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ABSTRACT
BACKGROUND: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions may relate to distinct
sets of genes that exert maximum influence during different periods of development. This includes analyses of social
communication difficulties that share, depending on their developmental stage, stronger genetic links with either
autism spectrum disorder or schizophrenia. We developed a multivariate analysis framework in unrelated
individuals to model directly the developmental profile of genetic influences contributing to complex traits, such as
social communication difficulties, during an approximately 10-year period spanning childhood and adolescence.
METHODS: Longitudinally assessed quantitative social communication problems (N # 5551) were studied in par-
ticipants from a United Kingdom birth cohort (Avon Longitudinal Study of Parents and Children; age range, 8–17
years). Using standardized measures, genetic architectures were investigated with novel multivariate genetic-
relationship-matrix structural equation models incorporating whole-genome genotyping information. Analogous to
twin research, genetic-relationship-matrix structural equation models included Cholesky decomposition, common
pathway, and independent pathway models.
RESULTS: A two-factor Cholesky decomposition model described the data best. One genetic factor was common to
Social Communication Disorder Checklist measures across development; the other accounted for independent
variation at 11 years and later, consistent with distinct developmental profiles in trait-disorder overlap. Importantly,
genetic factors operating at 8 years explained only approximately 50% of genetic variation at 17 years.
CONCLUSIONS: Using latent factor models, we identified developmental changes in the genetic architecture of
social communication difficulties that enhance the understanding of autism spectrum disorder– and schizophrenia-
related dimensions. More generally, genetic-relationship-matrix structural equation models present a framework for
modeling shared genetic etiologies between phenotypes and can provide prior information with respect to
patterns and continuity of trait-disorder overlap.

Keywords: ALSPAC, Genetic relationship matrix, Genetic-relationship matrix structural equation modeling, Genetic
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The extent to which genetic etiologies are shared between
traits and disorders naturally depends on the genetic compo-
sition of the two phenotypes. While psychiatric disorders are
diagnostic entities defined by clinical criteria, including the age
of onset, human behavior changes continously during devel-
opment. This includes developmental alterations in complex
genetic trait architectures as reported for cognitive (1) as well
as social communication–related characteristics (2).

Difficulties in socially engaging and communicating with
others, as observed in the general population, are heritable
(twin-h2 = 0.74) (3), and a considerable proportion of the un-
derlying genetic variation can be tagged by single nucleotide
polymorphism (SNP) heritability (SNP-h2 # 0.45) (2). For both
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social communication and social interaction problems, multi-
variate twin (4,5) and bivariate genetic-relationship-matrix
residual maximum likelihood (GREML) studies (6) reported
evidence for a degree of genetic stability but also change
during childhood and adolescence (2,7,8) that may affect
genetic similarities with other traits.

Studying the genetic overlap between psychatric illness and
social communication difficulties across multiple develop-
mental stages, different developmental profiles for childhood-
onset versus adult-onset psychiatric disorders have been
identified (9). The genetic overlap with clinical autism spectrum
disorder, a complex, highly heritable early-onset neuro-
developmental condition (10), was strongest for social
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communication difficulties during childhood but declined with
progressing age of the trait. By contrast, the genetic correla-
tion with clinical schizophrenia, an adult-onset psychiatric
illness with a typical first-time diagnosis between 16 and 30
years of age (10), was highest for social communication
problems during later adolescence (9). Thus, the risk of
developing these contrasting psychiatric conditions might be
related to distinct sets of genes, both of which affect social
communication skills but exert their maximum influence during
different periods of development.

Discontinuity in trait-disorder overlap may, however, also
result because of attrition-related artifacts, such as decreasing
power or inherent sample bias (11). As knowledge about
developmental changes in complex genetic trait architectures
is still scarce, development-related variations in trait-disorder
overlap are often dismissed. The aim of this study is to pro-
vide insight into the developmental profile of genetic factors
influencing complex traits, such as social communication dif-
ficulties during childhood and adolescence, using a longitudi-
nal analysis framework. Building on our previous work (2,9),
we investigate here two extreme hypotheses, as follows:
1) whether the genetic variance/covariance structure of social
communication difficulties during childhood and adolescence
is consistent with multiple independent genetic influences,
suggesting developmental changes in the genes responsible
for interindividual variation over time, or 2) whether, alterna-
tively, there is evidence for a shared single genetic factor,
irrespective of age.

To study the developmental profile of genetic factors in
unrelated individuals, we implemented multivariate genetic-
relationship-matrix structural equation models (GSEMs).
These models use genome-wide genetic relationship matrices
(GRMs) (12), calculated from hundreds of thousands of SNPs
across the genome, to estimate the total amount of phenotypic
variance and covariance tagged by common genetic variants,
similar to GREML (12,13). GREML and related approaches
(12,14–16) have reshaped the research of complex genetic trait
architectures beyond twin designs by exploiting the availability
of genome-wide genetic data in cohorts of unrelated in-
dividuals. Genetic correlations are, however, typically esti-
mated by these methods by studying two phenotypes only.
Using a structural equation modeling (SEM) framework (17), as
widely applied within twin research (4,5), we now extend this
bivariate approach by flexibly modeling complex latent genetic
factor structures within a multivariate context. In this article, we
use multivariate GSEMs to model longitudinal data on social
communication difficulties across childhood and adolescence
in the Avon Longitudinal Study of Parents and Children
(ALSPAC), a phenotypically rich longitudinal population-based
birth cohort from the United Kingdom (18).

METHODS AND MATERIALS

Participants and Measures

All analyses were carried out using children’s data from
ALSPAC, a United Kingdom population-based longitudinal
pregnancy-ascertained birth cohort (estimated birth dates
1991–1992) (18). The study website contains details of all the
data that are available through a fully searchable data dictio-
nary (http://www.bris.ac.uk/alspac/researchers/data-access/
Biologica
data-dictionary/). Ethical approval was obtained from the
ALSPAC Law and Ethics Committee (IRB00003312) and the
local research ethics committees. Written informed consent
was obtained from a parent or individual with parental
responsibility, and assent (and for older children consent) was
obtained from the child participants.

Phenotype Information. Social communication difficulties
during childhood and adolescence were collected with the
12-item mother-reported Social Communication Disorder
Checklist (SCDC) (score range, 0–24; age range, 3–18 years)
(3). The SCDC is a brief screening instrument of social reci-
procity and verbal and nonverbal communication (e.g., “Not
aware of other people’s feelings”), which has high reliability
and internal consistency and good validity (3), with higher
scores reflecting more social communication deficits. Quanti-
tative SCDC scores in ALSPAC children and adolescents were
measured at 8, 11, 14, and 17 years of age, and information on
phenotypic and genotypic data was available for 4174 to 5551
children (Supplemental Table S1).

Descriptive analyses of SCDC scores were performed with
R version 3.2.4 (R Foundation for Statistical Computing,
Vienna, Austria). The distribution of SCDC scores was posi-
tively skewed and predominantly leptokurtic (Supplemental
Table S1). Each score was adjusted for sex, age, and the
two most significant ancestry-informative principal compo-
nents (see below) using ordinary least squares regression.
Residuals were subsequently transformed to perfect normality
using rank-based inverse normal transformation (19), as pre-
viously reported (9), to allow for comparisons across different
algorithms (see below). There were moderate phenotypic cor-
relations between repeatedly assessed SCDC scores using
both untransformed and transformed data (SCDC, Spearman’s
rho, 0.39–0.57; Pearson’s r, 0.38–0.61) (Supplemental
Table S2) as previously shown (9).

Genome-wide Genotype Information. ALSPAC children
were genotyped using the Illumina HumanHap550 quad chip
genotyping platforms (Supplemental Methods). After quality
control, 8237 children and 477,482 directly genotyped SNPs
were kept within the study.

Genetic-Relationship-Matrix Structural Equation
Models

Multivariate SEM techniques were used to assess the relative
importance of genetic and residual influences to variation in
longitudinal SCDC scores during child and adolescent devel-
opment. Similar to GREML (12), GSEMs use the genetic sim-
ilarity between unrelated individuals to partition the expected
phenotypic variance/covariance matrix into genetic and
residual components. More generally, however, the statistical
framework of GSEM is analogous to twin analysis methodol-
ogies (4,5) but uses GRMs, instead of twin correlations, to
estimate genetic variance/covariance structures using full
information maximum likelihood (FIML). Thus, genetic and
environmental influences are modeled in the GSEM framework
as latent factors contributing to interindividual covariation in
phenotypic measures. The advantage of our approach is that
multivariate SEM methodology has been widely established
l Psychiatry April 1, 2018; 83:598–606 www.sobp.org/journal 599
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within twin research (4,5) and allows for flexible modeling of
complex genetic factor structures. Conversely, GREML, as
implemented in the Genome-wide Complex Trait Analysis
(GCTA) software package, is currently restricted to bivariate
situations (6). While multivariate GSEMs can be fit with SEM
software such as OpenMx (20) using both mxGREML and FIML
algorithms, these models are currently computationally
expensive (see Results). We therefore implemented GSEMs
within R (version 3.2.4) (for details see Supplemental Methods).

In short, GSEMs describe the phenotypic covariance
structure using one or more additive genetic factors A that
capture genetic variance, tagged by common genotyped
SNPs, as well as one or more residual factors E that capture
residual variance, containing untagged genetic variation and
unique environmental influences (including measurement
error). As SEM methodology has its origins in the method of
path analysis (21), path diagrams are useful in visualizing the
relationship among observed and latent variables (represented
as squares and circles, respectively). In these diagrams, single-
headed arrows (factor loadings or paths) denote causal re-
lationships between measures, whereas double-headed
arrows define correlations.

In our formulation, additive genetic variances (GSEM-Varg)
and genetic covariances are modeled as the product of addi-
tive genetic factor loadings and genetic factor variances (the
latter being standardized to unit variance). For example, using
multivariate GSEM, a saturated model can be fit to the data
through a decomposition of both the genetic variance and the
residual variance into as many latent factors as there are
observed variables (Cholesky decomposition model)
(Supplemental Methods). Estimated genetic variances and
covariances can then be used to estimate genetic correlations
(GSEM-rg) (22), i.e., the extent to which two phenotypes share
common genetic factors (Supplemental Methods). We used
the Cholesky decomposition model as a saturated and base-
line model (Supplement). Besides Cholesky decomposition
models, multivariate GSEMs also permit the fitting of models
with smaller numbers of latent genetic and residual factors,
defined according to theory (23).

Multivariate GSEMs of longitudinally assessed SCDC
scores were fitted in two stages. In the first stage (I), we
specified a priori three standard multivariate AE models,
analogous to twin research: a Cholesky decomposition model
(saturated model), an independent pathway model, and a
common pathway model.

1. The Cholesky decomposition model, as described above, is
a fully parameterized descriptive model without any
restrictions on the structure of latent genetic and residual
influences (20 free parameters) and involves multiple inde-
pendent genetic influences sharing genetic etiologies
across development.

2. The independent pathway model, in its simplest form,
specifies a single common genetic factor and a single
common residual factor, in addition to age-specific genetic
and residual influences (16 free parameters).

3. The common pathway model, in its simplest form, param-
eterizes a single latent factor, influenced by both genetic
and residual sources of variance, in addition to age-specific
genetic and residual influences, and is the most
600 Biological Psychiatry April 1, 2018; 83:598–606 www.sobp.org/jou
constrained model (14 free parameters). The model con-
strains the variance of the latent factor to one (i.e., the sum
of squared genetic and residual factor loadings). Although
the likelihood of this model can be estimated, the resulting
Hessian is not invertible owing to singularity problems. For
these reasons, the model constraint was relaxed within this
work.

Both the independent pathway model and the common
pathway model are consistent with a shared single genetic
factor across development and are nested submodels of
the full Cholesky decomposition model. The goodness of
fit of GSEMs to empirical data was assessed using likeli-
hood ratio test (LRT), the Akaike information criterion (24),
and the Bayesian information criterion (25) (Supplemental
Methods).

In the second stage (II), we adopted a data-driven approach
and investigated the pattern of genetic factor loadings for the
best-fitting model from stage I in detail. The smallest genetic
factor loadings were successively dropped from the model,
and the overall fit of the model was compared with the best-
fitting a priori defined GSEM (or an adapted form) using
LRTs. The statistical significance of factor loadings was
assessed using a Wald test (two-sided test). Standard errors
for genetic and residual variances and covariances and
genetic correlations were derived from the variance-
covariance matrix of the estimated factor loadings using the
delta method. Standard errors for factor loadings were esti-
mated by GSEMs. For rank-transformed measures with unit
variance, such as the SCDC scores in this study, genetic
variances are equivalent to SNP-h2 estimates. However, path
coefficients for multivariate GSEMs were restandardized to
enhance the interpretability.

GRMs were estimated using the GCTA software (12) and
based on directly genotyped SNPs. All GSEMs were fitted to
data from participants with nonmissing information to simplify
the estimation algorithm. All R scripts are available via the R
gsem package (https://gitlab.gwdg.de/beate.stpourcain/gsem)
(Supplement). For the purpose of benchmark comparisons
with univariate GCTA, we also fitted univariate GSEMs, where
genetic variances were estimated as a single variance
component.
Genetic-Relationship-Matrix Residual Maximum
Likelihood

The GCTA software package can be used to estimate the
proportion of phenotypic variation that is jointly explained by
SNPs on a genotyping chip using GREML (AE model) (13).
Likewise, bivariate GREML (6) allows estimating genetic
covariances and genetic correlations between two pheno-
types. An advantage of this method is that genetic correlations
between two phenotypes can be estimated even when these
phenotypes are not measured in the same individuals.

Univariate and bivariate GREML were carried out as part of
sensitivity and simulation analyses. For comparison with
GSEMs, GRMs were derived from directly genotyped SNPs
but excluded individuals with a pairwise relationship . 0.025,
as recommended (13). All analyses were conducted with GCTA
software version 1.25.2 (12).
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Figure 1. Genetic variance (Varg) of Social Communication Disorder
Checklist (SCDC) scores during development. Varg for SCDC scores across
development as estimated using a univariate model (Supplemental Table S6)
(N $ 4174) and the full Cholesky decomposition model (Table 1, model 1,
and Supplemental Table S8) (N = 3295). Genetic factors A3 and A4 of the
Cholesky decomposition model are not shown, as their estimated Varg was
negligible (, 0.01). All reported Varg estimates are equivalent to SNP-h2

estimates. Gray lines indicate 1 SE in total Varg for each SCDC measure.
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OpenMx SEM Models

OpenMx SEM models (20), as implemented in the OpenMx
software (versions 2.5 and 2.7; http://openmx.psyc.virginia.
edu/), were fitted using FIML and mxGREML and included a
full Cholesky decomposition of both genetic and residual var-
iances (AE model; see above). Bivariate OpenMx SEM analyses
were conducted as part of a simulation analysis. Genetic vari-
ances, genetic covariances, and genetic correlations were
derived as described for GSEM above. All analyses were con-
ducted on high-performance clusters at the University of Bristol
and the Max Planck Institute for Psycholinguistics.

Data Simulation

To evaluate the accuracy of multivariate GSEMs, we carried
out data simulations (Supplemental Methods).

Attrition Analysis

SCDC attrition scores were generated to investigate potential
sources of bias. Analyses included sample-specific estimates
of genetic correlations among SCDC attrition scores and
between SCDC scores and subsequent sample dropout
(Supplemental Methods).

RESULTS

Accuracy of Multivariate GSEM

We simulated a bivariate trait (N = 5000) with two standardized
measures (10 replicates) (Supplemental Figure S1A and
Supplemental Table S3) and confirmed the accuracy of multi-
variate GSEMs through comparison with GCTA and OpenMx
software. All methods provided accurate estimates, with
respect to genetic and residual variances and covariances as
well as genetic and residual factor loadings (GSEMs and
OpenMx SEM models only), with comparable root mean
squared error, mean absolute deviation, and little bias (bias2

, 1023 for all methods) (Supplemental Table S3). Computa-
tionally, multivariate OpenMx SEM models were, however,
more expensive (# 78 GB RAM FIML version 2.5; # 2694
minutes mxGREML/FIML version 2.7) than multivariate GSEMs
(# 13 GB RAM, # 301 minutes) per single bivariate replicate
analysis. A comparison of computing resources is shown in
Supplemental Table S4. There was also little difference
between estimated OpenMx versus GSEM parameters when
analyzing a trivariate simulated trait with three standardized
measures, as part of a benchmark test (Supplemental
Figure S1B and Supplemental Table S5). Trivariate replicate
analyses using OpenMx were not considered within this study
owing to computational constraints.

Univariate Analyses

Using univariate GSEMs, common genetic variants explained a
large proportion of phenotypic variation in SCDC scores during
childhood as well as during later adolescence (age 8, Varg
[SE] = 0.25 [0.061], p = 3.4 3 1025; age 11, Varg [SE] = 0.22
[0.061], p = 2.9 3 1024; age 17, Varg [SE] = 0.47 [0.086],
p = 4.4 3 1028) (Figure 1 and Supplemental Table S6) but not
during early adolescence (age 14, Varg [SE] = 0.086 [0.064],
p = .18), as previously reported (2). Univariate GCTA (GREML)
yielded nearly identical results (Supplemental Table S7).
Biologica
Multivariate Analyses

We first examined the profile of genetic factors contributing to
variation in SCDC scores during development (13,180 obser-
vations; 3295 participants) using three a priori defined multi-
variate GSEMs (Figure 2A–C). Based on all three fit indices,
LRT, Akaike information criterion, and Bayesian information
criterion, the best-fitting a priori defined model was the full
Cholesky decomposition model (model 1) (Table 1, Figure 2A,
and Figure 3A). Neither a single factor independent pathway
model nor a single factor common pathway model could suf-
ficiently capture the underlying variance/covariance structure
of the data. As the full Cholesky decomposition model is also
the baseline model, however, the model identification pro-
gressed with the identification of meaningful GSEMs through
data-driven model modifications. Consistent with near zero
factor loadings for the latent genetic factors A3 and A4

(Supplemental Table S8), a two-genetic-factor Cholesky model
was studied (model 4) (Figure 2D) that provided a near-
identical fit to the data (Dc2

3 , 0.01, p = 1) (Table 1). This
model parameterized one genetic factor arising at 8 years of
age and a second independent genetic factor explaining novel
genetic influences arising at 11 years of age, each contributing
to phenotypic variation during later development (Figure 2D).
Using LRTs, the model fitting progressed (model 5) (Table 1
and Supplemental Table S8) until all genetic factor loadings
reached p , 0.05 without a significant drop in the log-
likelihood (Dc2

2 , 0.01, p = 1, with respect to model 4).
The identified model included one common genetic factor

A1 accounting for shared phenotypic variation throughout
development as well as a second genetic factor A2 influencing
l Psychiatry April 1, 2018; 83:598–606 www.sobp.org/journal 601
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Figure 2. Path diagrams of a priori defined
multivariate genetic-relationship-matrix structural
equation models and data-driven model modifica-
tions. (A) Full Cholesky decomposition model. (B)
Independent pathway model. (C) Common pathway
model. (D) Two-genetic-factor Cholesky model
(data-driven model modification). Observed pheno-
typic measures are represented by squares, and
latent factors are represented by circles. Single-
headed arrows (paths) define causal relationships
between variables. Note that the variance of latent
variables is constrained to unit variance; this is
omitted from the diagrams to improve clarity.
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SCDC scores at 11 years and especially at 17 years of age
(Table 1 and Figure 3B). Figure 3 shows the full Cholesky
decomposition model (model 1) and its best-fitting reduced
form (model 5) with their standardized path coefficients (factor
loadings $ 0.32 explain . 10% of the phenotypic variance).

Overall, the estimates of genetic variance, as predicted by
GSEMs (model 1 and 5) (Supplemental Table S9), were
consistent with univariate GSEM estimates (Figure 1), although
the latter were based on larger sample numbers (Supplemental
Table S6). The pattern of genetic factor loadings suggested,
however, a dynamic change in the variance composition of the
trait during development such that only approximately 50% of
the genetic variance at 17 years of age was accounted for by
genetic variation at 8 years of age (e.g., age 17, ratio Varg [A1]
to Varg [A11A2]; model 1, 0.53% [SE = 0.18]; model 5, 0.53%
[SE = 0.12]) (Figure 1).

The predicted bivariate genetic correlations by multivariate
GSEMs (model 1 and 5) (Supplemental Table S9) were overall
similar to bivariate GCTA (GREML) estimates, although the
latter were based on larger numbers of observations
(Supplemental Table S10 and Supplemental Figure S3).
Restricting analyses to the same sets of individuals, both
602 Biological Psychiatry April 1, 2018; 83:598–606 www.sobp.org/jou
bivariate GSEMs and bivariate GCTA (GREML) provided near-
identical estimates (Supplemental Table S10), although these
analyses were less powerful. Thus, small differences in genetic
correlations patterns, as estimated by multivariate GSEMs
versus bivariate GCTA (GREML), are likely to be due to minor
differences in sample numbers.

Furthermore, there was little evidence that genetic
influences between SCDC scores and subsequent SCDC
sample dropout are shared in ALSPAC (Supplemental
Table S11). Nominal evidence for a genetic correlation was
observed between SCDC scores at 8 years of age and dropout
at 14 years of age only (genetic correlation = 0.39 [SE = 0.19],
pone-tailed = .02). Nonetheless, SCDC attrition scores were
genetically correlated across all SCDC measures in ALSPAC
(pone-tailed , 1023) (Supplemental Table S12).
DISCUSSION

Using multivariate SEM in combination with common variant-
based genetic correlation matrices, we investigated the
developmental structure of genetic factors contributing to
social communication difficulties during childhood and
rnal
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Table 1. Multivariate GSEMs of SCDC Scores

Model Path Diagram 22LL k
Dc2 to
Model 1

Ddf to
Model 1 p AIC BIC

A Priori Defined Multivariate GSEMs

1. Full Cholesky decomposition
model—saturated model

Figure 2A, Figure 3A 7900.97 20 — — — 7940.97 8062.97

2. Independent pathway model Figure 2B 7914.51 16 13.55 4 .0089 7946.51 8044.12

3. Common pathway model Figure 2C 8082.7 14 181.73 6 , 10215 8110.70 8196.10

Data-Driven Model Modification

4. Two-genetic-factor Cholesky
model

Figure 2D 7900.96 17 , 0.01 3 1 7934.96 8038.67

Path Diagram 22LL k
Dc2 to
Model 4

Ddf to
Model 4 p AIC BIC

Best-Fitting Model

5. Two-genetic-factor Cholesky
model (excluding nonsignificant
paths)a

Figure 3B 7900.96 15 , 0.01 2 1 7930.96 8022.47

The GSEMs were assessed with likelihood ratio tests, the AIC and the BIC. Following the investigation of a priori defined GSEM, the model fitting
progressed until all genetic factor loadings reached p , .05 without a significant drop in the log-likelihood. Path diagrams are shown in Figure 2.
There were 3295 participants with SCDC scores across all ages.

AIC, Akaike information criterion; BIC, Bayesian information criterion; GSEM, goodness-of-fit of genetic-relationship-matrix structural equation
model; k, number of parameters; LL, log-likelihood; SCDC, Social and Communication Disorders Checklist.

aThe best-fitting model.
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adolescence. We showed that the genetic architecture of this
population-based complex trait changes continuously during
development and is consistent with multiple genetic influences
operating at different stages during development. Thus, our
study provides evidence against the hypothesis that social
communication behavior during development is a genetically
homogeneous phenotype.

The best-fitting model, specifying two distinct genetic fac-
tors, suggested that the genetic origins of child and adolescent
social communication behavior lie in middle and late child-
hood. The first genetic factor, parameterized to account for all
genetic influences at 8 years of age, explained a considerable
proportion of phenotypic variance throughout development
(. 20%) with the exclusion of SCDC scores at 14 years of age
that have negligible SNP-h2 estimates. This is consistent with
recent reports of low SNP-h2 for autistic symptoms at the
beginning of adolescence (1) and might be related to pubertal
adjustments (2).

The second genetic factor, parameterized to be indepen-
dent of the first one and to capture novel genetic influences
arising at 11 years of age, explained predominantly phenotypic
variation at 17 years of age (approximately 19%). Thus, the
model predicted changes in the composition of the genetic
variance during development, and only approximately 50% of
the genetic variation at 17 years of age was accounted for by
genetic variation at 8 years of age. Within defined develop-
mental stages, however, such as stages spanning midchild-
hood to very early adolescence (e.g., 8–11 years), we found
evidence for strong genetic correlations across measures.
These results are consistent with recent longitudinal twin
research that reported moderate to high genetic stability for
autistic traits, including communication impairments, between
midchildhood and early adolescence (7), but only moderate
genetic stability between behavior in childhood versus
emerging adulthood (8). The identified genetic factor structure
Biologica
using GSEMs therefore reflects both a degree of genetic sta-
bility and a genetic change in social communication behavior
during development, depending on the size of the develop-
mental window.

The identification of two distinct genetic factors, especially
during later adolescence, suggests that SCDC scores at 8 or
11 years of age are, in terms of average composition,
different from SCDC scores at 17 years of age. Develop-
mental changes in the genetic architecture of social
communication traits are consistent with biological matura-
tion processes during childhood and adolescence. For
example, synaptic pruning in the cerebral cortex is a signa-
ture late maturational process for generating a diversity of
neuronal connections (26), which occurs during puberty and
extends into early adult life (27). In parallel, there are changes
in adolescent social cognitive development, especially with
respect to emotional perspective taking, resistance to peer
influence, and changes in social behavior (28). Given the
identified genetic factor structure, it could be speculated
whether multiple concepts of social reciprocity and verbal
and nonverbal communication may coexist, especially at 17
years of age, and whether changes in genetic factor contri-
butions may continue into early adulthood. Thus, even for
psychological instruments with high reliability, internal
consistency, and good discriminant validity, such as the
SCDC (3), the nature of the captured continuous phenotype
may vary across developmental periods spanning approxi-
mately 10 years. This underlines the need for behavioral
genetic studies across the life span.

An important implication that flows from the observation of
developmental variations in the genetic trait architecture is
that measures assessed at different developmental stages
may reveal different patterns of trait-disorder overlap, as
previously shown for clinical autism spectrum disorder
and schizophrenia (9). Moreover, the identification of a
l Psychiatry April 1, 2018; 83:598–606 www.sobp.org/journal 603
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Figure 3. Path diagram of the full Cholesky decomposition model for Social and Communication Disorders Checklist scores (A) and its reduced form (B).
The full Cholesky decomposition model (A) and its most parsimonious reduced form (B) are described in detail in Table 1 (model 1 and 5, respectively).
Corresponding to the phenotypic measures P1 (8 years), P2 (11 years), P3 (14 years), and P4 (17 years), the latent genetic factors with factor loadings (a) are A1

(8 years), A2 (11 years), A3 (14 years), and A4 (17 years), and the latent residual factors with factor loadings (e) are E1 (8 years), E2 (11 years), E3 (14 years), and E4

(17 years). All path coefficients are standardized. There were 3295 participants with repeated scores across all ages. Note that the variance of latent variables is
constrained to unit variance; this is omitted from the diagrams to improve clarity.
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two-genetic-factor model is also consistent with recent re-
ports of little genetic overlap between autism spectrum dis-
order and schizophrenia-related dimensions (29), especially
with respect to social communication symptoms. Structural
models capturing developmental changes in the genetic
architecture of complex phenotypes can therefore be lever-
aged to obtain prior information concerning the stability of
trait-disorder overlap and consequently the extent to which
development-specific genetic trait factors are shared among
different psychiatric dimensions. Our findings therefore have
specific relevance for the study of functional dimensions of
human behavior spanning the continuum from normal to
abnormal and across development, consistent with the
framework of Research Domain Criteria (30).

Finally, our study proves that structural models of genetic
influences in unrelated individuals, as captured by GRMs, are
computationally feasible within a longitudinal context. Beyond
the scope of bivariate GCTA (GREML), multivariate GSEMs
allow for the modeling of complex latent genetic factor
structures across different stages of development, in partic-
ular, their genetic variance composition, and can reveal
developmental origins of genetic variation that are otherwise
hidden. It is furthermore possible to envisage that the
concept of GSEM can be extended to investigate multivariate
604 Biological Psychiatry April 1, 2018; 83:598–606 www.sobp.org/jou
models of cross-disorder overlap and other complex phe-
nomena, such as reciprocal causation. Note that also novel
OpenMx FIML and mxGREML algorithms are currently being
developed.

A limitation of our study is the analysis of nonmissing data
across all repeatedly assessed measures. Thus, weaker
genetic links, spanning wider age gaps, may not have been
sufficiently captured as a consequence of lower power,
although genetic correlations predicted by multivariate GSEM
and bivariate GCTA(GREML) were overall similar. In addition,
cohort studies can be affected by attrition bias (11). We
identified, however, little evidence for a specific genetic link
between variation in SCDC scores and subsequent sample
dropout, although attrition scores across all assessed SCDC
measures were genetically correlated. This is consistent with
studies reporting an association between study nonpartici-
pation, including SCDC dropout, and polygenic risk for
schizophrenia (9,11), regardless of when phenotypes were
sampled during development. In addition, we exclusively
studied rank-transformed phenotypes to ensure multivariate
normality and comparability across different estimation algo-
rithms, and we therefore cannot exclude transformation-
related biases. However, genetic overlap with psychiatric
conditions provided some evidence for the content validity of
rnal
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the analyzed trait (9). Also, maternal characteristics may have
contributed to phenotypic and, to a lesser extent, genetic
correlations. However, the impact of these effects is likely to
be small, given the identified developmental changes in ge-
netic variances and covariances for SCDC scores during
development. Finally, a Cholesky decomposition of a vari-
ance/covariance matrix may not always result in fitting sta-
tistics that follow the expected c2 distribution (31). Model
comparisons using real and simulated data, however, pro-
vided little evidence for systematic differences between
GCTA(GREML), GSEM, and OpenMx SEMs. Thus, despite
potential limitations, our study demonstrates that structural
models of longitudinally assessed behavioral traits can pro-
vide information on developmental changes in genetic trait
architectures as tagged by common SNPs.

Conclusions

The genetic architecture of social communication difficulties,
as tagged by common genetic variation, changes with age and
involves multiple genetic factors operating at different devel-
opmental stages during a 10-year period spanning childhood
and adolescence. The identification of distinct genetic trait
factors is consistent with different profiles of trait-disorder
overlap and underlines the importance of investigating
genetic trait variances within a multivariate context.
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