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ABSTRACT

Computational methods that automatically extract knowledge from data are critical for enabling data-driven mate-
rials science. A reliable identification of lattice symmetry is a crucial first step for materials characterization and
analytics. Current methods require a user-specified threshold, and are unable to detect “average symmetries” for
defective structures. Here, we propose a new machine-learning-based approach to automatically classify structures
by crystal symmetry. First, we represent crystals by a diffraction image, and then construct a deep-learning neural-
network model for classification. Our approach is able to correctly classify a dataset comprising more than 80000
structures, including heavily defective ones. The internal operations of the neural network are unraveled through
attentive response maps, demonstrating that it uses the same landmarks a materials scientist would use, although
never explicitly instructed to do so. Our study paves the way for crystal-structure recognition in computational and
experimental big-data materials science.

Introduction
Crystals play a crucial role in materials science. In particular, knowing chemical composition and crystal structure - the way
atoms are arranged in space - is an essential ingredient for predicting properties of a material1, 2. Indeed, it is well-known
that the crystal structure has a direct impact on materials properties3. Just to give a concrete example: in iron, carbon
solubility (important for steel formation) increases nearly forty times going from body-centered-cubic (bcc) α-Fe (ferrite) to
face-centered-cubic (fcc) γ-Fe (austenite)4.

Given the importance of atomic arrangement in both theoretical and experimental materials science, an effective way of
classifying crystals is to find the group of all transformations under which the system is invariant; in three-dimensions, these are
described by the concept of space groups5. Currently, to determine the space group of a given structure, one first determines
the allowed symmetry operations, and then compare them with all possible space groups to obtain the correct label6, 7. For
idealized crystal structures, this procedure is exact. But in most practical applications atoms are displaced from their ideal
symmetry positions due to (unavoidable) intrinsic defects or impurities or experimental noise. To address this, thresholds need
to be set in order to define how “loose” one wants to be in classifying (namely, up to which deviations from the ideal structures
are acceptable); different thresholds may lead to different classifications. So far, this was not a big problem because individual
researchers were manually finding appropriate tolerance parameters for their specific dataset.

However, our goal here is to introduce an automatic procedure to classify crystals; this is motivated by the advent of
high-throughput materials science computations, thanks to which millions of calculated data are now available to the scientific
community (see the Novel Materials Discovery (NOMAD) Laboratory8 and references therein). Clearly, there is no “universal”
threshold that performs optimally (or even sub-optimally) for such a large number of calculations, nor a clear procedure to
check if the chosen threshold is sound. Moreover, the aforementioned symmetry-based approach fails - regardless of the
tolerance thresholds - in the presence of defects such as, for example, vacancies, interstitials, antisites, or dislocations. In
fact, even removing a single atom from a structure causes the system to loose most of its symmetries, and thus one typically
obtains the (low symmetry, e.g. P1 or P1̄) space group compatible with the few symmetry operations preserved in the defective
structure. Such label - although being technically correct - is practically always different from the label that one would consider
appropriate (i.e. the “most similar” space group, in this case the one of the pristine structure). Robustness to defects, however,
is paramount in local and global crystal structure recognition. Grain boundaries, dislocations, local inclusions, heterophase
interfaces, and in general all crystallographic defects can have a large impact on macroscopic materials properties (e.g. corrosion
resistance9, 10). Furthermore, atom probe tomography - arguably the most important source of local structural information for
bulk systems - provides three-dimensional atomic positions with an efficiency up to 80%11 and near-atomic resolution; which,
on the other hand, means that at least 20% of atoms escaped detection, and the uncertainty on their positions is considerable.
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Here, we propose a novel procedure to efficiently represent and classify materials science data; such procedure does not
require any tolerance threshold, and it is very robust to defects (even at defect concentrations as high as 50%). First, we
introduce a new way to represent crystals (by means of images), then we present a classification model based on convolutional
neural networks, and finally we unfold the internal behavior of the classification model through visualization. An interactive
online tutorial for reproducing of the main results of this work is also provided.

Figure 1. Automatic crystal classification using two-dimensional diffraction fingerprints and convolutional neural networks:
the model workflow. First, every crystal is represented by the two-dimensional diffraction fingerprint. Then, a small subset of
these crystals are used as training set to generate a classification model. In particular, a convolutional neural network is used,
and optimized minimizing the training set classification error. However, this is in general not enough to have a sound and
generalizable model. Thus, we unfold the neural network internal operations by visualization, and ensure that the model arrives
at its classification decision on physically motivated grounds. Finally, a classification model is deployed, and crystals can be
directly and efficiently classified without any additional model optimization.

Results
How to represent a material: the descriptor
The first necessary step to perform any machine learning and/or automatized analysis on materials science data is to represent
the material under consideration in a way that is understandable for a computer. Such representation - termed “descriptor”12 -
should contain all the relevant information on the system needed for the desired learning task. Numerous structural descriptors
have been proposed to represent physical systems, most notable examples being atom-centered symmetry functions13, Coulomb
matrix14, smooth overlap of atomic positions15, deep tensor neural networks16, many-body tensor representation17, and
Voronoi tessellation18, 19. However, these descriptors are either not applicable to extended systems14, 16, not size-invariant by
construction17, or base their representation of infinite crystals on local neighborhoods of atoms in the material13, 15, 18–20. If on
the one hand these local approaches are able to produce accurate force-fields21, 22, on the other hand their strategy of essentially
partitioning the crystal in patches (defined by a certain cut-off radius, generally 4-6 Å13, 21) makes it difficult to detect global
structural properties, in particular where recognizing the long-range order is crucial.

In the case of crystal-structure recognition, however, it is essential that the descriptor captures system’s symmetries in a
compact way, while being size-invariant in order to reflect the infinite nature of crystals. Periodicity and prevailing symmetries
are evident - and more compact - in reciprocal space, and therefore we introduce a new approach based on such space. For
every system, we first simulate the scattering of an incident plane wave through the crystal, and then we compute the diffraction
pattern in the detector plane orthogonal to that incident wave. This is schematically depicted in Fig. 2a. The central quantity is
thus the amplitude Ψ, which originates from the scattering of a plane wave with wave-vector k0 by Na atoms of species a at
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positions {x(a)j } in the material:

Ψ(q) = r−1
∑
a

f λ
a (θ)

[
Na

∑
j=1

r0 exp
(
−iq ·x(a)j

)]
(1)

where r0 is the Thomson scattering length, q = k1−k0 is the scattering wave-vector, x′ the corresponding position in the
detector plane, and r = |x′| (see Fig.2a). Assuming elastic scattering, we have that |k0| = |k1| = 2π/λ , where λ is the
wavelength of the incident radiation. The quantity f λ

a (θ) is the so-called x-ray form factor; it describes how an isolated atom
of species a scatters incident radiation with wavelength λ and scattering angle θ . Since x-rays are scattered by the electronic
cloud of an atom, its amplitude increases with the atomic number Z of the element23.

Following the successful application of scattering concepts in determining atomic structures (using for example x-rays24,
electrons25 or neutrons26), we propose the following two-dimensional diffraction fingerprint to represent crystals:

D(q) = A ·Ω(θ) |Ψ(q)|γ (2)

where Ω(θ) is the solid angle covered by our (theoretical) detector, γ is a parameter which basically determines the ratios
between the magnitude of the diffraction principal maxima of different order (different scattering angles θ )27, and A is a
(inessential) constant determined by normalization with respect to the brightest peak (see section Methods). If one wants to
compare with experimentally determined intensities, then the obligated choice is γ = 2 because field intensities are proportional
to the modulus square of wave amplitudes. However, we notice that in our case γ = 2 gives raise to a very bright central
diffraction spot and a rapid decaying of the diffraction principal maximum heights with |q|; as a result, the higher order
diffraction spots - which are the most important to determine the crystal structure - are barely visible in the produced diffraction
image. This effect is more pronounced for hydrogen and helium, which are indeed notoriously difficult to detect with x-ray
diffraction methods because of their small number of electrons (Z = 1 and Z = 2, respectively)28.

However, our main goal here is to introduce a transferable descriptor for crystal structure representation which works for
any atomic species of the periodic table (including hydrogen and helium), and not to compare with experimental data. We
are thus free to choose a different value for γ in our calculations; in particular we choose γ = 3/2 , which gives overall a
better contrast between higher order peaks and the central diffraction peak, especially for the lightest elements. For additional
computational details on the descriptor D(q), please refer to the section Methods.

Despite its rather complicated functional form, the descriptor D(q) is one image for each system being represented (data
point); the four crystal classes considered in this work (see below) and examples of their calculated two-dimensional diffraction
fingerprints are shown in Fig. 2b and Fig. 2c, respectively. Such descriptor compactly encodes detailed structural information
(through Eq. 1) and - in accordance with scattering theory - has several desirable properties for crystals classification, as we
outline below.

1. It is invariant with respect to system size: changing the number of periodic replicas of the system will leave the diffraction
peak locations unaffected. This allows to treat extended and finite systems on equal footing, making our procedure able
to recognize global and local order, respectively. We exploit such property, and instead of using periodically repeated
crystals, we calculate D(q) using clusters of approximately 100 atoms. Such clusters are constructed replicating the
crystal unit cell (see Methods). By using finite samples, we explicitly demonstrate the local structure recognition ability
of our procedure.

2. Its dimension is independent of the number of atoms and the number of chemical species in the system being represented.
This is an important property because machine learning models trained using this descriptor generalize to systems of
different size by construction. This is not valid for most descriptors: for example, the Coulomb matrix dimension scales
as the square of atoms in the largest molecule considered14, while in symmetry functions-based approaches13 the required
number of functions (and thus model complexity) increases rapidly with number of chemical species and system size.

3. It is invariant under atomic permutations: re-ordering the list of atoms in the system leads to the same D(q) due to the
sum over all atoms in Eq. 1.

4. Being based on the process of diffraction, it mainly focuses on atomic positions and crystal symmetries; the information
on the atomic species - encoded in the form factor f λ

a in Eq. 1 - plays a less prominent role in the descriptor. As a result,
materials that belong to the same class (defined by their space group number, see below), have a similar representation,
even if their atomic compositions differ substantially. This is the ideal scenario for crystals classification: a descriptor
which is similar for materials within the same class, and very different for materials belonging to different classes.
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5. It is straightforward to compute, easily interpretable by a human (it is an image, see Fig. 2c) and has a clear physical
meaning (Eqs. 1 and 2).

6. It is very robust to defects. This fact can be traced back to a well-known property of the Fourier transform: the field
at one point in reciprocal space (the image space in our case) depends on all points in real space. In particular, from
Eq. 1 we notice that the field Ψ at point q is given by the sum of the scattering contributions from all the atoms in the
system. If for example, some atoms are removed, this change will be smoothen out by the sum over all atoms and spread
over - in principle - all points in reciprocal space. Practically, with increasing disorder new low-intensity peaks will
gradually appear in the diffraction fingerprint due to the now imperfect destructive interference between the atoms in the
crystal. Example of highly defected structures and their corresponding diffraction fingerprint are shown in Fig. 2e-2f.
It is evident that the descriptor D(q) is indeed robust to defects. This property is crucial in enabling the classification
model to obtain a perfect classification even in the presence of highly defective structures (see below).

The classification model
Having introduced a way to represent periodic systems using scattering theory, we tackle the problem of their classification
in crystal classes based on symmetries. A first (and naive) approach to classify crystals - now represented by the diffraction
descriptor D(q) - would be to write specific programs that detect diffraction peaks in the images, and classify accordingly.
Despite appearing simple at first glance, this requires numerous assumptions and heuristic criteria; one would need to define
what is an actual diffraction peak and what is just noise, when two contiguous peaks are considered as one, how to quantify
relative peak positions, to name but a few. In order to find such criteria and determine the associated parameters, one in principle
needs to inspect all (thousands or even millions) pictures that are being classified. These rules would presumably be different
across classes, require a separate - and not trivial - classification paradigm for each class, and consequently lead to a quagmire
of ad-hoc parameters and task-specific software. In addition, the presence of defects leads to new peaks or alters the existing
ones (see Fig. 2g and 2h), complicating matters even further. Thus, this approach is certainly not easy to generalize to other
crystal classes, and lacks a procedure to systematically improve its prediction capabilities.

However, it has been shown that all these challenges can be solved by deep-learning architectures29–31. These are
computational non-linear models sequentially composed to generate representations of data with increasing level of abstraction.
Hence, instead of writing a program by hand for each specific task, we collect a large amount of examples that specify
the correct output (crystal class) for a given input (descriptor image D(q)), and then minimize an objective function which
quantifies the difference between the predicted and the correct classification labels. Through this minimization, the weights (i.e.
parameters) of the neural network are optimized to reduce such classification error32, 33. In doing so, the network automatically
learns representations (also called features) which capture discriminative elements, while discarding details not important
for classification. This task - known as feature extraction - usually requires a considerable amount of heuristics and domain
knowledge, but in deep learning architectures is performed with a fully automated and general-purpose procedure31. In
particular, since our goal is to classify images, we use a specific type of deep learning network which has shown superior
performance in image recognition: the convolutional neural network (ConvNet)34–36. A schematic representation of the
ConvNet used in this work is shown in Fig. 3. ConvNets are inspired by the multi-layered organization of the visual cortex40:
filters are learned in a hierarchical fashion, composing low-level features (e.g. points, edges or curves) to generate more
complex motifs. In our case, such motifs encode the relative position of the peaks in the diffraction fingerprint for the four
crystal classes considered (see Fig. 5b).

The model performance
From the AFLOWLIB elemental solid database41, we extract all crystal structures belonging to the cubic crystal system which
are classified as having space groups Fm3̄m, Fd3̄m, Im3̄m, and Pm3̄m by the aforementioned symmetry-based approach for
space group determination6, 7. For the case of elemental solids presented here, these space groups correspond to face-centered-
cubic (fcc), diamond (diam), body-centered-cubic (bcc), and simple cubic (sc) structures, respectively. This represents a
challenging dataset because it contains 6,345 crystal structures comprising 83 different chemical species, cells of various
size, and structures that are not necessarily in the most stable atomic arrangement for a given composition, or even at a local
energy minimum. This last point in particular could potentially be a problem for the symmetry-based approach: when crystals
are not in a perfect arrangement, it can fail in returning the correct labels. In fact, if atoms are slightly displaced from their
expected symmetry positions, the classification could return a different space group because symmetries might be broken by
this numerical noise. To avoid this, we include in our pristine dataset only systems which are successfully recognized by the
symmetry-based approach to belong to one of the four classes above, thus ensuring that the labels are correct. We refer to the
above as pristine dataset; the dataset labels are the aforementioned space groups.

We apply the workflow introduced here (and schematically shown in Fig. 1) to this dataset. For each structure, we first
compute the two-dimensional diffraction fingerprint D(q); then, we train the ConvNet on (a random) 75% of the dataset, and
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use the remaining 25% as test set. We obtain an accuracy of 100% on both training and test set, showing that the model is able
to perfectly learn the samples and at the same time capable of correctly classifying systems which were never encountered
before. The ConvNet model optimization (i.e. training) takes 30 minutes on a quad-core Intel(R) Core(TM) i7-3540M CPU,
while one class label is predicted - for a given D(q) - in approximately 70 ms on the same machine (including reading time).
The power of machine learning models lies in their ability to produce accurate results for samples that were not included at
training. In particular, the more dissimilar test samples are from the training samples, the more stringent is the assessment of the
model generalization performance. To evaluate this, starting from the pristine dataset, we generate heavily defective structures
introducing random displacements (sampled from Gaussian distributions with standard deviation up to 0.15 Å), creating
vacancies (up to 50%), and randomly substituting atomic species (thus forming binaries and ternaries alloys). This results
in a dataset of 82,485 defective crystals, for some of which even the trained eyes of a materials scientist might have trouble
identifying the underlying crystal symmetries from their structures in real space (compare for example, the crystal structures
in Fig.2d with 2e and 2f). As mentioned in the Introduction, symmetry-based approaches for space group determination6, 7

fail in giving the correct (“most similar”) crystal class in the presence of defects. Thus, strictly speaking, we do not have a
true label to compare with. However, since in this particular case the defective dataset is generated starting from the pristine,
we do know the original crystal class for each sample. Hence, to estimate the model generalization capability, we label the
defective structures with the space group of the corresponding pristine system. This is a sensible strategy given that displacing,
substituting or removing atoms at random will unlikely change the materials’ crystal class. Using the ConvNet trained on the
pristine dataset (and labels from the pristine structures), we obtain 100% accuracy over the whole defective dataset. Since no
defective structure was included at training, this represents a compelling evidence of the model generalization ability.

If random changes will unlikely modify a crystal class, it is however possible to apply targeted transformations in order to
change a given crystal from one class to another. In particular, starting from a bcc one can obtain a sc crystal removing all
atoms at the center of the bcc unit cell (Fig.2b, and 4a top). We remove different percentages of central atoms (from 0% to
100%, at 10% steps) from a subset of bcc structures in the pristine dataset; this gives us a collection of structures which are
intermediate between bcc and sc by construction (see Fig.4a top-center for a concrete example).

Let us now recall that the output of our approach is not only the crystal class, but also the probability that a system belongs to
a given class; this quantifies how certain the neural network is regarding its classification. The probability of the aforementioned
structures being fcc (purple) or sc (red) according to our model are plotted in Fig.4a as function of the percentage of central
atoms removed (the shaded area indicates the standard deviation of such distributions). This percentage can be seen as a order
parameter of the bcc-to-sc structural phase transition. If no atoms are removed, the structures are “pure” bcc, and the model
indeed classifies them as bcc with probability 1, and zero standard deviation. At first, removing (central) atoms does not modify
this behavior: the structures are seen by the model as defective bcc structures . However, at 70% of central atoms removed, the
neural network judges that such structures are not defective bcc anymore, but are actually intermediate between bcc and sc.
This is reflected in an increase of the classification probability of sc, a corresponding decrease in bcc probability, and a large
increment in the standard deviation of these two distributions. When all central atoms are removed, we are left with “pure” sc
structures, and the model classifies again with probability 1, and vanishing standard deviation: the neural network is confident
that these structures belong to the sc class.

Since we have shown that the diffraction descriptor is well-behaved with respect to defects (Fig.2), and that the neural
network can extrapolate correctly to intermediate structures (see Fig.4a), let us now address the question if our method
can distinguish ordered structures with defects and amorphous structures. There is an empirical (universal) criterion - the
so-called Lindemann melting rule42 - to predict the solid-liquid transition: it states that this occurs when the ratio between the
root-mean-square fluctuations about lattice positions and the nearest neighbor distance (termed Lindemann parameter) exceeds
a certain threshold. Here, we investigate whether structures, to which random displacements to the atomic positions are applied,
are recognized as amorphous structures when the resulting Lindemann parameter exceeds the threshold. In practice, we generate
structures with Lindemann parameter ranging from 0 (pristine) to 0.4 (amorphous) from a subset of bcc structures belonging
to the pristine dataset. In Fig.4b we plot the classification probability of all four classes versus Lindemann parameter. Up to
a Lindemann parameter of 0.1, the model classifies these disordered structures as bcc with probability 1, and zero standard
deviation. In the range 0.1-0.2, however, the bcc probability classification drops significantly, just as the standard deviation
increases: the neural network is now less confident on its predictions. For Lindemann parameters greater than 0.2 the structures
are amorphous, and therefore the neural network classification is no longer meaningful: this is reflected in the very large
standard deviation of the classification probability distributions of all classes. It is interesting to note that the drop of confidence
in the neural network predictions falls precisely in the range of commonly accepted critical values for the Lindemann parameter
(0.1-0.2)43. This is quite noteworthy, especially considering that our model was built using exclusively pristine structures, and
has thus no information regarding disordered structures.
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Opening the black-box: classification-model visualization using attentive response maps
Our procedure based on diffraction fingerprints and ConvNet perfectly classifies both pristine and defective dataset but are we
obtaining the right result for the right reason? And how does the ConvNet arrive at its final classification decision?

To answer these questions, we need to unravel the neural network internal operations; a challenging problem which has
recently attracted considerable attention in the deep learning community44–49. The difficulty of this task lies in both the tendency
of deep learning models to represent the information in a highly distributed manner, and the presence of non-linearities in
the network’s layers. This in turn leads to a lack of interpretability which hindered the widespread use of neural networks in
natural sciences: linear algorithms are often preferred over more sophisticated (but less interpretable) models with superior
performance.

To shed light on the ConvNet classification process, we resort to visualization: using the fractionally strided convolutional
technique introduced in Ref.47 we back-projects attentive response maps (i.e. filters) in image space44, 45, 49. Such attentive
response maps - shown in Fig. 5 - identify the parts of the image which are the most important in the classification decision47.
The top four most activated (i.e. most important) filters from all convolutional layers are shown in Fig. 5a for the fcc class. The
complexity of the learned filters grows layer by layer, as demonstrated by the increasing number of diffraction peaks spanned
by each motif. The sum of the last convolutional layer filters for each class is shown in Fig. 5b; they are class templates
automatically learned from the data by the ConvNet. Comparing Fig.2c and 5b, we see that our deep learning model is able
to autonomously learn, and subsequently use, the same features that a domain expert would use. This not only confirms the
soundness of our classification procedure, but also explains its robustness in terms of generalization.

Discussion
We have introduced a new way of representing crystals by means of (easily interpretable) images. Being based on reciprocal
space, this descriptor - termed two-dimensional diffraction fingerprint - compactly encodes crystal symmetries, and possess
numerous attractive properties for crystals classification. In addition, it is complementary with existing real-space based
representations15, making possible to envision a combined use of these two descriptors. Starting from these diffraction
fingerprints, we use a convolutional neural network to predict crystal classes. As a result, we obtain an automatic procedure
for crystals classification which does not required any user-specified threshold, and achieves perfect classification even in the
presence of highly defective structures. On this regard, we argue that - since materials science data are generated in a relatively
controlled environment - defective datasets represent probably the most suitable test to probe the generalization ability of
any data-analytics model. Given the solid physical grounds of the diffraction fingerprint representation, our deep learning
model is modest in size, which translates in short training and prediction times. Finally, using recently developed visualization
techniques, we uncover the learning process of the neural network. Thanks to its multi-layered architecture, we demonstrate
that the network is able to learn, and then use in its classification decision the same landmarks a human expert would use. In
accordance with the principle of reproducible research50, 51, we also provide an online tutorial where users can interactively
reproduce the main results of this work (but also produce their own) within the framework of the NOMAD Analytics-Toolkit.
Although in principle straightforward, the generalization of our approach to other space groups beyond cubic crystal symmetry
would require additional work in defining the diffraction detector plane for lower symmetry crystal system (i.e. to account
for crystal axis permutations and beyond the isotropic scaling used here, see Methods). The classification framework, on the
other hand, would be exactly the same: one would simply need to retrain the network with the new images. As an outlook, our
method could also be applied to the problem of local microstructure determination in atomic probe tomography experiments,
with the ultimate goal of discovering structural-property relationships in real materials.

Methods
Two-dimensional diffraction fingerprint
First, for each structure in the dataset, we construct the standard conventional cell according to Ref.52. Then, we replicate this
standard cell in all three directions such that the resulting cluster contains a number of atoms which is as close as possible
to a given target number (namely, 128). The size-invariance of the diffraction peak locations guarantees that the results are
independent from this choice (only the peak widths will slightly change, in accordance with the indetermination principle27).
This was expressly checked for systems ranging from 32 to 1024 atoms. As mentioned in the main text, we use finite
samples instead of periodically repeated crystals to explicitly prove the local structure recognition capabilities of the method.
Furthermore, we isotropically scale each crystal structure by its average atomic bond length (i.e. distance between the nearest
neighboring atoms). Since the task is to distinguish crystals classes with an image for each system, one needs to choose
a wavelength which is much smaller than the spacing between atoms, such that many beams are diffracted simultaneously
(because the corresponding Ewald sphere radius is much larger than the lattice spacing)28. Therefore, we use a wavelength
of λ = 5.0 ·10−12m for the incident plane wave (Eq.1), a wavelength typically used in electron diffraction experiments. The
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diffraction pattern was calculated for an incident plane wave propagating in the direction forming an angle of 45◦ with respect to
one of the crystal axis (e.g., x), and parallel to the other two. Any other choice is in principle valid, provided that the diffraction
patterns corresponding to different crystal classes are not degenerate. For the (computational) detector, we use a pixel width
and height of of 4.0 ·10−4m, and produce a 64×64 pixel image as diffraction fingerprint. The two-dimensional diffraction
patterns are calculated using the open-source software Condor53.

Dataset
Our pristine dataset consists of materials from the AFLOWLIB elemental solid database41 belonging to the cubic crystal system,
and with space groups Fm3̄m (face-centered-cubic), Fd3̄m (diamond), Im3̄m (body-centered-cubic), and Pm3̄m (simple cubic),
as determined by a symmetry-based approach6, 7. From this, we create defective structures by: i) randomly removing 10%, 20%,
30%, 40% and 50% of the atoms; ii) randomly displacing atoms according to Gaussian distributions with standard deviation
0.05 Å, 0.10 Å, 0.15 Å; iii) chemically substituting 25% and 50% of atoms by atoms of another (randomly chosen) atomic
species, thus creating binary alloys; iv) chemically substituting 25%, 50%, and 75% of atoms by atoms of other two different
(randomly chosen) chemical species, thus creating ternary alloys. This originates a dataset of 6,345× (5+3+2+3) = 82,485
defective structures, which is then used as test set. For this defective dataset we use labels from the pristine structures because
the materials’ class will unlikely be changed by the transformations above. To quantify this, let us consider the transformation
of bcc into sc crystals for the case of random vacancies as illustrative example. As stated in the main text, a sc structure can be
obtained removing all atoms laying at the center of the bcc unit cell (see Fig.2b). Therefore, for a structure comprising N atoms,
one needs to remove exactly the N/2 atoms which are at the center of the cubic unit cell (note that each corner atom is shared
equally between eight adjacent cubes and therefore counts as one atom). For N/2 randomly generated vacancies, the probability

of removing all and only these central atoms is PN = 2
[( N

N/2

)]−1
which - for the structure sizes considered in this work - leads

to negligible probabilities (P64 ≈ 10−18, P128 ≈ 10−38). The same holds for chemical substitutions: even if in principle they
could change the space group (e.g. diamond to zincblende structure), the probability of this to happen is comparable with the
example above, and therefore negligible. Finally, in the case of displacements, atoms are randomly moved about their original
positions, and - due to this randomness - it is not possible to obtain any long-range re-organization of the crystal, necessary to
change the materials’ class; moreover, for large displacements the system becomes amorphous (without long-range order).

Convolutional neural network architecture and training procedure
The architecture of the convolutional neural network used in this work is detailed in Table 1. Training was performed using
Adam optimization54 with batches of 32 images for 2 epochs with learning rate 10−3, and cross-entropy as cost function. The
convolutional neural network was implemented with TensorFlow55 and Keras56.

Layer type Specifications
Convolutional Layer (Kernel: 7x7; 32 filters)
Convolutional Layer (Kernel: 7x7; 16 filters)
Max Pooling Layer (Pool size: 2x2, stride: 2x2)
Convolutional Layer (Kernel: 7x7; 12 filters)
Convolutional Layer (Kernel: 7x7; 12 filters)
Max Pooling Layer (Pool size: 2x2, stride: 2x2)
Convolutional Layer (Kernel: 7x7; 8 filters)
Convolutional Layer (Kernel: 7x7; 8 filters)
Fully connected Layer + Dropout (Size: 128; dropout: 25%)
Softmax (Size: 4)

Table 1. Architecture of the convolutional neural network used in this work.

Data availability and online tutorial for results reproduction
Data are available at the Novel Materials Discovery (NOMAD) repository (http://repository.nomad-coe.eu/). An online
tutorial to reproduce the main results presented in this work can be found in the NOMAD Analytics-Toolkit (https://analytics-
toolkit.nomad-coe.eu/tutorial-face-of-crystals).
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Figure 2. The two-dimensional diffraction fingerprint. (a) Schematic representation of the two-dimensional diffraction
fingerprint calculation. An incident plane wave is scattered by the material, and the diffraction pattern on a plane perpendicular
to the incident radiation is computed (experimentally, electron diffraction would create the same pattern). (b) Prototypes of the
four crystal classes considered in this work. (c) Examples of two-dimensional diffraction patterns for materials belonging to
each of the four classes. The ordering is the same as b. (d)-(e)-(f) A pristine face-center-cubic structure (d), the same structure
with 50% of vacancies (e), and with atoms displaced randomly according to a Gaussian distribution with standard deviation of
0.15 Å (f), together with their diffraction fingerprints. (g) (h) Difference between the diffraction fingerprints of the defective
e-f and the pristine structure d.
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Figure 3. Schematic representation of the convolutional neural network (ConvNet) used for crystals classification. (a) A
learnable filter (also called kernel) is convolved across the image, and the scalar product between the filter and the input at
every position is computed. This results in a two-dimensional activation map (in red) of that filter at each spatial position,
which is then passed through a rectified linear unit (ReLu)37. (b) The same procedure as point a is applied to this activation
map (instead of the original image), producing another activation map (in purple). (c) A downsampling operation (in blue) is
performed to coarse-grain the representation. Six convolutional and two downsampling (max-pooling) layers are stacked
sequentially (see Methods for additional details). (d) The output of the convolutional/downsampling layers sequence is passed
to fully-connected layers (regularized using dropout38) to complete the classification procedure. (e) The ConvNet outputs the
probabilities that the input image, and therefore the corresponding material, belongs to a given class. Minimizing the
classification error, the above-mentioned filters are learned - through back-propagation39 - and they will activate when a similar
feature (e.g. edges or curves for initial layers, and more complex motifs for deeper layers) appears in the input.
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Figure 4. (a) Body-centered-cubic (bcc) to simple cubic (sc) structural transition. (top) Examples of a bcc, an intermediate
bcc/sc, and a sc structure. (bottom) Distributions of classification probability for the bcc (purple) and sc (red) classes as a
function of the percentage of central atoms being removed (see text for more details). The shaded area corresponds to a range
of one standard deviation above and below these distributions. (b) From ordered to amorphous structures: predictions. (top)
Examples of a bcc and a “disordered” bcc structure. (bottom) Distributions of classification probability of all four crystal
classes. The drop in the classification probability distribution for the bcc class (purple) occurs within the range of commonly
accepted Lindemann parameters (shaded gray area between 0.1 and 0.2) for a solid to liquid transition (see text for more
details).
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Figure 5. Crystal templates: visualizing the convolutional neural network (ConvNet) attentive response maps. (a) Attentive
response maps from the top four most activated filters of all convolutional layers for the face-centered-cubic class. The brighter
the pixel, the most important is that location for classification. Comparing across layers, we notice that the ConvNet filters are
composed in a hierarchical fashion, increasing their complexity from one layer to another. At the fourth convolutional layer, the
ConvNet discovers that the diffraction peaks, and their relative arrangement, are the most effective way to predict crystal
classes. (b) Sum of the last convolutional layer filters for all four crystal classes: the ConvNet learned crystal templates
automatically from the data.

15/15


	References

