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Insightful classification of crystal structures using
deep learning
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Computational methods that automatically extract knowledge from data are critical for

enabling data-driven materials science. A reliable identification of lattice symmetry is a

crucial first step for materials characterization and analytics. Current methods require a user-

specified threshold, and are unable to detect average symmetries for defective structures.

Here, we propose a machine learning-based approach to automatically classify structures by

crystal symmetry. First, we represent crystals by calculating a diffraction image, then con-

struct a deep learning neural network model for classification. Our approach is able to

correctly classify a dataset comprising more than 100,000 simulated crystal structures,

including heavily defective ones. The internal operations of the neural network are unraveled

through attentive response maps, demonstrating that it uses the same landmarks a materials

scientist would use, although never explicitly instructed to do so. Our study paves the way for

crystal structure recognition of—possibly noisy and incomplete—three-dimensional struc-

tural data in big-data materials science.
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Crystals play a crucial role in materials science. In parti-
cular, knowing chemical composition and crystal structure
—the way atoms are arranged in space—is an essential

ingredient for predicting properties of a material1–3. Indeed, it is
well known that the crystal structure has a direct impact on
materials properties4. Just to give a concrete example: in iron,
carbon solubility (important for steel formation) increases nearly
forty times going from body-centered cubic (bcc) α-Fe (ferrite) to
face-centered cubic (fcc) γ-Fe (austenite)5. From the computa-
tional point of view, identification of crystal symmetries allows,
for example, to construct appropriate k-point grids for Brillouin
zone sampling, generate paths between high-symmetry points in
band structure calculations, or identify distortions for finite-
displacement phonon calculations.

Given the importance of atomic arrangement in both theore-
tical and experimental materials science, an effective way of
classifying crystals is to find the group of all transformations
under which the system is invariant; in three dimensions, these
are described by the concept of space groups6. Currently, to
determine the space group of a given structure, one first deter-
mines the allowed symmetry operations, and then compare them
with all possible space groups to obtain the correct label; this is
implemented in existing symmetry packages such as FINDSYM7,
Platon8, Spglib9–11, and, most recently, the self-consistent,
threshold-adaptive AFLOW-SYM12. For idealized crystal struc-
tures, this procedure is exact. But in most practical applications
atoms are displaced from their ideal symmetry positions due to
(unavoidable) intrinsic defects or impurities or experimental
noise. To address this, thresholds need to be set in order to define
how loose one wants to be in classifying (namely, up to which
deviations from the ideal structures are acceptable); different
thresholds may lead to different classifications (see for instance
Table 1). So far, this was not a big problem because individual
researchers were manually finding appropriate tolerance para-
meters for their specific dataset.

However, our goal here is to introduce an automatic procedure
to classify crystal structures starting from a set of atomic coor-
dinates and lattice vectors; this is motivated by the advent of
high-throughput materials science computations, owing to which
millions of calculated data are now available to the scientific
community (see the Novel Materials Discovery (NOMAD)
Laboratory13 and references therein). Clearly, there is no uni-
versal threshold that performs optimally (or even sub-optimally)
for such a large number of calculations, nor a clear procedure to
check if the chosen threshold is sound. Moreover, the afore-
mentioned symmetry-based approach fails—regardless of the
tolerance thresholds—in the presence of defects such as, for
example, vacancies, interstitials, antisites, or dislocations. In fact,
even removing a single atom from a structure causes the system
to lose most of its symmetries, and thus one typically obtains the
(low symmetry, e.g. P1) space group compatible with the few
symmetry operations preserved in the defective structure. This

label—although being technically correct—is practically always
different from the label that one would consider appropriate (i.e.,
the most similar space group, in this case the one of the pristine
structure). Robustness to defects, however, is paramount in local
and global crystal structure recognition. Grain boundaries, dis-
locations, local inclusions, heterophase interfaces, and in general
all crystallographic defects can have a large impact on macro-
scopic materials properties (e.g., corrosion resistance14, 15). Fur-
thermore, atom probe tomography—arguably the most important
source of local structural information for bulk systems—provides
three-dimensional atomic positions with an efficiency up to
80%16 and near-atomic resolution, which, on the other hand,
means that at least 20% of atoms escaped detection, and the
uncertainty on their positions is considerable.

Here, we propose a procedure to efficiently represent and
classify potentially noisy and incomplete three-dimensional
materials science structural data according to their crystal sym-
metry (and not to classify x-ray diffraction images, or powder x-
ray diffraction data17). These three-dimensional structural data
could be, for example, atomic structures from computational
materials science databases, or elemental mappings from atom
probe tomography experiments. Our procedure does not require
any tolerance threshold, and it is very robust to defects (even at
defect concentrations as high as 40%). First, we introduce a way
to represent crystal structures (by means of images, i.e., two-
dimensional maps of the three-dimensional crystal structures, see
below), then we present a classification model based on con-
volutional neural networks (ConvNets), and finally we unfold the
internal behavior of the classification model through visualiza-
tion. An interactive online tutorial for reproducing the main
results of this work is also provided18.

Results
How to represent a material. The first necessary step to perform
any machine learning and/or automatized analysis on materials
science data (see Fig. 1) is to represent the material under con-
sideration in a way that is understandable for a computer. This
representation—termed “descriptor”19—should contain all the
relevant information on the system needed for the desired
learning task. Numerous structural descriptors have been pro-
posed to represent physical systems, most notable examples being
atom-centered symmetry functions20, Coulomb matrix21, smooth
overlap of atomic positions22, deep tensor neural networks23,
many-body tensor representation24, and Voronoi
tessellation25, 26. However, these descriptors are either not
applicable to extended systems21, 23, not size-invariant by con-
struction24, or base their representation of infinite crystals on
local neighborhoods of atoms in the material20, 22, 25–27. If on the
one hand these local approaches are able to produce accurate
force fields28, 29, on the other hand their strategy of essentially
partitioning the crystal in patches (defined by a certain cut-off
radius, generally 4–6 Å20, 28) makes it difficult to detect global

Table 1 Accuracy in identifying the correct (most similar) crystal class in the presence of defects

Random displacements (σ) Vacancies (η)

0.001 Å 0.002Å 0.005 Å 0.01 Å 0.02 Å 0.06 Å 1% 2% 15% 25%

Spglib (tight) 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00
Spglib
(medium)

73.70 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

Spglib (loose) 99.99 99.99 99.99 75.22 0.00 0.00 0.01 0.00 0.00 0.00
This work 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

The defective structures are calculated randomly displacing atoms according to Gaussian distribution with standard deviation σ (left), or removing η% of the atoms (right). For details regarding the Spglib
thresholds chosen see Supplementary Note 1. The accuracy values shown in the table are in percentage
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structural properties, in particular where recognizing long-range
order is crucial.

In the case of crystal structure recognition, however, it is
essential that the descriptor captures system’s symmetries in a
compact way, while being size invariant in order to reflect the
infinite nature of crystals. Periodicity and prevailing symmetries
are evident—and more compact—in reciprocal space, and
therefore we introduce an approach based on this space. For
every system, we first simulate the scattering of an incident plane
wave through the crystal, and then we compute the diffraction
pattern in the detector plane orthogonal to that incident wave.
This is schematically depicted in Fig. 2a.

The amplitude Ψ, which originates from the scattering of a
plane wave with wave vector k0 by Na atoms of species a at

positions xðaÞj

n o
in the material can be written as:

Ψ qð Þ ¼ r�1
X
a

f λa θð Þ
XNa

j¼1

r0 exp �iq � xðaÞj

� �" #
; ð1Þ

where r0 is the Thomson scattering length, q= k1− k0 is the
scattering wave vector, x′ the corresponding position in the
detector plane, and r ¼ x′j j (see Fig. 2a). Assuming elastic
scattering, we have that k0j j ¼ k1j j ¼ 2π=λ, where λ is the
wavelength of the incident radiation. The quantity f λa θð Þ is the so-
called x-ray form factor; it describes how an isolated atom of
species a scatters incident radiation with wavelength λ and
scattering angle θ. Since x-rays are scattered by the electronic

cloud of an atom, its amplitude increases with the atomic number
Z of the element30. Following the successful application of
scattering concepts in determining atomic structures (using for
example x-rays31, electrons32 or neutrons33), we propose the
diffraction pattern intensity as the central quantity to describe
crystal structures:

I qð Þ ¼ A � Ω θð Þ Ψ qð Þj j2; ð2Þ

where Ω(θ) is the solid angle covered by our (theoretical)
detector, and A is a (inessential) constant determined by
normalization with respect to the brightest peak (see section
Methods). For each structure we first construct the standard
conventional cell according to ref34. Then, we rotate the structure
45° clockwise and counterclockwise about a given crystal axis
(e.g., x), calculate the diffraction pattern for each rotation, and
superimpose the two patterns. Any other choice of rotation angle
is in principle valid, provided that the diffraction patterns
corresponding to different crystal classes do not accidentally
become degenerate. This procedure is then repeated for all three
crystal axes. The final result is represented as one RGB image for
crystal structure, where each color channel shows the diffraction
patterns obtained by rotating about a given axis (i.e., red (R) for
x-axis, green (G) for y-axis, and blue (B) for z-axis). Each system
is thus described as an image, and we term this descriptor two-
dimensional diffraction fingerprint (DF). We point out that this
procedure does not require to already know the crystal symmetry,
and x, y, and z are arbitrary, for example, determined ordering the
lattice vectors by length34 (or whatever the chosen criterion). For
additional computational details on the descriptor DF, please refer
to the section Methods.

Despite its rather complicated functional form (see Eqs. (1) and
(2)), the descriptor DF is one image for each system being
represented (data point); the eight crystal classes considered in
this work (see below) and examples of their calculated two-
dimensional diffraction fingerprints are shown in Fig. 2b, c,
respectively. This descriptor compactly encodes detailed struc-
tural information (through Eq. (1)) and—in accordance with
scattering theory—has several desirable properties for crystal
structure classification, as we outline below.

It is invariant with respect to system size: changing the number
of periodic replicas of the system will leave the diffraction peak
locations unaffected. This allows to treat extended and finite
systems on equal footing, making our procedure able to recognize
global and local order, respectively. We exploit this property, and
instead of using periodically repeated crystals, we calculate DF

using clusters of approximately 250 atoms. These clusters are
constructed replicating the crystal unit cell (see Methods). By
using finite samples, we explicitly demonstrate the local structure
recognition ability of our procedure. The diffraction fingerprint is
also invariant under atomic permutations: re-ordering the list of
atoms in the system leads to the same DF due to the sum over all
atoms in Eq. (1). Moreover, its dimension is independent of the
number of atoms and the number of chemical species in the
system being represented. This is an important property because
machine learning models trained using this descriptor generalize
to systems of different size by construction. This is not valid for
most descriptors: for example, the Coulomb matrix dimension
scales as the square of atoms in the largest molecule considered21,
while in symmetry functions-based approaches20 the required
number of functions (and thus model complexity) increases
rapidly with the number of chemical species and system size.
Being based on the process of diffraction, the diffraction
fingerprint mainly focuses on atomic positions and crystal
symmetries; the information on the atomic species—encoded in
the form factor f λa in Eq. (1)—plays a less prominent role in the
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Fig. 1 The model workflow of automatic crystal structure classification.
First, every crystal structure is represented by the two-dimensional
diffraction fingerprint. Then, a small subset of these structures are used as
training set to generate a classification model. In particular, a convolutional
neural network is used, and optimized minimizing the training set
classification error. However, this is in general not enough to have a sound
and generalizable model. Thus, we unfold the neural network internal
operations by visualization, and ensure that the model arrives at its
classification decision on physically motivated grounds. Finally, a
classification model is deployed, and crystal structures can be directly and
efficiently classified without any additional model optimization
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descriptor. As a result, materials with different atomic composi-
tion but similar crystal structure have similar representations.
This is the ideal scenario for crystals classification: a descriptor
which is similar for materials within the same class, and very
different for materials belonging to different classes. Finally, the
diffraction fingerprint is straightforward to compute, easily
interpretable by a human (it is an image, see Fig. 2c), has a
clear physical meaning (Eqs. (1) and (2)), and is very robust to
defects. This last fact can be traced back to a well-known property
of the Fourier transform: the field at one point in reciprocal space
(the image space in our case) depends on all points in real space.
In particular, from Eq. (1) we notice that the field Ψ at point q is
given by the sum of the scattering contributions from all the
atoms in the system. If, for example, some atoms are removed,
this change will be smoothened out by the sum over all atoms and
spread over—in principle—all points in reciprocal space.
Practically, with increasing disorder new low-intensity peaks will
gradually appear in the diffraction fingerprint due to the now

imperfect destructive interference between the atoms in the
crystal. Examples of pristine and highly defected structures,
together with their corresponding diffraction fingerprints, are
shown in Fig. 2d–f, respectively. It is evident that the diffraction
fingerprint is indeed robust to defects. This property is crucial in
enabling the classification model to obtain a perfect classification
even in the presence of highly defective structures (see below).

A disadvantage of the two-dimensional diffraction fingerprint
is that it is not unique across space groups. This is well known in
crystallography: the diffraction pattern does not always determine
unambiguously the space group of a crystal35, 36. This is primarily
because the symmetry of the diffraction pattern is not necessarily
the same as the corresponding real-space crystal structure; for
example, Friedel’s law states that—if anomalous dispersion is
neglected—a diffraction pattern is centrosymmetric, irrespective
of whether or not the crystal itself has a center of symmetry.
Thus, the diffraction fingerprint DF cannot represent non-
centrosymmetric structures by construction. The non-
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Fig. 2 The two-dimensional diffraction fingerprint. a Schematic representation of the two-dimensional diffraction fingerprint calculation. An incident plane
wave is scattered by the material, and the diffraction pattern on a plane perpendicular to the incident radiation is computed. b Prototypes of the crystal
classes considered in this work. c Examples of two-dimensional diffraction patterns for materials belonging to each of the eight classes. The ordering is the
same as b. Rhombohedral and hexagonal structures have the same two-dimensional diffraction fingerprint. d–f A pristine simple cubic structure (d), the
same structure with 25% of vacancies (e), and with atoms displaced randomly according to a Gaussian distribution with standard deviation of 0.08 Å (f),
together with their diffraction fingerprints. g, h Difference between the diffraction fingerprints of the defective (e), (f) and the pristine structure (d)
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uniqueness of the diffraction pattern I(q) across space groups also
implies that crystal structures belonging to different space groups
can have the same diffraction fingerprints. Nevertheless, from
Fig. 2c we notice that out of the eight crystal structure prototypes
considered (covering the large majority of the most thermo-
dynamically stable structures formed in nature by elemental
solids37), only the rhombehedral and hexagonal structures–whose
real-space crystal structures are quite similar–have the same two-
dimensional diffraction fingerprint.

The classification model. Having introduced a way to represent
periodic systems using scattering theory, we tackle the problem of
their classification in crystal classes based on symmetries. A first
(and naive) approach to classify crystals–now represented by the
diffraction descriptor DF–would be to write specific programs that
detect diffraction peaks in the images, and classify accordingly.
Despite appearing simple at first glance, this requires numerous
assumptions and heuristic criteria; one would need to define what
is an actual diffraction peak and what is just noise, when two
contiguous peaks are considered as one, how to quantify relative
peak positions, to name but a few. In order to find such criteria
and determine the associated parameters, one in principle needs
to inspect all (thousands or even millions) pictures that are being
classified. These rules would presumably be different across
classes, require a separate—and not trivial—classification para-
digm for each class, and consequently lead to a quagmire of ad
hoc parameters and task-specific software. In addition, the pre-
sence of defects leads to new peaks or alters the existing ones (see
Fig. 2g, h), complicating matters even further. Thus, this
approach is certainly not easy to generalize to other crystal
classes, and lacks a procedure to systematically improve its pre-
diction capabilities.

However, it has been shown that all these challenges can be
solved by deep learning architectures38–40. These are computa-
tional nonlinear models sequentially composed to generate
representations of data with increasing level of abstraction.
Hence, instead of writing a program by hand for each specific
task, we collect a large amount of examples that specify the
correct output (crystal class) for a given input (descriptor image
DF), and then minimize an objective function which quantifies
the difference between the predicted and the correct classification
labels. Through this minimization, the weights (i.e., parameters)
of the neural network are optimized to reduce such classification

error41, 42. In doing so, the network automatically learns
representations (also called features) which capture discrimina-
tive elements, while discarding details not important for
classification. This task—known as feature extraction—usually
requires a considerable amount of heuristics and domain
knowledge, but in deep learning architectures is performed with
a fully automated and general-purpose procedure40. In particular,
since our goal is to classify images, we use a specific type of deep
learning network which has shown superior performance in
image recognition: the ConvNet43–45. A schematic representation
of the ConvNet used in this work is shown in Fig. 3. ConvNets are
inspired by the multi-layered organization of the visual cortex46:
filters are learned in a hierarchical fashion, composing low-level
features (e.g., points, edges, or curves) to generate more complex
motifs. In our case, such motifs encode the relative position of the
peaks in the diffraction fingerprint for the crystal classes
considered, as we will show below.

The model performance. For every calculation in the AFLOW-
LIB elemental solid database47, 48, we determine its space group
using a symmetry-based approach9, 10 as implemented by the
Spglib code. We then extract all systems belonging to cen-
trosymmetric space groups which are represented with more than
50 configurations. This gives us systems with the following space
group numbers: 139, 141, 166, 194, 221, 225, 227, and 229. For
the case of elemental solids presented here, these space groups
correspond to body-centered tetragonal (bct, 139 and 141),
rhombohedral (rh, 166), hexagonal (hex, 194), simple cubic (sc,
221), fcc (225), diamond (diam, 227), and bcc (229) structures.
This represents a rather complete dataset since it includes the
crystal structures adopted by more than 80% of elemental solids
under standard conditions37. It is also a challenging dataset
because it contains 10,517 crystal structures comprising 83 dif-
ferent chemical species, cells of various size, and structures that
are not necessarily in the most stable atomic arrangement for a
given composition, or even at a local energy minimum. This last
point in particular could potentially be a problem for the
symmetry-based approach: when crystals are not in a perfect
arrangement, it can fail in returning the correct labels. In fact, if
atoms are slightly displaced from their expected symmetry posi-
tions, the classification could return a different space group
because symmetries might be broken by this numerical noise. To
avoid this, we include in the pristine dataset only systems which
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Convolution
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edcba

pbcc

pdiam

pfcc

pscpbct139
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phex/rh

Fig. 3 Schematic representation of the convolutional neural network (ConvNet) used for crystals classification. a A learnable filter (also called kernel) is
convolved across the image, and the scalar product between the filter and the input at every position is computed. This results in a two-dimensional
activation map (in red) of that filter at each spatial position, which is then passed through a rectified linear unit (ReLu)66. b The same procedure as point a
is applied to this activation map (instead of the original image), producing another activation map (in purple). c A downsampling operation (in blue) is
performed to coarse grain the representation. Six convolutional and two downsampling (max pooling) layers are stacked sequentially (see Methods for
additional details). d The output of the convolutional/downsampling layers sequence is passed to fully connected layers (regularized using dropout67) to
complete the classification procedure. e The ConvNet outputs the probabilities that the input image, and therefore the corresponding material, belongs to a
given class. Minimizing the classification error, the above-mentioned filters are learned—through backpropagation68—and they will activate when a similar
feature (e.g., edges or curves for initial layers, and more complex motifs for deeper layers) appears in the input
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are successfully recognized by the symmetry-based approach to
belong to one of the eight classes above, thus ensuring that the
labels are correct. We refer to the above as pristine dataset; the
dataset labels are the aforementioned space groups, except for rh
and hex structures, which we merge in one class (hex/rh) since
they have the same diffraction fingerprint (see Fig. 2c).

We apply the workflow introduced here (and schematically
shown in Fig. 1) to this dataset. For each structure, we first
compute the two-dimensional diffraction fingerprint DF; then, we
train the ConvNet on (a random) 90% of the dataset, and use the
remaining 10% as test set. We obtain an accuracy of 100% on
both training and test set, showing that the model is able to
perfectly learn the samples and at the same time capable of
correctly classifying systems which were never encountered
before. The ConvNet model optimization (i.e., training) takes
80 min on a quad-core Intel(R) Core(TM) i7-3540M CPU, while
one class label is predicted—for a given DF—in approximately 70
ms on the same machine (including reading time). The power of
machine learning models lies in their ability to produce accurate
results for samples that were not included at training. In
particular, the more dissimilar test samples are from the training
samples, the more stringent is the assessment of the model
generalization performance. To evaluate this, starting from the
pristine dataset, we generate heavily defective structures introdu-
cing random displacements (sampled from Gaussian distributions
with standard deviation σ), randomly substituting atomic species
(thus forming binaries and ternaries alloys), and creating
vacancies. This results in a dataset of defective systems, for some
of which even the trained eyes of a materials scientist might have
trouble identifying the underlying crystal symmetries from their
structures in real space (compare, e.g., the crystal structures in
Fig. 2d, f).

As mentioned in the Introduction and explicitly shown below,
symmetry-based approaches for space group determination fail in
giving the correct (most similar) crystal class in the presence of
defects. Thus, strictly speaking, we do not have a true label to
compare with. However, since in this particular case the defective
dataset is generated starting from the pristine, we do know the
original crystal class for each sample. Hence, to estimate the
model generalization capability, we label the defective structures
with the class label of the corresponding pristine (parental)
system. This is a sensible strategy given that displacing,
substituting, or removing atoms at random will unlikely change
the materials’ crystal class. Using the ConvNet trained on the
pristine dataset (and labels from the pristine structures), we then
predict the labels for structures belonging to the defective dataset.
A summary of our findings is presented in Table 1, which
comprises results for 10,517 × (6+ 4)= 105,170 defective sys-
tems; additional data are provided in Supplementary Notes 1 and
2.

When random displacements are introduced, Spglib accuracy
varies considerably according to the threshold used; moreover, at
σ ≥ 0.02 Å Spglib is never able to identify the most similar crystal
class, regardless of threshold used. Conversely, the method
proposed in this work always identifies the correct class up to σ as
high as 0.06 Å. Similar are the results for vacancies: Spglib
accuracy is ~0% already at vacancies concentrations of 1%, while
our procedure attains an accuracy of 100% up to 40% vacancies,
and >97% for vacancy concentrations as high as 60% (Table 1 and
Supplementary Table 2). Since no defective structure was
included at training, this represents a compelling evidence of
both the model robustness to defects and its generalization ability.

If random changes will unlikely modify a crystal class, it is
however possible to apply targeted transformations in order to
change a given crystal from one class to another. In particular,
starting from a bcc one can obtain an sc crystal removing all

atoms at the center of the bcc unit cell (Figs. 2b and 4a). We
remove different percentages of central atoms (from 0 to 100%, at
10% steps) from a subset of bcc structures in the pristine dataset;
this gives us a collection of structures which are intermediate
between bcc and sc by construction (see Fig. 4a center for a
concrete example).

Let us now recall that the output of our approach is not only
the crystal class but also the probability that a system belongs to a
given class; this quantifies how certain the neural network is
regarding its classification. The probability of the aforementioned
structures being fcc (purple) or sc (red) according to our model
are plotted in Fig. 4b as function of the percentage of central
atoms removed (the shaded area indicates the standard deviation
of such distributions). This percentage can be seen as a order
parameter of the bcc-to-sc structural phase transition. If no atoms
are removed, the structures are pure bcc, and the model indeed
classifies them as bcc with probability 1, and zero standard
deviation. At first, removing (central) atoms does not modify this
behavior: the structures are seen by the model as defective bcc
structures. However, at 75% of central atoms removed, the neural
network judges that such structures are not defective bcc
anymore, but are actually intermediate between bcc and sc. This
is reflected in an increase of the classification probability of sc, a
corresponding decrease in bcc probability, and a large increment
in the standard deviation of these two distributions. When all
central atoms are removed, we are left with pure sc structures,
and the model classifies again with probability 1, and vanishing
standard deviation: the neural network is confident that these
structures belong to the sc class.

We conclude our model exploration applying the classification
procedure on a structural transition path encompassing rh, bcc,
sc, and fcc structures (Fig. 4c). From the AFLOW Library of
Crystallographic Prototypes49, we generate rhombohedral struc-
tures belonging to space group 166 (prototype β-Po
A_hR1_166_a) with different values of μ≡ c/a or α, where a
and c are two of the lattice vectors of the conventional cell34, and
α is the angle formed by the primitive lattice vectors49. Particular
values of μ (or α) lead this rhombohedral prototype to reduce to
bcc (μbcc ¼

ffiffiffiffiffiffiffiffi
3=8

p
or α= 109.47°), sc (μsc ¼

ffiffiffiffiffiffiffiffi
3=2

p
or α= 90°), or

fcc (μfcc ¼
ffiffiffi
6

p
or α= 60°) structures49. To test our model on this

structural transition path, we generate crystal structures withffiffiffiffiffiffiffiffi
3=8

p � μ � 5
ffiffiffiffiffiffiffiffi
3=8

p
, and use the neural network trained above

to classify these structures. The results are shown in Fig. 4d. Our
approach is able to identify when the prototype reduces to the
high-symmetry structures mentioned above (at μbcc, μsc, and μfcc),
and also correctly classify the structure as being rhombohedral for
all other values of μ. This is indeed the correct behavior: outside
the high-symmetry bcc/sc/fcc the structure goes back to hex/rh
precisely because that is the lower symmetry family (μ not equal
to μbcc, μsc, or μfcc).

Opening the black box using attentive response maps. Our
procedure based on diffraction fingerprints and ConvNet cor-
rectly classifies both pristine and defective dataset, but are we
obtaining the right result for the right reason? And how does the
ConvNet arrive at its final classification decision?

To answer these questions, we need to unravel the neural
network internal operations; a challenging problem which has
recently attracted considerable attention in the deep learning
community50–55. The difficulty of this task lies in both the
tendency of deep learning models to represent the information in
a highly distributed manner, and the presence of non-linearities
in the network’s layers. This in turn leads to a lack of
interpretability which hindered the widespread use of neural
networks in natural sciences: linear algorithms are often preferred
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over more sophisticated (but less interpretable) models with
superior performance.

To shed light on the ConvNet classification process, we
resort to visualization: using the fractionally strided
convolutional technique introduced in ref.53 we back-projects
attentive response maps (i.e., filters) in image space50, 51, 55. Such
attentive response maps—shown in Fig. 5—identify the parts of
the image which are the most important in the classification
decision53.

The top four most activated (i.e., most important) filters from
the first, third, and last convolutional layers for each of the three
color channels are shown in Fig. 5a for the sc class. The
complexity of the learned filters grows layer by layer, as
demonstrated by the increasing number of diffraction peaks
spanned by each motif. The sum of the last convolutional layer
filters for each class is shown in Fig. 5b; they are class templates
automatically learned from the data by the ConvNet. Comparing
Figs. 2c and 5b, we see that our deep learning model is able to
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Fig. 5 Visualizing the convolutional neural network (ConvNet) attentive response maps. a Attentive response maps from the top four most activated filters
of the first, third and last convolutional layers for the simple cubic class. The brighter the pixel, the most important is that location for classification.
Comparing across layers, we notice that the ConvNet filters are composed in a hierarchical fashion, increasing their complexity from one layer to another.
At the third convolutional layer, the ConvNet discovers that the diffraction peaks, and their relative arrangement, are the most effective way to predict
crystal classes. b Sum of the last convolutional layer filters for all seven crystal classes: the ConvNet learned crystal templates automatically from the data
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autonomously learn, and subsequently use, the same features that
a domain expert would use. This not only confirms the soundness
of the classification procedure but also explains its robustness in
terms of generalization.

Discussion
We have introduced a way of representing crystal structures by
means of (easily interpretable) images. Being based on reciprocal
space, this descriptor—termed two-dimensional diffraction fin-
gerprint—compactly encodes crystal symmetries, and possesses
numerous attractive properties for crystal classification. In addi-
tion, it is complementary with existing real-space-based repre-
sentations22, making possible to envision a combined use of these
two descriptors. Starting from these diffraction fingerprints, we
use a convolutional neural network to predict crystal classes. As a
result, we obtain an automatic procedure for crystals classification
which does not require any user-specified threshold, and achieves
perfect classification even in the presence of highly defective
structures. In this regard, we argue that—since materials science
data are generated in a relatively controlled environment—
defective datasets represent probably the most suitable test to
probe the generalization ability of any data-analytics model.
Given the solid physical grounds of the diffraction fingerprint
representation, our deep learning model is modest in size, which
translates in short training and prediction times. Finally, using
recently developed visualization techniques, we uncover the
learning process of the neural network. Owing to its multi-layered
architecture, we demonstrate that the network is able to learn,
and then use in its classification decision the same landmarks a
human expert would use. Further work is needed to make the
approach proposed here unique across space groups and to widen
its domain of applicability to non-centrosymmetric crystals,
which can exhibit technologically relevant ferroelectric, piezo-
electric, or nonlinear optical effects. In accordance with the
principle of reproducible research56, 57, we also provide an online
tutorial18 where users can interactively reproduce the main results
of this work (but also produce their own) within the framework
of the NOMAD Analytics Toolkit. As an outlook, our method
could also be applied to the problem of local microstructure
determination in atomic probe tomography experiments, with the
ultimate goal of discovering structural–property relationships in
real materials.

Methods
Two-dimensional diffraction fingerprint. First, for each structure in the dataset
(specified by a set of atomic coordinates and lattice vectors), we concatenate three
random rotations around the three crystal axes to randomize the initial crystal
orientation. Then, we construct the standard conventional cell according to ref.34

using a customized implementation based on the Python Materials Genomics
(pymatgen) package58; in particular, we use the convention for triclinic cells—

irrespective of the actual lattice type—and no symmetry refinement of the atomic
position. This procedure is therefore completely independent from traditional
symmetry approaches and robust against randomization of the initial crystal
orientation. Finally, we replicate this standard cell in all three directions such that
the resulting cluster contains a number of atoms which is as close as possible to a
given target number (namely, 250). The size invariance of the diffraction peak
locations guarantees that the results are independent from this choice, only the
peak widths will slightly change, in accordance with the indetermination princi-
ple59 (this was expressly checked for systems ranging from 32 to 1024 atoms).
Defective structures are then generated from these supercells by removing or
randomly displacing atoms. We have also tested that a random rotation followed
by the conventional cell determination applied to already generated defective
structures leads to the same result, since this depends on the lattice vectors only.

As mentioned in the main text, we used finite samples instead of periodically
repeated crystal structures to explicitly prove the local structure recognition
capabilities of the method. Each system is then isotropically scaled by its average
atomic bond length (i.e., distance between nearest neighboring atoms). We also
noticed that for materials formed by hydrogen or helium the diffraction fingerprint
contrast is low due to the small f λa (Eq. (1)) of these elements; H and He are indeed
notoriously difficult to detect with x-ray diffraction methods because of their small
number of electrons (Z= 1 and Z= 2, respectively)36. However, our main goal
here is to introduce a transferable descriptor for crystal structure representation,
and not to compare with experimental data. Thus, we are free to choose a different
value for the atomic number in order to augment the contrast in the diffraction
fingerprint. In particular, we increase the atomic number of the elements by two
when calculating the diffraction fingerprint, that is, H is mapped to Li, He to Be,
and so on. Moreover, given that the task is to distinguish crystals classes with an
image for each system, one needs to choose a wavelength which is much smaller
than the spacing between atoms, such that many beams are diffracted
simultaneously (because the corresponding Ewald sphere radius is much larger
than the lattice spacing)36. Therefore, we use a wavelength of λ= 5.0 × 10−12 m for
the incident plane wave (Eq. (1)), a wavelength typically used in electron diffraction
experiments. Indeed, the two-dimensional diffraction fingerprint bears
resemblance to experimental scattering techniques such as single-crystal or
selected-area electron diffraction; from this perspective, the angle of rotation could
be chosen based on specific crystal orientations60, 61.

For the (computational) detector, we use a pixel width and height of 4.0 × 10−4

m, and produce a 64 × 64 pixel image as diffraction fingerprint. Since the direct
beam does not carry any structural information, and gives raise to a very bright
central diffraction spot which compromises the contrast of high-order peaks, we
remove this central spot from the diffraction fingerprint setting to zero the
intensity within a radius of five pixels from the image center. The two-dimensional
diffraction patterns are calculated using the open-source software Condor62.

Dataset. Our pristine dataset consists of materials from the AFLOWLIB elemental
solid database47 belonging to centrosymmetric space groups which are represented
with more than 50 configurations in the database. Specifically, we extract structures
that have a consistent space group classification for different symmetry tolerances,
as determined by the Python Materials Genomics (pymatgen)58 wrapper around
the Spglib11 library with symprec= {10−3 Å, 10−6 Å, 10−9 Å} for all except rh
and hex structures, for which symprec= {10−3 Å, 10−6 Å} is employed since
some symmetries are missed for symprec= 10−9 Å. This gives us crystal
structures belonging to the following space groups: 139 (bct), 141 (bct), 166 (rh),
194 (hex), 221 (sc), 225 (fcc), 227 (diam), and 229 (fcc). From this, we apply the
defective transformations described in the main text (random displacements,
vacancies, and chemical substitutions) to the pristine structures; the resulting
dataset is used as test set. For this defective dataset we use labels from the pristine
structures because the materials’ class will unlikely be changed by the transfor-
mations above. To quantify this, let us consider the transformation of bcc into sc
crystals for the case of random vacancies as illustrative example. As stated in the
main text, an sc structure can be obtained removing all atoms laying at the center
of the bcc unit cell (see Fig. 2b). Therefore, for a structure comprising N atoms, one
needs to remove exactly the N/2 atoms which are at the center of the cubic unit cell
(note that each corner atom is shared equally between eight adjacent cubes and
therefore counts as one atom). For N/2 randomly generated vacancies, the prob-

ability of removing all and only these central atoms is PN ¼ 2
N
N=2

� �� ��1

which

—for the structure sizes considered in this work—leads to negligible probabilities
(P64 ≈ 10−18, P128 ≈ 10−38). The same holds for chemical substitutions: even if in
principle they could change the space group (e.g., diamond to zincblende struc-
ture), the probability of this to happen is comparable with the example above, and
therefore negligible. Finally, in the case of displacements, atoms are randomly
moved about their original positions, and—due to this randomness—it is not
possible to obtain any long-range re-organization of the crystal, necessary to
change the materials’ class; moreover, for large displacements the system becomes
amorphous (without long-range order).

Neural network architecture and training procedure. The architecture of the
convolutional neural network used in this work is detailed in Table 2. Training was
performed using Adam optimization63 with batches of 32 images for 5 epochs with

Table 2 Architecture of the convolutional neural network
used in this work

Layer type Specifications

Convolutional layer (Kernel: 7 × 7; 32 filters)
Convolutional layer (Kernel: 7 × 7; 32 filters)
Max pooling layer (Pool size: 2 × 2; stride: 2 × 2)
Convolutional layer (Kernel: 7 × 7; 16 filters)
Convolutional layer (Kernel: 7 × 7; 16 filters)
Max pooling layer (Pool size: 2 × 2; stride: 2 × 2)
Convolutional layer (Kernel: 7 × 7; 8 filters)
Convolutional layer (Kernel: 7 × 7; 8 filters)
Fully connected layer+ dropout (Size: 128; dropout: 25%)
Batch normalization (Size: 128)
Softmax (Size: 7)
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a learning rate 10−3, and cross-entropy as cost function. The convolutional neural
network was implemented with TensorFlow64 and Keras65.

Data availability. Calculation data can be downloaded from the NOMAD Repo-
sitory and Archive (https://www.nomad-coe.eu/); the uniform resource locators
(URLs) are provided in the Supplementary Note 3. Additional data including
spatial coordinates and diffraction fingerprint for each structure of the pristine
dataset is available at the Harvard Dataverse: https://doi.org/10.7910/DVN/
ZDKBRF. An online tutorial18 to reproduce the main results presented in this work
can be found in the NOMAD Analytics Toolkit.
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