English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Excess charge driven dissociative hydrogen adsorption on Ti2O4

MPS-Authors
/persons/resource/persons104332

Song,  Xiaowei
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons45968

Fagiani,  Matias Ruben
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons192335

Debnath,  Sreekanta
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

c7cp03798h.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Song, X., Fagiani, M. R., Debnath, S., Gao, M., Maeda, S., Taketsugu, T., et al. (2017). Excess charge driven dissociative hydrogen adsorption on Ti2O4. Physical Chemistry Chemical Physics, 19(17), 23154-23161. doi:10.1039/c7cp03798h.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-E559-E
Abstract
The mechanism of dissociative D2 adsorption on Ti2O4, which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti2O4 readily reacts with D2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO–Ti–(O)2–Ti(D)–O). The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D2-bond cleavage followed by D-atom migration. We show that, compared to neutral Ti2O4, the excess negative charge in Ti2O4 is responsible for the substantial lowering of the D2 dissociation barrier, but does not affect the molecular D2 adsorption energy in the initial physisorption step.