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a b s t r a c t

Molecular dynamics (MD) at two temperatures of 300 and 340 K identified two histidine residues,
His461 and His489, in the most flexible regions of firefly luciferase, a light emitting enzyme. We
therefore designed four protein mutants H461D, H489K, H489D and H489M to investigate their enzyme
kinetic and thermodynamic stability changes. Substitution of His461 by aspartate (H461D) decreased ATP
binding affinity, reduced the melting temperature of protein by around 25 �C and shifted its optimum
temperature of activity to 10 �C. In line with the common feature of psychrophilic enzymes, the MD data
showed that the overall flexibility of H461D was relatively high at low temperature, probably due to a
decrease in the number of salt bridges around the mutation site. On the other hand, substitution of
His489 by aspartate (H489D) introduced a new salt bridge between the C-terminal and N-terminal
domains and increased protein rigidity but only slightly improved its thermal stability. Similar changes
were observed for H489K and, to a lesser degree, H489M mutations. Based on our results we conclude
that the MD simulation-based rational substitution of histidines by salt-bridge forming residues can
modulate conformational dynamics in luciferase and shift its optimal temperature activity.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

Firefly luciferase is a monomeric protein (62 kD) composed of
two globular domains [1,2]. The crystal structures of firefly lucif-
erase from Photinus pyralis and Lampyris turkestanicus show a large
N-terminal domain (residues 1e436), a flexible hinge (437e439)
and a small C-terminal domain (residues 440e550) [3,4]. There is a
wide cleft between the two domains containing many conserved
residues in their surfaces [5]. Light emission of luciferase is used in
a wide variety of biochemical assays in clinical, industrial and sci-
entific research applications [6,7]. However, several factors limit
further application and development of this technology, one of
them is the low stability of luciferase enzyme in the room and
human physiological temperature [8e12].
ry), saman_h@modares.ac.ir
Thermal stability is an important factor in medical and indus-
trial applications of proteins. Thermal stability of proteins is
affected by various factors, including packing density in the hy-
drophobic core, number of disulfide bonds, strength of electrostatic
interactions, length and anchoring of surface loops, stabilization of
helices, conformational rigidity and local structural entropy
[13e16]. Several approaches have been developed for engineering
thermally stable proteins. One approach is rational structure-based
design, by which protein structure and molecular modeling data
combined with biochemical data are evaluated in order to propose
a number of candidate mutations for improving protein stability at
higher temperature. These mutations are selected based on their
expected capacity to enhance Van derWaals interactions, hydrogen
bonds, salt and disulfide bridges, among others [17e20].

In site-directed mutagenesis, selection of mutation sites is the
most crucial step [21]. Systematic studies of protein sequences of
thermophilic proteins show higher occurrence of hydrophobic and
charged residues but lower frequency of polar residues [22]. The
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average proportion of charged residues is also higher at the surface
of thermophilic proteins [23]. Polar amino acids prefer to be sur-
rounded by water, but when they are buried within the protein,
they usually participate in hydrogen bonds with other side chains
or the protein main chain [24]. In addition, studies on thermophilic
protein genomes showed the content of the histidine residue to be
significantly lower and the proportion of charged amino acid (Lys,
Arg, Asp, Glu) higher [22,25]. Several studies have further revealed
that the flexible regions of enzymes are the early targets of protein
unfolding [26]. In general, flexible residues which have fewer
contacts with other amino acids are more likely to produce local
disorder inside the highly connected network of non-covalent in-
teractions within proteins [27,28]. As a result, a common strategy to
improve thermal stability of mesophilic proteins is to introduce
new salt bridges or increase the number of hydrogen bonds,
particularly in the solvent exposed flexible region of proteins
[29e32]. Nevertheless, it is usually difficult to predict which region
in a protein is most suitable for this strategy [33e35].

In the present work, MD simulations were carried out to explore
the key factors governing the thermal stability of firefly luciferase.
Consequently, these results are utilized for design of proper mu-
tants that may be used in medical and industrial applications.
Firefly luciferase has 14 histidine residues, two of them located in
the C- terminal domain [3]. By calculating the root mean square
fluctuation (RMSF) of backbone atoms at two temperatures (300
and 340 K) thermal sensitive (flexible) regions of luciferase were
identified. Histidine461 and histidine489 are located in the flexible
regions, therefore we decided to substitute them with a negatively
charged residue, aspartate, or a positively charged residue, lysine,
to evaluate whether the altered salt bridge and hydrogen bonding
propensities of these regions improve protein thermal stability. Our
results show that histidine substitution by charged residues mod-
ifies conformational flexibility in luciferase and alters its temper-
ature stability.

2. Materials and methods

2.1. Materials

The following materials were obtained from the indicated
sources: Isopropyl-D-thiogalactopyranoside (IPTG), ATP (Roche); D-
luciferin potassium salt (Resem); ANS, 8-anilino-aphthalene-1-
sulfonic acid (Merck, Germany); PrimeSTAR HS DNA polymerase
and DpnI were purchased from Takara (Japan), plasmid extraction
kit, gel purification kit, PCR purification (Bioneer CO. South Korea),
Ni-NTA spin kit (QIAGEN Inc.).

2.2. Methods

2.2.1. Site-directed mutagenesis
For the construction of the single mutants, including H461D,

H489K, H489D and H489M, site-directed mutagenesis was per-
formed using the Quick-change PCR. The desired point mutants for
interesting positionwas generated by site-directed mutagenesis on
pET16b-luc using the following mutagenesis primers (underline
letters represent the mutant codons):

H461D: 50
… GATATTGTTACAAGACCCCAACATCTTCGACG … 30

H489K: 50
… GTTGTTGTTTTGGAGAAAGGAAAGACGATGAC … 30

H489D: 50
… GTTGTTGTTTTGGAGGACGGAAAGACGATGAC … 30

H489M: 50
… GTTGTTGTTTTGGAGATGGGAAAGACGATGAC … 30

PCR was carried out using Pfu DNA polymerase under the
following conditions: initial denaturation at 95 �C for 1 min, 18
cycles (95 �C for 1 min, 55 �C for 1 min and 68 �C for 11 min), and a
final extension for 10 min at 68 �C. PCR products were treated with
Dpn I (37 �C, overnight) restriction endonuclease to eliminate the
methylated DNA templates. Subsequently, the mutagenesis prod-
ucts were purified using a cleanup kit to remove redundant
primers. Thereafter, DH5a competent cells were used as cloning
hosts for the transformation of the nicked vector DNA containing
the desired mutations. The amplified plasmids were extracted from
cultured DH5a cells by using of plasmid extraction kit. In order to
confirm the correct mutation, the plasmids were sequenced by an
automatic sequencer (Macrogen Corp.), using T7 promoter uni-
versal primer. Then, the stock DH5a cells, which harboringmutated
plasmid were cultured overnight at 37 �C in 10 ml LB. The plasmids
were extracted and transformed to BL21 cells by the heat shock
method [19,36].

2.2.2. Protein expression and purification
Ten milliliters of LB medium containing 50 mg/ml ampicillin

with a fresh bacterial colony harboring the expression plasmid
were inoculated and grown at 37 �C overnight. Then 200 ml of
medium with 500 ml overnight cultures was inoculated and grown
at 37 �C with vigorous shaking until the OD600 reached 0.6e0.9 at
600 nm (A600). Then, IPTG and lactosewere added to the solution to
final concentrations of 1 mM and 4 mM, respectively, and the
mixture incubated at 18 �C overnight with vigorous shaking. The
cells were harvested by centrifugation at 5000g for 15 min. The cell
pellet was resuspended in lysis buffer (50 mM Tris-HCl, 300 mM
NaCl, 10 mM imidazole (pH 7.8)). Purification of His6-tagged fusion
protein was performed with the Ni-NTA spin column as described
by the manufacturer (QIAGEN). The purity of luciferases was veri-
fied by SDS-PAGE analysis [36].

2.2.3. Characterization of kinetic parameters
Km value for ATP was determined by assaying 5 ml of diluted

enzyme in 25 ml of assay reagent, in the addition of 20 ml of the
various concentrations of ATP (from 0.004 to 8mM). The estimation
of luciferin (LH2) kinetic constants was performed in a similar way,
except that in addition of the various concentrations of luciferin
(from 0.01 to 2.5 mM) were used. Approximate protein concen-
trations were calculated using a Bradford assay, and relative specific
activities (enzyme activity vs protein concentration) were also
calculated. To obtain the optimal temperature of activity for native
and mutant luciferases, activities were measured in the range of
5e45 �C. Moreover, the optimum pH of activity of both enzymes
was measured by incubation of enzyme in a mixed buffer in the pH
range of 5e11. Bioluminescence emission spectra of purified en-
zymes were obtained using Cary-Eclipse luminescence spectro-
photometer (Varian) from 400 to 700 nm wavelengths. Reactions
were initiated by the addition of 300 ml of 50 mM TriseHCl buffer
(pH 7.8), including 2 mM ATP, 5 mM MgSO4, and 1 mM luciferin, to
100 ml of a purified luciferase solution in a quartz cell [19]. All ex-
periments are repeated at least 3 times.

2.2.4. Thermal inactivation and thermal stability studies
To study thermal inactivation, the purified luciferases (10 mg/ml)

were incubated in the range of 20e50 �C for 5 min. Enzyme ac-
tivities were measured at room temperature (25 �C), and the
remaining activity was recorded as a percentage of the original
activity after incubation for 2 min on ice. Thermal Stability rates of
the luciferases were studied by incubating enzyme solutions (10
mg/ml of enzyme in 50 mM Tris-HCl pH 7.8) in a circulating water
bath at 35, 30 and 25 �C for 0e45 min. At regular intervals of
0e45 min, samples were removed and cooled on ice (2 min), and
the remaining activity was determined. The activity of the enzyme
solution kept on ice was considered as the control (100%) [19]. The
data were fitted to first-order plots and analyzed, with the first-
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order rate constant measured (kd) by a linear regression of ln
(remaining activity) versus the incubation time (t). Half-lives of the
luciferase variants were calculated by the equation, t1/2¼ ln2/kd. All
experiments were carried out by three technical replicates.

2.2.5. Structural analysis
To obtain a more accurate result, purified luciferase was used in

structural analysis, including extrinsic and intrinsic fluorescence
studies. The purified luciferase samples were dialyzed in a dialysis
buffer containing 50 mM TriseHCl, 1% glycerol, 1 mM EDTA,
150 mM NaCl, 2 mM b-mercaptoethanol, and 0.8 mM ammonium
sulfate (pH 7.8) at 4 �C [36]. Fluorescence studies were carried out
on a Cary-Eclipse luminescence spectrophotometer (Varian) at
25 �C. Intrinsic fluorescence was determined using 0.02 mg/ml
enzymes. The emission spectra were recorded between 300 and
440 nmwith an excitation wavelength of 295 nm. The purified and
dialyzed samples were incubated with ANS as hydrophobic probe
for 5 min at 25 �C. The final concentration of ANS in enzyme so-
lution was 30 mM and the molar ratio of enzyme to ANS was 1:30.
The samples were excited at 350 nm and emission spectra were
recorded between 380 and 700 nm [37]. Fluorescence results are
typical experimental data.

2.2.6. Thermal denaturation measurements
Differential scanning calorimetry (DSC) was performed on

Nano-DSC II with two constant cells with a volume of 328 ml. The
pressure level of 2 atm was adjusted for preventing bubbles for-
mation. For reversibility measurements, the samples were heated
at a rate of 2 �C per min from 10 �C to 80 �C. The scan performance
was then done when the sample thermogram passed the Tm
(melting point) by 2 �C. The samples were rescanned when they
became cold. All samples were normalized by subtracting baseline
thermogram using Cpcalc software [38,39]. The melting tempera-
ture (Tm) of the luciferase variants was also measured by Cary-
Eclipse luminescence spectrophotometer (Varian) with thermo-
stated cell holders where the temperature was kept constant by a
circulating water bath. Tm (�C) was calculated from the thermal
fluorescence curve. Refolding was followed by monitoring the
changes in the intrinsic fluorescence of luciferase variants (after
cooling) at 25 �C. The fluorescence emission was recorded between
300 and 400 nm with an excitation wavelength of 295 nm. The
unfolding curves were performed by continuous monitoring of
changing of Trp intensities over the temperature range of 0e80 �C
with a temperature increment of 1 �C/min. All measurements were
performed in 50 mM TriseHCl (pH 7.8) buffer and a protein con-
centration of 0.02 mg/ml [9].

2.2.7. Molecular dynamics simulation and analysis
The initial coordinates of firefly luciferase were obtained from its

crystal structure (PDB ID, 1BA3) [40]. This high-resolution PDB
structure has missing residues that their locations were recon-
structed using MODELLER v9.15 [41]. The psfgen plugin of VMD 1.9
[42] was used to mutate His461 to Asp and His489 to Asp, Lys or
Met. Histidine residues were set to the HSE state, the tautomer
protonated on NE2. Similar molecular dynamics (MD) simulations
for native and four mutated types of luciferase at 300 and 340 K
were performed using NAMD 2.10 [43] package implementing the
CHARMM27 [44] force field with CMAP corrections for proteins.
Whole systems were solvated using TIP3P water model and ionized
to guarantee the electrical neutrality of the system. Systems were
subjected to 20000 steps minimization by using the conjugated
gradient method. In the equilibration run, first the systems were
gradually heated up to 300 and 340 K with a weak restraint on the
backbone atoms of the protein and constant Berendsen pressure
[45] of 1 bar for 250 ps. Then restraints were gradually removed in
250 ps. The equilibration continued for 1.5 ns with constant tem-
perature at 300 and 340 K. After that, 50 ns production runs were
performed without any restraints under NPTconditions using Nos�e-
Hoover Langevin piston pressure control combined with Langevin
dynamics [46,47]. The time step of the equilibration process and
production runs set at 1 and 2 fs, respectively. The atom-based cutoff
of 12 Å was used to treat both electrostatic and van der Waals in-
teractions. In order to apply smoothing functions, the switch dis-
tance cut off of 10 Å was used. The electrostatic interactions were
calculated using particle mesh Ewald algorithm (PME) [48] with
1.0 Å grid spacing. The long-range electrostatics and short-range
non-bonded interactions were calculated every 2 and 1 fs, respec-
tively. For structural analysis, trajectories were saved every 2 ps.
Post-processing analysis of trajectories such as root mean square
deviations (RMSDs), root mean square fluctuation (RMSF), intra-
molecular hydrogen bonds, salt bridges and principal component
analysis (PCA) were calculated and analyzed by VMD 1.9 [42] and
Mathematica10.4 [49]. Persisting of salt bridges introduced after
histidine substitution by aspartate or lysine were identified as ion
pairing interactions with more than 10% in the 10 Å vicinity of
mutation site. Principal component analysis was used as a tool in
exploratory conformational changes. In order to figure out this
variance in equilibrium fluctuations, all mutation trajectories were
joined together. Then a standard PCAwas performed on Ca atoms of
the combined trajectory and the covariance matrix were built and
diagonalized. Corresponding eigenvectors, directions in conforma-
tional space, and eigenvalues, themean square fluctuations of atoms
in the direction of corresponding eigenvectors, were obtained and
sorted in decreasing order. The first two principal components
correspond to first two highest proportion of variance which are
orthogonal. Thus, PCA is used to understandmutational effect across
different conformational changes.

3. Results

3.1. MD simulation identifies regions of high mobility in luciferase

Molecular dynamics simulation is a powerful tool to probe fast
molecular motions at atomic details [50]. To investigate confor-
mational dynamics of luciferase, 50 ns long MD simulations were
performed at two temperatures of 300 and 340 K. The root-mean-
square fluctuations (RMSF) of protein backbone atoms were
calculated for the firefly luciferase enzyme. RMSF is a measure of
average atomic mobility over MD trajectories: the more flexible
residues of protein structure show higher RMSF values [50]. As
shown in Fig. 1a, the C-terminal domain (residues 440e550) is
generally more flexible than the N-terminal domain (residues
1e436). More specifically, residues 199e204, 444e448, 460e463,
475e477, 487e493, 505e509 and 526e529 have higher RMSFs at
both temperatures, in line with previous reports [34]. It is notable
that the two regions 199e204 and 444e448 are involved in sub-
strate binding [51e54]. Residues 475e477 have exhibited relatively
high B-factors, indicating high mobility in crystal structure, and
relationship between flexibility of this region and thermal stability
has been previously investigated [55]. When RMSF values were
mapped on protein structure (PDB ID: 1BA3), it was found that
fragments 460e463 and 487e494 with high RMSF values are
located in surface loops (Fig. 1b). These two fragments contain
histidine residues: His461 is located in the loop between helix 13
and b-turn E1 and His489 is placed in the loop between b-turn E2
and helix 14.

3.2. Rational design of histidine-substituted luciferase mutants

As mentioned above, the lower content of histidine and higher



Fig. 1. (a) RMSF evaluation of P. pyralis firefly luciferase in 50 ns MD simulation at 300 and 340 K. (b) Schematic representation of P. pyralis luciferase colored by variable RMSF value
from blue (low RMSF) to red (high RMSF). Two Histidine residues at the position 461 and 489 are shown in the C-terminal domain of P. pyralis luciferase. In the present work, His
461 is substituted by Asp and H489 is substituted by Met, Lys and Asp. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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content of charged residues are associated with the enhanced
thermostability of proteins. In order to substitute the appropriate
residues for mutation sites, Eris web server (protein stability pre-
diction and design) is used. Eris calculates the change of the protein
stability induced by mutations (DDG), utilizing the recently devel-
oped Medusa modeling suite [56,57]. Eris results demonstrated
that substitution of histidine by aspartate at position 489 enhance
protein stability of luciferase more than glutamate substitution.
However, substitution of His489 by lysine and arginine reduce the
luciferase stability. The stability of luciferase decreased more by
lysine in comparison with arginine. Eris web server results show
that substitution of H461 by aspartate is more appropriate than
other amino acids. We therefore decided to replace histidine resi-
dues located in flexible loops (His461 and His489) by aspartate in
order to enable salt bridge formation and new hydrogen bond in-
teractions. We expected that the additional interactions for H461D
and H489D rigidify protein structure and enhance its thermal sta-
bility in comparison with the destabilized luciferase structure that
is predicted for H489K. In addition, we prepared His489 to
methionine mutant in order to figure out the particular importance
of histidine side chain interactions, as otherwise methionine and
histidine due to similar size and mass (149 and 155 Da, respec-
tively) impose similar steric restrictions.
3.3. Salt bridge formation in histidine-substituted mutants

The ion pairing interactions between negatively-charged side
chains of aspartate or glutamate and positively-charged side chains
of lysine or arginine contribute to the stability of protein structures
[31]. To investigate how histidine substitution by aspartate or lysine
influenced ion pairing interaction, we searched for persisting salt
bridges introduced in the vicinity of mutation sites. Table 1 shows
the number of salt bridges for each luciferase mutant. Surprisingly,
H461D mutation decreased the number of neighboring salt bridges
from five in the native protein to four, the Glu497-Lys491 salt
bridge was no longer stable in the mutated protein (Table 1).
Contrary to H461D mutation, the H489D mutation significantly
increased the number of neighboring salt bridges from one in the
native protein (at 300 K) to five: Asp489 tended to pair with Arg112
and Lys491while its proximal residue Glu488 was capable of pair-
ing with Arg112. The alternate pairing of Glu488 and Asp489 with
Arg112 makes a remarkably stable contact between the N- and C-
terminal domains of the H489D mutant: the average distance be-
tween the two domains decreases to 3.60 Å (Fig. 2). Notably, the
added salt bridges are largely temperature-labile and lost at the
elevated temperature of 340 K. A similar increase in the number of
salt bridges is found in the H489K mutant, where in contrast with
the H489D mutant, the introduced salt bridges are largely
temperature-stable. Despite the inability of methionine side-chain
itself in making salt bridges, the H489M mutation could similarly
increase the number of salt bridges, even though the particular
identity of salt bridges were different from H489D or H489K
mutant (Table 1). The effect of newly introduced salt bridges on
luciferase flexibility will be addressed in a following section.



Table 1
The most possibility of salt bridge interactions between residues during the 50 ns simulation.

300 K 340 K

Native
(His461)

ASP500-LYS496
GLU488-LYS491
GLU497-LYS496

GLU495-LYS496
GLU497-LYS491

ASP500-LYS496
GLU488-LYS491
GLU497-LYS496

GLU495-LYS496
GLU497-LYS491

H461D ASP500-LYS496
GLU488-LYS491

GLU495-LYS496
GLU497-LYS496

ASP500-LYS496
GLU488-LYS491

GLU495-LYS496
GLU497-LYS496

H489K ASP520-LYS489
ASP520-LYS549

GLU488-LYS489
GLU488-LYS491

ASP520-LYS489
ASP520-LYS549
GLU113-ARG112

GLU488-LYS489
GLU488-LYS491

H489D ASP489-ARG112
ASP489-LYS491
ASP520-LYS549

GLU488-ARG112
GLU488-LYS491

ASP489-ARG112 GLU488-LYS491

H489M GLU495-LYS547
GLU495-LYS549
GLU497-LYS491

GLU497-LYS496
GLU521-LYS524

ASP466-LYS524
GLU113-ARG112

GLU488-LYS491
GLU521-LYS524

Native
(His489)

GLU488-LYS491 ASP520-LYS549 GLU488-LYS491

Fig. 2. 3D structure of native and mutant of luciferase (H489D). Substitution of His489 by ASP modifies the conformation of firefly luciferase. By the new conformation, stable
contact is observed between Arg112 at the N-terminal and Asp489 at the C-terminal domains. (a) The shorter distance (3.60 Å) is observed for H489D, between aspartate (red color)
and arginine (yellow color). (b) For native form, the distance between Arg and Asp is 14.99 Å. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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3.4. Hydrogen bond formation in histidine-substituted mutants

Like salt bridges, intramolecular hydrogen bonds play signifi-
cant roles in thermostability of proteins [58]. To address whether
histidine mutation alters the hydrogen bond networks surrounding
the mutation site, hydrogen bonds were measured in 6 Å proximity
of residues 461 and 489 (Table 2). The results show that in the vi-
cinity of His461 in native luciferase, residues His461, Tyr501, Val502
and Gln505 participated in the formation of hydrogen bonds at
300 K. After H461D mutations, the total number of neighboring
hydrogen bonds decreased, while the number of hydrogen bonds
involving residue 461 itself increased from three in the native
protein to six. A particularly high hydrogen bond propensity was
observed between Asp461 and Asn463 in the mutated protein. The
hydrogen bonds between Asp461 and Asn463 were temperature-
stable and preserved at the elevated temperature of 340 K. At po-
sition 489, hydrogen bonds occurred between Glu488 and Lys491,
and between Phe465 and Val486. Upon H489D mutation, the
hydrogen bond between Phe465 and Val486 was disrupted, while
more hydrogen bond modes were detected between Glu488 and
Lys491. Similarly, in the H489K mutant, Glu488 showed promis-
cuous hydrogen bonding tendency: it could interact not only with
Lys491 but also Asn463 and Lys489. Similar changes were observed
after H489M mutation.

3.5. Conformational dynamics of luciferase are variably affected by
histidine substitution

Thus far, we have demonstrated that histidine substitution leads
to significant alterations in salt bridges and hydrogen bonds around
mutation sites. The next step is to evaluate how the altered in-
teractions affect protein conformational dynamics. To address this
question, the RMSF of Ca atoms were calculated at 300 K and
compared among various luciferase mutants (Fig. 3). Overall,
H461D, H489K and native luciferase were more flexible than
H489M and H489D. Despite high general mobility, the H461D
mutant showed restricted mobility at residues 455e470, which is
probably due to the local strengthening of hydrogen bond network
after mutation (see above).

Further support for the higher flexibility of H461D mutant at
low temperature is provided by the root-mean-square deviation
(RMSD) of protein backbone atoms when compared with the
starting structure. As shown in Fig. 4a, the H489D, H489M and
native luciferase are very stable throughout the simulation time at



Table 2
The most possibility of hydrogen bond interactions between residues during the 50 ns simulation.

300 K 340 K

Native
(His461)

ASN463 … HIS461
VAL502 … ILE498
TYR501 … GLU497
TYR501 … ILE457
GLN505 … VAL502
HIS461 … LEU458

GLN505 … TYR501
GLN505 … TYR501
ILE464 … HIS461
GLN460 … SER456
GLN460 … TYR501
GLN460 … SER456

ASN463 … HIS461
TYR501 … GLU497
TYR501 … ILE457

HIS461 … LEU458
ILE464 … HIS461

H461D TYR501 … ILE457
ASN463 … ASP461(4)a

ASP 461 … LEU458
ILE464 … ASP461

TYR501 … ILE457
ASN463 … ASP461(4)
GLN505 … TYR501

ILE464 … ASP461
ASP461 … LEU458
GLN505 … TYR501

H489K GLU488 … ASN463
LYS491 … GLU488

LYS489 … GLU488(2)a PHE465 … VAL486 LYS491 … GLU488(3)a

H489D LYS491 … GLU488 (3)a LYS491 … GLU488(7)a

H489M VAL519 … VAL485
GLU488 … ASN 463

ASN463 … GLU488 (2)a GLU488 … ASN463
PHE 465 … VAL486

LYS491 … GLU488 (5)a

Native
(His489)

PHE465 … VAL486 LYS49 … GLU488 LYS491 … GLU488(4)a

a The number of interactions.

Fig. 3. Comparison of RMSF values of native and mutants of firefly luciferase in 50 ns MD simulation at 300 K. The inset represents the fluctuation of C-terminal domain residues of
native and mutations.

Fig. 4. Root mean squared deviation (RMSD) of Ca atoms as a function of time were calculated in 50 ns of molecular dynamics simulation at two temperatures of (a) 300 K and (b)
340 K.

M. Rahban et al. / Archives of Biochemistry and Biophysics 629 (2017) 8e18 13



M. Rahban et al. / Archives of Biochemistry and Biophysics 629 (2017) 8e1814
300 K, while the H489K and especially H461D mutants appear to
more extensively sample the conformational space. The H461D
mutant exhibits a sharp rise in RMSD after 30000 ps, which is likely
to denote a structural transition. It is noteworthy that the distinct
flexibility of H461D form is not observed at 340 K (Fig. 4b).

To better understand collective motions in luciferase in depen-
dence of histidine mutation, we performed principal component
analysis (PCA) of the MD trajectories. Through this analysis, the
conformational mobility of proteins over the MD trajectories is
captured in a remarkably small number of principal components.
As a result, instead of following protein structures in high-
dimensional conformational spaces, one can monitor protein
mobility in much lower dimensional sub-spaces. Fig. 5a presents
the relative cumulative variance of the first 30 eigenvectors of all
mutations joined trajectory at 300 and 340 K. The first five eigen-
vectors of the PCA analysis at 300 K had larger eigenvalues than
340 K, which shows trajectories experienced a larger fluctuation
during simulation at 300 K. Fig. 5b and c shows the MD ensembles
of our five luciferase variants at 300 and 340 K, respectively, as
projected on the first two principal components (PC1 and PC2).
There, each point represents a distinct conformational sub-space
occupied by the protein at a certain time during MD simulation.
Interestingly, at 300 K, the essential sub-space explored by the
H461D mutant was remarkably distinct from the other four mu-
tants, which occupied overlapping regions. At 340 K, however, a
high level of overlap was observed among all five mutants.
3.6. Enzyme kinetic and stability properties

To evaluate the effect of mutations on the enzymatic activity of
luciferase, various activity parameters were determined (Table 3).
First, bioluminescence emission spectra of the mutated enzymes
did not showany significant shift of the peakwhen compared to the
native enzyme. Since emission spectral features of luciferase are
determined by solvent accessibility of luciferin binding site [59],
the lack of significant spectral changes indicate that solvent access
to the binding site has not been altered upon mutation.

Second, we determined binding affinities for the two substrates
ATP and luciferin (LH2) separately through Lineweaver-Burk plots.
As indicated in Table 3, the obtained Km values for ATP followed the
order H461D > H489D > H489K ~ native > H489M. On the other
hand, the Km for LH2 followed the order H461D ~
native > H489D > H489M > H489K.

Then, the enzyme activity profile in dependence of pH and
temperature was determined. Relative specific activity of the
H461D mutant was around 40% of the native form, while other
Fig. 5. (a) Relative cumulative variance of the first 30 eigenvectors and the conformationa
components PC1 and PC2 obtained from the PCA analysis on the Ca atoms coordinate of th
mutations exhibited specific activities similar to the native form.
The optimum pH was not affected by His461 or His489 mutations
(pH 8.5), but the optimum temperature exhibited intriguing shifts
(Table 3): the H489K mutant showed a 5 �C increase in the opti-
mum temperature, that of H489D remained the same, and those of
H489M and particularly H461D decreased. The optimum temper-
ature of H461D enzymewas 10 �C, indicating cold adapted behavior
in this mutated enzyme. We also studied the rate of thermal
denaturation and inactivation in different luciferase mutants. After
incubation at various temperatures for various times, remaining
enzyme activity was quantified as the percent of the original ac-
tivity (Fig. 6a, b, 6c and 6d). In linewith the observed changes in the
optimum temperature, the thermal inactivation rate of H461D was
higher than the native enzyme, while H489D had a slightly smaller
inactivation rate (Fig. 6d).
3.7. Structural properties

To probe tertiary structural changes in luciferase after histidine
substitution, we performed intrinsic tryptophan and extrinsic ANS
fluorescence experiments. Tryptophan fluorescence is highly sen-
sitive to the environment polarity and ANS, a hydrophobic dye non-
fluorescent in aqueous solutions, becomes fluorescent when it
binds to hydrophobic patches of proteins [55]. P. pyralis luciferase
contains two Trp residues, Trp417 and Trp426, both of which are
situated in the distal region of the N-terminal domain close to the
hinge region [36,60]. They are not surface residues, although
Trp426 is near the protein surface [37]. MD simulation data
demonstrate that flexibility of Trp residues are altered by histidine
substitution: average RMSF of the two Trp residues are 1.6, 1.4, 1.1
and 0.9 Å for the H489D, H461D, H489M and H489K mutants,
respectively, compared to ~0.8 Å for the native form. As shown in
Fig. 7a, Trp fluorescence intensity increased in H489D and H489M
mutants when compared with the native form. Conversely, the
H489K and H461D mutants exhibited a decrease in Trp fluores-
cence intensity. Regarding ANS fluorescence, histidine sub-
stitutions led to intensity changes at various levels (Fig. 7b).
Together, our Trp and ANS fluorescence data suggest that the ter-
tiary structure of luciferase is altered by histidine mutations, in
terms of local environment of its tryptophans and general hydro-
phobicity of its exposed surface.
3.8. Thermodynamic stability

Thermophilic enzymes are stable, but poorly active at low
temperatures. In contrast, most cold-adapted enzymes found in
l sampling of different mutations of luciferase as a function of the first two principal
e mutations at (b) 300 K and (c) 340 K.



Table 3
Kinetic properties of the native and mutants of luciferase.

Km Relative Specific Activity (%) l max (nm) at pH 7.8 Optimum Temperature (�C) Optimum pH

LH2 (mm) ATP (mm)

Native 5 ± 0.3 60 ± 3 100 ± 5 560 25 8.5
H461D 5 ± 0.2 100 ± 5 57.6 ± 2.9 560 10 8.5
H489K 2 ± 0.1 60 ± 4 115 ± 6 560 30 8.5
H489D 2.5 ± 0.2 90 ± 5 112 ± 6 560 25 8.5
H489M 2.3 ± 0.1 40 ± 3 103 ± 5 560 20 8.5

Fig. 6. Thermal stability curves of native and mutant firefly luciferases were determined from 0 to 45 min and these data are shown as the percentage of the original activity at the
temperatures of (a) 25 �C (b) 30 �C and (c) 35 �C. (d) Thermal inactivation curve of native and mutants, luciferase remaining activities were determined at 20e50 �C and shown as
the percentage of the original activity.

Fig. 7. (a) Intrinsic fluorescence spectra for native and mutant forms of firefly luciferase. (b) Fluorescence spectra of ANS in the presence of native and mutant luciferases.
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nature are less stable but substantially more active at low tem-
peratures [61,62]. Various kinds of non-covalent interactions raise
the transition-state energy barrier for denaturation. Thermostable
enzymes are generated by amino acid substitution to increase
structural rigidity, restrict conformational flexibility and increase
interactions between unstable domains [28]. The melting temper-
ature (Tm) is a representative parameter for protein thermostability.
Assuming two-state protein folding, Tm is defined as the temper-
ature at which both the folded and unfolded states are equally
populated at equilibrium. In other words, Tm is the temperature
that the standard Gibbs free energy (DG

�
) of the thermal unfolding

process is zero [63]. In order to gain deeper insights into the sta-
bility of mutated enzymes, thermal denaturation midpoints (Tm)
were determined by DSC and intrinsic fluorescence experiments
(Table 4). In DSC the temperature scans from 10 to 85 �C clearly
showed a single peak, therefore thermal unfolding can be well
approximated by a two-state transition model. Tm for native form
(40.8 �C) is similar to the previously reported value [38,39]. Tm for
various luciferase mutant followed the order
H489D > native ~ H489K > H489M > H461D. The melting point of
H461D luciferase was 26.2 �C, meaning that, in equilibrium, half of
the protein is unfolded at this temperature.

Thermal denaturation of luciferase was further studied by pro-
tein intrinsic fluorescence. The two Trp residues of P. pyralis lucif-
erase, Trp417 and Trp426, are relatively buried in the folded-state of
protein [37], but after thermal unfolding and potential increase in
their solvent exposure, their fluorescence behavior is altered.
Following temperature dependence of protein fluorescence
spectra, the melting point of the structural conformation could be
obtained, which were approximately similar to those of DSC data
(Table 4). We also estimated standard Gibbs free energy (DG

�
) of

thermal unfolding from the Pace analysis [64]. The estimated
DG

�
298, Gibbs free energy of protein denaturation at 25 �C for native

and mutants, followed the order
H489D > native > H489K ~ H489M > H461D. The slightly higher
conformational stability of H489D could be caused by the increased
number of salt bridges. The H461D had the lowest Tm and DG

�
298,

which is further discussed below.
4. Discussion

Increasing hydrogen bond interactions of Asp residue at position
461 (H461D) in the thermal sensitive region 460e463 rigidifies
local structure of firefly luciferase, while global flexibility is
increased. These new hydrogen bond interactions are conserved at
the elevated temperature. Kinetic parameters showed that the
H461D variant is deactivated more quickly at 35 �C, and the opti-
mum temperature of this new enzyme is shifted down to below
15 �C. Melting temperature and DG

�
of denaturation of H461D are
Table 4
Half-lives and structural properties of native and mutants of luciferase.

a t1/2 (min) b DG
�
298

(kJ/mol)

c Tm (�C)

25 �C 30 �C 35 �C dDSC eFLU

Native 17.4 ± 1 10.5 ± 1 6.1 ± 1 16.7 ± 2 40.8 40.3 ± 0.2
H461D 9.5 ± 1 6.9 ± 1 3.7 ± 1 9.4 ± 2 26.2 32.9 ± 0.6
H489K 12.6 ± 1 8.3 ± 1 6.4 ± 1 15.5 ± 2 40.6 40 ± 0.7
H489D 20.2 ± 1 11.1 ± 1 6.5 ± 1 17.9 ± 2 42 40.6 ± 0.5
H489M 12.4 ± 1 9.5 ± 1 5.7 ± 1 15.6 ± 2 36.6 39 ± 0.8

a Half-life.
b Gibbs free energy of denaturation.
c Melting temperature.
d Melting temperature from differential scanning calorimetry experiment.
e Melting temperature from fluorescence intensity experiment.
rather low when compared with the other mutations (26.2 �C and
9.4 ± 2 kJ/mol). The MD data demonstrates that the salt bridge
Glu497-Lys491 is lost in the H461D mutant, a finding which sug-
gests that this salt bridge may play a particularly important role in
thermal stability of luciferase. Together, based on the higher flexi-
bility and lower thermal stability of this mutant, we conclude that
the H461Dmutation has induced a behavior typical of cold adapted
enzymes in luciferase like Tibetan firefly luciferase [65].

Psychrophilic organisms thrive in cold environments through
cold-adapted proteins with peculiar structural and dynamical fea-
tures. The key element in cold adaptation is high conformational
flexibility, especially around the active site, which enables protein
activities even at very low temperatures [66]. The high conforma-
tional flexibility is generally achieved by protein sequence evolu-
tion along with a reduction in the number of salt bridges and
hydrogen bonds and in the degree of compaction of protein hy-
drophobic cores. The advantage of higher activity at cold temper-
ature however comes at the cost of low substrate binding affinity
and thermal instability [67,68] In line with the common features of
psychrophilic enzymes, the H461D luciferase showed a 15 �C drop
in its optimum temperature compared to the native enzyme (from
25 to 10 �C, Table 3), had lowest binding affinities (highest Km
values) for ATP (Table 3) and poor thermal stability both in func-
tional and structural terms (Figs. 6, 7 and Table 4). Importantly, our
MD simulation data suggests that the psychrophilic behavior of
H461D mutant could be originated by the higher flexibility of its
functional regions at low temperatures, as evidenced by its high
RMSF and RMSD values at 300 K (Figs. 3 and 4) and suggested by its
altered collective motions (Fig. 5). The higher flexibility of the
H461D mutant is probably caused by a decrease in the number of
salt bridges and hydrogen bonds (Tables 1 and 2).

Methionine in H489Mmutant changes the platform of hydrogen
bond and salt bridge interactions in the region 487e494. Tm value
of H489M is 36.6 �C and H489M thermal inactivation curve shows
that H489M loses 75% of its activity at 35 �C. Presumably, the lower
stability of H489M compared to native is related to the salt bridge
488e491, which is lost in the H489Mmutant as shown byMD data.
While half-life and DG

�
298 for H489K and H489M are approxi-

mately similar, kinetics stability and melting temperature are
clearly different (Table 3 and Fig. 6). Tm value of H489K and native
are similar, 40.6 and 40.8; respectively. Thermal inactivation curve
displays native and H489K preserve 41% of the original activity
while H489D preserves 52% of the original activity at 35 �C. Half-life
of H489K is similar to H489D and native form at 35 �C, while at
25 �C, H489K has lower stability. The optimum temperature for
H489K increase 5 �C than native and H489D. Lysine in H489K
mutant participates in two salt bridges and hydrogen bond in-
teractions but these new interactions cannot change the thermal
stability of the H489Kmutant. Substitution of His489 by Lys slightly
alter the function and structure of native luciferase.

MD simulation data indicate a rigid conformation in the H489D
mutant. A higher number of salt bridges were observed in this
mutant. Particularly, the two salt bridges Asp489-Arg112 and
Glu488-Arg112 seem to be crucial for the rigidity of tertiary
structure in H489D. As expected, Asp489 participates in salt bridge
and hydrogen bond interactions thereby increases the t1/2 and ki-
netics stability of luciferase at 25 and 30 �C. Despite its rigid
structure, the H489D mutant cannot preserve their active struc-
tures at high temperatures.

Histidine 461and His489 are exposed at the surface of their
loops and interact with their nearby residues. However, the num-
ber of salt bridges and hydrogen bond interactions for His489 is
relatively low. In H489K mutant, the flexible side chain of lysine
being located at the surface of the loop fails to provide additional
interactions required for an improved thermal stability. In
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comparison, the side chain of aspartate is smaller and less flexible,
enabling more interactions in the 487e494 region of the H489D
mutant. However, the increased number of local interactions in the
H489D mutant does not lead to a significant improvement in its
thermal stability. Unlike H489, substitution of H461 by aspartate
significantly reduces protein thermal stability. Our results suggest
that substitution in His461 is probably has more effect in thermal
stability of luciferase than H489.

5. Conclusion

Firefly luciferase is a light emitting enzymewithwidespread use
in clinical and industrial applications. Our data demonstrate that
the MD simulation can be used to design enzyme mutants with
altered conformational dynamics and thermal stability. Enhance-
ment the number of salt bridges and hydrogen bonds are believed
to increase protein thermal stability. However, our results represent
that increasing the number of salt bridges and hydrogen bonds can
improve thermostability of H489D and H489K slightly. Moreover,
by increasing the number of hydrogen bonds for H461D, this mu-
tation behaves as a psychrophilic enzyme. So, rather than funda-
mental aspect of this change, this psychrophilic luciferase can be
potentially utilized in the particular low working temperatures in
industrial and medical applications.
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