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Low-dose cryo electron 
ptychography via non-convex 
Bayesian optimization
Philipp Michael Pelz   1,2, Wen Xuan Qiu3, Robert Bücker1, Günther Kassier1 &  
R. J. Dwayne Miller1,3

Electron ptychography has seen a recent surge of interest for phase sensitive imaging at atomic or near-
atomic resolution. However, applications are so far mainly limited to radiation-hard samples, because 
the required doses are too high for imaging biological samples at high resolution. We propose the use of 
non-convex Bayesian optimization to overcome this problem, and show via numerical simulations that 
the dose required for successful reconstruction can be reduced by two orders of magnitude compared 
to previous experiments. As an important application we suggest to use this method for imaging 
single biological macromolecules at cryogenic temperatures and demonstrate 2D single-particle 
reconstructions from simulated data with a resolution up to 5.4 Å at a dose of 20e−/Å2. When averaging 
over only 30 low-dose datasets, a 2D resolution around 3.5 Å is possible for macromolecular complexes 
even below 100 kDa. With its independence from the microscope transfer function, direct recovery of 
phase contrast, and better scaling of signal-to-noise ratio, low-dose cryo electron ptychography may 
become a promising alternative to Zernike phase-contrast microscopy.

The advent of direct electron detectors has led to a resolution revolution in the field of cryo electron microscopy 
in the last few years. The technique is now producing three-dimensional atomic potential maps of biological 
macromolecules of a few 100 kDa or lower with a resolution better than 3.5 Å1–3, such that individual amino acid 
side-chains can be resolved. An important role in this revolution play new image processing algorithms based 
on a Bayesian approach, which infer important parameters without user intervention4. Also the correction of 
beam-induced motion has become possible mostly due to the new generation of detectors5, 6. However, several 
challenges remain to be overcome in order to routinely reach 3 Å resolution also for small complexes7, 8: Firstly, 
beam-induced specimen charging and subsequent motion currently still render the high resolution information 
of the first few frames of a high repetition rate movie recorded with a direct electron detector unusable9, because 
the motion is too fast to efficiently correct for it. Secondly, the Detective Quantum Efficiency (DQE) of detectors 
is still imperfect at high spatial frequencies8, 10. Thirdly, the contrast of single images can still be improved to ena-
ble reconstructions with fewer particles and increase the throughput10.

The last of these challenges has recently been addressed with a new phase plate model11, 12, which is compara-
tively simple to use and provides excellent contrast at low spatial frequencies. In addition to this hardware-based 
approach to achieve linear phase contrast in the measured amplitudes, discovered by Zernike in the 1930s13, it is 
also possible to algorithmically retrieve the phase information from a set of coherent diffraction measurements. 
One such technique, commonly known as ptychography or scanning coherent diffractive microscopy14, is becom-
ing increasingly popular in the field of materials science due to experimental robustness and the possibility to 
obtain quantitative phase contrast over an essentially unlimited field of view15, 16. The use of ptychography for 
imaging radiation sensitive samples with electrons at high resolution is however precluded so far by its high dose 
requirements.

Here, we show how the use of non-convex Bayesian optimization to solve the ptychographic phase retrieval 
problem fulfills the dose requirements for imaging biological macromolecules and makes it possible to obtain 2D 
images from single particles with sub-nanometer resolution. After a short introduction into the technique, we will 
also mention how ptychography offers improvements for the other two challenges discussed above.
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Despite being initially proposed as a solution to the phase problem for electrons17, 18, ptychography has seen 
its biggest success in X-ray imaging, due to the less stringent sample requirements and the experimental need for 
lensless imaging techniques. Recent developments include the introduction of iterative algorithms to enable the 
reconstruction of datasets collected with an out-of focus probe19, 20, which decreases the memory requirements 
of the method dramatically. The algorithms also have the capability for the correction of experimental difficulties 
such as unknown scan positions21–23, partial coherence24, probe movement during exposure25, 26, intensity fluctu-
ations during the scan24, 27 and reconstruction of background noise15, 27.

In recent years, some of these advances have been applied in the context of electron microscopy and yielded 
atomic resolution reconstructions of low-atomic number materials28–30 and quantitative phase information15.

Figure 1 shows the experimental set-up for an out-of focus ptychography experiment. A ptychographic dataset 
is collected by scanning a spatially confined, coherent beam, subsequently called ‘probe’, over the specimen and 
recording far-field diffraction patterns at a series of positions such that the illuminated regions of neighboring 
positions overlap. The diffraction-limited resolution rd (half-period) of the final image is given by = λ ⋅ ∆

⋅
r z

N dd
pix pix

, 
where Npix is the number of detector pixels, dpix is the detector pixel size and λ is the de-Broglie-wavelength of the 
electrons. Given the set of positions r1 K…  and a realistic forward model for the formation of the corresponding 
diffraction patterns I K(1 )… , the complex-valued transmission function T r( ) , which describes the atomic properties 
of the specimen31, can then be retrieved by solving a non-convex inverse problem. The electron dose used for 
successful reconstruction has exceeded 1 × 103e−/Å2 so far, limiting the usability of ptychography to 
radiation-hard specimens. Table 1 lists recently published electron ptychography experiments and the used aver-
age electron doses. The lowest dose was reported in ref. 32, which used an estimated 3.33 × 103e−/Å2 at a resolu-
tion of dr = 58.4 pm, resulting in a dose of 1.1 × 103e−/pixel and achieving a line resolution of 2.3 Å, demonstrated 
by resolving the lattice spacing of gold nanoparticles. We will demonstrate via simulations that it is possible to 
reduce this dose by a factor of 100, thus reaching the dose range allowed for imaging biological macromolecules.

The problem of beam-induced sample movement has already been addressed before the development of fast 
direct detectors. Scanning with small spots of several 10 nm in size over a vitrified sample has shown to reduce 
beam induced specimen movement33–35 in real-space imaging and it has been noted that the remaining move-
ment may be due to radiation damage, not sample charging33. Ptychography naturally operates with a confined 

Figure 1.  Experimental geometry in ptychography. The coherent electron wave function ψ r( ) illuminates 
several regions (centered at …

r1 K) across the sample, which is characterized by the transmission function T r( ) . 
For each position, a 2D diffraction pattern I K(1 )…  is recorded in the far field at distance Δz. The sample 
thickness t can be neglected for biological macromolecules in the reconstruction at the resolutions presented in 
this paper.

Reference resolution e−/Å2

D’Alfonso et al.30 ~1.5 Å 1.77 × 104

Yang et al.29 atomic 1.3 × 104

Putkunz et al.28 ~1 Å 9.2 × 106

Humphry et al.32 ~2.3 Å 3.33 × 103

Table 1.  List of previously published electron ptychography experiments and used electron dose.
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beam, thus minimizing the area where charge can build up, such that the movement should be reduced compared 
to the illumination of large areas in cryo-EM. The sampling requirements given by the experimental setup allow 
to operate the detector with large effective pixel sizes, such that the DQE and MTF are at near-perfect values and 
can be neglected in the reconstruction. The overhead resulting from the need to take multiple exposures can 
therefore be greatly reduced by using fast detectors with few pixels.

Results
Image formation of cryo-TEM and ptychography.  We perform multislice simulations of three different 
biological macromolecules with molecular weights ranging from 64 kDa to 4 MDa. We choose the 64 kDa hemo-
globin36, the 706 kDa 20S proteasome from yeast2, and the 4 MDa human ribosome37. We create atomic potential 
maps using the Matlab code InSilicoTem38, with a thickness of 50 nm and at an electron energy of 300 keV. We 
use the isolated atom superposition approximation, without solving the Poisson-Boltzmann equations for the 
interaction between the molecule and the ions. We also do not model the amorphousness of the solvent, which 
was performed in ref. 38 using molecular dynamics simulations, but was seen to have a negligible effect at very 
low doses. As described in ref. 38, we model the imaginary part of the potential via the inelastic mean free path, 
creating a minimal transmission contrast between the vitreous ice and the protein. Using these potential maps, we 
simulate a ptychography experiment by cropping three-dimensional slices from the potential at several positions 
and propagate a coherent incoming wave through the slices using the methods described in ref. 39 in custom 
code. The final model for the formation of the intensity on the detector is then

I q r( ) [ ( )] (1)exit0
2

ψ=

for the diffraction pattern and

ψ= ⋅−I q r q( ) [ [ ( )] CTF( )] (2)exit0
1 2

 
 

for the cryo-EM image, where   and 1−  denote the forward and inverse Fourier transform, and CTF the con-
trast transfer function, respectively.

The detector properties are modeled as in ref. 38, by multiplying the Fourier transform of the exit-wave inten-
sity with the square root of the detective quantum efficiency qDQE( ) 40, before applying shot noise by sampling 
from a Poissonian distribution. We finally convolve the noisy signal with the noise transfer function qNTF( )  to 
yield the measured intensity.

A notable difference both in simulation and practice is the fact that for cryo-EM, usually no pixel binning is 
applied to maximize the imaged area and increase throughput. Therefore, also high spatial-frequency regions 
with low values of DQE and NTF are used for image formation41. For ptychography, on the other hand, the detec-
tor can be heavily binned, as long as the real-space patch given by λ∆ ≡ ⋅z d r N/ pix d pix still encompasses the 
probe beam on the sample. For typical detectors this condition is fulfilled at bin sizes equivalent to a few percent 
of the Nyquist frequency. This leads to a near-constant DQE and a near-unity NTF, such that they can be omitted 
in the ptychography reconstructions, whereas we still include them in the simulation of the diffraction data. We 
note, however, that a convolution with a detector transfer function can be modeled with a partially coherent beam 
if necessary, as demonstrated in refs 42 and 43. We choose the Gatan K2 Summit as the detector for our simula-
tions because it has the highest published DQE and MTF values at low spatial frequencies at 300 keV41. We note 
that direct detection cameras with frame rates of 1 kHz and above may be more suitable for high-throughput 
scanning experiments44–46, but characteristics for these cameras at 300 keV are either not published or inferior to 
the K2 Summit. Assuming the K2 Summit for both ptychography and phase-contrast TEM simulations also sim-
plifies a direct comparison between the two methods. The intensity after detection is modeled as38:

= ⋅ ⋅− −   I q I q q q( ) [ [Poisson( [ [ ( )] DQE( ) ])] NTF( )], (3)1 1
0   

where NTF and DQE are properties of the detector40, 45 and Poisson(x) samples from a Poisson distribution with 
mean x.

Single-particle reconstruction.  Figure 2 shows a comparison of low-dose ptychography reconstructions 
with currently used methods for single-particle imaging with electrons: defocus-based cryo-EM, and Zernike 
phase contrast cryo-EM with a Volta phase-plate. We choose exemplary doses of 5 e−/Å2 as the typical thresh-
old where the highest resolution details are destroyed47 and 20 e−/Å2 as a typical dose at which experiments are 
performed. We have reversed the contrast in the cryo-EM images to simplify the visual comparison with the 
ptychography reconstructions. To quantitatively assess the image quality, we have computed the 2D Fourier Ring 
Correlation (FRC)48 with the ground truth for the both ptychographic reconstruction and simulated cryo-EM 
images of the macromolecules, as shown in Fig. 3. As ground truth for the images we use the electron counts in a 
noiseless, aberration-free phase-plate image. Using the 1-bit criterion as a resolution threshold48, the achieved res-
olutions at 5 e−/Å2 and 20 e−/Å2, respectively, are 12 Å and 8.9 Å for hemoglobin; 10.9 Å and 9.1 Å for 20S proteas-
ome; and 10.3 Å and 5.4 Å for human ribosome. In the case 20S proteasome, these values are identical to the FRC 
threshold for the phase plate image; for hemoglobin and human ribosome, the phase plate image yields a slightly 
better resolution of 8.7 Å and 5.1 Å respectively at a dose of 20 e−/Å2 and 10 Å at a dose of 5 e−/Å2. As the FRC is 
insensitive to very small and very large values of signal-to-noise ratio (SNR), we also show the spatial-frequency 
resolved SNR in Fig. 3(d)–(f). We define the SNR as
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The SNR of the ptychographic reconstruction is significantly lower than the SNR of the phase-plate image for 
all three particles at spatial frequencies below 0.1 Å−1. It does however scale better to high spatial frequencies, 
and does not drop below −15 dB for all particles and all resolution up to nearly 0.5 Å−1, where the SNR is close to 
two orders of magnitude better than the phase-plate image SNR. This helps ptychography perform better when 
multiple reconstructions are averaged, because a positive single-digit SNR can be reached with fewer particles.

Effect of averaging.  In single-particle cryo-EM, a three-dimensional reconstruction can be obtained by 
collecting a large ensemble of 2D images, before orienting and averaging them in three dimensions, such that 
a satisfactory SNR is achieved. A similar 3D reconstruction from ptychographic data is out of the scope of this 
paper. A straightforward approach would be to use the reconstructed 2D phase images as an input to existing 3D 
reconstruction algorithms4, 49, as is done routinely in ptychographic X-ray tomography50; however, it is likely that 
a dedicated algorithm which reconstructs the 3D structure directly from the diffraction patterns will achieve the 
best results. Coarse orientation alignment for such an algorithm could be done in real space from 2D reconstruc-
tions shown here. We leave the evaluation of such approaches to future studies, and for now concentrate on the 
achievable 2D resolution when averaging a larger ensemble of particles.

To give a rough estimate how the resolution and SNR achieved by our algorithm scales with averag-
ing over multiple datasets, we simulate 30 independent datasets with identically oriented particles, and aver-
age the reconstruction results. We found that the resolution corresponding to the diffraction limit as defined 
by the probe-forming aperture is achieved with roughly 40 averaged reconstructions (see the Supplementary 
Information). Superresolution beyond this point is in principle possible, but due to the low electron counts 
and the low contrast transfer for higher angles, more images are needed for further improvements. To limit the 
amount of necessary computation we use an average of 30 images, where a resolution of roughly 3 Å is reached, 
close to the resolution corresponding to the probe-forming aperture of 2.7 Å. Figure 4(a)–(f) show images of the 

Figure 2.  Cryo-electron ptychography reconstructions from simulated data and simulated cryo-EM images 
for different doses and 3 macromolecules with growing molecular weights in columns 1–3. Row (a) Phase of 
the transmission function, the ground truth for the ptychography reconstructions. The scale bar next to the 
figures is in rad. Rows (b) and (e) ptychography reconstruction at doses of 5 e−/Å2 and 20 e−/Å2. Rows (c) 
and (f) Simulated cryo-EM image with a defocus of 1.6 μm at a dose of 5 e−/Å2 and 20 e−/Å2. Rows (d) and (g) 
Simulated cryo-EM image with a Zernike phase plate and a defocus of 50 nm at doses of 5 e−/Å2 and 20 e−/Å2. 
Column (1) hemoglobin, column (2) 20S proteasome, column (3) human ribosome.



www.nature.com/scientificreports/

5SCIEntIFIC REPOrts | 7: 9883  | DOI:10.1038/s41598-017-07488-y

averaged reconstructions of the three samples, at doses of 5 e−/Å2 and 20 e−/Å2 respectively. We also compare 
the FRC between respectively 30 averaged reconstructions of 60 independently created ptychographic data sets, 
to give a resolution estimate. We use here the 1/2-bit resolution threshold discussed in ref. 48, which gives a 
slightly more conservative estimate than the 0.143-criterion commonly used for the 3D Fourier Shell correlation 
in averaged reconstructions for 3D cryo-EM. With averaging, a resolution of 3.4 Å is achieved for hemoglobin, 
3.1 Å for 20S proteasome and 2.9 Å for human ribosome, all at a dose of 20 e−/Å2. This shows that cryo-electron 
ptychography can recover atomic resolution information in 2D from only tens of averaged images, facilitated by 
the favorable scaling of the SNR with spatial frequency, as discussed above. It may therefore be possible to dras-
tically reduce the number of particles that is required for a successful 3D reconstruction at atomic resolution. A 
rough tomographic estimate51 suggests that the ribosome could be reconstructed to 3 Å resolution in 3D with less 
than 10000 particles.

Probe and dose dependence.  It is well-known that the phase profile of the ptychographic probe can heav-
ily influence the reconstruction quality52–56. Here, we numerically test three different probes, depicted in Fig. 5, 
and their influence on the reconstruction SNR at low and high doses: (1) a standard defocused probe with defo-
cus aberration of 400 nm, (2) a defocused Fresnel Zone Plate (FZP), and (3) a randomized probe generated by 
a holographic phase plate and a conventional lens. Figure 5 depicts these probe in real and Fourier space, and 

Figure 3.  FRC (a)–(c) and SNR (d)–(f) as a function of spatial frequency for the cryo-electron ptychography 
reconstructions and simulated cryo-EM images in Fig. 2.
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typical diffraction patterns at infinite dose and low dose. The FZP was recently suggested as a phase modulator 
for bright-field STEM57, because its simple phase modulation allows analytical retrieval of linear phase contrast. 
However, diffractive optics typically have imperfections due to the manufacturing process, which introduce errors 
and dose inefficiency if the phase modulation is obtained by a simple fitting procedure. Iterative ptychography 
algorithms allow for the simultaneous retrieval of the probe wave function19, 20, and therefore offer full flexibility 
in the design of the phase profile. Empirically, probes with a diffuse phase profile result in better reconstructions; 
therefore, we test as a third probe a random illumination generated by a holographic phase plate and a focusing 
lens.

Figure 6 shows the SNR of the three proposed probes as a function of spatial frequency for doses of 20 e−/Å2 
and 80 e−/Å2. It can be seen that the simple defocused probe has almost 2 orders of magnitude worse SNR than 
the FZP and the random probe at the lowest spatial frequencies. At low spatial frequency the FZP achieves the 
best SNR, while at high spatial frequencies the random probe does slightly better. We have therefore used the 
random probe for the reconstructions shown in Figs 2 and 4. We give a qualitative explanation of this fact, but 
emphasize that a theory for optimal measurement design in ptychography and a practically feasible implementa-
tion of it is still outstanding, and may drastically improve upon the results presented here. From Fig. 5 column c) 
it can be seen, that the randomized probe induces the strongest intensity fluctuations (speckle) in the diffraction 
pattern. These very localized fluctuations vary strongly when scanning the sample, while the diffraction pattern 
from the defocused probe has slowly-varying features, which correlate strongly with the real space transmission 
function and vary only weakly when scanning the sample, which leads to a less diverse dataset and can cause 
problems in the reconstruction.

Figure 4.  Average over 30 ptychographic reconstructions from independent data sets for (a) hemoglobin with 
5 e−/Å2, (b) hemoglobin with 20 e−/Å2, (c) proteasome 20S with 5 e−/Å2, (d) proteasome 20S with 20 e−/Å2, 
(e) human ribosome with 5 e−/Å2, (f) human ribosome with 20 e−/Å2. FRC of averaged reconstructions from 
independent data sets for (g) hemoglobin, (h) proteasome 20S (i) human ribosome.
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Methods
Mathematical framework of Ptychography.  We define the two-dimensional grid with size 

 n n1 2× ∈ ×  and length scale r > 0 as α β= ⊂α β
×

= D r r: ( , )r
n n n n

, 0
, 21 2 1 2 . The two-dimensional complex  

Figure 5.  Different probes evaluated in this paper and corresponding diffraction patterns. Row 1: defocused 
beam with defocus aberration of 400 nm, convergence half-angle 9.2 mrad; row 2: defocused beam created 
by a Fresnel zone plate, 600 nm from focus; row 3: randomized beam, generated by a holographic phase plate 
and focused by a conventional lens. Column (a) beam in real space, at the sample position, scale bar is 8.5 nm; 
column (b) beam at the probe forming aperture, scale bar is 4.5 mrad; column (c) diffraction pattern of human 
ribosome at unlimited dose, normalized to the maximum intensity; column (d) diffraction pattern for a scan 
with an electron dose of 20 e−/Å2. The inset in 1a shows the color wheel that is used to represent amplitude and 
phase in columns (a) and (b).

Figure 6.  SNR of reconstructions of the human ribosome at different radiation doses using the defocused 
probe, the Fresnel zone plate and the randomized probe.
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transmission function of the object is discretized as a n1 × n2 matrix and denoted as →× T D: r
n n
d

1 2 , where rd > 0 
is the diffraction-limited length scale as introduced above. The object is illuminated by a small beam with known 
distribution, and discretized as a m1 × m2 matrix, denoted as ψ →× D: r

m m
d

1 2 . For simplicity, in this paper we 
only consider the case n1 = n2 and m1 = m2, i.e. a uniform discretization in both axes. In the experiment, the beam 
is moved over the sample to positions ri

, and illuminates K > 1 subregions to obtain K diffraction images. The 
intensity measured for position i is then

I q r r T r i K( ) [ ( ) ( )] , {0, , }, (5)i i
2

   ψ= + ⋅ ∈ …

where the real-space coordinates are discretized in steps of rd, and reciprocal-space coordinates in steps of 
(m{1,2}rd)−1. Mathematically, ptychographic reconstruction can be understood as a special case of the generalized 
phase retrieval problem: given a phase-less vector of measurements y m∈ +  find a complex vector ∈ z n such that

y z , (6)2= 

where →: n m   is an arbitrary linear operator. We follow the notations in ref. 52 to write the ptychography 
problem in this form. First, we vectorize the transmission function as ∈TV N  with = ⋅ ∈N n n1 2 . We intro-
duce the matrix ∈ ×R i

M N
( ) , which extracts an m1 × m2 sized area centered at position ri

 from TV. With these 
notations in place, the relation between the noise-free diffraction measurements collected in a ptychography 
experiment and TV can be represented compactly as

= | | = | |I FQT PT , (7)V V2 2

where P is constructed by cropping K regions from TV and multiplying by the incoming beam in Q, and applying 
a 2D discrete Fourier transform F, i.e. P = FQ:
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The matrix ∈ ×P KM N  is sometimes called design matrix, because its entries determine the measurement 
outcome and reflect the experimental design. In the last decades many algorithms to solve this problem have been 
devised, only a few of which we will review with regards to low-dose reconstruction in the following section. For 
the subsequent analysis, we denote the KM row vectors of P as pi.

Bayesian optimization with truncated gradients.  The most prominent iterative algorithms to solve 
the ptychographic phase retrieval problems are the difference map (DM) algorithm14, and the extended ptycho-
graphic iterative engine (ePIE)20. The difference map belongs to the family of algorithms which use projections 
onto non-convex sets to reach a fix-point, i.e., the solution lying at the intersection of the two sets. It can be 
shown that the standard algorithm of alternating projections is equivalent to steepest-descent optimization with 
a Gaussian likelihood, and is not suited for low-dose reconstructions52, because the for this case Poisson distri-
bution arising from discretized count events differs too strongly from a Gaussian. While this argument does not 
hold for the more elaborate projection algorithms like DM and relaxed averaged alternating reflections (RAAR)58, 
they also fail in practice at low doses25, 59, and statistical reconstruction methods have to be used. Thibault and 
Guizar-Sicairos24 have analyzed maximum likelihood methods in conjunction with a conjugate gradient update 
rule as a refinement step, after the DM algorithm has converged. They demonstrate improved SNR by two orders 
of magnitude compared to the DM algorithm alone. They note, however, that starting directly with maximum 
likelihood optimization often poses convergence problems.

Due to the lack of algorithms with convergence guarantees, the mathematical community has recently picked 
up the problem, and a host of new algorithms with provable convergence has been developed. While we do not 
elaborate on them here we point the interested reader to the summary articles60, 61 and the article62, which refers 
to the most recent developments.

Here, we focus on developments which specifically target low-dose applications. Notable in this area is the 
work by Katkovnik et al.63, which in addition to the maximum likelihood estimate introduces a transform-domain 
sparsity constraint on the object and optimizes two objective functions in an alternating fashion: one for the 
maximizing the likelihood, and one for obtaining a sparse representation of the transmission function. However, 
instead of including the Poissonian likelihood directly, an observation filtering step is performed with a Gaussian 
likelihood. To obtain a sparse representation of the object, the popular BM3D denoising filter is used64.

During the writing of this paper, Yang et al. suggested using the Wigner Distribution Deconvolution technique 
for low-dose ptychography65, however no statistical treatment of the measurement process is included so far.

In this work, we formulate ptychographic phase retrieval as a Bayesian inference problem, by rewriting the 
probability of the transmission function TV given a set of measurements = … ∈ +y y yy ( , , , )KM

T KM
1 2   according 

to Bayes’ rule:
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The prior distribution P(TV) is usually chosen such that it favors realistic solutions, so that noise is suppressed 
in the reconstructed image. Here we evaluate two different models. A simple prior, suggested in ref. 42, penalizes 
large gradients in the image with a Gaussian distribution on the gradient of the transmission function, which is 
also known as Tikhonov regularization:
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with κ = 8
N

N I
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2

m 1
 chosen as in ref. 42. Nm is the total number of valid measurements, Npix * K in the case when 

the detector has no hot pixels. This scales the numerical value of the prior to be close to the likelihood, such 
that the weight μ0 can take values between 1 × 10−1 and 1 × 10−2. Dx and Dy are the discrete forward difference 
operators. The second prior we evaluate is based on the work by Katkovnik et al.63 and uses sparse modeling to 
denoise the transmission function:

P T T T( ) exp
(13)
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Here, TV
sparse is built up by applying the BM3D collaborative filtering algorithm64, 66, which we briefly describe 

in the Supplementary Material. As input for the BM3D algorithm we transform TV into hue-saturation-value 
format using domain coloring. The prior Psparse(T) reduces the difference between the denoised version of the 
current transmission function and the transmission function itself. We do not take into account the marginal 
likelihood P(y) due to the high dimensionality of the problem. Given the likelihood function P(y|TV) and the 
prior distribution P(TV), we can now write the objective function for the maximum-a-posteriori (MAP) 
estimate:
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The log-likelihood is given as
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and the MAP objective functions are
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for the two prior models, respectively. We calculate the gradients of both expressions:
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Since equations (16) and (17) are non-convex functions, there is no guarantee that standard gradient descent 
converges to a global minimum. Recently, a non-convex algorithm for the generalized phase retrieval problem 
with Poisson noise was presented67, that provably converges to a global minimum with suitable initialization. It 
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introduces a iteration-dependent regularization on the gradients of the likelihood to remove terms which have a 
negative effect on the search direction. Namely, it introduces a truncation criterion

α
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that acts on the gradient of the likelihood and suppresses the influence of measurements that are too incompat-
ible with the reconstruction. The truncation parameter αh ≥ 5 is described in ref. 67. The regularized likelihood 
gradient is then
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We compute the next step using conjugate gradient descent68, 69, since this lead to much faster convergence 
compared to the update procedure described in ref. 67.

Initialization.  Truncated spectral initialization for ptychography was first proposed by Marchesini et al.52, based 
on the notion that the highest intensities in the diffraction pattern carry the strongest phase information. They 
compute the phase of the largest eigenvector of the following hermitian operator:

† † †1 FQ Q Q Q F 1( ) , (22)y y
1

i iε ε>
−

>

where ε is chosen such that the largest 20 percent of the intensities are allowed to contribute and F and Q are 
defined as above. The largest eigenvalue of a sparse hermitian matrix can be efficiently computed either with 
power iterations70, or with the Arnoldi method71. In ref. 67, truncated spectral initialization with a truncation rule 
with 1 yi 0

2
0
2α λ<  is used, with λ = ∑ = yi

KM
i0 1  and α0 a free parameter. It is also important to note that the truncated 

spectral initialization only produces visually correct initial phase to a dose of roughly 100 e−/Å2. Figure 7(b) 
shows an example initialization for a dose of 100 e−/Å2. For doses below this value, we initialized the transmission 
function with unity transmission and normal-distributed phase with mean 0.1 and variance of 0.1. With this 
random initialization we found no problem of convergence for all algorithms tested in this paper.

Reconstruction parameters.  All ptychography reconstructions were performed with a probe area overlap of 75% 
in real-space, where the probe area is defined by all pixels contributing more than 1% of the maximum intensity. 
This corresponds to a step size of roughly 3 nm, depending on the probe used. At a dose of 20 e−/Å2, this cor-
responds to 8540 electrons per diffraction pattern, i.e. an average electron count of 0.52 electrons per detector 
pixel, and 58 electrons per image pixel for a pixel size of 1.7 Å. For the regularization parameters we performed a 
grid search evaluating the final normalized root mean square error and found the best values to be μ0 = 1 × 10−2, 
μ1 = 8 × 10−2. We choose the biorthogonal spline wavelet transform as the linear transform for BM3D as it 
achieves the best PSNR for high noise72. For the figures shown in the paper we use the BM3D denoiser. A typical 
intermediate denoised image for ribosome after 60 iterations can be seen in Fig. 7(c).

Implementation Details.  The algorithms presented in this paper were implemented with the Torch scientific 
computing framework73. The gradient update routines were adapted from the optim package for Torch69. For 
efficient computing on the graphics processing unit (GPU) with complex numbers, the zcutorch library for 
CUDA was developed74. Hyperparameter optimization was done with the hypero75 package for Torch. For BM3D 
denoising we use the C++ implementation76. The code was run on an Intel i7-6700 processor with 32 GB RAM 

Figure 7.  (a) Convergence behavior of different gradient update rules. The normalized root mean square error 
(NRMSE) is defined in the Supplementary material. MAP refers to a constant prior. (b) Example for the 
transmission function initialization T0 after 70 power iterations, for an electron dose of 100 e−/Å2, intensities 
were truncated at the 80th percentile. (c) TV

sparse for human ribosome after 60 iterations of BM3D-MAP. Scale 
bar is 10 nm.
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and a NVidia Titan X GPU with 12 GB RAM. The run time for optimization with MAP  was 26 s, and for optimi-
zation with −BM3D MAP  35 s. This is expected, because the BM3D algorithm used here is not yet implemented on 
the GPU, and the BM3D denoising is computationally more intensive.

Data Availability.  The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.

Conclusion
In this paper we have, via numerical experiments, demonstrated the feasibility of retrieving high-resolution elec-
tron transmission phase information of biological macromolecules using ptychography and Bayesian optimiza-
tion. With the methods presented in this paper, it should be possible to achieve a resolution better than 1 nm for 
true single-particle imaging of molecular complexes with molecular weights ranging from below 100 kDa to a few 
MDa, and a resolution around 3 Å with simple averaging of 30 datasets. We have given a detailed explanation of 
the optimization and initialization procedures used, and have emphasized the importance of choosing an appro-
priate illumination function. We note that, while the high data redundancy in a ptychographic dataset empirically 
makes it experimentally very robust, there is much room for improvement in terms of measurement complexity. 
For the results presented here, the measurement dimension KM is larger than the problem dimension N by a fac-
tor of at least 30, while the theoretical limit for successful phase retrieval is at KM = 4N77. By reducing the number 
of measurements, the SNR of each individual diffraction measurement could be increased, yielding an improved 
image SNR in the reconstruction. Therefore, the development of an optimized experimental scheme, including 
design of the illumination function and scanning scheme is a promising direction of research and may enable 
significant improvement to the results presented here.

We would like to point out two obstacles that one may have to overcome in the experimental implementation 
of our method. Firstly, the best results are to be expected when recording zero-loss diffraction patterns with the 
use of an energy filter. The energy filter may introduce phase distortions into the diffraction patterns, which may 
need to be accounted for in the reconstruction algorithm. Secondly, although beam-induced movements are 
expected to be reduced by a large amount due to spot-scanning, the remaining movement may cause problems 
in the reconstruction. Statistically stationary sample movements can be accounted for in the reconstruction algo-
rithm25, 78, but beam-induced motions are likely to be non-stationary, and dedicated algorithms may need to be 
developed to account for it.

Cryogenic ptychographic imaging of biological samples is also being developed in the X-ray sciences79, and 
our results could equally be implemented there to improve the dose-effectiveness. Finally, the methods presented 
here may find application in electron phase imaging of radiation-sensitive samples under non-cryogenic condi-
tions, and the incorporation of Bayesian methods into in-focus ptychographic reconstruction procedures18, 65,  
may provide similar gains in SNR as the ones discussed here, while also keeping the analytical capabilities of 
traditional scanning TEM imaging.
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