
Supporting Information

Continuous Crystallization in a Helically Coiled Flow Tube: Analysis of Flow Field, Residence Time Behavior and Crystal Growth

Viktoria Wiedmeyer,^{a*} Felix Anker,^b Clemens Bartsch,^b Andreas Voigt,^a Volker John,^{b,c} Kai Sundmacher^{a,d}

- ^a Otto-von-Guericke-University Magdeburg, Department Process Systems Engineering, Universitätsplatz 2, D-39106 Magdeburg, Germany
- ^b Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS), Mohrenstr. 39, D-10117 Berlin, Germany
- ^c Free University of Berlin, Department of Mathematics and Computer Science, Arnimallee 6, D-14195 Berlin, Germany
- ^d Max Planck Institute for Dynamics of Complex Technical Systems, Department Process Systems Engineering, Sandtorstr.1, D-39106 Magdeburg, Germany
- * viktoria.wiedmeyer@ovgu.de

Equilibrium solubility. The dependency of the equilibrium concentration on the temperature is shown in Figure S1. The corresponding quadratic polynomial model fit is given in Equation 1.

Figure S1. The equilibrium solubility of potash alum in water is shown for a total number of 26 measurements in the range of 20 to 50 °C.

Gaussian kernel density estimator for plot generation. With the intention of displaying the results of the particle measurements, kernels are generated with a Gaussian kernel density estimator of bandwidth $[10 \ \mu\text{m}^2 \ 0; \ 0 \ 10 \ \text{s}^2]$. Hence, each observed particle is weighted with a variance of 10 μ m in size direction and with a variance of 10 s in residence-time direction in the kernel. All kernels are normalized by the maximum of the resulting number density distribution q_0 . The same bandwidth is chosen for all experiments for comparison.