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Abstract 

The nonlinear evolution of double tearing mode is numerically investigated in 2D geometry. Long and 

thin current sheets are found to be formed and become tearing unstable in high Lundquist number 

regime during the fast reconnection phase, leading to the onset of the secondary and tertiary islands 

(plasmoids). Eventually the system saturates at a quasi-stationary state with those islands coexisting in 

two pairs. Interestingly, a new evolution process, characterized by two fast reconnection phases, is also 

discovered for an intermediate distance between the two resonant surfaces due to the evolution of 

current ribbons associated with the secondary island. These results are obtained only when the 

symmetry of magnetic configuration is strictly guaranteed in numerical calculations. 
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1. Introduction 

Magnetic reconnection is one of the most important physical phenomena in space and 

magnetically confined plasmas[1]. It changes magnetic configuration and releases magnetic energy into 

bulk plasma heating and kinetic energy. Amongst many magnetic reconnection events, fast 

reconnection, e.g. during the sawtooth crashes in tokamak plasmas, is of special interest. Recently, 

analytical[2] and numerical[3]-[5] efforts have been devoted to investigate the stability of a current 

sheets at high Lundquist number. The current sheet can be tearing unstable and break up into plasmoids, 

providing a possible explanation for reconnection events faster than the Sweet–Parker reconnection 

model. 

Multiple current sheets systems are also commonly encountered in space and laboratory plasmas. 

One example is the configuration with central reversed magnetic shear in tokamak discharges. The 

non-monotonic q-profile can lead to the formation of the internal transport barrier and a higher 

bootstrap current fraction than the standard H-mode plasmas[6],[7], being a possible configuration for 

the steady operation of a fusion reactor. However, for such configuration double tearing mode[8]-[19] 

(DTM) can be excited, resulting in fast magnetic reconnection and confinement degradation[20]-[23]. 

_____________________________ 

a)Author to whom correspondence should be addressed. Electronic mail: junma@ipp.ac.cn, wfguo@ipp.ac.cn  

mailto:junma@ipp.ac.cn


2 
 

Therefore, DTM is of great interest to fusion research and has been investigated both analytically and 

numerically in different geometries. As one of the most important aspects in nonlinear evolution of 

DTM, the change of magnetic configurations by DTM has been intensively investigated 

before[24]-[28]. A common knowledge is that, when these two resonant surfaces are close enough, the 

stagger arranged islands at different rational surfaces can grow bigger and triangularly deform, 

resulting in intensive current density around island’s x-point and subsequent explosive flow driving 

reconnection. In the following phase the islands on different current sheets switch their radial position, 

and reconnect with open field lines on the opposite X points, leading to a final quasi-steady state with 

almost parallel field lines and small residual poloidal flows. These results are obtained with the 

Lundquist number being much lower than that in tokamak experiments.  

In higher Lundquist number regime, recent numerical studies with resistive MHD model revealed 

that the physical process can be different[1]. Instead of the intensive density around island’s x-point, 

unstable long and thin current sheets can be formed as a result of islands interaction and break up 

during the nonlinear evolution of DTM, leading to the secondary islands[29] or even tertiary 

islands[30][31], showing the diversity and complexity of physics in high Lundquist number regime. 

However, in these studies the symmetry is not well preserved in calculations due to numerical 

errors. In this case a small numerical error together with a high Lundquist number will result in a 

sufficiently large electromagnetic force to generate artificial plasma flows and the loss of 

momentum conservation in numerical calculations, which leads to nonphysical motion of 

plasmoids in the nonlinear phase such that plasmoids only transiently exist in the reconnection 

region. This problem has been overcome by the conservative perturbed resistive MHD 

model[35],[36], which allows to study the nonlinear growth and saturation of DTM with the 

symmetry well preserved in numerical simulations. This is especially important in simulating the 

nonlinear mode growth and saturation with high Lundquist numbers, the regime being more relevant 

to existing tokamak experiments and where plasmoids form. 

In this work, the conservative perturbed resistive MHD model[35],[36] is utilized to 

systematically investigate the nonlinear evolution of DTM, focusing on the regime with sufficiently 

high Lundquist number and the formation and evolution of plasmoids. The symmetry is well preserved 

during our numerical simulations. It is found that the system can saturates at a quasi-stationary state 

with the secondary and tertiary islands coexisting in two pairs. The effect of the distance between the 

two resonant surfaces is also studied. For an intermediate distance a new kind of nonlinear evolution of 

DTM with two fast reconnection phases, caused by the secondary island, is observed.  

This paper is organized as follows: in Section 2 the conservative resistive MHD model for DTM 

simulation is presented. In section 3, the numerical results are reported. Finally the discussion and 

summary are given. 

 

2. Physics model  

The DTM can be described by resistive MHD equations including the mass, momentum, energy 

conservation and the Ohm’s laws[37]: 
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where 𝜌, �⃑� , p, B⃑⃑ , 𝐽 , 𝜈, 𝜂 are the plasma density, velocity, pressure, magnetic field, current density, 

viscosity and resistivity respectively. The magnetic divergence constraint ∇ ∙ �⃑� = 0 is also applied. 

�⃑� = 𝑢𝑥𝑒 𝑥 + 𝑢𝑦𝑒 𝑦 + 𝑢𝑧𝑒 𝑧 , �⃑� = 𝐵𝑥𝑒 𝑥 + 𝐵𝑦𝑒 𝑦 + 𝐵𝑧𝑒 𝑧 , Γ =
5

3
 is the ratio of specific heat, and the 

plasma energy density is defined as 𝜌𝑒 =
𝑝

Γ−1
+

1

2
𝜌𝑉2 +

1

2
𝐵2 . Variables are normalized in the 

following way: 𝜌/𝜌00 → 𝜌 , 𝑝/(𝐵00
2 /𝜇0) → 𝑝 , �⃑� /𝑉𝐴 → �⃑� , �⃑� /𝐵00 → �⃑� , 𝐽 /(𝐵00/𝜇0𝑎) → 𝐽 , 

𝜈/(𝑎𝑉𝐴𝜌00) → ν, 𝜂/(𝜇0𝑎
2/𝜏𝐴) → 𝜂, 𝑥 /𝑎 → 𝑥 , 𝑡/𝜏𝐴 → 𝑡, in which 𝑎 is the scale length, 𝜌00, 𝐵00 

are constant, 𝑉𝐴 = √𝐵00
2 /𝜇0𝜌00  is the Alfvén speed, and 𝜏𝐴 = 𝑎/𝑉𝐴 is Alfvénic time. Lundquist 

number is defined as S = 𝑉𝐴𝐿/𝜂, where L is characteristic length of the system. The conservative 

perturbed MHD[35],[36] is applied in numerical calculations. Each variable, e.g. the plasma density 𝜌, 

is split into an equilibrium part and a perturbation part of the form 𝜌 = 𝜌0 + �̃�, where the subscript 0 

represents the equilibrium part and the above tilde is for the perturbation. The conservative perturbed 

resistive MHD model can be expressed in a general form: 

 𝜕𝑡𝑈 + ∇ ∙ (𝐹 ̃ − �⃑⃑� ̃) = 0,                                         (5) 

where 𝑈 = (𝜌, 𝜌𝑢𝑥, 𝜌𝑢𝑥, 𝜌𝑢𝑥, 𝜌𝑒, 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧)
𝑇  are the original conservative variables. 𝑈 = 𝑈 − 𝑈0 

are perturbed conservative variables, 𝐹 ̃ = 𝐹 − 𝐹 0 is the corresponding perturbed convective flux, and 

�⃑⃑� ̃ = �⃑⃑� − �⃑⃑� 0 is the diffusive flux. Such a model is numerically solved by using a flux vector splitting 

base finite difference method[32]-[34] and has been verified numerically before[35],[36].  

 The computation is carried out in a two dimensional rectangle domain, −2 ≤ x ≤ 2 and −4 ≤

y ≤ 4. Periodical and free boundary condition are imposed at x and y direction, respectively. Although 

all components of magnetic field are evolved in time, it is convenient to define the flux function ψ by 

�⃑� = ∇ψ × 𝑒 𝑧 + 𝐵𝑧𝑒 𝑧, so that the constant ψ surfaces are the magnetic surfaces. The equilibrium 

magnetic field is given by: 

 0 0
0( ) tanh tanh 1x x

y y y y
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, 0yB  , 0z zB B ,  (6) 

the centers of the two equilibrium current sheets are located at ±𝑦0, and d is half thickness of each 

current sheet. The equilibrium flow is assumed to be zero, and the plasma pressure is determined by the 

force balance condition 
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where 𝛽  is a parameter and 𝐵∞  is asymptotic magnetic field for very large y. A constant 

temperature 𝑇0 for the equilibrium is assumed, and the equilibrium plasma density profile is 

obtained from 𝜌0 = 𝑝0/𝑇0. A numerical scheme with 5th order accuracy in space is applied, 

which has a much better resolution than that with a lower orders. Usually 501 × 1001 grids are 

used in calculations, and unless otherwise stated, 𝑑 = 0.2, 𝐵𝑧0 = 1, β = 0.2, ν = 1 × 10−5, S =

1 × 105 and 𝑇0 = 0.1. The equilibrium parameters are symmetric about both x and y axis. 
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The initially perturbation in the magnetic flux function is of the form 
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where the perturbation amplitude ε is set to 10−3. The linear mode growth gate for such type of 

perturbation (with mode number k=1) is significantly larger than that with k≥2. When starting from 

small amplitudes of initial perturbations in calculations, the k=1 perturbation dominates the linear and 

earlier nonlinear mode growth due to its larger growth rate. The initial perturbation of the magnetic 

flux is symmetric about y axis. It can be found from Eqs. (1) – (4) that the time evolution of the system 

does not change the symmetry, so that this symmetry should be maintained during the nonlinear 

mode evolution.  

 

 

3. Numerical results  

It was reported in a recent work[29] that with a low guiding field 𝐵𝑧0, small y0 and resistivity 𝜂, 

long and thin current sheet can be formed during the fast growing phase of kinetic energy, and the 

secondary islands can form. In a recent work by Nemati et al[30], it was also observed that the 

dynamics in nonlinear evolution of DTM with higher Lundquist number, S = 1 × 105 , are 

qualitatively different from that with lower ones. The kinetic energy can reach a higher level during the 

fast reconnection phase, and it is explained in terms of the secondary tearing instability on the DTM 

reconnection current ribbons and the generation of small plasmoids. However, the symmetry is 

eventually lost in the simulation of these studies, so that these tertiary islands are moved 

asymmetrically out of the reconnection region, coalesce with open field lines and then disappear[30]. 

In our simulations, the symmetry of magnetic configuration is preserved, allowing us to study the 

nonlinear dynamics and saturation of DTM under this condition. 

 

3.1. Effect of Lundquist number 

 Numerical scans have been carried out in our calculations to study the effect of the Lundquist 

number, indicating that it plays an essential role for the onset of plasmoids, as found before[30],[31]. 

With 𝑦0 = 0.45, no plasmoids formation is found in our numerical calculations for S = 5 × 103 or 

lower values. When using S = 1 × 104, one secondary island is formed during the nonlinear mode 

growth, since the current sheet around the x-point of the main island becomes tearing unstable, as 

shown Figs.1 (a) and (b). The secondary island grows in size while the main island is squeezed (Fig.1 

(c) at t=116). The system finally decays to parallel field lines (Fig.1 (d) at t=168).  

 

(a) t=60                              (b) t=96 
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(c) t=116                              (d) t=168 

Figure 1 Evolution of magnetic configuration and current density distribution 𝐽𝑧 with S = 1 × 104 and 𝑦0 =

0.45 at (a) t=60, (b) t=96, (c) t=116, (d) t=168. 

 

For an even higher S value, S = 1 × 105 (with 𝑦0 = 0.45), the time evolution of kinetic energy 

EK is shown in Fig. 2 in blue solid line, and the change of magnetic energy |δ𝐸𝑀|, δEM = EM(𝑡) −

EM(𝑡 = 0) in black dashed line. After an initial phase and a slow Rutherford phase, the kinetic energy 

starts to grow quickly at t=135. However around t=157 it falls down a little bit and goes up again until 

it reaches the maximum value around t=173. The perturbed magnetic energy |δEM|, experiences a fast 

increase between t=145 and t=175, indicating the change of the magnetic configuration. Then with 

small amplitude oscillation, |δEM| enters a very long and slow varying phase. 

 

Figure 2 Time evolution of kinetic energy EK and the change of magnetic energy |δEM| for S = 1 × 105 and 

𝑦0 = 0.45. The solid curve is for EK and the dashed line is for |δEM|. 

 

Corresponding to Fig.2, in Fig.3 the contour lines of magnetic flux function and the color map of 

current density Jz along z direction are shown at different time. With the nonlinear growth of magnetic 

islands on each original equilibrium current sheet, a new elongated reconnection region with high 

current density is formed, as shown at t=158 in Fig.3(a). The maximum current density is |J𝑧|𝑚𝑎𝑥 =

67.9. This newly formed current sheet becomes tearing unstable and small plasmoids are generated 

symmetrically. These small islands are ejected out and vanish repeatedly until a secondary island starts 

to grow up at the center of the current sheet and divide it into two current ribbons, as indicated in 

Fig.3(b) at t=161. This secondary island keeps growing up in size and squeezes the up-moving main 

island into a newly formed thin curved current sheet, as shown in Fig.3(c), (d) and (e) at t=167, t=173, 

t=180, respectively. Once again, this curved current sheet becomes unstable, and tertiary islands onsets 

at its center (Fig.3(f) at t=182). Since symmetry is well preserved in our simulation, this tertiary island 
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does not escape from the central region to positive or negative x direction. And it grows bigger while 

the secondary island shrinks until these two islands become comparable in size at t=195, as seen from 

Fig.3(g). Then the system enters into a quasi-stationary state characterized as two pairs of coexisting 

islands which only changes slowly at global current diffusion time. A typical picture of such 

quasi-stationary state is shown in Fig.3(h) at t=400. It is worth to point out this quasi-stationary state is 

achieved only when the symmetry is well preserved in numerical calculations.  

  

(a) t=158                              (b) t=161 

  

(c) t=167                              (d) t=173 

  

(e) t=180                              (f) t=182 

   

(g) t=195                              (h) t=400 

Figure 3 Evolution of magnetic configuration and current density distribution 𝐽𝑧 with S = 1 × 105 and 𝑦0 =

0.45 at (a) t=158, (b) t=161, (c) t=167, (d) t=173, (e) t=180, (f) t=182, (g) t=195, (h) t=400. 

 

Similar plasmoids formation and final quasi-stationary state have been reported during the 

nonlinear evolution of resistive internal kink[38],[39] for a sufficiently high S number. Secondary and 

tertiary islands are also observed to onset during the fast reconnection, and eventually the system 
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reaches a helical equilibrium with two coexisting magnetic islands. There is a similar basic physical  

 

Figure 4 The maximum kinetic energy (𝐸𝐾)𝑚𝑎𝑥  and magnetic energy released after fast reconnection  

|𝛿𝐸𝑀|𝑓𝑎𝑠𝑡 as a function of Lundquist number S with 𝑦0 = 0.45. The dash dot line schematically separates the two 

kinds of evolutions. The points on the left stand for the evolutions that finally decay into almost parallel field lines, 

and the points on the right stand for the evolution that saturate with two pairs of islands. 

 

process for both cases, the formation of thin current sheet and subsequent plasmoids during the 

nonlinear mode evolution. In the simulation of resistive internal kink, the conservation of symmetry is 

essential, as also found in our simulations. 

 It is recognized[30] that due to qualitatively different dynamic with a higher S, the maximum 

kinetic energy can reach a higher level. The maximum kinetic energy and magnetic energy released 

during fast reconnection is also investigated here for different S values. Fig.4 displays (𝐸𝐾)𝑚𝑎𝑥 and 

|𝛿𝐸𝑀|𝑓𝑎𝑠𝑡 as function of S, where (𝐸𝐾)𝑚𝑎𝑥 is maximum kinetic energy, and |𝛿𝐸𝑀|𝑓𝑎𝑠𝑡 is magnetic 

energy released just after the fast reconnection. For the cases with S ≤ 1 × 104, the final magnetic 

configurations are almost parallel field lines. For other cases with higher S values, however, after fast 

reconnection the system saturates at quasi-stationary state with two pairs of islands, thus less magnetic 

energy is released. (𝐸𝐾)𝑚𝑎𝑥 increases with increasing S except for S ≥ 1 × 105，being different from 

that of Ref. [30].  

 

Figure 5 Evolution of kinetic energy EK and the absolute variation of magnetic energy |δEM| for 𝑆 = 1 ×

105 and 𝑦0 = 0.6. 
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3.2. Effect of the distance between current sheets 

 In addition to the S value, the half distance between the equilibrium current sheets, 𝑦0, also 

significantly affects the plasmoids formation during nonlinear DTM evolution. Fixing the value of 𝑆 =

1 × 105, for a small 𝑦0 = 0.15 no plasmoids formation is observed, and the fast reconnection is 

absent for even smaller 𝑦0 due to the reduction of free energy. This is qualitatively consistent 

with Ref[29]. For 𝑦0 = 0.3, only one secondary island forms, but there’s no tertiary islands and no 

final quasi-stationary state with two co-existing islands. With a larger half distance 𝑦0 = 0.6, a new 

evolution process with two fast reconnection phases is found. Fig.5 gives the evolution of kinetic 

energy EK in blue solid line and the absolute variation of magnetic energy |δEM| in black dashed line 

in this case. There are two fast evolving phases for both kinetic and magnetic energy. The kinetic 

energy reaches its first maxima at t=234 and then decays. |δ𝐸𝑀| starts to increase quickly at t=217, 

which is a little later than the kinetic energy, and ends up at t=248. After quite a long time period, the 

kinetic energy enters the second fast growing phase at t=1504, reaching the second maxima at t=1537. 

The second fast magnetic energy decrease starts at t=1511 and ends up at about t=1585. During the 

second fast reconnection, more than three times magnetic energy is released compared to the first one, 

and kinetic energy reaches a higher level.  

Corresponding to Fig.5, Fig.6 shows the evolution of magnetic field and current density. In the 

island’s x-point region, the elongated current sheet is formed and grows in length and amplitude, as 

shown in Fig.6(a). A secondary island then births up and grows at the center of the upper current sheet, 

as indicated in Fig.6(b) at t=238, dividing the current sheet into two current ribbons. The secondary 

island continues to grow until its two sides touch the edges of the upper main island. At the same time 

current ribbons become shorter and weaker, with the maximum current density |J𝑧|𝑚𝑎𝑥 = 14.7. The 

disappearance of the current ribbons terminates the first quick decreasing phase of magnetic energy 

(Fig.6(c) at t=250). Before the second fast reconnection, the system experiences a long and slow 

varying stage, lasting more than 1000 time period, as seen from Fig.6(d). The structure of the magnetic 

configuration changes a little, i.e., the main island expands along y direction in this period of time. As a 

result of this small expansion, the current ribbons with high current density |J𝑧|𝑚𝑎𝑥 = 70.9 is 

recovered, triggering the second fast reconnection phase, and the central main island is squeezed, as 

illustrated in Fig.6(e) at t=1540. The consequent magnetic configuration shown in Fig.6(f) at t=2000 is 

similar to the quasi-stationary state with two pairs of islands shown in Fig. 3(h) for the 𝑦0 = 0.45 

case.  

  

(a) t=234                              (b) t=238 
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(c) t=250                              (d) t=1470 

  

(e) t=1540                               (f) t=2000 

Figure 6 Evolution of magnetic configuration and current density distribution 𝐽𝑧 with 𝑆 = 1 × 105  and 

𝑦0 = 0.6 at (a) t=234, (b) t=238, (c) t=250, (d) t=1470, (e) t=1540, (f) t=2000. 

 

For the above high S simulations, the thin and high density current sheets and ribbons dominate 

the fast reconnection, driving the flows for main islands deformation which in turn further stretch high 

current density regions. The second fast reconnection phase is mainly due to the competition between 

elongating and shortening effects upon current ribbons, induced by the deformation of main islands and 

enlargement of secondary islands, respectively. The triangular deformation of main islands tends to 

stretch the current ribbons along x direction, while the growth of secondary islands tends to annihilate 

them. Being different from the 𝑦0 = 0.45 case, the current ribbons for 𝑦0 = 0.6 case are shorter and 

are “swallowed” by expansion of secondary islands before enough deformation of main islands. This 

halts the first fast reconnection phase. As the current ribbons shrink to much weaker current points, the 

system enters a long and slow current diffusion phase until the deformation of main islands is large 

enough to create the current ribbons once again. This leads to the second fast reconnection phase. 

Symmetry is also necessary for the halt of fast reconnection. With a small asymmetry the secondary 

island will be ejected out to either left or right side, and it will coalesce with the main island, so that 

there will be no second fast reconnection phase.  

When further increasing 𝑦0 to 0.9, a fast reconnection phase is found to be halted by the arising 

of a secondary island (Fig.7 (a) at t=390). However, the main islands interact weakly with each other, 

and the secondary island slowly shrinks (Fig.7 (b) at t=1000) to a X point (Fig.7 (c) at t=1500). The 

system then slowly saturates without the further variation of the magnetic configurations (Fig.7 (d) at 

t=2500).  
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(a) t=390                              (b) t=1000 

 

(a) t=1500                              (b) t=2500 

Figure 7 Evolution of magnetic configuration and current density distribution 𝐽𝑧 with 𝑆 = 1 × 105 and 𝑦0 =

0.9 at (a) t=390, (b) t=1000, (c) t=1500, (d) t=2500. 

 

 Finally, the nonlinear behavior of DTM is shown in the (S, 𝑦0) plane. In general, the Lundquist 

number S plays an essential role for plasmoids generation. For higher S, the current sheets can become 

more unstable and easier to break up. Secondary islands are common for S ≥ 104, and the generation 

of tertiary islands or an evolution including two fast reconnections require even higher S. On the other 

hand, plasmoids generations take place with a moderate 𝑦0. For a small 𝑦0, the free energy is limited 

so that no plasmoids are observed; while for a too large 𝑦0, the fast reconnection is halted due to the 

weak interaction between the main islands, and they saturated in the conventional way like the single 

tearing mode.  

 

Figure 8 Behaviors of nonlinear DTM in the (S, 𝑦0) plane. Five different types of nonlinear evolution are 

marked: No plasmoids generation (crosses), with only secondary islands generation (circles), with tertiary islands 

generation (squares), having two fast reconnections in mode evolution (diamonds), and conventional islands 

saturation (triangles). 

 

4. Discussion and summary 
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The non-monotonic q-profile is of great interest for the steady operation of a fusion reactor, since 

it is associated with the formation of the internal transport barrier and a higher bootstrap current 

fraction than the standard H-mode plasmas[6],[7]. However, such configuration can be unstable to the 

DTM, which can destroy the internal transport barrier and cause confinement degradation[20]-[23]. 

Understanding of the nonlinear growth and saturation of DTM remains to be an important issue for 

fusion plasmas. It was well known from previous numerical studies with relatively low Lundquist 

number that the key dynamics of nonlinear DTM is the formation of intensive current points and 

explosive magnetic reconnection in the nonlinear phase. The Lundquist number can reach 106 or 

higher in existing tokamak plasmas. Recent studies with the Lundquist number being closer to that 

of existing tokamak plasmas revealed the formation of the secondary islands[29] or tertiary 

islands[30][31] during the nonlinear DTM growth. However, in these studies the symmetry is not 

preserved in calculations, so that the plasmoids only survive transiently in the reconnection region 

in the nonlinear phase caused by numerical errors, corresponding to an artificial generation of 

plasma flow and the loss of momentum conservation. The conservative perturbed resistive MHD 

model[35],[36] allows the symmetry well preserved during the nonlinear mode growth and saturation 

in numerical simulations. Utilizing this model, our numerical calculations show that for sufficiently 

high Lundquist number, the nonlinear evolution of DTM is significantly affected by plasmoids. 

The system can saturates at a state with secondary and tertiary islands. The distance between the two 

resonant surfaces is also found to be important in determining the nonlinear mode growth, since it 

affects the evolution of the secondary island. These results indicate the important role of plasmoids 

in determining the nonlinear dynamics of DTM, which is quite different from the conventional 

understanding basing on the simulation results with lower Lundquist number or without keeping the 

symmetry in calculations.  

In summary, the nonlinear evolution of double tearing mode is investigated numerically with 

conservative perturbed resistive MHD model. The nonlinear dynamics in low and high Lundquist 

number regimes are found to be quite different. For a low S value (~103), no plasmoids are observed in 

calculations, as expected. With S~105, secondary and tertiary islands are found to be generated, 

resulting in the system to saturate at a quasi-stationary state with these islands coexisting in two pairs. 

The distance between the two resonant surfaces is also important in determining the reconnection 

process. For a small distance between the two resonant surfaces, 𝑦0 ≤ 0.15, plasmoids are not 

observed in numerical calculations. For a sufficiently large distance between the two resonant surfaces, 

𝑦0 = 0.9, one fast reconnection phase exists, generating the secondary island which decays later, and 

finally the main islands saturate. For an intermediate distance of equilibrium current sheets, plasmoids 

formation dominates the nonlinear mode growth and saturation. Moreover, a new kind of nonlinear 

evolution with two fast reconnection phases is found due to the evolution of current ribbons of the 

secondary island. Symmetry in our simulation is essential for obtaining both the second fast 

reconnection and the final quasi-stationary magnetic configuration with two pairs of islands. Our 

results indicate that the nonlinear growth and saturation of DTM are affected by the formation and 

evolution of plasmoids, which are determined by the distance between the two resonant surfaces and 

the Lundquist number. These results reveal that the nonlinear DTM growth in high Lundquist number 

regime, being close to that of existing tokamak plasmas, can be quite different from that with low 

Lundquist numbers.  
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