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of the observed modules and their boundaries. Results 
show that there was significantly more than chance overlap 
in modules and their boundaries at the level of individual 
data sets. Moreover, some of these consistent boundaries 
significantly co-localized across participants. Hierarchi-
cal clustering showed that the whole-brain FC profiles of 
the OMPFC subregions separate them in two networks, a 
medial and orbital one, which overlap with the organization 
proposed by Barbas and Pandya (J Comp Neurol 286:353–
375, 1989) and Ongür and Price (Cereb Cortex 10:206–
219, 2000). We conclude that in vivo resting-state FC can 
delineate reliable and neuroanatomically plausible subdivi-
sions that agree with established cytoarchitectonic trends 
and connectivity patterns, while other subdivisions do not 
show the same consistency across data sets and studies.

Keywords Functional connectivity · Human · Orbital-
medial prefrontal cortex · Modularity · MRI · Parcellation

Introduction

The orbital and anterior medial part of the prefrontal cortex 
(OMPFC) has been implicated in goal-directed decision-
making, reward representation, and emotional processing 
(Kringelbach 2005; Rolls 2016; Rolls and Grabenhorst 
2008; Rushworth et al. 2007). The behavioural contribution 
of OMPFC relies on complex direct and indirect interac-
tions between the specialized neuroanatomical units that 
constitute this part of cortex. Cytoarchitectonic studies in 
monkeys and humans have revealed the existence of sev-
eral anatomical subdivisions within the OMPFC (Brod-
mann 1909; Carmichael and Price 1994; Petrides and Pan-
dya 1994; Öngür et  al. 2003; Mackey and Petrides 2009; 
Uylings et  al. 2010) and tracing studies in the macaque 

Abstract The orbital and medial prefrontal cortex 
(OMPFC) has been implicated in decision-making, reward 
and emotion processing, and psychopathology, such as 
depression and obsessive–compulsive disorder. Human and 
monkey anatomical studies indicate the presence of vari-
ous cortical subdivisions and suggest that these are organ-
ized in two extended networks, a medial and an orbital 
one. Attempts have been made to replicate these neuroana-
tomical findings in  vivo using MRI techniques for imag-
ing connectivity. These revealed several consistencies, but 
also many inconsistencies between reported results. Here, 
we use fMRI resting-state functional connectivity (FC) 
and data-driven modularity optimization to parcellate the 
OMPFC to investigate replicability of in vivo parcellation 
more systematically. By collecting two resting-state data 
sets per participant, we were able to quantify the reliability 
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have identified unique patterns of connectivity for each 
of these cortical fields (Cavada et al. 2000; Yeterian et al. 
2012). Moreover, an additional, higher-level organization 
of the OMPFC has been proposed in the rhesus monkey. 
Based on cytoarchitectonic data, Barbas and Pandya (1989) 
distinguished a mediodorsal and a basoventral trend, cours-
ing through the medial and orbital surface of the PFC, 
respectively. Similarly, using data from tracer studies, Car-
michael and Price (1996) and Ongür and Price (2000) were 
able to establish two distinctive networks, each consisting 
of tightly interconnected subregions and characterized by 
a distinct pattern of cortico-cortical connections and cou-
plings with limbic, autonomic, and other subcortical struc-
tures (Öngür and Price 2000). Based on its patterns of con-
nectivity with the rest of the brain, the “orbital” network 
was thought to be a sensory-related system involved in inte-
grating multi-modal stimuli, whereas the “medial” network 
was conceived as an output system involved in modulating 
the expression of emotion and action (Price and Drevets 
2010).

These anatomical principles of organization are in 
agreement with recent insights into the involvement of dif-
ferent parts of OMPFC in affective decision-making. Cell 
recording and imaging studies indicate that the orbital cor-
tex is responsible for the representation and updating of 
stimuli and their associated (primary and abstract) reward 
and affective values (e.g., Rushworth et al. 2011; Kringel-
bach 2005; Kringelbach and Rolls 2004; Murray 2007), 
whereas the medial cortex is particularly involved in goal-
directed evaluations concerning action utilities (Rushworth 
et al. 2013). These insights are important for understanding 
neurological disorders. For instance, it has since long been 
known that structural damage to the OMPFC results in 
serious alternations in goal-oriented decision-making and 
affective planning (Bechara et al. 2000; Floden et al. 2008). 
Moreover, studies indicate that particularly the medial pre-
frontal network is implicated in mood disorders such as 
major depressive disorder (Price and Drevets 2010) and 
obsessive compulsive disorder (Norman et al. 2016).

While the anatomical organization and associated par-
cellation in subregions of the OMPFC have been firmly 
established in animal studies, it would be of great advan-
tage for the study of OMPFC functioning in healthy per-
sons and patients if this organization could be delineated 
in  vivo in individual subjects. In the last decade, several 
studies have explored the possibilities of MRI techniques to 
parcellate the cerebral cortex into functionally meaningful 
cortical fields. The techniques used are diffusion weighted 
imaging (DWI)-based probabilistic tractography and rest-
ing-state fMRI-based functional connectivity (FC) analysis. 
The approach exploits the insight that functionally homo-
geneous cortical fields feature a unique pattern of anatomi-
cal connections (Krubitzer 1995; Passingham et al. 2002), 

which provide their neurons with the required afferent input 
and send computational output to the appropriate loca-
tions. Accordingly, Cohen et  al. (2008) showed the exist-
ence of abrupt changes in rsFC profiles in a spatial array 
of cortical vertices. Independent of any prior information 
about a region’s function or topography, these consistent 
edges matched in size and number known cytoarchitectonic 
boundaries between cortical fields.

The first attempts to parcellate subparts of the OMPFC 
used DWI probabilistic tractography and focused on the 
subgenual medial PFC (Johansen-Berg et  al. 2008), the 
cingulate gyrus (Beckmann et  al. 2009), and recently, the 
entire orbital and medial frontal cortex (Neubert et  al. 
2015). Across these studies, some parcellation boundaries 
appear consistent, such as the delineation in the cingulate 
cortex of subgenual section, a division at the level of the 
genu of the corpus callosum, and the demarcation in cin-
gulate cortex of dorsal anterior section from a midsection. 
However, a clustering analysis based on the whole-brain 
functional coupling of the delineated regions could not 
fully confirm segregation into a medial and an orbital net-
work (Neubert et al. 2015, see their Supplementary Infor-
mation). Orbital frontal cortex parcellation was also studied 
using resting-state FC data (Kahnt et  al. 2012; Yeo et  al. 
2011). Despite variability in extent and number of orbital 
regions, the FC studies seem to converge with the Neubert 
et  al. (2015)’s DWI study on a three-way division of the 
orbital surface in a lateral, middle, and medial sections. 
This division agrees with recent cytoarchitectonic findings 
(Uylings et  al. 2010) and with evidence from functional 
activation studies (Berridge and Kringelbach 2015).

In addition to similarities, there is considerable variabil-
ity across studies within as well as between MRI modali-
ties, but also within and between cytoarchitectonic studies. 
This variability at least in part reflects the fundamental 
problem of scaling—i.e., different ways of meaningful 
integration and segregation of units exists depending on 
the scale of study, ranging from the macro level (whole-
brain networks) to the micro level (cortical columns). For 
example, at the cytoarchitectonic level, BA 17 is defined by 
homogenous features, such as the stria of Gennari, while at 
the connectivity level, it is equally meaningfully subdivided 
into a foveal and peripheral visual field part (e.g., Buckner 
and Yeo 2014). The variability may also reflect replicabil-
ity and reliability issues, however—issues that have not yet 
been systematically addressed.

In this study, we want to consider this replicability, in 
a new attempt to parcellate the orbital and anterior medial 
PFC. We will use a different imaging modality than Neu-
bert et al. (2015)—resting-state FC instead of DWI—and a 
different parcellation method—Graph Theory-based mod-
ule detection instead of k-means clustering. We will inves-
tigate whether subdivisions and module boundaries can be 
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replicated in the same individuals and across individuals, 
and whether they agree with boundaries reported in other 
studies, such as Neubert et  al. (2015). Moreover, we will 
ask whether the functional segregation of this large piece 
of cortex adheres to the differentiation of a medial and an 
orbital network, as established in the macaque monkey with 
invasive techniques (Carmichael and Price 1996; Ongür 
and Price 2000).

The methods employed here deviate from those in prior 
FC parcellation studies of OFC in two important ways. 
First, we follow Neubert et  al. (2015) in performing the 
parcellations on the individual data. In contrast, Kahnt 
et  al. (2012) and Yeo et  al. (2011) averaged the FC data 
across participants prior to parcellation. While averag-
ing avoids the problem of group-level integration, it also 
ignores the documented large inter-individual variability in 
gyrification (Chiavaras and Petrides 2000; Rodrigues et al. 
2015) and size and positioning of cortical fields (Uylings 
et al. 2005). Moreover, it excludes the possibility to study 
replicability at the individual level. Second, we use a mod-
ularity detection algorithm (Meunier et al. 2009; Shen et al. 
2010; De Meo et al. 2011), rather than a clustering method, 
to group voxels into modules. Clustering methods require 
the a priori specification of the number of modules, which 
impels researchers to perform the parcellation for a para-
metric range of numbers of modules and then pick a “best” 
solution. The graph theory-based approach adopted here 
aims to group voxels in a way that maximizes modular-
ity, i.e., groups that exhibit more connections between one 
another than the ones expected by chance. Modularity in a 
set of voxels increases inversely with the initial connection 
density amongst them, up to the point where the voxels no 
longer constitute a fully connected set. We will, therefore, 
parcellate the voxel-to-voxel connection matrix at the low-
est density that still preserves full connectedness.

Modularity maximization parcellation of resting-state 
data has been used previously to delineate subdivisions 
within the basal ganglia (Barnes et  al. 2010) and within 
the lateral PFC (Goulas et  al. 2012). Three important 
implications of modularity optimization have to be con-
sidered. First, modularity maximization is a nondetermin-
istic polynomial time-complete problem, which in practice 
can only be solved approximately (Fortunato 2010). As a 
consequence, implementations involving such problems 
are stochastic, yielding somewhat different solutions for 
repeated analyses. It has also been shown for neuroimag-
ing data that modularity maximization is a degenerate pro-
cess, with a large number of near maximum modularity 
solutions (Good et al. 2010; Fortunato 2010; Rubinov and 
Sporns 2011). Second, the number of modules obtained is 
determined by the data and can vary within and between 
individuals. This will complicate the integration of indi-
vidual parcellation schemes into a group scheme. Third, the 

connectivity matrix for each participant is based on intrin-
sic functional connectivity strength—i.e., the strength of 
functional coupling between the voxels within the parcel-
lation region—instead of similarity of FC profiles of voxels 
with the rest of the brain. This is because graph modules 
are defined as groups of voxels with stronger than aver-
age interconnections. The reliance on intrinsic instead of 
extrinsic connectivity does not mean, however, that results 
will be more biased by local noise or vascular effects that 
boost the time course correlations of neighboring voxels. 
Because the same time courses are used in extrinsic as in 
intrinsic FC, such biases are equally strong in both cases: 
more similar time courses in nearby voxels will lead to 
more similar connectivity profiles with the rest of the brain 
as well as stronger functional coupling between them.

Materials and methods

Participants

Thirty-four psychiatrically and neurologically healthy par-
ticipants (21 females; mean age, 32.3 years; SD, 14.5 years) 
were subjected to one MRI scanning session after giving 
their informed consent. The scanning protocol included two 
resting-state scans of approximately 6.5 min with identical 
scanning parameters and instructions, separated approxi-
mately 10 min in time. Participants were instructed to fixate 
on a cross at the center of the screen, keep their eyes open, 
and refrain from intentionally engaging in specific mental 
tasks or falling asleep during the scan.

fMRI acquisition

Scanning was conducted on a Siemens MAGNETOM 
Allegra 3T MRI head-only scanner. Head motion was con-
strained by the use of foam padding. For each participant, 
153 T2*-weighted gradient echo planar images (EPI) with 
41 slices were acquired (except for 6 participants for whom 
203 images were available). EPI can suffer substantial 
loss of BOLD sensitivity and geometric distortions due to 
magnetic field inhomogeneity near air tissue interfaces. To 
minimize MRI signal loss and recover the true spatial sig-
nal positions in the OFC, we: (a) used an optimized echo 
time, (b) tilted the slices (~30° angle), and (c) generated 
a field map to offline correct susceptibility-related signal 
displacements. Imaging parameters for the resting-state 
sequence were as follows: TR, 2500  ms; TE, 25  ms; flip 
angle, 90°; matrix size, 128 × 96; and FOV, 256 mm; dis-
tance factor, 20%; resulting in a voxel size of 2 × 2 × 3 mm. 
The gradient echo image used to generate the field map 
had the same grid and slice orientation as the functional 
images (TR 704 ms; TE 5.11, 7.57 ms; flip angle 60°). To 
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enable the localization of functional data, a high-resolu-
tion T1-weighted image was acquired with the following 
parameters: TR 2250  ms; TE 2.6  ms; flip angle 9°; FOV 
256 mm; slice thickness 1 mm; matrix size 256 × 256; num-
ber of slices 192; voxel size 1 × 1 × 1 mm.

fMRI preprocessing

Preprocessing of fMRI data was performed using the 
SPM 5 software (Welcome Trust Center for Neuroimag-
ing, London, UK). The functional data were subjected to 
the following preprocessing: slice time correction, spatial 
correction using the field map, realignment, co-registra-
tion with the anatomical scan, normalization to the Mon-
treal Neurological Institute (MNI) template (ICBM-152), 
reslicing to 3 mm isotropic voxels, and smoothing with a 
6 mm full width half maximum (FWHM) Gaussian kernel. 
The T1-weighted images were segmented into grey mat-
ter, white matter, and cerebrospinal fluid tissue maps, and 
these maps were later used in the analyses. Furthermore, 
we removed non-neuronal contributions from the BOLD 
signal by regressing the following nuisance variables: the 
six volume realignment parameters, the average time series 
in white matter and CSF voxels, the session-specific mean, 
and the intrinsic autocorrelations. The global brain signal 
or average grey matter signal was not included as a regres-
sor. Finally, the residual volumes of the multiple regression 
were Fourier band pass filtered (0.01–0.1 Hz).

Head motion has been shown to significantly underes-
timate long-range and overestimating short-range FC con-
nectivity, even after regressing out volume to volume head 
motion measures (Power et al. 2012; van; Dijk et al. 2012). 
To further reduce this bias, we took the following approach: 
(1) we identified scans during which the frame-wise dis-
placement exceeded 0.4  mm [13.3% of voxel size; i.e., 
translation in the z direction or rotation in the x direction 
corresponding to 0.4  mm z-displacement of frontopolar 
voxels, assuming an x-rotation point 88 mm from the fron-
tal pole; Talairach and Tournoux (1988)], (2) we excluded 
the identified volumes together with the 1-back and 2-for-
ward volumes [to avoid spin history assumptions’ viola-
tions caused by movement; Power et al. 2012)], and (3) we 
excluded participants for whom less than 120 volumes [i.e., 
5 min; van Dijk et al. 2010)] of resting data remained after 
the correction (mean duration, 6.4 min; SD, 0.8 min).

OMPFC intrinsic FC‑based parcellation

The parcellation analysis was performed for each participant 
and each hemisphere separately. For each participant, the 
voxels selected for parcellation comprised all the voxels that 
fell both within the person’s normalized grey matter mask 
(density > 0.5) and a liberal OMPFC ROI mask (left or right 

hemisphere). Thus, the parcellation mask differed between 
participants to accommodate anatomical variation and avoid 
contaminating of the analysis with none-cortical voxels. The 
liberal ROI mask was constructed from the Automated Ana-
tomical Labeling (AAL) map in MNI space (WFU PickAt-
las; Maldjian et al. 2003; Rollset al. 2015; Tzourio-Mazoyer 
et  al. 2002). It comprised left-side AAL regions with the 
following labels: “frontal superior orbital”, “frontal middle 
orbital”, “frontal inferior orbital”, “frontal medial orbital”, 
“rectus”, “cingulum anterior”, and “frontal superior medial”. 
From the region labeled “frontal superior medial”, only a part 
was included, extending dorsally until the horizontal border 
defined by the anterior cingulate AAL label (manually drawn 
using MRIcron; Rorden and Brett 2000). The ROI mask 
was expanded spatially to ensure coverage of grey matter in 
all participants and to cover also parts of areas boarding the 
orbital and medial areas of interest. The latter allow empirical 
delineation of the full extent of areas of interest at the bound-
ary of the mask. The expansion of the mask comprised of a 
twice repeated 10 mm FWHM Gaussian smoothing followed 
by high-pass thresholding at 0.2 density.

For the voxels selected for parcellation, a voxel-by-voxel 
correlation matrix was constructed by computing the Pearson 
correlation between their cleaned time courses measured dur-
ing the first resting-state scan. A high-pass absolute weight 
threshold was applied to the correlation matrix to eliminate 
the weak, less-significant links that most likely represent 
spurious connections (Rubinov and Sporns 2010). Because 
modularity is inversely related to graph density (Goulas 
et  al. 2012) and since our aim was to retrieve the maximal 
modularity solution for grouping the voxels into modules, we 
searched for the lowest connection density that still yielded a 
connected graph. The connection densities investigated were: 
0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0%.

To partition a thresholded correlation matrix into dis-
crete modules, we employed the Louvain module detection 
algorithm [Blondel et  al. 2008; Brain Connectivity Tool-
box (Rubinov and Sporns 2010)], one of the best perform-
ing algorithms for fast and efficient detection of modules in 
extended networks (Lancichinetti and Fortunato 2009). The 
modularity statistic quantifies how well a network can be sub-
divided into groups of nodes (voxels) with higher than chance 
connectivity in between them (Girvan and Newman 2002; 
Newman 2006). Applied to brain networks, it can be used to 
delineate neurobiological meaningful functional units (e.g., 
Goulas et al. 2012; Meunier et al. 2009; Rubinov and Sporns 
2010). Modularity is defined as follows:

where ei is the amount of edges (connections) linking nodes 
(voxels) within module i, di is the total amount of edges of 

(1)Q =

k
∑

i=1

[

ei

m
−

(

di

2m

)2
]

,
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module i nodes (i.e., degree of module i), and m is the total 
number of edges in the graph (i.e., network degree). Large 
Q values indicate the presence of community structure 
within the graph. To compensate for the stochastic nature 
of the algorithm, each parcellation analysis of individual 
data at a particular threshold was repeated 50 times and the 
solution with the highest Q value was selected as the final 
solution (Sporns et  al. 2007). The parcellation procedure 
results in the unique classification of every voxel in the 
OMPFC into one of the modules in the solution.

To test the statistical significance of the observed modu-
larity structure, we compared the obtained Q value with the 
Q value of null models computed from the individual data 
sets. Zalesky et al. (2012) have recently drawn attention to 
the fact that observations of brain networks that use correla-
tion as a measure of connectivity are inherently more clus-
tered than random networks. For this reason, they should be 
benchmarked against null networks that preserve the transi-
tive structure of correlation networks. We created such null 
networks by applying the Hirschberger–Qi–Steuer algo-
rithm (for algorithm and details see Zalesky et al. 2012) to 
the individual correlation matrices. This algorithm gener-
ates random null covariance matrices with distributional 
properties matched to the observed matrices. The result-
ing null covariance matrices were thresholded to match the 
density of the original matrices.

Group‑wise clustering

Modules obtained from parcellating individual data sets 
were grouped together to capture their individual tran-
scending commonalities. Because individual parcellations 
differed in voxel space (within each participant the parcel-
lation took place within his/her unique grey matter map) 
and had different numbers of modules, the grouping was 
based on the spatial proximity of the modules’ center of 
mass (COM), within the Euclidean coordinates of the MNI 
space. Spatial proximity was defined as the inverse of the 
Euclidean distance between the COM of modules from two 
different parcellations. The integration progressed itera-
tively. At each iteration, first, a cost matrix was computed 
for matching each parcellation with every other parcella-
tion. The matching cost for a pair of parcellations was the 
sum of the distances between their assigned modules. Mod-
ule assignment between pairs of parcellations was based on 
minimizing the matching cost using the modified Hungar-
ian assignment algorithm (Munkres 1957; Cao 2008). In 
the second step, the pairs of parcellations with the lowest 
matching cost were merged by weighted averaging (for 
details, see Supplementary Information, section “Meth-
ods”, point 1), one after the other, and then eliminated from 
the cost matrix. The merged parcellations entered the next 
iteration level and the procedure was repeated until a final 

set of COMs was obtained. Each final COM represented a 
cluster of modules from individual parcellations merged 
into this common COM. Note that not all participants will 
be represented in every final cluster, due to different num-
bers of modules per participant/parcellation.

Replicability of intrinsic FC parcellation

To investigate replicability of parcellation results, we ana-
lyzed for each participants a second, independently resting-
state scan acquired in a different run during the same ses-
sion. The within participant consistency of the obtained 
modules across the two data sets was compared first to 
the maximum possible consistency and second to chance 
consistency. This maximum possible consistency is less 
than 100% due to the stochastic nature of the modularity 
detection algorithm used. The maximum replicability was 
estimated by re-analysing the same data sets twice. To test 
whether the observed consistency exceeded the chance 
level, it  was compared to the replicability between null 
models, in which a matching number of modules is posi-
tioned purely randomly. These models implement the null 
hypothesis that the spatial location of the modules is not 
dependent on information in the connectivity matrix. The 
creation details of these null models are described in Sup-
plementary Information (“Methods”, point 2).

The measures used to compare parcellation similar-
ity were the Dice similarity coefficient (Crum et al. 2006) 
and normalized mutual information. Both measures will be 
around 0.5 for completely mismatching parcellations and 
1.0 for perfectly overlapping parcellations. The normalized 
mutual information has the advantage over the Dice simi-
larity coefficient that it does not require an assignment of 
modules between the parcellations prior to quantification, 
which introduces additional room for error. The modified 
Hungarian assignment algorithm (Munkres 1957; Cao 
2008) was used for modules assignment.

Replicability was further investigated by looking at 
the module boundaries. A boundary in a parcellation was 
defined in volume space as a center-surround discrepancy, 
with the center being a single voxel’s module identifica-
tion number, and the voxel’s surround comprising the aver-
aged value of any of the six voxels touching it on each of 
its sides. Voxels outside of the parcellation patch were not 
considered (i.e., surround < six voxels) to prevent voxels on 
the edge of the parcellation patch from being counted as 
boundary voxels. For each pair of parcellations, the consist-
ency of boundary voxels was quantified by the number of 
voxels that were identified as boundary voxel in both par-
cellations relative to the number of boundary voxels in each 
parcellation, expressed as a Dice coefficient.

Replicability of boundaries was also assessed at the 
group level, by counting the incidence of voxels being 
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boundary voxels across participants. This requires sum-
mation across participants in voxel space, which can only 
yield a rough approximation of boundary co-localization. 
To improve co-localization, consistent boundary images 
per participant and the similar images derived from the ran-
dom module models were smoothed with a 6 mm FWHM 
Gaussian kernel. A voxel-wise t-test of the observed sum 
of co-localized boundaries against the co-localization of 
boundaries in the random models was performed and dif-
ferences evaluated at the alpha level of 0.05, FDR-level 
correction for multiple comparison (Genovese et al. 2002).

Finally, group-wise replicability was also evaluated 
from a visual comparison of different group-wise parcella-
tion results. First, the group-integrated parcellation of the 
left hemisphere was compared to that from the right hemi-
sphere. Therefore, the connectivity-based parcellation and 
group-wise clustering described above were also applied 
to the right OMPFC of the same resting-state run. In addi-
tion, we tested the replicability within the left hemisphere 
across runs, by applying the group-wise clustering also to 
the parcellation results from the left OMPFC of the second 
resting-state run in the scanning session. We compared the 
similarity of the group-wise clustering result between each 
hemisphere and run by plotting their spatial extent to allow 
visual inspecting of their correspondence with our main 
results.

OFC signal coverage and inter‑run correlation stability

EPI suffers substantial loss of BOLD sensitivity near air 
tissue interfaces and FC metrics are sensitive to the levels 
of signal amplitude and signal-to-noise ratio (Golestani and 
Goodyear 2011).

To quantify the severity of signal dropout in the artifact-
susceptible areas, we calculated the relative signal intensity, 
which is the signal intensity of each voxel (averaged across 
time) relative to the mean signal intensity of all grey mat-
ter voxels (Smits et al. 2007). In addition, we computed the 
signal-to-noise ratio of the time series (tSNR), defined as 
the mean intensity of every voxel in the time series divided 
by its standard deviation across time (Triantafyllou et  al. 
2011; Golestani and Goodyear 2011).

To assess the impact of signal quality loss on the con-
nectivity metric used, we estimated the stability of the 
whole-brain FC profiles of each OMPFC voxel across the 
two separate resting-state runs, using the  eta2 coefficient:

where ai and bi are the correlations of voxel i in the first run 
and second run, respectively, mi is the mean correlation of 

(2)

eta2 = 1 −
SSWithin

SSTotal
= 1 −

∑n

i=1

�

�

ai − mi

�2
+ (bi − mi )

2
�

∑n

i=1
[(ai −M)

2
+ (bi −M)

2
]

,

both runs at position i, and M is the grand mean of correla-
tions across all locations in both runs. The  eta2 coefficient 
varies from 0 (no similarity) to 1 (identical) and directly 
quantifies the difference in the values of the same voxel in 
the two runs (Cohen et  al. 2008). A general linear mixed 
model analysis was used to test whether the inter-run sta-
bility differed significantly between the individual clusters 
by running. The model used heterogeneous compound 
symmetry as covariance structure and cluster as a fixed 
effects factor. The estimation method was restricted max-
imum-likelihood estimation (maximum iterations = 150). 
The advantage of general linear mixed models is that they 
allow the analysis of repeated-measures data in unbalanced 
designs, as is the case here, since every participant has a 
module in many but not all group-level clusters of mod-
ules. To control the family wise error rate, we used Holm’s 
sequential rejective Bonferroni correction (Holm 1979; 
Holland and Copenhaver 1987). All pairwise comparisons 
among means were adjusted to a corrected alpha of 0.05.

To test whether tSNR had a significant effect on the 
inter-run correlation stability, we ran the general linear 
model with the SPSS procedure mixed again this time using 
tSNR as a covariate. The amount of variance explained by 
tSNR was calculated as follows:

where r2 is the proportion of the variance explained, σ 
is the standard error estimate in the model with tSNR as 
predictor, and σ0 is the standard error estimate of the null 
model.

Similarity of whole‑brain FC profiles of the OMPFC 
subdivisions

For every cluster, a whole-brain FC profile was created by 
placing a spherical seed of 4 mm radius at the COM of each 
participant’s module and calculating Pearson’s correlation 
coefficient between the average seed voxels time course and 
the time course of every voxels in the rest of the brain. The 
spherical seed approach was chosen over using the entire 
module as seed to get a maximal spatial spread of the seeds 
while avoiding contamination from adjacent modules. This 
procedure resulted in whole-brain r maps for every module 
at the individual level. The maps were subsequently r-to-
Z transformed using Fisher’s formula. Cluster-wise func-
tional connectivity maps was created by averaging over the 
r maps of all the modules that had been assigned to the par-
ticular cluster.

To examine whether our OMPFC subdivisions could 
be distinguished into spatially extended networks based in 
FC profile similarities, we used agglomerative hierarchical 

(3)r2 = 1 −
�̂�
2

�̂�
2

0

,
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cluster analysis which does not involve a priori assump-
tions about the number of groups present in the data and 
outputs a “bottom-up” hierarchy of areas in the form of a 
dendrogram. First, we calculated the (dis)similarity matrix 
for the whole-brain connectivity profiles of all clusters 
using correlation as the similarity metric (1 − r) and subse-
quently created a dendrogram to represent the hierarchies 
in the data. To select the most appropriate linkage method 
for the construction of the dendrogram, we ran the analy-
sis using the following linkage methods: centroid, average, 
single, median, complete, weighted, and Ward. For each 
of these methods, we computed the cophenetic correla-
tion coefficient of the resulting dendrogram, a measure of 
how well the original distances in the data are represented. 
From these, we selected the linkage method that generated 
a dendrogram which contained clusters proceeding hierar-
chically (i.e., monotonic) and had the highest cophenetic 
coefficient.

Results

OMPFC intrinsic FC‑based parcellation 
and group‑wise clustering

We used the intrinsic FC of voxels within the OMPFC to 
parcellate individual cortical patches into modules with the 
Louvain module detection algorithm. Although we per-
formed the parcellation analysis in both hemispheres using 
separate patch masks and obtained comparable partitions, 
the results reported in this paper center on the left hemi-
sphere for practical reasons. Results for the right hemi-
sphere are presented only in the section on the replicability 
of the parcellation analysis, below.

Figure 1a shows the effect that graph density had on the 
connectedness and the modularity of the graph. Reduc-
ing the connection density of the graph strongly improved 
its modularity. However, at a certain point, the number of 
connections became so low that the graph fell apart in dis-
connected parts. The proportion of nodes/voxels no longer 
connected with the rest of the graph only slightly increased 
from 1% (1.03 ± 1.01%) to 0.5% density (1.18 ± 1.14%), the 
difference being not statistically significant (t(20) = 1.27, 
p = 0.22). At the next lower density of 0.25%, however, 
connectedness broke down with 48.8 ± 19.5% voxels lost 
due to disconnection. Therefore, we here report on the 
modules obtained with a matrix density of 0.5%. The aver-
age modularity Q across participants at that density was 
0.826 ± 0.024. These Q values are high, and well above 
0.4 which is considered an indicator of a modular data 
structure (Fortunato 2010). Moreover, the observed Q val-
ues were significantly higher than the Q values of the null 
covariance models (t(33) = 41.73, p < 0.000). These results 

are consistent with previous studies using similar meth-
ods (Meunier et al. 2009; Barnes et al. 2010; Goulas et al. 
2012).

The number of modules found was not set a priori, but 
determined by the modularity seeking algorithm based on 
the data. As a consequence, the number of modules found 
varied across participants, and ranged from 14 to 22 (mean 
17.4 ± 1.8). Individual modules were grouped across par-
ticipants into clusters. Because the number of modules 
varied per participant, not all participants were required to 
contribute to each clusters (see “Materials and Methods”, 
Section “Group-wise clustering”, and the Discussion for 
an elaboration on this issue). The group-wise clustering 
revealed the existence of 19 group-representative clusters 
of modules in the left hemisphere, comprising minimally 
modules from 22 participants (65% of sample size). Each 
cluster was assigned a unique identification number in an 
arbitrary way. An overview of the clusters of modules, their 
COMs, and their size can be found in Table 1.

To give an impression of the location of the clusters, 
we created a voxel-wise maximum probability map of the 
clusters (Fig. 1b). It should be noted, however, that this is 
just one way of visualization and other integration methods 
might yield somewhat differently looking cortical subdi-
visions. Seven of the clusters, C01, C16, C02, C03, C15, 
C17, and C18, were located at the orbital surface of the 
hemisphere; clusters C06 and C04 occupy the ventrolateral 
PFC and clusters C07 and C08 were located on the insulo-
opercular cortex. At the medial wall, clusters C05, C19, 
C12, and C13 were distributed rostrocaudally around the 
corpus callosum, covering the cingulate cortex with exten-
sions beyond it. Clusters C10 and C14 cover the (superior 
or) para cingulate gyrus and the medial part of the superior 
frontal gyrus and clusters C09 and C11 occupy the dorsal 
part of the superior frontal gyrus. As mentioned above, not 
all participants have a module that corresponds to one (or 
more) clusters. Nonetheless, correspondence of the classi-
fied individual modules with the group clusters of the par-
cellation map is generally good as illustrated in Fig. 1c for 
three representative participants.

Replicability of intrinsic FC parcellation

Given the considerable differences in available parcellation 
schemes for the orbital and medial PFC, a central question 
is that of the reliability of parcellation results—i.e., the 
similarity of modules when the analysis is repeated with 
the same data set, or with a different data set from the same 
individual, and this compared to when the modules are ran-
domly positioned.

Due to the stochastic nature of the modularity maximiza-
tion algorithm, each re-analysis of the same data set yields 
a somewhat different solution. The average normalized 



2948 Brain Struct Funct (2017) 222:2941–2960

1 3

Fig. 1  Parcellation of the 
orbital and medial prefrontal 
cortex at a connectivity matrix 
density of 0.5%. a Effect of 
matrix density in the range of 
4.0 to 0.25% on graph connect-
edness, parcellation modularity, 
and number of modules found. 
At the lowest density level 
(0.25%), graph connectedness 
broke down. Hence, a density of 
0.5% was chosen for the parcel-
lation analysis. b Group-wise 
maximum probability map of 
clusters of parcellation modules 
in the left hemisphere; each 
cluster of modules was assigned 
a unique number and color. c 
Parcellation modules in three 
representative participants. 
Modules haven been given the 
color of the cluster of modules 
to which they were assigned in 
the group clustering presented 
in part B. Modules colored 
white were not assigned to any 
of the clusters
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mutual information between two successive analyses of 
the same data was 0.933 ± 0.024. After matching the mod-
ules in the two parcellations, the proportion of commonly 
assigned voxels was 91.5 ± 3.8%, giving an average Dice 
Similarity coefficient of 0.908 ± 0.039. When only looking 
at the voxels marking boundaries between modules, bound-
ary replicability expressed as a Dice similarity coefficient 
was 0.895 ± 0.041.

The spatial similarity of the module structure was sig-
nificantly lower for all measures when parcellations from 
two different data sets of each participant were being com-
pared [smallest t(66) = 22.7, p < 0.001]. Mutual information 
dropped to an average of 0.711 ± 0.036, and the Dice coeffi-
cient to 0.626 ± 0.061. For the replication of module bound-
aries, the Dice coefficient was 0.467 ± 0.050. However, 
these spatial similarity indicators were still higher than for 
random module models. The random models did not differ 
from their corresponding real parcellations in the number 
of modules, the size of the modules, or the distance to the 
nearest neighboring module [largest t(66) = 0.8, p = 0.217]. 
However, they scored significantly lower on all module 
similarity measures [smallest t(66) = 9.5, p < 0.001]. The 
normalized mutual information between the random model 

pairs was on average 0.641 ± 0.023, while the common 
voxels in matched modules was 50.2 ± 4.2%, yielding a 
Dice similarity coefficient of 0.497 ± 0.043. The Dice coef-
ficient for co-localized module boundary voxels was only 
0.360 ± 0.040. These results make clear that although the 
parcellation results only partially replicate across different 
data sets from the same participants, at least a significant 
portion of the spatial features is preserved.

To investigate whether there was any consistency in 
the location of these persistent features across different 
participants, we performed a voxel-wise GLM analysis 
on the images that mapped the location of the replicated 
boundary voxels in each participant. To compensate for 
the considerable individual variability in grey matter 
anatomy, the images were smoothed with a 6 mm FWHM 
Gaussian kernel prior to entering the analysis. This anal-
ysis revealed several regions where boundaries signifi-
cantly co-localized across participants (Fig. 2a, top row). 
These boundary regions tended to coincide with regions 
where cluster probabilities changed from one cluster to 
another (Fig. 2a bottom row). Significant co-localization 
of replicable boundaries was found medially in the dorsal 
aspect of the (para)cingulate sulcus, in the cortex anterior 

Table 1  Cluster numbers 
correspond to numbering of 
parcellation map (Fig. 1)

Reported coordinates are in MNI space and volume information concerns all modules corresponding to 
each cluster
SD standard deviation

Coordinates and size of the left hemisphere clusters

Cluster Center of Mass (COM) Volume  (mm3)

X Y Z Mean SD

Mean SD Mean SD Mean SD

C01 −8.04 3.14 37.98 7.75 −25.26 2.59 3.43858 1.28234
C02 −26.38 3.24 23.99 5.64 −21.22 2.46 3.33072 1.28949
C03 −35.81 6.30 33.61 4.39 −15.52 2.16 2.91713 1.50444
C04 −27.07 4.07 59.64 2.43 −2.27 3.22 4.23203 1.35218
C05 −2.79 0.70 29.27 5.91 −14.09 3.00 4.31730 1.45231
C06 −44.65 1.98 45.85 2.85 −3.53 2.32 3.89250 1.40699
C07 −46.29 3.03 28.67 3.88 −5.48 3.47 4.13013 1.20204
C08 −35.20 3.36 20.49 1.74 −9.02 2.66 4.86000 1.33199
C09 −11.47 5.03 65.28 3.30 5.72 6.06 3.33161 1.42413
C10 −5.00 1.38 50.97 5.13 2.18 5.85 4.31348 1.43981
C11 −11.06 3.41 58.98 2.78 26.39 5.01 3.86361 1.29157
C12 −4.48 1.69 41.51 4.73 12.03 4.15 3.87700 1.19410
C13 −3.29 1.31 23.91 4.16 28.45 2.52 4.54191 1.36320
C14 −5.06 1.23 43.10 6.27 27.71 4.04 4.17246 1.22019
C15 −26.63 3.95 39.21 3.20 −18.05 2.73 4.84858 1.77168
C16 −14.54 4.62 15.11 2.79 −19.45 2.30 4.47525 1.73866
C17 −12.89 6.06 60.59 4.37 −13.84 4.47 3.44203 1.44843
C18 −30.25 7.15 53.54 4.71 −13.33 4.27 2.91109 1.48657
C19 −3.73 1.06 44.62 5.98 −11.24 5.15 4.53311 1.42786
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to the genu of the corpus callosum, and along the convex-
ity between the orbital and the medial cortical surface. 
Orbitally, a boundary was found longitudinally between 

the olfactory and medial orbital sulci and another near 
the lateral orbital sulcus.

As a last step in investigating replicability, we computed 
similar maximum probability maps for the left hemisphere 
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based on the second resting-state run and for the right 
hemisphere based on the first functional run (data from the 
same participants). To appreciate the consistency of solu-
tions across runs and hemispheres, these maps are depicted 
in Fig.  2b and c, overlaid as boundary outlines on the 
maximum probability map of the main solution (left hemi-
sphere, first resting-state run, as presented in Fig. 1; right 
hemisphere data are flipped in the left–right dimension). 
Using the right hemisphere as a replication test for the anal-
ysis of the left hemisphere, we do not want to imply that 
there are no functional or even structural interhemispheric 
differences. The comparison intended here is only valid at 
the macroscopic level, in terms of the number and general 
spatial lay-out of cortical fields. As can be expected from 
the partial replicability of parcellations at the individual 
level, discussed above, shifting boundaries can be observed 
in several subregions. Despite these local shifts, however, 
there is substantial agreement between these group-level 
maximum probability maps, particularly in those parts of 
OMPFC that emerged as regions of replicable boundaries 
within and across participants.

OFC signal coverage and inter‑run correlation stability

The orbital part of the PFC is known to be susceptible to 
BOLD signal loss (Smits et  al. 2007). This was also the 

case in our data set, despite the employment of an imag-
ing sequence optimized for BOLD sensitivity in this area 
(see “fMRI acquisition” in the Methods section). As shown 
in Fig.  3a-left, relative signal intensity was lower in sub-
regions of the OFC, but not lower than in many other 
brain regions outside of OMPFC. The lower signal inten-
sity translated into a lower temporal signal-to-noise ratio 
(tSNR) in these regions (Fig. 3a-right).

tSNR does not capture the metabolically induced sig-
nal fluctuations over time, which are our signal of interest. 
Therefore, we also computed the stability (or replicabil-
ity) of a voxels whole-brain FC over acquisitions (first and 
second resting-state runs) (Fig. 3b). To make a quantified 
evaluation of regional differences in voxel-wise FC stabil-
ity, we averaged the stability values per cluster of modules 
obtained in the parcellation analysis (Fig.  3b-right), and 
tested for cluster-wise differences. The average  eta2 ranged 
from 0.56 in orbital cluster C16 to 0.63 in medial cluster 
C19. For the clusters occupying the medial wall, the aver-
age stability was 0.62, while the average  eta2 of the orbito-
frontal clusters was 0.59. While these minimum–maximum 
numbers are close to one another, there are nonetheless 
significant stability differences between orbital and medial 
clusters, as evidenced by the repeated-measures analysis. 
Orbital clusters C16, C01, and C17 had the lowest inter-
run correlation stability, differing significantly from clus-
ters both at the medial wall (p < 0.001) and the lateral side 
(p < 0.001). The rest of the orbital clusters (C18, C15, C02, 
and C03) had a higher  eta2 which differed significantly 
only from the medial wall clusters with the higher stabil-
ity (Fig. 3c). The same analysis with tSNR as a covariate 
revealed that tSNR had a small, albeit significant (F = 30.1, 
p < 0.001), effect on the inter-run FC stability, accounting 
for only 10% of its variance. Overall, our quality analysis 
indicates that the magnetic susceptibility artefact, to which 
EPI imaging sequences are sensitive, does affect signal 
strength (tSNR) in subparts of the orbital surface compared 
to other cortical regions, but that its effect on the estimated 
connectivity profiles of individual voxels is limited.

Connectivity‑based cluster networks in OMPFC

Overview and discussion of the average cortical and sub-
cortical connectivity profiles of the 19 clusters of mod-
ules are presented in the Supplementary Information (see 
Figure S1 and S2). A possible interpretation of these 
clusters in terms of cortical fields delineated in cytoarchi-
tectonic studies is documented in table  S1. To examine 
whether the 19 clusters formed extended networks, as 
proposed by Barbas and Pandya (1989) and Ongür and 
Price (2000), their averaged connectivity profiles were 
entered into a hierarchical agglomerative cluster analysis 
using correlation as the metric of similarity and average 

Fig. 2  Replicability of parcellation results. a Co-localization of 
within participant reliable boundary voxels across participants. Top 
row shows voxels with significantly higher replicated boundary val-
ues compared to similar replicated boundary measures in null models 
of randomly located, size-matched modules. Thresholded at t = 3.04, 
p < 0.05 FDR corrected for multiple comparisons. Bottom row shows 
the same significant voxel clusters drawn as outlines over the group-
wise maximum probability map of the parcellation clusters presented 
in Fig.  1, to show that mostly the consistently located boundaries 
overlap the transition between clusters in the maximum probabil-
ity map. b Replicability of parcellation map across functional runs. 
Clusters in the left hemisphere of the first resting-state scan (Fig. 1) 
are plotted in color while the clusters in the left hemisphere of the 
second resting-state scan are overlaid as borders in white. c Repli-
cability of parcellation map across hemispheres. Clusters in the left 
hemisphere of the first resting-state scan (Fig. 1) are plotted in color, 
while the clusters in the right hemisphere are overlaid as borders in 
white. d Replicability across runs at the level of individual partici-
pants. Top panels (medial wall left, orbital surface right) depict par-
cellation module maps in the left hemisphere of the first resting-state 
scan in two representative participants. Color coding corresponds to 
maximum probability cluster map presented in Fig.  1. Bottom pan-
els show the parcellation module maps of the same participants in the 
left hemisphere of the second resting-state scan. White modules were 
not assigned to any of the clusters. e Replicability across hemispheres 
at the level of individual participants. Top panels (medial wall left, 
orbital surface right) depict parcellation module maps in the left 
hemisphere of the first resting-state scan in two representative par-
ticipants. Color coding corresponds to maximum probability cluster 
map (Fig.  1). Bottom panels show the parcellation module maps of 
the same participants in the right hemisphere of the same scan. White 
modules were not assigned to any of the clusters

◂
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linkage (cophenetic correlation coefficient = 0.85; cophe-
netic coefficient for other linkage methods were as fol-
lows: centroid = 0.88, single = 0.84, median = 0.78, com-
plete = 0.77, weighted = 0.77, Ward = 0.75). This resulted 
in the dendrogram shown in Fig.  4d. At an intra-family 
distance of 65%, the majority of OMPFC clusters are dis-
tinguished in two groups, a “medial” one which includes 
most clusters on the medial wall and an “orbital” one 
comprising of orbital and ventrolateral PFC clusters, 
while clusters C13 and C15 constitute singletons in the 
solution (see Fig. 4a for a depiction of the spatial distri-
bution of the groups).

The medial group was formed by the anterior medial 
clusters (C05, C19, C10, C12, C11, and C09 linked at an 
intra-family distance of <0.4) and further included lateral 
OFC cluster C03, medial OFC clusters C01 and C17 and 
insulo-opercular clusters C08 and C07. Apart from C13, 
which is most likely part of the more motor selection-
related midcingulate cortex (Vogt 2005, 2016) (see Fig. 4e, 
and Figure S2 for the unique FC profile of this cluster), all 
medial wall clusters were grouped together. Finally, in our 

dendrogram, clusters C07 and C03 were also clustered with 
the medial group.

The orbital group in our dendrogram was formed by the 
clusters of modules on the posterior and anterior central 
orbital surfaces (C16, C02, and C18). It also included clus-
ters on the ventrolateral PFC (C04 and C06). Our central 
OFC cluster C15 was found to have a very distinct whole-
brain FC profile and was, thus, not included in the group.

The replicable boundaries described above suggest 
that the boundaries adhere to but do not systematically 
coincide with the divisions between networks. The two 
replicable boundaries flanking the gyrus rectus are 
located in the transition zone between networks, but do 
not mark the transition. The boundary located near the 
convexity between the orbital and medial frontal planes 
does separate the medial and orbital networks posteriorly 
(C05 vs. C16) but divides between medial network areas 
more anteriorly (C05–C19 vs. C01). On the other hand, 
the boundary lateral to the gyrus rectus/olfactory sulcus 
posteriorly separates clusters within the orbital network 

Fig. 3  a Whole-brain relative signal intensity (left) and tSNR 
(right). Values range from 0 to 1.6 for signal intensity and 0 to 24.0 
for tSNR. b Left panel shows the stability of voxel-wise FC profiles 
 (eta2) within the OMPFC voxel-wise. Values range from 0 to 0.7. 

Right panel shows the mean stability of voxel-wise FC profiles  (eta2) 
for each cluster. c Significant pairwise differences of voxel-wise FC 
profile stability  (eta2) among clusters (p values Bonferroni–Holm cor-
rected)
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(C16 vs. C02) and more anteriorly marks the outer limit 
of the medial network (C01 vs. C15, and C17 vs. C18). 
Similarly, the replicable boundary in the lateral orbital 
cortex marks transitions between networks (C18 and C02 
vs. C03). In contrast, the pregenual boundary (C12-C10 
vs. C19) and the more dorsal cingulate sulcus boundary 
(C14 vs. C13-C12) are between medial network clusters, 
although the cingulate boundary also marks the posterior 
limit of the medial network (C13 vs. C12).

Discussion

Various parts of the human OMPFC play a crucial role in 
reward, affect, and goal-oriented behaviors and dysfunction 
in OMPFC fields underlie many severe psychiatric disor-
ders. To improve our understanding of the basic functional 
organization of the OMPFC, we conducted an in  vivo 
fMRI-based parcellation study of this part of the cerebral 
cortex. The parcellation was performed at the level of indi-
vidual participants, by applying graph theory-based analy-
sis techniques to intrinsic functional connectivity measures 

Fig. 4  a Cortical surface representation of the results of the hierar-
chical clustering analysis. OMPFC clusters belonging to the medial 
group are shown in red; clusters belonging to the orbital group are 
shown in green; singletons are uniquely colored. b Medial (red) and 
orbital (yellow) networks proposed by Carmichael and Price (1996) 
and Öngür and Price (2000) (in Price and Drevets 2010). Areas con-
nected to more than one network and believed to act as interfaces for 
information exchange are seen in blue. c. Mediodorsal (orange) and 

basoventral (light blue) cytoarchitectonic trends described by Barbas 
and Pandya (1989) (in Yeterian et al. 2012). d Dendrogram (average 
linkage) depicting the similarity of the whole-brain FC profiles of the 
OMPFC fields within each of the groups. e Vogt’s four-region neuro-
biological model of the cingulate cortex (in Vogt 2005, Box 1). The 
border between anterior and midcingulate cortex is indicated by the 
red arrow. All pictures reproduced with permission
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computed from resting-state fMRI data. Our results show 
that the functional connectivity between the voxels in the 
OMPFC has a significant modular structure. The replicabil-
ity of modules and their boundaries across data sets of the 
same persons is higher than expected by chance, but lower 
than for within data set re-analysis. Some of the reliable 
boundaries co-localized across participants, whereas oth-
ers are variable across participants. At the higher organi-
zational level, similarities and differences in whole-brain 
functional connectivity profiles of the clusters of modules 
pointed towards a segregation of the OMPFC into a medial 
and an orbital network.

Consistency with other studies

We found several reliable boundaries that co-localized 
across parcellations of different participants. To validate 
this finding, we compare these boundaries with results pre-
sented in other studies. More specifically, we asked whether 
the replicable boundaries observed in this study coincide 
with boundaries reported in other parcellations schemes.

Some recent parcellation schemes for the orbital pre-
frontal cortex are reproduced in Fig.  5. The parcella-
tions are obtained with different modalities, including 

cytoarchitectonics [Henssen et  al. 2016 (Fig.  5a-left); 
Uylings et al. 2010 (Fig. 5a-right)], DWI probabilistic trac-
tography [Neubert et  al. 2015 (Fig.  5b left)], resting-state 
functional connectivity [our data (Fig.  5b-right); Kahnt 
et al. 2012 (Fig. 5c)], and local grey matter volume covari-
ation [Liu et  al. 2015 (Fig.  5d)]. Regardless of modality, 
all these schemes include on the medial side a longitudi-
nal division located between the olfactory sulcus and the 
medial orbital sulcus, as well as a second longitudinal divi-
sion on the lateral side, around the position of the lateral 
orbital sulcus (see white arrows in Fig.  5). The study of 
Kahnt et al. (2012) shows that these two divisions are also 
preserved across parcellation scales, as they are present 
both in the two cluster and the six cluster solution (Fig. 5c, 
left and right parts, respectively). These boundaries coin-
cide with the location of the orbital replicable boundaries 
in this study (see Fig. 2a, right most panel).

The different organizational principles along the medi-
olateral and the rostrocaudal dimension were repeatedly 
reported in cytoarchitectonic studies of the human and 
macaque OFC. In the mediolateral direction, cytoarchi-
tectonic boundaries are sharp and well defined (Sarkisov 
et al. 1955; Ongür et al. 2003; Uylings et al. 2010). Based 
on a multi-brain histological study, Uylings et  al. (2010) 

Fig. 5  Orbital frontal surface comparison of parcellation schemes 
from different studies and different modalities with the group results 
from the current study. Yellow lines indicate location of major sulci: 
OLF olfactory sulcus, MOS medial orbital sulcus, LOS lateral orbital 
sulcus. White arrows indicate boundaries between delineated areas 
that possibly correspond to the significantly co-localized replicable 
boundaries found in this study (e.g., Fig. 2a). All pictures reproduced 

with permission. a Cytoarchitectonic parcellations: Henssen et  al. 
(2016) (left) and Uylings et  al. (2010) (right). b DWI probabilistic 
tractography: Neubert et al. (2015) (left); resting-state functional con-
nectivity: data from the current study (right). c Group-wise resting-
state functional connectivity from Kahnt et  al. (2012): two cluster 
solution (left) and six cluster solution (right). d Local grey matter vol-
ume covariation: Liu et al. (2015), left and right hemisphere
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proposed a gross subdivision in three partitions from 
medial to lateral, with the olfactory sulcus and the lateral 
orbital sulcus grossly marking the boundaries between this 
three-way division. In contrast, with respect to an anterior-
to-posterior subdivision, many authors have noted that 
there are no sharp boundaries along the anterior–poste-
rior dimension. Rather, they observe a gradual cytoarchi-
tectonic trend that includes a wide transitional zone (Beck 
1949; Mackey and Petrides 2010; Uylings et al. 2010). In 
line with this, individual studies propose a range of further 
subdivisions along the rostrocaudal dimension. However, 
these are more variable across schemes. For instance, many 
schemes posit transverse subdivisions in the medial cortical 
strip, but the positioning of the division is quite variable. 
The same is true for the broader midsection of the orbital 
cortex.

On the medial  wall, we found replicable boundaries 
co-localized across participants in three locations: one 
long stretch around the medial orbital convexity, one 
anterior to the genu of the corpus callosum, and one 
dorsally  near the (para)cingulate sulcus. When these 
locations are inspected in other available parcellation 
schemes of the human medial prefrontal cortex, we find 
consistent boundaries at these locations across schemes 
and modalities. An overview of existing parcellations for 
the anterior medial PFC is provided in Fig. 6. The modal-
ities presented include resting-state functional connectiv-
ity [our data (Fig.  6a)], cytoarchitectonics [Öngür et  al. 
2003; Mackey and Petrides 2010 (Fig. 6b, c)], and DWI 
probabilistic tractography [Neubert et  al. 2015; Beck-
mann et al. 2009; Johansen-Berg et al. 2008 (Fig. 6d, e, f, 

Fig. 6  Comparison of parcellation schemes for the medial frontal 
surface from different studies and different modalities. Dotted white 
lines indicate boundaries between delineated areas that possibly cor-
respond to the significantly co-localized replicable boundaries found 
in this study (e.g., Fig. 2a). White arrows in panels a, d and e mark 
potential border between MCC and ACC. Black arrows in panel e are 
in the original image and are not interpreted here. All pictures repro-

duced with permission. a Resting-state functional connectivity: data 
from the current study. b Cytoarchitectonic parcellation: Öngür et al. 
2003. c Cytoarchitectonic parcellation: Mackey and Petrides, 2010. d 
DWI probabilistic tractography: Neubert et al. 2015. e DWI probabil-
istic tractography: Beckmann et al. 2009. f DWI probabilistic tractog-
raphy: Johansen-Berg et al. 2008
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respectively)]. The boundaries corresponding to the sites 
mentioned are indicated with white stippled lined.

Some other boundaries appear to be consistent across 
parcellation schemes that did not emerge as co-localized 
replicated boundaries in our analysis, such as the divi-
sion between the midcingulate and the anterior cingulate 
cortex (Palomero-Gallagher et al. 2008; Vogt 2005, 2016; 
see Fig.  4e, red arrow). In our group map, this division 
emerged as the rostral edge of cluster 13, and similar divi-
sions are observed in other parcellation schemes (see white 
arrows in Fig. 6a, d, e). This division is known to be associ-
ated with a larger functional and connectional discontinu-
ity as it is a watershed region between more task positive 
and default mode or affective cortical areas (Vogt 2016). In 
our data, this was confirmed by the fact that in our hier-
archical clustering analysis based on functional connectiv-
ity profiles of the 19 clusters, cluster 13, which is on the 
caudal side of that boundary, was placed outside of the 
two main networks of clusters. The fact that this watershed 
zone, despite its functional conspicuousness and its pres-
ence in several group parcellation maps, did not emerge in 
our boundary analysis may reflect larger inter-subject vari-
ability in its exact location, as it is not specifically linked to 
a particular anatomical landmark.

Parcellation replicability

Data on the replicability of parcellation results across data 
sets have been presented previously, but mostly at the group 
level and in an informal manner (e.g., Yeo et al. 2011; Sal-
let et al. 2013). Here, we focused on within participant reli-
ability and used a quantified approach. This allowed us to 
establish that some aspects of functional organization are 
robust, and others are not. Replicability at the group level 
is dependent on reliability at the individual level and inter-
subject variability in functional organization. It has been 
shown that there is quite some variability across subjects 
in the size and localization of cortical fields and in the 
location of these fields relative to anatomical landmarks 
(Uylings et al. 2005; Eickhoff et al. 2005). Of more concern 
in this study was replicability at the individual level. At this 
level, organizational features are a likely source of the vari-
ability in boundary replicability. First, in cytoarchitectonic 
studies, some transitions are sharp and clearly delineated, 
whereas others are gradual and extend over a larger tran-
sition zone (Uylings et  al. 2010; see “discussion” below). 
It seems likely that the latter produce less reliable module 
boundaries also in connectivity-based parcellations. Sec-
ond, modules are grouped by their interconnection pat-
terns into large-scale functional networks, and it is clear 
that functional connectivity profiles differ more strongly 
between modules at the transitions between functional 
networks than between adjacent modules belonging to the 

same functional network. It is, therefore, likely that bound-
aries in the latter case are less reliable. Thirdly, the replica-
bility might also be dependent on the temporal dynamics 
of couplings between areas, with areas forming functional 
couplings at shorter time windows being less replicable and 
areas forming couplings at longer durations showing higher 
reliability. The temporal dynamics of networks are not yet 
well understood (Hutchison et al. 2013), but they are likely 
to play a role when changes in functional organization over 
time are investigated.

Alternatively, non-functional factors could also play a 
role. However, in the current study, there does not seem to 
be an obvious relationship between the reliable boundaries 
and cortical folding, as some of the co-localized replica-
ble boundaries are associated with a sulcus (e.g., the lat-
eral orbital sulcus, or the (para)cingulate sulcus), and some 
with the convexity at the boundary between the orbital and 
medial plane, but others are not (e.g., the pregenual or the 
medial orbital boundary). In addition, there seems to be no 
clear relationship between image quality and co-localized 
replicable boundaries, as such boundaries were found in 
the orbital plane as well, despite its higher sensitivity to the 
susceptibility artefact. Moreover, the FC stability was high 
throughout and differed only slight (albeit significantly) 
between medial and orbital clusters.

Network organization

Converging evidence has shown that the orbital and medial 
PFC are organized in separate networks, e.g., the basoven-
tral and mediodorsal cytoarchitectonic trends described 
by Barbas and Pandya (1989) and the medial and orbital 
prefrontal systems of Carmichael and Price (1996) and 
Ongür and Price (2000) (see Fig.  4a–c). These systems 
consist of areas that preferentially communicate internally 
through local cortico-cortical connections. Several studies 
have demonstrated that the medial and the orbital prefron-
tal systems are characterized by distinct connections with 
the rest of the brain (see review in Öngür and Price 2000). 
In line with this, based on similarities in their whole-brain 
functional connectivity profiles, the 19 clusters in our 
study grouped together in two larger networks, one which 
includes most of the medial clusters and one with clusters 
from the orbital and ventrolateral cortices.

The medial network comprises the anterior cingulate 
and medial superior frontal gyrus as well as the adjacent 
medial edge of the orbital cortex and a small region of the 
posterolateral orbital cortex. This network is involved in 
affective and self-centered information processing and has 
been implicated in mood disorders (Drevets et  al. 2008; 
Price and Drevets 2010, 2012; Rolls 2016). Barbas and 
Pandya’s mediodorsal trend also includes areas 9 and 10, 
which have recently been recognized also by others as part 
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of a dorsal prefrontal system (Price and Drevets 2010; Sal-
eem et  al. 2014) which is tightly interconnected with the 
medial prefrontal network of Carmichael and Price (1996) 
and Ongür and Price (2000). In line with this, our medial 
clusters C09 and C11, which extend laterally into the dorsal 
PFC, were also grouped with the medial clusters.

Our clusters C01 and C17, which cover the middle and 
rostral sections of the medial orbital cortex, were clustered 
in the medial group. This disagrees with the mediodorsal 
trend in Barbas and Pandya (1989), which at least in the 
monkey does not extend into OFC. However, the finding is 
in accordance with the medial prefrontal network (Carmi-
chael and Price 1996; Ongür and Price 2000), and it does 
make sense functionally, since the medial orbital cortex has 
been implicated together with the ventromedial prefrontal 
cortex in value-based, and thus self-centered, object selec-
tion (Rushworth et al. 2007, 2011; Grabenhorst and Rolls 
2011). Also implicated in value-based decision-making is 
the lateral orbital cortex, which has been shown to be acti-
vated during learning and updating of object-value asso-
ciations, both when reward is received (Rushworth et  al. 
2011) and when expected reward is not obtained (Noonan 
et  al. 2011; Rolls 2016). In line with this role, our lateral 
orbital cluster C03 was grouped with the medial network, 
together with the insulo-opercular clusters C08 and C07. 
Particularly, for the ventral anterior insular cluster C08, this 
finding confirms the designation of insular subdivision Iai 
(insula agranular intermediate; Öngür et al. 2003) as part of 
the medial prefrontal network (Drevets et al. 2008; Saleem 
et al. 2014), as well as the repeated finding that the anterior 
insula is functionally linked to ACC (Medford and Critch-
ley 2010; Seeley et al. 2007).

The orbital network (Carmichael and Price 1996; Ongür 
and Price 2000), together with the ventrolateral prefron-
tal areas, is primarily involved in the integration of multi-
modal sensory stimuli and the coding of the stimuli’s affec-
tive value (Price and Drevets 2012). This is reflected in 
their connections to several sensory as well as striatal areas. 
The system constitutes a sensory-visceromotor link critical 
for the guidance of reward-related behavior and the setting 
of mood (Öngür and Price 2000; Price and Drevets 2012). 
In Barbas and Pandya’s (1989) basoventral trend, the entire 
orbitofrontal plane is included, while in Carmichael and 
Price’s (1996) orbital prefrontal network mainly the cyto-
architectonic subregions of the central orbital surface and 
parts of the lateral OFC our included. In our orbital group, 
while posterior OFC clusters C16 and C02 and rostral clus-
ter C18 are grouped together, our central OFC cluster C15 
was found to have a very distinct whole-brain FC profile 
and was, thus, not included in the group. On the other hand, 
the finding that ventral lateral PFC clusters C04 and C06 
are connectionally similar to the rest of the areas in the 
orbital group agrees with the definition of the basoventral 

cytoarchitectonic trend which extends on the ventrolateral 
PFC until the principal sulcus. With regard to Carmichael 
and Price’s scheme, while the related tracing studies ini-
tially included only the orbital surface, a more recent analy-
sis of the connections of the lateral PFC identified a vent-
rolateral prefrontal system, ventral to the principal sulcus, 
which is closely connected to the orbital prefrontal network 
(Price and Drevets 2012).

Limitations and future perspectives

The in  vivo parcellation approach applied here and in 
other studies of the orbital and/or medial PFC is based on 
the global patterns of similarity in functional connectivity 
across voxels (Buckner and Yeo 2014). Because the infor-
mation involved is very different from cytoarchitectonic 
features, receptor distributions, and tracer defined connec-
tions, no strong claim can be made that the modules delin-
eated correspond to the cortical fields described in inva-
sive neuroanatomical studies. A first caution against over 
interpreting the modules is the degeneracy inherent in the 
problem of grouping voxels into modules based on stronger 
within than between module similarity (Good et al. 2010; 
Rubinov and Sporns 2011). It has been shown that there are 
many possible groupings, some with different numbers of 
modules, that equally well fit the data. While this problem 
surfaces in stochastic algorithms, such as in this study, it 
is no less present in studies using deterministic algorithms. 
This problem needs to be addressed overtly, before the 
discussion of correspondence between modules and corti-
cal fields becomes meaningful. It implies that additional 
information needs to be considered when interpretation the 
results. One example of this additional information is repli-
cability across data sets, as was used in this study. Another 
example is consistency across modalities, as was recently 
explored in a large study from the Human Connectome 
Project (Glasser et al. 2016).

A second point of caution in equating modules with 
established cortical fields is that the critical amount of 
similarity for grouping voxels into modules is indirectly 
dependent on parameters of the algorithms, such as the 
number of centroids in clustering approaches, the number 
of components in linear decomposition methods, and the 
threshold used to binarize the correlation matrix in our 
approach. While this does not necessarily affect the qual-
ity and reliability of the parcellation results, it does pose a 
problem for interpreting and comparing results across stud-
ies. Cytoarchitectonic cortical fields may not coincide with 
functionally relevant subdivisions. For instance, a number 
of functionally meaningful subdivisions of BA6 have been 
proposed (Barbas and Pandya 1987; Matelli and Lup-
pino 2001; Petrides and Pandya 2006). In addition, differ-
ent functionally meaningful cortical divisions can emerge 
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from the same FC data by focusing the analysis on local 
gradients rather than global FC profile similarity (Buckner 
and Yeo 2014). In addition, parameter settings resulting 
in fewer but larger modules might group cortical fields or 
subfields, whereas settings yielding smaller modules might 
divide fields into functional subunits. Moreover, optimal 
parameter settings might differ for different individual data 
sets and even different regions within one data set. This 
scaling problem, which is not yet well understood, limits 
the comparison of results from different studies. At the 
same time, it is promising that several regional segregation 
features emerge in a range of studies in spite of differences 
in modality or analysis tools.

Another limitation with respect to the present results 
is that we were not able to make a clear differentiation 
between reliability at the individual level and replicability 
at the group level. While we had solid statistical support for 
delineating co-localization of boundaries in certain voxels 
at the group level, we are not able to establish whether the 
lack of co-localization in other voxels was due to no bound-
ary being present or boundaries being present but with 
too much inter-individual variability for co-localization to 
reach significance. This is an important difference when 
it comes to evaluating the reliability of parcelletion meth-
ods, but also in the study of cortical functional organiza-
tion at different resolutions (the scaling problem discussed 
above), in different modalities and in different populations. 
While the two available data sets per participant allowed us 
to establish that there was a significant amount of replica-
tion in the boundaries found, it did not provide statistical 
power to establish the significance of the replicated bor-
ders at the individual level. As a consequence, we could 
not study inter-individual variability in the location of these 
borders. Thus, while we did not find the expected consist-
ent boundary between mid and anterior cingulate cortex, 
we were not able to disentangle whether this is because it 
is not sharply defined (i.e., a transition zone), or that it is a 
clear connectional discontinuity but with larger inter-indi-
vidual variability in its location. Having a statistical quan-
tification of borders based on larger number of resting-state 
measurements per individual would allow us to resolve 
this ambiguity. It would provide the opportunity to delin-
eate first-level reliable organizational features, which can 
then be studied at the second or group level across partici-
pants. Such an approach would make it possible to address 
quantitatively what the gain is of having more and longer 
resting-state runs per individual and what would be the 
optimal amount of data. It would also allow quantifying to 
what extent for instance resting-state functional fMRI and 
diffusion weighted imaging lead to replicable features, or 
whether each method exhibits modality specific replicable 
features and, therefore, highlights each unique aspects of 
the cortical functional organization.

A third point of caution in the interpretation of our 
results is related to acquisition quality differences between 
the orbital and medial prefrontal cortex. While our quality 
metrics and results confirm that parcellation at the OFC is 
feasible, MR signal quality, and connectivity stability over 
runs was somewhat lower in the medial and rostral OFC. 
This may affect somewhat the quality of the FC maps for 
these regions. In the future, studies that take advantage of 
advanced MRI hardware options might further minimize 
the signal quality loss and yield more complete descrip-
tions of the FC in these brain regions.
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