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Abstract

In this work we present an extension of the well-known particle based stochastic
rotation dynamics method for the simulation of hydrodynamics of granular gases.
We use an effective local coefficient of restitution to render energy dissipation de-
pendent on local macroscopic observables, while locally conserving density and mo-
mentum. We derive the granular Boltzmann equation and demonstrate that our
model obeys linear granular hydrodynamic equations. Furthermore, we derive a for-
mula for the kinematic viscosity of the model fluid in two dimensions. We present
results from simulations with a software implementation for general purpose graph-
ics cards, that we successfully test and benchmarked with analytical predictions for
standard stochastic rotation dynamics. For the granular system we observe that our
prediction of the kinematic viscosity compares well with the results obtained from
simulations. In this context we find that for low shear driving the fluid becomes
unstable and develops shear bands. In the simulations of a freely cooling granular
gas the temperature evolution follows the prediction of Haff’s law over several orders
of magnitude in both time and temperature. Furthermore, we observe clustering for
lower coefficients of restitution. The emergence and dynamics of the cluster compare
well with expectations based on theory, experiments and simulations. The clustering
sets in as the global Mach number exceeds one. Subsequently, density fluctuations
grow while we observe a change in the power law of the temperature evolution. The
clusters exhibit a higher cooling rate than dilute regions, hence, density and tem-
perature become anti-correlated. This locally leads to supersonic flow. After their
emergence, clusters move, collide and thus grow further. The velocity distribution
function compares well with theoretical predictions. The shape of the reduced ve-
locity distribution function changes with time as predicted, and the evolution of
the second Sonine coefficient qualitative matches with analytical predictions. In our
discussion we provide criteria for the selection of model parameters, and identify the
effects of the finite system size.
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Chapter 1

Introduction

1.1 Motivation

It is often said that water is the only substance that appears on Earth in all three
classical states of aggregate. If one, however, extends consideration to nonequilib-
rium systems one notices that granular materials, sand, for instance, also exhibits
such variety of states. Starting with the first classical state of aggregation, sand is
solid-like when lying in a desert. One can walk on it since it carries one’s weight.
In the form of a sandcastle at a beach this is even more obvious. Under different
conditions sand also flows like a liquid, like for example in an hourglass, thus existing
in the second classical state of aggregation. Lastly, the wind in a desert can also
elevate the sand to the third classical state of aggregation, the gas state, and cause
a sandstorm.

(a) (b) (c)

Figure 1.1: Sand as an example of granular matter in different states of aggrega-
tion. (a) Solid-like sand castle1. (b) Liquid sand flowing in an hourglass2. (c) Sand
cloud of the size of Spain, blown from the Sahara desert over the Atlantic ocean3.

1



1.1 Motivation

The physics of granular matter plays a role in many situations at different length
scales. Phenomena of granular matter occur not only in daily life but also in indus-
trial applications and cutting edge research topics. Nearly all raw materials in the
pharmaceutical, agricultural and food industries [4] are either powders and grains
or solvents like water. Thus, understanding the physics of the granular states has
direct repercussions on myriad practical applications.

Granular physics is extremely relevant also in astrophysical problems such as
the formation of rocky planets in protoplanetary disks [5, 6, 7] or the dynamics of
asteroid belts and planetary ring systems [8].

As we have learned from these examples, granular materials can consist of dif-
ferent materials. They have the common characteristics that instead of microscopic
molecules, particles are macroscopic. Beside sand as the basic example, coffee beans,
lentils and rice exhibit shape anisotropies. Experiments with artificial grains con-
sider even more complex shapes [9].

(a) (b)

(c) (d)

Figure 1.2: Granular matter in nature: In panel (a) we see Saturn and its ring
system consisting of icy grains as seen by the Cassini space probe1. Panel (b) shows
the protoplanetary disk around the HL-Tauri star pictured by the ALMA radio
telescope2. Granular matter in industry: Panel (c) shows iron powder3, one of many
industrial goods that are processed from an initial powder form. Those and others
are stored in silos (panel (d)4). In contrast to liquid tanks, the pressure of a granular
matter is described by the Janssen equation and thus allows for different states [1].

1(cc), https://commons.wikimedia.org/wiki/File:Sandcastle1.jpg (M. Harrigan).
2(cc), https://commons.wikimedia.org/wiki/File:Wooden hourglass 3.jpg (User:S Sepp).
3(cc), https://apod.nasa.gov/apod/ap000303.html (NASA).
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1. Introduction

1.2 Granular matter - a phenomenological point

of view

In order to approach the phenomena of granular physics, we first ask what are
the salient features of the microscopic dynamics. On the microscopic scale matter
consists of atoms or molecules. The corresponding basic elements of granular matter
are grains, after which the former is actually named.

Although these are fundamentally different from atoms or molecules, we have
already recognized that they form the states which share some statistical features
of equilibrium, molecular systems. In the simplest case of a solid, grains are packed
just as molecules and do not move. In contrast to molecules, there is no long range
interaction between grains, so that a sandcastle may break down if shaken. The
solid is not of interest in this work and hence we will not consider this state further.

If we consider gedankenexperiments of granular liquids or gases, we can quickly
realize that granular fluids occur in situations where there is a source of external en-
ergy, a driving. Sand grains flowing down a dune are driven by gravity, a sandstorm
by wind. When the driving stops, the grains come to rest after some time.

Figure 1.3: Granular liquid (left) and gas (right), set in motion by external driving
such as gravity and wind respectively.

The reason for this is that the grains lose energy as they collide. Unlike molecules,
the grains are complex macroscopic particles. Upon collision, part of the impact
energy is transferred into internal degrees of freedom of the grain itself and eventu-
ally is radiated away as electromagnetic energy. Instead of elastic collisions among
molecules, grains collide inelastically, and, in a real system, the grains will slightly
heat up. This energy transferred into the internal degrees of freedom, however, does
not play a role in the observable dynamics any more. In that sense granular matter
is a thermodynamically open system and generally out of equilibrium.

A remark is necessary at this point. Although we have said that there are no
long range interactions between grains, this statement is not entirely true. Sand

1(cc), https://saturn.jpl.nasa.gov/resources/7504/?category=images (NASA).
2(cc), http://www.eso.org/public/archives/images/large/eso1436a.jpg (ALMA).
3(cc), https://commons.wikimedia.org/wiki/File:Iron powder.JPG (Anonimski).
4(cc), https://commons.wikimedia.org/wiki/File:Kieswerk II.JPG (M. Dürrschnabel).
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1.2 Granular matter - a phenomenological point of view

particles in a sandstorm are known to charge upon collisions and sandstorms are
usually accompanied by electrical discharges and lightnings. This field experiences
active research, where the nature of the charging and its implications are under
investigation. In the following, we will however ignore any charge exchange mecha-
nism among grains. In the next section we will have a detailed look at the nature
of the collisions between grains and their implications.

1.2.1 Granular collisions

The kinetic theory of Boltzmann and Enskog for dilute gases can be expanded
to the dynamics of granular gases. Like the original, it relates the change of the
macroscopic velocity distribution function to the properties of the collisions of pairs
of particles. To begin, we consider a pair of granular particles and take a closer look
at the details of such a collision.

Two particles i and j of identical size and mass move through space with veloci-
ties vi and vj, respectively. We may first consider this situation as one-dimensional.
The relative velocity between the particles is vij ≡ vi − vj. Upon collision, the
particles are reflected (see Fig. 1.4).

Figure 1.4: Two spherical particles collide inelastically. Total momentum is con-
served; the sketch considers the center of mass rest frame. The individual rest frame
velocities v̄i and v̄j are reflected during the collision and become smaller by the
factor of ϵ, the coefficient of restitution.

Because of the inelastic collision, part of the kinetic energy is transferred into
the particles’ internal degrees of freedom and is hence lost from the dynamics. The
relative velocity after the collision v′ij is smaller due to the dissipative nature of the
collision. The ration of the relative velocities after and before the collision is called
the coefficient of restitution

ϵ ≡ −v′ij
vij

. (1.1)

Because of dissipation 0 ≤ ϵ ≤ 1, and therefore total energy is not conserved during
the collision. Since only the relative velocity becomes smaller, the center of mass
momentum is conserved, though.

In three dimensions, with particle velocities vi and vj, the collision does not have
to be head on, due to the spacial extent of the particles. If we define the geometry
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1. Introduction

of the collision with the unit vector

ê ≡ ri − rj
∥ri − rj∥

=
rij

∥rij∥
,

the relative velocity vij ≡ vi − vj decomposes into the parts normal vn
ij and tan-

gential vt
ij to the contact surface of the particles, in the rest frame of the system

(see Fig. 1.5). In general, particles are not completely spherically symmetric and
have a friction acting between the surfaces. This makes the collision more complex
in the way that the particles’ rotational degrees of freedom enter the dynamics and
moreover the collision then also affects the tangential motion.

If the reflection is assumed to act only on vn
ij, this is for our case sufficient. In this

case only the translational degrees of freedom enter the dynamics. The velocities
after the collision are then given by

v′
i = vi −

1 + ϵ

2
(vij · ê) ê, (1.2)

v′
j = vj +

1 + ϵ

2
(vij · ê) ê.

(a) (b)

Figure 1.5: (a) Particles i and j move through space and collide. Upon collision,
the particles are reflected. In three dimensions the relative velocity decomposes in
a normal and tangential to the contact surface.

In our case, the situation becomes analogous to the one dimensional case for the
normal component vn

ij so that

ϵ ≡ −vn′
ij

vn
ij

. (1.3)

We stress that in granular collisions, total momentum and mass are conserved, while
energy is dissipated.
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1.2 Granular matter - a phenomenological point of view

A consequence of the loss of relative normal velocity is that over time correla-
tions in the velocities build up, and the velocities become more and more parallel.
In other words, the angle β between the inbound velocities vi and vj is always larger
than that between the outbound primed velocities β′ < β (see Fig. 1.6).

Figure 1.6: Schematic of the aligning effect of the granular collisions. The angle
β′ after the collision is smaller than the angle β before the collision.

We will discuss the effects of this fact throughout this work. For now, we recog-
nize that this generates an additional correlation between particles and may lead to
so-called ring collisions [10].
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1.3 Theory

1.3.1 The coefficient of restitution

To derive a kinetic model suitable for analytical treatment and also numerical sim-
ulations we consider the simplest geometry: two spherical particles. Their elastic
properties are then fully described by their radii and Young modulus. So when par-
ticles collide, the impact will lead to a deformation. The energy dissipated in the
normal direction will be completely transferred into the viscoelastic deformation of
the two particles.

The result of this approach is that the dissipation solely depends on the impact
velocity according to

ϵ ∼
vn

ij

1/5
. (1.4)

A common, albeit drastic, simplification of this so-called viscoelastic model as-
sumes

ϵ = const.

This assumption considerably simplifies analytical calculations and is moreover well
justified in situations where the velocity distribution in the system is narrow and
the system in a stationary state.

The stiffer the particles are, the shorter the collision time, i.e., the time that
the two particles touch, will be. This is an important condition for the assumption
of pairwise collisions only, that we will make in the following. For coefficients of
restitution close to one, this assumption holds better but when ϵ is considerably
different than one the situation is more problematic.

In general, a classical system consisting of N particles is described by coupled
Newton’s equations of motion

miẍi = F(x1, . . . ,xN ,v1, . . . ,vN) (1.5)

for all particles i = 1, . . . , N . In the absence of long range interactions (i.e. elec-
trostatics) particles will move ballistically on straight trajectories until they collide,
and after the collision they will move on straight paths again. If the gas is dilute and
the timescale of a single collision sufficiently small, ternary collisions are negligible
and collisions will dominantly be binary. Instead of the full Newton’s equation of
motion, the system is described by a simpler pairwise interaction

meffẍij = F[xij,vij] (1.6)

with xij = xi − xj and the effective mass of the two body system

meff =
mimj

mi +mj

. (1.7)
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1.3 Theory

Together with an initial condition this gives a full description of a single collision.
Between collisions the force F is zero.

Under the restriction of our assumptions, the dynamics are hence completely
described by the property of a pair collision. While the dynamics of the single
collision are not important, the change of the velocities before and after the collisions
is what matters. Since the coefficient of restitution is the key property of a single pair
collision, we can conclude that the coefficient of restitution is actually completely
sufficient to describe the dynamics of a granular gas. It is moreover the only thing
that distinguishes it from an ordinary molecular gas [10].

1.3.2 Temperature of a granular gas - Haff’s law

The fact that in a granular gas there is a constant loss of kinetic energy makes it
an out-of-equilibrium system. Still, like molecular gases, we can treat the granular
gas with the tools of statistical mechanics. For this we consider a system in the
thermodynamic limit, i.e., consisting of a large number of particles N contained in
some volume V . As for a molecular gas the number density is ρ ≡ N/V . Moreover,
particle velocities are randomly distributed, and if no macroscopic flow is present,
the average velocity ⟨v⟩ will be zero. Though, like in molecular gases there are
fluctuations around the mean velocity. In analogy to the temperature of a molecular
gas, the granular temperature is defined as the mean energy per degree of freedom,
that is the variance of the velocity

3

2
kBT =

⟨
1

2
m∥v − ⟨v⟩∥2

⟩
, (1.8)

where kB is Boltzmann’s constant and the angular brackets denote average over the
particles. This temperature is of course different from the temperature of the grains
themselves, and as we have stated earlier not coupled to the former. The collisions
conserve number density and center of mass velocity, but not energy. Hence, the
granular gas cools down, even in an externally force free environment. We investigate
the granular temperature to monitor the state of the system.

In the early stage the granular gas cools down without the occurrence of any
spatial inhomogeneity, which is called the homogeneous cooling state. In the follow-
ing, we assume these conditions to hold in order to derive Haff’s law describing the
cooling of a homogeneous granular gas. The decay of temperature ∆T during a time
interval ∆t is described by the number of collisions that occur during this time and
the velocity of the colliding particles. In the thermodynamic limit we can work with
the averages of those.

The frequency of collisions is obtained via the volume of the so-called collision
cylinder multiplied by the number density. With ⟨vij⟩ ∝

√
T , the collision frequency

in ∆t is

ν(∆t) ∝ ρσ2
√
T∆t. (1.9)
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Figure 1.7: The collision cylinder of a reference particle moving with respect to the
background. For particles of diameter σ, the volume of this cylinder is ⟨vij⟩S∆t. The
higher the density the shorter the mean free path and the more frequent particles will
collide. The square root of the temperature scales the mean time between collisions.

The volume of the collision cylinder accounts for the space the particle sweeps
through during ∆t with respect to all other particles. The diameter of two par-
ticle diameters 2σ (cf. Fig. 1.7) originates from the fact that particles touch with
their centers of mass distance being equal to σ.

The average energy difference before and after a collision is given by

1

2
meff⟨v′2ij − v2ij⟩ ∝ −(1− ϵ2)T, (1.10)

where we have used Eq. (1.3) and assumed a constant coefficient of restitution. The
product of Eq. (1.9) and Eq. (1.10) gives the average amount of thermal energy
dissipated during ∆t

∆T

∆t
∝ −ρσ2(1− ϵ2)T 3/2 ≃ dT

dt
. (1.11)

The solution to Eq. (1.11) yields Haff’s law [11], that is, the temperature evolution
of the homogeneous granular gas

T (t) =
T (t0)

(1 + t/τ0)2
(1.12)

with τ−1
0 ∝ nσ2(1 − ϵ2)

√
T (t0). For systems in which the coefficient of restitution

depends on the collision velocity, the exponent of this power law changes. With the
dependence of 1− ϵ2 ∝ ⟨(vnij)1/5⟩ ∝ T 1/10 obtained for viscoelastic particles, this
leads to

T (t) =
T (t0)

(1 + t/τ ′0)
5/3

. (1.13)

In both cases, the dissipation leads to a power-law cooling of the granular gas [10].

9



1.3 Theory

1.3.3 Boltzmann-Enskog equation for a granular gas

The Boltzmann-Enskog equation relates the dynamics of macroscopic quantities to
the properties of the microscopic dynamics, i.e., the collisions of particles. The
theory’s main concern is the velocity distribution function f(v,x, t) which gives the
probability to encounter a particle with velocity v at position x and time t. It is
normalized such that integrating over the whole 6 dimensional phase space gives the
total number of particles N in the system∫

dxdvf(v,x, t) = N, (1.14)

where we simplified the notation by dropping the integrations interval bounds of
±∞ and by using a single integral sign. In the presence of an external force F, the
Boltzmann-Enskog equation reads(

∂

∂t
+ v∇x +

F

m
∇v

)
f(v,x, t) =

∂f

∂t

⏐⏐⏐⏐
coll

. (1.15)

While the left hand side of Eq. (1.15) accounts the change due to streaming and
external forces, the right hand side denotes the effect of the change of f(v,x, t) due
to a collision. The right hand side is an integral, the so-called collision integral, which
is a non-linear function of f since multiple particles participate in a collision. In
the following we will only consider binary collisions. The dynamics of the moments
of the velocity distribution function are obtained by integration. Following [10],
we sketch the derivation of the Boltzmann-Enskog equation via direct and inverse
collisions for a homogeneous system.

Consider the probability of a state f(v, t). It can only change in two ways,
i.e., either a collision occurs and decreases the probability because its outcome is
different or another collision’s result equals the current state of interest such that
the probability increases. The first possibility is called direct collision, the second
indirect collision. Their frequencies during a time interval ∆t are denoted with ν−

and ν+, respectively. We recall the scattering cylinder for these frequencies. The
probability of scatterer in the volume dxi, which is determined by the scattering
vector ê, is f(vj, t)dvjdxi. The cross section of the cylinder is σ2dê and its length
vij∆t.

The total number of collisions is given by the product of the probability of a
particle being at x with vi and the volume of the collision cylinder (cf. Fig. 1.8)
times the probability of a particle residing in it with vj.

ν−(vi,vj, ê,∆t) = f(vi, t)dvidxf(vj, t)dvjσ
2∥vij · ê∥∆t dê. (1.16)

The frequency of the inverse ν+ collision which lead to the current state after
the collision, has the same shape as ν−, but instead containing the primed velocities
v′′
i (vi,vj),

ν+(v′′
i ,v

′′
j , ê,∆t) = f(v′′

i , t)dv
′′
i dxf(v

′′
j , t)dv

′′
jσ

2
v′′

ij · ê
∆t dê. (1.17)
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Figure 1.8: Sketch of the geometry leading to the direct collision rate ν−

(Eq. (1.16)). The scattering unit vector ê = xij/∥xij∥ is the normal to the scattering
surface, the basis of the scattering cylinder. The cylinder accounts for all possible
collisions that hit the infinitesimal scattering surface around ê.

Via the primed velocities that lead the unprimed velocities after the collision

v′′
i = vi −

1 + ϵ

2ϵ
(vij · ê) ê, (1.18)

v′′
j = vj +

1 + ϵ

2ϵ
(vij · ê) ê,

Eq. (1.17) is actually a function of the unprimed velocities.
The change in f is given by integration over the frequency of the direct and

inverse collision. In order to write down the integral one needs to transform the
integration to common variables of integration. The determinant of the Jacobian
matrix for the mapping of v′′ to v is

Dv′′

Dv
=

1

ϵ
.

Another factor of 1/ϵ comes from the change of variables in the collision cylinderv′′
ij · ê

 = 1
ϵ
∥vij · ê∥. Using the Heaviside step function Θ(x) to assure that only

velocities that lead to collisions are considered, the Boltzmann equation is obtained

∂f(vi, t)

∂t

⏐⏐⏐⏐
coll

= σ2

∫
dvj

∫
dê Θ(−vij · ê)∥vij · ê∥

× [
1

ϵ2
f(v′′

i , t)f(v
′′
j , t)− f(vi, t)f(vj, t)] (1.19)

≡ I(f, f).

The first of the summands on the right hand side represents the inverse collisions,
increasing the probability of the current state, the second represents direct collisions.
These method of derivation is quite intuitive, though a few facts have to be pointed
out separately. First, particle positions were considered mutually independent in
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the derivation, while in reality, pairs have a joint distribution function f2(vi,vj, t)
that doesn’t necessarily factor out. The assumption of independent positions is
valid in dilute gases. A more realistic approximation, however, is f2(vi,vj, t) ≈
g(σ)f(vi, t)f(vj, t), where g(σ) is the pair correlation function at contact distance,
hence including excluded volume effects. In this context, the factor of g(σ) is called
the Enskog factor. Including it into Eq. (1.19), it becomes

∂f(vi, t)

∂t

⏐⏐⏐⏐
coll

= g(σ)I(f, f). (1.20)

A second remark comes from the nature of collisions. One condition of the Boltz-
mann Stoßzahlansatz is that the colliding particles’ velocities are initially uncorre-
lated, i.e. the assumption of molecular chaos. The aligning effect sketched in Fig. 1.6
though leads to ring collision, such that this assumption is potentially not fulfilled
[10].

1.3.4 Granular hydrodynamics

1.3.4.1 Preconditions

The dynamics of the moments of the velocity distribution function, that are directly
linked to macroscopic observables, can also be obtained via the Boltzmann equa-
tion. While for the derivation of Haff’s law, spatial homogeneity is assumed, small
gradients are assumed here. This means that the microscopic scales of the mean free
path and mean collision time are small with respect to the length L and time scale
T , respectively, of the macroscopic dynamics. Gradients are assumed to be small
such that over the macroscopic length scales, the variation is of the order of the ob-
servable itself, for the temperature ∆T ∼ T/L. Another important condition is that
the macroscopic flow velocities are sufficiently smaller than the thermal velocities,
so that the flow is well in the subsonic regime, i.e., with the local Mach number

M =

√
⟨v⟩2
T

≪ 1 (1.21)

being well below one. Asking for this condition of subsonic flow is a rather tricky
undertaking, because granular collisions not only lead to an increasing alignment
of particle velocities, but also the dissipative nature steadily changes the ratio of
Eq. (1.21) to the undermining of the assumption of this condition. Flow can thus
become supersonic, and in the case of the viscoelastic model of ϵ becomes subsonic
again [10].

1.3.4.2 Hydrodynamic equations

In order to obtain the observables’ dynamics, we separately multiply the Boltzmann
Eq. (1.15) with the moments

Ji ∈ {1,v,V2} (1.22)
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with the local velocity V = v − u. Their expectation values under the distribu-
tion function correspond to the macroscopic observables. Integrating over vi thus
yields dynamic equations for the latter [10]. For the first two moments there is no
change due to the collision integral, since the individual collisions conserve both
mass and total momentum. For the temperature (J3 = V2) the collisional contri-
bution doesn’t vanish: ∫

dv
mV2

2
g(σ)I(f, f) =

3

2
nTζ. (1.23)

The cooling rate ζ is defined by

ζ(x, t) =
πmg(σ)σ2

24nT

∫
dvidvjv

3
ijf(x,vi, t)f(x,vj, t)(1− ϵ2). (1.24)

Note that with vij ∼
√
T the integral is of the order ∼ T 3/2. With the macroscopic

flow velocity u, the hydrodynamics equations for granular gases read

∂ρ

∂t
+∇(ρu) = 0, (1.25)

∂u

∂t
+ u · ∇u+

1

ρm
∇ · P̃ = 0, (1.26)

∂T

∂t
+ u · ∇T +

2

3ρ

(
P̃ : ∇u+∇ · q

)
+ ζT = 0, (1.27)

where the vector q denotes the heat flux

q =

∫
dv

m

2
V2Vf(v,x, t) (1.28)

and P̃ the pressure tensor defined by

P̃ij =

∫
dvm

(
vivj −

1

3
δijV

2

)
f(v,x, t) + nTδij. (1.29)

Here, we used the notation of δij for the Kronecker delta. Moreover, we use short
notation ab with no space between vectors for the dyadic product a ⊗ b, and for
the total contraction of two tensors ã and b̃

ã : b̃ ≡ Tr
(
ã · b̃

)
.

To obtain a closed description of the hydrodynamics, one has to express the pressure
tensor P̃ and heat flux q in therms of the fields ρ,u and T . In linear order, these read

Pij = pδij − η(∇iuj +∇jui −
2

3
δij∇ · u) (1.30)

q = −κ∇T − µ∇ρ, (1.31)

where p is the hydrostatic pressure, η the shear viscosity, κ the thermal conductivity,
in general, these are also functions of the hydrodynamic field (for full expressions
refer to e.g. [12, 13]).
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1.3.5 Standard stochastic rotation dynamics

The standard SRD method [14] is a rather recent, well established mesoscopic
method to model hydrodynamics. It is computationally efficient and well tunable.
Since it is a particle based method, it is especially easy to couple to a solute. Fur-
thermore, because of its mathematical simplicity, the system can be thoroughly
treated analytically. Since its introduction, numerous articles about the derivation
of hydrodynamic equations and transport coefficients have been published [14, 15, 3].
After its introduction a number of similar and modified algorithms have been pub-
lished [16]. The family of algorithms that it formed are called multi-partice collison
dynamics (MPCD). It reproduces full hydrodynamics with thermal fluctuations. It
is used to model solvent dynamics in simulations of colloids, polymers and active
swimmers [17].

1.3.5.1 Algorithm

The SRD model considers particles that move in continuous space with continuous
velocities and constitute the SRD fluid. Their movement and collisions are described
by simplified rules. The dynamic stages of the real fluid consist of two steps: (i) the
free streaming, and (ii) the collisions between the particles [14]. One after another,
these stages occur with a fixed time interval in between. While the free streaming is
treated exactly, the collisions are represented by a simplified coarse-grained collision
model. The aim of the streaming is to macroscopically transport mass, momentum
and energy. Additionally, the collision redistributes these quantities among the
particles.

Figure 1.9: SRD particles move for the time ∆t with independent continuous
velocities in the free streaming step. Generally, particles are point-like and thus can
overlap.

We consider a system of N particles of mass mi, which reside and move in a con-
tinuous d-dimensional space with individual positions xi and continuous velocities
vi, i ∈ [1, N ] (see Fig. 1.9). In the free streaming step particles are advanced by
their individual velocities for the duration of the time step ∆t according to

xi(t+∆t) = xi(t) + vi∆t. (1.32)
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Next, the collision step is performed. To carry out the collision particles are
grouped into Wigner-Seitz cells centered around the nodes of a regular lattice L
with lattice nodes ξ. For a cubic lattice this means that the set Vξ of particles in
cell ξ is defined such that particles for which |xi − ξ| < a/2 lie in the cell around ξ,
where |x| = max(xx, xy, xz) and a is the lattice constant.

(a) (b)

Figure 1.10: (a) A lattice is used to partition the system, and each particle is
assigned to lattice cell. The lattice is randomly shifted before each collision step
and shifted back afterwards. This ensures Galilean invariance. Panel (b): The
thermal velocities inside a cell are obtained by subtracting the mean, i.e. streaming
velocities. Inside a cell, those thermal velocities are then rotated by a fixed angle
α, in the dimensions around a random axis, in two dimension with ±α. Afterwards
the streaming velocity is added again.

In this cell the mean velocity Vξ, corresponding to the streaming velocity, is
subtracted from the individual velocities. The leftover thermal velocities are then
rotated with a random fixed angle simultaneously in each cell. In two dimensions this
means randomly choosing ±α, while in three dimensions a random axis of rotation is
chosen (see Fig. 1.10). In three dimensions only +α is considered since the random
rotation axis also covers the opposite rotation. The rotation matrix ω̃ξ thereby is
independently generated for each cell. After the rotation, the streaming velocity is
added back to the individual particles’ velocities. The collision step hence reads

vi(t+∆t) = Vξ + ω̃ξ[vi −Vξ], (1.33)

were ω̃ξ is a random rotation from a set Ω. Given the instantaneous cell number
density

ρξ ≡ 1

V
∑

i|xi∈Vξ

1, (1.34)

the center of mass velocity is defined as

Vξ ≡ 1∑
i|xi∈Vξ

mi

∑
i|xi∈Vξ

mivi
mi=m
=

1

nξ

∑
i|xi∈Vξ

vi, (1.35)
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1.3 Theory

where nξ is the instantaneous number of particles in cell ξ and V = a3 the volume
of a single cell. Finally, the instantaneous local temperature of a SRD cell is defined
as

θξ ≡ 1

3nξ

∑
i|xi∈Vξ

mi∥vi −Vξ∥2. (1.36)

In the following, we generally consider equal masses mi = m. The dynamics gener-
ated by these two rules conserve mass, momentum and energy. Mass conservation
follows by definition, momentum conservation can be easily proven by

Vξ(t+∆t) =
1

nξ

∑
i|xi∈Vξ

vi(t+∆t) =
1

nξ

∑
i|xi∈Vξ

(Vξ + ω̃[vi −Vξ]) (1.37)

=
1

nξ

∑
i|xi∈Vξ

Vξ + ω̃
1

nξ

∑
i|xi∈Vξ

vi  
=ω̃Vξ

− ω̃
1

nξ

∑
i|xi∈Vξ

Vξ  
=ω̃Vξ

= Vξ.

Similarly, energy conservation follows from

θξ(t+∆t) =
m

3nξ

∑
i|xi∈Vξ

||vi(t+∆t)−Vξ(t+∆t)  
=Vξ

||2 =
m

3nξ

∑
i|xi∈Vξ

∥ω̃[vi −Vξ]∥2

(1.38)

=
m

3nξ

∑
i|xi∈Vξ

[v2
i − vT

i Vξ −VT
ξ vi +V2

ξ ] =
m

3nξ

∑
i|xi∈Vξ

∥vi −Vξ∥2

= θξ,

where we have used that for two arbitrary vectors a and b it holds (aω̃)T (ω̃b) = aTb
because det(ω̃) = 1. For the standard SRD method, a Boltzmann equation has been
derived from the Liouville’s equation and it has been shown that the model yields
correct linear hydrodynamic equations [14]. In another approach solely considering
transport through virtual surfaces in the fluid, the same result has been obtained
[15].

The random grid shift was introduced by Ihle and Kroll [18] to ensure Galilean
invariance. In this procedure, first a random shift in the interval [−a/2, a/2] in space
is applied to all particle positions. While it was not introduced in the beginning, it
has been shown, that not applying a random shift to the grid introduces spurious
correlations at low temperatures. Those are spatially anisotropies due to the shape
of the lattice and originate from the fact that often the same particles participate
in subsequent collisions.
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1.3.5.2 Computational complexity of SRD

The SRD method has some major advantages that make it very suitable for numeri-
cal simulations. Maybe the most remarkable fact is that SRD is an O(N) algorithm.
This is because there is no pair interaction that has to be calculated. Another im-
portant property of the algorithm is that the fundamental quantities used are 1-body
observables. Basically the mass and momentum per cell have to be calculated every
step. Those are simple sums of particle properties. This gives the algorithm the
possibility of an immense parallel speedup on parallel hardware, especially using
vector accelerators or graphic cards.

Calculations of the cell-wise quantities Vξ, ρξ, θξ generally needs exclusive or
atomic read/write access to the cells memory sections. However, the number of
processor units #P is very small compared to the typical number of particles N on
the hardware

O(#P ) = 103 ≪ O(N) = 108. (1.39)

Typically, there are on average 5 to 25 particles in a cell ξ. Hence, the situation
where multiple processors access the same memory locations are rare. This is favor-
able because these accesses have to be exclusive to guarantee memory consistency.
Multiple exclusive access attempts on parallel hardware are called exclusive access
collisions. These accesses have to be performed in sequential order, thus their pro-
cessing is slow.

Given a fixed size parallel hardware, the algorithm becomes more efficient for
increasing number of particles because less exclusive access collisions are occur-
ring. Eventually, the algorithm boils down to summing on parallel hardware plus
independent calculation on cells and on particles. The latter is computationally
more expensive, the former needs synchronization, though sums are of complexity
O( logN) on parallel hardware. The bottleneck and size limit are mainly given by
the memory size and memory bus. Since not even cells’ states fit in any cache,
all storage resides in the lowest layer i.e. the random access memory (RAM). The
Nvidia graphic processing unit (GPU) cards that we used have separate graphic
RAM with sizes of either 6 gigabytes (GB) for the Tesla K20Xm card and 12 GB
for the Tesla K40 card. With single precision floating point numbers, simulations
with 200 million particles and 2003 cells can be performed within short time.

1.3.5.3 Streaming viscosity of standard SRD

For the SRD fluid, there are two contributions to the kinematic viscosity ν = η/ρ
that originate from the two steps of the model. The total kinematic viscosity reads

ν = νstream + νcoll, (1.40)

where νstream and νcoll denote the contribution from the SRD streaming step and col-
lision step, respectively. The streaming viscosity νstream is usually clearly dominant,
and thus the collisional part can be neglected.

17



1.3 Theory

In this section we derive expressions for the streaming viscosity of the fluid.
Because precise theoretical predictions are available for the viscosity, comparing it
with the numerical results provides an important benchmark of our implementation.

The first approach [14] to derive the transport coefficients used the Chapman-
Enskog approach, another study was done using the Green-Kubo formula [19]. An-
other approach by Kikuchi et al. [3] shows excellent agreement with simulation
results for the viscosity.

If the time between collisions ∆t is sufficiently large, the streaming contribution
to the viscosity is major and the collisional viscosity negligible. We consider a system
under shear with a rate of γ̇ = ∂ux/∂y in the x direction. This system can either
be in two or three dimensions. Here we consider two dimensions. The system under
this condition relaxes to a steady state where the velocity profile in the sheared
direction x is linear in y such that u = (γ̇y, 0)T .

The corresponding off-diagonal entry of the pressure tensor will be determined
by the shear rate γ̇ and shear viscosity η as

σxy = η
∂ux

∂y
. (1.41)

The pressure tensor element can be evaluated in the simulations following its defi-
nition

σxy = −( flux of x momentum through a plane of constant y). (1.42)

Or in other words, σxy equals the x momentum carried by all particles that have
velocities vy large enough to cross the plane in ∆t. The velocity vx at y is different
according to the profile, thus σxy reads

σxy = − ρ

∆t

+∞∫
−∞

dvx

0∫
−∞

dy

+∞∫
+y/∆t

dvy vxf(vx − γ̇y, vy)

+
ρ

∆t

+∞∫
−∞

dvx

+∞∫
0

dy

−y/∆t∫
−∞

dvy vxf(vx − γ̇y, vy), (1.43)

for a plane at y = 0 and can be reduced to

σxy = − γ̇ρ∆t

2
⟨v2y⟩ − ρ⟨vxvy⟩, (1.44)

where averages are with respect to the velocity distribution f . There are two contri-
butions, the first from thermal fluctuations and the second from correlation between
vx and vy.

The correlation changes due to both stages of the SRD method. A closed expres-
sion can be found via a self consistency ansatz between the streaming and collisional
contribution. We first consider the streaming contribution. Particles from y > 0
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tend to have a higher x velocity and those from y < 0 a lower. To obtain the aver-
age after the streaming, we can thus average over the sheared velocity distribution
function

⟨vxvy⟩after streaming =

+∞∫
−∞

dvx

+∞∫
−∞

dvyvyvxf(vx − γ̇y∆t, vy) = ⟨vxvy⟩ − γ̇∆t⟨v2y⟩.

(1.45)

We see that the streaming operation reduces the correlation between the components
by a constant and thus making them anti-correlated. As we will see, collisions
reduce correlations. Here, also one calculates the change of correlation ⟨vxvy⟩ due
to the collision rule, taking into account the fluctuations of the number of particles.
Eventually one arrives at

⟨v′′xv′′y⟩ = h(α, ρ0)⟨vxvy⟩, (1.46)

meaning the correlation after the collision is reduced by a constant h. By now
requiring self consistency of the two contribution to the viscosity, i.e.(

⟨vxvy⟩ − γ̇∆t⟨v2y⟩
)
h(α, ρ0) = ⟨vxvy⟩, (1.47)

and using the equipartition theorem together with Eq. (1.45), one arrives at equa-
tions for the streaming viscosity. In two dimensions

ν2D
stream =

kBT∆t

a2

[
ρ0

(ρ0 − 1 + e−ρ0)[1− cos(2α)]
− 1

2

]
, (1.48)

and in three dimensions applying the same procedure yields

ν3D
stream =

kBT∆t

a3

[
5ρ0

(ρ0 − 1 + e−ρ0)[4− 2 cos(α)− 2 cos(2α)]
− 1

2

]
. (1.49)

1.3.5.4 Numerical shear simulation

It is extremely common to perform computer simulations with periodic boundary
conditions in order to reduce finite size effects [20]. This means that there are
no walls confining the simulation space, instead particles that leave the simulation
space e.g. at x = (xmax, y, z)

T reenter at the opposite side x = (−xmax, y, z)
T . In

the case of SRD this also applies to grid shifts. In this way a system of infinite size
is mimicked. For the simulation of shear flow one needs to produce a velocity gradi-
ent. This is achieved by applying the so-called Lees-Edwards boundary conditions,
which are similar to periodic boundary conditions [3, 20]. If the shearing planes are
perpendicular to the y-axis, one applies periodic boundary conditions along the x-
and z-axis. When a particle crosses the bounds of the y-axis its velocity changes.
So for x = (x, ymax, z)

T , the particle reappears at x = (x−u∆t,−ymax, z)
T with the

new velocity v = (vx − u, vy, vz)
T .
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(a) (b)
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Figure 1.11: (a) Sketch of the shear flow simulation where periodic images are
shifted in x and move with velocity u(y). (b) Instantaneous linear velocity profile
after some relaxation time obtained in our simulations.

For the opposite case of x = (x,−ymax, z)
T , the particle reappears at

x = (x+ u∆t,+ymax, z)
T with the new velocity v = (vx +u, vy, vz)

T . This produces
a linear velocity profile along the y direction after some equilibration time. Also for
this sheared situation, an infinite system is mimicked.

Shear of fluids produces heat because of the internal viscous heating. The system
under these conditions will continue to heat up as it is sheared. In order to provide
steady conditions for measurements the temperature has to be held fixed. For this
purpose a thermostat is added to the simulations. After each step all velocities
are rescaled so that the global temperature matches the target temperature. Some
studies, e.g. Lee et al. [21], apply cell-wise rescaling of the velocities to the target
temperature. For the present situation of shear flow this creates results drastically
deviating from the predictions and, thus, seems to alter the local dynamics too
much. Furthermore, global drift is removed via Galilean transformation at each
step because it can create artifacts.

The component of the pressure tensor can be obtained by evaluating the pressure
tensor via Eq. (1.42). Therefore, we place a high number of planes perpendicular to
the y-axis in the simulation space to increase statistics. One needs to exclude the
region close to the periodic Lees-Edwards boundary from the measurement, since it
creates unwanted artifacts. For the planes we sum the x-component of the velocity
of all particles crossing the plane, thereby also taking into account the particles’
possibility to cross several planes in one time step. Although the amount of shear
is a manually controlled quantity, measuring the slope of the profile is necessary
anyway, as the artifacts created by the boundary condition slightly change the slope
of the profile.

1.3.5.5 Coupling to boundaries

Stochastic rotation dynamics are especially suitable for coupling to a solute or con-
fining boundaries. For the case of walls, the particles are geometrically colliding in
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Figure 1.12: Collisions with a wall sketched with the lower gray layer. The walls
contain ghost particles that are not translated in the streaming step. (a) Geometry
of a bounce back collision. This type leads to no-slip boundary conditions of the
wall. (b) Simple reflection creating a slip boundary condition.

the streaming step. Thereby, the shape of the walls is not restricted by the SRD
lattice geometry and can thus be arbitrarily curved. With the so-called bounce back
rule (Fig. 1.12(a)) no-slip boundary conditions can be generated [21].

In addition to the modification on the streaming step, the rotation step is also
modified. This is because on the one hand, the grid shift performed before grouping
particles into cells generates voids next to walls and on the other hand the reduced
mean particle number in cells next to the walls alter the layer physical properties.
To circumvent this, walls are filled with non-moving “ghost” particles. These do
not move although they have a thermal velocity that is periodically and randomly
reassigned. Their position only changes with the grid shift.

In the rotation step, the ghost particles are then considered for the calculation
of the cell-wise quantities ρξ,Vξ and θξ, a rotation step is though not performed for
them.

The target temperature with which the random thermal velocities of ghost par-
ticles are assigned gives the additional freedom to give walls a temperature and
construct simulations with thermal heating.

By applying forces to particles a Poiseuille flow experiment can be set up. In
practice the simulation space is confined by no-slip walls instead of periodic bound-
aries, that are applied in the remaining dimensions. To generate streaming in a way
that does not affect all simulation space, particles are accelerated in one dimension
in a narrow region of the length of a few simulation cells.

1.3.5.6 Interpretation

Coarse graining addresses the interesting point: what is essential to describe the
physics of the system under consideration? What can be simplified or neglected while
retaining the phenomena of interest. So what is essential for the hydrodynamics of
a medium? What microscopic properties does the medium need to have so that
the continuum treatment yields the correct equations. If we take a look at the SRD
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method, we need to consider the two steps of the method. Via the streaming, SRD by
definition generates macroscopic transport processes. At this point, i.e. considering
only the streaming of SRD, it actually equals an ideal gas. The collision rule that
is defined changes this because there are no collisions in an ideal gas. Collisions
have in common with the streaming step that they conserve mass, momentum and
energy. However, the collision rule redistributes them locally among the colliding
particles. This leads to the relaxation to equilibrium and to the Maxwell Boltzmann
velocity distribution.

As has been shown [14], this produces a system following the Navier-Stokes hy-
drodynamic equations, so that the essential ingredients necessary to retrieve hydro-
dynamics are the conservation laws, a streaming transport and local redistribution
of the moments of the velocity distribution function via some process similar to
collisions. With a look at the Boltzmann-Enskog equation we remark that we have,
although the method is particle based, simplified the collision integral part of it
while preserving its fundamental properties.

The reduction to these features is even more drastic in other algorithms of the
family of multi-particle collision dynamics. In the widely used MPCD-AT [16], i.e.
the multi-particle collision method with Anderson thermostat, particle velocities
after the collision are randomly reassigned such that the moments of the velocity
distributions function (mass, momentum and energy) are locally conserved. Hence,
after the collisions the mean and variance equal to the pre-collision conditions, using
local rescaling to make the local temperature match. This algorithm also fulfills
hydrodynamic equations and exhibits a quicker local relaxation time compared to
SRD. The SRD algorithm has also been adapted to model complex fluids like liquid
crystals [21]. In this work, additional degrees of freedom for the local order and
director were given to standard SRD particles and additional dynamics for those
degrees of freedom were introduced.

22



Chapter 2

Granular stochastic rotation
dynamics

2.1 Motivation

The standard stochastic rotation dynamics (discussed in Sec. 1.3.5) method has
several advantages, such as the good runtime efficiency, the good paralleliseablil-
ity, i.e. ease of implementations with graphic cards, and, importantly analytical
treatability. Compared to methods that discretize continuous equations such as the
Navier-Stokes hydrodynamic model, via, for example finite volumes, the method
SRD does not suffer from instabilities. Even if those arguments were left aside, the
assumptions and simplifications underlying the model are tremendously efficient and
fascinating from the physics point of view. An extension of stochastic rotation dy-
namics to granular systems is highly desirable because it might offer many insights
into the physics of granular materials, on the one hand, and the potential of the SRD
method, on the other hand. It has been said [10] that the coefficient of restitution
ϵ is the only physical difference of granular from molecular gases. Of course, the
granular system behaves more and more like a molecular as ϵ approaches one.

We consider the modification of the SRD method, instead of the also popular
MPCD-AT method because the latter inherently provides a Maxwell-Boltzmann
distribution of the particle velocities. In a granular system this is unsuitable be-
cause the velocity distributions of nonequilibrium systems do not follow Maxwell-
Boltzmann. In contrast to MPCD, the standard SRD method does not impose ad
hoc the Maxwell-Boltzmann, rather it dynamically reaches it.
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2.2 Dissipative modification

2.2 Dissipative modification

As a first approach to account for the energy loss during collisions of granular par-
ticles, we consider a modification of the standard collision rule in Eq. (1.33) firstly
because the dissipation is a feature of the collisions, and secondly because once the
rotation step of a simulation is reached all local quantities are already summed up
and reduced on parallel hardware.

As in standard SRD we want to guarantee mass and momentum conservation.
Hence, also in the present case we subtract the mean velocity in each cell to obtain
the thermal velocities. To mimic the dissipation we reduce the magnitude the rotated
thermal velocities. At this point we reconsider the physics yielding Haff’s law and
Fig. 1.7. Performing a simple rescaling of the thermal velocities

vi(t+∆t) = Vξ(t) + ϵω̃ξ(vi(t)−Vξ(t))  
thermal

)

generates an exponential cooling law because the instantaneous local temperature
at the new time step reads

θξ(t+∆t) =
1

3

∑
i∈Vξ

mi ∥vi(t+∆t)−Vξ∥2 = ϵ2θξ(t).

Hence

∆θξ
∆t

= − (1− ϵ2)θξ
∆t

∝ − θξ,

where we used det(ω̃ξ) = 1, because ω̃ξ is an orthogonal matrix. So, apparently this
simple-minded attempt fails to generate the correct cooling behavior. The reason
for this failure is that the collisions in SRD are occurring at a fixed frequency defined
by the time step ∆t. In a real granular gas collision rates for fast moving particles
are higher. Also in dense regions, particles collide more frequently. Accounting
for this via the collision rate is the obvious path in consideration of real granular
gases. Introducing a locally variable collision rate to SRD is though not possible.
The method would effectively become a multi-particle method but somehow event-
driven in nature. We resolve this dilemma by realising that the interpretation of the
SRD collision must be changed. So far, we considered the virtual particles’ collisions
as usual collisions, i.e. occurring after the average collision time. This now changes
such that granular SRD collisions represent multiple physical granular collisions per
virtual particle. In a hot region more collisions occur, hence if lattice cell Vξ is
hotter, more energy is dissipated in it per representative collision. Moreover the
denser a region of the system is, the more collisions will occur. The dissipation in a
representative collision must also increase with local density.

As we know from Section 1.3.2 about Haff’s law, the collision rate changes pro-
portionally to ν(∆t) ∝ ρ

√
T∆t. With that in mind, we introduce an effective
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coefficient of restitution that depends on both local temperature θξ and number
density ρξ

ϵξ,eff = 1− (1− ϵ2)σ2ρξ
√

θξ∆t. (2.1)

In this new definition, ϵ enters squared because
√

θξ has the dimension of a velocity.
If ϵξ,eff is multiplied with a velocity, the product has the dimensions of an energy. The
product also contains the particles’ cross section σ2 so that it becomes dimensionless.
In three dimensions, the modification is designed to mimic the physical collisions.

Let us consider one of the dominant pair collisions in the physical system. The
two colliding particles can be regarded as isolated from the rest of the system,
following our assumptions. The binary system has an angular momentum and a
plane perpendicular to it. The relative velocity is parallel to this plane. Similarly
in the SRD system the axis of rotation defines a plane. To incorporate the fact that
the relative velocity lies in a plane perpendicular to the axis of angular momentum,
and only this is affected by the dissipative collision, we apply dissipation only on
the rotated part of the thermal velocities.

The rule we have introduced has one interesting consequence: by applying it, we
assume the system to be rather homogeneous at the length scale a of our observation.

2.3 Granular SRD algorithm

With the above considerations we introduce below the granular stochastic rotation
dynamics (GSRD) method. The system consists of N particles with individual
continuous positions xi and velocities vi for i ∈ {1 . . . N}. We inherit from SRD the
streaming step

xi(t+∆t) = xi(t) + vi∆t. (2.2)

After the streaming step follows the GSRD rotation step. Again, we group particles
into Wigner-Seitz cells with lattice constant a. The lattice nodes ξ are randomly
shifted by displacements with components distributed in the interval [−a/2, a/2] to
preserve Galilean invariance. With the inherited definitions of the local instanta-
neous density ρξ, streaming velocity Vξ and temperature θξ we define the rotation
step

vi(t+∆t) = Vξ(t) + ω̃ξ,eff[vi(t)−Vξ(t)] (2.3)

where the granular, dissipative random rotation matrix ω̃ξ is independently chosen
for each cell. In two dimensions (2D) the rotation matrix reads

ω̃2D
ξ,eff ≡

[
1− (1− ϵ2)σ2ρξ

√
θξ∆t

]
  

ϵξ,eff(ρξ,θξ)

⎛⎝ cos(α) ± sin(α)

∓ sin(α) cos(α)

⎞⎠ (2.4)
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with the fixed angle of rotation α. The random rotations are generated by randomly
choosing ±α.

Similarly, we define the rotation matrix in three dimensions (3D) as

ω̃3D
ξ,eff ≡

⎛⎜⎜⎜⎝
ϵξ,eff(ρξ, θξ) cos(α) ϵξ,eff(ρξ, θξ) sin(α) 0

−ϵξ,eff(ρξ, θξ) sin(α) ϵξ,eff(ρξ, θξ) cos(α) 0

0 0 1

⎞⎟⎟⎟⎠ , (2.5)

where the axis of rotation r̂ is generated randomly and independently in each cell
and at every collision step. For the above definition (2.5) we are free to choose r̂ = ẑ
without loss of generality. We note that we don’t need to choose randomly between
+α → −α in 3D since it is already included by the possibility of randomly choosing
r̂ equally to −r̂.

2.3.0.1 Thoughts on alternative collision rules

If we consider the 2D rule in Eq. (2.4) we might object that we are reducing the
magnitude of the 2D thermal velocity vector. In contrast, a real binary collision
does not have to be head on, due to the spatial extent of the particles. Hence, the
real binary collision velocity splits in two parts normal and tangential to the contact
surface. The real collisions thereby do not alter the tangential component. To
resolve this and include this as a similar property in our collision, we might consider
a random dissipation axis d̂, mimicking the normal component, and dissipating only
parallel to it. This alternative would read

vi(t+∆t) = Vξ(t) +
{
d̂(ϵξ,eff(ρξ, θξ)− 1) d̂+ 1

}
ω̃ξ[vi(t)−Vξ(t)].

Though it turns out that if we derive the cooling law for this rule, it does not change
the dynamics more than changing how the cooling rates depend on ϵ, but still yields
Haff’s law. Since a single collision dissipates less energy, cooling becomes slower.
Lastly, this rule would follow the same linear hydrodynamic equations.

Similar thoughts lead to the insight that as long as generating linear hydrody-
namics is the only interest one might alternatively consider ω̃3D

ξ,eff ≡ ϵξ,effω̃ξ and thus
only changing the cooling rate.

2.3.1 Boltzmann equation

In this section we will derive the Boltzmann equation for the evolution of the one
particle probability density and show that the model we introduce obeys the correct
linear hydrodynamic equations. Since in the model collisions occur at a constant
frequency, the equations describe a discrete time dynamics. We will perform the
transition to a continuous treatment of time as late as possible.

Whenever an integration sign without bounds occurs, the integration over the
entire accessible phase space is meant.
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2.3.1.1 Liouville equation

We start from the Liouville equation for the evolution of the probability density
P (v(N),x(N), t) of finding the system in the phase space point (v(N),x(N)), where
x(N) = (x1,x2, . . . ,xN) and v(N) = (v1,v2, . . . ,vN). For the discrete time dynamics
collisions occur only once in a given ∆t. So, during this time interval, the probability
of the state P (v(N),x(N), t) will change. We distinguish two classes of collisions based
on their effect on P (v(N),x(N), t). Direct collisions occur with the probability of
current state and reduce the probability since the state is transformed in the collision.
The probability of direct collisions ν−(v(N),x(N), t), that reduce the probability of
P (v(N),x(N), t) is simply P (v(N),x(N), t) since collisions occur independent of the
particles’ positions and velocities.

Inverse collisions ν+(v(N),x(N), t) increase the probability of the current state of
interest, and correspond to the probability of all the collisions that transform nearby
states into the current state through one of the possible physical interactions.

The full dynamics are described by the Liouville equation describing the evolu-
tion of the probability density. It reads

P (v(N),x(N), t+∆t)− P (v(N),x(N), t)

∆t
= C(P (t), P (t)) (2.6)

where the collision operator

C(P (t), P (t)) =
1

∆t ∥Ω∥L
∑
ΩL

∫
dv′(N)dx′(N)P (v′(N),x′(N), t)

×
N∏
i=1

[
δ(vi −Vξ − ω̃ξ(ρξ, θξ)[v

′
i −Vξ])δ(xi − [x′

i + vi∆t])  
→ ν+(v(N),x(N),t)

− δ(vi − v′
i)δ(xi − x′

i)  
→ ν−(v(N),x(N),t)

]
describes the change of P (v(N),x(N), t) due to collisions. The integral over product
of δ-functions ν+ describes the probability of all states that, through a collision,
become the current state and hence, increase the probability P (v(N),x(N)). Thereby,
all rotations ω̃ξ(ρξ, θξ) from the set of possible rotations Ω in all lattice cells L are
considered. The product of δ-functions denoted by ν− describes the opposite, i.e.,
the probability of the current state to transition into a nearby state in phase space
and thus decrease P (v(N),x(N)). We can see the fact that the collisions occur in an
unconditional fashion, or in other words particles need only to be in the same cell
ξ and not in direct contact, because both ν−(v(N),x(N), t) and ν+(v(N),x(N), t) are
products of δ-functions.

2.3.1.2 Conservation laws

Since the collision operator in the Liouville equation is a continuous linear combi-
nation of all possible collision and streaming transformations, it inherits the conser-
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2.3 Granular SRD algorithm

vation laws from the individual collisions. The Jacobi determinant of the streaming
transformation is

det

(
∂xiβ(t+∆t)

∂xiγ(t)

)
= 1 (2.7)

with β, γ ∈ {x, y, z}. Hence during streaming, all the first three moments of the
velocity distribution function are conserved. We next focus on the collision transfor-
mation. Number density is conserved by definition. The center of mass momentum
in a single SRD-cell changes according to

nξVξ(t+∆t) =
∑
i|xi∈V

vi(t+∆t) =
∑
i|xi∈V

{Vξ(t) + ω̃ξ(ρξ, θξ(t))[vi(t)−Vξ(t)  ∑
(... )=0

]}

=
∑
i|xi∈V

Vξ = nξVξ (2.8)

and hence is conserved, independent of the choice of the matrix ω̃(ρ, θ). We expect
the temperature not to be conserved:

θξ(t+∆t) =
m

3nξ

∑
i|xi∈V

∥vi(t+∆t)−Vξ(t+∆t)∥2

=
m

3nξ

∑
i|xi∈V

∥vi(t+∆t)−Vξ(t)∥2

=
m

3nξ

∑
i|xi∈V

∥ω̃ξ(ρξ, θξ)[vi(t)−Vξ](t) ∥2

=
m

3nξ

∑
i|xi∈V

([vi(t)−Vξ(t)]
T ω̃ξ(ρξ, θξ)

T ω̃ξ(ρξ, θξ)[vi(t)−Vξ(t)]).

We consider the rotation axis to coincide with the ẑ-axis, so that without loss of
generality

ω̃T
ξ ω̃ξ = (ϵξ,eff)

2

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1/(ϵξ,eff)
2

⎞⎟⎟⎟⎠ . (2.9)

Using the equipartition theorem we can rewrite the thermal velocities vt
i ≡ (vi−Vξ)

components

m

nξ

∑
i|xi∈V

(vtix(t))
2 = θξ(t). (2.10)
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2. Granular stochastic rotation dynamics

Using (2.9) and (2.10) we arrive at

θξ(t+∆t) =
m

3nξ

∑
i|xi∈V

(ϵξ,eff)
2
[
(vtix(t))

2 + (vtiy(t))
2 +

1

(ϵξ,eff(t))2
(vtiz(t))

2
]

=
2 [ ϵξ,eff(ρξ, θξ(t)) ]

2 + 1

3
θξ(t)

=
3− 2(1− ϵ2) σ2n

√
θξ∆t+ (1− ϵ2)2 σ4n2θξ∆t2

3
θξ(t)

≃ 3− 2(1− ϵ2) σ2ρξ
√
θξ∆t

3
θξ(t), (2.11)

where in the last step we have neglected the second order terms in dissipation (1−ϵ2)
and time step. Thus, we obtain a decay rate of the thermal energy in a time step
that reads

θξ(t+∆t)− θξ(t)

∆t
= − 2(1− ϵ2) σ2ρξθξ(t)

3/2

3
. (2.12)

As we can see, temperature decays upon collisions, in a fashion similar to real
granular collisions, where dT/dt ∝ nT 3/2, which is the evolution equation that gives
Haff’s law [11].

2.3.1.3 Boltzmann approximation

We now turn to the calculations of the collision integral in the granular Boltzmann
equation. To make progress, we need to assume that there are no correlations
among colliding particles in both space and velocity so that we can write the joint
probability density as a product of the one particle probability density

P (v(N),x(N), t) =
N∏
i=1

P1(vi,xi, t). (2.13)

With this assumption we obtain the one particle density function

f(v,x, t) = NP1(v,x, t), (2.14)

for which we derive the equation of motion from the Liouville equation (2.6). We
want to describe the evolution of f(v,x, t) completely by the local change of f(v,x, t)
due to collisions. These collisions take place inside a SRD cell and affect all n
particles that are located in this cell. Thus, we focus on the time evolution in
a single cell ξ so that ∥x− ξ∥ < 1/2, considering every case of n ≤ N particles
residing in the cell. In order to do so, we divide the one particle probability density
into two parts inside and outside of the cell

P1(vi,xi, t) = P1(vi,xi, t)[ Θ(∥xi − ξ∥ − 1/2) + Θ(−∥xi − ξ∥+ 1/2) ],
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2.3 Granular SRD algorithm

where Θ(x) denotes the Heaviside step function. We can then integrate separately
for the N−n particles outside and the n inside the cell. For particles inside, we only
integrate over the cell volume V(ξ), while for the remaining we drop the contribution
of Θ(−∥xi − ξ∥+1/2). Further, all n out of N particles cases and all possible ω̃ ∈ Ω
rotations have to be considered. Multiplying both sides by δ(v − vi) δ(x − xi) for
all i and integrating over all vi,xi, the collision integral in Eq. (2.6) becomes

f(v,x, t+∆t)− f(v,x, t)

∆t
= ν+

ξ − ν−
ξ

(2.15)
=

1

∆t

N∑
n=1

(
N

n

)[∫ N∏
i=n+1

dvidxiP1(vi,xi, t)Θ(∥xi − ξ∥ − 1/2)

]{

+

∫
V(ξ)

[
n∏

i=1

dv′′
i dxiP1(v

′′
i ,xi, t)

]
1

∥Ω∥
∑
i,ω̃∈Ω

δ(v −Vξ − ω̃ξ(ρξ, θξ)[v
′′
i −Vξ])

× δ(x− [xi + vi∆])

−
∫

V(ξ)

[
n∏

i=1

dvidxiP1(vi,xi, t)

]
1

∥Ω∥
∑
i,ω̃∈Ω

δ(v − vi) δ(x− xi)

}
.

The first integral multiplied with both products accounts for the particles that reside
outside of the current cell of interest. Using the normalisation of

∫
dvdxP1(vi,xi, t) = 1,

and the fact that we are, in the respective case, considering n particles inside the
cell ξ, it may be rewritten as

∫ N∏
i=n+1

dvidxiP1(vi,xi, t)Θ(∥xi − ξ∥ − 1/2)

=

[∫
dvdxP1(v,x, t)Θ(∥x− ξ∥ − 1/2)

]N−n

=
(
1− nξ

N

)N−n

.

In the limit of a large number of particles, we obtain

N !

n!(N − n)!

(
1− nξ

N

)N−n N ≫ n−−−−→ Nn(N − n)!

n!(N − n)!

(
1− nξ

N

)N N→∞−−−→ Nn e
−nξ

n!
.
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2. Granular stochastic rotation dynamics

The factor of Nn can be taken into the definition of f(v,x, t) = NP1(v,x, t). The
collision integral reads

f(v,x, t+∆t)− f(v,x, t)

∆t
=

1

∆t

N∑
n=1

e−nξ

n!

{ ∫
V(ξ)

[
n∏

i=1

dv′′
i dxif(v

′′
i ,xi, t)

]
(2.16)

× 1

∥Ω∥
∑
i,ω̃∈Ω

δ(v −Vξ − ω̃ξ(ρξ, θξ)[v
′′
i −Vξ]) δ(x− [xi + v∆t])

−
∫

V(ξ)

[
n∏

i=1

dvidxif(vi,xi, t)

]
1

∥Ω∥
∑
i,ω̃∈Ω

δ(v − vi) δ(x− xi)

}
,

where the term resulting from the preceding calculation reflects the nature of the
number of particles residing in one box during a collision that follows a Poisson dis-
tribution. In order to obtain a more intuitive form of the collision integral, similarly
to Pöschel and Brilliantov [10], we do a coordinate transformation between the pre-
and post-collision velocities. To transform the integration we need to calculate the
Jacobi determinant of the collision step. For the collision of n particles in a single
cell, we may rewrite the collision transformation as

v
(n)
ξ = V

(n)
ξ +

⎛⎜⎜⎜⎜⎜⎜⎝
ω̃ξ 0

0 ω̃ξ
. . .

. . . . . . 0

0 ω̃ξ

⎞⎟⎟⎟⎟⎟⎟⎠
[
v
(n)′′
ξ −V

(n)
ξ

]
. (2.17)

where v
(n)
ξ = (v1, . . . ,vn) with the velocities v of all particles in the cell and Vξ =

(Vξ, . . . ,Vξ). The Jacobian for the ϵ = const. case reads

det

(
∂v(n)

∂v(n)′′

)
= det

⎛⎜⎜⎜⎜⎜⎜⎝
ω̃ξ 0

0 ω̃ξ
. . .

. . . . . . 0

0 ω̃ξ

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.18)

If we, without loss of generality, consider the rotation axis to coincide with the ẑ-axis
the rotation-dissipation matrix becomes

ω̃ξ =

⎛⎝ω̃ξ,xy 0

0 1

⎞⎠
where ω̃ξ,xy is a two dimensional rotation matrix. We can then reorder the entries
of v(n) so that Eq. (2.18) transforms to
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2.3 Granular SRD algorithm

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0
. . . . . .

. . . 1 0

0 ω̃ξ,xy 0

0 ω̃ξ,xy
. . .

. . . . . . 0

0 ω̃ξ,xy

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= det

⎛⎜⎜⎜⎜⎜⎜⎝
ω̃ξ,xy 0

0 ω̃ξ,xy
. . .

. . . . . . 0

0 ω̃ξ,xy

⎞⎟⎟⎟⎟⎟⎟⎠ .

The matrix ω̃ξ,xy is of m × m type with m = 2. Since it is a rotation followed by
a multiplication, we can use the property of the determinant, that for an m × m
matrix

det(c ω̃) = cm det(ω̃)

to finally arrive at

det

(
∂v(n)

∂v(n)′′

)
= (ϵξ,eff)

2n. (2.19)

We now transform the first summand of Eq. (2.16) by changing the integration over
the pre- to the post-collision velocities, i.e. v′′

i → vi ∀i. The differentials change
according to

n∏
i=1

dv′′
i = det

(
∂v(n)′′

∂v(n)

) n∏
i=1

dvi =
1

(ϵξ,eff)2n

n∏
i=1

dvi. (2.20)

We obtain

f(v,x, t+∆t)− f(v,x, t)

∆t
=

1

∆t

N∑
n=1

e−nξ

n!

∫
V(ξ)

[
n∏

j=1

dvjdxj

]{
(2.21)

1

(ϵξ,eff)2n
1

∥Ω∥
∑
i,ω̃∈Ω

[
n∏

j=1

f(v′′
j ,xj, t)

]
δ(v − vi) δ(x− [xi + v∆t])

−
[

n∏
j=1

f(vj,xj, t)

]
1

∥Ω∥
∑
i,ω̃∈Ω

δ(v − vi) δ(x− xi)

}
.

We can see similarities to the physical Boltzmann-Enskog equation as derived by
Pöschel and Brilliantov [10]. Instead of a collision with two particles, we now have
an n-particle collision, which results in n integrations and the product of n one-
particle distribution function. Similarly, we see the non-equilibrium character in the
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2. Granular stochastic rotation dynamics

imbalance created by the factor 1

(ϵξ,eff)2n

in front of the term due to inverse collisions. The power of 2n can be understood
considering that only the two thermal velocity perpendicular to the rotation axis
are effected by the dissipation.

2.3.1.4 Hydrodynamic equations

We now consider a granular gas with small initial inhomogeneities. There will be
transport phenomena of the zeroth, first and second moments of the velocity. For
these we derive transport equations.

In order to do this, we need to consider small gradients in density and temper-
ature. Here, small means that the length scale of the changes of the macroscopic
observables L are of the order of the observables and hence much larger than the
length scale of the microscopic dynamics, i.e. larger than the mean free path of
particles l. For the temperature for example, this means that

∇T ∼ T

L
, L ≫ l. (2.22)

We assume a similar condition for the density. Furthermore, for this treatment we
need to restrict ourselves to the regime of subsonic flows. This means that the flow
velocities u are much smaller than the square root of the temperature, i.e.

u ≪
√

⟨v2⟩ ∼ vT ∼
√
T . (2.23)

These conditions are usually fulfilled in a molecular gas. For a granular gas, the sit-
uation is different though, because of the dissipative nature of the collisions. Since
collisions occur in the center of mass frame, the temperature decays while macro-
scopic flows persists. This quickly leads to supersonic flows in the inhomogeneous
system [10].

Let us now consider the macroscopic fields that can be observed. These cor-
respond to the moments of the velocity distribution function, the zeroth i.e. local
number density ρ(x, t), the first i.e. average local particle velocity u(x, t) and second
the local temperature T (x, t). They are defined as

ρ(x, t) ≡
∫

dvf(v,x, t), (2.24)

ρ(x, t)u(x, t) ≡
∫

dv vf(v,x, t), (2.25)

ρ(x, t)T (x, t) ≡
∫

dv
m

3
||v − u(x, t)  

=V

||2f(v,x, t), (2.26)

Since the temperature is the only collision non-invariant moment of interest,
we are especially interested in its behavior. For the following we change back the
integration variable of the first term of Eq. (2.21) which is more suitable. If condition
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(2.22) is met, we can neglect the change in temperature and density due to streaming
in the collision integral via the δ(xi−[x+v∆t]) term. For δ(xi−[x+v∆t]) ≃ δ(xi−x)
the Boltzmann equation becomes

f(v, ξ, t+∆t)− f(v, ξ, t)

∆t
= (2.27)

1

∆t

N∑
n=1

e−nξ

n!

{ ∫
V(ξ)

[
n∏

i=1

dx dv′′
i f(v

′′
i ,x, t)

]
1

∥Ω∥
∑
i,ω̃∈Ω

δ(v −Vξ − ω̃ξ(ρξ, θξ)[v
′′
i −Vξ])

−
∫

V(ξ)

[
n∏

i=1

dx dvi f(vi,x, t)

]
1

∥Ω∥
∑
i,ω̃∈Ω

δ(v − vi)

}
≡ I(f, f),

where we replaced the integrals
∫
V(ξ) dxiδ(x− xi) =

∫
V(ξ) dx.

Under these conditions we calculate the changes of the expectation values of
the moments Jj(v), j ∈ {1, 2, 3} of the velocity distribution function f , due to the
collision integral. We multiply (2.27) by each Jj(v) ∈ {1,v,V2} individually and
integrate over the velocity v⟨

∆Jj

∆t

⟩
(ξ) =

∫
dv I(f, f) Jj(v), j ∈ {1, 2, 3}. (2.28)

To proceed, we change the notation in the first term of Eq. (2.27) so that both
terms can be written under the same integral. Plugging Eq. (2.27) into Eq. (2.28)
and reordering terms, one obtains⟨
∆Jj

∆t

⟩
(ξ) =

∫
dv

1

∆t

N∑
n=1

e−nξ

n!

∫
V(ξ)

[
n∏

i=1

dx dvif(vi,x, t)

]
(2.29)

× 1

∥Ω∥
∑
ω̃∈Ω

n∑
i=1

[
δ(v −Vξ − ω̃ξ(ρξ, θξ)[vi −Vξ])− δ(v − vi)

]
Jj(v).

The collision rule conserves local density 1=̂J1(v) and local momentum v=̂J2(v)
independent of the rotation ω̃ ∈ Ω and ϵξ,eff, in the sum over all n particles partici-
pating in the collision. This summation occurs in the last sum over i in Eq. (2.29).
To evaluate this sum we move the integration over

∫
dv under the sum over i. For

the density J1 = 1 we obtain
n∑

i=1

∫
dv

[
. . .

]
J1(v) =

n∑
i=1

∫
dv

[
. . .

]
1 (2.30)

=
n∑

i=1

∫
dv

[
δ(v − {Vξ + ω̃ξ(ρξ, θξ)[vi −Vξ]  

̸=vi

} )− δ(v − vi)

]
= 0.

For the momentum this procedure, ∀ω̃, ϵξ,eff, yields
n∑

i=1

∫
dv

[
. . .

]
v =

n∑
i=1

[
Vξ + ω̃ξ(ρξ, θξ) [vi −Vξ]  ∑

i(... )=0

− vi∑
vi=Vξ

]
= 0. (2.31)
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Consequently, from Eq. (2.30) and (2.31) follows that for j = 1, 2∫
dv I(f, f) Jj = 0, (2.32)

as a consequence of the individual collisions’ conservation laws.
With Eq. (2.32) we turn back to the dynamics of our macroscopic variables. In

the inhomogeneous system collisions are not the only mechanism that changes the
velocity distribution function. The transport through mass flux is included into the
dynamics by (

∂

∂t
+ v · ∇

)
  
convective derivative

f(v,x, t) = I(f, f). (2.33)

In order to obtain the equation describing the dynamics of the density, we mul-
tiply Eq. (2.33) by J1 = 1 and integrate both sides
over v [10]. After standard manipulation, we can transform the left hand side to

∂

∂t

∫
dv f(v,x, t) +∇ ·

∫
dv vf(v,x, t) =

∫
dv I(f, f) Jj.

Because of Eq. (2.32), i.e. collisions conserve mass, and by using definitions (2.24)
and (2.25) we arrive at the continuity equation

∂

∂t
ρ+∇ · (ρu) = 0. (2.34)

For momentum the approach is similar [10]. We will perform calculations here since
we also want to specifically look at momentum transport in the sheared system and
we will encounter the stress tensor on our way.

The left of Eq. (2.33) for this case, after integrating over the velocity, becomes

∂

∂t

∫
dv mvf +

∫
dv mv (v · ∇)f =

∂

∂t
ρmu+∇ ·

∫
dv mvvf, (2.35)

where again we use the short notation of vv = v ⊗ v for the dyadic product. The
first term can be rewritten as

∂

∂t
ρmu = u

∂ρm

∂t
+ ρm

∂u

∂t
= ρm

∂u

∂t
− u∇ · (ρmu), (2.36)

where the continuity equation (2.34) has been used. By using the definition of the
local velocity

V ≡ v − u (2.37)

the integral of the second summand of Eq. (2.35) transforms to∫
dv mvvf =

∫
m(V + u)(V + u)f(v)dv (2.38)

=

∫
mVVf(v)dv +muu

∫
f(v)dv + 2mu

∫
Vf(v)dv. (2.39)
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The last term in Eq. (2.39) vanishes due to∫
Vf(v)dv =

∫
vf(v)dv − u

∫
f(v)dv = u− u = 0.

The first term is the kinetic definition of the distribution to the pressure tensor

P̃ (r, t) =

∫
mVVf(v)dv.

Plugging back in these terms into Eq. (2.35), the second term may be further trans-
formed to ∫

dv mvvf = ∇ · P̃ +∇ ·muuρ

= ∇ · P̃ + u∇ · (mρu) + (mρu · ∇)u,

so that the second term of Eq. (2.36) disappears and we arrive at the momentum
transport equation

∂u

∂t
+ u · ∇u+

1

ρm
∇ · P̃ = 0, (2.40)

which is equal to the equation we have seen for real granular gases.
For the temperature, the situation in general is complex. Since the collisions do

not conserve energy, the collision integral on the right hand side (RHS) of Eq. (2.33)
does not vanish. Again we multiply both sides by the observable and integrate over
the velocity. First, we focus on the sum over i as in Eq. (2.30).
With v′ = Vξ + ω̃ξ(ρξ, θξ)[vi −Vξ] it reads

n∑
i=1

∫
dv

[
. . .

]
∥v − u∥2 =

n∑
i=1

[
v′2
i + 2v′

iu+ u2 − (v2
i − 2viu+ u2)

]
(2.41)

=
n∑

i=1

[
v′2
i − v2

i ,

]
where in the last step, we have used momentum conservation (Eq. (2.8)), i.e.,∑n

i v
′
i =

∑n
i vi. Plugging back in the definition of v′ we obtain

n∑
i=1

[
v′2
i − v2

i ,

]
=

n∑
i=1

[
V2

ξ + ω̃ξ(ρξ, θξ)[vi −Vξ  ∑
i(... )=0

]Vξ + {ω̃ξ(ρξ, θξ)[vi −Vξ]}2 − v2
i

]

=
n∑

i=1

[
{ω̃ξ(ρξ, θξ)[vi −Vξ]}2 − (vi −Vξ)

2

]
=

3n

m
[ θξ(t+∆t)− θξ(t) ] (2.42)
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Using Eq. (2.42) and (2.12) we can transform the integral on the RHS of Eq. (2.33)
to∫

dv I(f, f) J3(v) =

∫
dv I(f, f) ∥v − u∥2 = (2.43)

− 3

m

N∑
n=1

e−nξ

n!

∫
V(ξ)

[
n∏

i=1

dx dvif(vi,x, t)

]
2σ2n2 (1− ϵ2) θξ(v1, . . . ,vn, t )

3/2

3V .

The cooling coefficient ζ is defined [10] via

− ζρT ≡ m

3

∫
dv ∥v − u∥2 I(f, f). (2.44)

Combining equations (2.43) and (2.44) yields

ζ =
2(1− ϵ2) σ2

Tnξ

N∑
n=1

e−nξ

n!
n2

∫
V(ξ)

[
n∏

i=1

dx dvif(vi,x, t)

]
θξ(v1, . . . ,vn, t )

3/2. (2.45)

To solve this averages over the number of particles n and all vi, we need to perform
approximations. We assumed gradients to be small so that the length scale of our
observation neither density nor temperature varies strongly. For a sufficiently large
number of particles we further expect temperature fluctuations to be independent
of fluctuations of n. In other words, for a sufficiently large number of particles,
the instantaneous temperature θξ =

m
3n

∑n
i=1 ∥vi −Vξ∥2 is close to the expectation

value of the summands. With θξ ≈ m
3
∥v − u∥2, we may then write

ζ ≈ 2(1− ϵ2) σ2

Tnξ

{
N∑

n=1

n2e−nξ

n!

[∫
V(ξ)

dx dvf(v,x, t)  
=nξ

]n−1}

× m

3

∫
V(ξ)

dx dvf(v,x, t)∥v − u∥3/2

N→∞
=

2m(1− ϵ2) σ2(nξ + 1)

3Tnξ

∫
V(ξ)

dx dvf(v,x, t)∥v − u∥3/2. (2.46)

This result is similar to the same result for a physical system. Dependencies of
density and temperature match. In the factor 2

3
(1− ϵ2) we recognize our dissipation

rule, where the dissipation takes place in the two dimensions perpendicular to the
random rotation axis. The integral in ζ becomes a constant by rescaling the velocities

c = v/
√
T

3
and using the so-called Sonine expansion of f (refer to Chapter II.8 of

[10]). This procedure yields one equation for the temperature and another for the
shape of the rescaled velocity distribution function f̃(c).

Similar to the derivation of the momentum transport equation one derives the
heat transport equation [10]. Only here we obtain a contribution from the collision
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2.4 GSRD streaming viscosity

integral. With the above defined cooling coefficient ζ we arrive at the heat transport
equation

∂T

∂t
+ u · ∇T +

2

3ρ

(
P̃ : ∇u+∇ · q

)
+ ζT = 0, (2.47)

where the pressure tensor P̃ and the heat flux q follow from the left hand side (LHS)
Eq. (2.33) and are thus the same as for a real granular gas.

2.4 GSRD streaming viscosity

To obtain an experssion for the granular streaming viscosity, we apply the same
procedure of the calculation of the velocity correlator of standard SRD to arrive at
a corresponding expression for granular SRD. We start with deriving Eq. (1.46), for
the 2D system where velocities have the form v = (vx, vy)

T and again we use the
short notation v′′ for the post-collision velocities

v′′ = ω̃v − ω̃Vξ +Vξ. (2.48)

We split the contribution to the center of mass velocityVξ into that of one test parti-
cle with velocity v and the contribution of the remaining n−1 particles participating
in the collision. The sum of these are written as v̌ so that

Vξ =
v + v̌

n
(2.49)

and

v′′ = ω̃v − 1

n
ω̃v − 1

n
ω̃v̌ +

v̌

n
+

v

n
. (2.50)

We are interested in how the correlation of the two velocity components vx and vy
changes during the collision. In order to arrive at an expression, we use the defini-
tion of the rotation matrix

ω̃ = ϵξ,eff

⎛⎝ cos(α) ± sin(α)

∓ sin(α) cos(α)

⎞⎠ . (2.51)

We obtain

v′′x = ϵξ,eff cos(α)

(
vx −

vx
n

− v̌x
n

)
± ϵξ,eff sin(α)

(
vy −

vy
n

− v̌y
n

)
+

vx
n

+
v̌x
n

and

v′′y = ∓ϵξ,eff sin(α)

(
vx −

vx
n

− v̌x
n

)
+ ϵξ,eff cos(α)

(
vy −

vy
n

− v̌y
n

)
+

vy
n

+
v̌y
n
.

For further simplifications we assume molecular chaos, i.e. that the velocities of
different molecules are uncorrelated. Hence ⟨v̌xvy⟩ = ⟨v̌yvx⟩ = 0.
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2. Granular stochastic rotation dynamics

It also follows that ⟨v̌xv̌y⟩ = (n− 1)⟨vxvy⟩ which proves to be very useful in the
following simplifications, because we eventually want to arrive at an expression for
⟨v′′xv′′y⟩. The following terms created by the multiplication of the sine and cosine
term with the last two terms of each of the velocities’ components disappear with
this assumption. First⟨(

vx −
vx
n

− v̌x
n

)(
vy
n

+
v̌y
n

)⟩
=

⟨(
vx −

vx
n

) vy
n

⟩
−
⟨
v̌x
n

v̌y
n

⟩
= 0,

and secondly for both x and y component⟨(
vy −

vy
n

− v̌y
n

)(
vy
n

+
v̌y
n

)⟩
=

⟨(
vy −

vy
n

) vy
n

⟩
−
⟨
v̌y
n

v̌y
n

⟩
= 0.

Also the terms that contain the product sin(α) cos(α) vanish due to the different
sign, so that the rotation axis or direction does not play a role. If then we multiply
the velocities’ components and average we arrive at

⟨v′′xv′′y⟩ = ϵ2ξ,eff

[
cos2(α)− sin2(α)

]⟨(
vy −

vy
n

− v̌y
n

)(
vx −

vx
n

− v̌x
n

)⟩
+
⟨vxvy

n

⟩
.

or

⟨v′′xv′′y⟩ = ϵ2ξ,eff
n− 1

n
cos(2α) ⟨vyvy⟩+

⟨vxvy⟩
n

=

[
1− n− 1

n
(1− ϵ2ξ,eff cos(2α))

]
⟨vxvy⟩ (2.52)

This result does not yet include fluctuations in the number of particles. Before we
take them into account, we need to consider that also the effective coefficient of
restitution depends on the number of particles. If we define

κ ≡ (1− ϵ2)σ2∆t
√

θξ, (2.53)

the squared ϵξ,eff becomes ϵ2ξ,eff = 1−2nκ+n2κ2. The probability of finding n particles
in a cell follows the Poisson distribution P (n) = e−n0nn

0/n! for the homogeneous
system n0, the probability to find the test particle in a cell with n−1 other particles
is nP (n)/n0. Hence, to account for fluctuations in the number of particles we rewrite
Eq. (2.52) as

⟨⟨v′′xv′′y⟩⟩n =
∞∑
n=1

nP (n)

n0

[
1− n− 1

n
(1− cos(2α))− (n− 1)2κ cos(2α)

+ (n2 − n)κ2 cos(2α)

]
⟨vxvy⟩

=

[
1− n0 − 1 + e−n0

n0

(1− cos(2α)) (2.54)

− (2n2
0κ+ (n2

0 − 2n0)κ
2) cos(2α)

]
⟨vxvy⟩ ≡ h(α, n)⟨vxvy⟩ .
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2.4 GSRD streaming viscosity

We now know that there are two mechanisms acting on the correlation. The stream-
ing step produces an increasing anti-correlation between the velocities’ components
as can be seen in Eq. (1.45). The collision step reduces the correlations by the
factor of h(α, n). Hence, the resulting value strike a balance between these two
mechanisms. We thus require self-consistency of Eq. (2.54 and (1.45) yielding Eq.
(1.47). With the formula of the component of the stress tensor (1.44) we obtain the
viscosity via

η2Dstream =
ρ0θξ∆t

a2

(
h

1− h
+

1

2

)
,

and hence

η2Dstream = (2.55)

ρ0θξ∆t

a2

{
n0

(n0 − 1 + e−n0)[1− cos(2α)]− [2n0κ+ (ρ0 − 2)κ2] cos(2α)
− 1

2

}
.

We will test the accuracy of this result in Chap. 3.
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2. Granular stochastic rotation dynamics

2.5 Numerical Implementation

2.5.1 General purpose graphics processing units

We utilize GPUs to speed up the SRD simulations by parallelization compared to
sequential execution on a central processing unit (CPU). GPUs are capable of per-
forming the same operation on elements of a data array at the same time. As
the name tells, the main application of GPU used to be as graphics accelerator.
Though with improvements and increasing availability graphic cards are now used
for general-purpose computing on graphic processing unit (GPGPU). We use a lan-
guage extension to C/C++ which is provided by Nvidia for their GPUs, called
compute unified device architecture (CUDA). With CUDA functions that are exe-
cutable on GPUs may be written in C/C++. Usually these GPU functions are called
kernels to distinguish them from functions for the CPU. The main features of the
CUDA extension is a new syntax to execute these kernels on the GPU. To achieve
performance benefits, it is essential to tailor the algorithmic implementation to the
hardware. There are a number of features that make programming on systems with
a GPU different (c.f. Fig. 2.2). GPUs have separate dedicated RAM with their own
memory address space. The path between main RAM and GPU RAM generally is
a computational bottleneck. For this reason memory transfer is kept at a minimum
and hence almost all workload handled is on the GPU with the CPU acting as a
manager and bookkeeper.

2.5.2 Details of the hardware-tailored implementation

In order to gain the most parallelization speedup, computational problems have to
be examined in terms of their interdependence and size. Dependencies have to be
solved sequentially.

The simplest example occurring in our system is the translation and rotation
of particles. Given that the rotation axes and the streaming velocities are pre-
calculated, there is no need for communication between threads updating positions
and velocities of single particles. Problems of this type are called ’embarrassingly
parallel’ and, as the name suggest easy to parallelise.

Another problem occurring are sums of a species of values stored in an array.
Here, the final result depends on all data elements. This operation (trivial on a
CPU) becomes a bit problematic in a parallel environment where different threads
might attempt to access the same memory location at the same time. Inconsistent
results might arise.
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2.5 Numerical Implementation

Figure 2.1: Parallel reduction via recursion, for summations, logical evaluation or
similar. For an ideal parallel hardware with parallel capabilities as numerous as the
data, the runtime becomes O(logN) for input data N .

This problem is effectively resolved by using a recursive sum such that at each
recursion step the size of the problem is halved. Each thread in one step adds up
two successive values; at the next step the number of items left to sum is halved,
and so half the number of threads are necessary at this time step.

This procedure yields a computational complexity of O(logN) with the problem
size N . We encounter this problem for example in the calculation of the global
drift velocity, or the pressure tensor. The present GPUs can provide a maximum
number of 1024 threads grouped into a block. Threads in blocks can communicate.
Communication is the most efficient within one of the 14 streaming multiprocessors,
so with blocks of 192 threads each. Only for recursive sums bigger block sizes are
beneficial.

For the rotation step the quantities ρξ, Vξ and θξ need to be calculated at each
time step. To tailor our problem to our architecture we organize the calculations in
the following way. In any SRD cell ξ, we provide an array of 14 elements for pre-
results. We first start a function kernel using 14 blocks with block sizes of 192 threads
each. Inside the blocks summations of the pre-results, e.g. incrementing one element
ρξ,i dedicated for the respective block i, is performed using atomic operations. These
are operations that guarantee exclusive access to a memory address and are hence
essential for parallel computing. This is because today’s processors’ instructions are
divided into multiple stages. These are steamed and may generally be executed out
of order. In an atomic operation the multiple stages of an increment, i.e. simplified
fetch, execute and write back, are guaranteed to be completed before another thread
may issue the next fetch on this memory element, so that the up-to-date state of
the memory is read.

This synchronization capability is only possible within one streaming multipro-
cessor, hence we use 14 pre-results and let the blocks process subsets of the whole
data. This is an operation concerned with particle properties. Next, we need to
address issues at the SRD cell level, therefore less parallel in the sense of a less num-
ber of elements. We issue small blocks and take advantage of a hardware function
called ’warp shuffle’. Threads are by designed grouped into warps consisting of up
to 32 threads. Within a warp these ’shuffle’ can be used. It shifts the value of a
local variable between threads and hence provides a hardware function for recursive
summation which we use here. So, by combining functions for reduction of many
cells and within a cell we sum velocities and number density and pre-calculate the
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2. Granular stochastic rotation dynamics

rotation axes. With the now known streaming velocities we use a second two-stage
reduction to calculate the cell temperatures. Lastly we also compute the effective
coefficient of restitution for each cell.

For analyzing the data, there are additional functions that calculate the local
properties on a non-shifted grid. To minimize data transfer we average these cell-
grid based observables already in the GPU memory space. To efficiently handle
memory on the GPU we use the dedicated constant cache structure. Constants can
be stored there as read only data. Accessing these data is thus much faster. We
mainly store pointers to data as constants, beside some constants.
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2.5 Numerical Implementation
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Figure 2.2: Hardware sketch of the used computers. Those feature one Nvidia
K20xm GPU with separate graphic RAM, and an octo-core CPU with the system
RAM and hard drive storage. GPUs are optimal for simple arithmetic computations
and execute those in a highly parallel fashion and thus much faster even though its
lower clock rate. In contrast, CPUs are more versatile and thus faster on non-
parallelizable tasks. In terms of memory there are several layers. The CPU RAM is
effectively infinite in our perspective, just as hard disk drive (HDD) space. Because
the SRD is computationally cheap its memory usage becomes more important. As
usual for GPGPU applications the interconnection between GPU and CPU is a
bottleneck. Here, the connection of the GPU to its RAM becomes a computational
bottleneck, too. Parallelism is possible at different stages. The GPU provides two
copy engines that can handle data transfer with the CPU asynchronously from
computations. On the CPU this can be done, too, using different cores. So if grid
based quantities are of interest for writing to disk, the CPU can assign workload,
while a second CPU core waits for the asynchronous data transfer to finish. At the
same time the GPU can update particle velocities. More precisely said, the GPU
combines 14 streaming multiprocessors with 192 cores each. For a more detailed
description on intra-GPU concurrency and synchronization abilities please refer to
the main text. (The K40 GPU feature 16 streaming multiprocessors and a RAM
size of 12 GiB.)
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2. Granular stochastic rotation dynamics

2.5.3 Algorithm summary

We use object oriented programming to benefit from high code re-usability an clarity.
The procedure starts with interpreting an input file. (cf. Fig. 2.3(a)). Next, an
instance of the simulation box class is created (refer to next section). Then, steps
and writing data to disk functions are called following the simulation protocol of the
input file. A step combines many function calls, one of these are the step internal

function of the simulation box object which combines all CUDA kernel calls (Fig.
2.3(b)).

The implementation of the SRD algorithm consists of the following steps

vn
i (t) = r̂ξ(r̂ξ · vi(t))

vt
i(t) = vi(t)− vn

i (t)

vi(t+∆t) = vn
i (t) + ϵξ,eff[cos(α)v

t
i(t) + sin(α)(vt

i(t)× r̂ξ)],

where r̂ξ is the random rotation axis of cell ξ, analogous to the matrix multiplication
in Eq. (2.5).

2.5.4 Data structuring

We store physical quantities combined in a struct we call parameters. The main
function uses an object of the struct simulation to hold details of the protocol.
The physical space is represented as a class simulation box instance. It has mem-
bers holding particles’ positions, velocities, SRD grid based data, plus counters and
buffers. We bundle memory transfers between the different RAMs using the class
memory manager working on the data member of the async array objects.

For vector calculus we implement a struct vektor with member functions ded-
icated to the certain operations. For the SRD local grid data there is a struct
srd cell holding relevant structure. This approach has the advantage that adding
a new parameter passed by the input file is really simple and non-error prone. One
can just create a new member in the struct parameters while data copying and man-
agement of the object remains the same. The same applies for the struct srd cell.
Introducing the local effective coefficient of restitution was implemented by simply
adding a new member to the srd cell.

The data that we store in the GPU’s constant cache, as mentioned earlier, are
mostly member pointers of the simulation box instance. For their variable naming
we simply add an underscore to the member name to which the pointer references.
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2.5 Numerical Implementation

void main(...) (main.cpp)
  initialises, then repeatedly 
  performs steps and sampling calls 

auto interpret_input(...) (state.cpp)

  reads input_file, checks directory,
  returns simulation struct

1. 2.

auto build_walls(...) (main.cpp)
simulation_box instance
 • positions, velocities, fields
constructor sets up GPU
memory via init_gpu(...)3. creates with walls & params

4. steps

5. sampling

(a) Overview:

(b) Details of the step_internal member:

reduce to cell level 
  locally sum up velocities and
  density with atomic operations

reduction procedure:
1st. 14 independent multiprocessors 

       reduce to array[14] per srd_cell
2nd. reduction inside cell

reduce in cells and prepare rotation 
  generate cells' rotation vectors,

  calculate streaming velocity 

reduce thermal velocities to cell level 

   locking with mutexes

reduce thermal velocities in cells 
   calculate effective coefficient of

   restitution or thermostat scale

calculate global drift 

   copy to summation buffer, 
   then sum up, norm result

calculate grid shift

rotate, translate, dissipate and shift 

  particle wise application of the SRD
  procedure:
  1. remove streaming velocity, apply rotation

     and apply dissipation rule

  2. remove old grid-shift, apply forces 
     perform collisions with walls
  3. translate and apply new grid-shift 

  4. calculate pressure tensor components

st
ar

t en
d

step_internal(...) & its calls
  details in panel (b)

4.5.

calculate fields for transfer to CPU 
  calculate all quantities without grid shift

  copy memory content (if this is sampling step)

Figure 2.3: Code flowchart divided into an overview in panel (a) and details
of the step internal(...) member of the simulation box class in panel (b).
Functions and workflow are represented by red cards and red arrows respec-
tively. Parallel CUDA-GPU-functions are represented by purple cards. The cen-
tral simulation box instance appears in green. All CUDA calls are performed in
the init gpu(...) and step internal(...) members. Besides the rotation-
translation routine every CUDA-helper-function mostly performs only one task.
Functions with a gray dot need synchronization. CPU and GPU compute times
are superimposed, also with data transfer. CUDA function calls are launched with
individual blocks and grid sizes regarding synchronization necessities of the respec-
tive code segment. Thread numbers are chosen to fit processor number so that
functions perform loops over subsets of the workload.
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2. Granular stochastic rotation dynamics

struct vektor (vektor.hpp)

 • members: 

        double/float x,y,z

 • member functions:

        operators: +, +=, *, etc.

        norm(), length(), dot_product(),

        scaled_with(), periodic(), etc. 

class random (random.hpp)

 • members: 

        uint64_t s[] (state) 

 • member functions:

        uniform_int( min, max), uniform_float(),

        gaussian(), random_unit_vektor(), etc. 

 • implementations:

        xoroshiro128+, xorshift1024*

struct simulation (state.hpp)

 • description:

        representation of the input file bundled

        into parameters and procedual details.

 • members:

        class parameters object

        equilibration -/sampling procedure details 

struct parameters (data_structure.hpp)

 • description:

        holding all physically relevant parameters

 • members:

        dt, collision_angle, target_T, etc.

struct srd_cell (data_structure.hpp)

 • description:

        holding cell level observables e.g. mean 

        velocity also bundled for parallel access

        and an independent random-number-generator

 • members:

        cell velocity, cell temperature, n, etc.

class simulation_box (simulation_box.hpp)

 • description:

        representation of the physical system holding all data 

        corresponding to it in private members. 

        Thus standalone, all simulation operations are performed

        via public functions. Parallel CUDA calls, bundled in the 

        simulation_box.cu file (init_gpu(), step_internal()) rely 

        on helper functions in that file only.

        The class members are copied into the constant GPU

        memory and in GPU routines have an underscore in 

        the name hence e.g. particle[i] becomes particle_[i].

 • members:

        positions, velocities, fields, class parameters obj., etc.

        non-gpu involving routines (simulation_box.cpp):

             initialisation, file_io, write_config, step, etc.

        gpu involving routines (simulation_box.cu):

             init_gpu(), step_internal()

             + helper functions 

struct particle (data_structure.hpp)

 • members:

        position r, velocity v

struct gpu_array (container_classes.hpp)

 • description:

        GPU memory space array, managed

        by a memory_manager obj.

 • members:

        pointer to GPU memory,

        operator [], data manipulation routines

struct async_array (container_classes.hpp)

 • description:

        double GPU and CPU memory arrays, 

        managed by a memory_manager obj.

 • members:

        pointers to both memory sections

        operator [] for GPU/CPU seperate.

class memory_manager (managed_data.hpp)

 • description:

        copies between RAM/GPU-RAM

        bundled into one operation (asynchonously)

 • members:

        managed object sizes, copy functions, etc.

void main(...) (main.cpp)

 • description:

        controls steps and sampling 

Figure 2.4: Object structure and summarized object descriptions of the imple-
mented program. Objects are denoted as green cards, membership usage between
objects is symbolized as blue arrows, strongly linked classes are connected with
purple arrows. Routines are presented as red cards, control flows as red arrows.
Classes are grouped into physics representatives (on gray) and memory managing
objects (on pink). The center of the simulation is the simulation box class around
which everything is built, the most basic and widely used instance is of the struct
vektor. After the main function requested a simulation details struct it generates
a simulation box instance and calls its public control functions. The class itself
handles the details in dedicated private functions, including e.g. simulation steps
with GPU-addressing and data output.
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2.5 Numerical Implementation

2.5.5 Random number generators

Artificial pseudo-random numbers are computer-generated numbers using certain
algorithms that together with the internal state of the generator are called random
number generator. Generating a random number alters the internal state of the
generator according to the algorithm. Since the internal state has a binary memory
representation, it is simple to recognize that this leads to a finite length sequence of
numbers. Measures of the quality of a random number generator may be the length
of the period of its sequence or how much subsets resemble uniform distribution of
values. It is commonly agreed that the SRD method does not need the statistically
best random number generator since only few numbers are necessary. In contrast to
that, the MPCD method uses at least 3n random numbers per box with n particles
and collision steps and thus the quality of the generator is more critical.

For the present implementation we chose a rather new sort of generators of the
xorshift family [22] in an exchangeable way to test them against each other. One
has a significantly longer period, but the use of a shorter period does not change
the simulations.

For the implementation on GPUs we need to guarantee that the random numbers
are independently generated. If different threads generate the rotation axes for
different SRD cells at the same time, this may cause problems. Instead of providing
exclusive access to one common generator we provide independent generators for
each SRD cell so that no communication between threads is necessary. For the
used xorshift generators so-called ’jump ahead’ functions are known, that alter the
generators internal state equally to calling a certain high number of single random
number generation calls. This gives a number of independent sub-sequences that
are safe to call in parallel.

2.5.6 Controlling and using the code

The compiled code is fully flexible in the sense that all of its functions can be
switched on and off at runtime. For the appropriate settings, the code uses an input
file to read all input parameters, which may be specified by the first input string
given to the executable. Hence, there are no pre-compiler definitions (hash-defines),
instead consistent declaration of variables with the const flag is performed.

The code generates a logfile in ASCII to which it writes e.g. the temperature
or flux. Specific details are given in the simulation box::write log() function
definition. Structural data is written in binary at specified times.
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Chapter 3

Results

3.1 Simulation parameters

We perform our simulation using dimensionless equations, where all quantities are
given as multiples of the respective characteristic values of the system. Lengths
are multiples of the SRD lattice parameter a, mass as multiple of the (identical)
SRD/GSRD particle mass m. The time unit is given via a reference thermal energy

tunit =
a√

kBTref/m
,

so that a particle moving with velocity v =
√

kBTref/m at kBTref = 1 covers the
length a per unit of time. During the initialization of the system, particles are
randomly distributed in the system. The mean number of particles per cell n0 is an
important quantity since it controls for instance the viscosity of the fluid.

Other parameters that control the transport and relaxation processes are the
SRD rotation angle α, and the mean collision time ∆t.

3.2 Code validation via streaming viscosity mea-

surements

Equations (1.48) and (1.49) give analytic predictions for the viscosities of the stan-
dard SRD fluid in two and three dimensions [3], respectively, and show an excellent
agreement with the results obtained from simulations. Hence, to test our newly
developed and implemented code we may also use this comparison to test, verify
and benchmark our implementation of the standard SRD model.

We simulate systems of sizes 32× 32 in 2D and 32× 32× 32 in 3D and initialize
each system with on average n0 = 5 particles per cell such that the system in total
contains n0 particles times the number of cells, i.e. N = 5120 in 2D and N = 163840
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3.2 Code validation via streaming viscosity measurements

in 3D. We apply a shear rate of γ̇∆t = 2/32 = 0.0625 at a reduced temperature of
T/Tref = 0.8 and ∆t = 1.

The particle velocities are initialized according to the Maxwell-Boltzmann distri-
bution. The velocity profile relaxes to a linear profile induced by the shear quickly.
For this reason we equilibrate the system for 10000 time steps. In the following
50000 time steps we measure the flux of momentum every step and write the av-
erage to disk every 100 time steps. Configurations are internally averaged on the
GPU over 100 states each separated by 10 ∆t. During the simulation the density
fluctuates around n0 as can be seen in Fig. 3.1(a), just like we expect. The system
remains homogeneous during the whole simulated timespan. As we can see in Fig.
3.1(b), a smooth velocity profile develops. Moreover, we can still see slight density
fluctuations which completely agree with our expectations. The SRD rotation angle
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Figure 3.1: Snapshot of the sheared system averaged over 1000 states for a rotation
angle α = 120◦. Panel (a) shows the density in the x/y plane. Since we look at an
average, the density does not need to be in integer numbers. Still we see fluctuations,
also in panel (b) that shows the cells’ streaming velocities Vξ,x in the direction along
which the system is sheared.

may be understood as representing an effective mean free path of the fluid, and in
that regard similar to the time between multi-particle collisions ∆t. This is because
it controls how far a particle travels without significantly changing its direction. It
also controls how quickly the system locally relaxes to equilibrium. Because of this
interesting feature we investigate the streaming viscosity as a function of the rota-
tion angle α here. For the 2D system the streaming viscosity shown in Fig. 3.2(a)
naturally diverges as α approaches 0◦ and because of the geometry also approaching
180◦. At a rotation angle of 90◦ there is a global minimum because the parameter
limits for α are 0◦ and 180◦. The computed viscosity is in excellent agreement with
the theoretical prediction. We see that because there is a continuous heat produc-
tion due to the shearing the system settles at higher temperature the higher the
viscosity is, even though the thermostat constantly rescales the temperature.

For the 3D system the viscosity also diverges at α = 0◦ but not at α = 180◦

where instead we have a local maximum. The minimum now occurs at α ≈ 11π/18.
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Figure 3.2: Kinetic viscosity νstream = ηstream/n0 viscosity of the 2D SRD fluid as
a function of the SRD rotation angle α.

Apart from this, the behavior is similar to that of the 2D system. Also here, the
streaming viscosity measurement via the momentum transport in the simulations
and the theoretical predictions are in perfect agreement.

We performed both of the preceding numerical simulations with the same code
that we will use in the next Section for the simulation of granular system in the
limit of fully elastic collisions, i.e., by setting ϵ = 1, with the single addition of a
thermostat. Hence, with the reproduction of the excellent agreement between theory
and simulations we conclude that our implemented code is working properly in the
limit of standard SRD for ϵ = 1.

To conclude this section, we sum up a few more properties of the viscosity.
The viscosity as a function of other parameters [3] behaves as follows. In terms of
the number of particles, both streaming and collisional viscosity increase linearly
with the number of particles, and the kinetic contribution is typically an order of
magnitude higher than the collisional. The collisional viscosity which we have not
discussed so far approaches zero as the rotation angle α goes to zero.
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3.2 Code validation via streaming viscosity measurements
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Figure 3.3: Kinematic viscosity νstream = ηstream/n0 of the 3D SRD fluid as a
function of the SRD rotation angle α. The streaming viscosity diverges at zero and
reaches a local maximum at 180◦.
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3. Results

3.3 Granular SRD - Haff’s law

We now turn to our model of granular fluids, and discuss our results that validate
our physical modelling and algorithm. Haff’s law is valid for a system in the ho-
mogeneous cooling state [11]. Hence, we begin with looking at a system that cools
down while remaining in a rather homogeneous state. This means that we choose
rather low dissipation with ϵ = 0.995. We simulate a 3D system with 120×120×120
boxes with mean initial density ρ0 = 25/V particles per GSRD cell, hence in total
N = 43.2× 106 particles. For the freely cooling simulations we use periodic bound-
aries in all three dimensions. Granular SRD is more realistic for smaller rotation
angles α, hence we chose α = 20◦ for the present simulation. To obtain features
on the length scale of our observations, we initialize the system at a temperature of
T (t0)/Tref = 100 and fix the collision rate at ∆t = 0.01.

Figure 3.4 shows that even after a very long simulation time, the system is rather
homogeneous. The spatial variations of density and temperature are never larger
than twice thrice the average density and density, respectively. This is still a rather
homogeneous state compared to the inhomogeneous cooling state which is clearly
characterized by inhomogeneities spanning over several orders of magnitude, as we
will see in the following.
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Figure 3.4: State of the freely cooling 3D GSRD gas with ϵ = 0.995 after ∼ 105

collision and streaming steps. We show a cross section perpendicular to the z-axis.
In panel (a) we see the instantaneous number density in the non-shifted grid linearly
color encoded. In panel (b) we see the instantaneous cell temperature. The system
is not perfectly homogeneous anymore though we can see that the variations extent
over only one order of magnitude which is actually small. Furthermore, the denser
regions are colder than the dilute regions due to their higher ϵξ,eff mimicking the
increased collision rate in those regions.

From Fig. 3.4, we see that the initial fluctuations in the distribution of mass and
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3.3 Granular SRD - Haff’s law

temperature in the system lead to regions where particles accumulate and then cool
down slightly faster than in the less dense regions. The cooling due to dissipative
collisions can also be seen in the anti-correlation of density and temperature in
Fig. 3.4(a) and (b). This is the result of the effective coefficient of restitution.
Eventually, this system will undergo the transition to the so-called inhomogeneous
cooling state but very late and only on large length scales, so that we can examine
the cooling state and compare it to Haff’s law,

T (t) =
T (t0)

(1 + τ/T (t0))2
.

We calculate the global temperature via the mean of the squared fluctuating part
of the velocity. Plotted in a double logarithmic plot this should result in a slope of
−2 after some time. We can see exactly this expected behavior in Fig. 3.5 over six
orders of magnitude in time and eight orders of magnitude in temperature.
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Figure 3.5: Granular temperature of the freely cooling granular system as a func-
tion of time. The evolution perfectly follows Haff’s law over six orders of magnitude.
After some initial time the decay of GSRD temperature has a slope of −2 in the
double logarithmic plot.

We can conclude that the algorithm fulfills one of the essential characteristics of
granular gases, i.e., Haff’s law for the homogeneous cooling state. This is of course
not a completely surprising result as we have assumed the system to be locally
homogeneous and put in this physics at that level. However, we can already see
that there is more happening in the system. We already obtain a hint that the
homogeneous cooling state is unstable to density inhomogeneities as indicated in
Fig. 3.4.
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3. Results

3.4 GSRD streaming viscosity

We test the expressions in Eq. (3.1) for the GSRD kinematic viscosity with shear
simulations, similarly to what we did in Sect. 3.2 for standard SRD. Since the fluid
dissipates energy it reaches a stationary state were all the heat induced by the
shearing is at the same time dissipated. For this reason, no thermostat is necessary
in the simulations. Here, we simulate 2D 32×32-cell systems with density ρ0 = 10/V
and ρ0 = 20/V . Again we set ∆t = tunit. As predicted by Eq. (3.1), similarly to
standard SRD, the viscosity is low for rotation angles close to α = 90◦ Hence for these
parameters the heat production is really low and the system becomes more and more
unstable to exhibiting shear banding. For this reason, we need to increase the shear
rate together with the rotation angle to keep the system in a stable state. However,
if initially the system is completely at rest, it does not relax to the stationary sheared
state. In this case the cooling immediately leads to a contraction and the contact
to the Lees-Edwards boundaries is disrupted. To help the system reach the desired
state, we initialize it with a linear velocity profile along the z-axis and a temperature
close to the assumed final equilibrium temperature.
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Figure 3.6: Kinematic viscosity of the 2D GSRD fluid with ρ0 = 10/V . In the left
panel (a) we see the kinematic viscosity νkin = µkin/ρ0 as a function of the GSRD
rotation angle α. In the right panel (b) we see the relative deviation from the theory
for granular fluids, and from the standard theory, for comparison. We see a good
agreement with the theory with a maximum deviation of 4%, which represents a
good improvement from the standard theory. The effective coefficient of restitution
is not constant due to the different equilibrium temperatures resulting from different
shear rates. Overall, the values lie around ϵξ,eff = 0.998. The reason for the worse
agreement at high α is the instability of the homogeneous state. For increasing α
the shear heating becomes less important, so that for angles slightly larger than 40◦

the system needs a high shear rate to remain stationary. This in turn contradicts
our assumptions for the derivation of Eq. (3.1).
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3.4 GSRD streaming viscosity

If the heat input via the Lees-Edwards boundary is too low, the system forms
one, sometimes also more, condensation bands. These cool down much more quickly
than the rest of the system, and contract more and more. Thereby in those regions
the momentum transport is disrupted and the cooling dominates. This makes shear
measurements in this parameter region unfeasible. With mean effective coefficient
of restitution ϵξ,eff = 0.946 and α = 20◦ the system quickly reaches a state as shown
in Fig. 3.8, where we see a band with 4 times larger density and with a temperature
an order of magnitude lower than the rest of the system.

Hence, all in all, there are two effects that complicate the shear measurement. For
larger α, the system is sheared increasingly fast so that our theory loses its validity.
On the other end, for small α, the higher temperature also results in a higher
ϵξ,eff which makes the assumption of the velocities of particles being uncorrelated
questionable. Also with this condition local mixing and relaxation becomes slower.

In panels (b) of Fig. 3.6 and 3.7 we show the relative deviation

δνstream =
νstream,measured − νkin,theory

νstream,theory

of the measurements to the theoretic predictions of Eq. (3.1) and for comparison
also to Eq. (1.48).
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Figure 3.7: Kinematic viscosity of the 2D SRD fluid for a mean density of ρ0 =
20/V . In the left panel (a) we see the kinematic viscosity νkin = µkin/ρ0 as a function
of the SRD rotation angle α. In the right panel (b) we see the relative deviation
from the granular theory and the standard theory, for comparison. Also here, we
see a good agreement with at maximum 9% error. We attribute the deviation at
the small rotation angle α to the resulting slower mixing and higher temperature
we obtain in these simulations. In the same range of α < 27.5◦ also the standard
theory exhibits an increasing deviation. The standard theory’s deviation from the
computed values also increases linearly with decreasing α as we have seen in Fig.
3.6(b).

56



3. Results

0 5 10 15 20 25 30

x/a

0

5

10

15

20

25

30
y
/a

(a)

0 5 10 15 20 25 30

x/a

(b)

5

10

15

20

25

30

35

40

N
u

m
b

er
d

en
si

ty
n
ξ

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

G
ra

n
u

la
r

te
m

p
er

at
u

re
θ ξ
/T

re
f

Figure 3.8: Shear simulation of the 2D GSRD fluid that developed a shear con-
densation for α = 50◦ and initial ϵξ,eff = 0.946. The momentum transport across
the band is disrupted and the band continues to contract. Like in Fig. 3.4, also here
we see the result of the higher dissipation rate in denser regions - the shear band is
colder than the rest of the system.

Overall, we can see a rather good agreement for both ρ0 = 10/V in Fig. 3.6 and
ρ0 = 20/V in Fig. 3.7. In both cases we see slight deviations at either low or high
rotation angles. We attribute this to the slow relaxation at low α that has even
more weight in the granular case where collisions also increase correlation between
particles. In the present case, this effect increases with temperature as the constant
rate effective collisions have to account for a higher dissipation rate.

For the rotation angle larger than α = 50◦, we have found the system to be
unstable and with a strong tendency to form condensation bands that complicate
the shear measuring. Even in the stable parameter range, the system exhibits regions
of slightly increased density that extend over several cell lengths a. We assume that
this condition leads to the deviation of the measurement from Eq. (1.48) for values
of α > 40◦. This condition also complicates the derivation, where we have assumed
that the number of particles in a cell follows a Poisson distribution.

An alternative setup to measure the viscosity of the fluid could be a Poiseuille
flow experiment, where the fluid flows between two walls with no-slip boundary
conditions. With this setup the driving acts in a plane parallel to the flow instead
of perpendicular which might stabilize the system considerably. Furthermore, this
setup is much more feasible to implement for experiments. Another problem is the
large compressibility of the SRD and also GSRD fluid which by its nature has an
almost ideal equation of state.
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3.5 Inhomogeneous cooling state

3.5 Inhomogeneous cooling state

3.5.1 Clustering

In this section we want to investigate the dynamical features of granular clusters.
For large coefficient of restitution, e.g. ϵ = 0.995 the freely-cooling granular gas in
the homogeneous cooling state exhibited indications of growing clusters. In order
to obtain well-developed clustering we reduce the coefficient of restitution as a first
step. To obtain clusters at the length scale of our observation it is further necessary
to further reduce the rotation angle to α = 10◦. This corresponds to a more dilute
gas in which particles travel in the same direction longer without colliding, but most
importantly it assures that the kinetic contribution to momentum diffusion remains
dominant as the system cools down (see Discussion).
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Figure 3.9: Density profile of the freely cooling GSRD system for ϵ = 0.98, with
initially T (t0) = 100 Tref and ∆t = 0.01. Panel (a) shows the system close to the
transition to the inhomogeneous cooling state. Panel (b): at t = 104∆t the system
has developed clusters, the density varies over 3 orders of magnitude. These clusters
continue to grow in size, as can be seen in panels (c) and (b) and also continue to
contract.

In the following we investigate a system of 1203 cells with a initial density of
ρ0 = 25/V , hence N = 43.2 × 106 particles. Also here, we simulate using periodic
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3. Results

boundary conditions along all dimensions. Caution has to be exercised for this
setup because it is theoretically possible to choose parameters for which ϵξ,eff ≤ 0,
particularly if the time step ∆t is to large. For the chosen ϵ = 0.98, T (t0) = 100 Tref

and ∆t = 0.01tunit we are at the lower bound so that in the first time step ϵξ,eff = 0.
Actually for the 3D system this does not constitute a problem. The system remains
in the homogeneous cooling state for approximately 3×103∆t, as we can see in Fig.
3.9(a), where density variations span only one order of magnitude. Subsequently,
clusters develop. First their length scales are small (cf. Fig. 3.9(b)), then continue
growing (cf. Fig. 3.9(c),(d)). In Fig. 3.9(d) the maximum density has still grown
compared to before (Fig. 3.9(c)).

The clusters all feature a filament-like shape, similar to those that have been
observed using various simulation techniques [10, 23, 24, 12].
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Figure 3.10: Details of the freely cooling system in a cross-section perpendicular
to the z-axis at 6.5×104∆t. Panel (a) shows the density, panel (b) the temperature.
In panel (c) the streaming profile is visualized with a streamline plot where the line
width is proportional to the flow velocity in the plane. Panel (d) shows the local
Mach number in the system. We observe that dense clusters are cold and stream
macroscopically with supersonic velocities. Also in the streamline plot, we observe
vortices in the flow field.

The growth of clusters originates from both accumulation of more particles and
collisions of the macroscopic clusters. This means that although the system is rather
cold there are still dynamics. Because the thermal velocities decrease rather quickly
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3.5 Inhomogeneous cooling state

in time, while the convective velocities decrease to a lesser extent, the granular gas
flow becomes quickly supersonic. A measure of this dynamical feature is given by the
Mach number M = ∥v∥/vT . These supersonic flows can be seen in the map of the
local Mach number shown in Fig. 3.10(d). Additionally, we show a streamline plot
in Fig. 3.10(c) and local temperatures in Fig. 3.10(b). Their combination shows
that the higher cooling rates in the dense regions lead to bonding of particles to
the cluster due to the lower temperature and hence escape velocity. In this state
the clusters behave as macroscopic objects themselves because they stream with
velocities faster than their internal dynamics, as can be read from the local Mach
numbers Mξ > 1.

The process of clusters growing continues until clusters have reached the size of
the system and then saturates. For bigger system sizes this process of course takes
longer to finish. The evidence for this fact comes from smaller simulations where we
have observed this outcome after ∼ 106∆t. When the saturation sets in, the cooling
follows a power law T ∼ (1 + t)−2 again, similar to Haff’s law. This is because once
clusters have formed, cooling occurs inside them on small scales again, over which
the system is homogeneous.

In simulations with a slightly lower coefficient of restitution of ϵ = 0.975 we
observe the transition to inhomogeneous cooling slightly earlier at ∼ 103∆t. This
simulation was performed with a 2003 grid, a 3D rendered snapshot after ∼ 104∆t
can be seen in Fig. 3.11. These observations completely agree with findings obtained
with an event driven simulation of Luding [23].

(a) (b)

Figure 3.11: 3D density configuration of the GSRD system at (a) t = 2 × 103∆t
and (b) t = 104∆t. The figures are obtained with ray-tracing. The light permittivity
of each GSRD cell proportional to its density. Hence, the middle along the diagonal
appears darker due to the longer light paths. We can see denser clusters that have
filament-like shapes that extend in all directions with no preferred direction.
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3. Results

3.5.2 Cluster growth

In the previous section we have looked at the cluster formation dynamics on macro-
scopic length scale and have thereby observed that the density, velocity and temper-
ature become inhomogeneous with a rather quick transition. The moment when this
transition occurs can be better identified via the standard deviation of the density
distribution, that gives a measure of the fluctuations in the density. The time evo-
lution of the fluctuation (cf. Fig. 3.12(b)) normalized with the initial value shows
a pronounced change from almost constant to a linear growth after approximately
3 × 103∆t. The standard deviation increases to around 7 times the initial value.
Coinciding with that, we see that the mean kinetic energy of the system, which for
identical particles is defined as

Ekin ≡ 1

N

∑
ξ

nξVξ (3.1)

crosses the curve of the temperature in Fig. 3.12(a) at about 3× 103∆t.
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Figure 3.12: Cooling behavior of the GSRD fluid for ϵ = 0.98. Panel (a) shows
the development of the mean kinetic energy of the convective degrees of freedom
and granular temperature as a function of time with a fit of Haff’s law. We see
rather good agreement up to t < 3 × 103∆t where the curve of Ekin and T cross
and hence the global Mach number M exceeds one. The temperature follows a
different power law afterwards. Panel (b) shows the development of the standard
deviation of the density distribution σ(ρ) relative to t = 0. The fluctuations σ(ρ)
only slowly increase until t ≃ 3×103∆t when the behavior changes. In the following,
the fluctuations increase quickly hence indicating a transition to the inhomogeneous
cooling state, coinciding with the change of slope in the cooling behavior and Mach
number M > 1.
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3.5 Inhomogeneous cooling state

Figure 3.13 shows a close-up view of the temporal dependence of the temperature.
One can observe that with insetting saturation there appears another change of
slope. The global cooling thereby increases. In the middle of the clustering regime
the slope of the power law becomes T (t) ∼ t1.55, then slowly returning to T (t) ∼
t1.62. The change of slope during the inhomogeneous cooling state has also been
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Figure 3.13: Detailed cooling behavior of the GSRD fluid for ϵ = 0.98 in the
inhomogeneous cooling state. We show the development of the granular temperature
as a function of t > 3× 103∆t, i.e., the region indicated in the inset. In this region
the cooling behavior changes to a power law T (t) ∼ t1.55. With the saturation of
the clusters the slope begins to approach -2 again.

observed in previous works [23, 24, 25, 26]. Saturation processes also agree with
their observations. Different predictions for the exponent of the new power law
T (t) ∼ tb have been proposed. Brito and Ernst [25] predicted and observed a
dependence of T (t) ∼ t−3/2 in three dimension which comes close to what we find
here.

Likewise, in the simulations in [25], which are performed using event driven
molecular dynamics simulations, a change back to Haff’s law is observed after the
saturation of clusters, in agreement with what we find.
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3. Results

3.6 Velocity distribution function

The velocity distribution function for nonequilibrium granular gases deviates from
the Maxwell-Boltzmann distribution [10]. In particular it decays slower, or in other
words, has a longer tail at larger velocities.

We can determine the velocity distribution function also for the GSRD particles.
It is convenient to express the distribution as a function of the scaled velocities

c ≡ v

∥vT∥
, (3.2)

where the thermal velocity is given by T = m/2v2
T . The scaled velocities are

distributed following a scaled distribution function

f(v, t) =
ρ

∥vT (t)∥3
f̃(c). (3.3)

It is convenient to write f̃(c) as an expansion

f̃(v, t) = ϕ(c)

[
1 +

∞∑
p=1

ap(t)Sp(c
2)

]
, (3.4)

where the first term ϕ(c) ≡ π−3/2 exp(−c2) is the Maxwell distribution for the scaled
velocity. The following terms give corrections to the equilibrium Maxwell distribu-
tion. A suitable set of orthogonal functions {Sp(x)} are the Sonine polynomials
(closely related to the Laguerre polynomials) with corresponding coefficients ap For
the granular velocity distribution function, it is sufficient to consider the first three
orders

S0(x) = 1,

S1(x) = − x+
3

2
,

S2(x) =
x2

2
− 5x

2
+

15

8
.

A plot of the GSRD particles’ velocity distribution is presented in Fig. 3.14. We
observe a good agreement with observations from molecular dynamics simulations
performed by Pathak et al. [26]. The second Sonine coefficient is of major importance
in theories for the velocity distribution function in granular gases [2].

We observe that the second Sonine coefficient is not constant, but changes with
time. In more detail, we report a decrease of a2 over the first time period up to
t = 5 × 102∆t, which is followed by an approach of a2 back towards zero. We can
see in Fig. 3.15 that for higher values of ϵ the curves have a lower minimum around
t = 5× 102∆t.

These findings are qualitatively in good agreements with the analytical predic-
tions and observations by Brilliantov and Pöschel [2] for a variable coefficient of
restitution.
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Figure 3.14: Scaled velocity distribution function f̃ of the 3D SRD fluid. The
distribution has a stronger tail than the Maxwell-Boltzmann distribution.
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Figure 3.15: Second Sonine coefficient as a function of time for four different
coefficients of restitution. First, there is a decrease followed by an approach back
towards zero. Minima are lower for higher ϵξ,eff(t0). At around t = 4 × 103∆t the
systems for the ϵξ,eff = 0.935, 0.96 come close to the transition to the inhomogeneous
cooling state where we see an unexpected positive value of a2. The development of
a2 well agrees with analytical predictions of Brilliantov and Pöschel [2] for a variable
coefficient of restitution.
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Chapter 4

Discussion

4.1 Coarse-graining via the mean collision time

By applying the SRD and GSRD algorithms we drastically coarse-grain the mean
collision time to one single constant, i.e., the time step ∆t. This approximation is
well justified in homogeneous systems with small gradients and spatial variations.

As we have seen in this work and is also observed elsewhere, the freely cooling
granular gas develops spatial variations of the observables that range over several
orders of magnitude. Nevertheless, the global ∆t remains the same. It is hence not
a priori clear if this is a good approximation. Clearly the time step ∆t controls how
finely the dissipation is resolved in space, and thus the cluster formation.

The system’s development of temperature and kinetic energy is well character-
ized by the global Mach number M = v/

√
T . Thus, observing the change in the

global Mach number in Fig. 4.1, we use the fluctuations in density as a measure
for clustering using different ∆t. Ironically, as the time step is too small, i.e. for
∆t

√
T (t0) < a/2 the intrinsic collisional transport phenomena of GSRD leads to

unphysical appearance of clusters for M < 1. If, however, ∆t
√
T (t0) > a/2 the

cluster dynamics does not depend on the choice of ∆t. Thus, we can conclude that
using a global ∆t is a valid approximation and take ∆t

√
T (t0) > a/2 as a condition

for choosing the input parameters ∆t and T (t0). On other end, the condition that
ϵξ,eff > 0 for ∆t determines an upper bound for ∆t.

4.2 Finite size effects

We consider a freely cooling GSRD system with ϵ = 0.98 as in the previous Section.
If we simulate a smaller system using only 303 cells, the cluster growth saturates
within 106 time steps. If this occurs, we see a new interesting behavior. In Fig. 4.2 we
see the development of the mean kinetic energy of the convective degrees of freedom
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Figure 4.1: Density fluctuations σ(ρξ)
2 as a function of M for different ∆t. The

solid line show a power law with exponent two, the dotted line a power law with
exponent 3. The developments start from weak fluctuations. For smaller ∆t we
observe lower initial fluctuations. For ∆t

√
T (t0) < a/2 we observe clustering for

M < 1. In this case the algorithm’s inherent collisional transport leads to unphysical
behavior. For ∆t

√
T (t0) > a/2 the dynamics follow a common trajectory. Crossing

M = 1 the slope increases due to cluster formation. We conclude ∆t
√

T (t0) > a/2
as a necessary condition for choosing the input parameters ∆t and T (t0). The
hydrodynamic theory predicts a universal scaling low stating that all trajectories
below M < 1 converge to a power law σ(ρξ)

2 ∝ M2. Although we see a tendency
for this behavior, we find little evidence for that. In the inhomogeneous cooling all
curve approach a power law with exponent 3.

and temperature for a 1203 cell and a 303 cell simulation. In the inhomogeneous
cooling state both curves follow a power law.

From visual inspections of Fig. 3.9 we can estimate that the typical length scale
of clusters reaches 30a at approximately t = 105∆t. While in the large simulations
the clusters keep growing, in the small system the clusters start interacting with
themselves through the periodic boundary conditions. Most of the kinetic energy in
the system consists of the movement of clusters. Since the total momentum is zero,
the kinetic energy is dissipated faster from this time on, because the whole system
connects to an extended cluster that doesn’t move. We observe that the kinetic
energy drops about three orders of magnitude in one magnitude in time.

We conclude that this effect restricts the further investigation of the system’s
development.
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Figure 4.2: Granular temperature and mean kinetic energy of the freely cooling
GSRD system with ϵ = 0.98 in (a) a large system size of 1203 cells and (b) a small
system size of 303 cells. In both systems the kinetic energy decreases with a power
law slower than the temperature. At approximately t = 105∆t the cluster length
scale reaches 30a, the linear size of the smaller system (b). This system contracts
to one big cluster that does not move due to momentum conservation. We observe
this process by a sudden drop of kinetic energy in (b) of 3 orders of magnitude in
one decade of time.

4.3 Rotation angle and inhomogeneous cooling

The SRD rotation angle α also plays a role in the cluster formation. From the calcu-
lation of the viscosity we can conclude that shear heating increases as α decreases.
Furthermore, α controls how far a particle travels in a certain direction without
being significantly deflected.

We find that in the homogeneous cooling state the power law of the kinetic energy
of the convective motion changes with α. For higher α the mean kinetic energy in
the system decreases with a power law Ekin ∝ t−τ with a higher exponent τ .

For granular gases, the kinetic energy curve has to cross the temperature curve,
i.e. it has to become supersonic in order to exhibit clustering. From observations in
nature, theory or models as molecular dynamics simulations we know that clustering
is an essential feature of granular gases. For this reason one has to choose α ≤ 11◦.
The curves of the higher rotation angles in Fig. 4.3(a), (b) and (c) show a decrease of
kinetic energy similar to that we have seen in Fig. 4.2(b) in the context of finite size
effects. Though now the phenomenon appears for systems in the subsonic state. The
reason is similar to that in Section 4.2. The collisional viscosity increases with α but
is independent of the temperature [3]. However, for α → 0 the collisional viscosity
vanishes. Hence, for α too large, as the system cools down GSRD collisions become
dominant at some point of the evolution. This leads to momentum diffusion over
the cell length a, thus propagating much faster than streaming.
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4.3 Rotation angle and inhomogeneous cooling
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Figure 4.3: Development of the granular temperature T/T0 (green circles) and
mean kinetic energy Ekin/kBT0 (blue squares) in the freely cooling system as a
function of time. The slope in the double logarithmic plot changes with the GSRD
rotation angle α, decreasing for higher angles. Due to finite sizes effects the kinetic
energy curves exhibit sudden drops at ca. t ≃ 104∆t for the systems with α > 11◦.
This is because the collisional viscosity increases with α and, moreover, in contrast
to the streaming viscosity, it does not depend on the temperature [3]. Hence, for α
large, collisional contributions apparently become dominant at a premature state of
the evolution.

As one can see in Fig. 4.4, choosing α low enough prevents that, with decreasing
temperature, νcoll exceeds νstream.

A larger α gives a completely different mechanism for clustering. The clusters
lose the typical shape they have due to their formation under hydrodynamic shear
instability. Instead they appear more globular, cf. Fig. 4.5. Moreover, the cluster
formation saturates more quickly as indicated by the quick decay of kinetic energy
in Fig. 4.3(a), (b) and (c). All together, the behavior is similar to choosing ∆t too
low.

A good choice of the rotation angle is hence α ≤ 11◦, though caution has to be
exercised in combining α, ∆t and T (t0).
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Figure 4.5: Clustering of the 3D GSRD system if collisional viscosity becomes
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also observe an anti-correlation. The clusters develop in lumpy shapes because the
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69



70



Chapter 5

Outlook

5.1 Driving by shaking

Driven granular systems are intensively studied because they can reach a steady
state and are thus easily controllable and observable. A common experimental setup
consists of a granular system under the influence of gravity that is driven by a shaker
attached to the system’s container. The system undergoes periodic oscillations along
the z-axis cf. Fig. 5.1. These increase the kinetic energy of particles colliding with
the ground.

We have carried out preliminary simulations of a vibrated granular system. We
implement this by first adding a gravity force F/m = −gẑ that we apply on particles
using Euler integration with a time step ∆t. While in the x and y dimension we
apply periodic boundary conditions, along the z-axis we confine the system between
solid walls using the bounce-back rule. The lower wall at z = 0 conducts periodic
oscillations which serves as an energy source to the system.

During the simulation the system first compresses to a dense layer that remains
at some distance from the bottom wall cf. Fig. 5.2(a). This dense layer lies on a
hot layer, cf. Fig. 5.2(b), that is in contact with the vibrating, bottom wall.

In the x- and y-dimension (cf. Fig. 5.2(c) and (d)), the system forms clusters
that appear to form patterns. These show an increase of their length scale with
time. Again we observe an anti-correlation between density and temperature.

A complication of the shaken system is that as the length scale of the apparent
pattern grows, the granular gas eventually collapses when the length scale reaches
the system size. In other words, because SRD and also GSRD have a high compress-
ibility, the mass in the system continues to accumulate in one point in space. We
conclude that further work is necessary to stabilize the steady state of a vibrated
system. This should not coma as a surprise, since a vibrated system is subject to
strong forces and the granular dissipation is concentrated in a small fraction of the
system’s volume.
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(c), (d)
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Figure 5.1: Sketch of a granular system under the influence of gravity driven by
shaking. In the simulations’ setup periodic boundaries are applied along the x- and
y-axis. Along the z-dimension the system is confined by walls where the wall at
z = 0 conducts a periodic oscillation. Lastly, particles are accelerated by a gravity
force F/m = −gẑ. Particles are sketched with red and blue circles representing large
and small thermal velocities, respectively.
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Figure 5.2: Granular SRD in a driven system. (a) The fluid forms a dense layer
elevated at some height z over the ground at z = 0, towards which the gravitational
force is pointing. (b) The layer below the dense layer is in contact with the vibrating
ground and is hence hotter than the dense layer lying above. (c) Viewed from above,
the dense layer itself show variations in density that form a pattern. (d) The granular
temperature also in this system is anti-correlated to the density, i.e., where the fluid
is denser the temperature is lower.
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Chapter 6

Conclusion

Granular materials are particularly intriguing because of the rich phenomenology
they exhibit. From industrial applications, to geophysical and astrophysical prob-
lems, understanding their fundamental physics is of paramount importance. In the
past decades, considerable experimental, theoretical and numerical work has un-
veiled myriad effects (often counterintuitive) occurring at different length scales in
a granular system. For this reason, simulations often encounter the issue of finite
size effects. Having efficient models that can easily span a large range of length and
energy scales. The SRD technique offers a twofold advantage: (i) it is extremely
computationally convenient as its computational complexity scales linearly with the
size of the system; (ii) because of its simplicity, it is amenable to exact analytical
predictions. In this Master’s thesis we have taken a first concrete step towards a
generalization of the particle based SRD method, originally used to simulate the
hydrodynamics of simple fluids, to the simulation of granular gases. The algorithm
uses an effective local coefficient of restitution to render energy dissipation dependent
on local mesoscopic observables, while locally conserving density and momentum.
As we were able to show, the model obeys linear granular hydrodynamic equations,
which have been rigorously derived by a number of authors in the past three decades.
Furthermore, we derived a formula for the kinematic viscosity of the 2D GSRD fluid.

To test our derivations, we developed a software implementation for simulation
on general purpose graphics cards that we successfully tested and benchmarked
with analytical predictions for standard SRD. Turning to GSRD, we observe that
our prediction of the kinematic viscosity compares well with the results obtained
from our simulations. In this context we found that for low shear driving the fluid
becomes unstable and develops shear condensation.

In the simulations of a freely-cooling granular gas the temperature evolution
follows the prediction of Haff’s law over several orders of magnitude in time and
temperature. Furthermore, we observe clustering for lower coefficients of restitution.
The emergence and dynamics of the cluster compare well with expectations based
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6. Conclusion

on theory, experiments and simulations. The clustering sets in as the global Mach
number exceeds one. Subsequently, the density fluctuations grow while we observe a
change in the power law of the temperature evolution. The clusters exhibit a higher
cooling rate, hence density and temperature become anti-correlated. This locally
leads to supersonic flow. After their emergence, clusters move, collide and thus grow
further.

The velocity distribution function compares well with theoretical predictions.
The distributions decay slower, a phenomenon known as high energy tail. The
shape of the reduced velocity distribution function changes with time as predicted.
The second coefficient of the Sonine expansion qualitative matches with analytical
predictions.

In our discussion we provide physical criteria for a critical selection of model
parameters, and identify the effects of the finite system size. Lastly, in our Outlook
we provide detailed information about the application of the GSRD method for the
simulation of granular matter under the influence of an external gravity force, driven
by a spatially oscillating boundary condition. We believe that the work initiated
here is a useful contribution to the research on granular gases.
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Figure A.1: Evolution of the freely-cooling 3D GSRD fluid for ϵ = 0.975 on a
grid of 2003 cells. The transition to inhomogeneous cooling sets in at approximately
t = 103∆t. Subsequently, the formed clusters merge as they move through the
system and form larger clusters. The maximum density grows larger for this bigger
system, what we can see in panel (d), since the limit of the cluster length scale is
larger here.
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Abschlussarbeit nicht, auch nicht auszugsweise, im Rahmen einer nichtbestandenen
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