69, 3.2.19, 3.3.17].
7See [Sim83, 11.6, 11.8].
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In 3.25 and 4.12 two classical properties of the second fundamental form of
submanifolds of class 2 are extended to our setting.

Finally we mention that a notion of pointwise differentiability for subsets
of the Euclidean space has been recently developed in [Men16] to study higher
order differentiability properties of stationary varifolds. In the present paper
we establish the connection between the notion of approximate differentiability
and pointwise differentiability in 4.11.

Notation and basic definitions. The notation and the terminology used
withouth comments agree with [Fed69, pp. 669-676]. However, for the reader’s
convenience, sometimes we use footnotes to point out the references in [Fed69].
Moreover we add the following classical definitions.

Distance function from a set. Let A ⊆ Rn. We define δA to be the function
on Rn such that δA(x) = inf{|x− a| : a ∈ A} for x ∈ Rn.

Orthogonal projections. If 1 ≤ m ≤ n are integers we define G(n,m) to be
the set of all m dimensional subspaces of Rn. If T ∈ G(n,m) we define
T♮ : Rn → Rn to be the linear map such that

T ∗
♮ = T♮, T♮ ◦ T♮ = T♮, imT♮ = T,

and we define T⊥ = kerT♮.

Pointwise differentiability for functions. Suppose X and Y are normed vector
spaces, k ≥ 0 is an integer, 0 ≤ α ≤ 1, g maps a subset of X into Y and a ∈ X .
We say that g is pointwise differentiable of order (k, α) at a if and only if there
exists an open set U ⊆ X and a polynomial function P : X → Y of degree at
most k such that a ∈ U ⊆ dmn g, g(a) = P (a),

lim
x→a

|g(x) − P (x)|

|x− a|k
= 0 if α = 0, lim sup

x→a

|g(x) − P (x)|

|x− a|k+α
<∞ if α > 0.

In this case P is unique and the pointwise differentials of order i of f at a are
defined by pt Di g(a) = Di P (a) for i = 0, . . . , k.

Functions and submanifolds of class (k, α). Suppose X and Y are normed
vector spaces, k ≥ 0 is an integer, 0 ≤ α ≤ 1, g maps some open subset of X
into Y and a ∈ X . We say that g is of class (k, α) if and only if g is of class k and
each point of dmn g has an open neighbourhood U such that (Dk f)|U satisfies
a Hölder condition with exponent α.

Suppose k ≥ 0 is an integer and 0 ≤ α ≤ 1. The notion of diffeomorphism of
class (k, α) is made by replacing “class k” with “class (k, α)” in [Fed69, 3.1.18].
Analogously the notion of µ dimensional submanifold of class (k, α) of Rn is
made by replacing “class k” with “class (k, α)” in [Fed69, 3.1.19].

Second fundamental form. If 1 ≤ m ≤ n are integers, M is an m dimensional
submanifold of class 2 of Rn and a ∈M then we call second fundamental form
of M at a the unique symmetric 2 linear function

bM (a) : Tan(M,a) × Tan(M,a) → Nor(M,a)

such that bM (a)(u, v) • ν(a) = −D ν(a)(u) • v for each u, v ∈ Tan(M,a), when-
ever ν : M → Rn is of class 1 relative to M with ν(x) ∈ Nor(M,x) for every
x ∈M .
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Cones. A subset C ⊆ Rn is called cone if and only if λx ∈ C whenever x ∈ C
and λ > 0.

Higher order rectifiability8. Suppose 1 ≤ m ≤ n are integers and φ is a measure
over Rn. A subset A ⊆ Rn is called countably (φ,m) rectifiable of class (k, α) if
and only if there exist countably many m dimensional submanifolds Mj of class
(k, α) such that

φ
(

A ∼
⋃∞

j=1Mj

)

= 0.

A subset A ⊆ Rn is called (φ,m) rectifiable of class (k, α) if it is countably
(φ,m) rectifiable of class (k, α) and φ(A) <∞.

Some further notation. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
a ∈ Rn, T ∈ G(n,m), 0 ≤ κ < ∞ and suppose f : T → T⊥ is a function such
that f(T♮(a)) = T⊥

♮ (a).

Then we define9

Xk,α(a, T, f, κ) = Rn ∩ {z : |f(T♮(z)) − T⊥
♮ (z)| ≤ κ|T♮(z − a)|k+α};

alternatively Xk(a, T, f, κ) = Xk,0(a, T, f, κ). If f(χ) = T⊥
♮ (a) for every χ ∈ T

then we abbreviate X(a, T, κ) = X1(a, T, f, κ).
If 0 < s <∞ and 0 < t <∞ we define

C(T, a, s, t) = Rn ∩ {x : |T♮(x− a)| < s, |T⊥
♮ (x − a)| < t}.

Finally let gr(f) = {χ+ f(χ) : χ ∈ T }.

Organization of the paper. In section 2 we recall the theory of approximate
differentiability for functions because both we use it in the following sections
and it provides a scheme for the theory of approximate differentiability for sets
we develop later. In section 3 the key concepts of lower and upper approximate
tangent cones (see 3.1), approximate differentiability (see 3.8) and approximate
differentials (see 3.20) are introduced together with proofs of a basic charac-
terization in 3.14, one part of 1.2 in 3.23 and some illustrative examples in 3.4
and 3.17. At the end of section 3 we generalize to rectifiable sets of class 2 the
classical equation relating the differential of a normal vector field and the second
fundamental form of a submanifold of class 2. In section 4, after giving in 4.8
an equivalent formulation of the notion of pointwise differentiability of order 1
for sets, we prove a result enlightening the relation between approximate dif-
ferentiability and pointwise differentiability of higher order for sets in 4.11 and
a basic estimate for the approximate second fundamental form in 4.12. Finally
in section 5 we prove that the approximate differentials are Borel maps and the
remaining part of 1.2.

The content of this paper was part of author’s PHD thesis, supervised by
Ulrich Menne, submitted at the University of Potsdam.

Acknowledgements. The author is grateful to Ulrich Menne, who suggested
this problem, carefully read the original manuscript and provided the author
with a very detailed list of comments, corrections and improvements.

This work was developed while the author was financially supported by
the “IMPRS for Geometric Analysis, Gravitation and String Theory” and the
“IMPRS for Mathematical and Physical Aspects for Gravitation, Cosmology
and Quantum Field Theory”.

8When φ = H m this notion has been introduced in [AS94, 3.1].
9Compare this definition with similar ones introduced in [Fed69, 3.3.1] and [Mat95, 15.12].
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2 Approximate differentiability for functions

2.1 Definition. Let f be a function mapping a subset of Rm into some set Y
and let a ∈ Rm. If Y is a normed vector space, a point y ∈ Y is the approximate
limit of f at a if and only if

Θm(L m
x Rm ∼ {x : |f(x) − y| ≤ ǫ}, a) = 0 for every ǫ > 0

and we denote it by ap limx→a f(x). If Y = R, a point t ∈ R is the approximate
upper limit of f at a if and only if

t = inf{s : Θm(L m
x {x : f(x) > s}, a) = 0}

and we denote it by ap lim supx→a f(x).

2.2 Remark. This concept is a special case of [Fed69, 2.9.12].

2.3 Definition. Let 1 ≤ m < n and k ≥ 0 be integers, 0 ≤ α ≤ 1, A ⊂ Rm,
f : A→ Rn−m and a ∈ Rm.

We say that f is approximately differentiable of order (k, α) at a (f is ap-
proximately differentiable of order k at a if α = 0) if

Θm(L m
x Rm ∼A, a) = 0

and there exists a polynomial function P : Rm → Rn−m of degree at most k
such that P (a) = f(a) if a ∈ A,

ap lim
x→a

|f(x) − P (x)|

|x− a|k
= 0 if α = 0, ap lim sup

x→a

|f(x) − P (x)|

|x− a|k+α
<∞ if α > 0.

2.4 Remark. The condition Θm(L m
x Rm∼A, a) = 0 in 2.3 is redundant if

α = 0. Moreover, employing a classical result due to De Giorgi, see [Cam64,
Lemma 2.I], we deduce that the polynomial function P in 2.3 is uniquely deter-
mined by f and a.

2.5 Definition. Let A ⊂ Rm and let f : A → Rn−m. For every non negative
integer k the function ap Dk f is defined to be the function whose domain consists
of all a ∈ Rm such that f is approximately differentiable of order k at a and
whose value at a equals Dk P (a), where P satisfies 2.3.

2.6 Remark. If a ∈ A ⊂ Rm and f : A→ Rn−m then f is approximately differ-
entiable of order 0 at a if and only if f is (L m, V ) approximately continuous10

at a. In this case ap D0 f(a) = f(a). Here V is the standard L m Vitali relation,
V = {(a,B(a, r)) : a ∈ Rm, 0 < r <∞}.

In case a ∈ A the notion of approximate differentiability of order 1 has been
introduced in [Fed69, 3.1.2].

2.7 Lemma. Suppose 1 ≤ m < n are integers, A ⊆ Rm, a ∈ Rm, f : A →
Rn−m, γ ≥ 1, 0 < M <∞ and 0 ≤ λ <∞ such that

lim sup
r→0+

L m(B(a, r) ∩ {x : |f(x)| > λrγ})

α(m) rm
< M.

Then Θ∗m(L m
x {x : |f(x)| > 2γλ |x− a|γ}, a) < M(1 − 2−m)−1.

10See [Fed69, 2.9.12].
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Proof. Let δ > 0 such that

L
m(B(a, r) ∩ {x : |f(x)| > λrγ}) < M α(m) rm for 0 < r ≤ δ.

Therefore for 0 < r ≤ δ we observe

B(a, r) ∩ {x : |f(x)| > 2γλ |x − a|γ}

= {a} ∪
∞
⋃

i=0

(B(a, r/2i) ∼ B(a, r/2i+1)) ∩ {x : |f(x)| > 2γλ |x− a|γ}

⊆ {a} ∪

∞
⋃

i=0

B(a, r/2i) ∩ {x : |f(x)| > λ (r/2i)γ},

L
m(B(a, r) ∩ {x : |f(x)| > 2γλ |x− a|γ}) < M α(m)rm(1 − 2−m)−1

and the conclusion follows.

2.8 Theorem. Let 1 ≤ m < n and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊂ Rm,
a ∈ Rm and f : A→ Rn−m.

Then f is approximately differentiable of order (k, α) at a if and only if there
exists a function g : Rm → Rn−m pointwise differentiable of order (k, α) at a
such that f(a) = g(a) if a ∈ A and

Θm(L m
x Rm ∼{x : g(x) = f(x)}, a) = 0.

In this case pt Di g(a) = ap Di f(a) for i = 0, . . . , k.

Proof. Suppose f is approximately differentiable of order (k, α) at a and α = 0.
There exists a polynomial function P : Rm → Rn−m of degree at most k such
that, if for every integer i ≥ 1 we define Si = {x : |f(x) − P (x)| < i−1|x− a|k},
then there exists δi > 0 such that L m(B(a, r) ∼ Si) < 2−irm for 0 < r ≤ δi.
We can assume δi+1 < δi for each i ≥ 1 and δi → 0 as i→ ∞. Let

T =
⋃∞

i=1 [Si ∩B(a, δi) ∼ B(a, δi+1)] .

If r > 0 and j ≥ 1 is an integer such that δj+1 < r ≤ δj we compute

L
m(B(a, r) ∼ T ) ≤ L

m(B(a, r) ∼ Sj) +
∞
∑

l=j+1

L
m(B(a, δl) ∼ Sl) < rm

∞
∑

l=j

2−l

and we conclude Θm(L m
x Rm ∼ T, a) = 0. Moreover

lim
T∋x→a

|f(x) − P (x)|

|x− a|k
= 0.

If we define g : Rm → Rn−m as g(x) = f(x) if x ∈ T and g(x) = P (x) if
x ∈ Rm ∼ T , then we have Θm(L m

x Rm ∼ {x : g(x) = f(x)}, a) = 0,

lim
x→a

|g(x) − P (x)|

|x− a|k
= 0 and g(a) = P (a),

since a /∈ T . If α > 0, once we have chosen 0 ≤ λ <∞ such that

ap lim sup
x→a

|f(x) − P (x)|

|x− a|k+α
< λ,

we can use the same argument above replacing the sets Si with the set

S = {x : |f(x) − P (x)| < λ |x − a|k+α}.
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2.9 Remark. The proof of 2.8 has been adapted from [Fed69, 3.2.16] and [Fed69,
3.1.22].

2.10 Remark. Let 1 ≤ m < n and k ≥ 1 be integers, 0 ≤ α ≤ 1, let A ⊂ Rm be
L m measurable and let f : A → Rn−m be L m

xA measurable. If there exist
countably many functions gj : Rm → Rn−m of class (k, α) such that

L m
(

A ∼
⋃∞

j=1 Aj

)

= 0

where Aj = A∩ {z : gj(z) = f(z)} for j ≥ 1, then using [Fed69, 2.10.19(4)] and
2.8 we can easily prove that f is approximately differentiable of order (k, α) at
L m a.e. a ∈ A and, for each j ≥ 1,

Di gj(z) = ap Di f(z) for L
m a.e. z ∈ Aj and i = 0, . . . , k.

2.11 Theorem. Let 1 ≤ m < n and k ≥ 0 be integers, A ⊂ Rm and let
f : A→ Rn−m be approximately differentiable of order (k, 1) at L m a.e. a ∈ A.
Then the following statements hold.

(1) f is approximately differentiable of order k + 1 at L m a.e. x ∈ A.

(2) A is L m measurable and the functions ap Di f are L m
xA measurable for

i = 0, . . . , k + 1.

(3) There exist countably many functions gj : Rm → Rn−m of class k + 1
such that

L m
(

A ∼
⋃∞

j=1{x : gj(x) = f(x)}
)

= 0.

Proof. First we observe that A is L m measurable, f is (L m, V ) approximately
continuous11 at L m a.e. a ∈ A and f is L m

xA measurable by [Fed69, 2.9.11,
2.9.13].

If k = 0 the conclusions are consequences of [Fed69, 3.1.8, 3.1.4, 3.1.16]
respectively. We use induction over k. Since f is approximately differentiable
of order (k − 1, 1) at L m a.e. point of A we inductively assume that ap Di f are
L m

xA measurable for i = 0, . . . , k. We use now [Isa87, Theorem 2] and [Fed69,
3.1.15] to deduce the existence of countably many functions gj : Rm → Rn of
class k + 1 satisfying (3). Now (1) and (2) follow from 2.10.

2.12 Theorem. Suppose 1 ≤ m < n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
A ⊂ Rm and f : A → Rn−m is approximately differentiable of order (k, α) at
L m a.e. a ∈ A.

Then the following statements hold.

(1) A is L m measurable and the functions ap Di f are L m
xA measurable for

i = 0, . . . , k.

(2) There exist countably many functions gj : Rm → Rn−m of class (k, α)
such that

L m
(

A ∼
⋃∞

j=1{x : gj(x) = f(x)}
)

= 0.

Proof. Since f is approximately differentiable of order (k− 1, 1) at every x ∈ A
then (1) follows from 2.11(2). Now we can apply [Isa87, Theorem 1] if α = 0 or
[Isa87, Theorem 2] if α > 0 to get (2).

11As usual, V = {(a,B(a, r)) : a ∈ Rm, 0 < r < ∞}.
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3 Approximate differentiability for sets

3.1 Definition. Suppose X is a normed vector space, φ is a measure over X ,
m is a positive integer and a ∈ X .

We define the m dimensional approximate upper tangent cone of φ at a by12

Tan∗m(φ, a) = X ∩ {v : Θ∗m(φ xE(a, v, ǫ), a) > 0 for every ǫ > 0}

and the m dimensional approximate lower tangent cone of φ at a as the set
Tanm

∗ (φ, a) of v ∈ X such that for every ǫ > 0 there exists η > 0 such that

φ(U(a + rv, ǫr)) ≥ ηrm whenever 0 < r ≤ η.

In case Tan∗m(φ, a) = Tanm
∗ (φ, a), this set is denoted by Tanm(φ, a) and we

call it the m dimensional approximate tangent cone of φ at a.

3.2 Remark. Evidently Tanm
∗ (φ, a) ⊆ Tan∗m(φ, a). Moreover one may easily

verify that Tanm
∗ (φ, a) and Tan∗m(φ, a) are closed cones. Finally

Θ∗m(φ, a) > 0 [Θm
∗ (φ, a) > 0] ⇐⇒ 0 ∈ Tan∗m(φ, a) [0 ∈ Tanm

∗ (φ, a)].

3.3 Remark. Observe that, in this case, our notation does not agree with [Fed69,
3.2.16]. In fact, Tan∗m(φ, a) is denoted by Tanm(φ, a) in [Fed69, 3.2.16].

It is often useful to recall that if C is a compact subset of X ∼ Tan∗m(φ, a)
and T = {a + rv : r ≥ 0, v ∈ C} then Θm(φ xT, a) = 0. This is proved in
[Fed69, 3.2.16].

3.4 Remark. It is natural to consider the following cone

T = X ∩ {v : Θm
∗ (φ xE(a, v, ǫ), a) > 0 for every ǫ > 0}.

Evidently Tanm
∗ (φ, a) ⊆ T , but simple examples show that the opposite inclusion

does not hold. In fact, if we consider X = R, φ = L
1
xA, m = 1 and a = 0,

where

A =

∞
⋃

i=0

R ∩ {t : 2−2i−1 < |t| < 2−2i},

then Tan1
∗(φ, 0) = {0} and T = R.

3.5 Remark. Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn, B ⊆ Rn and a ∈ Rn.
If Θm(H m

x A ∼ B, a) = 0 then it is not difficult to see that

Tanm
∗ (H m

xA, a) ⊆ Tanm
∗ (H m

xB, a),

Tan∗m(H m
xA, a) ⊆ Tan∗m(H m

xB, a).

3.6 Lemma. Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn, a ∈ Rn and
T ∈ G(n,m).

Then the following three conditions are equivalent:

(1) Tan∗m(H m
xA, a) ⊆ T ,

(2) Θm(H m
x A ∼ X(a, T, ǫ), a) = 0 whenever ǫ > 0,

12As in [Fed69, 3.2.16], E(a, v, ǫ) = X ∩ {x : |r(x− a)− v| < ǫ for some 0 < r < ∞}.
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(3) whenever ǫ > 0

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥
♮ (z − a)| > ǫ r})

α(m) rm
= 0.

Proof. The fact that (1) implies (2) is a consequence of 3.3 and the fact that
(3) follows from (2) is evident. If the condition in (3) holds for some ǫ > 0 then
we can argue as in 2.7 to show that

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥
♮ (z − a)| > 2ǫ |z − a|})

α(m) rm
= 0.

Therefore (3) implies (1).

3.7 Lemma. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, 0 ≤ λ < ∞,
0 < M <∞, A ⊆ Rn, a ∈ Rn, T ∈ G(n,m) and let f : T → T⊥ be a function
of class 1 such that f(T♮(a)) = T⊥

♮ (a) and D f(T♮(a)) = 0. Suppose

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥
♮ (z) − f(T♮(z))| > ǫ r})

α(m) rm
= 0 for every ǫ > 0,

lim sup
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥
♮ (z) − f(T♮(z))| > λrk+α})

α(m) rm
< M.

Then
Θ∗m(H m

x A ∼ Xk,α(a, T, f, κ), a) < M(1 − 2−m)−1

for every κ > 2k+αλ.

Proof. Arguing as in the proof of 2.7 we conclude that

Θ∗m(H m
x A∩{z : |f(T♮(z))−T⊥

♮ (z)| > 2k+αλ|z−a|k+α}, a) < M(1−2−m)−1.

Since D f(T♮(a)) = 0 we can easily get that

lim
r→0

H m(A ∩B(a, r) ∩ {z : |T⊥
♮ (z − a)| > ǫ r})

α(m) rm
= 0 for every ǫ > 0

and applying 3.6 we conclude that Θm(H m
x A ∼ X(a, T, ǫ), a) = 0. Since

X(a, T, ǫ) ∩ {z : |f(T♮(z)) − T⊥
♮ (z)| ≤ 2k+αλ|z − a|k+α}

⊆ Xk,α(a, T, f, 2k+αλ(1 + ǫ2)(k+α)/2) for every ǫ > 0,

the conclusion follows.

3.8 Definition. Let n ≥ 1 and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊆ Rn, a ∈ Rn

and A1 = {x−a : x ∈ A}. We say that A is approximately differentiable of order
(k, α) at a if there exist an integer 1 ≤ m ≤ n, T ∈ G(n,m) and a polynomial
function P : T → T⊥ of degree at most k such that P (0) = 0, DP (0) = 0 and
the following two conditions hold.

(1) For every ǫ > 0 there exists ρ > 0 and η > 0 such that

H
m(C(T, z, ǫr, ǫr) ∩ A1) ≥ ηrm

for every z ∈ T ∩B(0, r) and 0 ≤ r ≤ ρ.
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(2) For every ǫ > 0

lim
r→0

H m
(

A1 ∩B(0, r) ∩ {z : δgr(P )(z) > ǫ rk}
)

α(m)rm
= 0

and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(

A1 ∩B(0, r) ∩ {z : δgr(P )(z) > λrk+α}
)

α(m)rm
= 0.

3.9 Remark. If k = 1 and α = 0 the conditions in 3.8 are equivalent to [Mat95,
15.7].

3.10 Remark. We prove that the condition

T ⊆ Tanm
∗ (H m

xA, a)

is necessary and sufficient to have 3.8(1). The condition is clearly necessary. To
prove the sufficiency assume a = 0, suppose 0 < ǫ < 1 and observe there exist
an integer l ≥ 1, v1, . . . , vl ∈ Sn−1 ∩ T and a positive number η such that

T ∩ Sn−1 ⊆
⋃l

i=1 U(vi, ǫ) ∩ T,

H
m(A ∩U(rvi, ǫr)) ≥ ηǫ−mrm whenever 0 < r ≤ η and i = 1, . . . , l.

Since Θm
∗ (H m

x A, 0) > 0 by 3.2, we can choose η > 0 smaller, if necessary, in
order to have

H
m(A ∩U(0, ǫr)) ≥ ηrm whenever 0 < r ≤ η.

We fix 0 < r ≤ η and z ∈ B(0, r). If |z| ≤ ǫr then U(0, ǫr) ⊆ U(z, 2ǫr) and

H
m(A ∩U(z, 2ǫr)) ≥ ηrm.

If |z| ≥ ǫr then we choose 1 ≤ i ≤ l such that |(z/|z|) − vi| < ǫ and we observe

U(|z|vi, |z|ǫ) ⊆ U(z, 2ǫ|z|) ⊆ U(z, 2ǫr),

H
m(A ∩U(z, 2ǫr)) ≥ ηǫ−m|z|m ≥ ηrm.

3.11 Lemma. Suppose 1 ≤ m ≤ n are integers, 0 < r <∞, w ∈ Rn ∩B(0, r),
T ∈ G(n,m) and f : T → T⊥ is a locally Lipschitzian function such that
f(0) = 0, .

Then δgr f (w) ≤ |T⊥
♮ (w) − f(T♮(w))| ≤

(

2 + Lip(f |B(0, 2r))
)

δgr f (w).

Proof. If we choose χ ∈ T so that δgr f (w) = |w − χ− f(χ)| then χ ∈ B(0, 2r)
and we get

δgr f (w) ≤ |T⊥
♮ (w) − f(T♮(w))|

≤ |w − χ− f(χ)| + |χ+ f(χ) − T♮(w) − f(T♮(w))|

≤
(

2 + Lip(f |B(0, 2r))
)

δgr f (w).

3.12 Lemma. Suppose 1 ≤ m ≤ n are integers, γ > 0, A ⊆ Rn, B ⊆ Rn such
that 0 ∈ ClosB, f : Rn → Rn is an univalent map onto Rn such that f(0) = 0
and f and f−1 are locally Lipschitzian maps.

Then the following two conditions are equivalent.
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(1) For every ǫ > 0 [for some 0 ≤ ǫ <∞]

lim
r→0

H m(A ∩B(0, r) ∩ {z : δB(z) > ǫ rγ})

α(m)rm
= 0.

(2) For every ǫ > 0 [for some 0 ≤ ǫ <∞]

lim
r→0

H m(f [A] ∩B(0, r) ∩ {z : δf [B](z) > ǫrγ})

α(m)rm
= 0.

Proof. Since f [ClosB] = Clos f [B] we assume B to be closed. Moreover if we
prove one implication we immediately get the other one. Therefore we prove
that (1) implies (2). Suppose 1 < Γ <∞ is such that

Γ−1|z − w| ≤ |f(z) − f(w)| ≤ Γ|z − w|,

Γ−1|z − w| ≤ |f−1(z) − f−1(w)| ≤ Γ|z − w|

whenever z, w ∈ B(0, 2). Evidently it is enough to show that

f−1[f [A] ∩B(0, r/Γ2) ∩ {w : δf [B](w) > ǫrγ}]

⊆ A ∩B(0, r/Γ) ∩ {w : δB(w) > Γ−1ǫrγ}

for ǫ > 0 and 0 < r ≤ 1. Suppose z ∈ f [A]∩B(0, r/Γ2) such that δf [B](z) > ǫrγ .
Let w ∈ f [B] such that |f−1(z) − f−1(w)| = δB(f−1(z)) and observe

δB(f−1(z)) ≤ |f−1(z)|, |f−1(w)| ≤ 2|f−1(z)| ≤ 2Γ|z| ≤ 2Γ−1r ≤ 2,

|w| ≤ Γ|f−1(w)| ≤ 2r ≤ 2,

δB(f−1(z)) ≥ Γ−1|z − w| ≥ Γ−1δf [B](z) > Γ−1ǫrγ .

3.13 Lemma. Let 1 ≤ m ≤ n and k ≥ 1 be integers, T ∈ G(n,m) and let
P : T → T⊥ and Q : T → T⊥ be polynomial functions of degree at most k such
that P (0) = 0 and DiQ(0) = 0 for i = 0, . . . , k − 1. Suppose for every ǫ > 0
there exists ρ > 0 such that

C(T, z, ǫr, ǫrk) ∩ {w : δgr(Q)(w) ≤ ǫrk} 6= ∅

whenever z ∈ gr(P ) ∩B(0, r) and 0 < r ≤ ρ.
Then P = Q.

Proof. Let 0 ≤ c < ∞ such that |P (χ)| ≤ c|χ| whenever χ ∈ T ∩ B(0, 1). If
0 < ǫ ≤ 1 and 0 < ρ ≤ 1 are as in the hypothesis, χ ∈ B(0, (1 + c)−1ρ) ∩ T and
z = χ+ P (χ) then |z| ≤ (1 + c)|χ| ≤ ρ. Therefore there exists

w ∈ C(T, z, ǫ(1 + c)|χ|, ǫ(1 + c)k|χ|k)

such that δgr(Q)(w) ≤ ǫ(1+c)k|χ|k. If y ∈ gr(Q) is such that |w−y| = δgr(Q)(w)
then

|T♮(y) − χ| ≤ |T♮(y − w)| + |T♮(w) − χ| ≤ 2ǫ(1 + c)k|χ|,

|P (χ) −Q(χ)| ≤ |T⊥
♮ (z) − T⊥

♮ (w)| + |T⊥
♮ (w) − T⊥

♮ (y)| + |T⊥
♮ (y) −Q(χ)|,
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and the Taylor’s formula (see [Fed69, p. 46]) implies

Q(T♮(y)) −Q(χ) =

k
∑

i=1

〈(T♮(y) − χ)i/i! ⊙ χk−i/(k − i)!,Dk Q(0)〉,

|Q(T♮(y)) −Q(χ)| ≤ c1ǫ|χ|
k,

where c1 = ‖Dk Q(0)‖
∑k

i=1 2i(1 + c)ki/(i!(k − i)!). Therefore |Q(χ) − P (χ)| ≤
(2(1 + c)k + c1)ǫ|χ|k and the conclusion follows.

3.14 Theorem. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1,
A ⊆ Rn, a ∈ Rn, A1 = {x − a : x ∈ A}, T ∈ G(n,m) and P : T → T⊥ is a
polynomial function of degree at most k such that P (0) = 0, DP (0) = 0.

Then the following two conditions are equivalent.

(1) T and P satisfy 3.8(1) and 3.8(2).

(2) If Pi(χ) = 〈χi/i!,Di P (0)〉 for χ ∈ T and i = 1, . . . , k and

Ai = {x− Pi−1(T♮(x)) : x ∈ Ai−1} for i = 2, . . . , k,

then the following two conditions hold:

(a) for every i = 1, . . . , k and for every ǫ > 0 there exist ρ > 0 and η > 0
such that

H
m(C(T, z, ǫr, ǫri) ∩ Ai) ≥ ηα(m)rm

for every z ∈ gr(Pi) ∩B(0, r) and 0 ≤ r ≤ ρ,

(b) for every i = 1, . . . , k and for every ǫ > 0

lim
r→0

H m
(

Ai ∩B(0, r) ∩ {z : δgr(Pi)(z) > ǫ ri}
)

α(m)rm
= 0

and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(

Ak ∩B(0, r) ∩ {z : δgr(Pk)(z) > λrk+α}
)

α(m)rm
= 0.

In this case P is uniquely determined by a, A and k,

Θm
∗ (H m

x A, a) > 0, Tanm
∗ (H m

xA, a) = Tan∗m(H m
xA, a) = T

and A is approximately differentiable of order (l, β) whenever either l < k and
0 ≤ β ≤ 1 or l = k and 0 ≤ β ≤ α.

Proof. Assume a = 0 and suppose sup
{

1,
∑k

j=1 2j‖Dj P (0)‖
}

< Γ <∞.

For i = 1, . . . , k we define Qi =
∑i

j=1 Pj and fi : Rn → Rn by

fi(x) = x−Qi(T♮(x)) + Pi(T♮(x)) for x ∈ Rn.

We observe that for every i = 1, . . . , k the map fi is a diffeomorphism of class ∞
onto Rn and, by induction over i, one may easily prove that

fi[A] = Ai, fi[grQi] = grPi.
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Now, using 3.12, it is easy to see that (2) implies (1). Henceforth, we
assume (1). First we prove that

δgrP (z) ≥ δgrQi
(z) − Γ|z|i+1 for every i = 1, . . . , k − 1 and z ∈ B(0, 1).

In fact if w ∈ gr(P ) such that |z − w| = δgr(P )(z) then

|w| ≤ 2|z|, |P (T♮(w)) −Qi(T♮(w))| ≤ Γ|z|i+1,

|z − w| ≥ |z − T♮(w) −Qi(T♮(w))| − |Qi(T♮(w)) − P (T♮(w))|

≥ δgrQi
(z) − Γ|z|i+1.

It follows, for i = 1, . . . , k, that

lim
r→0

H m
(

A1 ∩B(0, r) ∩ {z : δgr(Qi)(z) > ǫ ri}
)

α(m)rm
= 0 for every ǫ > 0.

and, for i = 1, . . . , k − 1 that

lim
r→0

H m
(

A1 ∩B(0, r) ∩ {z : δgr(Qi)(z) > 2Γri+1}
)

α(m)rm
= 0.

Therefore (2b) is a consequence of 3.12. Moreover, using 3.12, it follows that A is
approximately differentiable of order (l, β) whenever either l < k and 0 ≤ β ≤ 1
or l = k and 0 ≤ β ≤ α. We prove now (2a), whose proof is slightly more
involved. We fix 2 ≤ i ≤ k and we replace Γ by a larger number, if necessary,
in order to have

|f−1
i (w) − f−1

i (z)| ≤ Γ|w − z|, |fi(w) − fi(z)| ≤ Γ|w − z|

for w, z ∈ B(0, 4). Therefore we have

fi[A ∩C(T, z, ǫr/Γ, ǫr/Γ)] ⊆ Ai ∩C(T, z, ǫr/Γ, 3r),

H
m(Ai ∩C(T, z, ǫr/Γ, 3r)) ≥ Γ−m

H
m(A ∩C(T, z, ǫr/Γ, ǫr/Γ)),

whenever 0 < r ≤ 1, 0 < ǫ ≤ 1 and z ∈ B(0, r/Γ). We fix 0 < ǫ ≤ 1 and, using
3.11, we can find 0 < ρ ≤ 1 and η > 0 such that

H
m(Ai ∩B(0, 5r) ∩ {w : |T⊥

♮ (w) − Pi(T♮(w))| > ǫri}) < ηΓ−m
α(m)rm,

H
m(C(T, z, ǫr/Γ, ǫr/Γ) ∩ A) ≥ 2ηα(m)rm for every z ∈ T ∩B(0, r),

whenever 0 < r ≤ ρ. Let 0 < r ≤ ρ and z ∈ gr(Pi) ∩B(0, r/Γ). Then

C(T, z, ǫr/Γ, 3r) ⊆
(

B(0, 5r) ∩ {w : |Pi(T♮(w)) − T⊥
♮ (w)| > ǫri}

)

∪C(T, z, ǫr/Γ, 2ǫri).

In fact if w ∈ C(T, z, ǫr/Γ, 3r) and |Pi(T♮(w)) − T⊥
♮ (w)| ≤ ǫri then

|Pi(T♮(w)) − Pi(T♮(z))|

=
∣

∣

∑i
j=1〈(T♮(w − z)j/j!) ⊙ (T♮(z)i−j/(i− j)!),Di P (0)〉

∣

∣

≤ i‖Di P (0)‖Γ−iǫri ≤ ǫri

14



and we infer

|T⊥
♮ (z) − T⊥

♮ (w)| ≤ 2ǫri, w ∈ C(T, z, ǫr/Γ, 2ǫri).

We can now conclude that

H
m(Ai ∩C(T, z, ǫr/Γ, 2ǫri)) ≥ Γ−mηα(m)rm

and (2a) is proved.
By 3.8(1) we immediately conclude that Θm

∗ (H m
x A, 0) > 0 and T ⊆

Tanm
∗ (H m

xA, 0). By (2b) and 3.6 we conclude that Tan∗m(H m
xA, 0) ⊆ T .

Finally let R : T → T⊥ be a polynomial function of degree at most k such that
R(0) = 0 and DR(0) = 0 and satisfying 3.8(1) and 3.8(2). Let

Ri(χ) = 〈χi/i!,DiR(0)〉 for χ ∈ T and i = 1, . . . , k,

B1 = A1, Bi = {x−Ri−1(T♮(x)) : x ∈ Bi−1} for i = 2, . . . , k.

We prove by induction that Pi = Ri for i = 1, . . . , k. Assume, for j = 1, . . . , i
and i < k, that Pj = Rj and observe that Ai+1 = Bi+1. Let ǫ > 0, 0 < ρ ≤ 1
and η > 0 such that

H
m(C(T, z, ǫr, ǫri+1) ∩Bi+1) ≥ ηα(m)rm for every z ∈ B(0, r) ∩ gr(Ri+1),

H
m
(

Ai+1 ∩B(0, 2r) ∩ {z : δgr(Pi+1)(z) > ǫ ri+1}
)

≤ (η/2)α(m)rm

whenever 0 < r ≤ ρ. Therefore for every z ∈ B(0, r) ∩ gr(Ri+1) and for every
0 < r ≤ ρ we conclude that

H
m(Bi+1 ∩C(T, z, ǫr, ǫri+1) ∩ {z : δgr(Pi+1)(z) ≤ ǫ ri+1}) ≥ (η/2)α(m)rm

and Pi+1 = Ri+1 by 3.13.

3.15 Remark. A conceptually similar characterization has been proved for the
notion of pointwise differentiability in [Men16, 3.22]. Moreover the reader may
find useful to compare 3.14(2) and [AS94, 3.4], where a concept of approximate
tangent paraboloid is introduced by means of inhomogeneous dilations and weak
convergence of Radon measures.

3.16 Remark. Suppose A ⊆ Rn and a ∈ Rn. It is not difficult to see that the
condition

Tanm(H m
xA, a) ∈ G(n,m) for some integer 1 ≤ m ≤ n

is necessary and sufficient to conclude that A is approximately differentiable
of order 1 at a. In fact the necessity is asserted in 3.14, while the sufficiency
follows from 3.10 and 3.6.

3.17 Remark. We describe now a simple example which illustrates some features
of the notion of approximate differentiability of order 1.

With each γ > 1 and γ−1 < α < (γ − 1)−1 we associate the family Fα,γ

consisting of the subsets

R2 ∩
(

{(n−α, t) : 0 ≤ t ≤ n−αγ} ∪ {(−n−α, t) : 0 ≤ t ≤ n−αγ}
)

correspoding to the integers n ≥ 1. We define

Aα,γ =
(

R2 ∩ {(s, 0) : −1 ≤ s ≤ 1}
)

∪
⋃

Fα,γ .
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Since αγ > 1 then H 1(Aα,γ) <∞. Moreover, for each n ≥ 1,

(n− 1)α
∞
∑

i=n

i−αγ ≥ (n− 1)α
∫ ∞

n

x−αγdL 1x = (n− 1)α(αγ − 1)−1n1−αγ → ∞

as n → ∞. Therefore Θ1
∗(H 1

x Aα,γ , 0) = ∞. Finally Aα,γ is approximately
differentiable of order 1 at 0 by 3.16, since

Tan1(H 1
xAα,γ , 0) = R × {0}.

3.18 Remark. Let A ⊆ Rn, a ∈ Rn and let 0 ≤ µ ≤ ν be integers. Since

Tan∗ν(H ν
xA, a) ⊆ Tan∗µ(H µ

xA, a),

we deduce by 3.14 that the integer m in 3.8 is uniquely determined by A and a.

3.19 Definition. Let A ⊆ Rn and a ∈ Rn. Suppose A is approximately differ-
entiable of order 1 at a and m and T are as in 3.8. We define the approximate
tangent space of A at a to be the m dimensional subspace T and we denote it
by ap Tan(A, a). Moreover we define the approximate normal space of A at a to
be

ap Nor(A, a) = Rn ∩ {v : v • u = 0}.

3.20 Definition. Let A ⊆ Rn, let k ≥ 2 be an integer and a ∈ Rn. If A
is approximately differentiable of order k at a then we define the approximate
differential of order k of A at a to be the symmetric k linear map

ap Dk A(a) = Dk(P ◦ T♮)(0) ∈
⊙k

(Rn,Rn),

where T = ap Tan(A, a) and P : T → T⊥ is as in 3.8.

3.21 Remark. Suppose A ⊆ Rn.
Following [Sim83, 11.2, 11.4] (see also [FM99, 2.2]) we consider the map PA

whose domain is given by the set of a ∈ Rn such that there exist an integer
1 ≤ m ≤ n, T ∈ G(n,m) and 0 < θ <∞ such that

lim
r→0+

r−m

∫

A

f((x− a)/r)dH mx = θ

∫

T

fdH m whenever f ∈ K (Rn),

and whose value PA(a) at a equals T . In fact, one may readily verifies that m,
T and θ are uniquely determined by A and a.

Then it is not difficult to check that if a ∈ dmnPA and m = dimPA(a) then

PA(a) ⊆ Tanm
∗ (H m

xA, a), Tan∗m(H m
xA, a) ⊆ PA(a),

Θm(H m
x A, a) = θ.

Using 3.16 and 3.14 we deduce

dmnPA ⊆ dmn ap Tan(A, ·), PA(a) = ap Tan(A, a) whenever a ∈ dmnPA.

If Aα,γ is defined as in 3.17, then 0 ∈ (dmn ap Tan(Aα,γ , ·)) ∼ (dmnPAα,γ
).
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3.22 Remark. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊆ Rn,
B ⊆ Rn and a ∈ Rn. Suppose A is approximately differentiable of order (k, α)
at a, m = dim ap Tan(A, a) and

Θm(H m
x A ∼ B, a) = 0, Θm(H m

x B ∼ A, a) = 0.

Then B is approximately differentiable of order (k, α) at a with

ap Tan(A, a) = ap Tan(B, a),

ap DiA(a) = ap DiB(a) for i = 2, . . . , k.

3.23 Theorem. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1 and let
A ⊆ Rn be H m measurable and (H m,m) rectifiable of class (k, α).

Then for H m a.e. a ∈ A the set A is approximately differentiable of order
(k, α) at a with

ap Tan(A, a) ∈ G(n,m)

Proof. Since an m dimensional submanifold M of class (k, α) of Rn locally cor-
responds at each a ∈ M to a graph of function f : Tan(M,a) → Nor(M,a) of
class (k, α) with D f(Tan(M,a)♮(a)) = 0, one readily checks that M is approx-
imately differentiable of order (k, α) at each of its points. Then the conclusion
follows from [Fed69, 2.10.19(4)] and 3.22.

3.24 Remark. The conclusion of 3.23 may not hold if we replace “(H m,m)
rectifiable” with “countably (H m,m) rectifiable”, as the following example in
R2 shows,

⋃∞

n=1{(n−1, t) : 0 ≤ t ≤ 1} ∪ {(0, t) : 0 ≤ t ≤ 1}.

3.25 Theorem. Let 1 ≤ m ≤ n be integers, let A ⊆ Rn be H
m measurable

and (H m,m) rectifiable of class 1 and let ν : A → Rn be a map such that for
H m a.e. x ∈ A there exists 0 ≤ λ <∞ such that

Θm(H m
x A ∩ {z : |ν(z) − ν(x)| > λ|z − x|}, x) = 0.

Then ν is H m
xA measurable and (H m

xA,m) approximately differen-
tiable13 at H m a.e. x ∈ A.

If additionally ν(x) ∈ ap Nor(A, x) for H m a.e. x ∈ A and A is (H m,m)
rectifiable of class 2 then

(H m
xA,m) ap D ν(x)(u) • v = − ap D2A(x)(u, v) • ν(x)

for every u, v ∈ ap Tan(A, x) and for H m a.e. x ∈ A.

Proof. By [Fed69, 3.2.29, 3.1.19(4), 2.10.19(4), 3.2.16] it is enough to prove the
statement in the following special case: let U ⊆ Rn, V ⊆ Rm be bounded open
sets and let φ : U → Rm, ψ : V → Rn be maps of class 1 (of class 2 if A
is (H m,m) rectifiable of class 2) such that A ⊆ imψ and φ ◦ ψ = 1V . Let
M = imψ and observe that φ|M = ψ−1, φ[A] is an H m measurable subset of
Rm. Moreover we can prove that ν is H m

xA measurable by [Fed69, 2.9.13].
In fact one verifies that V = {(a,B(a, r)) : a ∈ Rn, 0 < r < ∞} is an H m

xA
Vitali relation by [Fed69, 2.8.18] and, since Θm(H m

x A, x) = 1 for H m a.e.

13See [Fed69, 3.2.16].
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x ∈ A by [Fed69, 3.2.19], we conclude that ν is (H m
xA, V ) approximately

continuous14 at H m a.e. x ∈ A.
Let η = ν ◦ (ψ|φ[A]) and, by [Fed69, 2.9.11], we deduce that η is approxi-

mately differentiable of order (0, 1) at L m a.e. χ ∈ φ[A]. Therefore by 2.11(3)
there exist countably many maps ηj : Rm → Rn of class 1 such that

L m
(

φ[A] ∼
⋃∞

j=1{χ : ηj(χ) = η(χ)}
)

= 0.

We deduce, by [Fed69, 2.10.19(4)], that ν is (H m
xA,m) approximately differ-

entiable at H m a.e. x ∈ A because

H m
(

A ∼
⋃∞

j=1{x : (ηj ◦ φ)(x) = ν(x)}
)

= 0.

If we further assume ν(x) ∈ ap Nor(A, x) for H m a.e. x ∈ A and A is
(H m,m) rectifiable of class 2 then, for every j ≥ 1, we define

νj(x) =
(

Nor(M,x)♮ ◦ ηj ◦ φ
)

(x) for x ∈M,

we observe that νj is of class 1 relative to M and, by [Fed69, 2.10.19(4)] and 3.22,

H
m
(

A ∼
⋃∞

j=1{x : νj(x) = ν(x)}
)

= 0.

Since, by [Fed69, 2.10.19(4), 3.2.16] and 3.22,

D νj(x)(u) • v = − ap D2A(x)(u, v) • νj(x) for every u, v ∈ ap Tan(A, x)

and (H m
xA,m) ap D ν(x) = D νj(x) for H m a.e. x ∈ A, the conclusion fol-

lows.

3.26 Remark. The conclusion of the second part of 3.25 may fail to hold at H m

a.e. a ∈ A if we omit the hypothesis “A is (H m,m) rectifiable of class 2”, even
if we assume that A is an m dimensional submanifold of class 1. This fact can
be easily deduced from [Koh77] and 5.6.

Moreover the same conclusion may fail to hold at H m a.e. a ∈ A if we omit
the hypothesis “A is (H m,m) rectifiable of class 2” but we assume ν(x) = ζ
for H m a.e. x ∈ A for some ζ ∈ Sn−1. In fact it is proved in [AS94, Appendix]
that for every 0 < α < 1 there exists a function f : R → R of class (1, α) and
a Cantor-type set E ⊆ R such that

L 1(E) > 0, D f(x) = 0 for every x ∈ E,

L 1
(

E ∩ {x : f(x) = g(x)}
)

= 0 whenever g : R → R is of class 2.

If A = gr(f |E) then, by , H 1(A ∩ dmn ap D2A) = 0.

4 Relation with pointwise differentiability

4.1 Definition. Suppose X is a normed vector space, B ⊆ X and a ∈ X .
We define the upper tangent cone of B at a by

Tan∗(B, a) = X ∩ {v : lim inf
r→0+

r−1
δB(a+ rv) = 0}

14See [Fed69, 2.9.12].
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and the lower tangent cone of B at a by

Tan∗(B, a) = X ∩ {v : lim
r→0+

r−1
δB(a+ rv) = 0}

In case Tan∗(B, a) = Tan∗(B, a), this set is denoted by Tan(B, a) and we
call it the tangent cone of B at a. Finally the [lower, upper] normal cone
of B at a is defined to be the set of v ∈ Rn such that v • u ≤ 0 whenever
u ∈ [Tan∗(A, a), Tan∗(A, a)] Tan(A, a), and it is denoted by

[Nor∗(A, a), Nor∗(A, a)] Nor(A, a).

4.2 Remark. If 1 ≤ m ≤ n are integers and B ⊆ Rn then one may verify that

Tan∗m(H m
xB, a) ⊆ Tan∗(B, a)

⊆ ⊆

Tanm
∗ (H m

xB, a) ⊆ Tan∗(B, a).

Moreover one may readily verify that Tan∗(B, a) and Tan∗(B, a) are closed
cones.

4.3 Remark. This notation does not agree with [Fed59, 4.3], [Fed69, 3.1.21] and
[Men16]. In fact Tan∗(B, a) is denoted by Tan(B, a) therein.

4.4 Remark. Employing [Fed59, 4.1], we observe that if A is a closed subset
of Rn, a ∈ A and reach(A, a) > 0 then, by [Fed59, 4.8(10),(12)],

Tan∗(A, a) = Tan∗(A, a).

4.5 Definition. Let k and n be positive integers, 0 ≤ α ≤ 1 and B ⊆ Rn.
We say that B is pointwise differentiable of order (k, α) at a if there exists a
submanifold M ⊆ Rn of class (k, α) such that a ∈M ,

lim
r→0

r−1 sup{|δM (x) − δB(x)| : x ∈ B(a, r)} = 0,

lim
r→0

r−k sup{δM (x) : x ∈ B(a, r) ∩B} = 0 if α = 0,

lim sup
r→0

r−k−α sup{δM (x) : x ∈ B(a, r) ∩B} <∞ if α > 0.

4.6 Remark. This concept has been introduced in [Men16, 3.3]. In 4.11 and 4.12
we employ the concept of pointwise differential of order i for sets, introduced in
[Men16, 3.12].

4.7 Remark. It is worth to mention that, for sets, pointwise differentiability does
not imply approximate differentiability. In fact, suppose n ≥ 1 is an integer and
B is a countable dense subset of Rn. Then for every integer k ≥ 1 the set B is
pointwise differentiable of order k at every x ∈ Rn. But B is not approximately
differentiable of order 1 at every x ∈ Rn.

4.8 Lemma. Let B ⊆ Rn and a ∈ ClosB.
Then the following statements hold.

(1) If M = {a+ v : v ∈ Tan∗(B, a)} then

lim
r→0

r−1 sup{δM (x) : x ∈ B(a, r) ∩B} = 0.
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(2) If M = {a+ v : v ∈ Tan∗(B, a)} then

lim
r→0

r−1 sup{δB(x) : x ∈ B(a, r) ∩M} = 0.

(3) The condition

Tan(B, a) ∈ G(n,m) for some integer 0 ≤ m ≤ n

is necessary and sufficient to conclude that A is pointwise differentiable of
order 1 at a.

Proof. Proof of (1). If there existed ǫ > 0, ri > 0, ri → 0 as i → ∞ and
xi ∈ B∩B(a, ri) such that δM (xi) ≥ ǫri then, possibly passing to a subsequence,
we could assume there would exist v ∈ Sn−1 such that (xi − a)/|xi − a| → v as
i→ ∞. Then v ∈ Tan∗(B, a),

ǫ ≤ r−1
i

∣

∣xi − a− |xi − a|v
∣

∣ ≤ |xi − a|−1
∣

∣xi − a− |xi − a|v
∣

∣ for i ≥ 1

and we would get a contradiction.
Proof of (2). Suppose ǫ > 0 and observe there exist an integer l ≥ 1,

v1, . . . , vl ∈ Tan∗(B, a)∩Sn−1 and η > 0 such that r−1δB(a+rvi) < ǫ whenever
i = 1, . . . , l and 0 < r ≤ η and

Tan∗(B, a) ∩ Sn−1 ⊆
⋃l

i=1 B(vi, ǫ).

If 0 < r ≤ η and v ∈ B(0, r)∩Tan∗(B, a) ∼ {0} then we choose i = 1, . . . , l such
that |(v/|v|)−vi| ≤ ǫ and, since Lip δB ≤ 1, we conclude that δB(a+v) ≤ 2ǫ|v|.

Proof of (3). For the necessity, suppose M is as in 4.5 when k = 1 and
α = 0, observe that Tan(M,a) = Tan∗(B, a) by [Men16, 3.4] and Tan(M,a) ⊆
Tan∗(B, a) because

lim
Tan(M,a)∋v→0

|v|−1
δM (a+ v) = 0.

For the sufficiency let M = {a+ v : v ∈ Tan(B, a)} and, since a ∈ ClosB, one
verifies that

sup{|δB(x) − δM (x)| : x ∈ B(a, r)} ≤

≤ sup({δB(x) : x ∈ B(a, 2r) ∩M} ∪ {δM (x) : x ∈ B(a, 2r) ∩B}),

Therefore the conclusion comes from (1) and (2).

4.9 Remark. Compare 4.8(3) with the analogous result for approximate differ-
entiability in 3.16. Moreover 4.8(3) is a restatement of [Men16, 3.19].

4.10 Remark. If M is an m dimensional submanifold of class 1 of Rn then, by
4.8(3), 3.16 and 4.2, one may readily infer that

Tan(M,a) = Tanm(H m
xM,a) for every a ∈M .

4.11 Theorem. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, A ⊆ Rn

and a ∈ Rn. Suppose A is approximately differentiable of order (k, α) at a and
m = dim ap Tan(A, a).

Then there exists B ⊆ A pointwise differentiable of order (k, α) at a such that

Θm(H m
x A ∼ B, a) = 0,

ap Tan(A, a) = Tan(B, a) = Tanm(H m
xB, a),

pt DiB(a,Tan(B, a)) = ap DiA(a) for i = 2, . . . , k.
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Proof. Assume a = 0 and suppose T = ap Tan(A, 0), P : T → T⊥ is defined by

P (χ) =
∑k

j=2〈χ
j/j!, ap Dj A(0)〉 for χ ∈ T

and Γ = sup{1,
∑k

j=2 ‖ ap Dj A(0)‖/j!}. In particular if k = 1 then P = 0 and
Γ = 1. By 3.11 and 3.7 we infer that

Θm(H m
x A ∼ Xk(0, T, P, ǫ), a) = 0 for every ǫ > 0 if α = 0,

Θm(H m
x A ∼ Xk,α(0, T, P, λ), a) = 0 for some 0 ≤ λ <∞ if α > 0.

We fix 0 ≤ λ <∞ as above if α > 0. We define, for every integer i ≥ 1,

Ai = A ∩Xk(0, T, P, (2i)−1) if α = 0, Ai = A ∩Xk,α(0, T, P, λ) if α > 0.

Let Qr = Rn ∩ {z : |T⊥
♮ (z)| ≤ r, |T♮(z)| ≤ r} for 0 < r < ∞. For every integer

i ≥ 1 let δi > 0 be such that

H
m(A ∩Qr ∼ Ai) ≤ 2−i

α(m) rm whenever 0 < r ≤ δi

and we assume δi+1 < δi, δi → 0 as i→ ∞,

δ1 ≤ (2Γ)−1 if α = 0, δ1 ≤ (λ+ Γ)−1/α if α > 0.

We define, for every integer i ≥ 1,

Ci = T−1
♮ [B(0, δi) ∼ B(0, δi+1)], B =

⋃∞

j=1 Aj ∩Cj .

Observe that B ⊆ X(0, T, 1) and

(Qδj ∼ Qδj+1
) ∩X(0, T, 1) ∼ Cj = ∅ whenever j ≥ 1.

We can prove now that Θm(H m
x A ∼ B, 0) = 0. In fact, by 3.6 and 3.14 we

infer Θm(H m
x A ∼ X(0, T, 1), 0) = 0. Moreover, if 0 < r ≤ δ1 and i ≥ 1 are

such that δi+1 < r ≤ δi then

Qr ∩ A ∩X(0, T, 1) ∼ B ⊆ (Qr ∩ A ∼ Ai) ∪
⋃∞

j=i+1 Qδj ∩ A ∼ Aj ,

H m(Qr ∩ A ∩X(0, T, 1) ∼ B) ≤ α(m)rm
∑∞

j=i 2−j .

Since this implies 0 ∈ ClosB by 3.14, it follows that

lim
r→0

r−k sup{|P (T♮(z)) − T⊥
♮ (z)| : z ∈ B ∩ T−1

♮ [B(0, r)]} = 0 if α = 0,

lim sup
r→0

r−k−α sup{|P (T♮(z)) − T⊥
♮ (z)| : z ∈ B ∩ T−1

♮ [B(0, r)]} ≤ λ if α > 0.

In particular, Tan∗(B, 0) ⊆ T . By 3.5 and 3.14 we get that

T = Tanm
∗ (H m

xA, 0) ⊆ Tanm
∗ (H m

xB, 0).

Therefore B is pointwise differentiable of order 1 at a with T = Tan(B, 0) =
Tanm(H m

xB, 0) by 4.2 and 4.8(3). Moreover, since Tan(grP, 0) = T , we can
use 3.11 to check that the conditions in 4.5 hold with M replaced by grP .
Therefore, by [Men16, 3.12] and 3.20, we conclude that

pt DiB(0, T ) = ap DiA(0) for i = 2, . . . , k.
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4.12 Theorem. Let A ⊆ Rn, a ∈ Rn, ν ∈ Sn−1, 0 < r <∞ and suppose

U(a+ rν, r) ∩ A = ∅.

Then the following three statements hold.

(1) If A is a submanifold of class 2 and a ∈ A then

bA(a)(v, v) • ν ≤ r−1|v|2 whenever v ∈ Tan(A, a).

(2) If A is pointwise differentiable of order 2 at a then

pt D2A(a,Tan(A, a))(v, v) • ν ≤ r−1|v|2 whenever v ∈ Tan(A, a).

(3) If A is approximately differentiable of order 2 at a then

ap D2A(a)(v, v) • ν ≤ r−1|v|2 whenever v ∈ ap Tan(A, a).

Proof. Assume a = 0. Observe that ν ∈ Nor∗(A, 0).
The statement in (1) is classical. We give a proof here for completeness.

If T = Tan(A, 0) then there exist a function f : T → T⊥ of class 2 and an
open neighbourhood U of 0 ∈ Rn such that D f(0) = 0, T♮[U ] = T♮[U ∩ A] and
A ∩ U = {χ+ f(χ) : χ ∈ T♮[U ]}. Since for every χ ∈ T♮[U ]

|χ+ f(χ) − rν| ≥ r, 2r f(χ) • ν ≤ |χ|2 + |f(χ)|2,

we conclude that D2 f(0)(v, v) • ν ≤ r−1|v|2 for every v ∈ Tan(A, 0) and, since
bA(0) = D2 f(0), the statement in (1) follows.

The statement in (2) is mainly a consequence of [Men16, 3.18]. In fact
suppose T = Tan(A, 0), P : T → T⊥ is the homogeneous polynomial function
of degree 2 such that pt D2A(0, T ) = D2(P ◦ T♮)(0) (whose existence can be
asserted, from instance, by [Men16, 3.22]) and B = {χ+ P (χ) : χ ∈ T }. If we
prove that U(rν, r) ∩B = ∅ then (2) is a consequence of (1). By contradiction
let x ∈ B ∩U(rν, r) and, by [Men16, 3.18], for every positive integer i we can
select xi ∈ A such that

|iT♮(xi) + i2T⊥
♮ (xi) − x| → 0 as i→ ∞.

Since |xi − rν| ≥ r for every i ≥ 1, we get

|iT♮(xi) + i2T⊥
♮ (xi) − rν|2

= i2|xi − rν|2 + (i4 − i2)|T⊥
♮ (xi)|

2 + r2 − i2r2

≥ (i4 − i2)|T⊥
♮ (xi)|

2 + r2 for i ≥ 1;

yet |iT♮(xi) + i2T⊥
♮ (xi) − rν| < r for i large. This is a contradiction.

Finally (3) is a consequence of (2) and 4.11.
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5 Rectifiability and Borel measurability

5.1 Lemma. Let 1 ≤ m ≤ n and k ≥ 1 be integers, 0 ≤ α ≤ 1, γ = k + α and
A ⊆ Rn. Let Y be the set of

(a, T, φ0, . . . , φk) ∈ Rn ×G(n,m) ×

k
∏

i=0

⊙i
(Rn,Rn)

such that φ0 = T⊥
♮ (a) and

lim
r→0

H m
(

A ∩U(a, r) ∩ {z : |T⊥
♮ (z) −

∑k
j=0〈T♮(z − a)j/j!, φj〉| > λrγ}

)

α(m) rm
= 0

for every λ > 0 [for some 0 ≤ λ <∞].

Then Y is a Borel subset of Rn ×G(n,m) ×
∏k

i=0

⊙i
(Rn,Rn).

Proof. Let Z = Rn ×G(n,m) ×
∏k

j=0

⊙j
(Rn,Rn). If 0 < λ < ∞, i ≥ 1 is an

integer and 0 < r < ∞, we define Wλ,i,r to be the set of (a, T, φ0, . . . , φk) ∈ Z
such that φ0 = T⊥

♮ (a) and

H m
(

A ∩U(a, r) ∩
{

z : |T⊥
♮ (z) −

∑k
l=0〈T♮(z − a)l/l!, φl〉| > λrγ

})

≤ i−1 rm.

Then Wλ,i,r is a closed subset of Z. In fact if (aj , Tj, φ0,j , . . . , φk,j) ∈ Wλ,i,r,
j ≥ 1, is a sequence converging to (a, T, φ0, . . . , φk) ∈ Z as j → ∞, we define

Pj(χ) =
∑k

l=0〈(χ− Tj ♮(aj))
l/l!, φl,j〉 for χ ∈ Tj and j ≥ 1,

P (χ) =
∑k

l=0〈(χ− T♮(a))l/l!, φl〉 for χ ∈ T ,

and we observe that Pj(Tj ♮(z)) → P (T♮(z)) as j → ∞, whenever z ∈ Rn. Let

Bj = A ∩U(aj , r) ∩ {z : |T⊥
j ♮(z) − Pj(Tj ♮(z))| > λrγ},

B = A ∩U(a, r) ∩ {z : |T⊥
♮ (z) − P (T♮(z))| > λrγ}

and observe that

B ⊆

∞
⋃

j=1

∞
⋂

h=j

Bh.

Therefore, by [Fed69, 2.1.5(1)], we conclude that

H
m(B) ≤ lim

j→∞
H

m(

∞
⋂

h=j

Bh) ≤ lim inf
j→∞

H
m(Bj) ≤ i−1rm,

(a, T, φ0, . . . , φk) ∈ Wλ,i,r and Wλ,i,r is closed.
Henceforth Y is a Borel set because

Y =
⋂∞

l=1

⋂∞

i=1

⋃∞

j=1

⋂

{Wl−1,i,r : 0 < r ≤ j−1},

[

Y =
⋃∞

l=1

⋂∞

i=1

⋃∞

j=1

⋂

{Wl,i,r : 0 < r ≤ j−1}
]

.
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5.2 Lemma. Suppose 1 ≤ m ≤ n are integers, A ⊆ Rn and τa(x) = x − a
whenever a, x ∈ Rn. Let Y be the set of (a, T ) ∈ Rn ×G(n,m) such that for
every ǫ > 0 there exist η > 0 and ρ > 0 such that

H
m(C(T, z, ǫr, ǫr) ∩ τa[A]) ≥ ηα(m)rm

for every 0 < r ≤ ρ and for every z ∈ T ∩B(0, r).
Then Y is a Borel subset of Rn ×G(n,m).

Proof. We prove that (Rn ×G(n,m)) ∼ Y is a Borel subset of Rn ×G(n,m).
For every ǫ > 0, η > 0 and 0 < ρ2 < ρ1 suppose Wǫ,η,ρ1,ρ2

is the set of
(a, T ) ∈ Rn ×G(n,m) such that

H
m(C(T, z, ǫr, ǫr) ∩ τa[A]) ≤ ηα(m)rm

for some z ∈ B(0, r) ∩ T and some ρ2 ≤ r ≤ ρ1. We prove that Wǫ,η,ρ1,ρ2
is

a closed subset of Rn × G(n,m). Suppose (aj , Tj) ∈ Wǫ,η,ρ1,ρ2
, j ≥ 1, is a

sequence converging to (a, T ) ∈ Rn ×G(n,m) as j → ∞. Therefore there exist
sequences ρ2 ≤ rj ≤ ρ1 and zj ∈ Tj ∩B(0, rj), for j ≥ 1, such that

H
m(C(Tj , zj , ǫrj , ǫrj) ∩ τaj

[A]) ≤ ηα(m)rmj for every j ≥ 1.

Then there exist z ∈ Rn and r ∈ R such that, possibly passing to a subsequence,
zj → z and rj → r as j → ∞. Observe that z ∈ B(0, r) ∩ T and ρ2 ≤ r ≤ ρ1.
For each j ≥ 1 we define

Bj = C(Tj, zj , ǫrj , ǫrj) ∩ τaj
[A], B = C(T, z, ǫr, ǫr) ∩ τa[A],

and one may easily verify that

B ⊆
⋃

h=1

∞
⋂

k=h

τa−ak
[Bk].

Now we can use [Fed69, 2.1.5(1)] to conclude that

H
m(B) ≤ lim inf

h→∞
H

m
(

τa−ah
[Bh]

)

≤ α(m)ηrm.

Therefore (a, T ) ∈Wǫ,η,ρ1,ρ2
and Wǫ,η,ρ1,ρ2

is a closed subset of Rn ×G(n,m).
If E ⊆ R is a countable set such that inf E = 0 /∈ E then it is not difficult to
see that

(

Rn ×G(n,m)
)

∼ Y =
⋃

ǫ∈E

⋂

η∈E

⋂

ρ1∈E

⋃

ρ2∈E

Wǫ,η,ρ1,ρ2
.

5.3 Definition. A measure φ over X is called σ finite if there exists a sequence
Xi such that φ(Xi) <∞ for every i ≥ 1 and X =

⋃∞

i=1Xi.

5.4 Theorem. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1, A ⊆ Rn

such that H m
xA is σ finite and for every a ∈ A there exists an m dimensional

submanifold B ⊆ Rn of class (k, α) such that a ∈ B and the following condition
(∗) is satisfied. For every ǫ > 0

lim
r→0

H m
(

A ∩B(a, r) ∩ {z : δB(z) > ǫ rk}
)

α(m)rm
= 0
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and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(

A ∩B(a, r) ∩ {z : δB(z) > λrk+α}
)

α(m)rm
= 0.

Then A is countably (H m,m) rectifiable of class (k, α).

Proof. Clearly, we can assume H m(A) < ∞. If X is the set of points a ∈ Rn

such that there exists an m dimensional submanifold B of class (k, α) such that
a ∈ B and (∗) is satisfied, then X is an H m measurable subset of Rn by 3.11,
5.1 and [Fed69, 2.2.13]. If E ⊆ Rn is an H m hull of A, by [Fed69, 2.1.5(2)],
then A ⊆ E ∩X and E ∩X is a H m measurable subset of Rn that satifies the
same hypothesis A does. Therefore we can assume A to be H m measurable.

If a ∈ A and B is an m dimensional submanifold of class 1 such that a ∈ B
and (∗) is satisfied then, by 3.11 and 3.6, we get that

Tan∗m(H m
xA, a) ⊆ Tan(B, a), Θm(H m

x A ∼ X(a,Tan(B, a), ǫ), a) = 0,

for every ǫ > 0. Therefore by [Fed69, 2.10.19(2), 3.3.17, 3.2.29] we conclude
that A is (H m,m) rectifiable of class 1.

Let S ∈ G(n,m), let U ⊆ S be relatively open, let f : U → S⊥ be a function
of class 1, M = {χ+ f(χ) : χ ∈ U}, Lip f < ∞ and H

m(M) < ∞. We prove
that A ∩M is (H m,m) rectifiable of class (k, α). This evidently implies that
A is (H m,m) rectifiable of class (k, α). Let Y be the set of points a ∈ A ∩M
such that Θm(H m

x M ∼ A, a) = 0. We use 4.2, 4.10 and 3.5 to conclude that

Tan∗m(H m
xA ∩M,a) = Tan(M,a) for every a ∈ Y .

By [Fed69, 2.10.19(4)] we have H m(A ∩M ∼ Y ) = 0. Let

C = S ∩ {χ : χ+ f(χ) ∈ A ∩M}, D = S ∩ {χ : χ+ f(χ) ∈ Y },

we observe that H m(C ∼ D) = 0 and

Θm(H m
x S ∼ C, χ) = 0 for every χ ∈ D.

Let χ ∈ D, a = χ + f(χ) and suppose B is an m dimensional submanifold
of class (k, α) such that a ∈ B and (∗) is satisfied. Since Tan(B, a)∩S⊥ = {0},
there exist a function g : S → S⊥ of class (k, α) and an open neighbourhood V
of a such that B ∩ V = {ζ + g(ζ) : ζ ∈ S} ∩ V . Therefore, by 3.11,

lim
r→0

H m
(

A ∩B(a, r) ∩ {z : |g(S♮(z)) − S⊥
♮ (z)| > ǫ rk}

)

α(m)rm
= 0

for every ǫ > 0 and, if α > 0, there exists 0 ≤ λ <∞ such that

lim
r→0

H m
(

A ∩B(a, r) ∩ {z : |g(S♮(z)) − S⊥
♮ (z)| > λrk+α}

)

α(m)rm
= 0.

Let P : S → S⊥ be the k jet of g at χ. If ǫ > 0 then, possibly replacing λ by a
larger number if α > 0, we can choose ρ > 0 such that

|g(ζ) − P (ζ)| ≤ λ rk+α if α > 0, |g(ζ) − P (ζ)| ≤ ǫ rk if α = 0,

25



for every ζ ∈ B(χ, r) and 0 < r ≤ ρ. Let Γ = (1 + (Lip f)2)1/2, γ = λ+ Γk+α λ
if α > 0 and observe that, whenever 0 < r ≤ ρ,

C ∩B(χ, r) ∩ {ζ : |f(ζ) − P (ζ)| > γ rk+α}

⊆ S♮[A ∩M ∩B(a,Γ r) ∩ {z : |S⊥
♮ (z) − g(S♮(z))| > λΓk+α rk+α}] if α > 0,

C ∩B(χ, r) ∩ {ζ : |f(ζ) − P (ζ)| > 2ǫ rk}

⊆ S♮[A ∩M ∩B(a,Γ r) ∩ {z : |S⊥
♮ (z) − g(S♮(z))| > ǫ rk}] if α = 0.

Since χ is arbitrarily chosen in D, we infer by 2.7 and 2.12 that there exist
countably many functions gj : S → S⊥ of class (k, α) such that

H
m
(

C ∼
⋃∞

j=1{ζ : f(ζ) = gj(ζ)}
)

= 0,

whence A ∩M is (H m,m) rectifiable of class (k, α).

5.5 Theorem. Suppose n ≥ 1, k ≥ 1 are integers, 0 ≤ α ≤ 1, A ⊆ Rn and X
is the set of a ∈ Rn where A is approximately differentiable of order (k, α).

Then X is a Borel subset of Rn. Moreover ap Tan(A, ·)♮ is a Borel map
whose domain is a Borel subset of Rn and the same conclusion is true for
ap Dj A for every j ≥ 2.

Proof. First apply 5.1 and 5.2 to see that the set Z of

(a, T, φ0, . . . , φk) ∈

n
⋃

m=1

[

Rn ×G(n,m) ×
∏k

i=0

⊙i
(Rn,Rn)

]

such that φ1 = 0 and the conditions listed in 5.1 and 5.2 are satisfied for every
λ > 0 if α = 0 and for some 0 ≤ λ < ∞ if α > 0, is a Borel set; then use
3.11 and 3.14 to conclude that Z is the graph of a function f mapping X into
⋃n

m=1[G(n,m) ×
∏k

i=0

⊙i
(Rn,Rn)]; finally apply [Men16, 4.1] to infer that X

is a Borel subset of Rn and f is a Borel function. In case α = 0, this clearly
proves the second part of the conclusion.

5.6 Theorem. Suppose 1 ≤ m ≤ n and k ≥ 1 are integers, 0 ≤ α ≤ 1, A ⊆ Rn

is H m measurable with H m(A) < ∞ and X is the set of a ∈ Rn such that A
is approximately differentiable of order (k, α) at a with dim ap Tan(A, a) = m.

Then X is (H m,m) rectifiable of class (k, α) and H m(X ∼ A) = 0.

Proof. Apply 5.4 to get that A∩X is (H m,m) rectifiable of class (k, α). Since
Θm

∗ (H m
x A, x) > 0 for every x ∈ X by 3.14, we infer that H

m(X ∼ A) = 0
by [Fed69, 2.10.19(4)].

5.7 Remark. The pattern of this section follows [Men16, §5].
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