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Abstract 
 
Background: Recent analyses of trait-disorder overlap suggest that psychiatric dimensions 
may relate to distinct sets of genes that exert their maximum influence during different 
periods of development. This includes analyses of social-communciation difficulties that 
share, depending on their developmental stage, stronger genetic links with either Autism 
Spectrum Disorder or schizophrenia. Here we developed a multivariate analysis framework in 
unrelated individuals to model directly the developmental profile of genetic influences 
contributing to complex traits, such as social-communication difficulties, during a ~10-year 
period spanning childhood and adolescence.  
 
Methods: Longitudinally assessed quantitative social-communication problems (N≤ 5,551) 
were studied in participants from a UK birth cohort (ALSPAC, 8 to 17 years). Using 
standardised measures, genetic architectures were investigated with novel multivariate 
genetic-relationship-matrix structural equation models (GSEM) incorporating whole-genome 
genotyping information. Analogous to twin research, GSEM included Cholesky 
decomposition, common pathway and independent pathway models. 
 
Results: A 2-factor Cholesky decomposition model described the data best. One genetic 
factor was common to SCDC measures across development, the other accounted for 
independent variation at 11 years and later, consistent with distinct developmental profiles in 
trait-disorder overlap. Importantly, genetic factors operating at 8 years explained only ~50% 
of the genetic variation at 17 years. 
 
Conclusion: Using latent factor models, we identified developmental changes in the genetic 
architecture of social-communication difficulties that enhance the understanding of ASD and 
schizophrenia-related dimensions. More generally, GSEM present a framework for modelling 
shared genetic aetiologies between phenotypes and can provide prior information with 
respect to patterns and continuity of trait-disorder overlap.  
 
Keywords: ALSPAC, Structural equation modelling, Longitudinal analysis, Genetic variance 
decomposition, Genetic-relationship matrix structural equation modelling, Genetic 
relationship matrix 
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Introduction 

The extent to which genetic aetiologies are shared between traits and disorders 

naturally depends on the genetic composition of the two phenotypes. While psychiatric 

disorders are diagnostic entities, defined by clinical criteria including the age of onset, human 

behaviour changes continously during development. This includes developmental alterations 

in compex genetic trait architectures as reported for cognitive (1) but also social-

communication related characteristics (2).  

Difficulties to socially engage and communicate with others, as observed in the 

general population, are heritable (twin-h2=0.74) (3) and a considerable proportion of the 

underlying genetic variation can be tagged by Single Nucleotide Polymorphisms (SNPs, 

SNP-h2≤ 0.45) (2). For both, social-communication and social interaction problems, 

multivariate twin (4;5) and bivariate GREML (genetic-relationship-matrix residual maximum 

likelihood) studies (6) reported evidence for a degree of genetic stability, but also change 

during childhood and adolescence (2;7;8) that may affect genetic similarities with other traits.  

Studying the genetic overlap between psychatric illness and social-communciation 

difficulties across multiple developmental stages, different developmental profiles for 

childhood- versus adult-onset psychiatric disorders have been identified (9). The genetic 

overlap with clinical Autism Spectrum Disorder (ASD), a complex highly heritable early-

onset neurodevelopmental condition (10), was strongest for social-communication difficulties 

during childhood, but declined with progressing age of the trait. By contrast, the genetic 

correlation with clinical schizophrenia, an adult-onset psychiatric illness with a typical first-

time diagnosis between 16 to 30 years (10), was highest for social-communication problems 

during later adolescence (9). Thus, the risk of developing these contrasting psychiatric 

conditions might be related to distinct sets of genes, both of which affect social 
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communication skills, but exert their maximum influence during different periods of 

development.  

Discontinuity in trait-disorder overlap may, however, also result because of attrition-

related artefacts such as decreasing power or inherent sample bias (11). As knowledge about 

developmental changes in complex genetic trait architectures is still scarce, development-

related variations in trait-disorder overlap are often dismissed.  

The aim of this work is to provide insight into the developmental profile of genetic 

factors influencing complex traits, such as social-communication difficulties during 

childhood and adolescence, using a longitudinal analysis framework. Building on our 

previous work (2;9), we investigate here two extreme hypotheses: We evaluate whether the 

genetic variance/covariance structure of social-communication difficulties during childhood 

and adolescence is consistent with multiple independent genetic influences, suggesting 

developmental changes in the genes responsible for inter-individual variation over time, or 

whether, alternatively, there is evidence for a shared single genetic factor, irrespective of age.  

To study the developmental profile of genetic factors in unrelated individuals, we 

implemented multivariate genetic-relationship-matrix structural equation models (GSEM). 

These models utilise genome-wide genetic relationship matrices (GRMs)(12), calculated 

from hundreds of thousands of SNPs across the genome, to estimate the total amount of 

phenotypic variance and covariance tagged by common genetic variants, similar to GREML 

(12;13). GREML and related approaches (12;14–16) have re-shaped the research of complex 

genetic trait architectures beyond twin designs by exploiting the availability of genome-wide 

genetic data in cohorts of unrelated individuals. Genetic correlations are, however, typically 

estimated by these methods by studying two phenotypes only. Using a structural equation 

modelling (SEM) framework (17), as widely applied within twin research (4;5), we now 
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extend this bivariate approach by flexibly modelling complex latent genetic factor structures 

within a multivariate context.   

In this paper we use multivariate GSEM to model longitudinal data on social-

communication difficulties across childhood and adolescence in the Avon Longitudinal Study 

of Parents and Children (ALSPAC), a phenotypically-rich longitudinal population-based birth 

cohort from the UK (18). 

 

Methods 

Participants and measures 

All analyses were carried out using children’s data from ALSPAC, a UK population-

based longitudinal pregnancy-ascertained birth-cohort (estimated birth date: 1991 to 

1992)(18). Please note that the study website contains details of all the data that is available 

through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). Ethical approval was obtained from the ALSPAC Law-and-Ethics 

Committee (IRB00003312) and the Local Research-Ethics Committees. Written informed 

consent was obtained from a parent or individual with parental responsibility and assent (and 

for older children consent) was obtained from the child participants.   

Phenotype information: Social-communication difficulties during childhood and 

adolescence were collected with the 12-item mother-reported Social Communication 

Disorder Checklist (SCDC; score-range: 0 to 24, age range: 3 to 18 years)(3). The SCDC is a 

brief screening instrument of social reciprocity and verbal/nonverbal communication (e.g. 

"Not aware of other people’s feelings”), which has high reliability and internal consistency, 

and good validity (3) with higher scores reflecting more social-communication deficits. 

Quantitative SCDC scores in ALSPAC children and adolescents were repeatedly measured at 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

8, 11, 14 and 17 years and information on phenotypic and genotypic data was available for 

4,174 to 5,551 children (Supplementary Table S1).  

Descriptive analyses of SCDC scores were carried out in R.v.3.2.4. The distribution 

of SCDC scores was positively skewed and predominantly leptokurtic (Supplementary Table 

S1). Each score was adjusted for sex, age and the two most significant ancestry-informative 

principal components (see below) using ordinary least square (OLS) regression. Residuals 

were subsequently transformed to perfect normality using rank-based inverse normal 

transformation (19) , as previously reported (9), to allow for comparisons across different 

algorithms (see below). There were moderate phenotypic correlations between repeatedly 

assessed SCDC scores, using both untransformed and transformed data (Supplementary 

Table S2, SCDC: Spearman's-ρ: 0.39 to 0.57; Pearson-r: 0.38 to 0.61) as previously shown 

(9).  

Genome-wide genotype information: ALSPAC children were genotyped using the 

Illumina HumanHap550 quad chip genotyping platforms (Supplementary Methods). After 

quality control, 8,237 children and 477,482 directly genotyped Single Nucleotide 

Polymorphisms (SNPs) were kept within the study.  

 

GSEM 

Multivariate SEM techniques were used to assess the relative importance of genetic 

and residual influences to variation in longitudinal SCDC scores during child and adolescent 

development. Similar to GREML (12), GSEM use the genetic similarity between unrelated 

individuals to partition the expected phenotypic variance/covariance matrix into genetic and 

residual components. More generally, however, the statistical framework of GSEM is 

analogous to twin analysis methodologies (4;5), but uses GRMs, instead of twin correlations, 

to estimate genetic variance/covariance structures using full information maximum likelihood 
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(FIML). Thus, genetic and environmental influences are modelled in the GSEM framework 

as latent factors contributing to inter-individual covariation in phenotypic measures. The 

advantage of our approach is that multivariate SEM methodology has been widely established 

within twin research (4;5) and allows for flexible modelling of complex genetic factor 

structures. Conversely, GREML, as implemented in the GCTA software package, is currently 

restricted to bivariate situations (20). While multivariate GSEM can be fit with SEM software 

such as OpenMx (21) using both mxGREML and FIML algorithms, these models are 

currently computationally expensive (see Results). We therefore implemented GSEM within 

R (Rv3.2.4) (for details see Supplementary Methods).  

In short, GSEM describe the phenotypic covariance structure using one or more 

additive genetic factors A that capture genetic variance, tagged by common genotyped SNPs, 

as well as one or more residual factors E that capture residual variance, containing untagged 

genetic variation and unique environmental influences (including measurement error). As 

SEM methodology has its origins in the method of path analysis (22), path diagrams are 

useful in visualising the relationship among observed and latent variables (represented as 

squares and circles respectively, see e.g. Figure 2). Single headed arrows (factor loadings or 

'paths') denote causal relationships between measures, whereas double headed arrows define 

correlations.  

In our formulation, additive genetic variances (GSEM-Varg) and genetic covariances 

(GSEM-Covg) are modelled as the product of additive genetic factor loadings and genetic 

factor variances (the latter being standardised to unit variance). For example, using 

multivariate GSEM, a saturated model can be fit to the data through a decomposition of both 

the genetic variance and residual variance into as many latent factors as there are observed 

variables (Cholesky decomposition model; see Supplemental methods). Estimated genetic 

variances and covariances can then be used to estimate genetic correlations (GSEM-rg) (23), 
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i.e. the extent to which two phenotypes share common genetic factors (Supplementary 

Methods). Here, we utilised the Cholesky decomposition model as saturated and baseline 

model (Supplementary Information). Beside Cholesky decomposition models, multivariate 

GSEM also permit the fitting of models with smaller numbers of latent genetic and residual 

factors, defined according to theory (24).  

Multivariate GSEM of longitudinally assessed SCDC scores were fitted in two stages.  

In a first step (I), we specified a priori three standard multivariate AE models, 

analogous to twin research (Figure 2A-C): we studied a Cholesky decomposition model 

(saturated model), an independent pathway model and a common pathway model.  

1) The Cholesky decomposition model, as described above, is a fully parametrised 

descriptive model without any restrictions on the structure of latent genetic and 

residual influences (20 free parameters) (Figure 2A) and involves multiple 

independent genetic influences sharing genetic aetiologies across development. 

2) The independent pathway model, in its simplest form, specifies a single common 

genetic factor and a single common residual factor, in addition to age-specific 

genetic and residual influences (16 free parameters) (Figure 2B) . 

3) The common pathway model, in its simplest form, parametrises a single latent 

factor, influenced by both genetic and residual sources of variance, in addition to 

age-specific genetic and residual influences  (Figure 2C), and is the most 

constrained model (14 free parameters). The model constrains the variance of the 

latent factor to one (i.e. the sum of squared genetic and residual factor loadings). 

Although the likelihood of this model can be estimated, the resulting Hessian is 

not invertible due to singularity problems. For these reasons, the model constraint 

was relaxed within this work. 
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Both, the independent pathway model and the common pathway model are consistent 

with a shared single genetic factor across development and are nested submodels of the full 

Cholesky decomposition model.  

The goodness-of-fit of GSEM to empirical data was assessed using likelihood ratio 

test (LRT), the Akaike Information Criterion (AIC) (25) and the Bayesian Information 

Criterion (BIC) (26) (Supplementary Methods).  

In a second step (II), we adopted a data-driven approach and investigated the pattern 

of genetic factor loadings for the best fitting model from (I) in detail. The smallest genetic 

factor loadings were successively dropped from the model and the overall fit of the model 

compared with the best-fitting a priori defined GSEM (or an adapted form) using LRTs. The 

statistical significance of factor loadings was assessed using a Wald test (2-sided test). 

Standard errors (SEs) for genetic and residual variances and covariances, and genetic 

correlations were derived from the variance-covariance matrix of the estimated factor 

loadings using the delta method. Standard errors for factor loadings were estimated by 

GSEM. Note that for rank-transformed measures with unit variance, such as the SCDC scores 

in this study, genetic variances are equivalent to SNP-h2 estimates. However, path 

coefficients for multivariate GSEM were re-standardised to enhance the interpretability. 

GRMs were estimated using the GCTA software (12) and based on directly genotyped 

SNPs. All GSEM were fitted to data from participants with non-missing information to 

simplify the estimation algorithm. All R scripts are available via the R gsem package. 

(https://gitlab.gwdg.de/beate.stpourcain/gsem, Supplementary Information).  

For the purpose of benchmark comparisons with univariate GCTA, we also fitted 

univariate GSEM, where genetic variances were estimated as a single variance component. 
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GREML 

The GCTA software package can be used to estimate the proportion of phenotypic 

variation that is jointly explained by SNPs on a genotyping chip using GREML (13) (AE 

model). Likewise, bivariate GREML (20) allows estimating genetic covariances and genetic 

correlations between two phenotypes. An advantage of this method is that genetic 

correlations between two phenotypes can be estimated even when these phenotypes are not 

measured in the same individuals.  

Univariate and bivariate GREML were carried out as part of sensitivity and 

simulation analyses. For comparison with GSEM, genetic relationship matrices (GRMs) were 

derived from directly genotyped SNPs, but excluded individuals with a pairwise relationship 

>0.025, as recommended (13). All analyses were conducted with GCTA software v1.25.2 

(12). 

 

OpenMx SEM models 

OpenMx SEM models (21), as implemented in the OpenMx  software 

(http://openmx.psyc.virginia.edu/)(v2.5 and v2.7), were fitted using FIML and mxGREML 

and included a full Cholesky decomposition of both genetic and residual variances (AE 

model, see above). Bivariate OpenMx SEM analyses were conducted as part of a simulation 

analysis. Genetic variances, genetic covariances, and genetic correlations were derived as 

described for GSEM above.  

 

All analyses were conducted on High Performance Clusters at the University of 

Bristol and the MPI for Psycholinguistics. 
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Data simulation 

To evaluate the accuracy of multivariate GSEM, we carried out data simulations 

(Supplementary Methods).  

 

Attrition analysis 

SCDC-attrition scores were generated to investigate potential sources of bias. 

Analyses included sample-specific estimates of genetic correlations among SCDC-attrition 

scores, and between SCDC scores and subsequent sample dropout (Supplementary Methods).  

 

Results 

Accuracy of multivariate GSEM 

We simulated a bivariate trait (N=5000) with two standardised measures (10 

replicates; Supplementary Figure S1A, Supplementary Table S3) and confirmed the accuracy 

of multivariate GSEM through comparison with GCTA and OpenMx software. All methods 

provided accurate estimates, both with respect to genetic and residual variances and 

covariances as well as genetic and residual factor loadings (GSEM and OpenMx SEM 

models only), with comparable RMSE, MAD and little bias (Bias2<10-3 for all methods, 

Supplementary Table S3). Computationally, multivariate OpenMx SEM models were, 

however, more expensive (≤ 78 GB RAM FIML v2.5; ≤ 2694 minutes mxGREML/FIML 

v2.7) than multivariate GSEM (≤ 13 GB RAM, ≤ 301 minutes) per single bivariate replicate 

analysis. A comparison of computing resources is shown in Supplementary Table S4. There 

was also little difference between estimated OpenMx versus GSEM parameters when 

analysing a trivariate simulated trait with three standardised measures, as part of a benchmark 
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test (Supplementary Figure S1B, Supplementary Table S5). Note that trivariate replicate 

analyses using OpenMx were not considered within this study due to computational 

constraints.  

 

Univariate analyses 

Using univariate GSEM, common genetic variants explained a large proportion of 

phenotypic variation in SCDC scores during childhood as well as during later adolescence 

(age 8: Varg(SE)=0.25(0.061), p=3.4x10-5; age 11: Varg(SE)=0.22(0.061), p=2.9x10-4, age 

17: Varg(SE)=0.47(0.086), p=4.4x10-8; Figure 1, Supplementary Table S6) but not during 

early adolescence (age 14, Varg(SE)= 0.086(0.064), p=0.18), as previously reported (2). 

Univariate GCTA(GREML) yielded nearly identical results (Supplementary Table S7).  

 

Figure 1 about here 

 

Multivariate analyses 

We first examined the profile of genetic factors contributing to variation in SCDC 

scores during development (13,180 observations; 3,295 participants) using three a priori 

defined multivariate GSEM (Figure 2A-C). Based on all three fit indices, LRT, AIC and BIC, 

the best-fitting a priori defined model was the full Cholesky decomposition model (Model 1, 

Table 1, Figure 2A, Figure 3A). Neither a single factor independent pathway model nor a 

single factor common pathway model could sufficiently capture the underlying 

variance/covariance structure of the data. As the full Cholesky decomposition model is, 

however, also the baseline model, the model identification progressed with the identification 
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of meaningful GSEM through data-driven model modifications. Consistent with near zero 

factor loadings for the latent genetic factors A3 and A4 (Supplementary Table S8), a two 

genetic factor Cholesky model was studied (Model 4, Figure 2D) that provided a near-

identical fit to the data (Table 1, ∆Χ2 <0.01 (∆df=3), p=1). This model parametrised one 

genetic factor arising at age 8 years, and a second independent genetic factor explaining 

novel genetic influences arising at age 11 years, each contributing to phenotypic variation 

during later development (Figure 2D). Using LRTs, the model fitting progressed (Model 5, 

Table 1, Supplementary Table S8) until all genetic factor loadings reached p<0.05 without a 

significant drop in the log-likelihood (∆Χ2=<0.01 (∆df=2), p=1, with respect to Model 4).  

 

Figure 2 about here 

Table 1 about here 

 

The identified model  included one common genetic factor A1, accounting for shared 

phenotypic variation throughout development, as well as a second genetic factor A2 

influencing SCDC scores at 11 years and especially at 17 years of age (Table 1, Figure 3B). 

Figure 3 shows the full Cholesky decomposition model (Model 1) and its best-fitting reduced 

form (Model 5) with their standardised path coefficients (factor loadings ≥ 0.32 explain 

>10% of the phenotypic variance).  

Overall, the estimates of genetic variance, as predicted by GSEM (Model 1 and 5, 

Supplementary Table S9), were consistent with univariate GSEM estimates (Figure 1), 

although latter were based on larger sample numbers (Supplementary Table S6). The pattern 

of genetic factor loadings suggested, however, a dynamic change in the variance composition 
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of the trait during development such that only ~50% of the genetic variance at age 17 was 

accounted for by genetic variation at age 8 (e.g. age 17: ratio Varg(A1) to Varg(A1+A2); 

Model 1: 0.53(SE=0.18)%; Model 5: 0.53(SE=0.12)%)(Figure 1).  

 

Figure 3 about here 

 

The predicted bivariate genetic correlations by multivariate GSEM (Model 1 and 5, 

Supplementary Table S9) were overall similar to bivariate GCTA(GREML) estimates, 

although latter were based on larger numbers of observations (Supplementary Table S10 and 

Supplementary Figure S3). Restricting analyses to the same sets of individuals, both bivariate 

GSEM and bivariate GCTA(GREML) provided near-identical estimates (Supplementary 

Table S10), although these analyses were less powerful. Thus, small differences in genetic 

correlations patterns, as estimated by multivariate GSEM versus bivariate GCTA(GREML), 

are likely to be due to minor differences in sample numbers. 

There was furthermore little evidence that genetic influences between SCDC scores 

and subsequent SCDC sample dropout are shared in ALSPAC (Supplementary Table S11). 

Nominal evidence for a genetic correlation was observed between SCDC scores at 8 years 

and dropout at 14 years only (rg=0.39(SE=0.19), pone-tailed=0.02). Nonetheless, SCDC attrition 

scores were genetically correlated across all SCDC measures in ALSPAC (pone-tailed<10-3, 

Supplementary Table S12).  
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Discussion 

Using multivariate SEM in combination with common variant-based genetic 

correlation matrices, we investigated the developmental structure of genetic factors 

contributing to social-communication difficulties during childhood and adolescence. We 

showed that the genetic architecture of this population-based complex trait changes 

continuously during development and is consistent with multiple genetic influences operating 

at different stages during development. Thus, our study provides evidence against the 

hypothesis that social communication behaviour during development is a genetically 

homogenous phenotype.  

The best-fitting model, specifying two distinct genetic factors, suggested that the 

genetic origins of child and adolescent social-communication behaviour lie in middle and late 

childhood. The first genetic factor, parametrised to account for all genetic influences at age 8 

years, explained a considerable proportion of phenotypic variance throughout development 

(>20%) with the exclusion of SCDC scores at age 14 that have negligible SNP-h2 estimates. 

(This is consistent with recent reports of low SNP-h2 for autistic symptoms at the beginning 

of adolescence (1) and might be related to pubertal adjustments (2)). 

The second genetic factor, parametrised to be independent of the first one and to 

capture novel genetic influences arising at age 11 years, explained predominantly phenotypic 

variation at 17 years of age (~19%). Thus, the model predicted changes in the composition of 

the genetic variance during development, and only ~50% of the genetic variation at age 17 

was accounted for by genetic variation at age 8. Within defined developmental stages, 

however, such as those spanning mid-childhood to very early adolescence (e.g. 8 to 11 years), 

we found evidence for strong genetic correlations across measures. These results are 

consistent with recent longitudinal twin research that reported moderate to high genetic 

stability for autistic traits, including communication impairments, between mid-childhood 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 
 

and early adolescence (7), but only moderate genetic stability between behaviour in 

childhood versus emerging adulthood (8). The identified genetic factor structure using GSEM 

reflects therefore both a degree of genetic stability, but also genetic change in social-

communication behaviour during development, depending on the size of the developmental 

window.  

The identification of two distinct genetic factors, especially during later adolescence, 

suggests that SCDC scores at age 8 or 11 years are, in terms of average composition, different 

from those influencing SCDC scores at age 17. Developmental changes in the genetic 

architecture of social communication traits are consistent with biological maturation 

processes during childhood and adolescence. For example, synaptic pruning in the cerebral 

cortex is a signature late maturational process for generating a diversity of neuronal 

connections (27), which occurs during puberty and extends into early adult life (28). In 

parallel, there are changes in adolescent social cognitive development, especially with respect 

to emotional perspective taking, resistance to peer influence and changes in social behaviour 

(29). Given the identified genetic factor structure, it could be speculated whether multiple 

concepts of 'social reciprocity and verbal/nonverbal communication' may co-exist, especially 

at age 17, and whether changes in genetic factor contributions may continue into early 

adulthood. Thus, even for psychological instruments with high reliability, internal 

consistency and good discriminant validity, like the SCDC (3), the nature of the captured 

continuous phenotype may vary across developmental periods spanning ~10 years. This 

underlines the need for behavioural genetic studies across the life-span.  

An important implication that flows from the observation of developmental variations 

in the genetic trait architecture is that measures assessed at different developmental stages 

may reveal different patterns of trait-disorder overlap, as previously shown for clinical ASD 

and schizophrenia respectively (9). Moreover, the identification of a 2-genetic factor is also 
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consistent with recent reports of little genetic overlap between ASD versus schizophrenia-

related dimensions (30), especially with respect to social-communication symptoms. 

Structural models capturing developmental changes in the genetic architecture of complex 

phenotypes can therefore be leveraged to obtain prior information concerning the stability of 

trait-disorder overlap and consequently the extent to which development-specific genetic trait 

factors are shared among different psychiatric dimensions. 

Our findings have therefore specific relevance for the study of functional dimensions 

of human behaviour spanning the continua from normal to abnormal and across development, 

consistent with the framework of Research Domain Criteria (31).  

Finally, our study proves that structural models of genetic influences in unrelated 

individuals, as captured by GRMs, are computationally feasible within a longitudinal context. 

Beyond the scope of bivariate GCTA(GREML), multivariate GSEM allow for the modelling 

of complex latent genetic factor structures across different stages of development, in 

particular their genetic variance composition, and can reveal developmental origins of genetic 

variation that are otherwise hidden. It is furthermore possible to envisage that the concept of 

GSEM can be extended to investigate multivariate models of cross-disorder overlap and other 

complex phenomena, such as reciprocal causation. Note that also novel OpenMx FIML and 

mxGREML algorithms are currently being developed. 

A limitation of our study is the analysis of non-missing data across all repeatedly 

assessed measures. Thus, weaker genetic links, spanning wider age gaps, may not have been 

sufficiently captured as a consequence of lower power, although genetic correlations 

predicted by multivariate GSEM and bivariate GCTA(GREML) were overall similar. In 

addition, cohort studies can be affected by attrition bias (32). We identified, however, little 

evidence for a specific genetic link between variation in SCDC scores and subsequent sample 

dropout, although attrition scores across all assessed SCDC measures were genetically 
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correlated. This is consistent with studies reporting an association between study non-

participation, including SCDC dropout, and polygenic risk for schizophrenia (9;32), 

irrespective of when phenotypes were sampled during development. In addition, we 

exclusively studied rank-transformed phenotypes to ensure multivariate normality and 

comparability across different estimation algorithms, and we can therefore not exclude 

transformation-related biases. However, genetic overlap with psychiatric conditions provided 

some evidence for the content validity of the analysed trait (9). Also, maternal characteristics 

may have contributed to phenotypic and, to a lesser extent, genetic correlations. However, the 

impact of these effects is likely to be small, given the identified developmental changes in 

genetic variances and covariances for SCDC scores during development. Finally, a Cholesky 

decomposition of a variance/covariance matrix may not always result in fitting statistics that 

follow the expected chi-squared distribution (33). Model comparisons using real and 

simulated data provided, however, little evidence for systematic differences between 

GCTA(GREML), GSEM and OpenMx SEMs. Thus, despite potential limitations, our study 

demonstrates that structural models of longitudinally assessed behavioural traits can inform 

on developmental changes in genetic trait architectures as tagged by common SNPs.  

 

Conclusions  

The genetic architecture of social-communication difficulties, as tagged by common 

genetic variation, changes with age and involves multiple genetic factors operating at 

different developmental stages during a 10-year period spanning childhood and adolescence. 

The identification of distinct genetic trait factors is consistent with different profiles of trait-

disorder overlap, and underlines the importance of investigating genetic trait variances within 

a multivariate context. 
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Table 1: Multivariate GSEM of SCDC scores 
Model Path 

diagram 
-2LL k ∆Χ

2 to 
model 1 

∆df to 
model 1 

p AIC BIC 

A priori defined multivariate GSEM         
1. Full Cholesky decomposition model - saturated model 
 

Figure 2A, 
Figure 3A 

7900.97 20 - - - 7940.97 8062.97 

2. Independent pathway model 
 

Figure 2B 7914.51 16 13.55 4 0.0089 7946.51 
 

8044.12 
 

3. Common pathway model 
 

Figure 2C 8082.7 14 181.73 6 <10-15 8110.70 8196.10 

Data-driven model modification         
4. Two genetic factor Cholesky model  
 

Figure 2D  7900.96 17 <0.01 3 1 7934.96 8038.67 

 Path 
diagram 

-2LL k ∆Χ
2 to 

model 4 
∆df to 

model 4 
p AIC BIC 

Best-fitting model         
5. Two genetic factor Cholesky model (excluding non-
significant paths) * 

Figure 3B 7900.96 15 <0.01 2 1 7930.96 
 

8022.47 
 

The goodness-of-fit of genetic-relationship-matrix structural equation models (GSEM) was assessed with likelihood ratio tests, the Akaike Information 
Criterion (AIC) and the Bayesian Information criterion (BIC). Following the investigation of a priori defined GSEM, the model fitting progressed until all 
genetic factor loadings reached p<0.05 without a significant drop in the log-likelihood. Path diagrams are shown in Figure 2.  The best-fitting model (*) is 
starred. 3,295 participants had SCDC scores across all ages. k - Number of parameters; LL - Log-likelihood; SCDC - Social and Communication Disorders 
Checklist   
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Figures legends 

 

Figure 1: Genetic variance of SCDC scores during development   

Genetic variances for SCDC scores across development as estimated using a univariate model 

(Supplementary Table S6, N≥ 4,174) and the full Cholesky decomposition model (Table 1, 

Model 1; Supplementary Table S8, N=3,295). Genetic factor A3 and A4 of the Cholesky 

decomposition model are not shown as their estimated Varg was negligible (<0.01). All 

reported Varg estimates are equivalent to SNP-h2 estimates. Grey lines indicate one standard 

error (SE) in total genetic variance (Varg) for each SCDC measure.  

SCDC - Social and Communication Disorders Checklist; Varg - Genetic variance 
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Figure 2: Path diagrams of a priori defined multivariate GSEM and data-driven model 

modifications 

A - Full Cholesky decomposition model; B - Independent pathway model; C - Common 

pathway model; D - Two genetic factor Cholesky model (Data-driven model modification) 

 

Observed phenotypic measures are represented by squares and latent factors by circles. Single 

headed arrows ('paths') define causal relationships between variables. Double headed arrows 

define correlations. Note that the variance of latent variables is constrained to unit variance, 

this is omitted from the diagrams to improve clarity. GSEM - Genetic-relationship-matrix 

structural equation models 
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Figure 3: Path diagram of the full  Cholesky decomposition model for SCDC scores (A) and 

its reduced form (B) 

 

The full Cholesky decomposition model (A) and its most parsimonious reduced form (B) are 

described in detail in Table 1 (Model 1 and 5 respectively). Corresponding to the phenotypic 

measures P1(8 years), P2(11 years), P3(14 years) and P4(17 years), the latent genetic factors 

with factor loadings a are A1(8 years), factor A2(11 years), factor A3(14 years), factor A4(17 

years) and the latent residual factors with factor loadings e are E1(8 years), factor E2(11 

years), factor E3(14 years), factor E4(17 years). All path coefficients are standardised. 3,295 

participants had repeated scores across all ages. Note that the variance of latent variables is 

constrained to unit variance, this is omitted from the diagrams to improve clarity. SCDC - 

Social and Communication Disorders Checklist 
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Developmental Changes Within the Genetic Architecture of Social Communication 
Behavior: A Multivariate Study of Genetic Variance in Unrelated Individuals 

Supplementary Information 

 
 

Supplementary Methods 

· Genome-wide genotype information in the Avon Longitudinal Study of Parents and 
Children (ALSPAC) 

· Genetic-relationship-matrix structural equation models (GSEM) 
· Data simulation 
· Attrition within ALSPAC 
· Supplementary references 
· Web resources 
· R gsem package installation 

 

Supplementary Tables 

· Supplementary Table S1: Descriptives of SCDC scores  
· Supplementary Table S2: Phenotypic correlation of SCDC scores  
· Supplementary Table S3: Bivariate simulations 
· Supplementary Table S4: Computational requirements (Bivariate simulations) 
· Supplementary Table S5: Trivariate simulation 
· Supplementary Table S6: Univariate GSEM of SCDC scores  
· Supplementary Table S7: Univariate analysis of SCDC scores: GCTA(GREML) 

versus GSEM 
· Supplementary Table S8: Multivariate GSEM of SCDC scores: Standardised factor 

loadings  
· Supplementary Table S9: Multivariate GSEM of SCDC scores: Estimated genetic 

variances and bivariate correlations 
· Supplementary Table S10: Bivariate analysis of SCDC scores: GCTA(GREML) 

versus GSEM 
· Supplementary Table S11: Genetic correlation between SCDC scores and subsequent 

attrition 
· Supplementary Table S12: Genetic correlations between SCDC attrition scores 

 
 
Supplementary Figures 

· Supplementary Figure S1: Path diagrams for simulated data sets 
· Supplementary Figure S2: Bivariate simulation analyses  
· Supplementary Figure S3: Bivariate genetic correlations between SCDC scores during 

development (bivariate GREML versus multivariate GSEM) 
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Supplementary Methods 

Genome-wide genotype information in the Avon Longitudinal Study of Parents and 

Children (ALSPAC) 

ALSPAC children were genotyped using the Illumina HumanHap550 quad chip 

genotyping platforms. The ALSPAC GWAS data was generated by Sample Logistics and 

Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp (Laboratory 

Corporation of America) using support from 23andMe. After quality control (individual call 

rate>0.97, SNP call rate>0.95, minor allele frequency (MAF)>0.01, Hardy-Weinberg 

equilibrium (HWE) p>10-7, and removal of individuals with cryptic relatedness and non-

European ancestry), 8,237 children and 477,482 directly genotyped single nucleotide 

polymorphisms (SNPs) were kept within the study.  
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Genetic-relationship-matrix structural equation models (GSEM) 

Similar to genetic restricted maximum likelihood (GREML) as implemented in 

genome-wide complex trait analysis (GCTA) software (1), GSEM use the genetic similarity 

between unrelated individuals to partition the expected phenotypic variance/covariance 

matrix into genetic and residual components. The model assumes that genetic and residual 

effects are independent, and that residual effects of different individuals are independent. A 

normally distributed phenotype in N unrelated individuals can thus be modelled (2) as 

  𝑷𝑷~𝑵𝑵(𝟎𝟎,𝑮𝑮 𝝈𝝈𝒈𝒈𝟐𝟐 + 𝑰𝑰(𝟏𝟏 − 𝝈𝝈𝒈𝒈𝟐𝟐))       (1) 

where P is a N x 1 vector of phenotypes, G is the N x N genetic correlation matrix of 

pairwise genome-wide genetic correlations between unrelated individuals, and I is a N x N 

identity matrix. As in the GCTA software package (1), G is the genetic relationship matrix 

(GRMs) constructed from common variants present on SNP chips, and 𝜎𝜎𝑔𝑔2 is an estimate of 

the genetic variance captured by these SNPs, while (1-𝜎𝜎𝑔𝑔2) is an estimate of the residual 

variance (𝜎𝜎𝑒𝑒2). Thus, similar to GREML (1), the total amount of phenotypic variance captured 

by genotyped SNPs can be estimated by fitting a univariate GSEM. GSEM uses full 

information maximum likelihood (FIML) and combinations of latent factor loadings and/or 

factor variances which can then be used to derive estimates of genetic and residual variances, 

covariances and correlations (see below) (3). More generally, the statistical framework of 

GSEM is analogous to twin analysis methodologies (4), where SEM (3) in genetically 

informative samples (with known average degree of genetic resemblance) are used to model 

the phenotypic covariance structure (5). In twin studies, genetic and environmental influences 

are parametrised as latent factors. The phenotypic covariance structure is often modelled by 

one or more additive genetic factors A (i.e. the total additive genetic effects), one or more 

common environmental factors C (i.e. environmental influences affecting the phenotype in 
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family members in an identical way) and one or more specific environmental factors E (i.e. 

unique exposure of family members to environmental factors). Instead of expected genetic 

correlations between twin pairs based on biometrical theory (4), GSEM uses genetic 

relationship matrices (GRMs) for genetic covariance structure modelling. Like GREML, it 

describes one or more additive genetic factors A and one or more residual factors E.  

Within this study, we applied, univariate GSEM and multivariate GSEM, analogous to 

twin analysis (4). Assuming multivariate normality, and expressing the phenotype of each 

individual i as a deviation from the grand mean (5), the likelihood Li for each person can be 

expressed as   

log(𝐿𝐿𝑖𝑖) = −1
2

log |𝛴𝛴𝑖𝑖| −
1
2
𝑃𝑃𝑖𝑖′𝛴𝛴𝑖𝑖−1 𝑃𝑃𝑖𝑖 + 𝑐𝑐 = −1

2
log |𝛴𝛴𝑖𝑖| −

1
2
𝑡𝑡𝑡𝑡( 𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖′𝛴𝛴𝑖𝑖−1) (2) 

where 𝛴𝛴𝑖𝑖 is the predicted variance/covariance matrix and Pi is the vector of phenotypes for the 

ith individual with a grand mean of 0 ( 𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖′ is the sample covariance matrix), and c is a 

constant term. The log likelihood (L) is then the sum of the log likelihoods for each 

individual. 

    log (L) = ∑ log (𝐿𝐿𝑖𝑖)         (3) 

 A saturated AE model can be obtained through a full decomposition of the genetic 

variance and residual variance into as many latent factors as there are observed measures 

(Cholesky decomposition). The Cholesky decomposition of the genetic variance can be 

described as follows (6): For a longitudinally assessed trait P with t repeat measurements, the 

first phenotypic measure, P1, is influenced by a latent genetic factor (A1), which can also 

explain variance in the second and all following measures (P2,...,Pt). The second measure (P2) 

is, in addition, influenced by a second latent genetic factor A2, explaining phenotypic 

variance in P2 and all following measures (P3,...,Pt) not yet captured by A1, and so forth. The 

last measure (Pt) is, beside the latent genetic factors (A1,...,At-1), influenced by a genetic 
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factor At, which does not explain variance within any of the previous measures (P1,...,Pt-1) (4). 

We annotate the genetic factor loadings a (path coefficients) such that the first number 

indicates the direction of the effect (the variable to which the arrow points) and the second the 

origin of the effect (4).  

The expected phenotypic covariance matrix for Z-standardised traits based on the 

factor model is  

𝜮𝜮 = 𝝀𝝀𝝀𝝀𝝀𝝀′ + 𝚿𝚿2      (4) 

where λ is a lower triangular matrix of genetic factor loadings, 𝛷𝛷 is a diagonal matrix 

of latent genetic factor variances (standardised to unit variance) such that 𝛷𝛷 is an identity 

matrix I, and 𝚿𝚿2 a covariance matrix of residual influences (5). It is also possible to 

decompose the residual variance into latent residual factors, such that 

𝜮𝜮 = 𝝀𝝀𝝀𝝀𝝀𝝀′ + 𝜻𝜻𝚹𝚹𝜻𝜻′      (5) 

where 𝜻𝜻  is a lower triangular matrix of residual factor loadings and 𝚹𝚹 is a diagonal 

matrix of latent residual factor variances (standardised to unit variance) such that 𝚹𝚹 is an 

identity matrix I. For example, for a bivariate trait consisting of measures P1 and P2, assuming 

two genetic factors (A1 and A2) and two genetic factors (E1 and E2), the expected phenotypic 

covariance matrix can be expressed as follows:  

𝜮𝜮 = �
𝜎𝜎𝑝𝑝_1
2 𝜎𝜎𝑝𝑝_12

𝜎𝜎𝑝𝑝_12 𝜎𝜎𝑝𝑝_2
2 �      (6) 

with the relevant matrices  

𝝀𝝀 = �𝑎𝑎11 0
𝑎𝑎21 𝑎𝑎22

�, 𝝀𝝀 = �1 0
0 1�, 𝜻𝜻 = �𝑒𝑒11 0

𝑒𝑒21 𝑒𝑒22
� ,𝚹𝚹 = �1 0

0 1�  (7) 

where 𝜎𝜎𝑝𝑝_1
2  and 𝜎𝜎𝑝𝑝_2

2  represent the phenotypic variances and 𝜎𝜎𝑝𝑝_12 the phenotypic covariance.  
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The bivariate AE Cholesky decomposition of two standardised measures, as described 

above, can be visualised by means of a path diagram (Supplementary Figure S1A) and the 

expected phenotypic variances and covariances can be expressed as follows:  

𝜎𝜎𝑝𝑝_1
2 = 𝜎𝜎𝑔𝑔_1

2 + 𝜎𝜎𝑒𝑒_1
2 = 𝑎𝑎112 + 𝑒𝑒112 = 1    (8) 

𝜎𝜎𝑝𝑝_2
2 = 𝜎𝜎𝑔𝑔_2

2 + 𝜎𝜎𝑒𝑒_2
2 = (𝑎𝑎212 + 𝑎𝑎222 ) + (𝑒𝑒212 + 𝑒𝑒222 ) = 1          (9) 

𝜎𝜎𝑝𝑝_12 = 𝜎𝜎𝑔𝑔_12 + 𝜎𝜎𝑒𝑒_12 =  𝑎𝑎11𝑎𝑎21 + 𝑒𝑒11𝑒𝑒21     (10) 

where 𝜎𝜎𝑔𝑔_1
2  and 𝜎𝜎𝑔𝑔_2

2  represent the genetic variances and 𝜎𝜎𝑔𝑔_12 the genetic covariance, 

and 𝜎𝜎𝑒𝑒_1
2  and 𝜎𝜎𝑒𝑒_2

2  the residual variances and 𝜎𝜎𝑒𝑒_12 the residual covariance. The variance of the 

latent factors A1 and A2, and E1 and E2 has been standardised to unit variance and is not 

shown.  

Estimated genetic variances and covariances can subsequently be utilised to derive 

genetic correlations (GSEM-rg) between two phenotypes (7), i.e. the extent to which two 

phenotypes share genetic factors (ranging from -1 to 1):  

𝜌𝜌𝑔𝑔 = 𝜎𝜎𝑔𝑔_12

�𝜎𝜎𝑔𝑔_1
2 𝜎𝜎𝑔𝑔_2

2
          (11) 

where 𝜎𝜎𝑔𝑔_12  is the genetic covariance between phenotypes 1 and 2 and 𝜌𝜌𝑔𝑔 the genetic 

correlation.  

We fitted in this work an AE Cholesky decomposition model as baseline model and 

not, as commonly selected in twin research, a fully saturated model.  A twin design, however, 

inherently contains genetic information based on phenotypic twin correlations in 

monozygotic versus dizygotic twins. A cohort sample consisting of unrelated individuals does 

not. Thus, fitting a fully saturated model in a general population sample of unrelated 

individuals will not provide information on genetic effects within that sample. 
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The goodness-of-fit of GSEM to empirical data was assessed using likelihood ratio 

test (LRT), the Akaike Information Criterion (AIC) (8) and the Bayesian Information 

Criterion (BIC) (9). The LRT is based on the difference in the negative log-likelihood (−2LL) 

of a priori defined models (model 2 and 3) and the saturated model (model 1), which is 

asymptotically chi-squared distributed with degrees of freedom equal to the difference in 

parameters between the models. AIC fit indices were calculated as  

AIC = -2LL + 2k        (12) 

where LL is the log-likelihood and k is the number of free model parameters in the model, 

with lower AIC values indexing a better model fit (8). The BIC indices take both goodness-

of-fit and parsimony of the model into account, and lower BIC values indicate a better model 

fit (10). The index is defined as 

BIC = -2LL + k log (N)       (13) 

where N is the number of independent observations. 

 GSEM were implemented within R (Rv3.2.4) via the optim function (stats library). 
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Data simulation 

To evaluate the accuracy of multivariate GSEM, we carried out data simulations. 

Assuming multivariate normality, we simulated bivariate traits with two repeated measures 

(i.e. two genetic factors with their variances and their covariance; two residual factors with 

their variances and their covariance, Supplementary Figure S1A), assuming 5000 individuals 

and 20,000 SNPs per genetic factor, for 10 replicates. Phenotypic variances and covariances 

were estimated from genetic (a) and residual (e) factor loadings as expected under an AE 

Cholesky decomposition model (Supplementary Figure S1A). The simulated values are 

detailed in Supplementary Table S3. Across replicates, we calculated the mean average 

deviation (MAD; i.e. the absolute deviation from the mean), the root mean squared error 

(RMSE, i.e. the square root of the average squared difference between each replicate estimate 

and the true (simulated) value), and the squared bias (Bias2, i.e. the squared difference 

between the mean of the replicate estimates and the true simulated value). As a benchmark 

test, we also carried out a trivariate trait simulation with three repeated measures (i.e. three 

genetic factors with their variances and their covariance and three residual factors with their 

variances and their covariance, Supplementary Figure S1B) assuming 5000 individuals and 

20,000 SNPs per genetic factor, for one replicate. 
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Attrition within ALSPAC 

To study non-participation within ALSPAC, analysis was restricted to participants 

who were alive at one year of age and had information on genome-wide data available 

(N=7,758). Dichotomic SCDC-missingness was defined as availability of mother-reported 

scores at 8, 11, 14 and 17 years of age. We estimated genetic correlations between these 

attrition scores as well as between SCDC scores and subsequent SCDC-missingness. This is 

possible as genetic correlations are independent of an underlying liability scale. For 

simplicity, we used bivariate GREML and not multivariate GSEM for the analysis, as there 

was little evidence for a genetic correlation between SCDC scores and subsequent attrition 

(see Results). 
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Web resources 

ALSPAC: http://www.bris.ac.uk/alspac/researchers/data--‐access/data--‐dictionary 

HPC: http://www.bristol.ac.uk/earthsciences/about/facilities/hpc.html 
 
PLINK2: http://pngu.mgh.harvard.edu/~purcell/plink/plink2.shtml 

OPENMX: http://openmx.psyc.virginia.edu/ 

R: https://cran.r-project.org/ 

GCTA: http://cnsgenomics.com/software/gcta/ 

GSEM: https://gitlab.gwdg.de/beate.stpourcain/gsem 

 

http://www.bristol.ac.uk/earthsciences/about/facilities/hpc.html
http://cran.r-project.org/
http://cnsgenomics.com/software/gcta/
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R gsem package installation 

install.packages("devtools") 
devtools::install_github("hadley/devtools") 
install.packages("msm") 
install.packages("numDeriv") 
devtools::install_git('https://gitlab.gwdg.de/beate.stpourcain/gsem') 

 

#Note that ssl certificate issues during the installation can arise if the ca-certificates package 
on the client server is out of date  
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Supplementary Tables 

 

Supplementary Table S1: Descriptives of SCDC scores  
Trait Age(years)[range] Male/Female Mean(SD) 

[range] 
Kurtosis Skewness N 

8 7.7(0.14)[7.5;9.3] 2842/2709 2(3.71)[0;24] 9.12 2.19 5551 
11 10.7(0.13)[10.5;13.8] 2751/2709 1(3.51)[0;24] 10.53 2.46 5460 
14 13.9(0.15)[13. 7;16.1] 2529/2531 1(3.59)[0;24] 9.08 2.20 5060 
17 16.8(0.36)[16.5;18.3] 2024/2150 1(3.79)[0;24] 7.09 1.89 4174 
SCDC - Social and Communication Disorders Checklist; The kurtosis for the standard normal 
distribution is 3 and the skewness is 0 
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Supplementary Table S2: Phenotypic correlation of SCDC scores  
Age in years 

 8 11 14 17 
8 1.00 0.61 0.50 0.38 
11 0.57 1.00 0.56 0.41 
14 0.49 0.57 1.00 0.51 
17 0.39 0.45 0.56 1.00 

SCDC - Social and Communication Disorders Checklist 
Lower triangle: Spearman’s rank correlation using pairwise complete 
observations; Upper triangle: Pearson product moment correlation 
using rank-transformed scores adjusted for age, sex and the two most 
significant ancestry-informative principal components 
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Supplementary Table S3: Bivariate simulations 
Label Sim GCTA 

(GREML) 
GSEM 
(FIML) 

OpenMx 2.5 
(FIML) 

  Mean(RMSE) MAD Bias2 Mean(RMSE) MAD Bias2 Mean(RMSE) MAD Bias2 
Varg1  0.25 0.263(0.053) 0.039 1.8x10-4 0.263(0.053) 0.039 1.8x10-4 0.263(0.054) 0.039 1.8x10-4 
Varg2 0.50 0.48(0.091) 0.077 3.6x10-4 0.481(0.091) 0.077 3.5x10-4 0.481(0.091) 0.077 3.5x10-4 
Covg 0.25 0.251(0.059) 0.055 4.6x10-7 0.251(0.059) 0.055 3.5x10-7 0.251(0.059) 0.055 3.0x10-7 
Vare1 0.75 0.740(0.05) 0.038 9.0x10-5 0.74(0.05) 0.038 9.4x10-5 0.74(0.05) 0.038 9.2x10-5 
Vare2 0.50 0.515(0.086) 0.071 1.8x10-4 0.513(0.086) 0.071 1.7x10-4 0.513(0.086) 0.071 1.7x10-4 
Cove 0.087 0.085(0.052) 0.048 5.5x10-7 0.087(0.052) 0.048 7.0x10-7 0.087(0.052) 0.048 5.7x10-7 
a11 0.50 -  - 0.51(0.055) 0.041 1.1x10-4 0.51(0.055) 0.042 1.0x10-4 
a21 0.50 -  - 0.49(0.096) 0.082 9.7x10-5 0.49(0.096) 0.082 9.5x10-5 
a22 0.50 -  - 0.481(0.036) 0.025 3.8x10-4 0.481(0.036) 0.025 3.8x10-4 
e11 0.87 -  - 0.86(0.029) 0.021 3.6x10-5 0.86(0.029) 0.022 3.6x10-5 
e21 0.10 -  - 0.101(0.059) 0.054 8.3x10-7 0.101(0.059) 0.054 6.5x10-7 
e22 0.70 -  - 0.705(0.054) 0.044 2.1x10-5 0.704(0.054) 0.044 2.0x10-5 

Bivariate trait data with two repeated measures (1 and 2, N=5000 for each trait) were simulated for 10 replicates (Supplementary Figure 
S1A): Absolute genetic factor loadings (a) are given with respect to two simulated genetic factors A1 and A2; Absolute residual factor 
loadings (e) are given with respect to two simulated residual factors E1 and E2; Simulated data were analysed with bivariate 
GCTA(GREML), bivariate GSEM(FIML) (full Cholesky factorisation) and bivariate OpenMx SEM (full Cholesky factorisation using the 
fastest OpenMx SEM algorithm, OpenMx(FIML) v2.5; see Supplementary Table S4).  
 
Bias2 - Squared bias defined as the squared difference between the mean of the replicate estimates and the true simulated value; Cove - 
Residual covariance; Covg - Genetic covariance; FIML - Full information maximum likelihood; GCTA - Genome-wide complex trait 
analysis; GREML - Genetic-relationship matrix restricted maximum likelihood; GSEM - Genetic-relationship-matrix structural equation 
models; MAD - Mean absolute deviation; Mean - Mean of 10 replicate estimates; RMSE - Root mean squared error; SEM - Structural 
equation models; Sim - Simulated (true) value; Vare - Residual variance; Varg - Genetic variance 
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Supplementary Table S4: Computational requirements (Bivariate simulations) 
N GCTA 

(GREML) 
GSEM 
(FIML) 

OpenMx 2.5 
(FIML)a 

OpenMx 2.7 
(FIML)a 

OpenMx 2.7 
(mxGREML)a 

 RAM(GB) Time(min) RAM(GB) Time(min) RAM(GB) Time(min) RAM(GB) Time(min) RAM(GB) Time(min) 
1000 <0.1 <1 0.5 9 3.3 9 1.0 29 0.7 32 
2000 1.0 2 1.5 98 12.8 44 3.7 213 2.4 298 
3000 2.1 9 3.2 121 28.4 115 8.3 600 5.2 785 
4000 4.0 25 5.6 298 50.2 204 16.0 1260 9.6 1681 
5000 5.9 28 8.7 301 78.4 351 22.8 2694 15.1 2597 

Bivariate trait data with two repeated measures were simulated for one replicate using a series of different sample sizes (1000 to 5000). The 
estimated parameter values are identical to those described in Supplementary Table S3. Analyses were conducted using one core (2.60 GHz) 
with access to 64 GB or, if required, 256 GB; RAM(GB) - Memory in Giga Bytes; Time(min) - Time in minutes; a - All OpenMx (mx) analyses 
were carried out with the options: options(mxCondenseMatrixSlots=TRUE) and mxOption(NULL,"Default optimizer","NPSOL"); GCTA - 
Genome-wide complex trait analysis; GREML - Genetic-relationship matrix restricted maximum likelihood, FIML - Full information maximum 
likelihood 
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Supplementary Table S5: Trivariate simulation 
Label Sim GSEM (FIML) 

Estimate(SE) 
OpenMx 2.5 (FIML) 

Estimate(SE) 
a11 0.80 0.83(0.043) 0.83(0.043) 
a21 0.50 0.498(0.055) 0.498(0.055) 
a31 0.00 -0.010(0.062) -0.011(0.062) 
a22 0.40 0.403(0.04) 0.403(0.04) 
a32 0.50 0.465(0.071) 0.464(0.071) 
a33 0.10 0.101(0.165) 0.098(0.17) 
e11 0.60 0.572(0.058) 0.572(0.058) 
e21 0.60 0.625(0.06) 0.625(0.06) 
e31 0.20 0.211(0.086) 0.212(0.086) 
e22 0.48 0.458(0.04) 0.458(0.04) 
e32 0.50 0.537(0.067) 0.538(0.067) 
e33 0.67 0.682(0.026) 0.682(0.026) 

A trivariate trait with three standardised measures (1, 2 and 3) was  simulated (a single 
replicate) as a benchmark test (Supplementary Figure S1B): Absolute genetic factor 
loadings (a) are given with respect to three simulated genetic factors A1, A2 and A3; 
Absolute residual factor loadings (e) are given with respect to three simulated residual 
factors E1, E2 and E3; Simulated data were analysed with trivariate GSEM(FIML) (full 
Cholesky factorisation) and trivariate OpenMx SEM (full Cholesky factorisation using 
the fastest OpenMx SEM algorithm, OpenMx(FIML) v2.5; see Supplementary Table 
S4).  
 
SEM - Structural equation models; Sim - Simulated (true) value; GSEM - Genetic-
relationship-matrix structural equation models 
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Supplementary Table S6: Univariate GSEM of SCDC scores 
 GSEM 

Age(y) Varg(SE) p N 
8 0.25(0.06) 3.36x10-5 5551 
11 0.22(0.06) 2.94x10-4 5460 
14 0.086(0.06) 0.18 5060 
17 0.47(0.09) 4.40x10-8 4174 

GSEM - Genetic-relationship-matrix structural equation models; Varg - 
Additive genetic variance; SCDC - Social and Communication 
Disorders Checklist 
 
Univariate GSEM was carried out by estimating the genetic variance as 
a variance component without constraints (2-sided test). The reported 
Varg estimates are equivalent to SNP-h2 estimates due to the 
standardisation of the analysed traits.   
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Supplementary Table S7: Univariate analysis of SCDC scores: GCTA(GREML) versus 
GSEM 
 GCTA(GREML) GSEM 
Age Varg(SE) p N Varg(SE) p N 

8 0.23(0.07) 1.6x10-4 4971 0.23(0.07) 1.6x10-4 4971 
11 0.15(0.07) 0.011 4895 0.15(0.07) 0.011 4895 
14 0.097(0.07) 0.077 4566 0.099(0.07) 0.077 4566 
17 0.47(0.09) 5.0x10-9 3779 0.47(0.09) 5.0x10-9 3779 

Age - Age in years; GCTA - Genome-wide complex trait analysis; GREML - Genetic-
relationship matrix restricted maximum likelihood; GSEM - Genetic-relationship-matrix 
structural equation models; SCDC - Social and Communication Disorders Checklist; Varg - 
Additive genetic variance 
 
Differences compared with the total sample N are due to the exclusion of individuals with a 
relatedness of ≥ 2.5% from all ALSPAC participants with genome-wide data, allowing for 
identical sample numbers across GREML and GSEM analyses. The reported Varg estimates 
are equivalent to SNP-h2 estimates due to the standardisation of the analysed traits. 
 
Univariate GSEM was carried out by estimating the genetic variance without constraints. 
Note, that the GREML likelihood ratio test, as implemented in GCTA (11), follows by default 
a 50:50 mixture distribution with a point mass at 0 and a chi-squared distribution (df=1), 
which is comparable to a one-tailed p-value. For comparison with GSEM, however, an 
unconstrained GCTA option was selected. 
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Supplementary Table S8: Multivariate GSEM of SCDC scores: Standardised factor loadings  
 Full Cholesky decomposition  

(Model 1) 
Best-fitting model 

(Model 5) 
Label Estimate(SE) p Estimate (SE) p 
a11 0.57(0.07) 5.09x10-13 0.57(0.06) 8.69x10-17 
a21 0.48(0.08) 1.30x10-8 0.48(0.08) 2.57x10-9 
a31 0.20(0.08) 2.15x10-2 0.20(0.06) 4.10x10-3 
a41 0.46(0.10) 2.15x10-6 0.47(0.05) 3.29x10-21 
a22 0.17(0.08) 4.09x10-2 0.17(0.07) 1.94x10-2 
a32 -0.12(0.08) 1.69x10-1 - - 
a42 -0.44(0.09) 2.60x10-6 -0.44(0.08) 8.24x10-8 
a33 <0.01(0.21) 1 - - 
a43 <0.01 (0.51) 1 - - 
a44 <0.01 (0.29) 1 - - 
e11 0.82(0.05) <10-10 0.82(0.04) <10-10 
e21 0.42(0.07) 1.73x10-9 0.42(0.06) <10-10 
e31 0.49(0.05) <10-10 0.49(0.04) <10-10 
e41 0.14(0.08) 6.69x10-2 - - 
e22 0.75(0.03) <10-10 0.75(0.02) <10-10 
e32 0.42(0.03) <10-10 0.42(0.03) <10-10 
e42 0.28(0.06) 1.13x10-6 0.28(0.05) 1.55x10-7 
e33 0.73(0.03) <10-10 0.74(0.02) <10-10 
e43 0.26(0.06) 1.51x10-5 0.26(0.05) 8.28x<10-9 
e44 0.66(0.05) <10-10 0.66(0.05) <10-10 

The full Cholesky decomposition model and its best-fitting reduced form are described in 
Table 1 (Model 1 and model 5 respectively) and Figure 3: Genetic factor loadings a are 
given with respect to the latent genetic factor A1(8 years), factor A2(11 years), factor 
A3(14 years) and  factor A4(17 years) and residual factor loadings e with respect to factor 
E1(8 years), factor E2(11 years), factor E3(14 years) and factor E4(17 years). 3,295 
participants had non-missing scores across all ages. 
 
GSEM - Genetic-relationship-matrix structural equation models; SCDC - Social and 
Communication Disorders Checklist  
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Supplementary Table S9: Multivariate GSEM of SCDC scores: Estimated genetic variances 
and bivariate correlations 
Full Cholesky decomposition (Model 1) 
Varg(SE) 
Age 8 11 14 17 
 

 
   

 0.32(0.08) 0.26(0.08) 0.05(0.03) 0.41(0.09) 
     
rg(SE)    
Age 8 11 14 17 
     
8 1 - - - 
11 0.95(0.05) 1 - - 
14 0.86(0.20) 0.65(0.29) 1 - 
17 0.73(0.12) 0.46(0.16) 0.98(0.08) 1 
Best-fitting model (Model 5) 
Varg(SE) 
Age 8 11 14 17 
 

 
   

 0.32(0.07) 0.26(0.07) 0.04(0.03) 0.41(0.07) 
     
rg(SE)    
Age 8 11 14 17 
     
8 1 - - - 
11 0.95(0.05) 1 - - 
14 1.00(<0.01) 0.95(0.05) 1 - 
17 0.73(0.08) 0.46(0.13) 0.73(0.08) 1 
The full Cholesky decomposition model and its best-fitting reduced form are described in 
Table 1 (Model 1 and model 5 respectively) and Figure 3. 3,295 participants had non-missing 
scores across all ages. 
 
Age - Age at measurement in years; GSEM - Genetic-relationship-matrix structural equation 
models; rg - Genetic correlation; SCDC - Social and Communication Disorders Checklist; 
Varg - Genetic variance 
 
Note that SCDC scores at 14 years were retained within the model, irrespective of their low 
SNP-heritability, due to their genetic correlations with other SCDC measures earlier and later 
during development. The reported Varg estimates are equivalent to SNP-h2 estimates and 
based on standardised path coefficients. 
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Supplementary Table S10: Bivariate analysis of SCDC scores: GCTA(GREML) versus GSEM  

Full  Age 8 vs 11 
Obs=9,866 

8 vs 14 
Obs =9,537 

8 vs 17 
Obs =8,750 

11 vs 14 
Obs =9,461 

11 vs 17 
Obs =8,674 

14 vs 17 
Obs =8,345 

Method  Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) 
GCTA(GREML) A1 0.22(0.065) 0.22(0.067) 0.23(0.068) 0.17(0.067) 0.16(0.068) 0.09(0.07) 
 A2 0.15(0.065) 0.09(0.069) 0.47(0.087) 0.11(0.069) 0.48(0.086) 0.49(0.086) 
 Covg 0.17(0.053) 0.1(0.052) 0.15(0.056) 0.11(0.055) 0.11(0.057) 0.17(0.061) 
 rg 0.95(0.156) 0.68(0.266) 0.46(0.145) 0.79(0.217) 0.40(0.17) 0.82(0.257) 
 pone-tailed 0.00030 0.025 0.0025 0.018 0.024 0.00014 

Non-missing Age 8 vs 11 
Obs =8,434 

8 vs 14 
Obs =7,872 

8 vs 17 
Obs =6,696 

11 vs 14 
Obs =8,820 

11 vs 17 
Obs =6,942 

14 vs 17 
Obs =7,014 

Method  Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) 
GCTA(GREML) A1 0.16(0.075) 0.3(0.082) 0.22(0.092) 0.13(0.076) 0.11(0.088) 0.03(0.089) 
 A2 0.08(0.077) 0.07(0.081) 0.41(0.099) 0.01(0.076) 0.47(0.096) 0.44(0.091) 
 Covg 0.11(0.062) 0.12(0.064) 0.15(0.072) 0.04(0.062) 0.08(0.07) 0.11(0.071) 
 rg 1(0.354) 0.89(0.418) 0.51(0.188) - 0.33(0.243) - 
 pone-tailed 0.5 0.019 0.013 - 0.13 - 
GSEM A1 0.17(0.075) 0.3(0.081) 0.22(0.091) 0.13(0.074) 0.11(0.084) 0.04(0.037) 
 A2 0.1(0.061) 0.07(0.078) 0.41(0.094) 0.02(0.054) 0.47(0.092) 0.47(0.092) 
 Covg 0.13(0.06) 0.13(0.062) 0.15(0.069) 0.05(0.058) 0.08(0.067) 0.14(0.065) 
 rg 1(0) 0.89(0.422) 0.51(0.182) - 0.33(0.229) - 
Age - Age at measurement in years; GCTA - Genome-wide complex trait analysis; GREML - Genetic-relationship matrix 
restricted maximum likelihood; GSEM - Genetic-relationship-matrix structural equation models; SCDC - Social and 
Communication Disorders Checklist  
 
Bivariate analyses were conducted using bivariate GCTA(GREML) and bivariate GSEM (full Cholesky decomposition of the 
genetic and residual variance). Analyses were either carried out using the full phenotypic information (GCTA(GREML) only; 
including individuals with information at one time point only), or restricting the analysis to individuals with non-missing 
information across both time points. Individuals with a relatedness of ≥ 2.5% were excluded. For comparisons, genetic variances 
(Varg), covariances (Covg) and correlations (rg) are shown. rg estimates for traits with Varg<0.05 are not reported due to large 
estimation errors.  
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Supplementary Table S11: Genetic correlation between SCDC scores and subsequent attrition 
rg(SE), pone-tailed 

 8 (Score) 11 (Score) 14 (Score) 17 (Score) 
8 (miss) - - - - 
11 (miss) 0.33(0.23), p=0.06 - - - 
14 (miss) 0.39(0.19), p=0.02 0.27(0.27), p=0.15 - - 
17 (miss) 0.24(0.20), p=0.11 0.20(0.28), p=0.24 0.28(0.34), p=0.19 - 

miss - Missingness in Social and Communication Disorders Checklist (SCDC) scores; Scores - 
SCDC scores  
 
Genetic correlations (rg) were estimated using bivariate genetic-relationship matrix restricted 
maximum likelihood (GREML) as implemented in genome-wide complex trait analysis (GCTA) 
software  
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Supplementary Table S12: Genetic correlations between SCDC attrition scores  
rg(SE), pone-tailed 
Miss 8 11 14 17 

8  - - - - 
11 0.81(0.13), p=4.8x10-4 - - - 
14 0.83(0.12) , p=2.2x10-5 0.84(0.11), p=1.1x10-4 - - 
17 1.00(0.15) , p=8.4x10-7 1.00(0.15), p=2.2x10-5 0.91(0.09), p=3.3x10-6 - 

Miss - Missingness in Social and Communication Disorders Checklist (SCDC) scores 
 
Genetic correlations (rg) were estimated using bivariate genetic-relationship matrix restricted 
maximum likelihood (GREML) as implemented in genome-wide complex trait analysis 
(GCTA) software  
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Supplemental Figures 

 

 

Supplementary Figure S1: Path diagrams for simulated data sets 

A - A bivariate trait consisting of two standardised measures P1 and P2 was simulated for two 
genetic factors (A1 and A2) and two residual factors (E1 and E2), shown with genetic and 
residual factor loadings, assuming 5000 individuals and 20,000 SNPs per genetic factor (10 
replicates) 
 
B - A trivariate trait consisting of three standardised measures P1, P2 and P3 was simulated for 
three genetic factors (A1, A2 and A3) and three residual factors (E1, E2 and E3), shown with 
genetic and residual factor loadings, assuming 5000 individuals and 20,000 SNPs per genetic 
factor (one replicate) 
 
Observed phenotypic measures are represented by squares, while latent factors are 
represented by a circle. Single headed arrows ('paths') denote causal relationships between 
variables and are shown for genetic factor loadings (a) and residual factor loadings (e). Note 
that the variance of latent variables is constrained to unit variance, this is omitted from the 
diagrams to improve clarity. 

 
 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
St Pourcain et al.  Supplement 

26 

 

Supplementary Figure S2: Bivariate simulation analyses 

Mean estimated genetic and environmental variances and covariances (A) and factor loadings 
(B) are shown for 10 replicates with mean squared errors as grey bars. Simulated data were 
analysed with GCTA(GREML), GSEM (full Cholesky factorisation) and OpenMx SEM (full 
Cholesky factorisation, OpenMx 2.5, FIML). Bivariate traits with two standardised measures 
(1 and 2) were simulated assuming two genetic factors (A1 and A2) and two residual factors 
(E1 and E2; Supplementary Figure S1A, Supplementary Table S3).  
 
a - Genetic factor loading; Cove - Residual covariance; Covg - Genetic covariance; e - 
Residual factor loading; FIML - Full information maximum likelihood; GCTA - Genome-
wide complex trait analysis; GREML - Genetic-relationship-matrix residual maximum 
likelihood; GSEM - Genetic-relationship-matrix structural equation models; SEM - Structural 
equation models; Sim - Simulated value; Vare - Residual variance; Varg - Genetic variance  
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Supplementary Figure S3: Bivariate genetic correlations between SCDC scores during 
development (bivariate GREML versus multivariate GSEM) 

Genetic correlations (rg) were estimated with multivariate GSEM (lower triangle; as shown 
for the full Cholesky decomposition model in Supplementary Table S9, N=13,180 
observations)  and bivariate GCTA(GREML) (upper triangle; Supplementary Table S10, N≤ 
9,866 observations; analyses using full phenotypic information) and are shown with their 
standard errors. 
 
Note that both bivariate GREML and bivariate GSEM analyses using identical sample 
numbers provided nearly identical rg estimates (Supplementary Table S10, non-missing 
sample analyses). 
 
GCTA - Genome-wide complex trait analysis; GREML - Genetic-relationship matrix 
restricted maximum likelihood; GSEM - Genetic-relationship-matrix structural equation 
models 


