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Our species is characterized by a great degree of
cultural variation, both within and between populations.
Understanding how group-level patterns of culture emerge
from individual-level behaviour is a long-standing question
in the biological and social sciences. We develop a simulation
model capturing demographic and cultural dynamics relevant
to human cultural evolution, focusing on the interface between
population-level patterns and individual-level processes. The
model tracks the distribution of variants of cultural traits
across individuals in a population over time, conditioned
on different pathways for the transmission of information
between individuals. From these data, we obtain theoretical
expectations for a range of statistics commonly used to capture
population-level characteristics (e.g. the degree of cultural
diversity). Consistent with previous theoretical work, our
results show that the patterns observed at the level of groups
are rooted in the interplay between the transmission pathways
and the age structure of the population. We also explore
whether, and under what conditions, the different pathways
can be distinguished based on their group-level signatures, in
an effort to establish theoretical limits to inference. Our results
show that the temporal dynamic of cultural change over time
retains a stronger signature than the cultural composition
of the population at a specific point in time. Overall, the
results suggest a shift in focus from identifying the one
individual-level process that likely produced the observed
data to excluding those that likely did not. We conclude by
discussing the implications for empirical studies of human
cultural evolution.
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1. Introduction
Our species is characterized by a great degree of cultural variation, both within and between populations.
This variation can be observed in domains as different as material culture (e.g. [1]), linguistic features (e.g.
[2]) or social norms (e.g. [3]). These population-level patterns are the aggregate product of underlying
individual strategies. Understanding how those patterns of culture emerge from individual-level
behaviour is a long-standing question in the biological and social sciences [4].

The field of cultural evolution encompasses efforts to answer this question, through a variety of
theoretical and empirical tools (see [5] for a recent review). Cultural evolution is the process of change in
the frequency of different variants of a cultural trait over time. Cultural traits comprise the knowledge,
ideas, beliefs, skills, attitudes or any other form of information that can be socially transmitted between
individuals, for example, through teaching or imitation [6]. Seminal early contributions to the field
focused on human culture (e.g. [7,8]), but the scope now extends also to non-human culture [9].

Overall, this body of work has identified a number of factors shaping cultural variation within and
across human groups, including the pathways for the transmission of information between individuals,
demography, shared population history and adaptation to environmental conditions. However, we lack
a systematic understanding of the effect of these different factors and their interactions. In particular, we
lack a conceptual framework explicitly mapping the patterns observed at the level of groups onto the
underlying processes occurring at the level of individuals [5]. For example, a large body of empirical
work in cultural evolution builds on the notion of the relative ‘conservativeness’ of vertical transmission
(i.e. parent to child) compared to other transmission pathways (e.g. horizontal transmission, i.e. between
peers) [7]. This body of work includes field-based investigations (e.g. [10–12]) and cross-cultural studies
(e.g. [12–15]). But how exactly does the group-level ‘signature’ of vertical transmission differ from that of
other transmission pathways? And is it sufficiently different that it can be mapped, unequivocally, onto
vertical transmission?

To address these and related questions, we develop a simulation model capturing demographic and
cultural dynamics relevant to human cultural evolution, focusing on the interface between population-
level patterns and individual-level processes (see [16–19] for other modelling frameworks). By design,
the simulation model is the simplest it can be. For example, we focus on neutral cultural traits (i.e. not
linked to fitness) and constant population sizes; traits only differ in the way they are transmitted between
individuals. In this respect, our work differs from related recent analyses by Fogarty et al. [18], who
focused on more complex demographic scenarios. They explored the effect of trait transmission on the
age-structure of a population, and the extent to which cultural traits affecting demographic change can
spread. The general modelling framework, however, is similar to the one introduced in [18].

In other words, our model does not seek to replicate a specific cultural system. Rather, it is used
to run ‘artificial experiments’ for various demographic and cultural scenarios, in order to explore and
analyse the ranges of possible evolutionary outcomes generated by those scenarios. Specifically, the
model tracks the distribution of variants of cultural traits across a population over time, conditioned
on different pathways for the transmission of information between individuals. From these simulated
data, we obtain theoretical expectations, in the form of probability distributions, for a range of statistics
commonly used in the literature to capture population-level characteristics (e.g. the degree of cultural
diversity).

Our aim is twofold. First, we aim to derive general insights about the different transmission pathways
and their signatures at the level of the group. Second, we aim to establish whether, and under what
conditions, the different pathways can be distinguished based on their group-level signatures. Are the
signatures sufficiently different that they can be traced back to specific individual-level processes? The
rationale is that if we cannot accurately infer underlying scenarios from simulated data, which are
generated under known ‘experimental’ conditions, it is unlikely that we will be able to do so based
on empirical data.

Some additional context may help grasp the significance of the second aim. Researchers in
anthropology and related disciplines often draw inferences from data on variation in cultural traits
within a population, but these data are typically sparse in space and/or time. Our analysis aims to
establish the theoretical limits to inference—in other words, how much information can in fact be
‘extracted’ from the data under simplified scenarios of cultural change captured by our simulation
framework. These theoretical limits represent an upper-bound to inference: we cannot expect to obtain
more information from empirical data, which are the product of intricate real-world scenarios.

We begin by describing the mathematical framework and the statistical analysis (§2), followed
by presentation of the results (§3). The code used to generate the results is available from
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Table 1. Transmission modes.

mode (notation) description note

vertical (v) from parent to offspring
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

horizontal (h) between individuals in the same age group
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oblique (o) from older to younger individuals excludes parent–offspring pairs
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

age-neutral (n) between any two individuals in the population equivalent to random drift
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mixed (m) a combination of horizontal and oblique see text (§2.1.3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

http://datadryad.org/resource/doi:10.5061/dryad.14q31. We conclude with a non-technical summary
of the key findings, together with discussion of their implications (§4); readers can skip to this part
without loss of insight.

2. Methods
Our analysis involves two components. The first is a mathematical framework simulating the temporal
dynamic of cultural change in age-structured populations. The second is a set of statistics used to
summarize the simulation output; these are used to determine whether the group-level patterns
extracted from the simulation output can be reliably distinguished.

The framework includes both discrete and continuous cultural traits: discrete traits assume a finite
number of variants, continuous traits assume any value in a given interval. For ease of presentation, this
and the next section focus on the discrete case. An outline of key results for the continuous case is in
§3.2.4, with additional detail in the electronic supplementary material, section S3.3.4.

2.1. Mathematical framework
Cultural evolution in age-structured populations has been modelled in a variety of contexts, including
the spread of the use of birth control [20] and sex-ratio imbalance [21,22]. Furthermore, Fogarty
et al. [18] investigated the implications of cultural transmission on human demographic changes, in
particular changes in population size and age structure, with a framework similar to the one introduced
below. Here we keep the demographic properties of the population constant over time and focus on
quantifying the effects of different forms of cultural transmission on the cultural composition of the
population.

In detail, we consider a simple age-structured population, divided into five age classes, where each
individual possesses a variant of five different cultural traits. Each age group comprises an interval of 10
years, i.e. roughly a generation.

2.1.1. Cultural traits and transmission modes

Discrete cultural traits assume one of five possible variants. As the traits are assumed to be neutral,
individuals do not benefit from carrying a specific variant over another.

Following [7], we define a set of modes for the transmission of trait variants between individuals
(table 1). Broadly, the modes describe the flow of information within and between generations.
They delimit the set of potential interaction partners within a population, with interactions between
individuals within this set occurring at random.

Additionally, transmission biases may steer interactions towards individuals carrying a particular
variant [8]. A large number of biases have been identified in the literature [23]; we focus on conformity
bias, i.e. a preference for the most common variant in the population, as detailed in §2.1.4.

We consider a population of N individuals. At each point in time, individual i is described by a
variable Ii

x, with Ii
x ∈ {1, . . . , 5} for x = v, h, o, n, m (table 1). This is the individual’s current cultural make-

up, comprising five cultural traits, each linked to a transmission mode. For all traits, an individual
acquires the variant of its parent at birth, i.e. through vertical transmission. For all traits except the one
linked to mode v, the variant may change through further transmission events during the individual’s
lifetime, as described in §2.1.3.
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Table 2. Transmission rules for modes h, o, n in the absence of mutation.

possible interaction partner

mode j for individual i transmission rule

h Iiage = Ijage Iih = Ijh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

o Iiage > Ijage Iio = Ijo
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n any individual Iin = Ijn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.2. Demographic processes

In addition to variable Ii
x, at each point in time individual i is described by a variable Ii

age, denoting
its current age group. There are five age groups, covering the age range 0–50. The age structure of
the population is summarized by [n1, . . . , n5], where ni describes the number of individuals in age
group i.

Each time step in the simulation corresponds to 10 years. At each time step, individuals age by moving
to the next age group, and they may either die or reproduce. We assume a constant population size
N. Therefore, the number of individuals entering the population through reproduction in a given time
step is determined by the difference between N and the number of deaths in the previous time step.
Individuals die with probability pdeath. All individuals in age group 5 die with pdeath = 1 in the following
time step.

Reproduction occurs asexually. Individuals in age groups 2 and 3 are chosen at random at each time
step to reproduce until population size N is reached. These individuals produce offspring who inherit
their trait variants. However, with a small probability μ a mutation occurs and the offspring’s variant
differs from the parent’s, as described in §2.1.3.

These demographic processes produce a pyramid-shaped age structure, with fewer individuals
in older generations. In general, it holds

∑5
i=1 ni = N. However, due to the stochastic nature of the

framework, it is possible that all potential parents die before reproducing, leading to extinction of the
population. The results presented below are based on simulation runs where the population survived
for the entire duration of the simulation.

2.1.3. Mutation and transmission events

We define a mutation rate μ, which describes the fidelity of the transmission process and applies to all
transmission events. For all traits, individual i acquires the variant of its parent with probability 1 − μ,
and a randomly selected variant with probability μ. This process describes vertical transmission (table 1).

Additionally, for traits linked to modes h, o, n the variant may change through further transmission
events during the individual’s lifetime. Specifically, at each time step individual i engages with
probability pw in interaction with a randomly selected individual j. For example, pw = 0.5 corresponds to
an average of 2.5 transmission events during the individual’s lifetime, pw = 1 to an average of 5 events.
During each transmission event, individual i acquires the variant of individual j with probability 1 − μ,
and a randomly selected variant with probability μ. The transmission rules in table 2 apply to these
interaction events; they show that horizontal, oblique and age-neutral transmission differ only in the set
of potential interaction partners (§2.1.1).

The ‘pure’ modes v, h, o, n provide a useful baseline against which to compare more realistic scenarios.
Specifically, one of the five traits in an individual’s cultural make-up is linked to mode m, whereby
possible interaction partners include both peers and older individuals (table 1). We term this mode
‘mixed’, to indicate that it is effectively the combination of horizontal and oblique transmission. For
this trait, individual i engages in horizontal transmission with probability (1 − pmix) and in oblique
transmission with probability pmix, following the rules specified in table 2. Qualitatively, the higher the
value of pmix, the more likely that transmission is oblique, i.e. that the individual’s interaction partner
belongs to an older age group, rather than to the same age group.

Across all modes, the interaction probability pw and the mutation rate μ, combined, determine the
potential for cultural change. Broadly, we distinguish between scenarios with low versus high potential
for cultural change (e.g. low μ, low pw versus high μ, high pw). For instance, the higher pw and μ, the
more opportunities there are for an individual’s cultural make-up to change over its lifetime, and hence
for the cultural composition of the population to change with each time step.
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2.1.4. Conformity bias

As noted in §2.1.1, the transmission modes describe different sets of potential interaction partners, but
interactions between individuals within each set occur at random. This implies that the probability pk
that an individual interacts with a partner carrying variant k is proportional to the relative frequency of
variant k in the set. It holds

pk = n∗
k

N∗ ,

where n∗
k describes the number of individuals in the set of size N∗ carrying variant k.

Conformist transmission is defined as the disproportional adoption of common variants [8]. With
conformity bias, the probability of an individual interacting with a partner carrying variant k is given
instead by [24,25]

pk = n∗
k

N∗ + b
(

k̂
n∗

k
N∗ − 1

)
. (2.1)

The parameter b ≥ 0 describes the strength of the bias and k̂ is the number of variants present in the
population. Conformity increases the probability that an individual carrying variant k acts as interaction
partner if the frequency of variant k exceeds the ‘relative’ majority 1/k̂.

2.1.5. Simulation set-up

At the beginning of each simulation run, the N individuals in the population are distributed randomly
across the five age groups. They all carry the same variants of the cultural traits. In each subsequent time
step, the demographic and cultural processes described above take place over time leading to changes in
the frequency of the different variants, and thus to the cultural composition of the population.

Individuals update their cultural make-ups asynchronously, i.e. an individual’s interaction partner
may have already updated its cultural make-up in the given time step. The order in which individuals
engage in transmission events is randomized in every time step.

A single simulation run consists of a burn-in phase followed by 200 time steps. We explore various
constellations of the parameters for ranges N = 25, 50, 100; μ = 0.01, 0.05, 0.1; pw = 0.5, 0.75, 1; b =
0, 0.01, 0.02, 0.03. Note that b = 0 for all analyses, except those investigating specifically the effect of
conformity on distinguishability of the different transmission modes.

2.2. Statistical analysis

2.2.1. Summary statistics

The mathematical framework tracks the frequencies of trait variants at each time step. We use this
information to characterize the cultural composition of the population and the dynamic of cultural
change over time, conditioned on the different transmission modes. Specifically, with x = v, h, o, n, m
denoting the mode (table 1), for a given trait we derive

(i) the frequencies of its five variants [px
1, px

2, . . . , px
5] across individuals in the population, where px

k
describes the relative frequency of variant k,

(ii) the frequency of the most common variant in the population, denoted px
max,

(iii) the total number of variants present in the population, denoted kx,
(iv) the level of cultural diversity, as measured by the Shannon diversity index

dx
s = −

kx∑
k=1

px
k log(px

k),

where kx describes the number of variants present and px
k the relative frequency of variant k, as

defined above, and
(v) the average time a variant stays the most common variant, denoted tx

max.

The first statistic is the joint probability distribution of the frequencies of the five cultural variants.
This captures the most information about the cultural composition of the population at a given point
in time, but researchers may not have access to the full data. Accordingly, we also explore how much
information can be extracted from ‘partial’ data, namely the frequency of the most common variant,
px

max, and the total number of variants present, kx.
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Researchers often summarize the cultural composition of a population using a diversity measure such

as the Shannon diversity index (e.g. [1,26,27]). We include this statistic in our analysis to investigate how
the dimension reduction this involves affects our ability to distinguish between transmission modes.

Finally, we characterize the temporal dynamic of cultural change with tx
max, which measures the rate

of change of the most common variant in the population. Broadly, this gives an indication of how fast
the cultural composition of the population can change over time. We use tx

max to explore whether the
temporal dynamic is more informative than the cultural composition of the population at a given point
in time, as described by the other statistics.

2.2.2. Distinguishability analysis

We explore the behaviour and inferential power of each statistic by generating probability distributions
of the statistic, across simulation runs, for different values of the parameters in the model.

For a given parameter constellation, we determine whether two modes can be distinguished based on
the statistic by (i) examining the area of overlap between the corresponding distributions (e.g. vertical
versus horizontal transmission) and (ii) determining the probability that a particular transmission mode
acted in the population to produce on observed value of the statistic. The approach can be applied more
generally to determine the effect of a given parameter. This is done by comparing the distributions for
a given mode under different values of the parameter (e.g. oblique transmission with versus without
conformity, or vertical transmission with small versus large population size), keeping constant the values
of the other parameters. For ease of presentation, we focus here on comparison of two modes for a
given parameter constellation. For simplicity, we describe the procedure for one-dimensional probability
distributions (i.e. the distributions for px

max, kx, dx
s and tx

max), but the same approach applies to the joint
distributions fjoint,x.

We take the area of overlap between the distributions to indicate to what degree the two
corresponding modes can be distinguished based on the statistic without knowledge of an empirical
estimate. At one extreme, no overlap suggests that the modes can be reliably distinguished; at the other,
complete overlap suggests that they cannot be distinguished.

In detail, the area of overlap Oxy between probability distributions fx and fy with one intersection point
only is determined using the Kolmogorov–Smirnov distance Kxy between the associated distribution
functions Fx and Fy (figure 1a). If z� denotes the value where Kxy = supz|Fx(z) − Fy(z)| is realized, then it
holds [28]

Oxy = 1 − Fy(z�) + Fx(z�) = 1 + (Fx(z�) − Fy(z�)) = 1 − Kxy.

Distinguishability is defined using a threshold value Ō: two distributions fx and fy are distinguishable
if it holds Oxy < Ō, and we use a value of Ō = 20%, corresponding to the widely accepted 80%
power cut-off. An alternative approach, based on the Rayleigh criterion, is introduced in the electronic
supplementary material, section S1.

Specifically, based on 30 000 simulation runs, we determine (i) the joint distributions fjoint,x of
frequencies of the five trait variants and (ii) the probability distributions fpx

max
, fkx , fdx

s
, ftx

max
of statistics

px
max, kx, dx

s , tx
max, conditioned on transmission modes x = v, h, o, n, m. For a given statistic, we calculate the

areas of overlap Oxy for pairs of distributions x and y, and we compare their values against the threshold
Ō = 20% to determine whether the corresponding modes are distinguishable based on the statistic.

This procedure rests on an a priori definition of distinguishability, without considering available
empirical data. The results provide general expectations about the similarity or dissimilarity of
population-level outcomes generated by the different transmission modes. Even in the absence of
empirical data, these expectations can inform researchers as to whether the corresponding statistics px

max,
kx, dx

s , tx
max carry a signature of the underlying transmission modes.

If researchers do have access to empirical estimates of a statistic, then the procedure can be extended
to incorporate this information. This is illustrated with an example in figure 1a. Values of the statistic
in regions A and C are almost ‘unique’ to modes x and y, respectively, whereas values in region B
are ‘shared’. The interpretation is that values of the statistic in regions A and C could only have been
produced by one of the two modes, whereas values in region B could have been produced by either
mode. It follows that empirical estimates provide no additional information in cases where the area of
overlap Oxy is close to the extremes 0 and 1 (corresponding to no overlap and complete overlap of the
distributions, respectively).

In detail, given the empirical estimate of a statistic, denoted by z, the aim is to determine the
probability that a given transmission mode acted in the population to produce this value. We define
the set of possible transmission modes Γ = {v, h, o, n, m} and assume that one of these did produce the
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Figure 1. Illustration of (a) the area of overlap Oxy between probability distributions fx and fy , and (b) the probability P(y | z) that
transmission mode y (as opposed to x) acted in the population to generate value z.

observed value of the statistic. Bayes’ theorem then results in

P(y|z) = f (z | y)P(y)
f (z)

with y ∈ Γ , (2.2)

where P(y | z) stands for the probability that mode y is acting in the population given z (see blue
triangles in figure 1b). The probability distribution f (z | y) is the distribution generated by the simulation
framework; it captures the values of the statistic that can be assumed for mode x. The probability P(y)
includes all prior information about the likelihood that mode y acted in the population; in the absence of
prior information we assume that P(y) = 1/|Γ |. The function f (·) describes the probability distribution of
the values of the statistic and it holds f (z) = ∑

γ∈Γ P(γ )f (z | γ ).
For comparison of two transmission modes, the probability P(y | z) can be determined by logistic

regression (see blue line in figure 1b). Multinomial logistic regression can be used for more than two
modes. Probabilities close to 0 or 1 have a clear interpretation: at 0, mode y could not have produced
the observed value of the statistic; at 1, mode y is most likely to have produced the observed value,
compared to the possible alternatives. Intermediate values indicate that multiple transmission modes
could have produced the observed value of the statistic. Alternatively, receiver operating characteristic
curve analysis could be applied (see the electronic supplementary material, section S2, for details).

3. Results
3.1. Population-level patterns
In this section, we explore whether the different transmission modes result in characteristic population-
level outcomes under scenarios with low versus high potential for cultural change, as defined in §2.1.3.
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An example of the analyses underlying the results is presented in the electronic supplementary material,
section S3.1.

3.1.1. Pure modes

We begin by investigating the behaviour of the pure modes—vertical, horizontal, oblique and age-
neutral transmission. To this end, we study the distributions of statistics px

max, kx, dx
s , tx

max, conditioned
on transmission modes x = v, h, o, n, for parameter constellations N = 25, 50, 100; μ = 0.01, 0.05, 0.1; pw =
0.5, 0.75, 1.

Statistics px
max, kx and dx

s describe the cultural composition of the population at a given point in
time (§2.2.1). The different transmission modes result in comparable population-level outcomes for these
statistics under scenarios with low potential for cultural change. At the same time, outcomes for oblique
transmission are strongly affected by the value of pw. Specifically, under scenarios with high potential
for cultural change oblique transmission leads to more homogeneous cultural compositions than vertical,
horizontal and age-neutral transmission.

These differences in behaviour across transmission modes are rooted in the different sets of potential
interaction partners. In age-neutral transmission, an individual can interact with any other individual in
the population. In horizontal transmission, an individual in age group k can only interact with the nk − 1
individuals in its own age group (corresponding to age-neutral transmission within the age group).
In oblique transmission, an individual in age group k can interact with

∑5
j=k+1 nj older individuals,

where nj is the number of individuals in age group j (corresponding to age-neutral transmission within
all age groups older than the individual’s). In other words, compared to age-neutral and horizontal
transmission, oblique transmission is characterized by a disproportional influence of older individuals.
Individuals in age group 5 are potential interaction partners for all individuals in age group 4 and
younger, whereas individuals in age group 2 are potential interaction partners only for individuals in age
group 1. As a result, a variant at high frequency in age group 5 tends to ‘trickle down’ to the other age
groups; over time, it tends to become increasingly common, eventually leading towards homogenization
of the population as a whole.

To illustrate the influence of the age structure on the transmission dynamic, we derive the probability
that a mutant variant (i.e. a variant with frequency 1) has frequency 0, 1, 2, . . . , N after one time step
(electronic supplementary material, section S3.2). For oblique transmission, the spread probability of a
mutant variant is highly influenced by the age of the individual introducing it into the population: the
older the individual, the higher the probability that the variant is still present in the population after one
time step. By contrast, for horizontal transmission the spread probability does not vary greatly with the
age of the individual introducing it into the population. By definition, the same is true for age-neutral
transmission.

How does this translate into population-level outcomes? Figure 2 shows the level of cultural diversity
dx

s for the different modes in a scenario with high potential for cultural change (parameter constellation
N = 100, μ = 0.1, pw = 1), separately in each of the five age groups and in the population as a whole. For
oblique transmission, the level of diversity within age groups is comparable to the level of diversity in
the whole population. This suggests that the age groups are culturally more homogeneous, as expected
based on the trickle-down effect. The same pattern applies to age-neutral transmission; by definition,
this mode is not affected by the age structure of the population. By contrast, for horizontal transmission
the level of diversity within age groups is substantially lower than the level of diversity in the whole
population. This suggests that the different age groups sustain different cultural variants.

A final insight relates to the relative rate of cultural change for the different transmission modes.
Specifically, the modes can be ranked by ordering the distribution functions of tx

max (electronic
supplementary material, section S3.1.1). As expected, vertical transmission leads to the slowest rate
of change, as there are limited opportunities for transmission compared to the other modes (see the
electronic supplementary material, figure S1). Furthermore, oblique transmission is characterized by a
slower rate of change than horizontal and age-neutral transmission, due to the disproportional influence
of older age groups and the consequent homogenization of the population.

3.1.2. Mixed mode

The results for mixed transmission reveal a consistent pattern (electronic supplementary material,
section S3.1.2). At low values of pmix, the occasional oblique transmission event may introduce variants
otherwise absent in a given age group. This leads to an increase in cultural diversity at the population
level compared with pure horizontal transmission. At high values of pmix, the occasional horizontal
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Figure 2. Level of cultural diversity in the five age groups and in the whole population for the pure transmission modes. Shown are the
distribution functions of statistic dxs for the different modes, under parameter constellation N = 100,μ = 0.1, pw = 1.

transmission event effectively dampens the trickle-down effect, weakening the disproportional influence
of older age groups and the consequent homogenization of the population. This leads to an increase in
cultural diversity at the population level compared with pure oblique transmission. In sum, at both
extremes of pmix the mixed mode results in higher levels of cultural diversity in the population than the
‘corresponding’ pure mode.

Similarly, at both extremes of pmix the mixed mode results in a faster rate of cultural change than the
‘corresponding’ pure mode.

3.2. Inference
In the previous section, we have shown that the different transmission modes result in different
patterns at the population level. Here, we investigate whether the differences are large enough to ensure
distinguishability based on the statistics introduced in §2.2.1.

3.2.1. Pure modes

Following the procedure described in §2.2.2, we compare the probability distributions of the statistics
for pairs of transmission modes x and y, with x, y ∈ {v, h, o, n}, and parameter constellations N = 50; μ =
0.01; pw = 0.5 and N = 50; μ = 0.1; pw = 1. Analysis of a larger set of parameters can be found in the
electronic supplementary material, section S3.3.1. Qualitatively, comparison of vertical transmission
to the other modes captures the effect of interactions that occur during the individuals’ lifetime.
Comparison of age-neutral to oblique and horizontal transmission captures the effect of restricting the
set of potential interaction partners to individuals within the same age group and to older individuals,
respectively. Finally, comparison of horizontal to oblique transmission captures the effect of the age group
of the interaction partner.

We start with analysing the area of overlap Oxy based on the joint probability distribution of the
five variants of a trait (figure 3a). Under scenarios with low potential for cultural change (e.g. low μ,
low pw; §2.1.3), the different transmission modes result in comparable joint probability distributions: Oxy

approaches 1 (see the electronic supplementary material, figure S4). Oxy tends to decrease as the potential
for cultural change increases (i.e. as μ and/or pw increase). In particular, oblique transmission tends to
deviate from the other modes. However, the differences are not large enough to ensure distinguishability
based on an arbitrary threshold Ō = 0.2 (see the values of Oxy for fjoint,x in table 3).
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Figure 3. Distinguishability between the pure transmission modes v, h, o, n (table 1) based on (a) the joint probability distribution of
the five variants of a trait in the population, fjoint,x , and (b) the average time a variant stays themost common variant, txmax. Shown are the
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Table 3. Distinguishability between the pure transmission modes based on selected statistics: the joint probability distribution of the
five variants of a trait in the population, fjoint,x , the level of cultural diversity, dxs , and the average time a variant stays the most common
variant, txmax. Shown are the values of the area of overlap Oxy between the probability distributions of the statistic for pairs of modes,
under parameter constellation N = 50,μ = 0.1, pw = 1. Values in italics indicate distinguishability based on threshold Ō= 0.2.

modes fjoint,x fdxs ftxmax
vertical versus horizontal 0.63 0.84 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vertical versus oblique 0.60 0.73 0.39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vertical versus age-neutral 0.61 0.73 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

age-neutral versus horizontal 0.69 0.96 0.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

age-neutral versus oblique 0.39 0.57 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

horizontal versus oblique 0.52 0.58 0.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As noted in §2.2.1, the joint probability distribution of the five variants of a trait captures the most
information about the system at a given point in time. By contrast, statistics px

max, kx rely on partial data,
whereas dx

s provides summary information. Unsurprisingly, then, the distributions of px
max, kx, dx

s carry
a weaker signature of the underlying transmission modes than the joint probability distribution (e.g.
compare the values of Oxy for fjoint,x versus fdx

s
in table 3; the corresponding plots are in the electronic

supplementary material, section S3.3.1).
Figure 3b shows the behaviour of Oxy based on statistic tx

max, the average time a variant stays the
most common variant in the population (§2.2.1). Under scenarios with low potential for cultural change
(e.g. low μ, low pw), the different transmission modes result in comparable distributions of tx

max. Under
scenarios with high potential for cultural change (e.g. high μ, high pw), four pairs (vertical versus
horizontal, vertical versus age-neutral, age-neutral versus oblique, horizontal versus oblique) produce
distributions of tx

max with no overlap (i.e. Oxy = 0; table 3), indicating that they can be distinguished
based on this statistic. In other words, these transmission modes result in temporal dynamics that are
sufficiently different to be distinguishable.

Two pairs of modes result in comparable distributions (vertical versus oblique transmission, age-
neutral versus horizontal transmission), with areas of overlap substantially greater than 0 (figure 3b).
To obtain further insight, we calculate the conditional probabilities P(y | z) given in equation (2.2) for
these pairwise comparisons. Figure 4a shows the probabilities based on tmax. In the case of vertical
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statistic which could have been produced by either transmission mode with a probability greater than 0.2.

versus oblique transmission (figure 4a(i)), smaller values of empirical estimates of tmax point to oblique
transmission (cf. P(v | tmax = z) ≈ 0 for small values of tmax), whereas larger values point to vertical
transmission (cf. P(v | tmax = z) ≈ 1 for large values of tmax). We note that in this context ‘small’ and
‘large’ refer only to the comparison between values generated by vertical and oblique transmission. As
discussed in §3.1, oblique transmission produces larger values of tmax than horizontal and age-neutral
transmission (see the electronic supplementary material, figure S1d). The distinction between age-neutral
and horizontal transmission remains ambiguous, however; almost all values of tmax can be produced by
either mode (figure 4a(ii)). Similar conclusions apply for the level of cultural diversity ds (figure 4b).

In sum, the existence of an empirical estimate greatly improves our ability to distinguish between
different transmission modes in situations where a priori definitions are not sufficient (i.e. in situations
where the area of overlap between the corresponding distributions is larger than 0).

3.2.2. Mixed mode

The results for mixed transmission are in the electronic supplementary material, section S3.3.2. The aim
in this case is to compare distributions of a statistic for (i) the mixed mode at a given level of pmix to the
pure modes and (ii) the mixed mode at a given level of pmix to the mixed mode at other levels of pmix.

Consistent with results for the pure modes, the temporal dynamic of cultural change carries more
information about the underlying process than the cultural composition of the population at a specific
point in time, as captured, respectively, by statistics tx

max and dx
s . Overall, for both statistics the overlap

between distributions tends to decrease as the potential for cultural change increases. However, only a
limited number of pairs of modes result in distributions that can be distinguished based on the arbitrary
threshold Ō = 0.2, and only for tx

max. For instance, mixed transmission with pmix = 0.5 can only be reliably
distinguished from vertical transmission. Further, as expected at both extremes of pmix the mixed mode
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x
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b= 0.01; 0.02; 0.03, under parameter constellations N = 50;μ = 0.1; pw = 1 (a(i),b(i)) and N = 100;μ = 0.1; pw = 1 (a(ii),b(ii)).
The corresponding grey scale ranges from white for Oxy = 0 to black for Oxy = 1.

cannot be distinguished from the ‘corresponding’ pure mode (i.e. horizontal transmission for low values
of pmix, oblique transmission for high values of pmix).

3.2.3. Conformity bias

Conformist transmission is known to reduce cultural diversity: the cultural composition of a population
tends to be more homogeneous with conformity bias than without it (e.g. [8]). But how strong does the
bias have to be to produce characteristic population-level outcomes? In this section, we explore whether
the presence of conformity bias can be established based on the level of cultural diversity in a population
or the temporal dynamic of cultural change.

Without conformity bias, interactions occur at random between individuals in the relevant age
group(s). By contrast, with conformity bias the probability of an individual interacting with a partner
carrying a given variant increases with the frequency of the variant in the population (see equation (2.1)).

Following the procedure described in §2.2.2, we compare the probability distributions of statistics dx
s

and tx
max for transmission modes x, y ∈ {v, h, o, n} and parameter constellations N = 50, 100; μ = 0.1; pw =

1. Analysis of a larger set of parameters can be found in the electronic supplementary material, section
S3.3.3. The aim in this case is to compare the distributions of each statistic for a given mode without
conformity bias to its conformist counterparts with varying levels of b (i.e. b = 0 versus b = 0.01, 0.02, 0.03;
recall that parameter b captures the strength of the bias). Note that we focus on scenarios with interaction
probability pw = 1.

Figure 5a shows the areas of overlap Oxy for statistic dx
s , the level of cultural diversity in the

population. By definition, vertical transmission is not affected by conformity bias (not shown). For
all other modes, as expected there is a trend towards more homogeneous cultural compositions with
increasing conformity bias. Thus, as b increases, diversity decreases, the distributions of dx

s with and
without bias become increasingly different, and the values of Oxy decrease as a result. However, the
differences are typically not large enough to ensure distinguishability based on an arbitrary threshold
Ō = 0.2. The only exception is age-neutral transmission for a limited subset of parameter values involving
a large population size, low to intermediate mutation rates and moderate to strong conformity bias (see
the electronic supplementary material, figure S6). As expected, analysis of P(y|z) given in equation (2.2)
reveals that low values of ds are consistent with a hypothesis of conformist transmission.

Figure 5b shows the behaviour of Oxy for statistic tx
max, the average time a variant stays the most

common variant in the population. We expect this to increase with conformity bias, which by definition
sustains the most common variant in the population. Our results show that the ability to reliably detect
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the bias increases with population size. At the same time, it is contingent on the number of potential
interaction partners. For example, for age-neutral transmission, moderate conformity can be detected
for almost all parameter settings (see also the electronic supplementary material, figure S6). By contrast,
restricting the set of potential partners to peers (horizontal transmission) or older individuals (oblique
transmission) reduces the range of parameter values for which the bias can be detected. In the case of
oblique transmission, in fact, only strong bias can be reliably detected, and only for intermediate to high
mutation rates (specifically, N = 100; μ = 0.1; b = 0.03). Analysis of P(y|z) reveals that large values of tmax

point to the existence of a conformist bias in the population.

3.2.4. Continuous traits

In the electronic supplementary material we apply the framework described above to continuous cultural
traits, i.e. traits that can take any value in a given interval. Overall, we find that the population average
of the trait does not carry a detectable signature of the underlying transmission modes. Binning the
interval of trait values into discrete variants results in greater inferential power, but the binning must
be sufficiently fine-grained, with the traits discretized in more than three variants (see the electronic
supplementary material, section S3.3.4 for a detailed analysis).

4. Discussion
We developed a simulation model to explore the interface between individual-level processes and
population-level patterns in human cultural evolution. Our first aim was to derive broad expectations
about different pathways for the transmission of information between individuals. Our second aim
was to establish theoretical limits to inference based on the population-level patterns produced by
these pathways. Are the patterns different enough that they can be reliably distinguished based on
population-level statistics, providing insight into the underlying individual-level processes?

The model tracks the distribution of variants of cultural traits across individuals in a population
over time, conditioned on different modes for the transmission of information between individuals,
for a range of parameters capturing demographic and cultural factors. Building on previous work
[7], we investigated four ‘pure’ modes: vertical (parent to offspring), horizontal (peer to peer, by age
group), oblique (older to younger, excluding parent to offspring), and age-neutral (any individual
in the population). A fifth ‘mixed’ mode effectively combined horizontal and oblique transmission.
We also investigated the effect of conformity bias, a preference for the most common variant in the
population [8].

We used four statistics to summarize the cultural composition of the population at a specific point in
time: the frequency distribution of the different variants of the cultural trait, the frequency of the most
common variant, the total number of variants present, and the level of cultural diversity. An additional
statistic measured the rate of change of the most common variant of a trait. This gave an indication of
how fast the cultural composition of the population can change, providing insight into the temporal
dynamic of the process.

4.1. Trickle-down effect and relative rates of change
The five transmission modes differ in the set of potential interaction partners (§2.1.1). Previous work
suggests that they should therefore produce substantially different evolutionary dynamics, modulated
by demographic and cultural factors (e.g. [7]). For example, Fogarty et al. [18] explored the effects of
vertical, oblique and horizontal transmission on the age-structure of a population, and the extent to
which cultural traits affecting demographic change can spread. They showed that a trait that reduces
fertility but increases survival can spread to fixation and lead to substantial demographic change, in the
form of an increase in population size, under certain modes of cultural transmission. In particular, if
different modes of transmission matter for different age groups, then low fertility values can spread in a
population and change the population structure via their effects on reproduction.

Our results, based on analysis of neutral traits and constant population sizes, confirm that the
five transmission modes lead to differences in evolutionary dynamics. These differences are most
pronounced under scenarios with high potential for cultural change (e.g. high mutation rates, high
interaction probabilities). In particular, we have shown that oblique transmission is strongly affected
by the value of the interaction probability: when this is high, oblique transmission results in more
homogeneous cultural compositions compared with the other pure modes. Broadly, a homogeneous
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cultural composition is reflected in an uneven frequency distribution of the cultural variants (i.e. a low
number of variants present due to the high frequency of the most common variant), resulting in low
cultural diversity (§3.1).

Furthermore, we have shown that this effect is rooted in the interplay between the different sets of
potential interaction partners and the age structure of the population. In particular, oblique transmission
is characterized by a disproportional influence of older individuals, whereby a variant at high frequency
in one age group trickles down to all younger age groups; over time, this leads to a more homogeneous
population. For example, an individual in the oldest age group is a potential interaction partner for all
younger individuals in the population, whereas a ‘middle-aged’ individual is a potential partner for
only the younger half of the population. This effect leaves a signature at the population level in terms
of (i) lower levels of cultural diversity and (ii) slower rates of cultural change, for oblique transmission
compared to horizontal and age-neutral transmission. Horizontal and age-neutral transmission show
comparable rates of change.

Vertical transmission leads to the slowest rates of change. In our framework, this mode involves a
‘one-shot’ interaction event between parent and offspring, with opportunities for change limited to the
process of mutation. The relative ‘conservativeness’ of vertical transmission is a well-established result
in the theory of gene–culture coevolution, starting with seminal work by Cavalli-Sforza & Feldman [7].
We return to this issue below, after outlining our results regarding inference.

4.2. Inferring process from pattern

4.2.1. Summary of results

Questions relating to the indentifiability of transmission modes or other underlying processes are of
course not restricted to the field of cultural evolution. For example, a large body of work in population
genetics focuses on testing for the presence or the absence of selective forces (e.g. [29–31]). The general
idea, similar to the one used here, is to derive expectations for different quantities of interest under
a specific evolutionary scenario, and to subsequently compare empirical estimates of the quantities
against those expectations. Recently, inferential frameworks have been applied directly to observed
data. These frameworks often combine generative modelling of the system under consideration and
Bayesian inference techniques. For example, in this way researchers have gained important insights into
the transmission dynamics of infectious diseases and other epidemiological processes (e.g. [32–34]), and
into human demographic history (e.g. [35–37]). Rather than focusing on a particular cultural dataset (see
[11,12,38–40] for examples of such analyses) our aim here was to develop a theoretical understanding of
which transmission modes can be distinguished on the basis of population-level data. This relates to the
problem of equifinality, i.e. which modes can produce similar population-level patterns.

Our analysis provides two kinds of results: first, general expectations about the distinguishability of
population-level outcomes produced by the different transmission modes in the absence of empirical
data; second, given an empirical estimate of a statistic, the probability that a given transmission mode
acted in the population to produce this estimate.

Beginning with the pure modes, our results show that under scenarios with low potential for
cultural change (e.g. low mutation rates, low interaction probabilities) the modes produce outcomes
that cannot be reliably distinguished based on any statistic. Yet outcomes tend to diverge as the
potential for cultural change increases. In particular, under scenarios with high potential for cultural
change they can be reliably distinguished, in most cases, based on the temporal dynamic. The two
exceptions are vertical versus oblique transmission, and age-neutral versus horizontal transmission.
In these two cases, additional insight can be gained from empirical estimates of the average time
a variant stays the most common variant. For vertical versus oblique transmission, small values are
indicative of oblique transmission, whereas large values clearly point to oblique transmission. For age-
neutral versus horizontal transmission, even an empirical estimate will likely not be able to resolve the
distinguishability issue.

These results suggest that even when outcomes are similar in terms of cultural compositions, they
can differ substantially in temporal dynamics—in other words, similar distributions of cultural variants
at a specific point in time can be reached through substantially different processes. In sum, for the pure
modes the temporal dynamic of cultural change over time retains a stronger signature of the underlying
processes than a ‘snapshot’ of the relative frequencies of the variants at a given point in time, and the
signature is stronger the greater the potential for cultural change.
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This general insight also applies to mixed transmission. However, in this case even under scenarios

with high potential for cultural change the signature retained by the temporal dynamic tends to be too
weak for outcomes to be reliably distinguished.

Finally, we have shown that the signature of conformity bias is, in general, stronger for the temporal
dynamic than for the level of cultural diversity. As expected, the level of cultural diversity decreases
with increasing conformity bias, while the temporal dynamic slows down. At the same time, with
small population sizes the signature of conformist transmission tends to be obscured by random drift. It
becomes stronger as population size increases, especially for age-neutral transmission, as the resulting
increase in the pool of potential interaction partners is larger in this case than for horizontal or oblique
transmission. For horizontal and oblique transmission, only strong conformity bias can be reliably
detected, in most cases, and only based on the temporal dynamic with large population sizes.

Empirical estimates can provide further insight also in this case. Specifically, low values of cultural
diversity and large average times a variant stays the most common point strongly to the existence of a
conformist bias, when compared with the non-conformist situation.

4.2.2. Implications for empirical studies

We conclude by reviewing the implications of our findings for empirical studies of cultural evolution.
Broadly, our work complements alternative theoretical approaches used to infer process from pattern
in human culture, including efforts based on adoption curves (e.g. [16,41–43]), rank–abundance
distributions (e.g. [19,44,45]), levels of diversity (e.g. [1,46,47]) and turnover rates (e.g. [48,49]), as well as
model selection frameworks (e.g. [50]).

In terms of inference, our study suggests that if the frequency distribution of the different variants of
a trait is available, then inference procedures should rely on these data where possible. Unsurprisingly,
using partial data (e.g. the frequency of the most common variant of a trait) or summary statistics (i.e. the
level of cultural diversity) results in loss of useful information. For example, a diversity measure such
as the Shannon index is often used to summarize the cultural composition of a population (e.g. [1,26,
27]). We have shown that the dimension reduction involved in its calculation obscures population-level
differences in the patterns produced by the transmission modes.

As discussed above, our results suggest that the temporal dynamic of cultural change over time is
more instructive about the underlying processes than the cultural composition of the population at a
given point in time. The approach we used to characterize the temporal dynamic is more parsimonious
than other approaches in the literature. For example, Bentley et al. [48] use the turnover rate, defined
as the number of new variants of a trait that enter the list of variants at the highest frequency in each
time step (analogous to the ‘new entries’ in a top-10 or top-100 chart). However, this measure does not
readily extend to traits that include only a small number of variants (e.g. five variants, as in our case).
Additionally, it requires information about the frequencies of all variants in the population. By contrast,
our approach only requires information about the frequency of the most common variant.

At the same time, it should be noted that the results presented here rest on the assumption that
we have complete information about the most common variant of the trait at every point in a given
time interval—in other words, that estimation of the temporal dynamic of cultural change is exact. Such
detailed time-series data are difficult to obtain, however, especially for existing datasets and/or those that
rely on historical information. In a related study using the mathematical framework developed here, we
investigated how sparse the time-series data can be for the transmission modes to still be distinguishable
[51]. Results show that if only incomplete information is available, i.e. the most common variant is
known for a sample of time points, then the level of distinguishability depends on the properties of the
sample. In particular, the distance between the time points affects how much insight can be obtained from
population-level data. In general, if information about the most common variant in the population is only
available for a sample of time points, one should not expect levels of distinguishability comparable to
those we report here.

In practice, the use of the most appropriate statistic or inference framework is dictated by the
available data. Given our focus on cultural evolution, we have analysed statistics that can potentially be
derived even from sparse data—a common feature of datasets in anthropology and related disciplines.
Where researchers have access to data with high temporal resolution, such as time series describing
the frequency change of different cultural variants, then adoption curve analyses, and especially model
selection frameworks, can be instructive.

A final set of insights relates to the analysis of continuous cultural traits. Our results show that the
mean value of a trait across the population does not carry a detectable signature of the underlying
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transmission modes; therefore, it is not a useful statistic for characterizing the cultural composition of a
population. Binning the interval of trait values into discrete variants results in greater inferential power,
but the binning must be sufficiently fine-grained. For example, discretization into two or three variants
(corresponding to, for example, present versus absent or small versus medium versus large) is generally
not enough to ensure distinguishability based on the temporal dynamic of cultural change, whereas
discretization into five or ten variants produces distinguishability results comparable to the discrete case.

We conclude with a general observation, bearing on the interface between the observed population-
level patterns and the underlying individual-level processes. As discussed above, our results show
that vertical transmission leads to the slowest rate of change of all the modes, consistent with
the notion prevalent in the literature of its relative ‘conservativeness’ [7]. This notion continues to
provide the foundation to a large body of empirical work, including field-based investigations (e.g.
[10–12]) and cross-cultural studies (e.g. [12–15]). At the same time, our inference results show that
vertical transmission can produce temporal dynamics similar to other modes, and in particular to
oblique transmission. Empirical estimates of statistics describing the temporal dynamic can provide
further crucial information. Still, our findings invite caution in linking population-level patterns to
individual-level processes based on data documenting variation in cultural traits within and between
populations.

This example illustrates well the theoretical limits to inferring individual-level processes from
population-level patterns in human cultural evolution. In particular, we should not expect a one-to-one
mapping between population-level statistics and the underlying transmission modes: different scenarios
can lead to comparable patterns at the level of groups. Consistency between any one specific scenario
and empirical data should be interpreted in this context. However, acknowledging the problem of
equifinality does not imply that we cannot extract any information about cultural evolution from these
data. Mathematical frameworks similar to the one used here can provide general expectations, in the
form of probability distributions, against which to compare empirical estimates. Furthermore, statistical
inference procedures that compare simulated data to empirical data can help delimit the amount of
information that can be extracted on a case-by-case basis (e.g. [38–40]). Conceptually, this shifts the focus
from identifying the one scenario that likely produced the observed data to excluding those that likely
did not.

Data accessibility. The code is deposited at http://datadryad.org/resource/doi:10.5061/dryad.14q31 [52].
Authors’ contributions. L.F. and A.K. designed the study and wrote the paper; B.W. and A.K. developed the code and
analysed the model; L.F., B.W. and A.K. read and approved the final version of the paper.
Competing interests. We declare we have no competing interests.
Funding. This work was partially supported by the National Science Foundation Early Concept Grant for Exploratory
Research (EAGER 1249146, ‘Linking Pattern and Process in Cultural Evolution’).
Acknowledgements. We thank Tanmoy Bhattacharya and Mark Galassi for insightful discussions and Adam Powell for
helpful comments on an earlier version of the manuscript. Further, we thank four anonymous reviewers for their
comments and criticisms, which helped us to improve the manuscript.

References

1. Shennan SJ, Wilkinson JR. 2001 Ceramic style
change and neutral evolution: a case study from
Neolithic Europe. Am. Antiq. 66, 577–593.
(doi:10.2307/2694174)

2. Hruschka DJ, Branford S, Smith ED, Wilkins J, Meade
A, Pagel M, Bhattacharya T. 2015 Detecting regular
sound changes in linguistics as events of concerted
evolution. Curr. Biol. 25, 1–9. (doi:10.1016/j.cub.
2014.10.064)

3. Fortunato L. 2015 Evolution of marriage systems. In
International encyclopedia of the social & behavioral
sciences, vol. 14 (ed. JD Wright), 2nd edn,
pp. 611–619. Oxford, UK: Elsevier.
(doi:10.1016/B978-0-08-097086-8.81059-4)

4. Laland KN, Brown GR. 2011 Sense and nonsense:
evolutionary perspectives on human behaviour, 2nd
edn. Oxford, UK: Oxford University Press.

5. Mesoudi A. 2015 Cultural evolution: a review
of theory, findings and controversies. Evol.

Biol. 43, 481–497. (doi:10.1007/s11692-015-
9320-0)

6. Richerson PJ, Boyd R. 2005 Not by genes alone: how
culture transformed human evolution. Chicago, IL:
The University of Chicago Press.

7. Cavalli-Sforza LL, Feldman MW. 1981 Cultural
transmission and evolution: a quantitative approach.
Princeton, NJ: Princeton University Press.

8. Boyd R, Richerson PJ. 1985 Culture and the
evolutionary process. Chicago, IL: The University of
Chicago Press.

9. Laland KN, Galef BG. 2009 The question of animal
culture. Cambridge, MA: Harvard University Press.

10. Hewlett BS, Cavalli-Sforza LL. 1986 Cultural trans-
mission among Aka pygmies. Am. Anthropol. 88,
922–934. (doi:10.1525/aa.1986.88.4.02a00100)

11. Hewlett BS, Fouts HN, Boyette AH, Hewlett BL.
2011 Social learning among Congo Basin
hunter–gatherers. Phil. Trans. R. Soc. B

366, 1168–1178. (doi:10.1098/rstb.2010.
0373)

12. Tehrani JJ, Collard M. 2009 On the relationship
between interindividual cultural transmission and
population-level cultural diversity: a case study of
weaving in Iranian tribal populations. Evol. Hum.
Behav. 30, 286–300. (doi:10.1016/j.evolhumbe
hav.2009.03.002)

13. Guglielmino CR, Viganotti C, Hewlett B,
Cavalli-Sforza LL. 1995 Cultural variation in Africa:
role of mechanisms of transmission and adaptation.
Proc. Natl Acad. Sci. USA 92, 7585–7589.
(doi:10.1073/pnas.92.16.7585)

14. Hewlett BS, De Silvestri A, Guglielmino CR. 2002
Semes and genes in Africa. Curr. Anthropol. 43,
313–321. (doi:10.1086/339379)

15. Moylan JW, Borgerhoff Mulder M, Graham CM,
Nunn CL, Håkansson NT. 2006 Cultural traits and
linguistic trees: phylogenetic signal in East Africa. In

 on September 15, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://datadryad.org/resource/doi:10.5061/dryad.14q31
http://dx.doi.org/doi:10.2307/2694174
http://dx.doi.org/doi:10.1016/j.cub.2014.10.064
http://dx.doi.org/doi:10.1016/j.cub.2014.10.064
http://dx.doi.org/doi:10.1016/B978-0-08-097086-8.81059-4
http://dx.doi.org/doi:10.1007/s11692-015-9320-0
http://dx.doi.org/doi:10.1007/s11692-015-9320-0
http://dx.doi.org/doi:10.1525/aa.1986.88.4.02a00100
http://dx.doi.org/doi:10.1098/rstb.2010.0373
http://dx.doi.org/doi:10.1098/rstb.2010.0373
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2009.03.002
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2009.03.002
http://dx.doi.org/doi:10.1073/pnas.92.16.7585
http://dx.doi.org/doi:10.1086/339379
http://rsos.royalsocietypublishing.org/


17

rsos.royalsocietypublishing.org
R.Soc.opensci.4:170949

................................................
Mapping our ancestors: phylogenetic approaches in
anthropology and prehistory (eds CP Lipo, MJ
O’Brien, M Collard, SJ Shennan), ch. 3,
pp. 33–52. New Brunswick, NJ: Aldine
Transaction.

16. Henrich J. 2001 Cultural transmission and the
diffusion of innovations: adoption dynamics
indicate that biased cultural transmission is the
predominate force in behavioral change. Am.
Anthropol. 103, 992–1013. (doi:10.1525/aa.2001.
103.4.992)

17. Powell A, Shennan S, Thomas MG. 2009 Late
Pleistocene demography and the appearance of
modern human behavior. Science 324, 1298–1301.
(doi:10.1126/science.1170165)

18. Fogarty L, Creanza N, Feldman M. 2013 The role of
cultural transmission in human demographic
change: an age-structured model. Theor.
Popul. Biol. 88, 68–77. (doi:10.1016/j.tpb.2013.
06.006)

19. Bentley RA, Hahn MW, Shennan SJ. 2004 Random
drift and culture change. Proc. R. Soc. Lond. B 271,
1443–1450. (doi:10.1098/rspb.2004.2746)

20. Carotenuto L, Feldman MW, Cavalli-Sforza LL. 1989
Age structure in models of cultural transmission.
Morrison Institute Working Paper, no. 2.

21. Fogarty L, Feldman MW. 2011 The cultural and
demographic evolution of son preference and
marriage type in contemporary China. Biol. Theory
6, 272–282. (doi:10.1007/s13752-012-0033-7)

22. Li N, Feldman MW, Li S. 2000 Cultural transmission
in a demographic study of sex ratio at birth in
China’s future. Theor. Popul. Biol. 58, 161–172.
(doi:10.1006/tpbi.2000.1478)

23. Laland KN. 2004 Social learning strategies. Anim.
Learn. Behav. 32, 4–14. (doi:10.3758/BF0319
6002)

24. Eriksson K, Enquist M, Ghirlanda S. 2007 Critical
points in current theory of conformist social
learning. J. Evol. Psychol. 5, 67–87. (doi:10.1556/
JEP.2007.1009)

25. Kandler A, Shennan SJ. 2013 A non-equilibrium
neutral model for analysing cultural change. J.
Theor. Biol. 330, 18–25. (doi:10.1016/j.jtbi.2013.
03.006)

26. Leonard RD, Jones GT. 1989 Quantifying diversity in
archaeology. Cambridge, UK: Cambridge University
Press.

27. Cruz-Uribe K. 1988 The use and meaning of species
diversity and richness in archaeological faunas. J.
Archaeol. Sci. 15, 179–196. (doi:10.1016/0305-4403
(88)90006-4)

28. Kura K, BroomM, Kandler A. 2015 Modelling
dominance hierarchies under winner and loser
effects. Bull. Math. Biol. 77, 927–952. (doi:10.1007/
s11538-015-0070-z)

29. Ewens WJ. 1972 The sampling theory of selectively
neutral alleles. Theor. Popul. Biol. 3, 87–112.
(doi:10.1016/0040-5809(72)90035-4)

30. Lande R. 1976 Natural selection and random genetic
drift in phenotypic evolution. Evolution 30, 314–334.
(doi:10.1111/j.1558-5646.1976.tb00911.x)

31. Watterson G. 1978 The homozygosity test of
neutrality. Genetics 88, 405–417.

32. Lintusaari J, Gutmann MU, Kaski S, Corander J. 2016
On the identifiability of transmission dynamic
models for infectious diseases. Genetics 202,
911–918. (doi:10.1534/genetics.115.180034)

33. Tanaka MM, Francis AR, Luciani F, Sisson S. 2006
Using approximate Bayesian computation to
estimate tuberculosis transmission parameters
from genotype data. Genetics 173, 1511–1520.
(doi:10.1534/genetics.106.055574)

34. Stadler T. 2011 Inferring epidemiological parameters
on the basis of allele frequencies. Genetics 188,
663–672. (doi:10.1534/genetics.111.126466)

35. Pritchard JK, Stephens M, Donnelly P. 2000
Inference of population structure using multilocus
genotype data. Genetics 155, 945–959.

36. Posth C et al. 2016 Pleistocene mitochondrial
genomes suggest a single major dispersal of
non-Africans and a late glacial population turnover
in Europe. Curr. Biol. 26, 827–833. (doi:10.1016/j.cub.
2016.01.037)

37. Hofmanová Z et al. 2016 Early farmers from across
Europe directly descended from Neolithic Aegeans.
Proc. Natl Acad. Sci. USA 113, 6886–6891.
(doi:10.1073/pnas.1523951113)

38. Crema E, Edinborough K, Kerig T, Shennan S. 2014
An approximate Bayesian computation approach for
inferring patterns of cultural evolutionary change.
J. Archaeol. Sci. 50, 160–170. (doi:10.1016/j.jas.2014.
07.014)

39. Kandler A, Shennan SJ. 2015 A generative inference
framework for analysing patterns of cultural change
in sparse population data with evidence for fashion
trends in LBK culture. J. R. Soc. Interface 12,
20150905. (doi:10.1098/rsif.2015.0905)

40. Kandler A, Powell A. 2015 Inferring learning
strategies from cultural frequency data. In Learning
strategies and cultural evolution during the
Palaeolithic (eds A Mesoudi, K Aoki), pp. 85–101.
Tokyo, Japan: Springer.
(doi:10.1007/978-4-431-55363-2_7)

41. Reader SM. 2004 Distinguishing social and asocial
learning using diffusion dynamics. Anim. Learn.
Behav. 32, 90–104. (doi:10.3758/BF03196010)

42. Franz M, Nunn CL. 2009 Network-based diffusion
analysis: a newmethod for detecting social
learning. Proc. R. Soc. B 276, 1829–1836.
(doi:10.1098/rspb.2008.1824)

43. Hoppitt W, Kandler A, Kendal JR, Laland KN. 2010
The effect of task structure on diffusion dynamics:
implications for diffusion curve and network-based
analyses. Learn. Behav. 38, 243–251. (doi:10.3758/
LB.38.3.243)

44. Hahn MW, Bentley RA. 2003 Drift as a mechanism
for cultural change: an example from baby names.
Proc. R. Soc. Lond. B 270(Suppl. 1), S120–S123.
(doi:10.1098/rsbl.2003.0045)

45. Mesoudi A, Lycett SJ. 2009 Random copying,
frequency-dependent copying and culture change.
Evol. Hum. Behav. 30, 41–48. (doi:10.1016/j.evol
humbehav.2008.07.005)

46. Neiman FD. 1995 Stylistic variation in evolutionary
perspective: inferences from decorative diversity
and interassemblage distance in Illinois Woodland
ceramic assemblages. Am. Antiq. 60, 7–36.
(doi:10.2307/282074)

47. Premo LS. 2014 Cultural transmission and diversity
in time-averaged assemblages. Curr. Anthropol. 55,
105–114. (doi:10.1086/674873)

48. Bentley RA, Lipo CP, Herzog HA, Hahn MW. 2007
Regular rates of popular culture change reflect
random copying. Evol. Hum. Behav. 28,
151–158. (doi:10.1016/j.evolhumbehav.2006.
10.002)

49. Acerbi A, Bentley RA. 2014 Biases in cultural
transmission shape the turnover of popular traits.
Evol. Hum. Behav. 35, 228–236. (doi:10.1016/j.evol
humbehav.2014.02.003)

50. McElreath R, Bell AV, Efferson C, Lubell M, Richerson
PJ, Waring T. 2008 Beyond existence and aiming
outside the laboratory: estimating
frequency-dependent and pay-off-biased social
learning strategies. Phil. Trans. R. Soc. B 363,
3515–3528. (doi:10.1098/rstb.2008.0131)

51. Wilder B, Kandler A. 2016 Inference of cultural
transmission modes based on incomplete
information. Hum. Biol. 87, 193–204.
(doi:10.13110/humanbiology.87.3.0193)

52. Kandler A, Wilder B, Fortunato L. 2017 Data from:
Inferring individual-level processes from
population-level patterns in cultural evolution.
Dryad Digital Repository. (doi:10.5061/dryad.
14q31)

 on September 15, 2017http://rsos.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1525/aa.2001.103.4.992
http://dx.doi.org/doi:10.1525/aa.2001.103.4.992
http://dx.doi.org/doi:10.1126/science.1170165
http://dx.doi.org/doi:10.1016/j.tpb.2013.06.006
http://dx.doi.org/doi:10.1016/j.tpb.2013.06.006
http://dx.doi.org/doi:10.1098/rspb.2004.2746
http://dx.doi.org/doi:10.1007/s13752-012-0033-7
http://dx.doi.org/doi:10.1006/tpbi.2000.1478
http://dx.doi.org/doi:10.3758/BF03196002
http://dx.doi.org/doi:10.3758/BF03196002
http://dx.doi.org/doi:10.1556/JEP.2007.1009
http://dx.doi.org/doi:10.1556/JEP.2007.1009
http://dx.doi.org/doi:10.1016/j.jtbi.2013.03.006
http://dx.doi.org/doi:10.1016/j.jtbi.2013.03.006
http://dx.doi.org/doi:10.1016/0305-4403(88)90006-4
http://dx.doi.org/doi:10.1016/0305-4403(88)90006-4
http://dx.doi.org/doi:10.1007/s11538-015-0070-z
http://dx.doi.org/doi:10.1007/s11538-015-0070-z
http://dx.doi.org/doi:10.1016/0040-5809(72)90035-4
http://dx.doi.org/doi:10.1111/j.1558-5646.1976.tb00911.x
http://dx.doi.org/doi:10.1534/genetics.115.180034
http://dx.doi.org/doi:10.1534/genetics.106.055574
http://dx.doi.org/doi:10.1534/genetics.111.126466
http://dx.doi.org/doi:10.1016/j.cub.2016.01.037
http://dx.doi.org/doi:10.1016/j.cub.2016.01.037
http://dx.doi.org/doi:10.1073/pnas.1523951113
http://dx.doi.org/doi:10.1016/j.jas.2014.07.014
http://dx.doi.org/doi:10.1016/j.jas.2014.07.014
http://dx.doi.org/doi:10.1098/rsif.2015.0905
http://dx.doi.org/doi:10.1007/978-4-431-55363-2_7
http://dx.doi.org/doi:10.3758/BF03196010
http://dx.doi.org/doi:10.1098/rspb.2008.1824
http://dx.doi.org/doi:10.3758/LB.38.3.243
http://dx.doi.org/doi:10.3758/LB.38.3.243
http://dx.doi.org/doi:10.1098/rsbl.2003.0045
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2008.07.005
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2008.07.005
http://dx.doi.org/doi:10.2307/282074
http://dx.doi.org/doi:10.1086/674873
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2006.10.002
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2006.10.002
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2014.02.003
http://dx.doi.org/doi:10.1016/j.evolhumbehav.2014.02.003
http://dx.doi.org/doi:10.1098/rstb.2008.0131
http://dx.doi.org/doi:10.13110/humanbiology.87.3.0193
http://dx.doi.org/doi:10.5061/dryad.14q31
http://dx.doi.org/doi:10.5061/dryad.14q31
http://rsos.royalsocietypublishing.org/

	Introduction
	Methods
	Mathematical framework
	Statistical analysis

	Results
	Population-level patterns
	Inference

	Discussion
	Trickle-down effect and relative rates of change
	Inferring process from pattern

	References

