
St Pourcain et al.  Supplement 

1 

Developmental Changes Within the Genetic Architecture of Social Communication 
Behavior: A Multivariate Study of Genetic Variance in Unrelated Individuals 

Supplementary Information 

 
 

Supplementary Methods 

· Genome-wide genotype information in the Avon Longitudinal Study of Parents and 
Children (ALSPAC) 

· Genetic-relationship-matrix structural equation models (GSEM) 
· Data simulation 
· Attrition within ALSPAC 
· Supplementary references 
· Web resources 
· R gsem package installation 

 

Supplementary Tables 

· Supplementary Table S1: Descriptives of SCDC scores  
· Supplementary Table S2: Phenotypic correlation of SCDC scores  
· Supplementary Table S3: Bivariate simulations 
· Supplementary Table S4: Computational requirements (Bivariate simulations) 
· Supplementary Table S5: Trivariate simulation 
· Supplementary Table S6: Univariate GSEM of SCDC scores  
· Supplementary Table S7: Univariate analysis of SCDC scores: GCTA(GREML) 

versus GSEM 
· Supplementary Table S8: Multivariate GSEM of SCDC scores: Standardised factor 

loadings  
· Supplementary Table S9: Multivariate GSEM of SCDC scores: Estimated genetic 

variances and bivariate correlations 
· Supplementary Table S10: Bivariate analysis of SCDC scores: GCTA(GREML) 

versus GSEM 
· Supplementary Table S11: Genetic correlation between SCDC scores and subsequent 

attrition 
· Supplementary Table S12: Genetic correlations between SCDC attrition scores 

 
 
Supplementary Figures 

· Supplementary Figure S1: Path diagrams for simulated data sets 
· Supplementary Figure S2: Bivariate simulation analyses  
· Supplementary Figure S3: Bivariate genetic correlations between SCDC scores during 

development (bivariate GREML versus multivariate GSEM) 

  



St Pourcain et al.  Supplement 

2 

Supplementary Methods 

Genome-wide genotype information in the Avon Longitudinal Study of Parents and 

Children (ALSPAC) 

ALSPAC children were genotyped using the Illumina HumanHap550 quad chip 

genotyping platforms. The ALSPAC GWAS data was generated by Sample Logistics and 

Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp (Laboratory 

Corporation of America) using support from 23andMe. After quality control (individual call 

rate>0.97, SNP call rate>0.95, minor allele frequency (MAF)>0.01, Hardy-Weinberg 

equilibrium (HWE) p>10-7, and removal of individuals with cryptic relatedness and non-

European ancestry), 8,237 children and 477,482 directly genotyped single nucleotide 

polymorphisms (SNPs) were kept within the study.  
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Genetic-relationship-matrix structural equation models (GSEM) 

Similar to genetic restricted maximum likelihood (GREML) as implemented in 

genome-wide complex trait analysis (GCTA) software (1), GSEM use the genetic similarity 

between unrelated individuals to partition the expected phenotypic variance/covariance 

matrix into genetic and residual components. The model assumes that genetic and residual 

effects are independent, and that residual effects of different individuals are independent. A 

normally distributed phenotype in N unrelated individuals can thus be modelled (2) as 

  𝑷𝑷~𝑵𝑵(𝟎𝟎,𝑮𝑮 𝝈𝝈𝒈𝒈𝟐𝟐 + 𝑰𝑰(𝟏𝟏 − 𝝈𝝈𝒈𝒈𝟐𝟐))       (1) 

where P is a N x 1 vector of phenotypes, G is the N x N genetic correlation matrix of 

pairwise genome-wide genetic correlations between unrelated individuals, and I is a N x N 

identity matrix. As in the GCTA software package (1), G is the genetic relationship matrix 

(GRMs) constructed from common variants present on SNP chips, and 𝜎𝜎𝑔𝑔2 is an estimate of 

the genetic variance captured by these SNPs, while (1-𝜎𝜎𝑔𝑔2) is an estimate of the residual 

variance (𝜎𝜎𝑒𝑒2). Thus, similar to GREML (1), the total amount of phenotypic variance captured 

by genotyped SNPs can be estimated by fitting a univariate GSEM. GSEM uses full 

information maximum likelihood (FIML) and combinations of latent factor loadings and/or 

factor variances which can then be used to derive estimates of genetic and residual variances, 

covariances and correlations (see below) (3). More generally, the statistical framework of 

GSEM is analogous to twin analysis methodologies (4), where SEM (3) in genetically 

informative samples (with known average degree of genetic resemblance) are used to model 

the phenotypic covariance structure (5). In twin studies, genetic and environmental influences 

are parametrised as latent factors. The phenotypic covariance structure is often modelled by 

one or more additive genetic factors A (i.e. the total additive genetic effects), one or more 

common environmental factors C (i.e. environmental influences affecting the phenotype in 



St Pourcain et al.  Supplement 

4 

family members in an identical way) and one or more specific environmental factors E (i.e. 

unique exposure of family members to environmental factors). Instead of expected genetic 

correlations between twin pairs based on biometrical theory (4), GSEM uses genetic 

relationship matrices (GRMs) for genetic covariance structure modelling. Like GREML, it 

describes one or more additive genetic factors A and one or more residual factors E.  

Within this study, we applied, univariate GSEM and multivariate GSEM, analogous to 

twin analysis (4). Assuming multivariate normality, and expressing the phenotype of each 

individual i as a deviation from the grand mean (5), the likelihood Li for each person can be 

expressed as   

log(𝐿𝐿𝑖𝑖) = −1
2

log |𝛴𝛴𝑖𝑖| −
1
2
𝑃𝑃𝑖𝑖′𝛴𝛴𝑖𝑖−1 𝑃𝑃𝑖𝑖 + 𝑐𝑐 = −1

2
log |𝛴𝛴𝑖𝑖| −

1
2
𝑡𝑡𝑡𝑡( 𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖′𝛴𝛴𝑖𝑖−1) (2) 

where 𝛴𝛴𝑖𝑖 is the predicted variance/covariance matrix and Pi is the vector of phenotypes for the 

ith individual with a grand mean of 0 ( 𝑃𝑃𝑖𝑖𝑃𝑃𝑖𝑖′ is the sample covariance matrix), and c is a 

constant term. The log likelihood (L) is then the sum of the log likelihoods for each 

individual. 

    log (L) = ∑ log (𝐿𝐿𝑖𝑖)         (3) 

 A saturated AE model can be obtained through a full decomposition of the genetic 

variance and residual variance into as many latent factors as there are observed measures 

(Cholesky decomposition). The Cholesky decomposition of the genetic variance can be 

described as follows (6): For a longitudinally assessed trait P with t repeat measurements, the 

first phenotypic measure, P1, is influenced by a latent genetic factor (A1), which can also 

explain variance in the second and all following measures (P2,...,Pt). The second measure (P2) 

is, in addition, influenced by a second latent genetic factor A2, explaining phenotypic 

variance in P2 and all following measures (P3,...,Pt) not yet captured by A1, and so forth. The 

last measure (Pt) is, beside the latent genetic factors (A1,...,At-1), influenced by a genetic 
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factor At, which does not explain variance within any of the previous measures (P1,...,Pt-1) (4). 

We annotate the genetic factor loadings a (path coefficients) such that the first number 

indicates the direction of the effect (the variable to which the arrow points) and the second the 

origin of the effect (4).  

The expected phenotypic covariance matrix for Z-standardised traits based on the 

factor model is  

𝜮𝜮 = 𝝀𝝀𝝀𝝀𝝀𝝀′ + 𝚿𝚿2      (4) 

where λ is a lower triangular matrix of genetic factor loadings, 𝛷𝛷 is a diagonal matrix 

of latent genetic factor variances (standardised to unit variance) such that 𝛷𝛷 is an identity 

matrix I, and 𝚿𝚿2 a covariance matrix of residual influences (5). It is also possible to 

decompose the residual variance into latent residual factors, such that 

𝜮𝜮 = 𝝀𝝀𝝀𝝀𝝀𝝀′ + 𝜻𝜻𝚹𝚹𝜻𝜻′      (5) 

where 𝜻𝜻  is a lower triangular matrix of residual factor loadings and 𝚹𝚹 is a diagonal 

matrix of latent residual factor variances (standardised to unit variance) such that 𝚹𝚹 is an 

identity matrix I. For example, for a bivariate trait consisting of measures P1 and P2, assuming 

two genetic factors (A1 and A2) and two genetic factors (E1 and E2), the expected phenotypic 

covariance matrix can be expressed as follows:  

𝜮𝜮 = �
𝜎𝜎𝑝𝑝_1
2 𝜎𝜎𝑝𝑝_12

𝜎𝜎𝑝𝑝_12 𝜎𝜎𝑝𝑝_2
2 �      (6) 

with the relevant matrices  

𝝀𝝀 = �𝑎𝑎11 0
𝑎𝑎21 𝑎𝑎22

�, 𝝀𝝀 = �1 0
0 1�, 𝜻𝜻 = �𝑒𝑒11 0

𝑒𝑒21 𝑒𝑒22
� ,𝚹𝚹 = �1 0

0 1�  (7) 

where 𝜎𝜎𝑝𝑝_1
2  and 𝜎𝜎𝑝𝑝_2

2  represent the phenotypic variances and 𝜎𝜎𝑝𝑝_12 the phenotypic covariance.  
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The bivariate AE Cholesky decomposition of two standardised measures, as described 

above, can be visualised by means of a path diagram (Supplementary Figure S1A) and the 

expected phenotypic variances and covariances can be expressed as follows:  

𝜎𝜎𝑝𝑝_1
2 = 𝜎𝜎𝑔𝑔_1

2 + 𝜎𝜎𝑒𝑒_1
2 = 𝑎𝑎112 + 𝑒𝑒112 = 1    (8) 

𝜎𝜎𝑝𝑝_2
2 = 𝜎𝜎𝑔𝑔_2

2 + 𝜎𝜎𝑒𝑒_2
2 = (𝑎𝑎212 + 𝑎𝑎222 ) + (𝑒𝑒212 + 𝑒𝑒222 ) = 1          (9) 

𝜎𝜎𝑝𝑝_12 = 𝜎𝜎𝑔𝑔_12 + 𝜎𝜎𝑒𝑒_12 =  𝑎𝑎11𝑎𝑎21 + 𝑒𝑒11𝑒𝑒21     (10) 

where 𝜎𝜎𝑔𝑔_1
2  and 𝜎𝜎𝑔𝑔_2

2  represent the genetic variances and 𝜎𝜎𝑔𝑔_12 the genetic covariance, 

and 𝜎𝜎𝑒𝑒_1
2  and 𝜎𝜎𝑒𝑒_2

2  the residual variances and 𝜎𝜎𝑒𝑒_12 the residual covariance. The variance of the 

latent factors A1 and A2, and E1 and E2 has been standardised to unit variance and is not 

shown.  

Estimated genetic variances and covariances can subsequently be utilised to derive 

genetic correlations (GSEM-rg) between two phenotypes (7), i.e. the extent to which two 

phenotypes share genetic factors (ranging from -1 to 1):  

𝜌𝜌𝑔𝑔 = 𝜎𝜎𝑔𝑔_12

�𝜎𝜎𝑔𝑔_1
2 𝜎𝜎𝑔𝑔_2

2
          (11) 

where 𝜎𝜎𝑔𝑔_12  is the genetic covariance between phenotypes 1 and 2 and 𝜌𝜌𝑔𝑔 the genetic 

correlation.  

We fitted in this work an AE Cholesky decomposition model as baseline model and 

not, as commonly selected in twin research, a fully saturated model.  A twin design, however, 

inherently contains genetic information based on phenotypic twin correlations in 

monozygotic versus dizygotic twins. A cohort sample consisting of unrelated individuals does 

not. Thus, fitting a fully saturated model in a general population sample of unrelated 

individuals will not provide information on genetic effects within that sample. 
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The goodness-of-fit of GSEM to empirical data was assessed using likelihood ratio 

test (LRT), the Akaike Information Criterion (AIC) (8) and the Bayesian Information 

Criterion (BIC) (9). The LRT is based on the difference in the negative log-likelihood (−2LL) 

of a priori defined models (model 2 and 3) and the saturated model (model 1), which is 

asymptotically chi-squared distributed with degrees of freedom equal to the difference in 

parameters between the models. AIC fit indices were calculated as  

AIC = -2LL + 2k        (12) 

where LL is the log-likelihood and k is the number of free model parameters in the model, 

with lower AIC values indexing a better model fit (8). The BIC indices take both goodness-

of-fit and parsimony of the model into account, and lower BIC values indicate a better model 

fit (10). The index is defined as 

BIC = -2LL + k log (N)       (13) 

where N is the number of independent observations. 

 GSEM were implemented within R (Rv3.2.4) via the optim function (stats library). 
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Data simulation 

To evaluate the accuracy of multivariate GSEM, we carried out data simulations. 

Assuming multivariate normality, we simulated bivariate traits with two repeated measures 

(i.e. two genetic factors with their variances and their covariance; two residual factors with 

their variances and their covariance, Supplementary Figure S1A), assuming 5000 individuals 

and 20,000 SNPs per genetic factor, for 10 replicates. Phenotypic variances and covariances 

were estimated from genetic (a) and residual (e) factor loadings as expected under an AE 

Cholesky decomposition model (Supplementary Figure S1A). The simulated values are 

detailed in Supplementary Table S3. Across replicates, we calculated the mean average 

deviation (MAD; i.e. the absolute deviation from the mean), the root mean squared error 

(RMSE, i.e. the square root of the average squared difference between each replicate estimate 

and the true (simulated) value), and the squared bias (Bias2, i.e. the squared difference 

between the mean of the replicate estimates and the true simulated value). As a benchmark 

test, we also carried out a trivariate trait simulation with three repeated measures (i.e. three 

genetic factors with their variances and their covariance and three residual factors with their 

variances and their covariance, Supplementary Figure S1B) assuming 5000 individuals and 

20,000 SNPs per genetic factor, for one replicate. 
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Attrition within ALSPAC 

To study non-participation within ALSPAC, analysis was restricted to participants 

who were alive at one year of age and had information on genome-wide data available 

(N=7,758). Dichotomic SCDC-missingness was defined as availability of mother-reported 

scores at 8, 11, 14 and 17 years of age. We estimated genetic correlations between these 

attrition scores as well as between SCDC scores and subsequent SCDC-missingness. This is 

possible as genetic correlations are independent of an underlying liability scale. For 

simplicity, we used bivariate GREML and not multivariate GSEM for the analysis, as there 

was little evidence for a genetic correlation between SCDC scores and subsequent attrition 

(see Results). 
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Web resources 

ALSPAC: http://www.bris.ac.uk/alspac/researchers/data--‐access/data--‐dictionary 

HPC: http://www.bristol.ac.uk/earthsciences/about/facilities/hpc.html 
 
PLINK2: http://pngu.mgh.harvard.edu/~purcell/plink/plink2.shtml 

OPENMX: http://openmx.psyc.virginia.edu/ 

R: https://cran.r-project.org/ 

GCTA: http://cnsgenomics.com/software/gcta/ 

GSEM: https://gitlab.gwdg.de/beate.stpourcain/gsem 

 

http://www.bristol.ac.uk/earthsciences/about/facilities/hpc.html
http://cran.r-project.org/
http://cnsgenomics.com/software/gcta/
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R gsem package installation 

install.packages("devtools") 
devtools::install_github("hadley/devtools") 
install.packages("msm") 
install.packages("numDeriv") 
devtools::install_git('https://gitlab.gwdg.de/beate.stpourcain/gsem') 

 

#Note that ssl certificate issues during the installation can arise if the ca-certificates package 
on the client server is out of date  
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Supplementary Tables 

 

Supplementary Table S1: Descriptives of SCDC scores  
Trait Age(years)[range] Male/Female Mean(SD) 

[range] 
Kurtosis Skewness N 

8 7.7(0.14)[7.5;9.3] 2842/2709 2(3.71)[0;24] 9.12 2.19 5551 
11 10.7(0.13)[10.5;13.8] 2751/2709 1(3.51)[0;24] 10.53 2.46 5460 
14 13.9(0.15)[13. 7;16.1] 2529/2531 1(3.59)[0;24] 9.08 2.20 5060 
17 16.8(0.36)[16.5;18.3] 2024/2150 1(3.79)[0;24] 7.09 1.89 4174 
SCDC - Social and Communication Disorders Checklist; The kurtosis for the standard normal 
distribution is 3 and the skewness is 0 
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Supplementary Table S2: Phenotypic correlation of SCDC scores  
Age in years 

 8 11 14 17 
8 1.00 0.61 0.50 0.38 
11 0.57 1.00 0.56 0.41 
14 0.49 0.57 1.00 0.51 
17 0.39 0.45 0.56 1.00 

SCDC - Social and Communication Disorders Checklist 
Lower triangle: Spearman’s rank correlation using pairwise complete 
observations; Upper triangle: Pearson product moment correlation 
using rank-transformed scores adjusted for age, sex and the two most 
significant ancestry-informative principal components 
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Supplementary Table S3: Bivariate simulations 
Label Sim GCTA 

(GREML) 
GSEM 
(FIML) 

OpenMx 2.5 
(FIML) 

  Mean(RMSE) MAD Bias2 Mean(RMSE) MAD Bias2 Mean(RMSE) MAD Bias2 
Varg1  0.25 0.263(0.053) 0.039 1.8x10-4 0.263(0.053) 0.039 1.8x10-4 0.263(0.054) 0.039 1.8x10-4 
Varg2 0.50 0.48(0.091) 0.077 3.6x10-4 0.481(0.091) 0.077 3.5x10-4 0.481(0.091) 0.077 3.5x10-4 
Covg 0.25 0.251(0.059) 0.055 4.6x10-7 0.251(0.059) 0.055 3.5x10-7 0.251(0.059) 0.055 3.0x10-7 
Vare1 0.75 0.740(0.05) 0.038 9.0x10-5 0.74(0.05) 0.038 9.4x10-5 0.74(0.05) 0.038 9.2x10-5 
Vare2 0.50 0.515(0.086) 0.071 1.8x10-4 0.513(0.086) 0.071 1.7x10-4 0.513(0.086) 0.071 1.7x10-4 
Cove 0.087 0.085(0.052) 0.048 5.5x10-7 0.087(0.052) 0.048 7.0x10-7 0.087(0.052) 0.048 5.7x10-7 
a11 0.50 -  - 0.51(0.055) 0.041 1.1x10-4 0.51(0.055) 0.042 1.0x10-4 
a21 0.50 -  - 0.49(0.096) 0.082 9.7x10-5 0.49(0.096) 0.082 9.5x10-5 
a22 0.50 -  - 0.481(0.036) 0.025 3.8x10-4 0.481(0.036) 0.025 3.8x10-4 
e11 0.87 -  - 0.86(0.029) 0.021 3.6x10-5 0.86(0.029) 0.022 3.6x10-5 
e21 0.10 -  - 0.101(0.059) 0.054 8.3x10-7 0.101(0.059) 0.054 6.5x10-7 
e22 0.70 -  - 0.705(0.054) 0.044 2.1x10-5 0.704(0.054) 0.044 2.0x10-5 

Bivariate trait data with two repeated measures (1 and 2, N=5000 for each trait) were simulated for 10 replicates (Supplementary Figure 
S1A): Absolute genetic factor loadings (a) are given with respect to two simulated genetic factors A1 and A2; Absolute residual factor 
loadings (e) are given with respect to two simulated residual factors E1 and E2; Simulated data were analysed with bivariate 
GCTA(GREML), bivariate GSEM(FIML) (full Cholesky factorisation) and bivariate OpenMx SEM (full Cholesky factorisation using the 
fastest OpenMx SEM algorithm, OpenMx(FIML) v2.5; see Supplementary Table S4).  
 
Bias2 - Squared bias defined as the squared difference between the mean of the replicate estimates and the true simulated value; Cove - 
Residual covariance; Covg - Genetic covariance; FIML - Full information maximum likelihood; GCTA - Genome-wide complex trait 
analysis; GREML - Genetic-relationship matrix restricted maximum likelihood; GSEM - Genetic-relationship-matrix structural equation 
models; MAD - Mean absolute deviation; Mean - Mean of 10 replicate estimates; RMSE - Root mean squared error; SEM - Structural 
equation models; Sim - Simulated (true) value; Vare - Residual variance; Varg - Genetic variance 
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Supplementary Table S4: Computational requirements (Bivariate simulations) 
N GCTA 

(GREML) 
GSEM 
(FIML) 

OpenMx 2.5 
(FIML)a 

OpenMx 2.7 
(FIML)a 

OpenMx 2.7 
(mxGREML)a 

 RAM(GB) Time(min) RAM(GB) Time(min) RAM(GB) Time(min) RAM(GB) Time(min) RAM(GB) Time(min) 
1000 <0.1 <1 0.5 9 3.3 9 1.0 29 0.7 32 
2000 1.0 2 1.5 98 12.8 44 3.7 213 2.4 298 
3000 2.1 9 3.2 121 28.4 115 8.3 600 5.2 785 
4000 4.0 25 5.6 298 50.2 204 16.0 1260 9.6 1681 
5000 5.9 28 8.7 301 78.4 351 22.8 2694 15.1 2597 

Bivariate trait data with two repeated measures were simulated for one replicate using a series of different sample sizes (1000 to 5000). The 
estimated parameter values are identical to those described in Supplementary Table S3. Analyses were conducted using one core (2.60 GHz) 
with access to 64 GB or, if required, 256 GB; RAM(GB) - Memory in Giga Bytes; Time(min) - Time in minutes; a - All OpenMx (mx) analyses 
were carried out with the options: options(mxCondenseMatrixSlots=TRUE) and mxOption(NULL,"Default optimizer","NPSOL"); GCTA - 
Genome-wide complex trait analysis; GREML - Genetic-relationship matrix restricted maximum likelihood, FIML - Full information maximum 
likelihood 
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Supplementary Table S5: Trivariate simulation 
Label Sim GSEM (FIML) 

Estimate(SE) 
OpenMx 2.5 (FIML) 

Estimate(SE) 
a11 0.80 0.83(0.043) 0.83(0.043) 
a21 0.50 0.498(0.055) 0.498(0.055) 
a31 0.00 -0.010(0.062) -0.011(0.062) 
a22 0.40 0.403(0.04) 0.403(0.04) 
a32 0.50 0.465(0.071) 0.464(0.071) 
a33 0.10 0.101(0.165) 0.098(0.17) 
e11 0.60 0.572(0.058) 0.572(0.058) 
e21 0.60 0.625(0.06) 0.625(0.06) 
e31 0.20 0.211(0.086) 0.212(0.086) 
e22 0.48 0.458(0.04) 0.458(0.04) 
e32 0.50 0.537(0.067) 0.538(0.067) 
e33 0.67 0.682(0.026) 0.682(0.026) 

A trivariate trait with three standardised measures (1, 2 and 3) was  simulated (a single 
replicate) as a benchmark test (Supplementary Figure S1B): Absolute genetic factor 
loadings (a) are given with respect to three simulated genetic factors A1, A2 and A3; 
Absolute residual factor loadings (e) are given with respect to three simulated residual 
factors E1, E2 and E3; Simulated data were analysed with trivariate GSEM(FIML) (full 
Cholesky factorisation) and trivariate OpenMx SEM (full Cholesky factorisation using 
the fastest OpenMx SEM algorithm, OpenMx(FIML) v2.5; see Supplementary Table 
S4).  
 
SEM - Structural equation models; Sim - Simulated (true) value; GSEM - Genetic-
relationship-matrix structural equation models 
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Supplementary Table S6: Univariate GSEM of SCDC scores 
 GSEM 

Age(y) Varg(SE) p N 
8 0.25(0.06) 3.36x10-5 5551 
11 0.22(0.06) 2.94x10-4 5460 
14 0.086(0.06) 0.18 5060 
17 0.47(0.09) 4.40x10-8 4174 

GSEM - Genetic-relationship-matrix structural equation models; Varg - 
Additive genetic variance; SCDC - Social and Communication 
Disorders Checklist 
 
Univariate GSEM was carried out by estimating the genetic variance as 
a variance component without constraints (2-sided test). The reported 
Varg estimates are equivalent to SNP-h2 estimates due to the 
standardisation of the analysed traits.   
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Supplementary Table S7: Univariate analysis of SCDC scores: GCTA(GREML) versus 
GSEM 
 GCTA(GREML) GSEM 
Age Varg(SE) p N Varg(SE) p N 

8 0.23(0.07) 1.6x10-4 4971 0.23(0.07) 1.6x10-4 4971 
11 0.15(0.07) 0.011 4895 0.15(0.07) 0.011 4895 
14 0.097(0.07) 0.077 4566 0.099(0.07) 0.077 4566 
17 0.47(0.09) 5.0x10-9 3779 0.47(0.09) 5.0x10-9 3779 

Age - Age in years; GCTA - Genome-wide complex trait analysis; GREML - Genetic-
relationship matrix restricted maximum likelihood; GSEM - Genetic-relationship-matrix 
structural equation models; SCDC - Social and Communication Disorders Checklist; Varg - 
Additive genetic variance 
 
Differences compared with the total sample N are due to the exclusion of individuals with a 
relatedness of ≥ 2.5% from all ALSPAC participants with genome-wide data, allowing for 
identical sample numbers across GREML and GSEM analyses. The reported Varg estimates 
are equivalent to SNP-h2 estimates due to the standardisation of the analysed traits. 
 
Univariate GSEM was carried out by estimating the genetic variance without constraints. 
Note, that the GREML likelihood ratio test, as implemented in GCTA (11), follows by default 
a 50:50 mixture distribution with a point mass at 0 and a chi-squared distribution (df=1), 
which is comparable to a one-tailed p-value. For comparison with GSEM, however, an 
unconstrained GCTA option was selected. 
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Supplementary Table S8: Multivariate GSEM of SCDC scores: Standardised factor loadings  
 Full Cholesky decomposition  

(Model 1) 
Best-fitting model 

(Model 5) 
Label Estimate(SE) p Estimate (SE) p 
a11 0.57(0.07) 5.09x10-13 0.57(0.06) 8.69x10-17 
a21 0.48(0.08) 1.30x10-8 0.48(0.08) 2.57x10-9 
a31 0.20(0.08) 2.15x10-2 0.20(0.06) 4.10x10-3 
a41 0.46(0.10) 2.15x10-6 0.47(0.05) 3.29x10-21 
a22 0.17(0.08) 4.09x10-2 0.17(0.07) 1.94x10-2 
a32 -0.12(0.08) 1.69x10-1 - - 
a42 -0.44(0.09) 2.60x10-6 -0.44(0.08) 8.24x10-8 
a33 <0.01(0.21) 1 - - 
a43 <0.01 (0.51) 1 - - 
a44 <0.01 (0.29) 1 - - 
e11 0.82(0.05) <10-10 0.82(0.04) <10-10 
e21 0.42(0.07) 1.73x10-9 0.42(0.06) <10-10 
e31 0.49(0.05) <10-10 0.49(0.04) <10-10 
e41 0.14(0.08) 6.69x10-2 - - 
e22 0.75(0.03) <10-10 0.75(0.02) <10-10 
e32 0.42(0.03) <10-10 0.42(0.03) <10-10 
e42 0.28(0.06) 1.13x10-6 0.28(0.05) 1.55x10-7 
e33 0.73(0.03) <10-10 0.74(0.02) <10-10 
e43 0.26(0.06) 1.51x10-5 0.26(0.05) 8.28x<10-9 
e44 0.66(0.05) <10-10 0.66(0.05) <10-10 

The full Cholesky decomposition model and its best-fitting reduced form are described in 
Table 1 (Model 1 and model 5 respectively) and Figure 3: Genetic factor loadings a are 
given with respect to the latent genetic factor A1(8 years), factor A2(11 years), factor 
A3(14 years) and  factor A4(17 years) and residual factor loadings e with respect to factor 
E1(8 years), factor E2(11 years), factor E3(14 years) and factor E4(17 years). 3,295 
participants had non-missing scores across all ages. 
 
GSEM - Genetic-relationship-matrix structural equation models; SCDC - Social and 
Communication Disorders Checklist  
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Supplementary Table S9: Multivariate GSEM of SCDC scores: Estimated genetic variances 
and bivariate correlations 
Full Cholesky decomposition (Model 1) 
Varg(SE) 
Age 8 11 14 17 
 

 
   

 0.32(0.08) 0.26(0.08) 0.05(0.03) 0.41(0.09) 
     
rg(SE)    
Age 8 11 14 17 
     
8 1 - - - 
11 0.95(0.05) 1 - - 
14 0.86(0.20) 0.65(0.29) 1 - 
17 0.73(0.12) 0.46(0.16) 0.98(0.08) 1 
Best-fitting model (Model 5) 
Varg(SE) 
Age 8 11 14 17 
 

 
   

 0.32(0.07) 0.26(0.07) 0.04(0.03) 0.41(0.07) 
     
rg(SE)    
Age 8 11 14 17 
     
8 1 - - - 
11 0.95(0.05) 1 - - 
14 1.00(<0.01) 0.95(0.05) 1 - 
17 0.73(0.08) 0.46(0.13) 0.73(0.08) 1 
The full Cholesky decomposition model and its best-fitting reduced form are described in 
Table 1 (Model 1 and model 5 respectively) and Figure 3. 3,295 participants had non-missing 
scores across all ages. 
 
Age - Age at measurement in years; GSEM - Genetic-relationship-matrix structural equation 
models; rg - Genetic correlation; SCDC - Social and Communication Disorders Checklist; 
Varg - Genetic variance 
 
Note that SCDC scores at 14 years were retained within the model, irrespective of their low 
SNP-heritability, due to their genetic correlations with other SCDC measures earlier and later 
during development. The reported Varg estimates are equivalent to SNP-h2 estimates and 
based on standardised path coefficients. 
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Supplementary Table S10: Bivariate analysis of SCDC scores: GCTA(GREML) versus GSEM  

Full  Age 8 vs 11 
Obs=9,866 

8 vs 14 
Obs =9,537 

8 vs 17 
Obs =8,750 

11 vs 14 
Obs =9,461 

11 vs 17 
Obs =8,674 

14 vs 17 
Obs =8,345 

Method  Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) 
GCTA(GREML) A1 0.22(0.065) 0.22(0.067) 0.23(0.068) 0.17(0.067) 0.16(0.068) 0.09(0.07) 
 A2 0.15(0.065) 0.09(0.069) 0.47(0.087) 0.11(0.069) 0.48(0.086) 0.49(0.086) 
 Covg 0.17(0.053) 0.1(0.052) 0.15(0.056) 0.11(0.055) 0.11(0.057) 0.17(0.061) 
 rg 0.95(0.156) 0.68(0.266) 0.46(0.145) 0.79(0.217) 0.40(0.17) 0.82(0.257) 
 pone-tailed 0.00030 0.025 0.0025 0.018 0.024 0.00014 

Non-missing Age 8 vs 11 
Obs =8,434 

8 vs 14 
Obs =7,872 

8 vs 17 
Obs =6,696 

11 vs 14 
Obs =8,820 

11 vs 17 
Obs =6,942 

14 vs 17 
Obs =7,014 

Method  Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) Estimate(SE) 
GCTA(GREML) A1 0.16(0.075) 0.3(0.082) 0.22(0.092) 0.13(0.076) 0.11(0.088) 0.03(0.089) 
 A2 0.08(0.077) 0.07(0.081) 0.41(0.099) 0.01(0.076) 0.47(0.096) 0.44(0.091) 
 Covg 0.11(0.062) 0.12(0.064) 0.15(0.072) 0.04(0.062) 0.08(0.07) 0.11(0.071) 
 rg 1(0.354) 0.89(0.418) 0.51(0.188) - 0.33(0.243) - 
 pone-tailed 0.5 0.019 0.013 - 0.13 - 
GSEM A1 0.17(0.075) 0.3(0.081) 0.22(0.091) 0.13(0.074) 0.11(0.084) 0.04(0.037) 
 A2 0.1(0.061) 0.07(0.078) 0.41(0.094) 0.02(0.054) 0.47(0.092) 0.47(0.092) 
 Covg 0.13(0.06) 0.13(0.062) 0.15(0.069) 0.05(0.058) 0.08(0.067) 0.14(0.065) 
 rg 1(0) 0.89(0.422) 0.51(0.182) - 0.33(0.229) - 
Age - Age at measurement in years; GCTA - Genome-wide complex trait analysis; GREML - Genetic-relationship matrix 
restricted maximum likelihood; GSEM - Genetic-relationship-matrix structural equation models; SCDC - Social and 
Communication Disorders Checklist  
 
Bivariate analyses were conducted using bivariate GCTA(GREML) and bivariate GSEM (full Cholesky decomposition of the 
genetic and residual variance). Analyses were either carried out using the full phenotypic information (GCTA(GREML) only; 
including individuals with information at one time point only), or restricting the analysis to individuals with non-missing 
information across both time points. Individuals with a relatedness of ≥ 2.5% were excluded. For comparisons, genetic variances 
(Varg), covariances (Covg) and correlations (rg) are shown. rg estimates for traits with Varg<0.05 are not reported due to large 
estimation errors.  
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Supplementary Table S11: Genetic correlation between SCDC scores and subsequent attrition 
rg(SE), pone-tailed 

 8 (Score) 11 (Score) 14 (Score) 17 (Score) 
8 (miss) - - - - 
11 (miss) 0.33(0.23), p=0.06 - - - 
14 (miss) 0.39(0.19), p=0.02 0.27(0.27), p=0.15 - - 
17 (miss) 0.24(0.20), p=0.11 0.20(0.28), p=0.24 0.28(0.34), p=0.19 - 

miss - Missingness in Social and Communication Disorders Checklist (SCDC) scores; Scores - 
SCDC scores  
 
Genetic correlations (rg) were estimated using bivariate genetic-relationship matrix restricted 
maximum likelihood (GREML) as implemented in genome-wide complex trait analysis (GCTA) 
software  
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Supplementary Table S12: Genetic correlations between SCDC attrition scores  
rg(SE), pone-tailed 
Miss 8 11 14 17 

8  - - - - 
11 0.81(0.13), p=4.8x10-4 - - - 
14 0.83(0.12) , p=2.2x10-5 0.84(0.11), p=1.1x10-4 - - 
17 1.00(0.15) , p=8.4x10-7 1.00(0.15), p=2.2x10-5 0.91(0.09), p=3.3x10-6 - 

Miss - Missingness in Social and Communication Disorders Checklist (SCDC) scores 
 
Genetic correlations (rg) were estimated using bivariate genetic-relationship matrix restricted 
maximum likelihood (GREML) as implemented in genome-wide complex trait analysis 
(GCTA) software  
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Supplemental Figures 

 

 

Supplementary Figure S1: Path diagrams for simulated data sets 

A - A bivariate trait consisting of two standardised measures P1 and P2 was simulated for two 
genetic factors (A1 and A2) and two residual factors (E1 and E2), shown with genetic and 
residual factor loadings, assuming 5000 individuals and 20,000 SNPs per genetic factor (10 
replicates) 
 
B - A trivariate trait consisting of three standardised measures P1, P2 and P3 was simulated for 
three genetic factors (A1, A2 and A3) and three residual factors (E1, E2 and E3), shown with 
genetic and residual factor loadings, assuming 5000 individuals and 20,000 SNPs per genetic 
factor (one replicate) 
 
Observed phenotypic measures are represented by squares, while latent factors are 
represented by a circle. Single headed arrows ('paths') denote causal relationships between 
variables and are shown for genetic factor loadings (a) and residual factor loadings (e). Note 
that the variance of latent variables is constrained to unit variance, this is omitted from the 
diagrams to improve clarity. 
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Supplementary Figure S2: Bivariate simulation analyses 

Mean estimated genetic and environmental variances and covariances (A) and factor loadings 
(B) are shown for 10 replicates with mean squared errors as grey bars. Simulated data were 
analysed with GCTA(GREML), GSEM (full Cholesky factorisation) and OpenMx SEM (full 
Cholesky factorisation, OpenMx 2.5, FIML). Bivariate traits with two standardised measures 
(1 and 2) were simulated assuming two genetic factors (A1 and A2) and two residual factors 
(E1 and E2; Supplementary Figure S1A, Supplementary Table S3).  
 
a - Genetic factor loading; Cove - Residual covariance; Covg - Genetic covariance; e - 
Residual factor loading; FIML - Full information maximum likelihood; GCTA - Genome-
wide complex trait analysis; GREML - Genetic-relationship-matrix residual maximum 
likelihood; GSEM - Genetic-relationship-matrix structural equation models; SEM - Structural 
equation models; Sim - Simulated value; Vare - Residual variance; Varg - Genetic variance  
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Supplementary Figure S3: Bivariate genetic correlations between SCDC scores during 
development (bivariate GREML versus multivariate GSEM) 

Genetic correlations (rg) were estimated with multivariate GSEM (lower triangle; as shown 
for the full Cholesky decomposition model in Supplementary Table S9, N=13,180 
observations)  and bivariate GCTA(GREML) (upper triangle; Supplementary Table S10, N≤ 
9,866 observations; analyses using full phenotypic information) and are shown with their 
standard errors. 
 
Note that both bivariate GREML and bivariate GSEM analyses using identical sample 
numbers provided nearly identical rg estimates (Supplementary Table S10, non-missing 
sample analyses). 
 
GCTA - Genome-wide complex trait analysis; GREML - Genetic-relationship matrix 
restricted maximum likelihood; GSEM - Genetic-relationship-matrix structural equation 
models 


