
marine drugs 

Article

Rapid Estimation of Astaxanthin and the
Carotenoid-to-Chlorophyll Ratio in the Green
Microalga Chromochloris zofingiensis Using
Flow Cytometry

Junhui Chen 1, Dong Wei 1,* ID and Georg Pohnert 2

1 School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China;
jhchens@126.com

2 Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena,
Lessingstr. 8, D-07743 Jena, Germany; Georg.pohnert@uni-jena.de

* Correspondence: fewd304@scut.edu.cn; Tel./Fax: +86-208-711-3849

Received: 23 February 2017; Accepted: 11 July 2017; Published: 19 July 2017

Abstract: The green microalga Chromochloris zofingiensis can accumulate significant amounts of
valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food,
cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological
diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin
in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography)
method for quantitative astaxanthin determination is time-consuming and laborious. In the present
work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin
content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis. The method
is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence
intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the
correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm;
FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis,
a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM)
and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar
procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic
C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3,
FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin
content in the green microalga C. zofingiensis. The rapid FCM method is complementary to the
current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is
required during the high-throughput culture in the laboratory and mass cultivation in industry.
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1. Introduction

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) is a well-known red keto-carotenoid with
high commercial value in functional food, cosmetics and nutraceuticals industry because of its high
anti-oxidative activities [1]. Astaxanthin is a potential therapeutic agent for cardiovascular and
neurological diseases owing to its anti-oxidative, anti-inflammatory and anti-apoptotic effects [2,3].
Natural astaxanthin prevalently has (3S,3’S) stereochemistry, while synthetic astaxanthin is composed
of (3S,3’S), (3RS,3’RS) and (3R,3’R) stereoisomers. The natural product is thus a superior source
for highly defined additives to food and pharmaceutics [4,5]. Both the free astaxanthin and its
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esters from Haematococcus pluvialis exhibit multiple bioactivities including anti-cancer, anti-oxidation,
anti-inflammation and anti-diabetes activities and cardiovascular prevention [1]. Also, the microalgal
powder of H. pluvialis has been associated with anti-aging potential [6]. The green microalga H. pluvialis
is the best source for the commercial production of astaxanthin followed by the red yeast Phaffia
rhodozyma [7].

Recently, the unicellular green microalga Chromochloris zofingiensis, which was renamed from
Chlorella zofingiensis [8], is considered an alternative promising producer of natural astaxanthin with
the potential to replace H. pluvialis. It is superior to H. pluvialis since C. zofingiensis has a high
growth rate and it is easy to achieve high cell density in the presence of organic substrates [9].
It accumulates astaxanthin under stress conditions [10]. Other secondary carotenoids such as
keto-lutein, adonixanthin, and canthaxanthin generally formed from primary carotenoids, also
remarkably accumulate in algal cells as a strategy to reduce photo-damage and to adapt to changing
light conditions along with the degradation of chlorophylls and primary carotenoids [11]. Accordingly,
the carotenoid-to-chlorophyll ratio (Car/Chl), as the preferable indicator of carotenogenesis in
microalgae [12], increases markedly under the combined stress of high irradiance and nitrogen
deprivation due to the accumulation of secondary carotenoids. Easier cell-wall disruption and higher
recovery of valuable pigments make C. zofingiensis more attractive for astaxanthin production than
H. pluvialis [13]. However, the content or production of astaxanthin from C. zofingiensis is still much
lower than that of H. pluvialis [10]. Strategies to enhance astaxanthin accumulation in C. zofingiensis are
still under investigation [9,14].

A fast screening method for the formation of this high-value product is required to enable
carotenoid evaluation and control the production of astaxanthin. Rapid and accurate methods for the
relative and absolute astaxanthin quantification in living cells are thus crucial in the high-throughput
screening of cultures. HPLC methods involving C18 or C30 columns for the separation of cellular
pigments are commonly used, but these protocols are time-consuming and require extraction of the
cells before measurement [15]. Some rapid methods including Raman spectroscopy, near-infrared
spectroscopy (NIRS) and nuclear magnetic resonance spectroscopy (NMR) are feasible for the
quantitative measurement of natural carotenoids [15–19]; however, these methods demand expensive
and specialized equipment and often do not fulfill the requirements for high-throughput screening.
The fluorescence spectroscopy-based investigation is a widely used technology that is convenient for
carotenoid analysis with acceptable sensitivity and accuracy.

Flow cytometry (FCM) is a powerful technology for single cell analysis through detecting forward-
and side-scattered light and fluorescence signals in living cells. To date, FCM has been widely applied
in the eco-physiological studies of unicellular microalgae, especially in the analysis of cellular pigments
(chlorophylls, carotenoids and phycobiliproteins) based on their auto-fluorescence in real time without
losing accuracy [20]. It is speculated that the auto-fluorescence of astaxanthin has the potential use to
measure the content using FCM without applying additional fluorescent dyes. FCM-based methods
for rapid assay and screening have been reported recently to replace the conventional methods for
carotenoids and astaxanthin quantification in yeasts and the green microalga H. pluvialis [21–23].
The interferences of auto-fluorescence between carotenoids and chlorophylls are highlighted as major
reasons for the limited application of FCM in pigment quantification [22].

In the present work, we present a simple FCM method to estimate the astaxanthin content in
living cells of C. zofingiensis as a preferably complementary method to HPLC, especially for rapid
evaluation and prediction of astaxanthin formation in living algal cells during high-throughput
cultivation. The method allows for the relative quantification of the astaxanthin content and the
Car/Chl ratio. Based on the correlation of the fluorescence intensity of algal cells and cellular pigment
content measured by HPLC, the FCM method can potentially, after calibration, be used for the absolute
quantification as well. The cells were first cultivated mixotrophically under the stress condition of
a high C/N ratio to induce astaxanthin accumulation. Additionally, the fluorescence (FL1-FL3) of
the stressed cells was monitored by FCM, followed by the measurement of astaxanthin content in
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frozen dried biomass using an established HPLC method. Finally, the FCM method, based on the close
correlation of fluorescence intensities with carotenoid quantities determined by HPLC, was established
to rapidly evaluate the astaxanthin content and Car/Chl ratio in living cells. The interferences of
other carotenoids to astaxanthin quantification, recovery and repeatability of the FCM method are
discussed in detail.

2. Results and Discussion

2.1. Cell Growth and Pigment Accumulation

The green microalga C. zofingiensis has a high growth rate and shows substantial astaxanthin
accumulation during unfavorable growth conditions such as oxidative stress, high light and nutrient
starvation [10,24]. In the present work, the mixotrophic cells were non-motile and spherical with
different sizes (Figure 1). Small autospores were asexually produced from large parental cells during
the culture. Cells started to accumulate carotenoids, mainly astaxanthin, as the response to unfavorable
conditions of high irradiation and nitrogen starvation for survival. Therefore, the cell color started
to become orange or red gradually from green during the surveyed 288 h of culturing. The larger
cells were obviously redder than others at the end of the cultivation (288 h), where the highest cellular
astaxanthin content was observed (Figures 2 and 3).

Biomass concentration and pigment composition were analyzed daily from the sixth day onwards.
The pigments were analyzed by HPLC and identified by comparing the retention times and the
UV-vis absorption and spectral fine structures with the standards and information from literature.
As shown in Figure 2, astaxanthin and its derivatives and precursors, keto-lutein, lutein, canthaxanthin
and chlorophylls were the main pigments in the stressed cells at the end of the cultivation (288 h),
with similar chromatographic profiles as reported previously [10,11]. Three forms of astaxanthin
(free, mono-ester and di-esters) were detected in the HPLC chromatogram (Figure 2), indicating that
astaxanthin primarily existed as di-esters, while keto-lutein was mainly present in the form of the
mono-ester. The other carotenoids existed predominantly in the free form.
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Figure 1. Microscopic images of C. zofingiensis cells during mixotrophic growth. (a) Initial stage at 0 
h; (b) Final stage at 288 h; Bars: 10 μm. The mixotrophic growth experiment was performed in 
modified basal medium with 30 g/L of glucose and 0.6 g/L of NaNO3 with a high C/N ratio of 200. A 
light intensity at 80 μmol photon m−2 s−1 was employed for astaxanthin accumulation after 
inoculation of seed culture grown mixotrophically under 10 μmol photon m−2 s−1. 

Figure 1. Microscopic images of C. zofingiensis cells during mixotrophic growth. (a) Initial stage at 0 h;
(b) Final stage at 288 h; Bars: 10 µm. The mixotrophic growth experiment was performed in modified
basal medium with 30 g/L of glucose and 0.6 g/L of NaNO3 with a high C/N ratio of 200. A light
intensity at 80 µmol photon m−2 s−1 was employed for astaxanthin accumulation after inoculation of
seed culture grown mixotrophically under 10 µmol photon m−2 s−1.
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Keto-lutein; 5. Lutein; 6. Astaxanthin; 7. Chlorophyll a; 8. Canthaxanthin; 9, 11. Keto-lutein 
mono-esters; 10. Astaxanthin mono-ester; 12. Carotene-like carotenoid; 13–18. Astaxanthin di-esters. 
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astaxanthin content began to increase remarkably when the cells entered the stationary growth 
phase after 192 h of the culture in response to low nitrogen and high irradiation stress. In general, 
chlorophylls and primary carotenoids such as neoxanthin, violaxanthin and lutein, are mainly 
located in chloroplasts of green algae. Primary carotenoids are associated with chlorophylls in the 
collection of light energy and transfer the energy to chlorophylls for photosynthesis [25]. Nitrogen 
deficiency and high light intensity as the stress conditions led to the accumulation of secondary 
carotenoids such as astaxanthin and keto-lutein to resist the excess light damage along with the 
active degradation of chlorophylls and primary carotenoids [11]. Astaxanthin and its esters were 
reported as the major specific carotenoids existing in C. zofingiensis cells [10]. In this work, under the 
stress conditions applied, the astaxanthin content increased in a more pronounced manner than the 
other pigments, and reached the maximum of 2.3 mg/g at 288 h (Figure 3), which was consistent 
with a previous study [11]. Keto-lutein increased from 0.25 to 0.34 mg/g in C. zofingiensis cells, while 
the other pigments such as lutein, chlorophyll a and b changed slightly during the culture (Figure 3). 
As a result of the increase in the cellular astaxanthin content, the Car/Chl ratio and total pigment 
content increased over time, and finally reached values as high as 4.81 and 3.78 mg/g, respectively. 
The percentage of astaxanthin relative to all pigments increased from 38.1% at 146 h to the 
maximum of 60.3% at 288 h (Figure 4), which was slightly higher than the value of 50% previously 
reported for C. zofingiensis growing under unfavorable conditions [10]. Keto-lutein at 9.1% of total 
pigments was found as the second most abundant carotenoid after astaxanthin. The percentage of 
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Overall, the changes in pigment composition of C. zofingiensis led to the shift in color from green to 
red, indicating that the stress of nitrogen-depletion and exposure to high irradiation resulted in a 
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especially astaxanthin and keto-lutein. 
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Figure 2. Pigment composition of the mixotrophic C. zofingiensis cells at 288 h determined by HPLC at
480 nm. Tentatively identified peaks: 1. Violaxanthin; 2. Neoxanthin; 3. Chlorophyll b; 4. Keto-lutein;
5. Lutein; 6. Astaxanthin; 7. Chlorophyll a; 8. Canthaxanthin; 9, 11. Keto-lutein mono-esters;
10. Astaxanthin mono-ester; 12. Carotene-like carotenoid; 13–18. Astaxanthin di-esters.

Figure 3 shows the variation of biomass, pigment content and Car/Chl ratio in mixotrophic
cultures. Algal cells grew rapidly during the first 192 h; then, the specific growth rate decreased
gradually due to limited nitrogen supply, and the final accumulated biomass was only 3.27 g/L.
The astaxanthin content began to increase remarkably when the cells entered the stationary growth
phase after 192 h of the culture in response to low nitrogen and high irradiation stress. In general,
chlorophylls and primary carotenoids such as neoxanthin, violaxanthin and lutein, are mainly located
in chloroplasts of green algae. Primary carotenoids are associated with chlorophylls in the collection
of light energy and transfer the energy to chlorophylls for photosynthesis [25]. Nitrogen deficiency
and high light intensity as the stress conditions led to the accumulation of secondary carotenoids such
as astaxanthin and keto-lutein to resist the excess light damage along with the active degradation
of chlorophylls and primary carotenoids [11]. Astaxanthin and its esters were reported as the major
specific carotenoids existing in C. zofingiensis cells [10]. In this work, under the stress conditions
applied, the astaxanthin content increased in a more pronounced manner than the other pigments,
and reached the maximum of 2.3 mg/g at 288 h (Figure 3), which was consistent with a previous
study [11]. Keto-lutein increased from 0.25 to 0.34 mg/g in C. zofingiensis cells, while the other pigments
such as lutein, chlorophyll a and b changed slightly during the culture (Figure 3). As a result of the
increase in the cellular astaxanthin content, the Car/Chl ratio and total pigment content increased
over time, and finally reached values as high as 4.81 and 3.78 mg/g, respectively. The percentage of
astaxanthin relative to all pigments increased from 38.1% at 146 h to the maximum of 60.3% at 288 h
(Figure 4), which was slightly higher than the value of 50% previously reported for C. zofingiensis
growing under unfavorable conditions [10]. Keto-lutein at 9.1% of total pigments was found as the
second most abundant carotenoid after astaxanthin. The percentage of chlorophylls (a + b) relative to
all pigments decreased from 31.9% at 146 h to 17.5% at 288 h (Figure 4). Overall, the changes in pigment
composition of C. zofingiensis led to the shift in color from green to red, indicating that the stress of
nitrogen-depletion and exposure to high irradiation resulted in a decrease in chlorophylls and primary
carotenoids and the accumulation of secondary carotenoids, especially astaxanthin and keto-lutein.



Mar. Drugs 2017, 15, 231 5 of 23

Mar. Drugs 2017, 15, 231  5 of 22 

 

 
Figure 3. Algal biomass, pigment cell content and Car/Chl variation determined by HPLC in the culture of C. zofingiensis. 

0.0

1.0

2.0

3.0

4.0

5.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

146 168 192 216 240 264 288

T
ot

al
 p

ig
m

en
t 

co
n

te
n

t 
(m

g/
g)

C
ar

/C
h

l (
w

t/
w

t)

B
io

m
as

s 
(g

/L
),

 c
ar

ot
en

oi
d

s 
(m

g/
g)

, c
h

lo
ro

p
h

yl
ls

 
(m

g/
g)

Time (h)

Chlorophyll a Chlorophyll b Lutein Carotene-like
Canthaxanthin Ketolutein Astaxanthin Biomass
Total pigments Car/Chl
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2.2. Fluorescence Images and Flow Cytometric Analysis

The fluorescence emission spectra of the suspension of chlorophyll-rich green cells and
astaxanthin-rich red cells in pure water were measured using a spectrofluorometer (488 nm excitation)
as shown in Figure 5. The mixotrophic cells emitted green, yellow, and red fluorescence with
different intensities, and the fluorescence intensities changed during the stress-induced carotenogenesis.
Considering that photosynthetic pigments such as chlorophylls and carotenoids are the important
fluorescent compounds in biological systems [26], the changes in auto-fluorescence of algal cells might
be correlated with cellular pigment composition. In green algal cells, chlorophyll a, chlorophyll b
and lutein are the main pigments, while small amounts of other carotenoids, such as neoxanthin,
violaxanthin, astaxanthin, ketolutein and canthaxanthin, also exist in green algal cells [11]. According
to previous studies [26–28], chlorophyll a emits maximum red fluorescence at about 680 nm and
low far-red fluorescence at 735 nm, and these fluorescence intensities correlated with the content of
chlorophyll a, which was in accordance with our study as shown in Figure 5a. The red fluorescence
at 680 nm could be reabsorbed by in vivo chlorophyll a of cells; therefore, the weak red fluorescence
might be undetected, which could explain the phenomenon that we only detected the weak far-red
fluorescence of algal cells in Figure 5b.
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Figure 5. The fluorescence emission spectra of chlorophyll-rich green cells and astaxanthin-rich
red cells of mixotrophic Chromochloris zofingiensis using a spectrofluorometer (488 nm excitation).
(a) Chlorophyll-rich cells at 0 h; (b) Astaxanthin-rich cells at 288 h.

As for the astaxanthin-rich red cells, their pigment composition, as shown in Figures 3 and 4, was
significantly different from that of green algal cells. Considering that astaxanthin, accounting for 60.3%
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of total pigments, was the main fluorescent compound in algal cells, the changes in auto-fluorescence
of algal cells and their intensities at specific wavelengths (530 nm & 580 nm), as shown in Figures 5–7,
might have potential relationships with these pigments, especially astaxanthin. According to previous
studies [26–28], the emission wavelength of 530 nm was probably caused by carotenoids, while the
origin of the yellow fluorescence at 570 nm was not certain. In a previous study, the maximum
excitation and emission wavelengths of astaxanthin in acetone by fluorescence analysis were 350
and 570 nm, respectively [22]. To our knowledge, the fluorescence emission spectrum of in vivo
astaxanthin in algal cells has not been reported. In the microalga H. pluvialis, yellow fluorescence
at 575 ± 15 nm (488 nm excitation) [29] and 600 ± 40 nm (546 nm excitation) [30] was used for
astaxanthin analysis, although these references did not contain detailed experimental evidence of the
fluorescence originating from in vivo astaxanthin. Considering that algal cells can simultaneously
synthesize various carotenoids and their precursors with a similar chemical structure, it is not possible
to obtain the fluorescence emission spectrum of in vivo astaxanthin due to the serious interference
of auto-fluorescence between astaxanthin and other carotenoids. However, in our current work,
astaxanthin, accounting for 60.3% of total pigments, was the important fluorescent compound in
algal cells; thus, its fluorescence would be surely reflected in the fluorescence emission spectra of
algal cells. Generally, carotenoid fluorescence is mainly attributed to the presence of the symmetrical
tetraterpene skeleton formed by the conjugation of two geranylgeranyl diphosphate molecules, which
is the basic structure of various carotenoids [31]. The conjugation length and chemical modification in
the circuit of electrons along the conjugated bonds has been reported to affect the absorbance spectrum
of carotenoids [31,32]. Thus, we assumed that the yellow fluorescence mainly originated from the series
of conjugated double bonds of carotenoids and could be further affected by chemical modification
of in vivo carotenoids such as esterification with different fatty acids in lipid droplets. Astaxanthin
fluorescence may be also reabsorbed or disturbed by other carotenoid derivatives and precursors due
to their similar structures including the symmetrical tetraterpene skeleton. Additionally, it is worth
mentioning that the quantum yield of fluorescence emission depends not only on the properties of the
fluorescing chromophore but also on its surroundings, which significantly influence the quenching of
excitation energy [33,34]. Although there is no consensus about the origins of the green (530 nm) and
yellow (570 nm) fluorescence of algal cells at present, based on our results as shown in Figures 3–6,
we propose that the changes in the fluorescence emission spectrum of algal cells in the present study
were caused by the significant accumulation of secondary carotenoids, mainly astaxanthin during
stress-induced carotenogenesis.



Mar. Drugs 2017, 15, 231 9 of 23
Mar. Drugs 2017, 15, 231 9 of 22 

 

 530 nm      580 nm      700 nm      Merged 

         

         
Figure 6. Fluorescence images of mixotrophic C. zofingiensis based on confocal laser scanning microscopy (CLSM). (a) Chlorophyll-rich cells at 0 h; (b) Astaxanthin-rich 
cells at 288 h (excitation at 488 nm, emission at 530 nm ± 10 nm, 580 nm ± 10 nm, 700 nm ± 30 nm). Bars: 25 μm. 
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Figure 6. Fluorescence images of mixotrophic C. zofingiensis based on confocal laser scanning microscopy (CLSM). (a) Chlorophyll-rich cells at 0 h; (b) Astaxanthin-rich
cells at 288 h (excitation at 488 nm, emission at 530 nm ± 10 nm, 580 nm ± 10 nm, 700 nm ± 30 nm). Bars: 25 µm.
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Figure 7. (a) The mean fluorescence intensities (MFI) in the FL1, FL2, and FL3 channels; (b) The MFI
ratios of FL1/FL3 and FL2/FL3 in mixotrophic cells of C. zofingiensis. FL1: 533 nm ± 15 nm; FL2:
585 nm ± 20 nm; FL3: >670 nm; a.u.: arbitrary units.

Confocal laser scanning microscopy (CLSM) was employed to visualize the cellular distribution
of pigments as shown in Figure 6. Fluorescence images of C. zofingiensis showed that chlorophyll-rich
cells emitted very strong red fluorescence, whereas astaxanthin-rich cells exhibited both green and
yellow fluorescence. The changes in auto-fluorescence were closely related to the pigment composition
of algal cells at different stages of the stressed culture, which could be applied to predict pigment
formation. Therefore, in the following experiments, the fluorescence at approximately 530, 580, and
700 nm was selected for FCM analysis.

In vivo auto-fluorescence of the mixotrophic cells (referred to as the mean fluorescence intensities,
MFI, in three channels: FL1 at 533 ± 15 nm, FL2 at 585 ± 20 nm, and FL3 > 670 nm) was recorded
by FCM. MFI in FL1 and FL2 increased noticeably over the time course of the experiment, while
MFI in FL3 kept on decreasing in the stressed culture (Figure 7). Accordingly, the MFI ratios of
FL1 to FL3 (FL1/FL3) and FL2 to FL3 (FL2/FL3) both increased, from 0.049 to 0.095 and 0.015 to
0.032, respectively, during the stressed cultivation. Several previous studies have demonstrated



Mar. Drugs 2017, 15, 231 11 of 23

that the fluorescence detected by FL3 (675 ± 20 nm) could be used to monitor the content of
chlorophylls when excited at 488 nm [35], and FCM could be applied to measure the relative content
of chlorophyll a and b in Dunaliella viridis cells by determining the MFI in FL3 and FL4 (675 ± 25 nm),
respectively [36]. The yellow fluorescence at 575 ± 15 nm (488 nm excitation) [29] and 600 ± 40 nm
(546 nm excitation) [30] was applied for the analysis of astaxanthin in H. pluvialis. Furthermore, it was
reported that the chlorophyll fluorescence ratio of F684/F735 could supply useful information for the
rapid estimation of cellular stress in the algal photosynthetic apparatus [37]. Thus, the MFI ratios of
FL1/FL3 and FL2/FL3, which kept on increasing during carotenogenesis in the present study, may be
used to investigate the cellular stress in algal cells. In C. zofingiensis cells, photosynthetic pigments
such as chlorophylls and astaxanthin are the main fluorescent compounds. Under environmental
stresses, the accumulation of secondary carotenoids was reported to co-occur with the degradation
of chlorophylls under environmental stress [11], which could further affect the auto-fluorescence of
algal cells. The appropriate interpretation of these auto-fluorescences and their intensities at specific
wavelengths may give useful information about the presence of specific pigments and the physiological
states of algal cells [26].

Two different cell size populations were present in the cultures as indicated by the signals
of forward scatter (FSC) (Figure 8). These two subpopulations of cells are in accordance with the
microscopic observation and CLSM images. The stress of nitrogen deprivation together with high
light irradiation resulted in the increase in the percentage of small cells (M1) from ca. 22% to 46% after
the cultivation (Figure 8a,c), indicating that the stressed conditions resulted in the large parental cells
having comparatively thin cell walls and releasing more small autospores. This was also consistent
with a previous study which reported that light could promote algae proliferation and accelerate
cell division in a culture under light [38]. Moreover, the cytometric results showed that small cells
(M1) emitting weak fluorescence exhibited no significant difference in the fluorescence intensities in
both FL1 and FL2 compared to the small cells before stressing of the culture. Conversely, the large
cells (M2) emitted fluorescence strongly in both FL1 and FL2 at the end of the cultivation, although
the percentage of large cells significantly decreased to approximately 45%. It is known that during
the life cycle of C. zofingiensis, the vegetative cells contain more chlorophylls and less astaxanthin
under favorable conditions, whereas under adverse growth conditions, they turn into large red cells in
combination with the high accumulation of carotenoids, mainly astaxanthin, and the degradation of
chlorophylls [11]. Carotenoid accumulation in large cells is consistent with the changes in fluorescence
intensity based on FCM. Accordingly, the fluorescence intensities indicated by FCM could be clearly
applied for the relative quantitative determination of certain cellular pigments.
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2.3. Linear Regression of the Astaxanthin Content versus Fluorescence Intensities

Assuming that the auto-fluorescence of algal cells at specific wavelengths (530 nm & 580 nm)
correlated positively with the cellular pigments, the relationships between fluorescence intensities in
FL1 and FL2 measured by FCM and the cellular astaxanthin content measured by HPLC were explored
and compared as shown in Figure 9. Considering that the values of fluorescence intensity were several
orders of magnitude higher than those of the pigment content, the variables were logarithmically
transformed to satisfy the homogeneity of variances assumption for the errors and linearize the fit
as much as possible. Then, the astaxanthin content from HPLC measurements (µg/g) was plotted
against the mean fluorescence intensity (MFI) in the channel FL1 or FL2. The correlation coefficient
between the astaxanthin content and MFI in FL2 was obtained at 0.96 (n = 21, p < 0.01), which was
slightly higher than the value of 0.93 (n = 21, p < 0.01) between the astaxanthin content and MFI in
FL1. Furthermore, the correlation coefficients between Car/Chl ratios and the ratios of FL1/FL3 or
FL2/FL3 were calculated using similar procedures, and these values both reached 0.91 (n = 21, p < 0.01).
The value of the correlation coefficient higher than 0.90 indicated that strong positive correlation existed
between these variables, which was consistent with our results presented above. In order to predict
the astaxanthin content based on fluorescence intensity in FL1 or FL2 by FCM, regression analysis
was applied to find the best fit of astaxanthin evaluation, and the linear regression was estimated
through the coefficient of determination (R2). The best linear regression curve was selected for the
rapid determination of astaxanthin. Furthermore, the relationship between the ratios of FL1/FL3
or FL2/FL3 and Car/Chl ratios was established by similar procedures. The FCM method with the
established regression curves was then used for predicting the astaxanthin content and Car/Chl ratio
of unknown samples under specific conditions through directly detecting the fluorescence intensities
of unknown samples.

As shown in Figure 9a,b, the astaxanthin content was positively correlated with MFI in both FL1
and FL2. Among these, MFI in FL2 was closely correlated with the astaxanthin content (R2 = 0.92) by
comparison to that of FL1 (R2 = 0.87). This was in accordance with the fluorescence emission maximum
of algal cells (Figure 5). Our results indicated that MFI in FL2 was feasible to estimate the cellular
astaxanthin content by the regression equation (log10 (astaxanthin (µg/g)) = 1.53 × log10 (MFI in FL2
(a.u.)) + 3.07 (R2 = 0.92)). The coefficient of determination, as high as 0.92, demonstrated that FCM
correlated well with the HPLC values and could be directly applied to predict the astaxanthin content.
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In a previous study, the auto-fluorescence intensity around 675 nm based on FCM showed good
correlation with the actual content of astaxanthin (0.10–0.63 mg/g) in the yeast Xanthophyllomyces
dendrorhous (Phaffia rhodoxyma) [22]. A similar result was reported for β-carotene content (0.35 to
0.66 mg/g) analysis in the red yeast Rhodotorula glutinis by FCM [39]. Freitas et al. also suggested
that the auto-fluorescence measured in FL3 (>670 nm, excited with 488 nm light) was best correlated
with the content of total carotenoids in the red yeast Rhodosporidium toruloides [40]. These foregoing
results are contradictory to the existing knowledge that chlorophylls, particularly chlorophyll a, not
carotenoids, emit auto-fluorescence at the maximum wavelength of nearly 680 nm when excited
with 488 nm light [41]. We assumed that this might by caused by the low content of carotenoids,
and their fluorescence was seriously interfered with other pigments such as carotenoid precursors,
proteins, nucleotides, porphyrins, flavins, etc. [21,42]. In our present work, the astaxanthin content in
C. zofingiensis cells reached 2.41 mg/g, which was significantly higher than that of previous studies.
Our results indicated that the fluorescence in FL2 (580 nm) based on FCM was closely correlated
with the content of cellular carotenoids, particularly astaxanthin, and FL3 (>675 nm) correlated
directly with chlorophylls, which can be intuitively rationalized by the corresponding emissions of
the respective pigments [35]. Kleinegris et al. reported that the 560 nm fluorescence of the green
microalga Dunaliella salina was emitted by β-carotene (excitation at 488 nm). In Symbiodinium, the green
fluorescence signal in FL1 (529± 28 nm band-pass filter) was generally used for β-carotene analysis [43].
These results demonstrated that the fluorescence intensities at the range of 530–580 nm had a close
relationship with carotenoids, which was the foundation of the FCM method for astaxanthin analysis.

The Car/Chl ratio was previously demonstrated as the informative marker of cellular physiological
stress in the microalga H. pluvialis under high light irradiation and Parietochloris incisa [44,45]. Moreover,
the Car/Chl ratio correlated closely with the specific optical density in the blue-green region
normalized to the red absorption maximum (OD500/OD678), which could be applied for the monitoring
of carotenogenesis in H. pluvialis using optical sensors [12]. In this work, we explored the correlation
of the Car/Chl ratio with the fluorescence intensities in FL1-FL3 channels using FCM. The Car/Chl
ratio of mixotrophic C. zofingiensis increased substantially during culturing under stress conditions
along with the accumulation of astaxanthin as well as the degradation of chlorophylls. Accordingly,
the ratios of FL1/FL3 and FL2/FL3 increased along with the changes of pigments (Figure 7b), indicating
a positive correlation between the Car/Chl ratio with the ratio of FL1/FL3 or FL2/FL3. Figure 9c,d
shows that the Car/Chl ratio was linearly related with FL1/FL3 and FL2/FL3, though the coefficients
of determination (R2) were 0.82. Therefore, the fluorescence intensities in FL1, FL2 and FL3 could also
be applied to the assay of the Car/Chl ratio in C. zofingiensis cells.

Mar. Drugs 2017, 15, 231  13 of 22 

 

Xanthophyllomyces dendrorhous (Phaffia rhodoxyma) [22]. A similar result was reported for β-carotene 
content (0.35 to 0.66 mg/g) analysis in the red yeast Rhodotorula glutinis by FCM [39]. Freitas et al. 
also suggested that the auto-fluorescence measured in FL3 (>670 nm, excited with 488 nm light) was 
best correlated with the content of total carotenoids in the red yeast Rhodosporidium toruloides [40]. 
These foregoing results are contradictory to the existing knowledge that chlorophylls, particularly 
chlorophyll a, not carotenoids, emit auto-fluorescence at the maximum wavelength of nearly 680 
nm when excited with 488 nm light [41]. We assumed that this might by caused by the low content 
of carotenoids, and their fluorescence was seriously interfered with other pigments such as 
carotenoid precursors, proteins, nucleotides, porphyrins, flavins, etc. [21,42]. In our present work, 
the astaxanthin content in C. zofingiensis cells reached 2.41 mg/g, which was significantly higher 
than that of previous studies. Our results indicated that the fluorescence in FL2 (580 nm) based on 
FCM was closely correlated with the content of cellular carotenoids, particularly astaxanthin, and 
FL3 (>675 nm) correlated directly with chlorophylls, which can be intuitively rationalized by the 
corresponding emissions of the respective pigments [35]. Kleinegris et al. reported that the 560 nm 
fluorescence of the green microalga Dunaliella salina was emitted by β-carotene (excitation at 488 
nm). In Symbiodinium, the green fluorescence signal in FL1 (529 ± 28 nm band-pass filter) was 
generally used for β-carotene analysis [43]. These results demonstrated that the fluorescence 
intensities at the range of 530–580 nm had a close relationship with carotenoids, which was the 
foundation of the FCM method for astaxanthin analysis. 

The Car/Chl ratio was previously demonstrated as the informative marker of cellular 
physiological stress in the microalga H. pluvialis under high light irradiation and Parietochloris incisa 
[44,45]. Moreover, the Car/Chl ratio correlated closely with the specific optical density in the 
blue-green region normalized to the red absorption maximum (OD500/OD678), which could be 
applied for the monitoring of carotenogenesis in H. pluvialis using optical sensors [12]. In this work, 
we explored the correlation of the Car/Chl ratio with the fluorescence intensities in FL1-FL3 
channels using FCM. The Car/Chl ratio of mixotrophic C. zofingiensis increased substantially during 
culturing under stress conditions along with the accumulation of astaxanthin as well as the 
degradation of chlorophylls. Accordingly, the ratios of FL1/FL3 and FL2/FL3 increased along with 
the changes of pigments (Figure 7b), indicating a positive correlation between the Car/Chl ratio 
with the ratio of FL1/FL3 or FL2/FL3. Figure 9c,d shows that the Car/Chl ratio was linearly related 
with FL1/FL3 and FL2/FL3, though the coefficients of determination (R2) were 0.82. Therefore, the 
fluorescence intensities in FL1, FL2 and FL3 could also be applied to the assay of the Car/Chl ratio 
in C. zofingiensis cells. 

 

y = 1.9380x - 5.6681
R² = 0.8725

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

4.40 4.50 4.60 4.70

L
og

 A
st

ax
an

th
in

 (
μ

g/
g)

Log (MFI in FL1)

(a) 

Figure 9. Cont.



Mar. Drugs 2017, 15, 231 14 of 23
Mar. Drugs 2017, 15, 231  14 of 22 

 

 

 

 
Figure 9. Linear relationships of astaxanthin contents versus mean fluorescence intensities (MFI) at 
FL1 (a) and FL2; (b), and linear relationships of Car/Chl ratios versus the ratios of FL1/FL3; (c) and 

y = 1.5325x - 3.0668
R² = 0.9209

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.85 3.95 4.05 4.15 4.25

L
og

 A
st

ax
n

th
in

 (
μ

g/
g)

Log (MFI in  FL2)

(b)

y = 50.85x - 0.2631
R² = 0.8262

1.0

2.0

3.0

4.0

5.0

6.0

0.030 0.050 0.070 0.090 0.110

C
ar

/C
h

l

FL1/FL3

(c)

y = 139.19x + 0.0991
R² = 0.8267

0.5

1.5

2.5

3.5

4.5

0.008 0.013 0.018 0.023 0.028 0.033

C
ar

/C
h

l

FL2/FL3

(d)

Figure 9. Linear relationships of astaxanthin contents versus mean fluorescence intensities (MFI) at
FL1 (a) and FL2; (b), and linear relationships of Car/Chl ratios versus the ratios of FL1/FL3; (c) and
FL2/FL3; (d) using FCM. Each dot represents the astaxanthin content (µg/g, dry weight) determined
by HPLC and MFI by FCM from the same sample. The values of mean fluorescence intensity (a.u.) and
the astaxanthin content (µg/g, dry weight) of algal cells were logarithmically transformed (log10) to
improve the fit and to equalize variances.
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To evaluate the determination of the astaxanthin content and Car/Chl ratio, we compared the
values of the astaxanthin content and Car/Chl ratio measured by the FCM method with that measured
by HPLC using correlation analysis according to the literature [46,47]. These correlation coefficients
were 0.95 (n = 21, p < 0.01) and 0.91 (n = 21, p < 0.01), respectively, indicating that these different
methods had a strong positive correlation with respect to measuring the astaxanthin content and
Car/Chl ratio in C. zofingiensis cells. Furthermore, the FCM method can be further calibrated by HPLC
through regression analysis to obtain more accurate values of the astaxanthin content and Car/Chl
ratio. The regression curve for astaxanthin content determination was Y (astaxanthin content measured
by FCM) = 0.8885 X (astaxanthin content measured by HPLC) + 0.1644 (R2 = 0.91). As for the Car/Chl
ratio, the regression curve obtained by the similar procedures was Y (Car/Chl ratio measured by
FCM) = 0.8278 X (Car/Chl ratio measured by HPLC) + 0.5383 (R2 = 0.83). However, our current
work primarily aimed to examine the relationship between the fluorescence intensity and cellular
astaxanthin content of algal cells and evaluate the reliability of the FCM method for predicting the
astaxanthin content from the fluorescence intensity of algal cells. Thus, the FCM method without
further calibration by HPLC was applied in the following method validation.

2.4. Linearity, Range, and Limits of Quantitation for the FCM Method

The FCM method was validated by the evaluation of its performance characteristics, such as
linearity, precision, accuracy and recovery, and proved that it complied with established criteria for
chemical analysis [48,49]. Through analyzing validation samples with different astaxanthin contents,
we could demonstrate that the FCM method was capable of rapidly quantifying the astaxanthin content
and Car/Chl ratio in living cells of mixotrophic C. zofingiensis. The best-fit linear regression of the
astaxanthin content using HPLC versus MFI in FL2 using FCM was established through the coefficient
of determination (R2 = 0.92) in this work. The lower limit of astaxanthin quantification (0.82 mg/g)
corresponded to the minimum fluorescence intensity of 7988 by FCM (Figure 9b). The favorable
range for accurate astaxanthin analysis based on FCM was between 0.82 and 2.41 mg/g dry cell
weight (Figure 9b). Using HPLC analysis, the astaxanthin content in stress-induced C. zofingiensis was
determined mainly in the range of 0.69–1.31 mg/g dry cell weight [10]. The approach we developed
allows the direct monitoring of astaxanthin in C. zofingiensis. The method is thus suitable for the
real-time monitoring of carotenogenesis in C. zofingiensis cells. In the above results (Figure 9c,d),
the ratios of FL1/FL3 and FL2/FL3 were linearly correlated with the Car/Chl ratios, respectively, with
the same coefficient of determination (R2 = 0.82). Considering the astaxanthin assay, the FL2/FL3 ratio
was selected for the rapid estimation of the Car/Chl ratio in C. zofingiensis cells. The suitable range for
the accurate determination of the Car/Chl ratio should be limited between 1.42 and 4.75 according to
the regression.

2.5. Precision, Accuracy, and Recovery of FCM Method

The precision of the FCM method is documented in Table 1. The sample of C. zofingiensis cells
with an astaxanthin content of 2.08 mg/g and Car/Chl ratio of 3.89 (determined by HPLC) was used
for this evaluation. The mean astaxanthin content of 2.03 mg/g by FCM was very close to the true
value based HPLC with a relative error (ER) of 1.93% and relative standard deviation (RSD) of 2.02%
(n = 5), indicating the good precision of the FCM method. Similarly, the mean Car/Chl ratio of 4.32
based on FCM was also close to the value determined by HPLC with a relative error (ER) of 11.10%
and relative standard deviation (RSD) of 1.10% (n = 5), indicating that this approach is feasible for
rapidly estimating the Car/Chl ratio with a suitable precision.
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Table 1. The precision of the FCM method for the rapid quantification of astaxanthin and the
Car/Chl ratio.

No.
MFI in

FL2 (a.u.)
MFI in

FL3 (a.u.)

Asta. Content
by FCM
(mg/g)

Car/Chl
Ratio by

FCM

Astaxanthin Car/Chl Ratio

Mean
Value
(mg/g)

Relative
Error

(RE, %)

Relative
Standard
Deviation
(RSD, %)

Mean
Value

Relative
Error

(RE, %)

Relative
Standard
Deviation
(RSD, %)

1 14,230 468,000 1.99 4.37

2.03 ±
0.05

1.93 2.20 4.32 ± 0.04 11.05 1.10
2 14,350 468,430 2.01 4.36
3 14,747 489,000 2.10 4.30
4 14,630 484,860 2.07 4.30
5 14,405 480,100 2.02 4.28

No. Five independent samples were taken from two independent culturing flasks. MFI: mean fluorescence
intensity; FL2: 585 nm ± 20 nm; FL3: >670 nm; a.u.: arbitrary unit; Asta: astaxanthin; Car/Chl ratio: the
carotenoid-to-chlorophyll ratio; a sample of C. zofingiensis cells with astaxanthin content of 2.08 mg/g and Car/Chl
of 3.89 (determined by HPLC) was used for the evaluation.

In pharmaceutical analysis, recovery assays using spiked matrices and spiked samples are
important tools for assessing the method accuracy [50], which is generally recognized as the difference
between the measured mean values by the established method and the true values of validation
samples [49]. In the current work, the accuracy and recovery of the FCM method were accordingly
developed and modified according to the recovery analysis of spiked samples. In the following
experiments, two sets of samples taken from the same stressed culture were measured by FCM
followed by HPLC for accuracy analysis. Astaxanthin contents based on HPLC were 0.92 ± 0.12 and
1.65 ± 0.22 mg/g dry weight for these two samples, respectively. According to the results listed in
Table 2, the astaxanthin content determined by FCM was basically consistent with that of HPLC with
less than 12% of overall variation between the two methods. The Car/Chl ratio determined by FCM
was equivalent to that determined by HPLC with ca. 3% overall variation. These results demonstrated
that the FCM approach is feasible to determine the astaxanthin content and Car/Chl ratio in the
suitable range and fulfills the requirements of the analytical methodology without sacrificing accuracy.

Table 2. The accuracy and recovery of the FCM method for the rapid quantification of astaxanthin and
the Car/Chl ratio.

No. 1 2 3 4 5 Mean Value

Sample 1
MFI in FL2 (a.u.) 7914 8056 8301 8233 8117 8124 ± 151
MFI in FL3 (a.u.) 634,600 651,000 726,080 718,860 704,560 687,000 ± 41,500

FL2/FL3 0.0125 0.0124 0.0114 0.0115 0.0115 0.0119 ± 0.0005

Measured value by FCM Asta. (mg/g) 0.81 0.83 0.87 0.86 0.84 0.84 ± 0.02
Car/Chl 1.83 1.82 1.69 1.69 1.70 1.75 ± 0.07

Accuracy analysis (%) Asta. 87.75 90.17 94.41 93.23 91.22 91.36 ± 2.61
Car/Chl 79.15 78.57 72.92 73.03 73.44 75.42 ± 3.15

Sample 2
MFI in FL2 (a.u.) 12,177 12,281 12,545 12,408 12,186 12,319 ± 156
MFI in FL3 (a.u.) 558,740 565,610 598,240 591,460 580,000 578,800 ± 16,700

FL2/FL3 0.0218 0.0217 0.0209 0.0209 0.0210 0.0213 ± 0.0005

Measured value by FCM Asta.(mg/g) 1.56 1.58 1.64 1.61 1.57 1.59 ± 0.03
Car/Chl 3.13 3.12 3.02 3.02 3.02 3.06 ± 0.06

Accuracy analysis (%) Asta. 94.75 95.99 99.17 97.52 94.86 96.46 ± 1.88
Car/Chl 103.65 103.28 99.86 99.90 100.00 101.34 ± .95

Recovery (%) Asta. 103.58 103.33 105.16 102.93 99.45
Car/Chl 78.60 78.73 80.41 80.31 80.02

Average recovery (%) Asta. 102.89 ± 2.10
Car/Chl 79.61 ± 0.88

Relative standard deviation
of recovery (RSD, %)

Asta. 2.04
Car/Chl 1.10

MFI: mean fluorescence intensity; FL2: 585 nm ± 20 nm; FL3: >670 nm; a.u.: arbitrary unit; Asta.: astaxanthin;
Car/Chl ratio: the carotenoid-to-chlorophyll ratio; Sample 1: C. zofingiensis cells with astaxanthin content of
0.92 mg/g and Car/Chl of 2.32 (determined by HPLC); Sample 2: C. zofingiensis cells with astaxanthin content of
1.65 mg/g and Car/Chl of 3.02 (determined by HPLC).
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Additionally, the measured values of the samples subjected to FCM and HPLC were examined
to assess the recovery analysis of the current method. As shown in Table 2, the average recovery
of samples subjected to FCM for astaxanthin analysis was 102.89%, within the acceptable range of
80–120%. The relative standard deviation (RSD) of samples (n = 5) was as low as 2.04%, indicating the
good repeatability in the recovery analysis of the FCM method. The average recovery of the Car/Chl
ratio was relatively low owing to the weak correlation of FL2/FL3 vs. Car/Chl at a low carotenoid
content. A reasonable explanation might be the variation of carotenoid composition and the steady
aggregation of other carotenoids at different cultivation stages of mixotrophic C. zofingiensis [12]. Thus,
we concluded that FCM, as a rapid and simple method, can be applied to the analysis of the astaxanthin
content and Car/Chl ratio with acceptable precision and accuracy. It is worth noting that an obvious
disadvantage of this method is that it requires instrumental determination under identical conditions
and the pigment concentration in the linear range of the method. When cultivated in different systems
and stress conditions, microalgae have a wide range of intercellular carotenoids and variable pigment
composition that could be easily surveyed by the introduced FCM approach. Variations contributed
to the non-linear relationship between the estimated pigments and the fluorescence intensities when
using FCM. Furthermore, algal cells sampled from the cultures had to be analyzed by FCM directly
and immediately under identical conditions to avoid environmental factors affecting the determination
of the auto-fluorescence of algal cells. The system settings of FCM, for example, the event limit (total
events collected), fluorescence detector voltages, and compensation controls, are also crucial for the
determination of samples as well as the above-mentioned factors. These parameters of system settings
must be identical in each assay of FCM to avoid technique errors. Taking together all the considerations,
if the culture conditions of algal cells or the settings of FCM were changed, an FCM assay with a
suitable regression equation should be re-established accordingly for the robustness of this approach
in rapid estimation.

3. Materials and Methods

3.1. Microalgae and Culture Conditions

The green microalga Chromochloris zofingiensis (ATCC30412) was purchased from the American
Type Culture Collection (ATCC, Rockville, MD, USA) and maintained at 4 ◦C on agar slants or plates
of modified basal medium [51]. The cells were cultivated in the same liquid medium containing 10 g/L
of glucose in shaking flasks at 26 ◦C, 150 r/m under continuous illumination with white fluorescence
lights (ca. 10 µmol photon m−2 s−1). The culture reached the exponential phase after 96 h; then,
we transferred 10 mL of the seed culture into 100 mL of modified basal medium containing 30 g/L
of glucose and 0.6 g/L of NaNO3 in 250 mL Erlenmeyer flasks to generate a high C/N ratio of 200.
The continuous light intensity was increased to 80 µmol photon m−2 s−1 for astaxanthin accumulation
during the following 288 h. From 146 h of the stressed culture, the cells were sampled every 24 h and
harvested by centrifugation at 3800 × g for 2 min. The biomass concentration was used to monitor the
cell growth. The fluorescence intensities of living cells in FL1–FL3 were determined by FCM, while the
pigment content in frozen dry biomass was analyzed by HPLC.

3.2. Chemicals and Reagents

HPLC-grade methanol and methyl tert-butyl ether (MTBE) were purchased from Thermo Fisher
Scientific Inc. (Waltham, MA, USA). Astaxanthin, lutein, zeaxanthin, canthaxanthin, chlorophyll a and
b as standards were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Other chemicals and
reagents of analytical grade were purchased from the local companies. Deionized water was purified
by using a Milli-Q water system (Merck Millipore, Billerica, MA, USA) and filtered through a 0.22 µm
membrane for HPLC analysis.
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3.3. Emission Spectra of Fluorescence and Imaging by CLSM

The fluorescence emission spectra of C. zofingiensis cells were detected in the range from 500 nm
to 800 nm using a fluorospectrophotometer (HITACHI F-7000, Hitachi, Tokyo, Japan) at an excitation
wavelength of 488 nm.

A Leica TCS SP5X confocal laser scanning microscopy (CLSM, Leica Microsystems, Milton Keynes,
UK) was used to capture the fluorescence images of mixotrophic cells of C. zofingiensis. Intracellular
distribution of pigments in cells was viewed by scanning using a 488 nm argon laser, and light
emission was recorded in the green (520–540 nm), yellow (570–590 nm), and red channels (670–730 nm)
to monitor fluorescence signals of C. zofingiensis cells.

3.4. Flow Cytometry

Flow cytometry (model BD Accuri C6 Accuri Cytometers, Inc., Ann Arbor, MI, USA) was used
for the cytometric analysis of C. zofingiensis. Two 50 mW air cooled lasers (exciting at 488 nm and
640 nm) and four interference filters (FL1 at 533± 15 nm, FL2 at 585± 20 nm, FL3 > 670 nm, and FL4 at
675 ± 25 nm) were used. The detailed procedure was modified according to a previous reference [22].
Briefly, the cells were centrifuged at 3800× g for 2 min and washed twice with potassium phosphate
buffer (10 mM, pH 7.4). The cell resuspension was adjusted to 0.6–2 × 106 cells/mL as the optimal cell
density and then filtered through a membrane (400 mesh) before cytometric analysis.

In FCM analysis, according to the cell size of C. zofingiensis, the flow rate of injection was optimized
to 35 µL/min, and 10,000 cells were count for analysis of each sample. The signals of forward
scatter (FSC), side scatter (SSC), fluorescence intensities in four channels (FL1–FL4) were detected
simultaneously. Data were further analyzed by Accuri® CFlow software (Accuri Cytometers, Inc.,
Ann Arbor, MI, USA) and Flowjo software (FlowJo, LLC., Ashland, OR, USA) for statistical analysis.
All samples were performed in triplicate.

3.5. HPLC Analysis

The lyophilized biomass was prepared using a freeze dryer (Modulyod-230, Thermo Scientific,
Waltham, MA, USA). According to the literature [11] with a few minor modifications, the pigments were
extracted by repeatedly adding methanol/dichloromethane (3:1, v/v) containing 0.1% (w/v) butylated
hydroxytoluene (BHT) into the bead-beating tube until the biomass became colorless. The supernatant
containing pigments was blow-dried by nitrogen gas and resolved in methanol/MTBE (1:1, v/v)
containing 0.1% (w/v) BHT for HPLC analysis. The extraction process was performed under dim light,
and the extract was kept at 4 ◦C.

A reversed-phase HPLC system (DIONEX P680, Thermo Scientific, Waltham, MA, USA) equipped
with a Waters YMC™ Carotenoid C30 column (4.6 × 150 mm, 3 µm) and a photodiode array detector
(PDA-100, Thermo Scientific, Waltham, MA, USA) was employed to separate and identify the pigments.
The mobile phase consisted of methanol (A), MTBE (B), and deionized water (C) at a flow rate of
0.8 mL/min. A linear gradient program was employed as follows: 0–6 min, from 95% A/5% B to
80% A/20% B; 6–12 min, to 60% A/38% B/2% C; 12–28 min, to 50% A/48% B/2% C and isocratic for
5 min. A 20 µL sample was injected into the column, and the temperature was maintained at 30 ◦C.
All peaks were scanned at 300–700 nm and identified by comparison with the retention times and the
UV-vis absorption and spectral fine structures of the standards and information from the literature [11]
followed by quantification based on the standard curves.

3.6. Correlation and Regression Analysis of the Astaxanthin Content versus Fluorescence Intensities

The correlation and regression analyses of astaxanthin content determined by HPLC and
fluorescence intensities measured by FCM of algal cells were performed to explore their potential
relationships. Initially, the values of fluorescence intensities (a.u.) in FL1 and FL2 and the astaxanthin
content (µg/g, dry weight of algal cells) were logarithmically transformed to satisfy the homogeneity
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of variances assumption for the errors and to linearize the fit [21,52]. Then, Pearson’s correlation
coefficients (r) between fluorescence intensities and astaxanthin contents were calculated by SPSS
software (version 19.0, SPSS, Inc., Chicago, IL, USA) to measure the degree of association between
these variables. If a strong correlation existed, the fluorescence intensities in FL1 and FL2 were plotted
against the astaxanthin content of every sample, and regression analysis was performed to obtain
the regression equations for predicting astaxanthin from fluorescence intensities based on FCM. With
similar procedures, the correlations between Car/Chl ratios and FL1/FL3 or FL2/FL3 were assessed
by Pearson’s correlation coefficients (r), and the regression curves for predicting the Car/Chl ratios
were constructed for the samples if strong correlations existed (i.e., Pearson’s correlation coefficients
were higher than 0.8). The regression curves with the highest coefficients of determination (R2) were
selected for predicting the astaxanthin content and Car/Chl ratio for the unknown samples through the
fluorescence intensities measured by FCM under specific conditions. In order to avoid environmental
preparation errors, algal cells sampled from the cultures should be analyzed by FCM instantly and
directly. All system settings of FCM should be identical in each assay of each set of samples, or the
values determined from the regression curve might be invalid. If the culture conditions of algal cells or
the system settings of FCM are changed, the regression curve must be re-established accordingly to
avoid technique errors in sample determination.

Moreover, the correlation between these two methods was determined based on the values of the
astaxanthin content and Car/Chl ratio measured by FCM and HPLC according to the literature [46,47].
The correlation coefficients were calculated by SPSS 19.0 (SPSS, Inc., Chicago, IL, USA) and applied to
estimate the correlation between these two methods. If a strong correlation was detected, regression
analysis between the FCM and HPLC values was performed. This procedure served to explore the
possibility that the FCM method can be further calibrated by HPLC to obtain more accurate values of
the astaxanthin content and Car/Chl ratio.

3.7. Method Validation

The FCM method validation was performed from the analysis of validation samples to evaluate
its performance characteristics and prove that it fulfilled the requirements of the established criteria
for determination.

3.7.1. Linear Range and Limits for FCM Method

The fluorescent intensities in FL1 and FL2 determined by FCM were plotted against the
astaxanthin content to show the best-fit correlation, while the ratios of FL1/FL3 and FL2/FL3 were
correlated with Car/Chl ratios in order to investigate their relationships. Based on these strong
correlations, regression analysis was performed, and the regression curves with the highest coefficients
of determination (R2) were selected for predicting the astaxanthin content and Car/Chl ratio of the
unknown samples. The linear range and limits for the FCM method were obtained according to the
regression curves.

3.7.2. Precision

The living cells of C. zofingiensis in mixotrophic growth were directly analyzed in vivo immediately
by FCM after sampling to avoid the potential degradation of astaxanthin. The precision of the FCM
method was assessed by analysis of five technical replicates from the same culture and represented as
the relative error (RE) and relative standard deviation (RSD).

3.7.3. Accuracy and Recovery

Accuracy, generally recognized as the difference between the measured mean values by the
established method and the true values of validation samples [49], can be estimated from recovery
tests using samples spiked with a known concentration of the analyte [50]. The accuracy assessment of
the FCM method in our study was accordingly developed and modified to this approach. In brief, we
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conducted a similar study assessing the accuracy by the use of spiked samples. Two sets of cells taken
from the same stressed culture with either high or low astaxanthin content were detected by FCM
and HPLC methods to ensure the accuracy, which was represented as the percentage of the mean or
true value variation. The recovery was carried out from the two sets of cells similar to spiked samples.
The acceptable recovery value should be between 80% and 120%.

4. Conclusions

The fluorescence signals and pigment contents in mixotrophic C. zofingiensis cells during cultivation
were analyzed by FCM and HPLC. A positive linear regression between the auto-fluorescence of cells
based on FCM and the accurate content of astaxanthin or the Car/Chl ratio based on HPLC was
established. The method introduced is suitable as a screening procedure complementary to HPLC.
The FCM approach based on the auto-fluorescence has the advantages of simplicity and speed by
comparison with the traditional HPLC assay. This FCM method can thus complement the traditional
assay of pigments and provides a rapid and efficient approach for on-site monitoring of stress-induced
carotenogenesis during the cultivation of C. zofingiensis. The FCM method developed in the current
work is reliable and affordable for the rapid estimation of carotenoids, particularly astaxanthin,
in C. zofingiensis cells with an acceptable precision. It is comparable and competitive to established
rapid methods for carotenoid analysis. Our study demonstrates that flow cytometry with suitable
algorithms, after calibration by HPLC data, is a powerful tool for studies of carotenogenesis and for
physiological characterization of microalgae. The method is especially recommended in processes that
require high-throughput methods for the rapid analysis and real-time monitoring of cellular pigments
in C. zofingiensis under stress conditions.
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