Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Excess charge driven dissociative hydrogen adsorption on Ti2O4

MPG-Autoren
/persons/resource/persons104332

Song,  Xiaowei
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons45968

Fagiani,  Matias Ruben
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons192335

Debnath,  Sreekanta
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig;
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

c7cp03798h.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Song, X., Fagiani, M. R., Debnath, S., Gao, M., Maeda, S., Taketsugu, T., et al. (2017). Excess charge driven dissociative hydrogen adsorption on Ti2O4. Physical Chemistry Chemical Physics, 19(17), 23154-23161. doi:10.1039/c7cp03798h.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-E559-E
Zusammenfassung
The mechanism of dissociative D2 adsorption on Ti2O4, which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti2O4 readily reacts with D2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO–Ti–(O)2–Ti(D)–O). The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D2-bond cleavage followed by D-atom migration. We show that, compared to neutral Ti2O4, the excess negative charge in Ti2O4 is responsible for the substantial lowering of the D2 dissociation barrier, but does not affect the molecular D2 adsorption energy in the initial physisorption step.