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ABSTRACT 

      Nonlinear model predictive control (NMPC) is an important tool to perform real-time 

optimization for batch and semi-batch processes. Direct methods are often the methods of 

choice to solve the corresponding optimal control problems, in particular for large-scale 

problems.  However, the matrix factorizations associated with large prediction horizons can 

be computationally demanding. In contrast, indirect methods can be competitive for smaller-

scale problems. Furthermore, the interplay between states and co-states in the context of 

Pontryagin’s Minimum Principle might turn out to be computationally quite efficient. 

      This work proposes to use an indirect solution technique within shrinking-horizon in the 

context of NMPC. In particular, the technique deals with path constraints via indirect 

adjoining, which allows meeting active path constraints explicitly at each iteration. 

Uncertainties are handled by the introduction of time-varying backoff terms for the path 
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constraints. The resulting NMPC algorithm is applied to a two-phase semi-batch reactor for 

the hydroformylation of 1-dodecene in the presence of uncertainty, and its performance is 

compared to that of NMPC that uses a direct simultaneous optimization method. The results 

show that the proposed algorithm (i) can enforce feasible operation for different uncertainty 

realizations both within batch or from batch to batch, and (ii) it is significantly faster than 

direct simultaneous NMPC, especially at the beginning of the batch. In addition, a 

modification of the PMP-based NMPC scheme is proposed that enforces active constraints via 

tracking.  

Keywords: Nonlinear model predictive control, indirect optimization methods, semi-batch 

processes, Pontryagin’s Minimum Principle, shrinking-horizon NMPC 
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1. Introduction 

      Batch and semi-batch processes have wide application in the specialty industries for the 

production of low-volume, high-added-value products. Typical examples are pharmaceuticals, 

polymers and food. With increasing competition in industry and stricter environmental 

regulations, the optimal operation of batch processes plays an important role toward increased 

profitability. The inherently transient behavior as well as the presence of strong nonlinearities 

and of path and end-point constraints result in challenging optimization problems. Moreover, 

the lack of accurate models brings about considerable plant-model mismatch (Terwiesch et 

al., 1994; Bonvin, 1998; Srinivasan et al., 2003b; Jung et al., 2015). Hence, the open-loop 

implementation of off-line computed optimal control profiles may result in sub-optimal, or 

worse, infeasible operation. In addition, the operation conditions might change from batch to 

batch and cause unacceptable variations on product quality. Consequently, the application of 

measurement-based, optimizing feedback schemes is of great importance for semi-batch 

processes (Eaton and Rawlings, 1990; Ruppen et al., 1995; Ruppen et al., 1998; Bonvin et al., 

2001; Bonvin, 2006; Kadam et al., 2007; Welz et al., 2008; Mesbah et al., 2011)  

      Model predictive controllers (MPC) have been used extensively in industry (García et al., 

1989; Qin and Badgwell, 2003). On the basis of a (most often linear) process model, these 

controllers predict the future behavior of the states and outputs. At each iteration, the 

algorithm updates the initial conditions using measurements and solves a dynamic 

optimization problem for some cost function such as the minimization of a tracking stage cost 

or the maximization of a final cost. Only the first part of the computed optimal inputs is 

implemented, then the horizon is shifted by one sampling time and the procedure is repeated 

recursively. Since MPC is capable of addressing multivariable constrained nonlinear systems 

and can use different types of models and performance criteria, it possesses a suitable and 

flexible structure for real-time optimizing control (Diehl et al., 2002; Adetola and Guay, 2010; 
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De Souza et al., 2010; Huang et al., 2010). A detailed discussion and survey on MPC can be 

found in (Morari and Lee, 1999). 

      Because of the strong nonlinear behavior of batch processes, linear MPC is often not the 

method of choice for batch and semi-batch processes. Moreover, semi-batch processes usually 

require strict constrained operation since the ability to influence the performance and 

feasibility of the process decreases with time (Bonvin, 1998). This motivates the use of 

shrinking-horizon nonlinear model predictive controllers (NMPC), for which the optimization 

is performed with respect to the full time horizon and includes both path and terminal 

constraints (Nagy and Braatz, 2003; Nagy et al., 2007).  

      Several studies on the applicability of NMPC to batch processes have been reported in the 

literature. (Lakshmanan and Arkun, 1999) used linear parameter-varying models for the 

estimation and control of nonlinear batch processes. (Seki et al., 2001) proposed an NMPC 

structure for the industrial application on polymerization reactors. (Nagy and Braatz, 2003) 

studied a robust NMPC scheme for batch crystallization, whereby parametric uncertainties 

were taken into account explicitly. (Valappil and Georgakis, 2002) suggested a min-max 

NMPC scheme with successive linearization for the control of the end-point properties in 

batch reactors. (Lucia et al., 2013) suggested a multi-stage NMPC scheme to deal with 

uncertainties, and a scenario-tree approach was used to optimize a semi-batch polymerization 

reactor. Recently, (Jang et al., 2016) proposed a multi-stage NMPC scheme for semi-batch 

reactors using backoffs on path constraints. (Binette and Srinivasan, 2016) compared the 

performance of different tracking objectives for the NMPC of batch processes without 

parameters adaptation. 

      Nonlinear dynamic optimization (or optimal control) is at the core of NMPC and plays an 

important role in terms of implementation. Both the complexity and the computational time of 

the model-based optimizing controllers are of great concern and must consider the time 
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available for sampling and the possible presence of feedback delays (Misik et al., 2016). The 

solution methods for dynamic optimization problems fall into the category of direct and 

indirect methods (Srinivasan et al., 2003b).  

Direct methods: In direct sequential methods, the input vector is parameterized using 

polynomial functions, the states are integrated from their current values up to the final 

time, and the optimal input parameters are determined by a NLP solver (Vassiliadis et al., 

1994; Srinivasan et al., 2003b). Since the states are not approximated, these methods are 

called ‘feasible-path’ methods. The computational complexity might turn out to be high, 

in particular for path-constrained problems, which is usually not acceptable for real-time 

algorithms.  

In direct simultaneous methods (DSM), the optimal control problem is transformed to a 

NLP upon discretizing both the inputs and the states. Since the states are approximated 

instead of integrated, these approaches are called ‘infeasible-path’ methods. Direct 

simultaneous methods were reported to be effective for large-scale optimization and 

continuous NMPC problems in the literature (Cervantes and Biegler, 1998; Biegler et al., 

2002; Wächter and Biegler, 2006; Kameswaran and Biegler, 2006; Biegler, 2007; Huang 

et al., 2009; Jang et al., 2016). (Zavala and Biegler, 2009) introduced an ‘advanced-step’ 

DSM to deal with the feedback delay associated with the time required to compute the 

solution. Later, (Huang et al., 2010) extended this method for the combination of NMPC 

and moving horizon estimation. 

Another direct solution algorithm proposed for NMPC is the direct multiple shooting 

which represents a mid-way between sequential and simultaneous algorithms. In these 

methods, the time interval is divided into stages and the initial conditions of the stages are 

taken as decision variables for the optimization problem. This procedure is also an 

‘infeasible-path’ method but the integration is as accurate as in sequential methods 
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(Srinivasan et al., 2003b). Direct multiple shooting has been used extensively in NMPC 

problems (Keil, 1999; Bock et al., 2000; Diehl et al., 2002; Diehl et al., 2006; Schäfer et 

al., 2007; Findeisen et al., 2007). (Mesbah et al., 2011) compared the performance of the 

DSM and direct multiple shooting algorithms for the real-time control of a fed-batch 

crystallizer. 

Indirect methods: In indirect optimization methods, the optimization problem is 

reformulated as the minimization of an Hamiltonian function (Bryson, 1975). The 

reformulated problem is then solved to satisfy the necessary conditions of optimality 

(NCO) using Pontryagin’s Minimum Principle (PMP). Indirect methods have been used 

to solve MPC problems in the literature. (Cannon et al., 2008) designed a MPC strategy 

for input-constrained linear systems, where the inputs can be represented in terms of co-

states and the problem is solved using active-set methods. It was stated that the matrix 

factorizations performed by general direct solvers can be efficiently replaced by the 

computation of the states and co-states using PMP. This way, the complexity per iteration 

increases only linearly with the length of the prediction horizon, which can be a 

computational advantage for batch processes that typically have large prediction horizons 

due to the shrinking-horizon approach. (Kim and Rousseau, 2012) used PMP for the 

optimal control of hybrid electric vehicles. (Ali and Wardi, 2015) proposed a multiple 

shooting method based on PMP, where the inputs can be expressed analytically in terms 

of states and co-states. Recently, (Zhang et al., 2017) applied PMP in the MPC of a plug-

in vehicle. In this method, the values of the co-states are determined by trial and error. 

For a more detailed review on the solution algorithms for NMPC, the reader is referred to 

(Cannon, 2004).  

However, until very recently (Aydin et al., 2017), there did not exist a fast convergent 

method to solve path-constrained optimal control problems using PMP (Hartl et al., 1995; 
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Chachuat, 2007). Aydin et al. (2017) proposed an indirect, gradient-based dynamic 

optimization algorithm for the control of non-affine constrained semi-batch processes. 

The algorithm uses indirect adjoining to deal with path constraints, which allows the 

explicit calculation of inputs to meet the path constraints at each iteration step. The 

performance of PMP-based and DSM-based algorithms was compared on three different 

problems, with the indirect algorithm being found to be computationally superior, 

especially with finer discretization levels. In this work, we apply the convergent PMP-

based algorithm proposed by Aydin et al. (2017) to the constrained NMPC problem of 

batch processes with both mixed and pure-state path constraints. 

Tracking the necessary conditions of optimality (NCO tracking) has also been studied as 

a real-time optimization algorithm (Srinivasan & Bonvin, 2007). The optimal inputs are first 

computed via off-line optimization of the nominal model. The main assumption is that the 

solution structure (sequence and types of arcs) does not change with uncertainty. Hence, 

instead of performing explicit optimization at each NMPC iteration, the optimal solution 

structure computed off-line is tracked with the help of feedback controllers (Srinivasan and 

Bonvin, 2007; Srinivasan et al., 2008; Chachuat et al., 2009; Ebrahim et al., 2016). 

   The computational advantage of the PMP formulation represents the main motivation for 

this study. We propose to apply the novel PMP-based solution algorithm (Aydin et al., 2017) 

to the shrinking-horizon NMPC of nonlinear semi-batch processes in the presence of 

nonlinear pure and mixed state path constraints. The effect of uncertainties will be handled by 

the introduction of time-varying backoffs (Visser et al., 2000; Srinivasan et al., 2003a; Shi et 

al., 2016). 

      The paper is organized as follows. Section 2 presents the indirect solution algorithm and 

its application to NMPC. Section 3 illustrates the proposed method via the case study of a 

two-phase semi-batch reactor for an hydroformylation process and compares its performance 
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with a DSM algorithm. Furthermore, the PMP-based algorithm is extended to the case where 

active constraints are enforced via tracking. Finally, Section 4 concludes the study. 



9 
 

2. NMPC Problem and Solution Algorithm 

            In NMPC of semi-batch processes, the optimal control problem to be solved on-line at 

each iteration can be written as follows: 

  min
𝑢(𝑡)

𝐽 = 𝜙(𝑥(𝑡𝑓, 𝜃)) 

                      s.t.                  �̇� = 𝐹(𝑥, 𝑢, 𝜃),    𝑥(𝑡𝑘) = 𝑥𝑡𝑘
 

𝑆(𝑥, 𝑢, 𝜃) ≤ 0,      𝑇(𝑥(𝑡𝑓), 𝜃) ≤ 0,    𝑡 ∈ [𝑡𝑘, 𝑡𝑓]  (1) 

where 𝑡𝑘 is the k-th sampling time, J is a scalar performance index that depends on the values 

of the states at the final time tf, is the objective function, x is the nx-dimensional state vector 

with the corresponding initial conditions 𝑥(𝑡𝑘), u is the nu-dimensional input vector, S is the 

nS-dimensional vector of inequality path constraints that include input bounds, T is the nT-

dimensional vector of inequality terminal constraints, and 𝜃 is the vector of uncertain 

parameters associated with plant-model mismatch. After solving Problem (1), the first part 

𝑢[𝑡𝑘, 𝑡𝑘 + 𝛿] of the optimal inputs is implemented in the plant, the horizon is shrunk by the 

sampling interval 𝛿, and a new optimal control problem is solved. This procedure is repeated 

recursively until the final batch time is reached. 

      Several methods are available in the literature to cope with uncertainties in the context of 

stochastic programming or two-level approaches (Sahinidis, 2004; Li et al., 2008; Mesbah et 

al., 2014; Puschke et al., 2016; Mesbah, 2016; Puschke and Mitsos, 2016). However, the 

computational time associated with these methods is still a limitation for real-time 

optimization and thus these methods are out of the scope of this study. To deal with the effect 

of uncertainties, we introduce here time-varying backoffs (Visser et al., 2000; Srinivasan et 

al., 2003a; Shi et al., 2016). Furthermore, it is assumed that 𝑥𝑡𝑘
 can be measured or estimated 

with negligible time delay using on-line sensors and state estimation (Allgöwer et al., 1999; 

Rao et al., 2001; Rao and Rawlings, 2002; Schneider and Georgakis, 2013). Using small 
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sampling times and frequent on-line measurements, the conservatism associated with the 

robust backoff approach can be reduced.  

The optimal control problem given in Eq. 1 can be reformulated using PMP and the constraint 

backoffs as follows:  

min
𝑢(𝑡)

𝐻(𝑡) = 𝜆𝑇𝐹(𝑥, 𝑢, 𝜃0) +  𝜇𝑇[𝑆(𝑥, 𝑢, 𝜃0) + 𝑏𝑠] 

s.t.       �̇� = 𝐹(𝑥, 𝑢, 𝜃0);     𝑥(𝑡𝑘) = 𝑥𝑡𝑘
;  𝑡 ∈ [𝑡𝑘, 𝑡𝑓] 

�̇�𝑇 = −
𝜕𝐻

𝜕𝑥
,    𝜆𝑇(𝑡𝑓) =

𝜕𝜙

𝜕𝑥
|

𝑡𝑓

+ 𝜐𝑇 𝜕𝑇

𝜕𝑥
|

𝑡𝑓

; 

𝜇𝑇[𝑆(𝑥, 𝑢, 𝜃0) + 𝑏𝑠] = 0;    𝜐𝑇[𝑇(𝑥(𝑡𝑓), 𝜃0) + 𝑏𝑇] = 0 

                                                
𝜕𝐻(𝑡)

𝜕𝑢
= 𝜆𝑇 𝜕𝐹

𝜕𝑢
+ 𝜇𝑇 𝜕𝑆

𝜕𝑢
= 0                                        (2) 

where H is the Hamiltonian function, 𝜃0 is the nominal value of the parameters,  is the nx-

dimensional vector of Lagrange multipliers (also called co-states or adjoints) for the system 

equations,  is the nS-dimensional vector of Lagrange multipliers for the path constraints, and 

𝜐 is the nT-dimensional vector of Lagrange multipliers for the terminal constraints, 𝑏𝑠 and 𝑏𝑇 

are the backoffs associated with the path and terminal constraints, respectively. The terms 

𝜇𝑇[𝑆(𝑥, 𝑢, 𝜃0) + 𝑏𝑠] = 0 and 𝜐𝑇[𝑇(𝑥(𝑡𝑓), 𝜃0) + 𝑏𝑇] are the complementary slackness 

conditions that will be satisfied at the optimum. Additionally, the partial derivatives of the 

Hamiltonian function with respect to the inputs must all be equal to zero at an optimum.  

To initialize the solution algorithm, the problem should be cast as the solution to the 

differential equations for both the states and the co-states. This is done by differentiating the 

Hamiltonian function with respect to the states, as given in Eq. 2. The Matlab Symbolic 

Toolbox can be used for this purpose. The input profiles are discretized as u(t) = U(U)where 

U is a (nu x N) matrix that contains N discrete input values for the nu inputs. Note that U could 
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be initialized using the nominal optimal solution. Furthermore, the Lagrange multipliers for 

the path constraints are also discretized as tMMwhere M is a (nS x N) matrix. 

      Indirect adjoining can be used to deal with pure-state path constraints of the form 

𝑆(𝑥, 𝜃0) + 𝑏𝑠 ≤ 0. The state constraints are differentiated with respect to time until at least 

one of the inputs appears explicitly (Hartl et al., 1995; Aydin et al., 2017). The resulting 

expression is S{n}(x,u,𝜃0) ≤ 0, where n represents the relative degree of a constraint with 

respect to an input, that is, the number of differentiations required for an input to appear 

explicitly (Srinivasan and Bonvin, 2007). Then, the differentiated version S{n}(x,u,𝜃0) ≤ 0 is 

used to construct the new Hamiltonian H′. Due to the complementary slackness, the penalty 

term 𝜇𝑇[𝑆(𝑥, 𝑢, 𝜃0) + 𝑏𝑠] = 0 vanishes when all the constraints are satisfied. Nevertheless, if 

some of the constraints cannot be indirectly adjoined, the penalty term 𝜇𝑇𝑆(𝑥) = 𝐾 will force 

convergence to occur through the feasible region (Onori et al., 2016). The idea of indirect 

adjoining and constraint activation is illustrated in Fig. 1. 
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Figure 1. Indirect adjoining and constraint activation.  

      Assuming that the system and adjoint equations are differentiable, the algorithmic steps 

proposed for solving the problem given in Eq. 2 can be summarized as follows (Aydin et al., 

2017): 

 

 

 

 

 

 

Reformulate 

𝑆 into 𝑆(𝑛) 

indirect 
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 iterate (infeasible) 

activation 
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PMP-based Solution Algorithm 

Select values for the penalty term K, the step size , the coefficient , the threshold  the 

number of discrete input values N, the maximum number of iterations iter_max, andthe 

backoff 𝑏𝑠. Initialize the iteration counter ℎ = 0 and the corresponding input elements 𝑈0  and 

Hessian matrix 𝐵0 ∶= 𝑰. 

      do h = 1   iter_max 

I. Solve the state equations by forward integration and the co-state equations by 

backward integration. If the j-th constraint is satisfied at the discrete time 

instant k, set 𝑀ℎ (j,k) ∶=0Otherwise, set 𝑀ℎ(j,k)∶= K > 0, for k=1,..,N. 

II. Evaluate the value of the first-order gradients (
𝜕𝐻

𝜕𝑈
)ℎ by using pre-computed 

analytical expressions. 

III. If all constraints are satisfied, set 𝑈ℎ+1 ∶= 𝑈ℎ − 𝛼(𝐵ℎ
−1 𝜕𝐻

𝜕𝑈
)ℎand update the 

Hessian matrix Bh as follows:

𝑦 ∶= ∇𝐻( 𝑈ℎ+1) − ∇𝐻( 𝑈ℎ),  𝑠 ∶= 𝑈ℎ+1 −  𝑈ℎ , 

if  𝑠𝑇𝑦 ≥ 𝛽‖𝑠‖2, set 𝐵ℎ+1 ∶= 𝐵ℎ +
𝑦𝑦𝑇

𝑠𝑇𝑦
−

𝐵ℎ𝑠𝑠𝑇𝐵ℎ

𝑠𝑇𝐵ℎ𝑠
 ,  

else set 𝐵ℎ+1 ∶= 𝐵ℎ  

end if 

else set 𝑈ℎ+1 ∶=  𝑈ℎ − 𝛼(
𝜕𝐻

𝜕𝑈
)ℎ and 𝐵ℎ+1 ∶= 𝐵ℎ, and compute the value of 

U(.,k) that makes the violated path constraint 𝑆𝑗
{𝑛}(𝑥, 𝑈(. , 𝑘))+𝑏𝑠 = 0 at the 

discrete time instant k.  

end if

IV. If ‖
𝜕𝐻

𝜕𝑈
‖h < set 𝑈𝑜𝑝𝑡 ∶=  𝑈ℎ , stop, end if

         end do 

 

Remark 1. Input constraint saturation is implemented such that 

 𝑢(𝑡) = {
𝑢𝑚𝑖𝑛, if a lower constraint is violated
𝑢𝑚𝑎𝑥 , if an upper constraint is violated

 

Remark 2. Closed-loop stability can be enforced by adding an extra terminal cost or 

constraint to the problem (García et al., 1989; Diehl et al., 2011; Angeli et al., 2012), which 

comes as an additional advantage of the proposed algorithm compared to other indirect 

methods (Cannon et al., 2008). 
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Remark 3. To speed-up the real-time algorithm, NMPC is initialized with the open-loop 

optimal control profiles as initial guesses. After each iteration, when the horizon shrinks, the 

previous optimal profiles are interpolated linearly with respect to the new horizon and serve as 

initial guesses for the next optimization. 

Remark 4. Since the proposed algorithm searches for a feasible point at each iteration, it can 

be implemented in a sub-optimal fashion by setting a minimal number of iterations to further 

reduce the computational effort (Findeisen et al., 2007). 
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3. Case Study: Two-phase Semi-batch Hydroformylation Reactor  

3.1 Problem Formulation  

      Due to their chemical nature, long-chain olefins are potential renewable feedstock to be 

integrated into existing petrochemical production networks. Hydroformylation is a suitable 

way of converting these feedstocks into valuable intermediates like aldehydes. A carbon 

double bond can be converted into an aldehyde group with the addition of 𝐻2 and 𝐶𝑂 in 

hydroformylation using an homogeneous catalyst (Hentschel et al., 2015; Kaiser et al., 2016).  

      Consider the semi-batch operation of hydroformylation in a two-phase stirred-tank 

reactor. The objective is to maximize the final concentration of n-tridecanal (nC13al) from 1-

dodecene (nC12en) that reacts with syngas (𝐻2 + 𝐶𝑂). The final time is fixed at 70 min. The 

reaction network is illustrated in Fig. 2 (Hentschel et al., 2015). 

 

Figure 2. Hydroformylation reaction network. 

      The input variables are the reactor temperature 𝑇(𝑡) and the feedrate 𝑢(𝑡) of syngas. 

Equimolar content of CO and H2 in the syngas is assumed. The gas and liquid phases are 

modeled as ideally mixed phases. The model parameters have been identified and validated 

using experimental data (Hentschel et al., 2015). In addition to bounds on the input variables, 

the total pressure of the gas phase must be kept within specified limits. It is seen from the 

model that the first time derivative of the total pressure contains the input 𝑢(𝑡) explicitly, thus 
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implying a relative degree 1 for this constraint. As a result, this constraint can be indirectly 

adjoined into the Hamiltonian and will be activated at each infeasible iteration as illustrated in 

Fig. 1. 

      Including the backoff term bs, the optimal control problem to be solved on-line at each 

NMPC iteration is as follows: 

                                                   max𝑢(𝑡),𝑇(𝑡) 𝐽 = 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓)                  𝑡 ∈ [𝑡𝑘, 𝑡𝑓] 

        s.t          �̇�𝑙𝑖𝑞,𝑖 = 𝑗𝑖
𝐺𝐿 + 𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 ∑ 𝑣𝑗,𝑖𝑟𝑗𝑗∈R  ;       𝑐𝑙𝑖𝑞,𝑖(𝑡𝑘) = �̂�𝑙𝑖𝑞,𝑖,𝑡𝑘

;    i=1, 2,…,7;  

�̇�𝑖 =
𝑅𝑇

𝑉𝑔𝑎𝑠
(𝑢 𝑥𝑖 − 𝑉𝑙𝑖𝑞 𝑗𝑖

𝐺𝐿)   (𝑖 ∈ 𝑔𝑎𝑠) ;    𝑝𝑖(𝑡𝑘) = 𝑝𝑖,𝑡𝑘
 ;   𝑥𝑖  =  0.5 (

mol

mol
) ;    i = 1, 2; 

𝑗𝑖
𝐺𝐿 = {

(𝑘𝐿𝑎)𝑖(𝑐𝑖
∗ − 𝑐𝑙𝑖𝑞,𝑖), (𝑖𝑓 𝑖 ∈ 𝑔𝑎𝑠);    i = 1, 2

0,                               (𝑒𝑙𝑠𝑒);    i = 3,4, … ,7
 ;      

𝑟1 =
𝑘1,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2

𝑐𝐶𝑂

1 + 𝐾1,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾1,2𝑐𝑛𝐶13𝑎𝑙 + 𝐾1,3𝑐𝐻2

 ; 

𝑟2 =

𝑘2,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛 −
𝑐𝑖𝐶12𝑒𝑛

𝐾𝑝,2
)

1 + 𝐾2,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾2,2𝑐𝑖𝐶12𝑒𝑛
 ; 

𝑟3 =

𝑘3,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2
−

𝑐𝑛𝐶12𝑎𝑛

𝐾𝑝,3
)

1 + 𝐾3,1𝑐𝑛𝐶12𝑒𝑛 + 𝐾3,2𝑐𝑛𝐶13𝑎𝑛 + 𝐾3,3𝑐𝐻2

 ; 

𝑟4 = 𝑘4,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2
 ; 

𝑟5 = 𝑘5,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2
𝑐𝐶𝑂 ; 

𝑟6 = 𝑘6,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2
𝑐𝐶𝑂 ; 

 𝑘𝑗(𝑇) = 𝑘0,𝑗 exp (−
𝐸𝐴,𝑗

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) ;  

𝐾𝑝,𝑗 = exp (
−Δ𝐺𝑗

𝑅𝑇
) ; 

−Δ𝐺𝑗 = 𝑎0,𝑗 + 𝑎1,𝑗𝑇 + 𝑎2,𝑗𝑇2 ; 
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𝑐𝑐𝑎𝑡 =
𝛾𝑐𝑐𝑎𝑡,𝑡𝑜𝑡

1 + 𝐾𝑐𝑎𝑡,1𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3 + 𝐾𝑐𝑎𝑡,2

𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3

𝑐𝐻2

 ; 

𝑐𝑖
∗ =

𝑝𝑖

𝐻𝑖
 ; 

𝐻𝑖 = 𝐻𝑖
0 exp (

−𝐸𝐴,𝐻,𝑖

𝑅𝑇
) ; 

𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝑝𝐻2
(𝑡) + 𝑝𝐶𝑂(𝑡) ; 

1 𝑏𝑎𝑟 ≤ 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) ≤ 20 𝑏𝑎𝑟 − 𝑏𝑠(𝑡); 

0 mol/min ≤ 𝑢(𝑡)  ≤ 7 mol/min; 

                                                     368.15 K  ≤ 𝑇(𝑡) ≤ 388.15 K   

                                                     
|𝑇(𝑡)−𝑇(𝑡𝑘)|

𝑡−𝑡𝑘
≤ ∆𝑇𝑚𝑎𝑥        

                                                          𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓)  ≤ 0.8                                                          (3) 

where 𝑡𝑘 is the time at the k-th sampling instant, i represents the component index (i=1,2,…,7 

for the liquid phase and i=1,2 for the gas phase), j stands for the reaction index and R is the 

reaction set, �̂�𝑙𝑖𝑞,𝑖,𝑡𝑘
 is the estimated concentration of the component i in the liquid phase, 

𝑝𝑖,𝑡𝑘
 is the measured pressure in the gas phase, 𝛾 is catalyst activity, 𝑏𝑠 is the time-varying 

backoff associated with the pressure upper limit, whose value can be calculated by open-loop 

Monte Carlo simulations (Shi et al., 2016). The liquid volume 𝑉𝑙𝑖𝑞 and the gas volume 𝑉𝑔𝑎𝑠 

inside the reactor are assumed constant (900 mL each). The nominal parameters 𝜃0 are given 

in (Hentschel et al., 2015). The total partial pressure and the concentration of each species are 

assumed to be measured at each NMPC iteration, e.g. using an on-line IR spectroscopy. A 

terminal constraint on the final value of the desired product (𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓)  ≤ 0.8) is added to 

enforce closed-loop stability.  

      The optimal reactor temperature calculated by NMPC serves as set point for a thermostat, 

where a PID controller regulates the reactor temperature by adjusting the flow rate of 

heating/cooling fluid. Hence, a rate constraint on the temperature change is introduced 

(∆𝑇𝑚𝑎𝑥) so that the controller is capable of reaching the set point before the next NMPC 



18 
 

iteration. This rate constraint term depends on the heating/cooling capacity of the thermostat. 

On the other hand, the optimal feed flow rate can be implemented directly (Abel et al., 2000; 

Abel and Marquardt, 2003). It was observed that a relatively fine input discretization (N≥100) 

is necessary to get accurate and feasible optimal results, especially with regard to the pressure 

constraint (Aydin et al., 2017).  

3.2 Estimation of Time-varying Backoffs 

      Backoffs are useful to enforce feasibility. The conservative nature of backoffs is reduced 

through the use of small sampling times. For choosing the backoff term bs, the multi-step 

approach of (Shi et al., 2016) is used here. First, the nominal optimal input profiles are 

computed. This was done in (Aydin et al., 2017). Then, Monte-Carlo simulations are 

performed by sampling various uncertainties and using the optimal inputs in an open-loop 

manner. Finally, a time-varying backoff is determined from the standard deviation of 

constraint violations. Note that the Monte-Carlo approach might require a significant 

computational effort in the presence of multiple uncertainties, but this work is done offline.  

      In this study, the rate constants 𝑘𝑖,0 and the catalyst activity 𝛾 are assumed to vary within a 

certain range from batch to batch operation according to a uniform distribution. On the other 

hand, the gas-liquid mass-transfer coefficients (𝑘𝐿𝑎)𝑖 are assumed to vary within the batch. 

The uncertainty ranges for the parameters are given in Table 1. The results of open-loop 

Monte Carlo simulations for 40 realizations of multiple uncertainties are depicted in Fig. 3. 
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Figure 3a. Open-loop Monte Carlo simulations of total pressure for 40 uncertainty 

realizations. 

 

Figure 3b. Open-loop Monte Carlo simulations for the desired product concentration for 40 

uncertainty realizations.  
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Table 1. Parameter variations for the hydroformylation process: (𝑘𝐿𝑎)𝑖 vary within batch, 

while 𝑘𝑖,0 and 𝛾 vary from batch to batch.  

Parameter 

Nominal Value  

(Hentschel et al., 2015) 

Minimum 

Value 

Maximum 

Value 

(𝑘𝐿𝑎)1 9.57 8.0 10.1 

(𝑘𝐿𝑎)2 7.08 5.5 7.6 

𝑘1,0 4.904 2.9 5.2 

𝑘2,0 4.878 3.8 5.8 

𝑘3,0 2.724 1.7 3.7 

𝑘4,0 2.958 1.9 3.9 

𝑘5,0 3.702 2.7 4.7 

𝑘6,0 3.951 2.9 4.9 

𝛾 - 80 % 100 % 

 

Accordingly, the time-varying backoff is chosen as follows: 

𝑏𝑠(𝑡) = {

1.3               𝑖𝑓 𝑡 ≤ 30
0.7        𝑖𝑓 30 < 𝑡 ≤ 
0               𝑖𝑓 𝑡 > 55

55 

Remark 5. The backoff values can also be updated on a batch-to-batch manner so as to 

increase the performance of future batches. 

3.3 NMPC for Product Maximization  

      The PMP-based solution algorithm for the NMPC was implemented in the Matlab 

environment. The DSM-based algorithm used the CasADI toolbox (Andersson and Diehl, 

2012) that implements the Ipopt solver (Wächter and Biegler, 2006). All computational results 
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(excluding the initializations of the problems) were obtained using an Intel i-3-2100 machine 

(CPU 3.10 GHz 4 GB RAM). The tuning parameters for the PMP-based and the DSM-based 

algorithms are summarized in Table 2.   

Table 2. Tuning parameters for the PMP-based and DSM-based algorithms.   

PMP-based Algorithm DSM-based Algorithm with Ipopt 

sampling times 

measurement frequency = 30 s 

measurement delays 

𝛼 = 0.05; 0.1 

 𝑁iter_max =15

∆𝑇𝑚𝑎𝑥= (0.35 K)/(15s) 

sampling times 

measurement frequency = 30 s 

measurement delays 

𝑁 =100; ipopt.max_iter = 100;  

ipopt.tol = 1e-4; ipopt.mu_init = 1e-6 

∆𝑇𝑚𝑎𝑥= (0.35 K)/(15s) 

 

      The input profiles computed off-line using the nominal model are used as initial guesses at 

the beginning of the batch for both algorithms. Later, the optimal inputs computed at a given 

iteration are used to generate by interpolation the initial guesses for the next optimization.  

      All measurements are corrupted with white noise. Because the sampling times of the 

measurements and of the controller are not the same and, in addition, there is an inevitable 

measurement delay, an observer is designed to estimate the concentrations in the liquid phase 

using the model equations and a linear update term such that: 

�̂�𝑘 = ∫ 𝑓(�̂�, 𝑢)𝑑𝑡 + 𝑑𝑘−1 
𝑡𝑘

𝑡𝑘−1

 

𝑑𝑘 = 𝐿(𝑥𝑘 − �̂�𝑘) 

 

(4) 

where 𝑑𝑘 is the linear update term, �̂�𝑘 =  �̂�𝑙𝑖𝑞,𝑡𝑘
,  𝑥𝑘 are the measured states, �̂�𝑘 are the 

estimated states and 𝐿 = [0.75 0.75 0.65 0.75 0.75 0.75 0.75]T is the observer gain vector. All 

concentrations in the liquid phase are assumed to be measured every 30 sec (+ 5 sec delay) 

using an on-line FTIR, and the total pressure in the gas phase is assumed to be measured 
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every second with no delay. The NMPC algorithm takes into account the estimated states at 

each sampling time as the initial condition of the optimal control problem and the linear term 

𝑑𝑘 is updated as soon as the new measurements are obtained. The performance of the observer 

for a closed-loop batch is given in Fig. 4.  

 

Figure 4. Performance of the observer for a single batch.  

The performance of the DSM-based and PMP-based algorithms for the same disturbance 

realizations within a batch are compared in Fig. 5. The corresponding computational times for 

the individual iterations are given in Fig. 6. Because the total pressure can be measured in 

real-time without delay and taken into account by the NMPC algorithm, slight variations 

between the true and estimated concentrations do not affect the feasibility of the closed-loop 

process. Nevertheless, better state estimation might increase the cost performance.  
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Figure 5. NMPC profiles with DSM-based and PMP-based algorithms for a particular batch 

and fixed final time.  

 

Figure 6. Computational times with DSM-based and PMP-based algorithms.  
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      Fig. 5 shows that, with both methods, stable closed-loop performance can be achieved in 

the presence of parametric plant-model mismatch. In addition, the upper pressure limit is 

never violated thanks to the backoff term, and the rate constraint on temperature is satisfied at 

each NMPC iteration. Although the closed-loop input trajectories are slightly different, the 

optimal cost functions are very similar at the end of the batch, an indication that both methods 

achieve very similar performance for the maximization of nC13al. Finally, as seen in Fig. 6, 

PMP-based NMPC is much faster than DSM-based NMPC, especially at the beginning of the 

batch.  

      Almost 70% of the CPU time required for the PMP-based method was found to be used 

for integration of the states and co-states. Hence, CPU time does not decrease significantly 

with PMP as the horizon shrinks. Faster performance for the PMP-based method might be 

obtained by using fast integration algorithms or discretization methods. However, the speed 

and the performance of the PMP-based solution is still an open issue for large-scale systems 

that require high computational time for integration.  

      In order to test the robustness of the PMP-based NMPC, simulations were performed for 

40 uncertainty realizations (Fig. 7). PMP-based NMPC is able to sustain feasible operation in 

all these batches in the presence of uncertainty, with a mean final nC13al concentration of 

0.554 mol/L. This indicates that, under closed-loop operation, nearly 9% increase in the final 

amount of the desired product can be obtained compared to the infeasible (because of pressure 

violation) operation in Fig. 3. 
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Figure 7. NMPC profiles with PMP for 40 uncertainty realizations and fixed final time.   
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Furthermore, to check the effect of closed-loop operation on batch time reduction, the 

NMPC problem in Eq. 3 is reformulated such that the open-loop optimal concentration of 

tridecanal (𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓) = 0.51 mol/L, Fig. 3b) is given as a set-point to the controller, while 

the final time tf is let free. The corresponding closed-loop results for 40 different batches are 

given in Fig. 8. 
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Figure 8. NMPC profiles with PMP for 40 uncertainty realizations and batch time 

minimization.  

 

Fig. 8 shows that, under closed-loop operation using PMP-based NMPC, the overall batch 

time can be reduced from 70 to 51.36 minutes, which correspond to a 26.5% reduction (Table 

3).  
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3.5 NMPC with Constraint Tracking  

Figs. 7 and 8 illustrate that the pressure profiles are very close to the upper limit of 20 bar 

in all 80 batches. The optimal solution computed off-line with the nominal model also 

suggests that this pressure constraint is active throughout the operation (Aydin et al., 2017). 

Accordingly, a constraint-tracking framework can be suggested, which further reduces the 

computational complexity.   

      The feedrate of syngas u(t) is used to keep the pressure at 20 bar, while temperature T(t) is 

utilized to maximize the final concentration of nC13al. The control can be done implicitly 

with the model, that is, u(t) is computed to keep  𝑃𝑡𝑜𝑡𝑎𝑙(𝑡) constant at 20 bar or, equivalently, 

�̇�𝑡𝑜𝑡𝑎𝑙(𝑡) = �̇�1(𝑡) + �̇�2(𝑡) = 0. From Eq. (3), this gives  

𝑢(𝑡) = 𝑉𝑙𝑖𝑞 ( 𝑗1
𝐺𝐿(𝑡) + 𝑗2

𝐺𝐿(𝑡)), (5) 

which keeps the total pressure constant. This way, 𝑢(𝑡) can be removed from the set of 

decision variables in Problem (3). However, 𝑝𝑡𝑜𝑡𝑎𝑙(𝑡) has to be kept constant at 20-bs(t) bar, 

which is done via PID control. As seen in Fig. 9, the controller is able to keep the pressure 

very close to the desired value. Because the pressure limit is enforced by feedback control, a 

coarser input discretization can be used for the temperature (N=50 instead of N=100). The 

performance of NMPC with constraint tracking is shown in Fig. 9 for 40 different uncertainty 

realizations, with the corresponding computational times given in Fig. 10. This optimization 

scheme results in feasible operation, with a mean final nC13al concentration of almost 0.531 

mol/L and reduced computational effort. Table 4 compares the performance of NMPC 

without and with constraint tracking. The introduction of constraint tracking reduces 

performance only by 2%. 
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Figure 9. NMPC with constraint tracking for 40 different uncertainty realizations and fixed 

final time.  
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Figure 10. Computational times using PMP-based NMPC without and with constraint 

tracking.  

 

 

Table 3. Performance of PMP-based NMPC for free final time. 

 

Method 
mean 𝑡𝑓 

for 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓) = 0.51 mol/L 
median 𝑡𝑓 st. dev. 𝑡𝑓 

Open-loop nominal 

optimization (infeasible) 
70 sec 70 sec − 

NMPC  51.36 sec 51 sec 2.28  sec 

 

 

 

Table 4. Performance of PMP-based NMPC without and with constraint tracking for fixed 

final time. 

 

Method mean 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓) median 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓) 

 

st. dev. 𝑐𝑛𝑐13𝑎𝑙(𝑡𝑓) 

 

Open-loop nominal 

optimization (infeasible) 
0.51 mol/L 0.511 mol/L 0.0126 

NMPC without tracking 0.554 mol/L 0.55 mol/L 0.010 

NMPC with tracking 0.543 mol/L 0.539 mol/L 0.014 
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4. Conclusions and Outlook 

      This paper has proposed an indirect PMP-based solution for shrinking-horizon NMPC and 

has applied it to a two-phase semi-batch hydroformylation reactor in the presence of 

uncertainty. A time-varying backoff approach is utilized to deal with parametric uncertainties. 

The pressure path constraint is indirectly adjoined into the Hamiltonian function and activated 

at each infeasible iteration. The computational burden stemming from the matrix factorization 

in large-horizon problems is reduced by the computation of states and co-states. Accordingly, 

the PMP-based NMPC has a computational advantage over the DSM-based NMPC, 

especially at the beginning of the batch. Furthermore, the PMP-based solution algorithm can 

be extended to track active constraints. For example, for the semi-batch hydroformylation 

reactor, further reduction in computational time was obtained via tracking of the active 

pressure constraint. 

      The computational speed of the PMP-based algorithms can be further increased by 

discretizing the state and co-state equations instead of relying on integration. Yet, it is still an 

open issue how the PMP-based NMPC performs for large-scale problems, where integration 

requires more effort. Our current interest is on testing the proposed PMP-based real-time 

algorithms, using on-line FTIR spectroscopy, on our mini-plant at the Max Planck Institute in 

Magdeburg. 
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