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Abstract.  The explanation of the existence of the rotating MHD modes in the pedestal region 
before Type I Edge Localized Mode (ELM) crash and in the inter-ELM periods (ELM 
precursors) observed in KSTAR is provided for the first time in the present paper. The 
dynamics of ELMs, observed using Electron Cyclotron Emission Imaging (ECEI) in KSTAR 
tokamak, is compared to the modelling results of the non-linear reduced resistive MHD code 
JOREK.  The realistic KSTAR pulse parameters and geometry including X-point and Scrape 
Off Layer (SOL) were used. The full ELM crash modelling was performed using JOREK 
code for single and multi-harmonic representation and in multi-cycles ELMy regimes 
including relevant flows.  The most unstable toroidal modes numbers (n=5-8), velocity 
(~5km/s for n=8 mode) and the direction of the mode rotation were reproduced in modelling. 
The two fluid diamagnetic effects and toroidal rotations included in the model were found to 
be the most important factors in explaining the experimentally observed rotation of the 
ballooning modes before the ELM crash and in the inter-ELM phase. In multi-harmonic 
multi-cycle simulations the spectrum of temperature fluctuations is similar to the experimental 
one in the inter-ELM phase, where several rotating modes with medium n numbers were 
detected in 5-30kHz frequency range. The rotating modes can contain single or several 
harmonics which last from 0.2ms to few ms in time, and can appear and disappear in the inter 
ELM period or persist until a new ELM crash. 
 
I.Introduction. The understanding of Edge Localized Modes (ELMs) physics is of particular 

importance for ITER where heat and particles fluxes due to ELMs represent a concern for the 

plasma facing components (PFC) [1]. The direct comparison of theory and modelling with 

experimental observations of ELM dynamics plays an important role not only in the 

theoretical understanding of ELMs. They are necessary for the reliable predictions of divertor 

heat and particle fluxes and for understanding of ELMs mitigation technics physics needed for 

their optimization in different ITER scenarios.  The measurements performed with Electron 

Cyclotron Emission Imaging (ECEI) diagnostic on KSTAR [2,3,4] provided new surprising 

features of the Type I ELMy regimes on which the present paper is mainly focused.  The 



rotating structures with medium toroidal mode numbers (n=5-8) lasting about few 

milliseconds in time were detected in the pedestal region inside the separatrix during the inter-

ELM period and prior to the ELM crash (so called “precursor” phase). The observed modes 

rotate with frequencies of the order of the diamagnetic one (5-20kHz). Moreover a rapid 

change from a dominant mode number to another one or co-existence of few modes in the 

temperature fluctuation spectrum were detected on KSTAR using ECEI [4]. The direction of 

modes rotation on KSTAR can be both the electron and ion diamagnetic one [2-4]. Similar 

observations were done on AUG [5], MAST [6], NSTX [7], however the ELM precursors 

rotation was mainly observed in the electron diamagnetic direction. Linear MHD modelling 

for KSTAR discharge parameters [3] suggested that the ballooning/peeling modes 

destabilized in the pedestal are good candidates to explain the ECEI diagnostic observations, 

however only the linear stage was modelled and modes rotation was not explained in 

reference [3]. The observed regular rotation of the modes decreases while approaching ELM 

crash, then ELM filaments cross the separatrix [2,7]. During the ELM crash the expelled ELM 

filaments propagate in SOL and “blobs” are cut from the main plasma [8,9]. The 

understanding of full ELMs dynamics with self-consistent modelling of relevant flows is 

crucial in predictions of energy and particle losses during an ELM (ELM size) and even more 

importantly the structure and magnitude of transient heat and particle fluxes into the divertor 

during an ELM which remains an issue for ITER.  In particular toroidal plasma rotation, but 

mostly the electron diamagnetic ,  ion diamagnetic and electrostatic drifts which are large in 

the steep pedestal  gradients region influence ballooning modes stability [9], modes dynamics 

both on linear and non-linear (crash) phase [8,9] and divertor heat fluxes paten which is 

strongly influenced by drifts in confined plasma and in SOL [10,15]. The work presented in 

this paper is done as a part of the large ongoing research program aiming the understanding of 

MHD instabilities and their active control in tokamaks based on the first principles non-linear 



MHD modelling using JOREK code [8-10]. In the present paper the full dynamics of ELMs is 

studied in the multi-harmonics and multi-cycles regime which is shown to be a minimum 

model to capture the essential physics pushing modelling capabilities to the more realistic 

description of Type I ELMy H-modes.  In our previous work [9] which was the first work on 

the subject of rotating ELM precursors it was shown that, before the ELM crash, the two fluid 

diamagnetic and electrostatic E B
 

drifts produce poloidal rotation of the ballooning modes 

in the range of diamagnetic frequencies, mainly in electron diamagnetic direction [9], similar 

to most experimental observations [2-7].  However, only one single harmonic was used and 

no direct comparison with experiment was done in [9].  In the present work, we modelled 

ELM precursors and filaments dynamics for the realistic KSTAR pulse #7328 parameters 

[3,4] and compared to the ECEI observations. In particular it was demonstrated that, in multi-

harmonics multi-cycle non-linear modelling including two fluid diamagnetic effects and 

toroidal rotation, many experimental observations can be reproduced, including localization 

of the modes, velocity and direction of the poloidal rotation and temperature fluctuations 

spectrum.  The paper is organized as follows. In Sec.II, the JOREK model with flows and 

coordinate system is introduced. In Sec.III, the modelling results of full ELM crash due to a 

single ballooning mode n=8 for KSTAR parameters are presented. The poloidal velocity of 

the mode n=8 obtained in JOREK modelling is compared to the ECEI measurements of 

temperature fluctuations on KSTAR and theoretical predictions from [9]. The relaxation of 

density and temperature profiles, filaments dynamics and generation of poloidal mean flow 

[8,9] on the non-linear stage are described. In Sec. IV, the modelling of multi-harmonics 

(n=1-8) and multi-cycles ELMs is presented. Temperature fluctuations spectrum in inter-

ELM regime showed similarities with experimentally observed one.  

II. Model. In the present work, we used the non-linear resistive MHD code JOREK [8], with 

flows relevant for this study included in the model [10].  For the following discussion of the 



direct comparison between modelling and experiment here we recall the essential features 

which should be included in the model.  In particular toroidal plasma rotation and two fluid 

diamagnetic effects are essential to describe the ballooning modes rotation in the pedestal 

region with a strong pressure gradient [9].  The magnetic field in JOREK code is represented 

in the form: 0B F      


 , where is toroidal angle,   –is the poloidal magnetic 

flux, and 0 ,0 0F B R , ,0B  being the toroidal field on the magnetic axis and 0R  -is major 

radius. The plasma fluid velocity is taken in the following form: 
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‐  is the velocity parallel to the magnetic field. The 

second term is E B
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 convection where the electric field is expressed as gradient of the 

electrostatic potential: E u 


 . The last term is the ion diamagnetic drift velocity, where the 

parameter: 0*
01 / ( ), eff

ci ci
i

Z eB
R

m
      is the ion gyrofrequency,   ip - is ion pressure, 

191.6022 10 SIe   -is the elementary charge,  i im n   -is the mass density.  For simplicity in 

following the effective ion charge is taken 1; / 2; / 2.eff i e i eZ p p p T T T      The 

normalized set of reduced MHD equations with two fluid diamagnetic and neoclassical effects 

solved in the present work is similar to [10]:  
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The normalization used here was the following: 0,/SI SI   , where 0 0eff p eAZ m n   is the 

mass density on the magnetic axis, 2A   for deuterium plasma, 0 0/SIt t   , 7
0 4 10   ,   

A Spitzer-like resistivity 3/2
,0 0 0 0 ,0/ ( / )SI e eT T        is used, where ,0eT is the electron 

temperature at the magnetic axis. A temperature-dependent perpendicular viscosity is used: 

3/2
, 0 0 0 ,0/ ( / )SI e eT T     

    , parallel viscosity was constant in modelling

|| ||, 0 0/SI    . The Braginskii parallel thermal conductivity is expressed as 

5/2
|| ||, 0 0 ||,0 ,0/ ( / )SI e eK K K T T    The ratio of specific heat is 5 / 3  . Perpendicular 

diffusion ad-hoc coefficients depends on radial coordinate (normalized magnetic flux:

( ) / ( )n axis sep axis       ):   and are decreased to the neoclassical value in the pedestal 

region to represent the H-mode transport barrier , 0 0( ) ( )n SI nD D     , (in the present 

modelling we set perpendicular particle diffusion coefficient as follows : 2
, , ~ 2 /axis SID m s , 

2
, , ~ 0.02 /ped SID m s , 2

, , ~ 12 /SOL SID m s ), the same profile for the perpendicular heat 

diffusion coefficient , 0 0( ) SIK K    , with 8
||,0 ,/ 10axisK K   .  The total plasma pressure 

is: 0 0( )e i SI SIp p p p    , where p T , 0 0( / )i eVT e m T  -temperature, 

0 0 0/SIu u F   -electrostatic potential.  The sources of toroidal current - Aj , particles - pS  , 

and heating - TS  have been introduced.  A toroidal rotation source was introduced in the 

equation for the parallel velocity to maintain the rotation profile compensating losses due to 

the parallel viscosity: || ||, 0V tS V    . The toroidal current is: (3) 2
0( , ) / ( )J J j R    


, 



where  
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. The neoclassical poloidal friction was taken in the 

simplified form similar to [10]:  
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Introducing poloidal unit vector as: ( / | |)e R      


, we obtain: | | /B R   . The 

neoclassical poloidal velocity is expressed as follows: , ( ) /neo i ICV k T B       and total 

poloidal velocity is : 2
||( , ) ( , ) / /ICV u p V B B                  , where we used the 

normalization: , 0 0/SIV V    ,  , , , 0 0/neo i neo i SI    , ||, 0 0 ||SIV V B  
 

, and 

0 0 0/ (2 )IC im e F     . 33.10IC   for KSTAR parameters used here.  Typical values 

estimated in [10, 11] of the normalized neoclassical coefficients ( 5
, 2.10 ; 1.1i neo ik    ) 

were taken constant in this modeling for simplicity. The normalized poloidal and parallel 

viscosities were set to: 5 6
|| ,010 ; 10  

  . Normalized central resistivity was 7
0 5.10 

which corresponds to 6
0, 1.510 ( )SI Ohm m  . Here, for numerical reasons, resistivity is 150 

times larger than the experimental one:  
5 3/2 8

0,exp, 5.2410 ln / 10 ( )SI e eVZ T Ohm m      for 

central electron temperature (0) ~ 2eT keV . The isoparametric cubic Bezier finite elements 

were used to construct 2D grid in the poloidal cross-section [12]. The continuity of all 

variables and their derivatives including coordinates (R,Z) is satisfied on this C1 grid. The 

finite element grid is aligned to equilibrium flux surfaces for the three regions of the core, the 

SOL and the private region. The boundary of the computational domain is limited by the flux 

surfaces and divertor target plates. The boundary conditions around the computational domain 

correspond to those of an ideally conducting wall, where all perturbations are set to zero. On 

the divertor targets Bohm sheath boundary conditions were used for the fluid velocity  and the 

heat flux normal to the target plates: 
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where sC T is the ion sound speed , sh is the sheath transmission factor (here we used 

4.5sh  ) and n


is the unit vector normal to the divertor plate. The temperature and density 

have free outflow boundary conditions at the target. The toroidal dimension is represented by 

a Fourier series. The time stepping is done using the implicit Crank-Nicolson scheme [8,12]. 

Resulting  sparse system of equations is solved using a Generalized Minimal REsidual Solver 

(GMRES) with the preconditioner obtained by solving independently each sub-matrix 

corresponding to non-coupled Fourier harmonics. These sub-matrices are solved using the 

direct parallel sparse matrix solver PaStiX [13].  First the simulation starts on the initial flux-

aligned mesh only for axisymmetric n = 0 component without other toroidal modes and 

continues until all flows (parallel and perpendicular) in the plasma core and SOL are 

established. Typical time to reach equilibrium with flows is about ~0.5-1 ms. Then other 

harmonics are initialized at the noise level. The JOREK code uses a left handed cylindrical 

coordinate system ( , , )R Z  .  However for the practical reasons of the direct comparison of 

ECEI diagnoistic observbations the following analysis of the rotation of the ballooning 

modes, let us introduce more practical left-handed coordinate system ( , , )re e e 
  

, where 
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 (Fig.1). The magnetic field in the JOREK model 

is expressed as following: 0B F      


, so in equilibrium:
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F
B B B
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    According to the experimental setup [4] the direction of the 

toroidal velocity and the  toroidal plasma current are the same (negative in our coordinate 

system ( , , )re e e 
  

)  corresponding to the co-NBI injection and  opposite to the magnetic field 

which is positive in our system. Since the direction of the pressure gradient in equilibrium is 



always toward the plasma center, the direction of the ion diamagnetic drift velocity 
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 is clockwise (positive in our system) and for the electron 

diamagnetic drift velocity: * 2
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
 it is anti-clockwise (negative in our system) 

(see Fig.1).  The radial force-balance can be written as follows:  
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Where in the derivation of (10) we used the following expressions: 
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Note that in the pedestal region with rather steep pressure gradient typical for H-mode plasma, 

the radial electric field is usually negative (so called radial electric field “well” in the 

pedestal) when the first diamagnetic term in (10) is dominant. However at strong toroidal 

plasma rotation ( 0V  in our reference frame) the radial electric field is increased and even 

can change sign to a positive one and, as it will be demonstrated later, it is the case for the 

KSTAR pulse we modelled in the present work. In earlier work [9], we showed that two fluid 

diamagnetic effects are essential for the explanation of the regular rotation of ballooning 

modes in the linear phase.  In [9] scalar variables ( ; ;p u ) were decomposed in Fourier 



series. For example the magnetic flux is represented as : ( )

,

( , , , ) ( ) i m n t
mn

m n

r t r e          . 

Note that here the convention is : ( )resm nq r 0; 0m n  . In the frame of reference rotating 

poloidaly with the velocity /E B rV E B   introduced in [9] , the equilibrium radial electric 

field was zero and only poloidal diamagnetic velocity for ions and electrons *
,i eV were 

considered in derivation of the dispersion relation for the ballooning modes in two 

approximations: high and low resistivity plasmas [9]. As it was shown in [9], in this reference 

frame all perturbations due to the unstable ballooning mode (m,n) resonant at  ( ) /resq r m n  

do not rotate in highly resistive plasma ,mode 0f
  . However the ballooning modes rotate 

poloidaly in low resistivity plasma with angular frequency: *
,mode 0.5f

im    , where 

* * /i iV r  , * 1 i
i

e

p
V

B en r


 


, as it was predicted by ideal MHD theory with diamagnetic 

effects taken into account [14]. It was shown in [9] that for typical tokamak plasma 

parameters the approximation of ideal MHD is valid for most cases. In the non-rotating 

laboratory frame the poloidal velocity of the rotating frame ( E BV  ) should be added to the 

poloidal mode velocity in the rotating frame ,mode
fV and hence:  

,mode, ,mode
f

lab E BV V V         (11) 

Multiplying (11) by ( / )resm r and using (10) the angular rotation frequency of the mode (m,n) 

in the non-rotating laboratory frame ( , , )re e e 
  

 (Fig.1) can be expressed as follows:   

*
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Where we used that: *
, , ,/ / ( ) /E B E B res r res i pl pl resV r E B r q            , 

/ ( ) /res resq B r B R m n   , , /pl resV r   , , /pl V R   . And *
,mode 0.5f

im    - for ideal 

or low resistivity plasmas. And ,mode 0f
  for high resistivity plasma. Later on we will show 



that the expressions (11-12) obtained for a circular plasma remains also rather good 

approximation for the realistic non-circular plasma. 

III. Single harmonic simulation. The initial equilibrium for the KSTAR pulse #7328, 

Btor=2.25T, Ip=750 kA, q95=5  [3] was calculated by the EFIT code (EQDSK file) at the time 

t=4.36s.  Then the pedestal density and temperature profiles were modified and taken as it is 

shown in Fig.2. After that the magnetic equilibrium was recalculated self-consistently using 

the JOREK code and the flux aligned grid was constructed.  Precise measurements of the 

pedestal profiles are not available on KSTAR so here we used the same procedure as in [3] 

which consisted in adjusting  the pedestal pressure profile in a way to obtain the largest linear 

growth rate for the n=8 ballooning mode which was observed experimentally at the time 

considered here. Note that maximum pedestal pressure in Fig.2 is similar to one used in [3]. In 

the present work the bootstrap current is calculated using temperature and density profiles 

presented in Fig.2. The toroidal rotation profile was taken close to the experimental one 

measured by the charge exchange spectroscopy (CES) diagnostic (Fig.3). Then the 

equilibrium with flows was obtained at approximately t=0.5ms after running the JOREK code 

only for one harmonic n=0. In the KSTAR pulse #7328 at time t=4.36s (corresponding to the 

phase between ELM crashes or inter-ELM phase) the ECEI diagnostic localized on the Low 

Field Side (LFS) detected structures just inside separatrix with the main toroidal number n=8 

which were rotating poloidaly with a velocity of about mode, ,exp 5.4 /labV km s  (Fig.4).  After 

the equilibrium with flows was reached, a single harmonic n=8 was initialized in modelling 

with a small amplitude at the numerical noise level (~10-27). Both linear phase and highly 

non-linear phases of ELM due to the ballooning mode n=8 including profiles relaxation were 

modelled. The time evolution of the magnetic energy of the single harmonic n=8 calculated 

by JOREK is presented in Fig.5. The temperature fluctuations for the n=8 ballooning mode 

inside separatrix in the frame corresponding to the ECEI observation window are presented in 



Fig.6. Here (a) and (b) images taken just before ELM crash are separated by ~0.008ms (two 

points in time indicated by diamonds in Fig.5).  Note that mode rotates poloidaly in the ion 

diamagnetic direction (clockwise direction) at about ~5km/s which is similar to the 

experimentally observed ~5.4 km/s.  However as we discussed in Sec. II at slower plasma 

toroidal rotation typically the radial electric field is negative in the pedestal region. In this 

case the ballooning mode perturbations rotates in the electron diamagnetic (anti-clockwise in 

our frame) direction in the laboratory frame which is the most common observation in many 

tokamaks [2-7]. To verify this statement we did a run with the same form of the toroidal 

velocity profile but reduced central value: ,0 54 /V km s   instead of the experimental one: 

,0 325 /V km s  . As expected in the linear phase the mode n=8 was found to rotate poloidally 

in the electron diamagnetic direction at ~-7km/s for the case ,0 54 /V km s   (Fig.7). The radial 

profiles of the poloidal velocities ,mode ,mode,; ;f
lab E BV V V    over a line in the mid-plane (Z=0) are 

shown in Fig.8 for these two cases. Note that the direction of the poloidal rotation of the mode 

n=8 changes from the ion diamagnetic direction (positive in Fig.8) at large experimental–like 

toroidal rotation (325km/s), to the electron diamagnetic direction (negative) at lower toroidal 

rotation (54km/s). In the non-linear phase of an ELM the magnetic perturbation is strong 

enough to force magnetic reconnections in the resistive plasma leading to the plasma edge 

ergodisation [8]. The magnetic topology near the X-point during an ELM crash at the time 

corresponding to the maximum of the magnetic energy of the n=8 mode (indicated by a star 

on Fig.5) is presented in Fig.9. The density filaments expelled from the main plasma at this 

time are presented in Fig.10.  This modelling picture is very similar to experimental 

observations [2-4]. The snapshots of the temperature perturbations before and just after the 

ELM crash separated in time by ~0.0166ms are presented in Fig.11, where the ECEI 

diagnostic window at LFS mid-plane is indicated by the vertical lines.  Note the dramatic 

change in the mode rotation after the frame (4) in Fig.11. This time corresponds to the 



maximum of the magnetic energy for the mode n=8 where actually the ELM crash starts. 

Approaching the crash the regular rotation of the mode first decreases and then becomes 

irregular and can change the direction and the amplitude in the narrow layers within the 

pedestal. The dynamics of ELM filaments at this stage is mainly defined by a strongly sheared 

mean poloidal flow which is generated due to the non-linear mode coupling via Maxwell 

stress tensor [8,9]. The poloidal plasma velocity profile during an ELM is presented in Fig.12. 

Note the strongly sheared poloidal flow in the pedestal region (Fig.13) leading to the 

deformation of the expelled filaments which are finally cut from the main plasma forming 

“blobs” (Fig.14). On the non-linear phase of an ELM the density and temperature profiles are 

relaxed (Fig.15). Note that in spite of the ballooning structure of the mode and its initial 

localization on the LFS, more ELM power is deposited into the inner divertor (in/out ~2:1) 

(Fig.10) which is a typical feature observed in previous modelling including drifts [15] and in 

many experiments [16] pointing out on the importance of the drifts in the model to reproduce 

correctly power deposition in the divertor. 

Sec. IV. Multi-harmonics multi-cycles ELMs modelling. The single harmonic modelling 

described above in Sec.III showed that if the ballooning mode is unstable, its structure, 

localization in the pedestal and poloidal rotation velocity are very similar to the ECEI 

observations in the pedestal region on KSTAR. However not all rotating ELM “precursors” 

observed in the experiment lead to ELM crash and typically several coherent modes lasting 

few ms are observed at the same time in temperature fluctuation spectrum in the inter-ELM 

periods [4], which cannot be explained in single harmonic and single ELM simulation 

presented above.  To consider more realistic conditions multi-mode and multi-ELM cycles 

were studied in this work. In particular multi-cycles regime is important for a reason that in 

the typical single ELM modelling the all modes are initialized at the low amplitude (at 

computer noise level ~10-27) and initial pressure profile is already unstable. However after the 



first crash and pressure profile relaxation the residual multi-modes MHD turbulence remains 

on a detectable level compatible to the measured by ECEI. Moreover the second ELM will 

appear in modelling only when the pedestal pressure gradient is sufficiently large to 

destabilize ballooning modes and the following ELMs can be due to the different most 

unstable n-numbers compared to the first ELM limiting the pressure gradient in self-

consistent way compared to the first ELM crash which starts from the already unstable initial 

pressure profile [15].  As it was shown in [15] the two fluid diamagnetic effects are essential 

to stabilize the residual after crash MHD permitting the pedestal to be rebuilt again provided 

the existence of the heat and particle sources which should be strong enough to compensate 

and overcome the transport due to the residual MHD turbulence.  Based on these findings we 

propose here the generic picture of the possible explanation of the ballooning modes behavior 

before ELM crash (rotating precursors) and existence of the rotating multi-modes in the inter-

ELM periods detected by ECEI diagnostics. Fist note that during an  ELM crash the multiple  

ballooning modes can be unstable linearly or due to non-linear coupling [15,17], hence 

multiple n-s modes can exist after a crash. Secondly while the pedestal pressure gradient is 

increasing again the diamagnetic stabilization becomes stronger (the 3rd term in equation (1)) 

and some modes  and especially for n-numbers [15]  can be totally stabilized and hence 

disappear from the spectrogram. On the other hand other ballooning modes can become 

unstable when corresponding critical pressure gradient is reached. As a consequence new 

multiple rotating ballooning modes can be destabilized and detected like rotating structures 

inside separatrix or lines on the temperature fluctuations spectrogram. They can last for a 

certain time and not necessarily immediately lead to the large ELM crash since they produce 

continuous small transport delaying pedestal rebuilt by sources. These is a ‘competition’ 

between the transport out of the pedestal due to the weakly unstable ballooning modes and 

heat and particle sources.   Finally the next ELM crash can happen due to the most unstable 



mode when pressure gradient is large enough. The most unstable mode number may be 

different from the previous ELM.  Firstly we concentrated on the non-linear ballooning modes 

coupling and the residual multi-modes MHD turbulence remaining after the first ELM  crash 

which correspond to the inter-ELM period.   In Fig.16 the magnetic energies of n=1-8 modes 

are presented for the JOREK run for the same plasma parameters (Fig.2-3), but in multi-

harmonics regime.  One can see that for the first ELM the n=8 mode remains the most 

unstable and other modes n=4-7 are also linearly unstable, but with smaller growth rates than 

n=8 (Fig.16). Approaching the non-linear phase all modes became strongly coupled. Note in 

particular that n=1-3 modes (dashed lines in Fig.16) which were linearly stable in the initial 

linear phase became unstable in the non-linear phase. This is similar to the findings of low-n 

structures induced by non-linear coupling in multi-harmonic ELM modelling presented in 

[17]. The spectrum of temperature fluctuations in the inter-ELM period after a crash (Fig.17) 

showed the presence of coherent modes n=5-8 during a few ms. Note that the dominant 

harmonic number can change in time during the pedestal build-up in modelling, which is 

similar to ECEI observations [4]. The experimental ELM frequency for pulse KSTAR#7328 

was about 40Hz, hence inter-ELM period was ~25ms.  This is a too long-lasting inter-ELM 

period for the modelling, since multi-harmonics are highly consuming in terms of computing 

time and memory. Moreover the time step in inter-ELM period modelling should be kept of 

the order of a few Alfven times (~10-4ms)  to resolve all harmonics fluctuations in time.  In 

order to achieve multi-harmonics and multi-ELM regime on a more reasonable and shorter 

time accessible for modelling, the heating power was artificially increased to 9MW in 

modelling instead of 3MW in experiment. At the same time the toroidal velocity was 

increased (487km/s instead of 325km/s in experiment) to increase the stabilizing effect of the 

rotation on the remaining MHD after ELM crash which  allows the pedestal to re-build on a 

shorter time scale similar to  [15]. The 1.2kHz multi-ELMs were obtained using n=8 single 



harmonic (Fig.18). Note that for the established ELM cycles (last two ELMs in Fig.18) the 

pressure and current profiles before an ELM are similar (Fig.19). In multi-harmonics n=1-8 

simulation (Fig.20) only two full ELM crashes were modelled here, since this case demands a 

much longer computer simulation time, that was limited. In the case of multi-harmonics the 

second ELM is mostly due to the n=6 mode compared to the first ELM where  n=8 is 

dominant (Fig.20 bottom frame).  The frequency spectrum of the electron temperature 

fluctuations in the mid-plane on LFS (Fig.20 top frame) for this case is presented in Fig.20 

(middle frame), showing a n=6 ‘precursor’ prior to the second ELM lasting about ~0.15 ms. 

The pedestal pressure and current profiles before the first and the second ELM are different 

(Fig.21) which explains different the most unstable mode numbers seen in modelling (n=8 for 

the first ELM and n=6 for the second one). As it was discussed in [15] the established ELM 

cycles can have different most unstable toroidal harmonic number compared to the first ELM 

in modelling, since the initial plasma profiles usually are arbitrarily set to be unstable and the 

initial perturbations are set at the numerical noise level which is not the case for the following 

ELM cycles.  

Sec.V. Discussion and conclusions. The non-linear MHD modelling of the full ELM crash 

dynamics was done using the JOREK code with two fluid diamagnetic and neoclassical 

effects [8,10] for the KSTAR pulse #7328 parameters and compared to the ECEI diagnostic 

observations [3]. Most of the experimentally observed features were reproduced in modelling. 

In particular the structure and localization of the medium n (n=5-8) peeling-ballooning modes 

in the pedestal region inside the separatrix, poloidal rotation frequencies and the direction of 

the modes rotation before ELM crash are similar to the experimental observations. It was 

shown that the observed poloidal rotation of the modes in the inter-ELM periods far from the 

ELM crash is of the order of the ~ E B
 

velocity and can be in the electron diamagnetic 

direction (more common observation in many tokamaks [2-7]) and in the ion diamagnetic 



direction at relatively large toroidal rotation, which was the case for the KSTAR [3-4] pulse 

modeled in the present paper. On the highly non-linear phase of ELM crash the regular 

rotation of the modes decreases and ELM filaments are expelled to the SOL. More ELM 

power is found in the inner divertor (in/out =2:1) compared to the outer divertor with two 

fluid diamagnetic and E B
 

drifts included in the model [15] which is similar to the 

experimental findings [16]. Multi-modes (n=1-8) modelling demonstrated the acceleration of 

the growth of all peeling-ballooning modes and the destabilization of the previously linearly 

stable modes while approaching the ELM crash. This is due to the strong non-linear coupling 

of the modes in this phase as it was also found in [17].  In multi-ELMs regimes in the inter-

ELM periods and before the ELM crash the temperature fluctuations spectrum in modelling is 

similar to the one observed in experiment.  In particular the presence of several unstable 

modes (n=5-8) in the range of frequencies (5-30kHz) were obtained. The time duration of 

these coherent structures varies from 0.15ms to 2ms in modelling. Note however that this 

work represents only a first step in the interpretation of the experimental observations of ELM 

precursors and obviously has its limits. In the first place the exact pedestal measurements 

were not available on KSTAR, so there was a certain freedom in the choice of the pedestal 

pressure and its gradient which defines value of the diamagnetic velocity. The resistivity was 

two orders higher in modelling than in experiment for numerical stability reasons. At the 

realistic resistivity the linear growth rate of the modes will probably change to smaller values,  

but the general dynamics will remain. The resistivity scans within possible from the numerical 

point of view range confirms this statement.    Limitations in the computer time and memory 

for multi-harmonics simulations did not permit to achieve realistic experimental ELM 

frequency, however it could be artificially increased in modelling without changing much the 

generic picture of multi-cycling ELMs behavior.   The aim of this work was mainly to 

propose a minimum model for the possible underlying mechanism of the observed rotating 



structures in the pedestal temperature before an ELM crash (ELM precursors) and in the inter-

ELM periods providing more detailed physics basis for the understanding of ELMs.  
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Figure captions: 

Fig.1. Left-handed coordinate system ( , , )re e e 
  

used for the analysis of ballooning modes 

rotation. 

Fig.2. Initial density (dashed black), temperature (blue), pressure (cross magenta) profiles 

used in JOREK modelling.  

Fig.3. Toroidal rotation profile used in modelling (blue)and measured by CES diagnostic (red 

squares). 

Fig.4. Two ECEI diagnostic images of temperature fluctuations before ELM crash separated 

by ~0.008ms in time. 

Fig.5. The time evolution of the magnetic energy of the single harmonic n=8 during full ELM 

crash calculated by JOREK.  

Fig.6. Two images of temperature fluctuations before ELM crash separated by ~0.008ms in 

time in non-linear MHD modelling in single harmonic n=8 simulation at Vtor =325km/s. 

Fig.7. Two images of temperature fluctuations before ELM crash separated by ~0.008ms in 

time in JOREK modelling in single harmonic n=8 simulation at Vtor =54km/s. 

Fig.8. The profiles of the velocities in mid-plane : E BV  (magenta solid line for Vtor =325km/s 

and magenta dashed for Vtor =54km/s) *
,mode 0.5f

iV V  (red bold line) ;  

,mode, ,mode
f

lab E BV V V    ( black crosses on the solid line for Vtor =325km/s and black crosses 

on dashed line for Vtor =54km/s)   

Fig.9. Edge magnetic topology at a time corresponding to a maximum of magnetic energy of 

n=8 ballooning mode (indicated by star in Fig.5) 

Fig.10. Density (upper scale in  [1020m-3]) filaments during non-linear phase of an ELM and 

maximum parallel heat flux (bottom scale in [GW/m2]) in the inner and outer divertor due to 

an ELM. 



Fig.11. Snapshots of temperature fluctuations in the mid-plane on LFS before and during 

ELM crash. Images are separated in time by ~0.0166ms.  

Fig.12. Poloidal plasma velocity profile at mid-plane on LFS. Before an ELM (time of the 

frame 1 in Fig.11)-in bold, During non-linear phase (time corresponds to the frame 4 in 

Fig.11) -in dashed. 

Fig.13. Poloidal plasma velocity at mid-plane on LFS. Before an ELM (top figure) and at 

maximum magnetic energy of n=8 mode during ELM crash (bottom). 

Fig.14. Density filaments and blobs during non-linear phase of ELM n=8 . Electrostatic 

potential contours are superposed on the plot indicating ExB convective cells formation 

during an ELM.  

Fig.15. Relaxation of density (in red) and temperature (in blue) profiles during an ELM 

(modelling with single harmonic n=8). Profiles before ELM crash (with markers) correspond 

to the frame 1 and after crash (plain lines) to the frame 6 in Fig.11. 

Fig.16. Magnetic energy in multi-harmonics (n=1-8) simulation of ELM in KSTAR. Dashed 

lines indicate initially linearly stable, but then non-linearly unstable modes (n=1-3). 

Fig.17. Temperature fluctuations in the pedestal at mid-plane in JOREK modelling (upper 

frame), frequency spectrum (middle), magnetic energy in time (bottom) for multi-harmonics 

n=1-8 simulation of an ELM on KSTAR for Vtor=325km/s. 

Fig.18. Magnetic energy versus time for multi-cycles simulations for single harmonic n=8, 

Vtor=487km/s, NBI power was taken 9MW. 

Fig.19. Pedestal pressure and current profiles in mid-plane at LFS before the last two 

established single harmonic n=8 ELMs presented in Fig.18.  

Fig.20. Temperature fluctuations in the pedestal at mid-plane in JOREK modelling (upper 

frame), frequency spectrum (middle) and evolution of the  magnetic energy in time (bottom) 



for multi-harmonics simulation (n=1-8) of an ELM at  increased Vtor=487km/s and 9MW 

NBI power. 

Fig.21. Pedestal pressure and current profiles in mid-plane at LFS before the first (most 

unstable mode was n=8) and second (most unstable was n=6) ELM in multi-harmonics n=1-8 

simulation presented in Fig.20. 
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