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Abstract 

Neuregulin 1 (NRG1) is the best characterized member of a family of epidermal growth factor 

(EGF)-like domain containing proteins that serve as ligands for tyrosine kinase receptors of the 

ErbB family. NRG1 and its main receptor in the brain, ErbB4, have been involved in neural 

development, neurotransmission and synaptic plasticity. Additionally, NRG1 isoform-specific 

expression patterns in the brain have been described, but isoform-specific functions remain 

unclear. Nrg1 is a robustly associated schizophrenia susceptibility gene in many populations. 

Examination of blood cells and post mortem brain tissue revealed that increased Nrg1 

expression occurs in schizophrenia patients, including a notable increase in Ig-Nrg1 mRNA. 

Together with ErbB4 hyperphosphorylation observed in post mortem brains of schizophrenia 

patients, this suggests that NRG1/ErbB4 hyperstimulation could represent a component of 

schizophrenia etiology. However, the underlying pathomechanisms are unknown. 

In the present study, we investigated brain endophenotypes associated with cortical-restricted 

Ig-NRG1/ErbB4 hyperstimulation. For this purpose, a conditional transgenic mouse line was 

produced that permits stage- and cell type-specific overexpression of the Ig-NRG1 isoform 

under control of the β-actin promoter after Cre-mediated removal of a “floxed” STOP-cassette. 

A comprehensive analysis of this mouse model revealed that physiologically relevant Ig-NRG1 

overexpression in glutamatergic projection neurons resulted in chronic ErbB4 

hyperphosphorylation in the neocortex and hippocampus. ErbB4 hyperstimulation was 

associated with impaired hippocampal -oscillation and altered social behavior. Biochemical 

analyses revealed a preferential activation of the AKT pathway upon Ig-NRG1 overexpression. 

Furthermore, moderate projection neuron-specific overexpression of Ig-NRG1 allowed us to 

investigate the subcellular localization of the protein, which appeared to be associated with the 

potassium channel Kv2.1 in the somatodendritic compartment. These results provide a first 

insight into possible molecular pathomechanisms and schizophrenia-relevant endophenotypes 

induced by Ig-NRG1-mediated ErbB4 hyperstimulation in cortical networks.  

In a second project, NRG1 signaling functions in ErbB4-expressing GABAergic interneurons 

have been investigated in conditional NRG1 mutants. Cre-mediated elimination of NRG1 from 

parvalbumin-positive (Parv+) interneurons resulted in body weight reduction, a shivering 

phenotype, increased motor activity, and a reduced number of interneurons in cortical layers 

II-III. Thus, in contrast to projection neuron-specific loss- or (moderate) overexpression of 

NRG1, these findings suggest that NRG1-mediated autocrine signaling in Parv+ interneurons 

serves an essential role in the regulation of inhibitory circuit functions. 

Finally, in a pilot project a new mouse line for the conditional overexpression of NRG2, a closely 

related ErbB4 ligand in the brain, has been generated by homologous recombination into the 

Rosa26 locus of embryonic stem cells. 
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1 Introduction 

1.1 Principles of mammalian brain structure and function 

The central nervous system (CNS) comprises two major parts, the brain and the spinal cord. 

The brain is an extremely complex organ, whose processes range from simple motor behavior 

to complex cognitive tasks. It is divided into several functional regions: the brain stem (medulla 

oblongata, pons and midbrain) receives the sensory information from skin and muscles of the 

head and provides motor control of head’s musculature. It also conveys information from the 

spinal cord to the brain (and vice versa) and is involved in processing information of hearing, 

balance and taste senses. The cerebellum is involved in the learning of motor skills and 

modulates the force and range of movement. The diencephalon (thalamus and hypothalamus) 

regulates autonomic, endocrine, and visceral functions. Finally, the cerebrum comprises three 

deep laying structures: the basal ganglia, involved in regulation of motor performance; the 

hippocampus, which participates in processes of memory storage; and the amygdala, which 

coordinates autonomic and endocrine responses of emotional states. In addition, the cerebrum 

contains the two cerebral hemispheres, each with an outer layer called the cerebral cortex. 

The latter is divided into four lobes with specialized functions: frontal (e.g. short-term memory, 

motor function, problem solving, spontaneity), parietal (e.g. somatic sensation), occipital  

(e.g. visual processing), and temporal lobe (e.g. hearing, learning, memory, and emotion) 

(Kandel, 2013; Markram et al., 2004). 

At the beginning of the 20th century, Santiago Ramón y Cajal performed a detailed description 

of nerve cells and proposed that the nervous system is a network of discrete cells. The principle 

that neurons are elementary building and signaling elements of the nervous system is called 

the neuron doctrine. The final proof that confirmed the neuron doctrine came with the 

introduction of electron microscopy (mid 1950s), when Sandford Palay demonstrated the 

existence of regions where chemical or electrical signaling between neurons occurs (Palay, 

1956; Palay and Palade, 1955). Nowadays, it is known that the human brain consists of 

approximately 1011
 electrically excitable neurons that form neuronal networks. Neurons 

communicate with each other through two kinds of processes that arise from the soma. 

Dendrites receive incoming signals from other neurons, whereas a single axon conveys 

electrical signals to other cells. These electrical signals, called action potentials (AP), result 

from changes in the flux of ions through plasma membrane channels. APs originate at the axon 

hillock when the electrical excitation of a neuron reaches a certain threshold. APs are all-or-

non signals that propagate along the axon and eventually reach fine axonal branches to contact 

other neurons via synapses. The mammalian brain contains up to 1015 synapses (Brose, 1999; 

Kandel, 2013). In vertebrates, large axons are wrapped by an insulating sheath of lipids called 
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myelin, which increases AP speed. The myelin is interrupted at the Nodes of Ranvier, where 

the AP regenerates (Salzer, 2003). 

Most of the synapses in the CNS are chemical synapses, in which the pre- and postsynaptic 

neurons are separated by a synaptic cleft. Chemical synaptic transmission requires the release 

of neurotransmitters from the presynaptic terminal and movement across the synaptic cleft. 

Presynaptic terminals contain synaptic vesicles that cluster in active zones. When an AP 

reaches the active zone, synaptic vesicles fuse with the presynaptic membrane and release 

neurotransmitters into the synaptic cleft. Afterwards, neurotransmitters bind to receptors on the 

postsynaptic neuron. Normally, neurotransmitter release produces a single predominant type 

of synaptic response, e.g. release of glutamate produces excitation, while -aminobutyric acid 

(GABA) or glycine produce inhibitory postsynaptic potentials. Furthermore, besides the 

differences in biochemical composition, synaptic terminals of excitatory and inhibitory synapse 

can be distinguished by their morphology. Electrical synapses, by which two cells communicate 

via gap-junctions also exist. In this case, there is no release of chemical transmitters but the 

current is transmitted to the postsynaptic cell through the gap-junctions. In contrast to 

unidirectional transmission at chemical synapses, electrical synapses allow extremely fast 

bidirectional signal propagation. Even though chemical synapses are not as rapid as electrical 

synapses, they present an important characteristic called amplification. This phenomenon is 

based on the fact that from each synaptic vesicle thousands of neurotransmitter molecules are 

released and activate neurotransmitter receptors in the postsynaptic cell. In many cases, these 

receptors contain both an extracellular binding site for the neurotransmitter and a membrane 

spanning-domain that allows ion flux, and are therefore called ionotropic. Another class of 

receptors, called metabotropic receptors, couple to guanosine triphosphate (GTP)-binding 

proteins that trigger a second-messenger mediated biochemical cascade or act directly on the 

opening of ion channels (Kandel, 2013). 

The brain comprises different types of neurons that communicate at synapses and form 

complex circuits. The main neuronal cell type in the brain are excitatory glutamatergic 

projection neurons. These cells represent 70-80% of neocortical neurons and are located in all 

cortical layers except for layer I. In general, projection neurons have a characteristic 

morphology with a long axon and two types of dendrites. Basal dendrites emerge from the 

same side of the soma as the axon does, whereas apical dendrites originate from the opposite 

side. Projection neurons form excitatory synapses at specialized protrusions of the dendrites, 

called dendritic spines (DeFelipe et al., 2013; DeFelipe and Fariñas, 1992; Markram et al., 

2004). These postsynaptic microdomains are equipped with a postsynaptic density (PSD) at 

the cytoplasmic face of the postsynaptic cell in close apposition to the active zone of the 

presynaptic terminal. The PSD is considered to serve as an organizer of the postsynaptic 

machinery, in which hundreds of proteins have been identified, including glutamate receptors, 
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postsynaptic density protein of 95 kDa (PSD95), and many signaling molecules. Pyramidal 

neurons can also form excitatory synapses with inhibitory interneurons, which usually do not 

present dendritic spines but are equipped with PSDs (Kandel, 2013; Kennedy, 1997;  

Ziff, 1997). 

The second main component of cortical microcircuits are inhibitory GABAergic interneurons, 

which possess a short axon that does not leave the cortex, and whose activities are more local. 

Interneurons represent 20-30% of all neocortical neurons (DeFelipe et al., 2013; Marín, 2012; 

Markram et al., 2004). GABAergic interneurons are classified into 30 different subtypes based 

on morphology, molecular and physiological characteristics (Marín and Müller, 2014). As the 

classification of interneurons by morphological criteria is sometimes difficult, a main 

classification method is based on the expression of particular proteins. For example, calcium-

binding proteins, such as parvalbumin (Parv), calretinin or calbindin. Other interneurons 

express specific neuropeptides, including somatostatin, cholecystokinin (CCK), neuropeptide 

Y (NPY), and vasoactive intestinal peptide (VIP) (DeFelipe et al., 2013; Freund and Buzsáki, 

1996; Lewis et al., 2005). Different types of these interneurons control the excitability of 

pyramidal neurons in a unique manner, based on their ability to innervate specific subcellular 

regions. Martinotti cells, neurogliaform cells and double-bouquet cells form synapses with 

pyramidal cell dendrites, basket cells form synapses with the soma of pyramidal cells, and 

chandelier cells innervate the axonal initial segment (Marín, 2012; Markram et al., 2004; 

Somogyi, 1977). Some classes of interneurons contribute to the coordinate firing of pyramidal 

cells, which underlays the generation and pacing of different forms of rhythmic activity. Fast-

spiking Parv+ interneurons are responsible for oscillations in the -frequency range (30–80 Hz), 

whereas, non-adjusting, non-fast-spiking somatostatin-expressing interneurons generate β-

frequency oscillations (15–30 Hz). Interneurons receive excitatory as well as inhibitory 

synapses onto their soma (Bartos et al., 2007; Buzsáki and Draguhn, 2004; Marín, 2012).  

Inhibitory GABAergic interneurons and excitatory glutamatergic projection neurons are 

organized in well-defined cell layers in the cerebral cortex (Fig. 1). However, they differ in their 

developmental origin. Excitatory neurons derive from progenitors in the ventricular zone (VZ) 

of the pallium and migrate radially into the developing neocortex. In contrast, inhibitory neurons 

originate from progenitors in the subpallium, from where they migrate along tangential routes 

to the developing neocortex. Subsequently, interneuron migration switches from tangential to 

radial migration and interneurons invade different neocortical cell layers (Marín, 2013; Marín 

and Müller, 2014; Marín and Rubenstein, 2001). 

The large majority of cells in the CNS are not neurons, but neuroglia. Glial cells represent more 

than 80% of the cells in the human brain. These cells differ morphologically (absence of 

dendrites and axons) and functionally (not directly involved in electric signaling) from neurons. 
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In vertebrates, glia cells are divided in two major classes. Microglia are immune cells that 

protect the nervous system and macroglia, which comprise oligodendrocytes and astrocytes. 

 

 

Figure 1. A cerebral microcircuit. An excitatory pyramidal neuron is innervated by different classes of 
interneurons. Chandelier (Ch) and wide arbor (WA) or basket interneurons provide inhibitory input to the axon initial 
segment (ais) and proximal dendrites, respectively, of pyramidal neurons. Calbindin-expressing double bouquet 
(red DB), neurogliaform (Ng) and Martinotti (M) interneurons form inhibitory synapses at distal dendrites of 
pyramidal neurons. Calretinin-expressing (yellow) DB and Cajal–Retzius cells (CRC) target both distal dendrites of 
pyramidal cells and other GABAergic (G) neurons. 1–6, cortical layers. (Modified from Lewis et al., 2005). 

 

Oligodendrocytes form the myelin sheaths that surround and insulate axons, similar to 

Schwann cell in the peripheral nervous system (PNS). Unlike Schwann cells that interact with 

axons in a one-to-one relationship, each oligodendrocyte myelinates up to 30 axonal segments 

(Fig. 2A; Kandel, 2013; Salzer, 2003). Another important function of oligodendrocytes 

corresponds to metabolic support and maintenance of the functional integrity of axons 

(Fünfschilling et al., 2012; Saab et al., 2013, 2016).  

Astrocytes have a characteristic star-like shape with large numbers of processes, which 

contact capillaries and neurons. Astrocytes have an important role in the maintenance of the 

blood-brain barrier. They regulate extracellular concentrations of ions (K+) and 

neurotransmitters. Astrocytic processes engulf neuronal synapses, respond to neuronal 

activity (which increases the Ca2+ concentration in the astrocyte and leads to glutamate or ATP 

release), and modulation of neuronal activity. This functional integration of pre- and post-

synaptic neurons with astrocytes is called the tripartite synapse (Fig. 2B; Kandel, 2013; Lalo 

et al., 2009; Santello and Volterra, 2009).  
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Figure 2. Glial cells in the CNS. (A) In the CNS myelin is formed by oligodendrocytes. Each oligodendrocyte 
engulfs multiple axonal segments with a myelin sheath that speeds up signal propagation by saltatory impulse 
propagation. Perinodal astrocytes make contact with the nodes of Ranvier (modified from Poliak and Peles, 2003). 
(B) Diagram of a tripartite synapse. An astrocytic process wraps around a synapse. Local signaling between 
neurons and astrocytes modulates neuronal activity. Astrocytes respond to synaptic activity (1), which acts on 
astrocytic receptors and triggers Ca2+ release from internal stores, increasing astrocytic Ca2+ levels (2). This effect 
(3) evokes the local release of glutamate and modulates synaptic functions (modified for Haydon, 2001). 

 

The balance between excitation and inhibition and the participation of glial cells in neuron-glial 

signaling processes is of paramount importance for the correct functioning of cortical circuits. 

The coordination and communication between these neural cells is the basis for higher 

cognitive processes, e.g. learning and memory formation, and is regulated by a large number 

of molecular signaling modules. For example, several neurotrophic factors exert their effects 

on neurons by signaling through tyrosine kinase receptor to promote neuronal migration, 

differentiation and survival, synapse formation and synaptic plasticity. Additionally, modules of 

signaling molecules and their receptors displayed on the cell surface serve as important 

regulators during the development of the neural network, and for network plasticity in the 

mature brain. Imbalance between inhibitory and excitatory neurotransmission might result from 

defects in neuronal communication at all levels above mentioned. Impaired modulation of 

cortical circuits may also lead to neural network disconnectivity, which has been observed in 

neuropsychiatric diseases such as schizophrenia (Hayashi-Takagi, 2017; Kandel, 2013; 

O’Donoghue et al., 2016). 

 

1.2 Schizophrenia  

Schizophrenia (SZ) is a severe neuropsychiatric disease that affects ~1% of the population 

worldwide. This disorder is characterized by positive symptoms (such as hallucinations and 

delusions), negative symptoms (including anhedonia and lack of motivation), and cognitive 

dysfunction (Insel, 2010). The age of onset is usually during late adolescence or early 
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adulthood. Due to very disabling condition for patients (Kirov et al., 2005), this disease leads 

to significant financial and care burden for the families and health care systems. 

Reduced cerebral volume and ventricular enlargement are morphological abnormalities that 

have been frequently found in SZ patients (Vita et al., 2006; Wright et al., 2000). In addition, 

alterations in synaptic, dendritic and axonal organization have been found, such that SZ can 

be considered a synaptic disorder. Structural and functional changes in both excitatory and 

inhibitory circuits have been observed in postmortem brains of individuals with SZ 

(Chattopadhyaya and Di Cristo, 2012; Garey et al., 1998; Hayashi-Takagi, 2017; Moyer et al., 

2015). An imbalance in excitatory and inhibitory activity (E/I imbalance) appears to play a key 

role in the pathophysiology of SZ (Gao and Penzes, 2015).  Furthermore, functional imaging 

has revealed aberrant activity in cortical circuits, involving the prefrontal cortex (PFC) and 

hippocampus, as well as subcortical structures, e.g. dorsal thalamus. These functional 

abnormalities have been suggested to result in disconnectivity between those brain regions 

(Harrison, 1999). 

SZ is considered a multifactorial disease, i.e. multiple genes (each with a small effect) together 

with environmental factors precipitate the disorder (Risch, 1990; Stepniak et al., 2014). In 

addition, it is likely that different gene combinations contribute to a similar phenotype in different 

families and populations (Dawson and Murray, 1996). However, the number of susceptibility 

loci, the increased risk of developing the disease conferred by each locus, the degree of 

genetic heterogeneity, and the extent of interaction between loci are not yet known (Owen et 

al., 2005). Among environmental factors that are thought to be of relevance are prenatal and 

obstetric complications, such as low birth weight, Rh incompatibility, hypoxia, maternal 

nutritional deficiencies in the first trimester of pregnancy, exposure to influenza virus, maternal 

psychological stress (Leask, 2004; Stepniak et al., 2014). Other relevant environmental factors 

that have been associated with the development of this disease are residence in urban areas 

and abuse of substances such as amphetamines, cocaine, hallucinogens (Leask, 2004) and 

marihuana during adolescence (Arseneault et al., 2002). 

The importance of a genetic contribution to the etiology of schizophrenia has been 

demonstrated by twin studies that showed a concordance of 41-65% in monozygotic twins, 

compared with a concordance of 0-28% in dizygotic twins. Furthermore, the disease exhibits 

a heritability of around 85% (Cardno and Gottesman, 2000). The absence of unequivocal 

results in linkage disequilibrium and association studies for SZ might be explained by different 

environmental factors, the involvement of multiple genes with minor effects, and genetic 

heterogeneity (Mowry and Nancarrow, 2001). In addition, the complexity and the large number 

of symptoms manifested by SZ patients as well as the overlapping symptoms with other mental 

illnesses must be considered (Bahn, 2002; Bramon and Sham, 2001; Gao and Penzes, 2015; 

Lee et al., 2017). Despite the difficulties to replicate genetic findings, several genomic studies 
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have demonstrated some consistency. Independent meta-analyses, Badner and Gershon 

(2002) and Lewis et al., (2003) obtained significant results for chromosome 8p, a region in 

which Neuregulin 1 (Nrg1), one of the most reproducible SZ candidate genes, is located. 

Several NRG1 genetic variants and haplotypes have been associated with SZ in many (but not 

all) studies performed in different populations. Most of these variants are located in non-coding 

regions of the gene (Athanasiu et al., 2010; Li et al., 2006; Munafò et al., 2006; Norton et al., 

2006; Petryshen et al., 2005; Stefansson et al., 2002). Genetic association between Nrg1 and 

its receptor ErbB4 with SZ has been supported by genome-wide association studies (GWASs) 

(Agim et al., 2013; Mostaid et al., 2017; Sullivan et al., 2008). 

 

1.3 Neuregulin 1 

NRG1 is a member of a family of growth factors encoded by four different genes (Nrg1-4). 

NRG1, the best characterized protein of this family, is encoded by one of the largest 

mammalian genes (~1.4 Mb) located on the short arm of chromosome 8 (8p13) (Harrison and 

Law, 2006).  Alternative splicing and differential promoter usage in the Nrg1 gene result in the 

expression of more than 30 isoforms that can be grouped into six different types of proteins 

(Fig. 3A; Steinthorsdottir et al., 2004). NRG1 type I-VI differ in their N-terminal domains, but all 

types contain an epidermal growth factor (EGF)-like signaling domain, which is necessary and 

sufficient to activate tyrosine kinase receptors of the ErbB family (Falls, 2003a; Mei and Xiong, 

2008). Two variants of the EGF-like domain exist, which are named α and β. The  

β-EGF-like domain has a 100-fold stronger binding affinity to ErbB receptors (Jones et al., 

1999). NRG1 type I, II, IV, and V contain a N-terminal immunoglobulin (Ig)-like domain and are 

referred to as Ig-NRG1 (Harrison and Law, 2006; Mei and Xiong, 2008). The different types of 

NRG1 have alternative names reflecting their original identification. NRG1 type I was originally 

named heregulin (Holmes et al., 1992), neu-differentiation factor (NDF) (Wen et al., 1992), or 

acetylcholine receptor-inducing activity (ARIA) (Falls, 2003a). NRG1 type II is also referred to 

as glial growth factor (GGF) (Marchionni et al., 1993), or kringle-like domain isoform (Harrison 

and Law, 2006), because it harbors this domain N-terminally to the Ig-like domain. NRG1 type 

III contains a cysteine-rich domain (CRD) that serves as a second transmembrane domain. 

Originally, these variants were named sensory and motor neuron derived factor (SMDF)  

(Ho et al., 1995), nowadays they are referred to as CRD-NRGs (Falls, 2003a). NRG1 isoforms 

can also be classified according to the presence of different juxtamembrane stalk regions and 

cytoplasmic tails (Harrison and Law, 2006; Wen et al., 1994). 

The most abundant classes of NRG1 in human and rat brain are type III and type II, followed 

by type I and type V. Different types of NRG1 isoforms exhibit dynamic expression profiles with 

expression peaks during early embryonic stages (E13) and around postnatal day (P) 5, 

suggesting that they exert important functions in neural development. NRG1 isoforms are 
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expressed in projection neurons of the human and rat cortex and hippocampus, but were also 

found in GABAergic interneurons and astrocytes (Law et al., 2004; Liu et al., 2011; Okada and 

Corfas, 2004). The expression of NRG1 isoforms is distinctly regulated by neuronal activity, as 

observed using a rat model of epileptic seizures induced by kainate treatment in which type I 

and II isoforms were found to be significantly upregulated, while kainate treatment had no effect 

on the expression of types III, V and VI isoforms (Liu et al., 2011). 

 

 

Figure 3. NRG1: alternative splicing, protein structure, and proteolytic processing. (A) Alternative splicing 
and differential promoter usage in the Nrg1 gene produces NRG1 isoforms with different N-terminal domains. NRG1 
type III harbors a cysteine-rich domain (CRD), which serves as a second transmembrane domain (TMn). Types I, 
II, IV and V contain an N-terminal Ig-like domain. An EGF-like domain is present in all isoforms, a spacer region (S) 
is lacking in types III and VI in which the N-terminal-specific domain is directly linked to the EGF-like domain. 
Alternative splicing in the linker region and the C-terminal domain generate additional variants  (modified from Mei 
and Xiong, 2008). (B) Structure of NRG1 type I (Ig-NRG1) and type III (CRD-NRG1). NRG1 isoforms are 
synthesized as transmembrane pre-proteins (pro-NRG1s). In CRD-NRG1, the N- and C-terminal domains are 
located in the cytoplasm. Proteolytic cleavage generates mature soluble Ig-NRG1s that act as paracrine signals; in 
the case of CRD-NRG1 the EGF-like domain remains attached to the membrane after processing, and is thought 
to function mainly as a juxtacrine signal. The processing of pro-NRG1 type II, IV, V, and VI is similar to type I. 
Backsignaling via the ICD may also occur. Arrowheads indicate sites of proteolytic processing. 
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Most NRG1 isoforms are synthesized as transmembrane precursors that subsequently 

undergo proteolytic cleavage at the juxtamembrane stalk region located C-terminal to the EGF-

like domain. In the case of Ig-NRG1 isoforms, this results in the release of a diffusible N-

terminal fragment, including the EGF- and Ig-like domains. Therefore, these isoforms seem  

to act mainly through paracrine signaling by binding to ErbB receptors in neighboring cells. The 

Ig-like domain binds proteoglycans at the cell surface and extracellular matrix, and this 

mechanism might increase the concentration of NRG1 at the synapse and subsequent 

activation of ErbB receptors (Li and Loeb, 2001). Further cleavage that separates the EGF-like 

domain has been proposed (Falls, 2003b; Harrison and Law, 2006). CRD-NRG1 represents 

an exception, as it remains attached to the membrane through the CRD domain after 

proteolytic processing and serves as a juxtacrine signal (Fig. 3B; Harrison and Law, 2006; Mei 

and Xiong, 2008). The diversity of NRG1 biology is reflected by the findings of several studies 

in which isoform-specific functions were demonstrated, e.g. for the migration of neurons to the 

developing cortex (Anton et al., 1997; Flames et al., 2004; Rio et al., 1997). 

The complexity of NRG1 signaling is further increased by post-translational modifications, such 

as glycosylation (Burgess et al., 1995) and proteolytic processing by proteases, such as tumor 

necrosis factor-α converting enzyme (TACE/ADAM17) (Loeb et al., 1998; Montero et al., 2007), 

β-site of amyloid precursor protein cleaving enzyme (BACE) (Hu et al., 2006; Willem et al., 

2006) and meltrin beta (ADAM19) (Yokozeki et al., 2007). Further processing of NRG1 type III 

by ADAM17 and BACE1 N-terminal to the EGF-like domain could release this domain, allowing 

paracrine signaling (Fleck et al., 2013). NRG1 expression and processing seem to be regulated 

temporally, spatially and by neuronal activity (Eilam et al., 1998; Mei and Xiong, 2008; Ozaki 

et al., 2004). NRG1 may also act as an ErbB “receptor”, as the intracellular domain (ICD) of 

NRG1 has been shown to undergo proteolytic cleavage by -secretase, triggered by ErbB 

receptor binding, in addition to synaptic activation or membrane depolarization. After 

processing and nuclear translocation, this domain may act as a transcription factor to regulate 

the expression of genes involved in neuronal survival, synaptic maturation and maintenance. 

ICD-mediated backsignaling has been suggested to regulate growth and branching of cortical 

dendrites (Bao et al., 2003, 2004; Chen et al., 2010b; Wang et al., 1998). Such backsignaling 

activity is further supported by direct binding of the NRG1-ICD to LIM kinase 1 (LIMK1), a 

central regulator of actin dynamics.  

 

1.4 ErbB receptor tyrosine kinases 

ErbB receptors comprise a family of four transmembrane receptor tyrosine kinases (ErbB1-4) 

that are activated by EGF and related factors, such as members of the NRG family. In total, 

ErbB receptors integrate signals of more than 15 different ligands. ErbB receptors are widely 

distributed in many organs and cell types with ectodermal and mesodermal origins, where they 
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exert important functions in processes related to cell proliferation, growth, migration, and 

adhesion. These receptors also play an important role in heart development and altered ErbB 

signaling has been linked to different types of cancer. In the nervous system, ErbB receptors 

are involved in the regulation of neuronal migration, myelination, axon guidance, synapse and 

neuromuscular junction formation. ErbB1 (EGFR, HER1) was the first receptor identified based 

on homology of its gene (c-erbB) with the oncogene v-erbB, previously identified in avian 

erythroblastic leukemia virus. Subsequently, additional members of the ErbB family were 

discovered, including ErbB2 (also known as HER2 and Neu), ErbB3 (HER3), and ErbB4 

(HER4) (Iwakura and Nawa, 2013; Mei and Xiong, 2008; Yarden and Sliwkowski, 2001). 

All ErbB receptor possess a glycosylated extracellular N-terminal ligand binding domain. The 

extracellular region also contains two cysteine-rich domains, important for receptor 

dimerization. In addition, ErbB receptors have a transmembrane domain, a short intracellular 

juxtamembrane region, a tyrosine kinase domain and a C-terminal tail. Upon ligand binding, 

monomeric ErbB receptors undergo conformational changes that render the dimerization arm 

accessible resulting in receptor homo- or heterodimerization. The subsequent activation of 

tyrosine kinase activity leads to auto-transphosphorylation of tyrosine residues in the 

intracellular domain, which generates docking sites for adaptor proteins and further activates 

downstream signaling pathways, e. g. the MAPK (Erk) and PI3K-AKT signaling pathways 

(Fig. 4; Burgess et al., 2003; Iwakura and Nawa, 2013; Mei and Xiong, 2008; Yarden and 

Sliwkowski, 2001). Ligand-induced endocytosis of ErbB receptors might have an important role 

in this process (Yang et al., 2005). 

  

 

Figure 4. Ligand binding and activation of ErbB receptors. Ligand interaction with monomeric ErbB receptors 
1, 3, and 4 increases their affinity and induces homo- or heterodimerization. Dimerization activates the tyrosine 
kinase domain, allowing it to phosphorylate the cytoplasmic region of the ErbB partner. Phosphorylated tyrosine 
residues recruit various adaptors/effectors molecules, such as phosphatidylinositol 3-kinase (PI3K) subunit p85, 
Src, and Shc, and activates downstream signaling pathways, such as PI3K-AKT and MAPK (Erk). (Modified from 
Iwakura and Nawa, 2013). 
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Despite harboring an active kinase domain, ErbB2 has an impaired ligand binding domain and 

acts as a co-receptor in ErbB heterodimers (Klapper et al., 1999). Interestingly, heterodimers 

that include ErbB2 have a higher ligand affinity and can bind to additional ligands (Citri et al., 

2003). ErbB3 binds NRG1 ligands, but lacks an active kinase domain. Therefore, ErbB3 must 

form heterodimers with other ErbB receptors to be functional. In vitro experiments have shown 

that ErbB2/ErbB3 form the most potent heterodimer for the regulation of cell growth and 

transformation (Pinkas-Kramarski et al., 1996; Wallasch et al., 1995). ErbB4 can form 

heterodimers with all other ErbB receptors, but is also the only receptor that can form functional 

NRG-binding homodimers. NRG1 also binds and activates ErbB1/ErbB3, ErbB1/ErbB4, 

ErbB2/ErbB3, ErB2/ErbB4, and ErB3/ErbB4 heterodimers. 

 

1.5 The ErbB4 receptor 

ErbB4 serves as a regulator of mammary gland, cardiovascular and neural development (Citri 

et al., 2003). The ErbB4 null mutation is lethal at embryonic day (E) 10.5 due to a failure of 

heart development (Gassmann et al., 1995). In contrast, ErbB4 null mutants survive, in which 

ErbB4 is expressed under control of a heart-specific myosin-promoter (Tidcombe et al., 2003), 

demonstrating that ErbB4 is not essential for the development of other organs. Alternative 

splicing generates four ErbB4 isoforms, which activate distinct signaling pathways. CYT-1 and 

CYT-2 isoforms differ in the C-terminal cytoplasmic domain, while variants JMa and JMb differ 

in the juxtamembrane region. Following NRG1-mediated activation CYT-1 and CYT-2 isoforms 

can activate the Shc–Ras–MAPK signaling pathway and support proliferation. However, only 

CYT-1 also regulates chemotaxis and survival by activating the PI3K-AKT signaling cascade 

(Elenius et al., 1997, 1999; Gassmann et al., 1995; Jones et al., 1999; Junttila et al., 2000a; 

Kainulainen et al., 2000; Sawyer et al., 1998). JMa and JMb variants bind NRG1, but only JMa 

undergoes proteolytic cleavage by TACE, a process stimulated by ligand binding and protein 

kinase C (PKC) activity. TACE cleavage sheds the extracellular domain of ErbB4, which 

contains the binding site for NRG1, from the membrane and is involved in non-canonical 

forward signaling (Elenius et al., 1997; Mei and Xiong, 2008; Rio et al., 2000; Vecchi et al., 

1996; Zhou and Carpenter, 2000). Moreover, TACE-mediated cleavage permits additional 

processing of the intracellular domain (ICD) of ErbB4 by -secretase. Upon cleavage, the 

ErbB4-ICD can translocate into the nucleus to regulate gene expression by interaction with the 

transcription factors STAT5 (signal transducer and activators of transcription), YAP1 (Yes-

associated protein-1), ETo2 (nuclear transcriptional corepressor), and Mdm2 (p53 regulator). 

The ErbB4-ICD also forms a complex with the signaling protein TAB2 and the corepressor  

N-CoR, which then translocates to the nucleus of undifferentiated neural precursors and 

inhibits their differentiation into astrocytes by repressing the transcription of glial genes 
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(Arasada and Carpenter, 2005; Komuro et al., 2003; Lee et al., 2002; Linggi and Carpenter, 

2006; Mei and Xiong, 2008; Ni et al., 2001; Omerovic et al., 2004; Sardi et al., 2006; Williams 

et al., 2004). ErbB4 receptors that are mainly expressed in postsynaptic sites of Parv+ 

interneurons, contain a C-terminal sequence (T-V-V) that corresponds to the consensus 

domain necessary for the interaction with PDZ domains, present for instance in PSD95. 

Interaction of ErbB4 with PSD95 has been shown at glutamatergic postsynapses, and this 

interaction might play a role in the modulation of synaptic functions (Garcia et al., 2000; Huang 

et al., 2000; Kim and Sheng, 2004; Ma et al., 2003; Neddens et al., 2011; Neddens and 

Buonanno, 2010; Vullhorst et al., 2009). 

 

1.6 NRG1/ErbB4 signaling in the brain during health and disease 

NRG1 and its main receptor in the brain ErbB4 have been implicated in neurodevelopmental 

processes that affect the establishment and proper function of neuronal circuits, such as 

neuronal migration and synaptic neurotransmission. The participation of these proteins in 

interneuron migration during cortical development has been explained by two models. 

According to the first model, ErbB4-expressing interneurons migrate from the medial ganglionic 

eminence (MGE) through a permissive corridor of CRD-NRG1 in the developing striatum, in 

response to attractive, soluble NRG1 type I in the cortex (Flames et al., 2004). In the second 

model, NRG1 and NRG3 act as repellants that funnel interneurons as they migrate from the 

MGE to the cortex (Li et al., 2012a). The involvement of ErbB4 in interneuron migration is 

supported by a reduced number of GABAergic interneurons in the cortex of heart-rescued 

ErbB4 null mutants (Flames et al., 2004; Neddens and Buonanno, 2010). In addition to a role 

of NRG1/ErbB4 signaling in interneuron migration, NRG1/ErbB4 signaling also regulates axon 

and dendrite development of GABAergic neurons, and promotes the formation and maturation 

of GABAergic synapses onto pyramidal neurons (del Pino et al., 2013; Fazzari et al., 2010; 

Krivosheya et al., 2008). NRG1/ErbB4 may also be necessary for maturation of GABAergic 

synapses in hippocampal interneurons (Krivosheya et al., 2008). Several studies suggest that 

ErbB4 elimination from interneurons also has an indirect effect on excitatory synapses. 

Removal of ErbB4 from Parv+ interneurons resulted in a reduction in dendritic spines (Barros 

et al., 2009; del Pino et al., 2013; Li et al., 2007; Yin et al., 2013a). In line with this finding, it 

was recently suggested that NRG1/ErbB4 signaling in Parv+ interneurons is involved in the 

regulation of the critical period of visual cortical plasticity by regulation of excitatory synaptic 

inputs onto Parv+ neurons (Sun et al., 2016). Moreover, loss of ErbB4 also led to enhanced 

limbic epileptogenesis, which was reversed by soluble NRG1 (Li et al., 2012b; Tan et al., 2012). 

Thus, ErbB4 functions in interneurons may indirectly affect excitatory network functions.  

NRG1/ErbB4 signaling is also involved in the modulation of synaptic functions and 

neurotransmission in mature networks. In vitro studies suggested that treatment of cultured 
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PFC projection neurons with the EGF-like domain of NRG1 (soluble NRG1) reduces NMDA 

receptor-mediated excitatory postsynaptic currents (EPSC) (Gu et al., 2005) and AMPA 

receptor-mediated EPSCs, probably by increasing endocytosis of AMPA receptors in 

hippocampal neurons (Kwon et al., 2005). Furthermore, treatment of brain slices or neurons 

with soluble NRG1 also alters the expression or activity of NMDA, glutamate, GABA receptors, 

and neuronal ACh receptors (Liu et al., 2001; Okada and Corfas, 2004; Ozaki et al., 1997; Ting 

et al., 2011; Woo et al., 2007).  

An additional synaptic function in which NRG1/ErbB4 signaling seems to be involved is 

synaptic plasticity. Treatment of hippocampal slices with soluble NRG1 was shown to block 

LTP at the Schaffer collateral/CA1 synapse (Bjarnadottir et al., 2007; Huang et al., 2000; Kwon 

et al., 2005). This effect was not observed in hippocampal slices from ErbB4 null mice (Pitcher 

et al., 2008), demonstrating that NRG1 acts via ErbB4. The participation of NRG1/ErbB4 

signaling in LTP formation was also demonstrated by in vivo studies, in which pan-neuronal or 

conditional ablation of ErbB4 in Parv+ interneurons led to enhanced LTP (Chen et al., 2010a; 

Pitcher et al., 2008; Shamir et al., 2012). In contrast, mice with postnatal elimination of NRG1 

from projection neurons (CamKII-Cre) displayed reduced LTP (Agarwal et al., 2014), 

suggesting that NRG1 mutants not necessarily phenocopy ErbB4 mutants, possibly because 

ErbB4 integrates signals from several other EGF-like ligands. Consistent with LTP impairment 

following treatment with soluble NRG1, transgenic mice with neuronal overexpression of CRD-

NRG1 showed reduced hippocampal LTP. Further analyses of these transgenic mice and 

conditional NRG1 mutants (CamKII-Cre and Emx1-Cre) also showed that the 

excitatory/inhibitory (E/I) balance of CA1 pyramidal neurons was disturbed and that NRG1 

overexpression leads to increased inhibitory postsynaptic current (IPSC) frequencies, but not 

amplitudes. This suggests that NRG1 overexpression leads to enhanced inhibition, probably 

by increased GABAergic input (Agarwal et al., 2014). These studies suggest that NRG1/ErbB4 

signaling is involved in balancing the E/I ratio in cortical circuits. Additionally, it was found that 

glutamate stimulation increased NRG1 type I expression in cultured rat hippocampal neurons 

suggesting that this particular isoform may have a role in synaptic activity and plasticity. In vivo 

studies have shown a correlation between memory related performance and the concentration 

of NRG1 type I in rat hippocampus (Schillo et al., 2005). Thus, in order to understand how 

different NRG1 isoforms participate in the modulation of cortical circuits, isoform-specific in 

vivo studies are necessary. 

Both human Nrg1 and ERBB4 genes are on the list of major SZ susceptibility genes 

(Schizophrenia Gene Resource, Vanderbilt University; http://bioinfo.mc.vanderbilt.edu/SZGR). 

The majority of Nrg1 variants and haplotypes associated with SZ are located in non-coding 

regions of the gene (Stefansson et al., 2002; Weickert et al., 2012), suggesting that changes 

in NRG1 expression levels, rather than altered protein function, could be relevant for SZ. This 
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is supported by both reduced and increased NRG1 expression levels found in postmortem 

brain of SZ patients (Bertram et al., 2007; Law et al., 2006). Likewise, NRG1-induced ErbB4 

hyperphosphorylation was observed in postmortem brains of SZ patients (Hahn et al., 2006). 

Dysfunctions in several processes in which NRG1/ErB4 has been involved, were observed in 

SZ, including reduced numbers of inhibitory interneurons (Benes et al., 1991; Chance et al., 

2005; Heckers and Konradi, 2015; Holt et al., 2005; Levitt, 2005), reduced expression of 

GAD67 in Parv+ interneurons of the dorsolateral PFC, and disturbed inhibitory functions 

(Akbarian et al., 1995; Benes et al., 1991; Farzan et al., 2010; Hashimoto et al., 2003; Lewis 

et al., 2005; Ongür et al., 2010; Yoon et al., 2010), alterations in dendritic spines (Penzes et 

al., 2011) and deficits in cortical synchronization, such as impaired -oscillations (Kwon et al., 

1999; Uhlhaas and Singer, 2010; Wynn et al., 2005).  

The investigation of mouse mutants has also revealed similarities with SZ patients. 

Conventional (ErbB4-/-) and Parv+ interneuron-specific ErbB4 mutants (ErbB4-/-*Parv-Cre) 

mice manifested novelty-induced hyperactivity and deficits in prepulse inhibition (PPI), in line 

with findings in SZ patients. Worth mentioning, ErbB4-/- mice (but not conditional ErbB4-/-

*Parv-Cre mutants) showed reduced anxiety-like behavior and impairments in fear conditioning 

test (Shamir et al., 2012). Furthermore, ErbB2/B4 double mutant mice that present impaired 

NMDA receptor/PSD95 clusters, and dendritic spine maturation, showed increased aggressive 

behavior and reduced PPI (Barros et al., 2009). Additionally, conditional postnatal mutants of 

NRG1 exhibited hypoactivity and impaired fear-conditioned learning. On the other hand, 

increased expression of NRG1 was associated with impaired PPI (Agarwal et al., 2014; Deakin 

et al., 2009; Yin et al., 2013b). Moreover, CRD-NRG1 pan-neuronal overexpression in mice 

leads to ventricular enlargement, the most replicated endophenotype in SZ patients that was 

also associated with variants of the Nrg1 gene (Agarwal et al., 2014; Mata et al., 2009). Taken 

together, these findings suggest that altered NRG1/ErbB4 signaling activity may be of 

relevance for the etiopathophysiology of SZ. 

 

1.7 NRG2: a NRG1-related ErbB4 ligand with unknown CNS function 

The tyrosine kinase receptor ErbB4 interacts not only with NRG1, but also with other members 

of the NRG family, including NRG2. The Nrg2 gene was cloned based on sequence similarities 

with Nrg1 and harbors a protein domain structure (including a transmembrane and an Ig-like 

domain) that resembles NRG1 type I (Fig. 3B). As for NRG1, the EGF-like domain of NRG2 

has two variants (α and β) with differential receptor binding affinities (Jones et al., 1999). 

Moreover, the NRG2 full-length protein also undergoes proteolytic cleavage that results in 

shedding of the extracellular domain (Longart et al., 2004). This suggests that NRG2 could be 

involved in paracrine signaling to ErbB receptors and may serve as an additional regulator of 
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synapses or other neural network functions in the brain. However, the signaling mechanisms 

downstream of NRG2-mediated ErbB4 activation have not been studied in detail.  

Synaptic changes in Nrg1 mouse mutants contrast with those reported in ErbB4 null mutants 

(Agarwal et al., 2014; Rico and Marín, 2011), suggesting that ErbB4 integrates signals from 

additional ligands, such as NRG2, during the regulation of cortical circuits. Despite a similar 

affinity for the ErbB4 receptor, NRG1 and NRG2 show distinct biological properties in cultured 

cells, probably via differential recruitment of downstream signaling pathways (Crovello et al., 

1998). In line with this, analyses of NRG1 and NRG2 knockout mice indicate that these proteins 

exert different activities during development; e.g. in contrast to NRG1 null mice, NRG2 mutants 

survive embryogenesis and show no major heart defects (Britto et al., 2004). In conclusion, 

these findings support the concept that NRG1 and NRG2 stimulate differential cellular 

responses downstream of activation of a single receptor hetero- or homodimer.  

In the nervous system, NRG2 is expressed by spinal cord motor neurons and terminal 

Schwann cells and may regulate synaptic differentiation at the neuromuscular junctions (NMJ) 

(Rimer et al., 2004), including expression of muscle acetylcholine receptors (Ponomareva et 

al., 2006). Expression in the brain increases postnatally and is most prominent in the 

somatodendritic compartment of neurons, including GABAergic interneurons, in the cortex, 

hippocampus, and cerebellum (Longart et al., 2004; Vullhorst et al., 2015). Ventricular infusion 

of the recombinant EGF-like domain of NRG2 (rNRG2) in adult mice enhances the proliferation 

of putative stem cells in the subventricular zone and their differentiation into interneurons, and 

these effects were abrogated in ErbB4-deficient mice (Ghashghaei et al., 2006). Recently, it 

has been suggested that NRG2 may exert regulatory functions at GABAergic and 

glutamatergic synapses, including autocrine NRG2/ErbB4 signaling in GABAergic 

interneurons and bidirectional (partly ErbB4-independent) NRG2 signaling in hippocampal 

granule cells (Lee et al., 2015; Vullhorst et al., 2015). However, downstream signaling 

pathways in interneurons or granule cells have not been addressed. 

In addition, the interaction of human Nrg1 with Nrg2 gene variants may result in increased 

susceptibility to schizophrenia (Benzel et al., 2007). This indicates that association of NRG1 

with schizophrenia is mediated not only via ErbB4, but also by functional interaction with other 

members of the NRG family. However, it is unclear how the interaction of Nrg1, Nrg2, and 

ErbB4 gene variants may contribute to increased disease susceptibility. Further studies to 

identify the role of NRG2 in the regulation of synaptic functions in the brain, including signaling 

mechanisms downstream of NRG2-mediated ErbB4 activation in neurons are necessary. This 

would help to elucidate the participation of NRG/ErbB signaling in the brain during health and 

disease. 
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1.8 Aim of the study 

NRG1/ErbB4 signaling modulates the development and maintenance of cortical circuits, and 

evidence of cortical disconnectivity has been observed in SZ patients. Higher levels of NRG1 

expression and ErbB4 hyperstimulation have been found in post mortem brain tissue of SZ 

patients. On the other hand, NRG1 isoforms show dynamic and complex expression patterns 

in the brain, and isoform-specific functions have been suggested. Thus, cell type- or stage-

specific changes in the expression of NRG1 isoforms could lead to different consequences. 

For these reasons, the first aim of this project was to characterize a transgenic mouse line for 

conditional NRG1 type I (referred hereafter as Ig-NRG1) overexpression, and to model cell 

type- and stage-specific overexpression of Ig-NRG1 in vivo. A subsequent aim of this project 

was to examine consequences of stage-specific, cortical projection neuron-restricted 

overexpression of Ig-NRG1 on brain development and behavioral functions. Further, the 

project’s aim was to analyze the subcellular localization of Ig-NRG1, and to obtain a first insight 

into possible molecular pathomechanism induced by Ig-NRG1 mediated ErbB4 

hyperstimulation. 

NRG1 is mainly expressed in projection neurons, but it is also present in GABAergic 

interneurons. Therefore, a second project was to perform a pilot study of autocrine NRG1 

functions in interneurons using conditional NRG1 mutants with a specific elimination of NRG1 

signaling in Parv+ interneurons. 

NRG2 is a member of the NRG family and also interacts with ErbB4 receptors, but its functions 

in the brain are not known. The protein structure of NRG2 resembles Ig-NRG1, but its 

expression patterns in the brain differ. Thus, the third aim of this Ph.D. project was to generate 

a transgenic mouse line for conditional stimulation of NRG2 signaling in vivo by homologous 

recombination in embryonic stem cells. 
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2 Results 

2.1 Generation of a conditional HA-Ig-NRG1 transgenic mouse line 

NRG1 expression changes during development and differs between isoforms. Ig-NRG1 shows 

higher levels of expression at E13 and P5 and is reduced in the adult brain (Liu et al., 2011). 

This suggests important roles in neural development and during the neonatal critical period, 

for example in interneuron migration and integration into inhibitory circuits. Elevated NRG1 

expression has been observed in postmortem brain tissue and blood cells of SZ patients, and 

a notable increase in Ig-Nrg1 mRNA has been demonstrated (Hashimoto et al., 2004; Law et 

al., 2006). To test the hypothesis that hyperstimulation of the Ig-NRG1/ErbB4 signaling 

pathway may represent a pathomechanism that causes cortical network dysfunctions with 

relevance for schizophrenia and to investigate the biological effects of this overexpression, a 

novel mouse model was generated by oocyte injection of a GFP-STOP-flox HA-Ig-Nrg1 

(STOP-Nrg1) cassette. STOP-Nrg1 mice overexpress the full-length, N-terminally HA epitope-

tagged Ig-NRG1β1a isoform under control of the β-actin promoter after Cre-mediated removal 

of a STOP-cassette flanked by loxP sites (Fig. 5A). Crossbreeding STOP-Nrg1 mice to Cre 

recombinase expressing mouse lines (Cre driver lines) permits induction of NRG1 

overexpression in a stage- and cell type-specific manner (Fig. 5B). 

 

Figure 5. A conditional transgenic mouse line for Cre-mediated expression of Ig-NRG1. (A) Transgene 
cassette used for the generation of transgenic mice that constitutively express GFP under control of the β-actin 
promoter. Removal of the floxed GFP cassette by Cre recombinase results in the expression of HA-Ig-NRG1.  
N, N-terminus; C, C-terminus; TM, transmembrane domain; EGF, epidermal growth factor-like domain;  
Ig, Immunoglobulin-like domain; HA, haemagglutinin. (B) Cre driver mouse lines for cell type- and stage-specific 
overexpression of HA-Ig-NRG1. The NEX-Cre driver mouse line enables early embryonic cortical projection neuron-
restricted overexpression starting at E12 (Goebbels et al., 2006). NEX-CreERT2 driver mice enable tamoxifen-
induced Cre-mediated recombination and transgene expression in mice at all stages. Arrows indicate tamoxifen 
injections (Agarwal et al., 2012).
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Figure 6. The β-actin GFP-STOP-flox cassette is 
widely expressed in nervous and non-nervous 
tissues of transgenic mice. (A) Structure of β-actin 
GFP-STOP-flox HA-Ig-Nrg1 transgene cassette used 
to generate STOP-Nrg1 mice with the location of 
genotyping primers (1 and 2). PCR on tail genomic 
DNA shows insertion of the STOP-Nrg1 cassette in 
STOP-Nrg1 mice, but not in wt littermates. (B) STOP-
Nrg1 mice display green fluorescence in virtually all 
tissues due to GFP expression from the GFP-STOP-
flox cassette. Epifluorescence images of organs of 
STOP-Nrg1 mice and epifluorescence images of tail 
biopsy of a wt littermate. Scale bars, 2 mm (brain, 
sciatic nerve, heart, spinal cord, tail tip), 4 mm 
(muscle). GFP, green fluorescent protein. 
 
 

Ig-NRG1 is mainly expressed in cortical 

projection neurons (Liu et al., 2011). A 

mouse model that overexpresses this 

protein in projection neurons starting during 

postnatal stages was published after 

initiation of this project (Yin et al., 2013b). 

To include embryonic stages in  

the investigation of Ig-NRG1-mediated 

functions, STOP-Nrg1 mice were crossbred 

to the NEX-Cre driver line. NEX-Cre mice 

harbor Cre recombinase as a “knock-in” 

into the NeuroD6 locus, which results in a 

driver line for Cre-mediated recombination 

in cortical projection neurons starting at 

E12 (Goebbels et al., 2006). To compare 

chronic versus adult overexpression of HA-

Ig-NRG1, STOP-Nrg1 mice were also bred 

to a tamoxifen inducible version of the Cre 

driver line (NEX-CreERT2). CreERT2 

results from the N-terminal fusion of Cre 

recombinase to a mutated human estrogen 

receptor (ER) ligand-binding domain. 

Administration of tamoxifen, a synthetic  

ER ligand, induces the dissociation  

of CreERT2 from HSP90, nuclear import  

of CreERT2, and the site-specific 

recombination of genes that are flanked by 

loxP sites. This permits tamoxifen induced 

overexpression of HA-Ig-NRG1 in 

projection neurons during adult stages (Fig. 

5B) (Agarwal et al., 2012). Two transgenic 

founder lines were generated by injection of the STOP-Nrg1 cassette into C57Bl/6N oocytes 

(Fig. 6A). STOP-Nrg1 mice were viable and produced offspring according to Mendelian ratios. 

Organs were examined for GFP expression by fluorescent light microscopy. Mice harboring 

the STOP-Nrg1 transgene cassette showed GPF expression in all tissues analyzed, in contrast 

to control mice (NEX-Cre mice) (Fig. 6B). For this reason, genotyping of STOP-Nrg1 mice can 
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also be inferred from monitoring GFP expression in tail biopsies. One of the founder lines was 

frozen after initial characterization. 

Expression of the transgene cassette in neural cell types in the brain of STOP-Nrg1 mice was 

identified by overlapping GFP fluorescence with fluorescent immunostaining for cell type-

specific markers on coronal cryosections. Confocal microscopy revealed expression of the 

STOP-Nrg1 transgene in glutamatergic projection neurons, as shown by co-staining for the 

neuronal marker NeuN and the projection neuron marker neurogranin (NRGN) (Fig. 7A). In 

contrast, the analysis of interneuron markers GAD67 and Parv revealed that the cassette was 

expressed only in a few interneurons (Fig. 7A). Among glial cells, the STOP-Nrg1 transgene 

was expressed in most oligodendrocytes (Olig2), and a subset of astrocytes (GFAP) and 

microglia (IBA1). STOP-Nrg1 expression was also found in spinal cord -motoneurons (ChaT) 

(Fig. 7B). Taken together, these results demonstrate that the STOP-Nrg1 transgene is 

expressed in most neural and non-neural tissues and therefore appears suitable to study the 

role of Ig-NRG1 in several different organs, in addition to the brain.  

 

Figure 7. β-actin GFP-STOP-flox cassette is predominantly expressed in projection neurons. (A) Confocal 
images of fluorescent immunostainings on 14 μm thick coronal cryosections of brains (bregma -1.7) from STOP-
Nrg1 mice at 3 months of age stained for neuronal markers. Immunostaining for NeuN shows overlap with GFP 
fluorescence and reveals expression of the STOP-Nrg1 transgene in neurons of the hippocampus of STOP-Nrg1 
mice. STOP-Nrg1 is expressed in projection neurons (filled arrowheads), indicated by colocalization with 
neurogranin (NRGN), but only minor expression was found in cortical interneurons (GAD67 and Parv; empty 
arrowheads). Scale bars, 20 μm. (B) Immunostainings for glial markers reveals expression of the STOP-Nrg1 
transgene in oligodendrocytes (Olig2), and a subset of astrocytes (GFAP) and microglia (IBA1). The transgene 
cassette is also expressed in spinal cord motoneurons (ChaT). Scale bars, 25 μm (IBA), 20 μm (Olig2, GFAP, 
ChaT). Cx, cortex; CA1, hippocampal CA1 region; SC, spinal cord. 
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2.2 Embryonic overexpression of HA-Ig-NRG1 in STOP-Nrg1*NEX-Cre mice  

NRG1 and its receptor ErbB4 are involved in important aspects of brain development, such as 

the control of interneuron migration (Flames et al., 2004; Li et al., 2012a). Furthermore, the 

expression of Ig-NRG1 is higher during early embryonic stages (Liu et al., 2011). To analyze 

the effect of HA-Ig-NRG1 overexpression in the cortex during embryonic stages, STOP-Nrg1 

mice were bred to the NEX-Cre driver line (Fig. 8A). HA-Ig-NRG1 overexpression in STOP-

Nrg1*NEX-Cre mice during embryonic stages was confirmed by immunostaining on coronal 

cryosections of brains at E16 for Cre-recombinase and NRG1 (using an antibody directed 

against the N-terminal HA tag) (Fig. 8B-D). Cre-recombinase positive neurons were observed 

by confocal microscopy in the cortical plate and subplate. Due to recombination of the GFP- 

 

 

Figure 8. NEX-Cre-mediated overexpression of HA-Ig-NRG1 in STOP-Nrg1*NEX-Cre mice during embryonic 
stages. (A) Cre expression starts at E12 in NEX-Cre mice. Structure of the targeted Neurod6 locus in NEX-Cre 
mice. (E1, Exon1; E2, Exon2; Neo, Neomycin resistance cassette; adapted from (Goebbels et al., 2006). Structure 
of the STOP-Nrg1 cassette and NEX-Cre-mediated recombination of the GFP-STOP cassette. (B) Schematic 
drawing of a coronal brain section at E16 illustrates the position of overview images shown in (C) (dashed red 
column) and high magnification images shown in (D) (dashed green square). (C) STOP-Nrg1*NEX-Cre embryos 
show reduced GFP fluorescence in the cortical plate, subplate and intermediate zone due to the removal of the 
GFP-STOP cassette by Cre recombinase. CP, cortical plate; IZ, intermediate zone; LV, lateral ventricle; MZ, 
marginal zone; SP, subplate; SVZ, subventricular zone; VZ, ventricular zone; WM, white matter. Scale bars, 50 μm. 
(D) Immunostainings for GFP, Cre recombinase and NRG1 (using an antibody directed against the HA tag) on 
cryosections of STOP-Nrg1*NEX-Cre and control brains (NEX-Cre and STOP-Nrg1) at E16. Note loss and absence 
of GFP in STOP-Nrg1*NEX-Cre and NEX-Cre mice, respectively and Cre-expression in STOP-Nrg1*NEX-Cre and 
NEX-Cre, but not in STOP-NRG1 mice. NRG1 overexpression is observed only in double transgenic mice. Scale 
bars, 10 μm. 
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STOP cassette a concomitant reduction of the GFP signal in those regions was detected in 

STOP-Nrg1*NEX-Cre mice (Fig. 8 C). Overexpression of HA-Ig-NRG1 and concomitantly 

reduced GFP fluorescence were observed in areas with Cre expression (Fig. 8D). This 

demonstrates that HA-Ig-NRG1 overexpression in STOP-Nrg1*NEX-Cre mice is initiated in 

postmitotic cortical projection neurons during embryonic stages, which allows to study the 

effects of increased Ig-NRG1 expression on cortical development. 

 

2.3 Chronic NEX-Cre-mediated HA-Ig-NRG1 overexpression in cortical projection 

causes ErbB4 hyperphosphorylation 

STOP-Nrg1 mice were bred to NEX-Cre driver mice to model HA-Ig-NRG1 overexpression in 

glutamatergic cortical projection neurons. Immunostaining on cryosections confirmed that 

overexpression of HA-Ig-NRG1 in double transgenic adult mice corresponds to the NEX-Cre 

recombination pattern (Fig. 9A). Furthermore, HA-Ig-NRG1 overexpression in STOP-Nrg1* 

 

Figure 9. NEX-Cre-mediated HA-Ig-NRG1 expression is restricted to cortical projection neurons during adult 
stages. (A) Schematic drawing of an adult coronal brain section illustrates the position of overview images for the 
dentate gyrus (dg), CA1 region of the hippocampus (CA1), and cortex (cx). Fluorescent immunostaining for the  
C-terminal domain of HA-Ig-NRG1 on coronal vibratome sections (bregma -1.7) reveals overexpression in STOP-
Nrg1*NEX-Cre mice (10 weeks old), consistent with the NEX-Cre expression profile. Expression is present in 
granule cells in the outer shell of the dentate gyrus, the CA1 region of the hippocampus, and in the cortex. 
Concomitantly, loss of GFP can be detected in STOP-Nrg1*NEX-Cre. Scale bars, 50 μm and 10 μm (zoom cx).  
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(B) Fluorescent immunostaining on coronal cryosections of STOP-Nrg1*NEX-Cre mice for HA-Ig-NRG1 (using 
antibodies directed against the HA tag and neuronal markers). HA-Ig-NRG1 expression is restricted to cortical 
projection neurons; its signal colocalizes with NeuN, but not with Parv. Scale bars, 15 μm. (C) Structure of HA-Ig-
NRG1 with binding sites for antibodies directed against N- and C-terminal domains. Arrowheads indicate possible 
proteolytic cleavage sites. Co-immunostaining on coronal cryosections of STOP-Nrg1*NEX-Cre for the N- and the 
C- terminal domains of HA-Ig-NRG1 show both colocalization (*) and non-overlapping signals for the N- and  
C-terminal domains (empty and filled arrowheads, respectively). Scale bar, 10 μm. 

 

NEX-Cre mice was specific for cortical projection neurons in cortex and hippocampus  

(Fig. 9B). Co-immunostaining for the N- and the C- terminal domains of HA-Ig-NRG1 identified 

domains of co-expression, which most likely reflect the accumulation of the full-length protein. 

In addition, non-overlapping signals for the N- and C-terminal domains were also detected, 

consistent with proper proteolytic processing at the juxtamembrane region of HA-Ig-NRG1 and 

shedding of the N-terminal domain (Fig. 9C). These studies demonstrate that STOP-Nrg1 

transgenic mice serve as a suitable genetic tool for conditional Ig-NRG1 overexpression in  

the brain. 

A biochemical analysis of Cre-dependent transgene expression was performed in the PFC and 

hippocampus of STOP-Nrg1*NEX-Cre mice at P7, as well as at 16 and 52 weeks of age. 

“Conventional” Thy1.2 promoter-driven Ig-NRG1 transgenic mice (Thy1.2 Nrg1; Michailov et 

al., 2004) were used as a reference. This study confirmed chronically elevated HA-Ig-NRG1 

expression in STOP-Nrg1*NEX-Cre mice and a massive overexpression under control of the 

Thy1.2 promoter (Fig. 10A-B). Western blot analysis demonstrated that chronic HA-Ig-NRG1 

overexpression in STOP-Nrg1*NEX-Cre mice was associated with permanent ErbB4 

hyperphosphorylation, using a phospho-ErbB4 (p-ErbB4) antibody directed against tyrosine 

1284. This hyperphosphorylation was already present at P7 (Fig. 10C-D). Together, these 

findings confirm that STOP-Nrg1*NEX-Cre mice allow chronic HA-Ig-NRG1 overexpression in 

cortical projection neurons, and demonstrate that these mice serve as a suitable genetic tool 

to model permanent hyperstimulation of ErbB4 receptors in the brain.  

2.4 Absence of neuropathology in the brain of STOP-Nrg1*NEX-Cre mice 

STOP-Nrg1*NEX-Cre mice display normal cage behavior and unaltered body weight 

compared to control littermates. Likewise, Hematoxylin-Eosin (H+E) staining revealed no 

obvious abnormalities in brain morphology (data not shown). Next, chromogenic 

immunostainings for the pan-neuronal marker NeuN were performed on brain sections from 

16 and 52 weeks old STOP-Nrg1*NEX-Cre mice. A semi-automated quantification method was 

employed for counting numbers of NeuN+
 neurons based on thresholded images, including 

watershed-based rendering of positive signals (Fig. 11A-B). Quantification of NeuN+
 neurons 

in the cortex of these two cohorts of STOP-Nrg1*NEX-Cre mice showed no differences 

compared to controls. This suggests that chronic HA-Ig-NRG1 overexpression in projection 

neurons exerts no major effects on the migration and maintenance of cortical neurons. 
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Figure 10. HA-Ig-NRG1 overexpression in projection neurons causes ErbB4 hyperphosphorylation.  
(A) Western blotting of protein lysates from PFC with an antibody directed against the NRG1 C-terminal domain 
reveals moderate HA-Ig-NRG1 overexpression in STOP-Nrg1*NEX-Cre mice and massive Ig-NRG1 
overexpression in Thy1.2-NRG1 mice (age 16 weeks). Arrowheads indicate full-length (~130 kDa) and processed 
protein (~50 kDa). Asterisks indicate non-specific bands. (B) Densitometric quantification of the band corresponding 
to full-length NRG1. STOP-Nrg1*NEX-Cre mice show ~10-fold overexpression compared to controls (STOP-Nrg1, 
NEX-Cre; n=3-4 each; t-test, p=0.0003), in which NRG1 expression is very low at this age. Thy1.2-NRG1 mice (n=3) 
show ~6-fold overexpression compared to STOP-Nrg1*NEX-Cre mice (t-test, p=0.0004). (C) Western blotting of 
PFC protein lysates with an antibody directed against the HA tag, and an antibody that detects ErbB4 
phosphorylated at tyrosine 1284 shows HA-Ig-NRG1 expression and ErbB4 hyperphosphorylation in STOP-
Nrg1*NEX-Cre mice at P7. Densitometric quantification of phosphorylated ErbB4 (Tyr1284) bands. Integrated 
density values were normalized to β-actin loading control (n=4-6; t-test, p=0.011). (D) Biochemical analysis of PFC 
lysates from STOP-Nrg1*NEX-Cre mice and controls (STOP-Nrg1, NEX-Cre) shows HA-Ig-NRG1 overexpression 
and ErbB4 hyperphosphorylation in STOP-Nrg1*NEX-Cre mice (age 16 weeks). Densitometric quantification of 
phosphorylated ErbB4 (Tyr1284) bands. Integrated density values were normalized to β-actin loading control (n=3 
each; t-test, p=0.0011). 

 

Similarly, neuroinflammation and other signs of neuropathology were evaluated by performing 

chromogenic immunostainings for markers of neuropathology and inflammation on brain 

sections at 16 and 52 weeks of age. Astrogliosis or microgliosis were tested by staining for 

GFAP, IBA1 and MAC3. Immunostainings for the astrocytic marker GFAP were quantified with 

a semi-automated method, which determined the GFAP+ area in relation to the region of 

interest. Hippocampus and fimbria were analyzed as examples for gray and white matter 

regions, respectively (Fig. 12A). No difference in GFAP+ area was observed in the analyzed 

brain regions of STOP-Nrg1*NEX-Cre compared to controls (Fig. 12B-C). 
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Figure 11. Normal numbers of cortical neurons in STOP-Nrg1*NEX-Cre mice. Chromogenic immunostaining 
for NeuN on coronal paraffin sections from 16 weeks (A) and 52 weeks old mice (B) (bregma -1.3 and -1.7, 
respectively) revealed no changes in neuronal numbers in STOP-Nrg1*NEX-Cre mice compared to controls (STOP-
Nrg1, NEX-Cre). Semi-automated quantification of columns of the somatosensory cortex (width 600 μm) using 
watershed thresholded images (n=3-4 each; t-test, p > 0.05; ns, not significant). Scale bars, 100 μm.  

 

A similar semi-automated quantification of chromogenic IBA1 immunostainings was performed 

to test for microgliosis (Fig. 13A). No differences were identified in STOP-Nrg1*NEX-Cre mice 

at 16 or 52 weeks of age compared to controls (Fig. 13B-C). Likewise, no evidence of changes 

in activated microglia were found in immunostainings for MAC-3. Furthermore, brains were 

examined for axonal swellings and T-cell infiltration by staining for amyloid precursor protein 

(APP) and T-cell antigen CD3, respectively. No signs of pathology in STOP-Nrg1*NEX-Cre 

were obtained based on these immunostainings (data no shown). In summary, chronic 

overexpression of HA-Ig-NRG1 derived from projection neurons serves not as a potent signal 

for neurodegenerative or inflammatory processes in the brain. 

 

2.5 Reduced social inhibition in STOP-Nrg1*NEX-Cre mice 

Sensory functions of STOP-Nrg1*NEX-Cre were examined starting at 2-3 months of age. 

Behavioral studies were performed by Anja Ronnenberg and Prof. Dr. Ekrem Dere, as part of 

a collaboration with Prof. Dr. Dr. Hannelore Ehrenreich (MPI-EM, Clinical Neuroscience). In 

the visual cliff test, HA-Ig-NRG1 overexpressing mice and controls (NEX-Cre, STOP-Nrg1 and 
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Figure 12. STOP-Nrg1*NEX-Cre mice show no signs of astrogliosis. (A) Chromogenic immunostaining for 
astrocytes (GFAP) on coronal paraffin sections from 16 weeks old STOP-Nrg1*NEX-Cre and control mice  
(bregma -1.3). Quantified areas are marked by dashed lines. Scale bars, 500 μm, 100 μm (zoom). (B) Semi-
automated quantification of GFAP+ area in hippocampus and fimbria of STOP-Nrg1*NEX-Cre and control mice 
(STOP-Nrg1, NEX-Cre) at 16 weeks of age reveals no difference in GFAP+ area (n=4-5 each; t-test, p > 0.05; ns, 
not significant). (C) Semi-automated quantification of GFAP+ area in hippocampus and fimbria of STOP-Nrg1*NEX-
Cre and control mice (STOP-Nrg1, NEX-Cre) at 52 weeks of age confirms absence of astrogliosis. (n=5-6 each;  
t-test, p > 0.05; ns, not significant). 

 

wt) spent significantly more time on the “safe” ground side as compared to the transparent “air” 

side (Fig. 14A). Similarly, no significant differences were observed in the hot plate test for pain 

sensitivity (Fig. 14B).  

When exploratory and motor activity was tested no significant genotype effects were observed 

in the open field test of novelty-induced exploration, as all groups of mice spent similar time in 

the different zones of the open-field (Fig. 14C). The center zone of the open field is usually 

avoided by mice since it does not provide shelter. Additionally, motor functions in terms of 

locomotion and running velocity were not significantly different between genotypes (One-way 

ANOVA, p > 0.05 for locomotion and velocity; data not shown). In conclusion, these results 

suggest that HA-Ig-NRG1 overexpression has no major effects on sensory functions, 

emotionality as well exploratory and motor functions.  
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A possible effect of HA-Ig-NRG1 overexpression on sensorimotor gating was tested with the 

pre-pulse inhibition (PPI) test. As expected, the level of inhibition of the startle response after 

application of the startle pulse increased in dependence of the intensity of the pre-pulse in all 

genotypes (Fig 14D). However, no significant effects of genotype, genotype per pre-pulse 

intensity interaction (Fig. 14D) or group differences in terms of the startle response to the 120 

dB startle pulse were detected (one-way ANOVA, p > 0.05; data not shown). These results 

suggest that sensorimotor gating and basic acoustic startle reflex pathways are not affected 

by the increased expression of HA-Ig-NRG1. 

 

 

 

Figure 13. STOP-Nrg1*NEX-Cre mice show no signs of microgliosis. (A) Chromogenic immunostaining for 
microglia (IBA1) on coronal paraffin sections from 16 weeks old STOP-Nrg1*NEX-Cre and control mice  
(bregma -1.3). Quantified areas are shown within dashed lines. Scale bars, 500 μm, 100 μm (zoom).  (B) Semi-
automated quantification of IBA+ area in hippocampus and corpus callosum of STOP-Nrg1*NEX-Cre and control 
mice (STOP-Nrg1, and NEX-Cre) at 16 weeks of age reveals no significant difference in IBA+ area (n=4-5 each;  
t-test, p > 0.05; ns, not significant). (C) Semi-automated quantification of IBA+ area in hippocampus and corpus 
callosum of STOP-Nrg1*NEX-Cre and control mice (STOP-Nrg1, NEX-Cre) at 52 weeks of age confirms absence 
of microgliosis. (n=5-6 each; t-test, p > 0.05; ns, not significant). 
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Figure 14. Sensory, exploratory, motor functions, and sensorimotor gating are not affected, but social 
behavior is altered in STOP-Nrg1*NEX-Cre mice. (A) The visual cliff test showed no differences in the time spent 
on the “safe” ground side between STOP-Nrg1*NEX-Cre and control mice (NEX-Cre; STOP-Nrg1, wt; n=15-17 
each; one-way ANOVA, p > 0.05; ns, not significant). Bars represent mean±SEM percentage of time spend on the 
ground side. (B) No significant differences between genotypes (STOP-Nrg1*NEX-Cre, NEX-Cre, STOP-Nrg1, wt) 
were observed in the hot plate test (n=14-17; one-way ANOVA, p > 0.05; ns, not significant). Bars represent 
mean±SEM latency [s] to show signs of discomfort. (C) No genotype effects were observed in the open filed test 
(STOP-Nrg1*NEX-Cre, NEX-Cre, STOP-Nrg1, wt; n=15-17; one-way ANOVA, p-values for periphery, intermediate 
zone and center > 0.05; ns, not significant). Bars represent mean±SEM time spent [s] in different zones. (D) In the 
PPI test, the startle response after application of the startle pulse increased with the intensity of the pre-pulse in all 
genotypes (STOP-Nrg1*NEX-Cre, NEX-Cre, STOP-Nrg1, wt; n=15-17; one-way ANOVA with repeated measures 
for main effect of pre-pulse intensity, p<0.0001). No differences for genotype and genotype per pre-pulse intensity 
interaction were found (one-way ANOVA with repeated measures; p > 0.05; ns, not significant). Bars represent 
mean±SEM percentage of inhibition of the startle response. (E) The social interaction test showed a decrease in 
the time spent in social interaction (across the 10 min of observation) in all genotypes (STOP-Nrg1*NEX-Cre;  
NEX-Cre; STOP-Nrg1; wt; n=6-9 pairs of mice each; one-way ANOVA with repeated measures, p<0.0001).  
STOP-Nrg1*NEX-Cre mice showed an effect of genotype (one-way ANOVA with repeated measures, p=0.004) and 
genotype per time interval interaction (one-way ANOVA with repeated measures, p=0.034). Bars represent 
mean±SEM time of active contact [s]. 
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To test whether HA-Ig-NRG1 overexpression would affect dyadic social interactions, pairs of 

unfamiliar mice of the same genotype were tested (STOP-Nrg1*NEX-Cre, NEX-Cre, STOP-

Nrg1) in the social interaction test. The time spent with social interactions significantly 

decreased across the 10 min of observation, indicating that pairs got familiar during the 

observation period and lost interest in each other towards the end of the observation period. A 

significant main effect of genotype and genotype per time interval interaction was found for 

STOP-Nrg1*NEX-Cre mice, which spent significantly more time on social interactions as 

compared to control groups (wt, p=0.005; STOP-Nrg1, p=0.012; NEX-Cre, p=0.031; Bonferroni 

post-hoc test; Fig. 14E). These results revealed that cortical restricted, chronic overexpression 

of HA-Ig-NRG1 affects social behavior. 

 

2.6 Reduced hippocampal -oscillations in Ig-NRG1 transgenic mice 

-oscillations contribute to cognitive functions and were found to be altered in psychiatric 

disorders. Importantly, ErbB4 expressing fast-spiking Parv+ interneurons are key participants 

in the generation of these oscillations (Bartos et al., 2007). To analyze if projection neuron-

specific overexpression of HA-Ig-NRG1 has an effect on -oscillations, these oscillations were 

recorded in the CA3 pyramidal layer of hippocampal slices (in collaboration with Prof. Dr. Jeong 

Seop Rhee and Dr. Bekir Altas, MPI-EM, Department of Neurobiology). Hippocampal slices 

were prepared from homozygous STOP-Nrg1*NEX-Cre mice and controls at P30-35. 

Homozygous STOP-Nrg1*NEX-Cre mice were identified by qPCR (Fig. 15A). Recordings were 

performed before and after application of kainate (Fig. 15B-C). No changes in the frequency 

of -oscillations were detected in STOP-Nrg1*NEX-Cre compared to STOP-Nrg1 control mice 

(Fig. 15D). However, the power of -oscillations was reduced in STOP-Nrg1*NEX-Cre mice 

compared to controls (Fig. 15E). In additional experiments, -oscillations were also recorded 

in NEX-Cre and wt mice (P30-35) to exclude possible effects of the NEX-Cre driver line. No 

changes were found in the recordings from NEX-Cre compared to wt mice (data not shown). 

Thus, cortical restricted HA-Ig-NRG1 overexpression results in decreased power of 

hippocampal -oscillations. 

 

2.7 The number of Parv+ interneurons is unaltered in adult STOP-Nrg1*NEX-Cre mice 

NRG1 signaling via ErbB4 has been implicated in the migration of cortical interneurons (Flames 

et al., 2004; Li et al., 2012a). Furthermore, Parv+ interneurons are usually fast-spiking 

interneurons that play an important role in the synchronization of pyramidal cell activity and the 

generation of -oscillations (Bartos et al., 2007). Considering the reduced power of  

-oscillations in STOP-Nrg1*NEX-Cre mice, possible effects of chronic HA-Ig-NRG1  
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Figure 15. Cortical restricted HA-Ig-NRG1 overexpression in projection neurons reduces the power of 

hippocampal -oscillations. (A) qPCR result for the generation of homozygous STOP-Nrg1*NEX-Cre mice. Only 
mice with the highest values (rfu) were considered homozygous and used in the experiments. wt and heterozygous 

controls were always included. (B, C) Representative traces of -oscillations recorded in the CA3 pyramidal layer 
before and after kainate application (100 nM) in control (left) and STOP-NRG1*NEX-Cre mice (right).  

(D) -oscillation frequency was not changed in STOP-Nrg1*NEX-Cre compared to control mice. Mean frequency of  

-oscillations at maximum peak in power spectrum is shown in bar diagram with ±SEM. Control, 31.35 ± 0.9466, 

N=3, n=16; STOP-Nrg1*NEX-Cre, 32.07 ± 0.6392, N=3, n=17; p=0.5308. (E) Averaged power of -oscillations was 
reduced in STOP-Nrg1*NEX-Cre mice compared to controls. For each recording, the averaged power of  

-oscillations was analyzed between 25-45 Hz frequency in 10 min epochs. Bar diagram represents mean of 

averaged power of -oscillations ±SEM. Control, 215.6 ± 39.74, N=3, n=16; STOP-Nrg1*NEX-Cre, 95.48 ± 19.23, 
N=3, n=17, p=0.0093.  
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overexpression beginning at embryonic stages on Parv+ interneuron numbers were 

investigated in the hippocampus and cortex. Chromogenic immunostainings were performed 

on coronal paraffin sections of 16 and 52 weeks old STOP-Nrg1*NEX-Cre and parental control 

mice. When manually quantified, no significant differences in the number of Parv+ interneurons 

were observed in the cortex and hippocampus of STOP-Nrg1*NEX-Cre mice compared to 

controls (Fig. 16A-D). This suggests that increased HA-Ig-NRG1 expression during embryonic 

development in STOP-Nrg1*NEX-Cre mice has no major effect on the migration and survival 

of Parv+ interneurons in hippocampus and neocortex. 

 

 

Figure 16. Unchanged numbers of Parv+ cortical interneurons in STOP-Nrg1*NEX-Cre mice. Chromogenic 
immunostainings for Parv on coronal paraffin sections from (A-B) 16 weeks and (C-D) 52 weeks old mice (bregma 
-1.3 and -1.7, respectively). (A, C) Manual quantification of somatosensory cortex columns (width 600 μm) showed 
no differences in numbers of Parv+ interneurons between STOP-Nrg1*NEX-Cre mice and controls at 16 weeks and 
52 weeks of age (STOP-Nrg1, NEX-Cre; n=3-4 each; t-test, p > 0.05; ns, not significant). Cortical layers are marked 
by dashed lines. Scale bar, 100 μm. I–VI, cortical layers; WM, white matter. (B, D) Quantification of Parv+ 

interneurons in the hippocampus of 16 weeks and 52 weeks old STOP-Nrg1*NEX-Cre mice and controls (STOP-
Nrg1, NEX-Cre) showed no significant differences (n=3-4 each; t-test, p > 0.05; ns, not significant). Dashed line 
indicates the quantified area. Scale bars, 500 μm (hippocampus), 50 μm (zoom). 

 

2.8 Elevated Ig-NRG1 signaling preferentially recruits the AKT signaling pathway 

MAPK and PI3K/AKT are two major signaling pathways downstream of NRG1-mediated ErbB4 

stimulation, which regulate many processes required for proper network function, i.e. 

interneuron migration, dendritic spine formation, and synaptic plasticity (Krivosheya et al., 

2008; Kumar et al., 2005; Thomas and Huganir, 2004; Wu et al., 2001). To investigate specific 

effects of Ig-NRG1 during the regulation of these signaling cascades, biochemical analysis by 

Western blotting was performed in STOP-Nrg1*NEX-Cre, Thy1.2-Nrg1 and control mice. As 

mentioned above, Thy1.2-Nrg1 mice showed almost 6-fold Ig-NRG1 overexpression compared 

to STOP-Nrg1*NEX-Cre mice (Fig. 10A-B) and consistent with this, ErbB4 
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hyperphosphorylation in the conventional line is ~5-fold higher than in conditional transgenic 

mice (Fig. 10C-D; Fig. 17A). This also suggests that ErbB4 is not a rate limiting factor when 

modelling Ig-NRG1 hyperstimulation in the brain. Biochemical analysis showed no significant 

differences in p-MAPK levels in STOP-Nrg1*NEX-Cre compared to controls. However, there 

was a significant increase in the level of p-MAPK inThy1.2-Nrg1 mice compared to controls. 

Levels of p-MAPK do not differ between conditional and conventional NRG1 transgenic mice 

(Fig. 17B). On the other hand, levels of p-AKT were increased in both STOP-Nrg1*NEX-Cre 

and Thy1.2-Nrg1 mice compared to controls (Fig. 17C).  

 

 
Figure 17. Cortical restricted Ig-NRG1 overexpression preferentially stimulates the AKT signaling pathway. 
(A) Western blotting of PFC protein lysates (age 16 weeks) revealed that ErbB4 hyperphosphorylation is ~5-fold 
higher in Thy1.2-NRG1 compared to STOP-Nrg1*NEX-Cre mice. Densitometric quantification of p-ErbB4 (Tyr1284) 
bands. Integrated density values were normalized to β-actin loading control (n=3 each; t-test, p < 0.0001).  
(B) Western Blot analysis shows no significant differences in p-MAPK levels in the PFC of STOP-Nrg1*NEX-Cre 
mice (16 weeks old) compared to controls (STOP-Nrg1, NEX-Cre). Levels of p-MAPK are increased in Thy1.2-
NRG1 compared to controls, but are not significantly different from p-MAPK in STOP-Nrg1*NEX-Cre mice. 
Densitometric quantification of p-MAPK bands. Integrated density values were normalized to β-actin loading control 
(n=3-4 each; t-test, *p= 0.0222; p values > 0.05; ns, not significant). (C) Western blotting of PFC protein lysates of 
STOP-Nrg1*NEX-Cre and Thy1.2-NRG1 mice (16 weeks old) reveals increased p-AKT levels compared to controls 
(STOP-Nrg1, NEX-Cre). Densitometric quantification of p-AKT bands. Integrated density values were normalized 
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to β-actin loading control (n=3-4 each; t-tests, *p= 0.0361, **p= 0.0016). (D) Western blot analysis shows induction 
of HA-Ig-NRG1 expression in the hippocampus of tamoxifen injected STOP-Nrg1*NEX-CreERT2 mice, but not in 
injected controls (STOP-Nrg1, NEX-CreERT2) using an antibody directed against the N-terminal HA tag. Mice were 
injected with tamoxifen for 5 consecutive days at 3 months of age and collected 4 weeks later. (E) Unaltered MAPK 
phosphorylation in the hippocampus of STOP-Nrg1*NEX-CreERT2 mice compared to controls (STOP-Nrg1, NEX-
CreERT2). Densitometric quantification of p-MAPK bands. Integrated density values were normalized to β-actin 
loading control (n=3-5 each; t-test, p values > 0.05; ns, not significant). (F) Increased AKT phosphorylation in the 
hippocampus of tamoxifen injected STOP-Nrg1*NEX-CreERT2 mice compared to controls (STOP-Nrg1, NEX-
CreERT2). Densitometric quantification of phosphorylated AKT bands. Integrated density values were normalized 
to β-actin loading control (n=3-5 each; t-tests, p= 0.0141). 

 

To achieve HA-Ig-NRG1 overexpression in the adult brain (where levels of NRG1 expression 

are very low in wildtype), STOP-Nrg1 transgenic mice were bred to a tamoxifen inducible Cre 

driver line (NEX-CreERT2) (Agarwal et al., 2012). CreERT2-mediated activation of HA-Ig-

NRG1 expression was shown by biochemical analysis of protein lysates from the PFC and 

hippocampus 4 weeks after the final tamoxifen injection (Fig. 17D). Western blot analysis 

showed no difference in p-MAPK levels between STOP-Nrg1*NEX-CreERT2 mice and 

controls, similar to chronic STOP-Nrg1*NEX-Cre mice (Fig. 17E). In contrast, levels of p-AKT 

were found to be significantly increased in STOP-Nrg1*NEX-CreERT2 compared to controls 

(Fig 17F). Taken together, these results suggest that Ig-NRG1 overexpression leads to a 

preferential recruitment of the AKT signaling pathway.  

 

2.9 Accumulation of Ig-NRG1 in the somatodendritic compartment of projection 

neurons 

To provide a basis for mechanistic insights into Ig-NRG1-mediated reduction in hippocampal 

-oscillations and altered social behavior, the subcellular localization of this protein was 

examined in more detail. To obtain more robust signals, homozygous STOP-Nrg1*NEX-Cre 

and Thy1.2-Nrg1 mice were included in some of these experiments. Fluorescent 

immunostainings of conventional and conditional transgenic mice showed a massive 

overexpression in the brain of Thy1.2-Nrg1 mice and a moderate overexpression in STOP-

Nrg1*NEX-Cre mice (Fig. 18A). These two mouse lines were also used to compare Ig-NRG1 

expression patterns by immunohistochemistry. Despite differences in expression levels, both 

mouse lines showed a similar “punctate” pattern of Ig-NRG1 expression in cortical projection 

neurons when using an antibody directed against the Ig-NRG1 C-terminus (Fig.18B). Despite 

the general concept according to which NRG1 is enriched at presynaptic terminals of projection 

neurons and interacts with ErbB4 that is mainly expressed in postsynaptic compartments of 

interneurons, in this study NRG1 was found to be enriched in the somatodendritic compartment 

of projection neurons (Fig. 18B).  

Furthermore, fluorescent immunostainings for synaptic markers in STOP-Nrg1*NEX-Cre and 

Thy1.2-Nrg1 mice showed absence of colocalization with the presynaptic markers 

synaptophysin and VGlut1 (Fig. 19A). A similar finding was obtained in double transgenic mice 
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Figure 18. Ig-NRG1 shows a “punctate” pattern of expression in the somatodendritic compartment of 
projection neurons. (A) Fluorescent immunostainings of coronal vibratome sections from STOP-Nrg1*NEX-Cre 
and Thy1.2-Nrg1 mice at 8-9 weeks of age using an antibody directed against the C-terminal domain of NRG1 
demonstrate a moderate overexpression of Ig-NRG1 in the cortex of STOP-Nrg1*NEX-Cre mice compared to 
massive overexpression in Thy1.2-Nrg1 mice. Scale bar, 25 μm. (B) STOP-Nrg1*NEX-Cre and Thy1.2-Nrg1 mice 
showed a similar pattern of subcellular Ig-NRG1 expression in the somatodendritic compartment of cortical 
projection neurons. Scale bar, 10 μm.  

 

that overexpress both Ig-Nrg1 and an “active” variant of CRD-Nrg1 that lacks the C-terminal 

domain (Thy1.2-CRD-NRG1GIEF), which mimics BACE1 processing in the juxtamembrane 

“stalk” region (Velanac et al., 2012; Fig. 19B-C). Additionally, fluorescent immunostainings 
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were also performed for the serotonin transporter (SERT) to explore the possibility of a close 

localization of Ig-NRG1 to serotonergic synapses, however this was not the case (Fig. 19D). 

In addition, fluorescent immunostainings on coronal brain sections from conditional and 

conventional overexpressors showed no signs of colocalization with the postsynaptic markers 

PSD95 and Gephyrin (Fig. 20A-B).  

 

Figure 19. NRG1 does not colocalize  
with presynaptic markers. (A) Fluorescent 
immunostainings on cryosections from STOP-
Nrg1*NEX-Cre and Thy1.2-Nrg1 mice revealed 
no colocalization of Ig-NRG1 (C-terminal 
domain) with presynaptic markers synaptophysin 
and VGlut1. Scale bar, 10 μm. (B) Absence of 
colocalization of NRG1 with VGlut1 was also 
found in fluorescent immunostainings of coronal 
cryosections from Thy1.2-Nrg1*Thy1.2-CRD-
NRG1GIEF double transgenic mice. Individual 
channels of the triple staining for the NRG1  
C-terminal domain, HA tag (present at the  
N-terminus of CRD-NRG1GIEF) and VGlut1 are 
shown. A line scan (indicated by a red line) was 
performed using the plot profile function of Image 
J. (C) Combined plot reveal no overlap between 
the fluorescent signal of each marker, consistent 
with the absence of colocalization of Ig-NRG1 
and VGlut1. Scale bar 10 μm. (D) Cryosections 
of conditional and conventional overexpressors 
of Ig-NRG1 immunostained for SERT did not 
show close localization of Ig-NRG1 with the 
marker. Scale bar, 10 μm. 
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Figure 20. Ig-NRG1 does not colocalize with postsynaptic markers. Fluorescent co-immunostainings on 
cryosections from STOP-Nrg1*NEX-Cre and Thy1.2-Nrg1 mice for the NRG1 C-terminal domain and postsynaptic 
markers revealed that Ig-NRG1 does not colocalize with (A) PSD95 and (B) Gephyrin. Scale bars, 10 μm.  

 

NRG1 accumulates in ER-derived subsurface cisternae (SSC) in cholinergic synapses  

(“C-type”) of the spinal cord (Gallart-Palau et al., 2014). Moreover, NRG2 a protein with a 

similar structure as Ig-NRG1, was found to be associated with Kv2.1, a potassium channel that 

clusters in the plasma membrane in close proximity to SSCs (Vullhorst et al., 2015). To 

examine if Ig-NRG1 is also located close to SSCs, fluorescent immunostainings for Kv2.1 were 

performed, which showed that Ig-NRG1 partially colocalizes with Kv2.1 (Fig. 21A). These 

results suggest that the higher protein levels in Thy1.2-Nrg1 mice compared to STOP-

Nrg1*NEX-Cre have no considerable impact on the subcellular localization of Ig-NRG1, and 

that this protein is not located in presynaptic compartments or the PSD of projection neurons 

(Fig. 21A, I). Instead, Ig-NRG1 appears to accumulate either in the plasma membrane above 

SSCs (Fig. 21A, II) or even within the SSC membrane (Fig. 21A, III). This argues in favor of 

somatodendritic functions, including autocrine NRG1 signaling in projection neurons. 
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Figure 21. Ig-NRG1 partially colocalizes with the potassium channel Kv2.1. (A) Fluorescent immunostainings 
on cryosections from STOP-Nrg1*NEX-Cre and Thy1.2-Nrg1 mice revealed that the C-terminal domain of Ig-NRG1 
colocalizes with Kv2.1 (arrowheads). Scale bar, 10 μm. (B) Model of subcellular Ig-NRG1 localization shows that 
NRG1 is not enriched in presynaptic compartments of projection neurons (I). Instead, Ig-NRG1 colocalizes with 
Kv2.1, a potassium channel found in plasma membrane clusters in close proximity to SSCs. Thus, Ig-NRG1 appears 
to accumulate in the somatodendritic plasma membrane adjacent to (II) or directly within SSCs (III). 

 

2.10 Analysis of Parv+ interneuron-specific NRG1 mutants  

NRG1 is prominently expressed by glutamatergic projection neurons, but also present in 

GABAergic interneurons and astrocytes (Liu et al., 2011). Previous studies indicate that 

projection neuron-specific loss or (moderate) overexpression of NRG1 are not associated with 

severe CNS dysfunctions (Agarwal et al., 2014), suggesting that altered paracrine or juxtacrine 

NRG1 signaling is well tolerated by the brain. Thus, to address autocrine NRG1 signaling 

functions in ErbB4-expressing, Parv+ interneurons, a pilot study was performed, in which 

conditional NRG1 mutants (Nrg1 f/f) (Li et al., 2002) were bred to parvalbumin-Cre (Parv-Cre) 

driver mice (Hippenmeyer et al., 2005). First, to determine the Parv-Cre-mediated 
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recombination pattern, Parv-Cre mice were bred to a floxed tdTomato Cre-reporter mouse line 

(tdTo; Madisen et al., 2010). Images from coronal cryosections of tdTo*Parv-Cre mice were 

obtained. tdTomato reporter fluorescence displayed a recombination pattern, which was in line 

with the distribution of Parv+ neurons in the brain (Fig. 22A). Next, Nrg1 f/f*Parv-Cre mice were 

produced, which were born at the expected Mendelian frequencies and survived until 

adulthood. However, starting at 3-4 weeks of age, Nrg1 f/f*Parv-Cre mice, but not their 

littermates (Nrg1 f/f, Parv-Cre, Nrg1 f/+*Parv-Cre) showed a shivering phenotype. In addition, 

male and female Nrg1 f/f*Parv-Cre mice displayed a significant reduction in their body weight 

at 5 weeks of age (Fig. 22B), which seems to persist throughout adulthood (data not shown).   

 

 

 
Figure 22. Reduced body weight in Nrg1 f/f*Parv-Cre mutants. (A) Cryosection (bregma -1.7) of tdTo*Parv-Cre 
mouse shows the Cre recombination pattern of the Parv-Cre driver line, based on tdTomato reporter fluorescence. 
Scale bars, 1mm, 100 μm (zoom). (B) Body weight reduction in Nrg1 f/f*Parv-Cre females (n=13) compared to 
controls (Nrg1 f/f, n=8; Parv-Cre, n=5; Nrg1 f/+*Parv-Cre n=5) at 5 weeks of age. (One-way ANOVA showed no 
differences between control groups; t-test for mutants vs control group, p=0.006). 

 

 

To address possible effects on Parv+ interneurons, chromogenic immunostainings were 

performed on coronal paraffin sections from 5 and 18 weeks old Nrg1 f/f*Parv-Cre and control 

mice (bregma -1.7; Fig. 23A). Interneuron numbers were manually counted. No significant 

differences in Parv+ cell numbers were observed in the hippocampus of mutants compared to 

controls (Nrg1 f/f; Parv-Cre) at 5 weeks (Fig. 23B). Likewise, no differences were observed in 

the hippocampus of 18 weeks old Nrg1 f/f*Parv-Cre mutants (Fig. 23C).  

Next, columns of the same width from the somatosensory cortex above the CA1 and CA2 

region of the hippocampus (Fig. 24A) were used to manually count the number of Parv+ cells. 

Here, a reduction of Parv+ interneurons was observed in cortical layers II-III in both cohorts of 

mice (Fig. 24B, D). In contrast, no differences in the numbers of calbindin+ interneurons were 

found in Nrg1 f/f*Parv-Cre (n=3) and littermate controls (Nrg1 f/f, n=3; Nrg1 f/+*Parv-Cre, n=3) 

at 18 weeks of age (Fig. 24C), supporting a specific loss of Parv+ cells due to cell autonomous 

effects of NRG1 elimination. 
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Figure 23. Unaltered numbers of Parv+ interneurons in the hippocampus of Nrg1 f/f*Parv-Cre mutants.  
(A) Chromogenic immunostainings for Parv+ cells on coronal paraffin sections (bregma -1.7) from 18 weeks old 
Nrg1 f/f*Parv-Cre and control mice. (B) Quantification of Parv+ interneurons in the hippocampus of 5 weeks old 
females Nrg1 f/f*Parv-Cre (n=4) showed no differences compared to controls (Nrg1 f/f, n=3; Parv-Cre, n=4).  
(C) Numbers of Parv+ interneurons were also unaltered in 18 weeks old males Nrg1 f/f*Parv-Cre (n=3) compared to 
control mice (Nrg1 f/f, n=3; Nrg1 f/+*Parv-Cre, n=3; t-tests, p > 0.05; ns, not significant). Scale bars, 500 μm 
(hippocampus), 50 μm (zoom).  

 

 

 

 

 

Figure 24. Reduction of Parv+ interneurons in cortical layers II/III of Nrg1 f/f*Parv-Cre mice. (A) Schematic 
drawing of an adult coronal brain section illustrates the position of images shown in (B-D) (red column between CA1 
and CA2 regions of the hippocampus). (B) Chromogenic immunostainings for Parv+ cells on coronal paraffin 
sections (bregma -1.7) from 5 weeks old Nrg1 f/f*Parv-Cre and control mice (only females). Manual quantification 
of columns (width 500 μm) of the somatosensory cortex showed a reduction in numbers of Parv+ interneurons in 
cortical layers II-III of Nrg1 f/f*Parv-Cre mice compared to controls (Nrg1 f/f, Parv-Cre; n=3-4 each; t-test,  
**p= 0.0253, p > 0.05; ns, not significant). Scale bar 100 μm. (C) Chromogenic immunostainings for calbindin+ 

interneurons on coronal paraffin sections (bregma -1.7) from 18 weeks old males Nrg1 f/f*Parv-Cre and controls 
(Nrg1 f/f, Nrg1 f/+*Parv-Cre, n=3 each). Manual quantification of columns (width 600 μm) of the somatosensory 
cortex showed no changes in cell numbers (t-tests, p > 0.05; ns, not significant). Scale bar, 100 μm.  
(D) Chromogenic immunostainings for Parv+ cells on coronal paraffin sections (bregma -1.7) from the same cohort 
of 18 weeks old Nrg1 f/f*Parv-Cre and control mice. Quantification showed a reduction in numbers of of Parv+ 
interneurons in cortical layers II-III of mutants compared to controls (t-test, ***p= 0.0007, p > 0.05; ns, not significant). 
Scale bar, 100 μm. 
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2.11 Generation of a “knock in” mouse line for the conditional activation of NRG2 

signaling in the brain  

NRG2 is a member of the NRG family with a similar domain structure as Ig-NRG1 and serves 

as a ligand for ErbB receptors. However, it exhibits different temporal and regional expression 

patterns in the nervous system (Carraway et al., 1997; Longart et al., 2004). NRG2 is 

prominently expressed in the adult cortex, dentate gyrus, and cerebellum, but its role in the 

brain, particularly at cortical synapses, is unknown. In this side project, tools for the 

investigation of NRG2 functions in CNS synapses were generated and tested. In a first 

approach, primary hippocampal neurons were treated with the recombinant EGF domain of 

NRG2 (GST-NRG2; Fig. 25A). After treatment for 24 h, hippocampal neurons (14 DIV) showed 

increased ErbB4 phosphorylation compared to controls, demonstrating that the EGF domain 

of NRG2 activates ErbB4 receptors. This effect was significantly reduced after treatment with 

Lapatinib. Although not yet statistically significant, GST-NRG2-induced ErbB4 phosphorylation 

was also reduced after treatment with 10 µM Spironolactone (Fig. 25B-C), a mineral corticoid 

 

 

Figure 25. In vitro tools to examine NRG2 functions at CNS synapses. (A) Silver staining of a polyacrylamide 
gel shows the integrity of the EGF domain of NRG2 (NRG2β) fused to GST. NRG1β was used as a positive control, 
GST as a negative control (700 ng protein/lane were loaded; 12% polyacrylamide gel.)  M, marker. (B) Stimulation 
of hippocampal neurons with GST-NRG2 induces ErbB4 phosphorylation. Spironolactone treatment shows a 
tendency to reduce NRG2-mediated ErbB4 hyperphosphorylation. Lapatinib treatment was used as a control. Scale 
bar, 25 μm. (C) Quantification of p-ErbB4 levels in hippocampal primary neurons after stimulation with NRG2β and 
treatment with tyrosine kinase inhibitors. (n= 3-6 replicates per treatment; one-way ANOVA, *p<0.05, **p<0.005; 
ns, not significant). (D) Western blotting of lysates from N1E cells transfected with pcDNA3.1-2HA-NRG2 (using an 

HA tag antibody). pCMV-2HA-NRG1 was used as a positive control. Arrowheads indicate full-length (130 kDa) 
and processed proteins (37 and 50 kDa). (E) ErbB4 hyperphosphorylation in lysates of ErbB4-transfected N1E cells 
co-transfected with 2HA-NRG2 or pCMV-2HA-NRG1 compared to controls (vector alone; n=3 each).  
(F) Densitometric quantification of phosphorylated ErbB4 (Tyr1284) bands. Integrated density values were 
normalized to β-actin loading control (t-tests, *p=0.0139; **p=0.0063; ns, not significant). 
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receptor antagonist that was identified as a new ErbB receptor inhibitor (Wehr et al., submitted 

to EMBO Mol. Med.). Thus, GST-NRG2 could be used in future experiments to examine NRG2-

mediated signaling pathways downstream of ErbB4 in cortical neurons. Additionally, a 

pcDNA3.1-based expression vector harboring 2HA-tagged full-length NRG2 was designed and 

ordered from GenScript®. Transfection of N1E neuroblastoma cells with pcDNA3.1-2HA-NRG2 

showed that the 2HA-NRG2 cassette (used later for the generation of a “knock in” mouse line) 

was expressed in these cells. Western blotting using an antibody against the HA tag detected 

full-length and processed protein (Fig. 25D). In addition, phosphorylation of coexpressed 

ErbB4 was strongly increased in the presence of 2HA-NRG2 (Fig. 25E-F; these data were 

kindly provided by Ann-Kristin Martens, MHH). In conclusion, these tools are suitable to study 

effects of ErbB4 signaling on cortical synapses downstream of NRG2 in vitro.  

 

 

 

Figure 26. Generation of a “knock in” mouse line for conditional NRG2 overexpression. (A) Schematic 
representation of the targeting vector after integration into the mouse ROSA locus. Arrows indicate PCR primer 
positions used for the screening of ES cell clones. HR, homologous recombinant. (B) PCR results of the screening 
strategy. wt and polyA PCRs produced a product in HR and non-HR samples. HR PCR was used to amplify the 
ROSA locus short arm after homologous recombination. Sequencing profile obtained from one of the HR clones 
shows the transition from the endogenous genomic DNA to the short arm of the targeting vector. (C) Chimeric pups 
born after blastocyst injections of two HR clones. 
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For the in vivo study of NRG2 functions, a conditional NRG2 mouse line was generated. 2HA-

NRG2 cDNA was subcloned in a ROSA locus targeting vector (provided by Dr. Agarwal, Johns 

Hopkins University) and used to electroporate ES cells (Fig. 26A). A PCR strategy was 

implemented for the screening and identification of homologous recombinant (HR) clones. 

Identified HR clones were verified by sequencing (Fig. 26B). 10-100% chimeric mice were born 

after injection of two HR clones into blastocysts (Fig. 26C). 60-70% chimeric males are 

currently being bred to C57Bl/6N females to confirm germline transmission of targeted ES cells 

and to establish condtional NRG2 overexpressing mouse lines. 
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3 Discussion  

3.1 Transgenic approaches to study brain functions 

ErbB4 is the main NRG1 receptor in the brain. However, different NRG1 isoforms show distinct 

and dynamic expression patterns during development, indicating stage- and isoform-specific 

functions in the developing and adult nervous system (Carraway et al., 1997; Liu et al., 2011; 

Mei and Xiong, 2008; Vullhorst et al., 2015). NRG1-ErbB4 signaling has been implicated in a 

variety of developmental processes in the nervous system, including myelination, interneuron 

migration and synaptogenesis (Mei and Xiong, 2008). These processes underlay the proper 

formation of cortical networks, however is not known in detail how different NRG1 isoforms and 

other NRGs participate in these processes. 

Most Nrg1 variants associated with SZ are located in non-coding regions of the gene 

(Stefansson et al., 2002; Weickert et al., 2012), which suggests that altered NRG1 expression, 

rather than protein function per se, could be of relevance for this disease. Moreover, analysis 

of postmortem brains of SZ patients exhibited increased expression of NRG1, and particularly 

an increment in Ig-Nrg1 mRNA has been reported (Hashimoto et al., 2004; Law et al., 2006). 

Additionally, several mouse models with elevated NRG1/ErbB4 signaling display behavioral 

and morphological impairments that resemble those found in SZ patients (Agarwal et al., 2014; 

Deakin et al., 2009, 2012; Yin et al., 2013b). This suggests that hyperstimulated NRG1/ErbB4 

signaling may increase the susceptibility to develop SZ, however the underlying 

pathomechanisms have not been elucidated. Thus, the aim of the present study was to validate 

a transgenic mouse line for the conditional overexpression of Ig-NRG1 and to examine the 

molecular, cellular, and behavioral consequences of chronic Ig-NRG1 overexpression in 

glutamatergic projection neurons.  

Transgenic mice were generated using a transgene cassette harboring a loxP sites-flanked 

STOP cassette expressing GFP under control of the β-actin promoter in the absence of Cre 

recombinase. Thus, analysis of GFP expression was used to determine the expression pattern 

of the transgene cassette in various organs and cell types. Comparison of GFP fluorescence 

with cell-type specific markers by fluorescent immunostainings revealed that in the nervous 

system the STOP cassette is expressed in virtually all glutamatergic projection neurons and 

oligodendrocytes, and in a subset of astrocytes and microglia. In addition, the cassette is 

expressed in spinal cord -motor neurons and Schwann cells. In contrast, only a few 

GABAergic interneurons express the STOP cassette. A similar expression pattern was also 

found in other studies (T. Unterbarscheidt; M. Rossner, personal communication), which 

suggests that the β-actin promoter is not adequate for transgene expression in interneurons. 

Outside the brain the transgene cassette is expressed in all organs analyzed, e.g. heart and 

muscle. This suggests that the mouse line is suitable for the study of Ig-NRG1 functions in 
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several organs besides the brain. For example, conditional Ig-NRG1 transgenic mice are 

currently being used to study the role of this isoform for Schwann cell pathology in Charcot-

Marie-Tooth disease 1A (R. Stassart and R. Fledrich, personal communication). Outside the 

nervous system, this mouse line could be valuable for the study of Ig-NRG1 functions in heart 

development and disease (Kramer et al., 1996; Meyer and Birchmeier, 1995).  

An alternative strategy for conditional transgenic approaches, including GABAergic 

interneurons, is the generation of “knock in” mouse lines using vectors that target the Rosa26 

locus and integrate into the genome by homologous recombination (HR), without the risk of 

disrupting other genes by random integration. This locus was originally characterized in a gene-

trap screen in murine ES cells and drives ubiquitous expression in embryonic and adult mice 

(Friedrich and Soriano, 1991; Zambrowicz et al., 1997). This strategy was used for the 

generation of several mouse lines, including the R26R-floxtdTomato reporter line (Madisen et 

al., 2010), Charcot-Marie-Tooth mouse models (Bouhy et al., 2016), as well as for the 

generation of the transgenic mouse line for conditional overexpression of NRG2 developed in 

the present study.  

The Cre-loxP system from the bacteriophage P1 (Hoess et al., 1982) used in this study for the 

conditional overexpression of Ig-NRG1, is one of the most widely used systems to model stage- 

and cell- type specific ablation or overexpression of genes of interest. Here, the Cre 

recombinase recognizes the 34-bp nucleotide sequence of the loxP sites and catalyzes the 

homologous recombination and subsequent deletion of the DNA between the two loxP sites, 

in a process that needs no additional elements (Stark et al., 1992; Zhang et al., 2012). 

Furthermore, these loxP sites are not too large to interrupt the function of the genes, but also 

not too small to occur randomly within the genome (Zhang et al., 2012). Nowadays multiple 

mouse lines expressing Cre under control of different promoters are available, including driver 

lines for cell type- and area-specific Cre expression in the brain (Goebbels et al., 2006; Gorski 

et al., 2002; Hippenmeyer et al., 2005; Minichiello et al., 1999; Tronche et al., 1999). Moreover, 

a number of tamoxifen inducible versions of Cre driver lines are also available and permit 

analyses at the single-cell level (by titrating of tamoxifen dosage) or at later stages of 

development (Agarwal et al., 2012; Burns et al., 2007; Hirrlinger et al., 2006; Leone et al., 2003; 

Mori et al., 2006; Pohl et al., 2011; Traka et al., 2010; Weber et al., 2009). However, one 

limitation of the system is its irreversibility. In contrast, in the tetracycline-inducible system the 

expression of the target gene depends on the activity of the inducible tetracycline transactivator 

(tTA). This protein acts as a bacterial transcription factor that recognizes the bacterial tetO 

operon, and its activity is regulated reversibly by the administration of tetracycline derivatives 

such as doxycycline (Dox). Thus, by using a mouse line that expresses tTA under the control 

a cell type specific promoter and breeding to a mouse line that expresses the gene of interest 

attached to the tetO promoter, it is possible to reversibly induce expression of a particular gene 
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(Kandel, 2013; Zhang et al., 2012). However, only a relatively small number of CNS-specific 

tTA driver lines are available and its general suitability for brain studies has been debated. 

During the early stages of this project a mouse line for conditional overexpression of Ig-NRG1 

using the tTA system was published. This mouse model expresses the protein in the presence 

of tetracycline transactivator (tTA), but in this case the overexpression in projection neurons 

only starts postnatally (CamKIIα-tTA was used as the driver line) (Yin et al., 2013b). The 

availability of many different Cre-driver lines, including the NEX-Cre driver line in which Cre 

recombinase expression starts at E12.5 (Goebbels et al., 2006), allowed us in the present 

study to analyze the effect of Ig-NRG1 overexpression during embryonic stages, when NRG1 

has a peak of expression (Liu et al., 2011). 

 

3.2 Modelling NRG1-ErbB4 hyperstimulation in transgenic mice 

Ig-NRG1 is mainly expressed in projection neurons. Its expression starts during embryonic 

stages (E12), declines postnatally, and is low in the adult brain (Liu et al., 2011). Ig-NRG1 has 

been implicated in neurodevelopmental processes, such as interneuron migration (Flames et 

al., 2004). Thus, to model increased stimulation of Ig-NRG1 signaling during embryonic 

development, STOP-Nrg1 mice were bred to the NEX-Cre driver line (Goebbels et al., 2006). 

STOP-Nrg1*NEX-Cre embryos showed overexpression of HA-Ig-NRG1 at E16 and fluorescent 

immunostainings confirmed that HA-Ig-NRG1 expression follows the NEX-Cre pattern of 

expression. Accordingly, fluorescent immunostaining of adult STOP-Nrg1*NEX-Cre brains 

showed cortical projection neuron restricted overexpression of HA-Ig-NRG1, in agreement with 

Cre-recombinase expression in the driver line (Goebbels et al., 2006). Thus, this new mouse 

model is suitable for the study of the consequences of chronic Ig-NRG1 overexpression starting 

during embryonic stages. 

Ig-NRG1 is synthesized as a transmembrane precursor that subsequently undergoes 

proteolytic cleavage at the juxtamembrane “stalk” region by proteases, such as ADAM10, 

ADAM17 and BACE1, which results in shedding of the N-terminal fragment and paracrine 

signaling (Fleck et al., 2013; Mei and Xiong, 2008). Immunostaining of STOP-Nrg1*NEX-Cre 

brain revealed colocalization of the N- and the C- terminal domains of HA-Ig-NRG1 in the 

cortex, indicating accumulation of the full-length protein. In addition, non-overlapping signals 

for the N- and C-terminal domains were identified, which probably reflect proteolytic processing 

at the juxtamembrane region of HA-Ig-NRG1 and shedding of the N-terminal domain. This 

suggest that HA-Ig-NRG1 undergoes proper proteolytic processing as the endogenous protein, 

thus STOP-Nrg1*NEX-Cre mice are suitable to investigate subcellular localisation and 

proteolytic processing of Ig-NRG1 in vivo. Worth mentioning, backsignaling via the NRG1-ICD 

was described in vitro for CRD-NRG1 (Bao et al., 2003, 2004; Talmage, 2008; Wang et al., 

1998). NRG1 isoforms are processed by -secretase and the NRG1-ICD is highly conserved 
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between different isoforms (Buonanno and Fischbach, 2001; Mei and Xiong, 2008). Thus, it is 

possible that some of the signals observed for the C-terminal domain resulted from -

secretase-mediated cleavage of Ig-NRG1, but this requires further investigation. 

Western blot analysis demonstrated more physiological relevant levels of Ig-NRG1 

overexpression in STOP-Nrg1*NEX-Cre at all stages analyzed compared to conventional, 

Thy1.2 promoter-driven NRG1 transgenic mice (Michailov et al., 2004). Importantly, moderate 

overexpression of Ig-NRG1 was sufficient to induce permanent hyperstimulation of the ErbB4 

receptor. Higher levels of p-ErbB4 were present already at P5 and maintained through 

adulthood. Interestingly, p-ErbB4 levels in STOP-Nrg1*NEX-Cre adult mice resemble those 

present in postnatal stages, when NRG1 display a peak of expression (Liu et al., 2011). This 

suggests that the sustained hyperstimulation of NRG1/ErbB4 signaling in STOP-Nrg1*NEX-

Cre could mimic the activity of this pathway during postnatal stages in wildtype mice. Moreover, 

this observation implies that conditional overexpressors of HA-Ig-NRG1 are a suitable tool to 

study the consequences of NRG1/ErbB4 hyperstimulation in vivo. 

NRG1 is a growth factor involved not only in developmental processes but also in microglia 

activation, inflammation, cell proliferation, and cancer. Thus, its overexpression could have 

pathological effects. Moreover, signaling pathways downstream of NRG1/ErbB4, such as 

MAPK and AKT signaling pathways are involved in cell survival, proliferation and 

differentiation, and have been found to be altered under pathological conditions (Fresno Vara 

et al., 2004; Gu et al., 2016; Pandey et al., 2016). Furthermore, STOP-Nrg1 mice permanently 

express GFP in most cells of their body. GFP expression was associated with hypomyelination 

and axonal pathology in transgenic mice, which express GFP under control of the CNP 

promoter (Millet et al., 2012). Nevertheless, immunohistochemical analysis showed no change 

in the number of neurons or signs of astrogliosis, microgliosis, axonal swellings or T-cell 

infiltration in STOP-Nrg1*NEX-Cre mice at 16 and 52 weeks of age. In conclusion, chronic 

NRG1-mediated hyperactivation of ErbB4 was not associated with neuropathology in the 

brains of STOP-Nrg1*NEX-Cre. These findings differ greatly from effects of NRG1 

overexpression in Schwann cells. Probably as an effect of autocrine signaling to glial 

ErbB2/ErbB3 receptors, such transgenic mice display Schwann cell hyperplasia and myelin 

abnormalities, such as onion bulb formation (Huijbregts et al., 2003; R. Stassart, personal 

communication).  

 
3.3 Embryonic overexpression of HA-Ig-NRG1 impaired social behavior and  

-oscillation 

To identify behavioral phenotypes associated with cortical-restricted HA-Ig-NRG1 

overexpression a cohort of STOP-Nrg1*NEX-Cre mice and both parental controls were 

analyzed at 2-3 months of age. Elevated HA-Ig-NRG1 expression was not associated with 
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altered sensory functions or motor activity. This differs from another study of our group in which 

cortical-restricted overexpression of CRD-NRG1 starting also during embryonic stages (NEX-

Cre) leads to hyperactivity (Unterbarnscheidt et al, in prep). This indicates that isoform-specific 

functions may modulate differently this phenotype. However, it has been shown that Ig-NRG1 

overexpression in projection neurons starting postnatally is also associated with hyperactivity 

(Yin et al., 2013b). Furthermore, pan-neuronal Ig-NRG1 overexpression in Thy1.2-Nrg1 mice 

showed initial hypoactivity at 5 months of age followed by hyperactivity at 52 weeks of age 

(Deakin et al., 2012), whereas mice with pan-neuronal overexpression of CRD-NRG1 under 

control of Thy1.2 promoter (Thy1.2-CRD-NRG1) display anxiety-like behavior but not 

hyperactivity in the open field test (Agarwal et al., 2014). These contrasting findings suggests 

that the modulation of motor behavior in adults is influenced differently by cortical and 

subcortical functions of Ig- and CRD-NRG1, as well as stage-specific patterns of 

overexpression. Additionally, these results indicate that different levels of Ig- or CRD-NRG1 

expression, and consequently different stimulation of ErbB4, also play a role in motor behavior 

modulation. In fact, conditional NRG1 (CKII-Cre) (Agarwal et al., 2014) and ErbB4 (Nestin-Cre) 

mutants (Golub et al., 2004) displayed hypoactivity. Interestingly, serotonin and dopamine 

signaling in the striatum, basal ganglia, and nucleus accumbens seem to be involved in 

regulation of hyperlocomotion and anxiety (Bishop and Walker, 2003; Brus et al., 2004; Fadda 

et al., 2005; Jiang et al., 2015; Scott et al., 2006; Taepavarapruk et al., 2000), and it is 

conceivable that differential levels of expression of NRG1 isoforms could result in distinct 

regulation of these signaling pathways. 

Furthermore, STOP-Nrg1*NEX-Cre mice display no PPI impairment, a measurement of 

sensorimotor gating relevant in the neuropathology of SZ. PPI impairment has been observed 

in SZ patients and mouse models for SZ-relevant proteins, such as NRG1 (Agarwal et al., 

2014; Braff et al., 1992; Braff and Geyer, 1990; Deakin et al., 2009; Geyer and Braff, 1982; 

Swerdlow et al., 2008; Yin et al., 2013b). Pan-neuronal overexpression of CRD-NRG1 under 

control of the Thy1.2 promoter (Thy1.2-CRD-NRG1) produces PPI deficits (Agarwal et al., 

2014), and this was also present in Thy1.2-Nrg1 mice (Deakin et al., 2009). Thus, PPI 

impairment appears not to be NRG1 isoform-specific, also because the conditional mouse line 

for overexpression of Ig-Nrg1 starting postnatally mentioned above, exhibited a PPI deficit (Yin 

et al., 2013b). This discrepancy is most likely due to the absence of subcortical overexpression 

of HA-Ig-NRG1 in STOP-Nrg1*NEX-Cre mice compared to the other models. Striatal 

projections have been considered important for the generation of PPI (Baldan Ramsey et al., 

2011), and in contrast with the other transgenic models STOP-Nrg1*NEX-Cre mice do not 

show elevated Ig-NRG1 expression in that region. 

Interestingly, STOP-Nrg1*NEX-Cre mice displayed increased social interaction in the dyadic 

social interaction test. This hyper-sociability could represent a social disinhibition phenotype, 
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which is frequently observed in several neuropsychiatric diseases, as well as in mental 

retardation (Barak and Feng, 2016; Hirschtritt et al., 2016). Moreover, this phenotype was also 

found in heterozygous PSD95 knockout mice and homozygous PSD93 mutants, suggesting 

that these proteins are involved in the processing of social stimuli and the control of social 

behavior (Winkler et al., 2017). PSD proteins and notably PSD95 are responsible for the 

organization of the postsynaptic machinery required for synaptic development and plasticity. 

ErbB4 is enriched at postsynaptic compartments of inhibitory interneurons and interacts with 

PSD93 and PSD95 (Garcia et al., 2000; Neddens and Buonanno, 2010; Vullhorst et al., 2009). 

Furthermore, ErbB4-PSD95 interactions may participate in the modulation of glutamatergic 

synapses (Huang et al., 2000; Kim and Sheng, 2004; Ma et al., 2003). Thus, it is possible that 

elevated Ig-NRG1 expression starting during embryonic stages, and the consequent ErbB4 

hyperstimulation, results in an imbalance that affects the interaction with PSD95 and its control 

of social stimuli. This behavioral test was not performed in the other two models for Ig-NRG1 

overexpression, thus it is not possible to directly compare the effect of different levels of 

expression or subcortical overexpression of Ig-NRG1 on social behavior. However, in an 

alternative test for social behavior, postnatal overexpression of Ig-NRG1 lead to less social 

interaction (Yin et al., 2013b). Again, this might speak for an effect of subcortical functions of 

hyperstimulated Ig-NRG1/ErbB4 signaling. 

The hippocampus plays an important role in social memory formation. In particular, the CA2 

region has been involved in social memory. First, expression of the vasopressin 1b receptor 

(Avpr1b), which is critical for social memory and social aggression in rodents, is enriched in 

the CA2 region (Kohara et al., 2014; Tsien et al., 1996; Wersinger et al., 2002, 2008; Young et 

al., 2006). Second, restoration of Avpr1b expression in dorsal CA2 of Avpr1b-null mice was 

sufficient to rescue social aggression behaviors (Pagani et al., 2015). Third, genetic 

inactivation of CA2 pyramidal neurons results in a selective loss of social recognition memory 

(Hitti and Siegelbaum, 2014). More recently, it was demonstrated that CA2 neurons update 

their spatial representations in response to social or contextual changes in the environment, 

suggesting that modifications of spatial representations may be a mechanism that these 

neurons use to encode social and novel contextual information (Alexander et al., 2016). 

Furthermore, it has been suggested that modulatory influences, such as changes in synaptic 

strength, may permit behaviorally relevant shifts in place field maps (Savelli and Knierim, 

2010). Thus, it will be important to investigate if chronically increased NRG1/ErbB4 signaling 

could produce synaptic changes that disrupt the mechanism of social memory formation in the 

CA2 region. 

Cognitive processes, such as memory formation, require the synchronization of neuronal 

network activity in several brain regions. Oscillatory activity is generated by the coordinated 

interaction of excitatory and inhibitory neurons within neural networks (Bartos et al., 2007; van 
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Vugt et al., 2010). The frequency of network oscillations includes slow oscillations in the Δ 

(0.5–3 Hz) and θ (3–8 Hz) range, as well as fast oscillations in the  (30–90 Hz) and ultrafast 

(90–200 Hz) ranges (Buzsáki and Draguhn, 2004). -oscillations in the human cortex and 

hippocampus seem to be important for higher brain functions, such as memory formation, 

working memory, attention and visual pattern recognition (Bosman et al., 2014). In the present 

study, embryonic cortical-restricted overexpression of HA-Ig-NRG1 in STOP-Nrg1*NEX-Cre 

resulted in a reduction in the power, but not the frequency of kainate-induced -oscillations. 

This is in line with several findings showing that NRG1/ErbB4 signaling regulates hippocampal 

-oscillations (Fisahn et al., 2009). Parv+ fast-spiking basket cells are essential for the 

generation of -oscillations both in vitro and in vivo, and a large fraction of these interneurons 

express ErbB4 (Bartos et al., 2007; Fisahn et al., 2009). Interestingly, impaired -oscillations 

and reduced numbers of Parv+ interneurons in post-mortem hippocampus of SZ patients have 

been reported (Kwon et al., 1999; Lewis et al., 2005; Wilson et al., 2008; Wynn et al., 2005; 

Zhang and Reynolds, 2002), providing a possible link between altered NRG1 signaling  

and SZ.  

Reduced power of -oscillations in STOP-Nrg1*NEX-Cre mice contrasts findings in Thy1.2-

NRG1 mice, in which a reduction in the frequency, but not the power of -oscillations was 

observed (Deakin et al., 2012). -oscillations can be induced in acute hippocampal slices by 

bath application of carbachol or kainic acid, resulting in the activation of muscarinic 

acetylcholine or kainate receptors, respectively (Fisahn et al., 1998, 2004). The above 

difference could be explained by the fact that even though both carbachol- and kainate-induced 

-oscillations are driven by neuronal networks in the CA3 region (Fisahn et al., 1998), 

carbachol-induced activity depends on the recruitment of AMPA receptors, whereas kainate-

induced activity does not (Bartos et al., 2007). This explanation was previously suggested in a 

study in which soluble NRG1 increased the power of kainate-, but not carbachol-induced -

oscillations in hippocampal slices (Fisahn et al., 2009). This increment in the power of -

oscillations contrasts with the reduction observed in kainate-induced -oscillations in STOP-

Nrg1*NEX-Cre mice. However, it must be taken into account that the treatment with soluble 

NRG1 simplifies and bypasses important aspects of NRG1 biology and does not reflect 

isoform-specific effects. In line with this, it was recently suggested that impaired neuropsin-

NRG1-ErbB4 signaling leads to an alteration of slow -oscillation activity. Neuropsin serves as 

an extracellular protease shown to cleave mature NRG1 bound to extracellular 

glycosaminoglycans to remove the heparin-binding domain (Tamura et al 2012). Ablation of 

neuropsin in mouse mutants caused a decrease in the power of kainate-induce slow -

oscillations in the CA1 region, which was restored after injection of soluble NRG1 (Kawata et 

al 2017). These findings imply that changes in NRG1/ErbB4 signaling alter -oscillations. The 
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reduction of the power of -oscillations in STOP-Nrg1*NEX-Cre mice suggests that HA-Ig-

NRG1 overexpression leads to an E/I imbalance, however, this has not been studied in detail. 

As Parv+ interneurons play a central role in the generation of -oscillations, the consequences 

of chronic HA-Ig-NRG1 overexpression on the number of Parv+ interneurons was examined in 

STOP-Nrg1*NEX-Cre mice. Despite the postulated involvement of NRG1/ErbB4 signaling in 

interneuron migration, no changes in the number of Parv+ interneurons were found in the 

hippocampus and cortex of STOP-Nrg1*NEX-Cre mice at 16 and 52 weeks of age. However, 

it cannot be ruled out that further increased levels of HA-Ig-NRG1 in homozygous STOP-

Nrg1*NEX-Cre mice used in the analysis of -oscillations may impact on Parv+ interneuron 

functions. Thus, further analyses using homozygous STOP-Nrg1*NEX-Cre mice (including 

earlier developmental stages) are necessary to address this possibility. Furthermore, the 

absence of changes in interneuron numbers does not preclude a potential impairment in the 

functional status of these interneurons.  

Taken together, these findings demonstrated that a cortical-restricted increase in Ig-

NRG1/ErbB4 signaling starting from embryonic stages leads to impaired hippocampal 

functions, specifically -oscillations in the CA3 region and increased social interaction, which 

seems to be modulated at the CA2 region. Thus, as the CA3 is the primary input of CA2, 

synaptic alterations in this area could disrupt the connectivity of CA2. In fact, it was 

demonstrated that -oscillations can dynamically coordinate hippocampal networks according 

to behavioral demands (Montgomery and Buzsáki, 2007). In support of this, it was shown that 

the -oscillation impairment in Thy1.2 Nrg1 mice is accompanied by an age-dependent working 

memory deficit (Deakin et al., 2009, 2012), which was also observed after postnatal 

overexpression of Ig-NRG1 (Yin et al., 2013b). These results and the evidence that the 

hippocampus is essential for social behavior and spatial short-term memory (Alexander et al., 

2016; Deacon et al., 2002; Sanderson et al., 2007), suggest that Ig-NRG1 has a role in 

hippocampal-dependent cognitive functions. 

 

3.4 Elevated Ig-NRG1/ErbB4 signaling preferentially recruits the AKT pathway 

Biochemical analyses demonstrated that Thy1.2 Nrg1 mice (included as a reference in the 

present study) displayed an almost 6-fold overexpression of Ig-NRG1 and 5-fold higher ErbB4 

hyperphosphorylation compared to STOP-Nrg1*NEX-Cre mice. These findings suggest that 

ErbB4 is not a rate limiting factor for Ig-NRG1 signaling in the brain, consistent with analyses 

of heterozygous NRG1 and ErbB2/ErbB3 mutants in the PNS, which show that partial 

elimination of NRG1, but not of ErbB2/ErbB3 receptors, causes hypomyelination (Michailov et 

al., 2004). On the other hand, ErbB4 activity can be downregulated by dephosphorylation 

mediated by receptor tyrosine phosphatase β (RPTPβ) or tyrosine-protein phosphatase non-

receptor type 21 (PTPN21) (Buxbaum et al., 2008; Plani-Lam et al., 2015). Ligand-induced 
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proteolytic cleavage and ectodomain shedding by TACE has also been proposed as a 

mechanism for ErbB4 downregulation. Subsequently, levels of the resulting intracellular 

fragment, which contains the tyrosine kinase activity, are controlled by proteasome function 

(Rio et al., 2000; Vecchi et al., 1996; Vecchi and Carpenter, 1997; Zhou and Carpenter, 2000). 

However, since Ig-NRG1 transgenic mice display permanently increased steady-state levels 

of hyperphosphorylated ErbB4, these mechanisms for downregulation appear not to 

compensate for Ig-NRG1-mediated hyperactivation. Furthermore, growth factor receptors are 

internalized upon ligand binding to modulate receptor signaling, in addition to target activated 

receptors to other intracellular substrates. Nevertheless, ligand-dependent receptor 

internalization is notably low for ErbB receptors (except ErbB1) (Baulida et al., 1996). 

Moreover, hippocampal interneurons predominantly express the TACE-mediated cleavage-

resistant JMb ErbB4 receptor isoforms, and thus, maintain a high level of ErbB4 at the cell 

surface (Longart et al., 2007), which can also explain the persistently higher levels of Ig-NRG1-

mediated ErbB4 phosphorylation. 

In an attempt to analyze the impact of Ig-NRG1-mediated ErbB4 hyperstimulation on two major 

signaling pathways downstream of NRG1/ErbB4 signaling, biochemical analyses of MAPK and 

AKT pathways were performed. The MAPK signaling pathway regulates astrocyte proliferation, 

neuronal survival, synaptic plasticity, dendritic spine morphology, and cognitive processes 

such as learning and memory (Thomas and Huganir, 2004; Thongrong et al., 2016; Wu et al., 

2001). Interestingly, ErbB4 hyperphosphorylation was identified using an antibody directed 

against Tyr1284, which is the binding site for the SHC1 adapter protein, involved in MAPK 

signaling (Schulze et al., 2005). Nevertheless, only pan-neuronal massive overexpression of 

Ig-NRG1 was sufficient to significantly increase levels of phosphorylated MAPK. In STOP-

Nrg1*NEX-Cre mice, although there was a tendency towards increased activation of MAPK, 

this was not significant, which implies that feedback mechanisms seem to effectively 

downregulated activation of this signaling pathway.  

On the other hand, the level of phosphorylated AKT, a protein acting directly downstream of 

PI3K, was significantly increased in both conventional and conditional transgenic mice. The 

PI3K/AKT signaling pathway mediates several processes necessary for the proper function of 

cortical networks, such as interneuron migration, primary neurite formation and dendritic 

arborization (Junttila et al., 2000b; Kainulainen et al., 2000; Krivosheya et al., 2008; Polleux et 

al., 2002). Furthermore, the PI3K/AKT pathway has been implicated in several 

neurodevelopmental diseases, such as SZ (Emamian, 2012; Emamian et al., 2004; Law et al., 

2012; Wang et al., 2017), and an increase of phosphorylated AKT levels in the PFC of 

schizophrenic patients was recently reported (Hino et al., 2016). Additionally, a genetic 

association study reported epistasis between SNPs in Nrg1, ErbB4 and AKT1 that may 

increase genetic liability for schizophrenia (Nicodemus et al., 2010). 
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PI3K/AKT signaling is activated by the CYT1 isoform of ErbB4 that binds the PI3K regulatory 

subunit p85 through its phosphorylated Tyr1056. This interaction leads to the activation of the 

catalytic subunit of PI3K and subsequent conversion of phosphatidylinositol-4,5-bisphosphate 

(PI-4,5-P2) to the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) at 

the inner plasma membrane. Interaction with these phospholipids recruits AKT to the inner 

membrane, where it is phosphorylated at Tyr308 and Ser473 by 3'-phosphoinositide-

dependent kinases (PDK) 1 and 2, respectively, and subsequently regulates downstream 

proteins, such as GSK3, Mdm2, and mTOR (Elenius et al., 1999; Fresno Vara et al., 2004; 

Schulze et al., 2005). Thus, Tyr1056 in ErbB4 CYT1 together with Tyr308 and Ser473 in AKT 

are key residues involved in the activation of the AKT signaling pathway, whose higher levels 

may indicate increase stimulation of this pathway. The antibody used to analyze the levels of 

phosphorylated AKT was directed against Ser473, and full activation of AKT requires 

phosphorylation of this residue (Wang et al., 2017). However, as mentioned above, ErbB4 

hypersphosphorylation was detected at Tyr1284, not at Tyr 1056. Thus, the extent by which 

Ig-NRG1-mediated ErbB4 activation can stimulate PI3K/AKT pathway is currently unknown, 

which also prevents an exact molecular explanation for the similar levels of phosphorylated 

AKT in conditional and conventional Ig-NRG1 transgenic mice, despite distinct levels of 

phosphorylated ErbB4. Further biochemical analyses of proteins upstream and downstream 

AKT, eg. PI3K and GSK3, are required to validate the preferential recruitment of this  

signaling pathway.  

To further address a selective recruitment of the AKT pathway under conditions of adult Ig-

NRG1 overexpression, STOP-Nrg1 mice were also bred to a tamoxifen inducible version of 

the Cre driver line (NEX-CreERT2) (Agarwal et al., 2012). Hippocampi were collected four 

weeks after the last tamoxifen injection. This approach resulted in reduced levels of 

overexpression (by approximately 40-50%) compared to STOP-Nrg1*NEX-Cre mice, which 

could be due, at least in part, to absence of Cre recombinase activity in dentate gyrus granule 

cells of adult mice (Agarwal et al., 2012; Goebbels et al., 2006). No changes in the levels of 

phosphorylated MAPK were found in this experimental paradigm, consistent with the idea that 

only massive overexpression of Ig-NRG1 in Thy1.2 Nrg1 mice is sufficient to stimulate this 

pathway. In contrast, although at moderate levels, a significant increase of phosphorylated 

AKT in STOP-Nrg1*NEX-CreERT2 mice was present, consistent with a preferential 

recruitment of the AKT signaling pathway by Ig-NRG1 overexpression. These findings contrast 

with similar experiments in which CRD-NRG1 overexpression was induced in adult mice. Here, 

adult activation of CRD-NRG1 expression led to a preferential stimulation of the MAPK 

signaling pathway (T. Unterbarnscheidt, personal communication). These results suggest 

isoform-specific, preferential recruitment of AKT versus MAPK signaling pathways. However, 

as for mice with pan-neuronal overexpression of Ig-NRG1, transgenic mice with strong 
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expression of a CRD-NRG1 variant that mimics BACE1 processing at the juxtamembrane 

“stalk” region, stimulate both signaling pathways (T. Unterbarnscheidt, personal 

communication). Thus, expression levels of Ig- and CRD-NRG1 above a certain threshold 

permit hyperstimulation of both signaling pathways, and this contrasts with more physiological 

relevant overexpression in conditional transgenic mice. 

Remarkably, compound heterozygous mutants for AKT and NRG1 showed impaired episodic-

like memory and impaired sociability (Huang et al., 2015). In line with this finding, 

hyperactivation of GSK3β (normally inactivated by AKT) in the brain of mice leads to impaired 

social interaction that could be ameliorated by chronic lithium (GSK3 inhibitor) treatment 

(Mines et al., 2010). This suggests that impaired inhibition of GSK3β by AKT may affect social 

behavior. Furthermore, AKT and GSK3β play a critical role in ethanol-induced suppression of 

kainate-induced -oscillations in CA3 (Wang et al., 2017), consistent with the idea that 

activation of this signaling pathway by elevated NRG1/ErbB4 signaling may be involved in 

impaired -oscillation and subsequent hippocampal-dependent social cognitive deficits.  

 

3.5 Ig-NRG1 accumulates in the somatodendritic, not the presynaptic compartment of 

neurons 

To provide a framework for mechanistic insights into Ig-NRG1-mediated effects on social 

behavior and hippocampal -oscillations, the subcellular localization of this protein was 

examined in conventional and conditional transgenic mice. Unexpectedly, an enrichment in the 

somatodendritic compartment of projection neurons was observed, with a punctate pattern of 

expression. Ig-NRG1 did not colocalize with the presynaptic markers synaptophysin and 

VGlut1 in both mouse lines. Ig-NRG1 also displayed no close localization to the serotonergic 

presynaptic marker SERT and excitatory (PSD95) and inhibitory (gephyrin) postsynaptic 

markers. Furthermore, different expression levels of Ig-NRG1 in STOP-Nrg1*NEX-Cre and 

Thy1.2 Nrg1 mice had no effect on subcellular localization. These findings contrast with the 

general concept according to which NRG1 at presynaptic terminals of projection neurons 

signals to ErbB4 in the postsynaptic compartment of Parv+ interneurons. 

Importantly, fluorescent immunostainings revealed that Ig-NRG1 partially colocalizes with 

Kv2.1, a voltage-gated potassium channel that forms large clusters in the plasma membrane 

in several neuronal cell types, frequently proximal to SSCs (Antonucci et al., 2001; Du et al., 

1998). These SSCs are flat membrane-limited vesicles which represent an extension of the 

endoplasmic reticulum located immediately adjacent to the plasma membrane (Deardorff et 

al., 2014). 

Kv2.1 is highly expressed in virtually all brain regions suggesting a fundamental role in neurons 

(Misonou et al., 2005). Moreover, it was demonstrated that the phosphorylation state of Kv2.1 

rapidly changes in response to increased neuronal excitatory activity in hippocampal pyramidal 
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neurons, leading to dispersion of Kv2.1 clusters. These effects are mediated by NMDAR 

activation, followed by Ca2+-influx, release of Ca2+ from intracellular stores, and activation of 

the Ca2+/calmodulin-dependent protein phosphatase 2B/calcineurin, which dephosphorylates 

Kv2.1 channels. Kv2.1 dispersion is associated with reduced AP firing, suggesting that Kv2.1 

plays a role in the modulation of neuronal excitability (Misonou et al., 2004, 2005). 

Similar to Ig-NRG1, NRG2 was found to be located in close proximity to Kv2.1 at the plasma 

membrane of hippocampal interneurons, adjacent to SSCs. It was proposed that inactive 

transmembrane NRG2 (pro-NRG2) clusters in this region, and that NMDAR activity is required 

to convert pro-NRG2 to an active ErbB4 receptor ligand. NRG2 promotes the physical 

association of ErbB4 with GluN2B-containing NMDARs, which causes NMDAR removal from 

the cell surface and downregulation of NMDAR currents in interneurons (Vullhorst et al., 2015). 

Additionally, NRG2 was found to be released from its cluster close to SSCs in response to 

NMDAR activation (Vullhorst et al., 2015). SSCs are believed to be involved in Ca2+-dependent 

Ca2+ release, due to the presence of the Ca2+-release channels inositol trisphosphate receptor 

(InsP3R) and ryanodine receptors (RyR), as well as a similar ultrastructure compared to triads 

in skeletal muscle (Henkart et al., 1976; Mandikian et al., 2014). Furthermore, it was suggested 

that SSCs and the associated plasma membrane act as a signaling microdomain (Vullhorst et 

al., 2015). Similar to NRG2, Ig-NRG1 could be located in the plasma membrane adjacent to 

SSCs. Glutamate-induced Ca2+ release from SSCs then may promote its shedding from 

clusters, which further leads to proteolytic cleavage of the Ig-NRG1 ectodomain and activation 

of ErB4 receptors. Extracellular matrix-bound proteases such as ADAM10 and ADAM17 may 

be responsible for this processing (Hartmann et al., 2013). In line with this, it was demonstrated 

that the concentration of the Ig-NRG1 ectodomain increases in response to NMDAR-mediated 

Ca2+ transients in rat primary hippocampal neurons (Schillo et al., 2005). Additionally, previous 

studies demonstrate that NRG1 induces the expression of the NMDA receptor NR2C subunit 

and that this action requires previous activation of NMDA receptors (Ozaki et al., 1997). Taken 

together, these observations suggest that, similar to NRG2 in interneurons, pro-Ig-NRG1 in 

projection neurons is converted to mature Ig-NRG1 in response to NMDAR mediated Ca2+ 

transients, which provoke ectodomain shedding and paracrine signaling, possibly involved in 

the regulation of neuronal excitability. Another, not mutually exclusive, scenario could be that 

Ig-NRG1 in projection neurons is directly associated with SSCs. NRG1 locates to SSCs in the 

postsynaptic compartment of cholinergic C-type synapses of spinal cord -motoneurons. 

Moreover, NRG1-containing vesicles were observed in the synaptic cleft, suggesting post- to 

presynaptic trafficking of NRG1 and signaling to postsynaptic ErbB4 receptors at cholinergic 

synapses (Gallart-Palau et al., 2014). Additional immunostainings for SSC markers, e.g. σ-1 

receptor (Mavlyutov et al., 2010), will be performed to address if Ig-NRG1 is located adjacent 

to or in SSCs.  
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3.6 A role for autocrine NRG1 signaling in Parv+ interneurons? 

This PhD work and previous studies (Agarwal et al., 2014) demonstrate that projection neuron-

specific loss or (moderate) overexpression of NRG1 are not associated with severe CNS 

dysfunctions, suggesting that altered paracrine or juxtacrine NRG1 signaling originating in 

these cells is well tolerated by the brain. However, there is evidence that NRG1 overexpression 

in Schwann cells profoundly stimulates their proliferation, in contrast to axonal NRG1 (R. 

Stassart and R. Fledrich personal communication), suggesting an important role of NRG1 in 

autocrine signaling, at least in the PNS. Although NRG1 is enriched in glutamatergic projection 

neurons, it is also expressed in GABAergic interneurons and astrocytes (Liu et al., 2011), but 

its function in these cells is largely unknown. As the conditional transgene cassette used in the 

present and related studies is not expressed in GABAergic interneurons (T. Unterbarscheidt; 

M. Rossner, personal communication) NRG1-mediated autocrine signaling in ErbB4+
 

interneurons currently cannot be addressed by a gain-of-function approach. Thus, a pilot study 

following a loss-of-function approach was performed, in which conditional NRG1 mutants (Nrg1 

f/f) (Li et al., 2002) were bred to Parv-Cre driver mice (Hippenmeyer et al., 2005). The 

recombination pattern of the Parv-Cre driver line, as revealed by tdTomato reporter 

fluorescence, was congruent with the distribution of Parv+ neurons in the brain, suggesting that 

NRG1 was eliminated from this population of cells in Nrg1 f/f*Parv-Cre mice, which represents 

~50% of all GABAergic interneurons (Wonders and Anderson, 2006).  

Nrg1 f/f*Parv-Cre mice displayed a shivering phenotype already at 3 weeks of age, and a 

significant reduction in their body weight at 5 weeks of age, possibly as a result of increased 

motor activity. Both phenotypic outcomes persisted throughout adulthood. At this initial stage 

of the study it cannot be ruled out that altered motor function is in part due to elimination of 

NRG1 from a subset of cells in dorsal root ganglion (DRG) where the Parv-Cre driver line is 

also expressed (Hippenmeyer et al., 2005). A preliminary histological study revealed that 

conditional ablation of NRG1 in Parv+ interneurons was associated with a ~50% reduction in 

the number of Parv+ interneurons in cortical layers II-III. In contrast, the number of calbindin+ 

(ErbB4-) interneurons was not altered in Nrg1 f/f*Parv-Cre mutants, suggesting a specific loss 

of Parv+ cells that results from elimination of autocrine NRG1 signaling. Additional studies are 

required to distinguish between cell loss and loss of Parv expression. Several studies have 

demonstrated effects of environmental factors on Parv expression in the hippocampus, e. g. 

chronic social isolation (Filipović et al., 2013) and repeated restrained stress (Czeh et al., 2005; 

Hu et al., 2010). Thus, Nrg1 f/f*Parv-Cre mice may display reduced Parv expression as an 

indirect consequence of other behavioral dysfunctions. Futhermore, Parv+ cells have a large 

energy demand due to their high-frequency AP firing rate. Thus, reduced Parv expression 

could indicate cellular stress as a result of impaired energy supply. Recently, it was shown that 

50% of all myelinated axons in cortical layers II/III derive from Parv+ interneurons (Micheva et 
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al., 2016). Their observed “patchy” myelination may not primarily support fast AP conduction, 

but could be involved in metabolic support of Parv+ cells. Considering the well established 

myelination functions of NRG1 (Brinkmann et al., 2008; Michailov et al., 2004), one could 

speculate about a possible link between autocrine NRG1 signaling, myelination, and metabolic 

support of neocortical Parv+ interneurons. 

Fast-spiking Parv+ interneurons have an important role in orchestrating cortical oscillations, 

maintain the E/I balance, and mediate a variety of cognitive behaviors (Isaacson and 

Scanziani, 2011; Marín, 2012; Uhlhaas and Singer, 2010). Parv+ interneurons represent ~30% 

of interneurons in cortical layers I-III (Petersen and Crochet, 2013) and can be divided into 

basket cells that target the soma and proximal dendrites of pyramidal neurons (Freund and 

Katona, 2007; Isaacson and Scanziani, 2011) and axoaxonic or chandelier cells, which 

innervate the axon initial segment of pyramidal neurons (Somogyi, 1977; Taniguchi et al., 

2013). Furthermore, Parv+ interneurons in cortical layers II-III contribute to associative learning 

and sensory perception (Allen et al., 2003; Finnerty et al., 1999; Fox, 1992; Petersen and 

Crochet, 2013; Shepherd et al., 2003). Recently, it was shown that Parv+ interneurons are 

involved in inhibitory circuits in the prefrontal cortex that regulate fear behavior. Inhibition of 

the activity of these interneurons disinhibits prefrontal projection neurons and synchronizes 

their firing by resetting local θ-oscillations, which leads to fear expression (Courtin et al., 2014). 

To determine if disrupted NRG1 signaling in Nrg1 f/f*Parv-Cre mice affects fear-modulating 

circuits in the prefrontal cortex, electrophysiological studies are currently being performed (in 

collaboration with W. Zhang, University of Münster). Preliminary data indicate reduced 

inhibitory activity and enhanced excitatory synaptic transmission in the PFC of Nrg1 f/f*Parv-

Cre mice (W. Zhang, personal communication). Thus, ablation of NRG1 in Parv+ interneurons 

may cause defects in fear-regulating circuits in the PFC. Further analyses are necessary to 

address this question, including immunostaining for Parv (and other inhibitory markers) in PFC, 

as well as behavioral studies.  

 

3.7 Generation of in vivo and in vitro tools to study NRG2 signaling in cortical 

synapses 

To study brain functions of NRG2, a closely related NRG family member, several tools to 

investigate NRG2 functions in vitro and in vivo have been generated and validated as part of 

a side project of this PhD thesis. Treatment of primary hippocampal neurons with the 

recombinant EGF domain of NRG2 demonstrated activation of ErbB4 receptors. In a second 

approach, transfection of N1E neuroblastoma cells with a NRG2 expression construct showed 

that the 2HA-NRG2 cassette (used later for the generation of a “knock in” mouse line) was 

expressed in these cells, and that it induces phosphorylation of co-expressed ErbB4. Thus, 

these tools are suitable to study NRG2-mediated ErbB4 activation and downstream signaling 
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pathways in cultured cells. Based on this validation, a new mouse line for conditional 

overexpression of NRG2 was generated by homologous recombination into the Rosa26 locus 

of embryonic stem cells. This locus is not prone to gene silencing effects and has been 

successfully used for the generation of transgenic mice in which ubiquitous transgene 

expression has been described in the brain (Bouhy et al., 2016; Friedrich and Soriano, 1991; 

Irion et al., 2007; Mar et al., 2012; Otsu et al., 2015; Tsika et al., 2014; Zambrowicz et al., 

1997). Importantly, the Rosa26 locus targeting vector used for the generation of this mouse 

line was found to be expressed in interneurons (A. Agarwal, personal communication). Once 

fully established, this mouse line (currently at the stage of F0 chimeras) will permit to study 

NRG2 autocrine signaling in ErbB4+ interneurons (Vullhorst et al., 2015).  

 

 

 

 

In summary, NRG1 mediates complex signaling processes and NRG1 isoform-specific studies 

are a prerequisite to elucidate the role of these proteins in the developing and adult brain. Thus, 

conditional Ig-NRG1 transgenic mice represent a valuable tool to investigate stage- and cell 

type-specific functions of the Ig-NRG1 during nomal and disease conditions.  

The results of this study show that cortical restricted overexpression of Ig-NRG1 in 

glutamatergic projection neurons causes a reduction in the power of -oscillations in the 

hippocampal CA3 region, suggesting an imbalance of E/I neurotransmission. Altered social 

behavior observed in these mice could be a consequence of impaired coordination of 

hippocampal networks. Moreover, overexpression of Ig-NRG1 preferentially stimulates the 

AKT signaling pathway, which could represent an underlying molecular pathomechanism for 

impaired hippocampal -oscillation and altered social behavior. The subcellular localization of 

Ig-NRG1 in the somatodendritic compartment contrasts with the general concept of NRG1-

ErbB4 signaling and suggests that Ig-NRG1 accumulates within or proximal to ER-derived Ca2+ 

microdomains. Further studies are necessary to better understand Ig-NRG1-mediated 

signaling processes in cortical networks. 

Finally, a pilot study showed that the selective elimination of NRG1 signaling from Parv+ 

interneurons is associated with more severe phenotypic consequences compared to the loss 

or (moderate) overexpression of NRG1 in projection neurons, suggesting an important function 

of autocrine NRG1 signaling in inhibitory circuits. Further studies will help to elucidate the role 

of Parv+ interneuron-derived NRG1 for inhibitory network functions with relevance for SZ and 

other neuropsychiatric disorders.  
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4 Materials 

4.1 Kits and chemicals 

All chemicals were purchased from Sigma-Aldrich and Merck unless stated otherwise. All 

molecular biology and DNA purification kits were purchased from Qiagen, Invitek, BIORAD, 

Applied Biosystems, Promega, Stratagene, Sigma-Aldrich, Macherey-Nagel, and NexttecTM. 

General laboratory materials were purchased from Gilson, Sarstedt, Molecular Bio Products, 

Greiner Bio-One, Falcon, and Eppendorf. 

 

4.2 Websites referred for online protocols 

Neuroscience    http://mrw.interscience.wiley.com/emrw/9780471142300/home/ 

Molecular biology  http://mrw.interscience.wiley.com/emrw/9780471142720/home/ 

Protein   http://mrw.interscience.wiley.com/emrw/9780471140863/home/ 

 

4.3 Equipment 

Lab water systems 

Sartorius Arium 611 

 

Pipettes 

Hirschmann Laborgeräte pipetus-akku 

Gilson Pipetman (2 μl, 10 μl, 20 μl, 100 μl, 200μl, 1000 μl) 

 

Deep-freeze storage 

New Brunswick Scientific Co. UltraLow Temperature Freezer U725 

 

DNA preparation and analysis 

Advanced Biotechnologies Ltd. CombiThermosealer 

Biometra Thermocycler T3 

Biometra TGradient 96-well 

Eppendorf Centrifuge 5415 R 

Eppendorf Thermomixer T3 

Heraeus Biofuge Pico 

INTAS UV-system with camera and printer 

Memmert water bath 

ÖTTI water bath 

New Brunswick Scientific Innova 4000 Incubator Shaker 
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Heidolph Titramax 1000 T-shaker with Incubator 1000 

Sartorius Extend fine balance 

Industries Inc. G-560E Vortex Genie-2 

Sharp R-202 microwave 

Qiagen Sigma 4K15C centrifuge 

 

Protein biochemistry 

Bertin Technologies Precellys 24 Lysis & Homogenization with Peqlab Tubes 

BIORAD PowerPac 300 Power supply 

BIORAD Mini Protean 3 electrophoresis chamber 

BIORAD Mini Trans-Blot cell 

Hecht Assistant 348 RM5 Rotating mixer 

IKA KS 260 basic shaker 

Intas ChemoCam Imager ECL HR-16-3200 

New Brunswick Scientific Co. TC-7 Tissue culture roller 

Pharmacia LKB-EPS 500/400 Power supply 

ThermoMax Molecular Devises Microplate Reader 

 

Perfusion of mice 

Heidolph Pump Drive PD 5101 Peristaltic Pump 

In-house made preparation platform with drainage 

ÖTTI water bath 

Pharmacia Fine Chemicals Peristaltic Pump P-1 

 

Histology 

Daewoo microwave 

Inolab wtw Series pH720 pH-meter 

Leica Jung Cryocut CM3000 

Leica Microtome VT1000S vibratome 

Microm AP280-1/-2/-3 paraffin embedding center 

Microm HM400 sliding microtome 

Microm HMP110 embedding station 

PFM water bath 1000 

Polyscience Inc. tissue cassettes IV 
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Microscope and binoculars 

Leica Confocal AOBS SP2 inverted CLSM 

Leica MZ16F fluorescent stereomicroscope 

Zeiss Imager.Z1 with Power Supply 231, XBO 75W HBO 100W lamp, AxioCam MRc camera 

and Zeiss Zen 2012 (blue edition) software 

Zeiss Observer.Z1 AX10, HXP120 UV-lamp, Power Supply 23, SMC 2009 stage control, 

ApoTome.2, AxioCam MRm camera and Zeiss Zen 2012 (blue edition) software 

 

Softwares 

Adobe Illustrator CC version 17 

Adobe Photoshop CC version 14 

BioEdit Sequence Alignment Editor version 7.2.5 

ImageJ, version 1.47v 

GraphPad Prism 5 for Windows version 5.04  

Microsoft Excel 2016 version 1611  

Microsoft Word 2016 version 1611  

SnapGene version 1.1.3 

 

4.4 Molecular biology buffers and solutions 

DNA extraction buffer 

0.5 %  SDS 

0.1 M  NaCl 

0.05 M  Tris, pH 8.0 

3 mM  EDTA 

 

Proteinase K  

Stock 10 mg/ml in ddH2O 

 

50x Tris acetate EDTA (TAE) buffer 

2 M  Tris acetate, pH 8  

50 mM  EDTA 

57.1 ml  glacial acetic acid 

Adjust to the 1000 ml volume with ddH2O 
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1x Tris-EDTA (TE) buffer 

10 mM  Tris-HCl, pH 8  

1 mM  EDTA 

 

10 mM dNTP (50x stock) 

2 mM each nucleotide (dATP, dCTP, dGTP, dTTP) (Boehringer) 

200 μM final concentration in a PCR reaction (50 μM each nucleotide) 

 

4.5 Protein biochemistry 

Phosphatase inhibitors 

1 tablet  PhosStop phosphatase inhibitor cocktail (Roche) 

Added freshly to 10 ml of protein lysis buffer before use. 

 

Protease inhibitors 

1 tablet  Complete Mini protease inhibitor (Roche) 

Added freshly to 10 ml of protein lysis buffer before use. 

 

Sucrose homogenization buffer (protein lysis buffer) 

0.32 M  Sucrose  

0.01 M  Tris-HCl, pH 7.4  

0.01 M NaHCO3 

0.01 M MgCl2 

Phosphatase and protease inhibitors were added freshly to the buffer before use. 

 

4.5.1 SDS-PAGE and Western blotting 

4x LDS sample buffer (NuPAGE) 

4 ml  100 % Glycerol (f.c. 40 %) 

0.682 g Tris base (f.c. 564 mM) 

0.666 g Tris-HCl (f.c. 424 mM) 

0.8 g LDS (Lithium dodecyl sulfate) 

250 μl 1 % Phenol red solution (f.c. 2.5 % (v/v)) 

750 μl 1 % Serva Blue G250 solution (f.c. 7.5 % (v/v)) 

0.006 g EDTA (f.c. 2 mM) 

Filled up to 10 ml with ddH2O. 1x buffer had a pH of 8.5. No pH adjustment necessary. For 

a working solution, 20 μl of 1 M DTT were added to 50 ml 4x LDS sample buffer. 
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1 M Dithiothreitol (DTT) 

1.5425 g  DTT 

Filled up to 10 ml with ddH2O. 

 

4x Tris-HCl (Separation gel buffer) 

1.5 M  Tris-HCl pH 8.8 

 

4x Tris-HCl (Stacking gel buffer) 

1.0 M  Tris-HCl pH 6.8 

 

8 % Polyacrylamide separating gel (2 gels of 1.5 mm thickness) 

9.3 ml  ddH2O 

5.3 ml 30 % Acrylamide/bis-acrylamide (29:1) 

5 ml 1.5 M Tris-HCl pH 8.8 

200 μl 10 % SDS (sodium dodecyl sulfate) 

200 μl 10 % APS 

12 μl TEMED 

 

Polyacrylamide stacking gel (2 gels of 1.5 mm thickness) 

5.5 ml  ddH2O 

1.3 ml 30 % Acrylamide/bis-acrylamide (29:1) 

1 ml 1 M Tris-HCl pH 6.8 

80 μl 10 % SDS 

80 μl 10 % APS 

8 μl TEMED 

 

5x Trisglycine electrophoresis buffer 

125 mM  Tris base  

1.25 M  Glycine  

0.5 % SDS 

pH ~ 6.8 no adjustment necessary 

 

1x Trisglycine electrophoresis buffer 

200 ml  5x Trisglycine electrophoresis buffer 

800 ml  ddH2O 

 

 



Materials 

69 
 

10x Tris-glycine transfer buffer 

250 mM  Tris base  

1.9 M  Glycine  

 

1x Tris-glycine Transfer buffer 

25 mM  Tris base  

192 mM  Glycine  

20 % Methanol 

 

20x Tris buffered saline (TBS) 

1 M  Tris base  

3 M  NaCl  

pH adjusted to 7.4 with 37 % HCl. 

 

1x TBS with Tween-20 (TBST) 

150 mM  NaCl  

0.05 % Tween-20  

50 mM Tris-HCl pH 7.5 

 

Blocking Buffer 

5 %  Non-fat dry milk-powder in 1x TBST 

Not stored longer than one week at 4 °C. 

 

Western blot stripping buffer 

0.2 M  Glycine-HCl, pH 2.5  

0.1 % Tween-20  

Alternatively, 0.5 M NaOH solution was used to strip membranes. 

 

Enhanced Chemiluminescence (ECL) Western-blot detection kit 

Western Lightning™ Plus-ECL, Enhanced luminol reagent plus (Perkin Elmer Life Sciences, 

Inc.). 

 

Roche PVDF Western Blotting Membrane pore size 0.2 μm 
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4.6 DNA and protein markers 

DNA-marker Lambda/HindIII  Promega 

GeneRuler 1 kb DNA ladder  Fermentas 

GeneRuler 100 bp DNA ladder  Fermentas 

Precision Plus prestained protein standard  BioRad 

 

4.7 Immunohistochemistry buffers 

Avertin (Anesthetic) 

1 g  Tribromoethanol (2,2,2-Tribromethanol, 99 %) 

0.81 ml Amyl alcohol 

71.49 ml ddH2O 

ddH2O was heated up to 40 °C and added to the tribromoethanol and amylalcohol and stirred 

for 10 min. The solution was sterile-filtered, aliquoted and frozen at -20 °C (protected from 

light). Mice were intraperitoneal (IP) injected with 0.2 ml per 10 g of body weight. 

 

Phosphate buffer (Stock Solutions) 

0.2 M  Sodium dihydrogen phosphate (NaH2PO4) 

0.2 M Di-Sodium hydrogen phosphate (Na2HPO4) 

Working Solution (pH 7.4) 

20 ml  0.2 M NaH2PO4 

80 ml 0.2 M Na2HPO4 

100 ml ddH2O 

 

10x Phosphate buffered saline (PBS) 

1.7 M  NaCl 

34 mM KCl 

40 mM Na2HPO4*2H2O 

18 mM K2HPO4 

pH adjusted to 7.2 with 1 N NaOH. 

 

1x PBS (Working solution) 

100 ml  10x PBS 

900 ml ddH2O 
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Bovine Serum Albumin (PBS/BSA) 

20 ml  0.2 M NaH2PO4 

80 ml 0.2 M Na2HPO4 

1.8 g NaCl 

1 g Bovine Serum Albumin (BSA) 

100 ml ddH2O 

 

16 % Paraformaldehyde (PFA) 

80 g  Paraformaldehyde 

450 ml ddH2O 

Heated up to 65 °C while stirring and then stirred for another 20 min. Droplets of 5 M NaOH 

added until the solution turned clear. Filled up to a final volume of 500 ml with ddH2O and left 

to cool down. Filtered through 500 ml Nalgene sterile filter unit. Aliquoted and frozen at  

-20 °C. 

 

4 % Paraformaldehyde (PFA) 

100 ml  0.2 M NaH2PO4 

400 ml 0.2 M Na2HPO4 

250 ml 16 % PFA 

8 g NaCl 

250 ml ddH2O 

 

Citrate Buffer (Stock Solutions) 

0.1 M  Citric acid (C6H8O7*H2O) 

0.1 M Sodium citrate (C6H5O7Na3*2H2O) 

Stored at 4 °C. 

Working Solution (0.01 M pH 6) 

9 ml  0.1 M Citric acid  

41 ml 0.1 M Sodium citrate 

450 ml  ddH2O 

Always prepared freshly. 

 

Tris-buffer (Stock Solution) 

0.5 M  Tris base 

pH adjusted to 7.6 with 37 % HCl. Stored at 4 °C. 
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Working Solution 

100 ml  0.5 M Tris base (pH 7.6) 

9 g NaCl 

Filled up to a final volume of 1000 ml with ddH2O. Always prepared freshly. 

2 % Milk-powder in Tris-buffer 

20 g Non-fat dry milk-powder 

Filled up to a final volume of 1000 ml with Tris-buffer working solution. 

 

% Triton X-100 in 1x PBS 

40 μl  4 % Triton X-100 

960 μl 1x PBS 

 

5 % Horse-Serum, 0.1 % Triton X-100 in 1x PBS 

50 μl  Horse Serum 

950 μl 0.1 % Triton X-100 in 1x PBS 

 

Mounting media 

Eukit    (Kindler) 

Aqua-PolyMount   (Polyscience) 

Shandon Cryomatrix  (Thermo Scientific) 

 

4.8 Histological stains and reagents 

Mayer’s Haematoxylin solution 

1 g  Haematoxylin 

Dissolved in 1000 ml ddH2O, then added: 

0.2 g  Sodium iodate 

50 g  Potassium aluminum sulfate 

under constant shaking. Then added: 

50 g  Chloralhydrate 

1 g  Citric acid 

Filtered before use. 

 

Eosin Stock solution (10x) 

10 g  Eosin 

Dissolved in 100 ml of ddH2O and left to mature. 
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Eosin working solution 

2.5 ml  Eosin Stock solution 

Filled up to 250 ml with ddH2O and finished by adding 12 drops of glacial acetic acid. 

 

Scott’s solution 

2 g   KHCO3 

20 g  MgSO4 

Filled up to a final volume of 1000 ml with ddH2O. 

 

HCl-Alcohol 

1.25 ml  Conc. HCl 

350 ml  100 % Ethanol 

150 ml  ddH2O 

 

4.9 Primers 

4.9.1 Genotyping primers 

STOP-Nrg1         In house No. 

Forward: 5'-GGTGGCTATAAAGAGGTCATCAG -3' 15762 

Reverse: 5'-CTCCTGGCTTTTCATCTCTTTCAA -3'   28118 

 

NEX-Cre and NEX-CreERT2 

Forward: 5'-GAGTCCTGGAATCAGTCTTTTTC-3'    3131 

Reverse: 5'-CCGCATAACCAGTGAAACAG-3'       2409 

Reverse: 5'-AGAATGTGGAGTAGGGTGAC-3' 3132 

 

Thy1.2-Ig-NRG1  

Forward: 5'-TGGCAAAGGACCTTAGGCAGTGT -3' 3776 

Reverse: 5'-CTGGTAGAGCTCCTCCGCTTC -3'      3770 

 

Nrg1f/f  

Forward: 5'-TCCTTTTGTGTGTGTTCAGCACCGG-3' 6744 

Reverse: 5'-GCACCAAGTGGTTGCGATTGTTGCT-3'   6743 

 

Parv-Cre 

Forward: 5'-AATGCTTCTGTCCGTTTGCCGGT -3'      5383 

Reverse: 5'-CCAGGCTAAGTGCCTTCTCTACA -3' 5382 
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R26R-floxtdTomato  

Forward: 5'-TACGGCATGGACGAGCTGTACAAGTAA-3' 21027 

Reverse: 5'-CAGGCGAGCAGCCAAGGAAA-3' 21028 

 

4.9.2 Quantitative real-time PCR primers 

Actin 

Forward: 5'-CTGCTCTTTCCCAGACGAGG -3' 29472 

Reverse: 5'-AAGGCCACTTATCACCAGCC -3'          29473 

 

GFP 

Forward: 5'-ACGGCCACAAGTTCAGC -3'              5271 

Reverse: 5'-CAGCTTGCCGGTGGTGCAGA -3'          25586 

 

4.10 Strains and bacterial culture media 

Bacterial strains 

Escherichia coli XL1-Blue (Stratagene) 

dam-/dcm- Competent Escherichia coli (NEB) 

 

LB medium (Lysogenic Broth) 

1 %  Bacto-Pepton 

0.5 % Yeast extract 

1 % NaCl 

pH was set to 7 with 1 M NaOH and autoclaved. 

Selective LB media was supplemented with following antibiotics: 

100 μg/ml  Ampicillin 

50 μg/ml  Kanamycin 

 

LB-Agar plates 

1 %  Bacto-Pepton 

0.5 % Yeast extract 

1 % NaCl 

1.2 % Bacto-agar 

Solids were suspended in 800 ml ddH2O. pH was adjusted to 7 and extra ddH2O was added 

up to 1 L. Solution was autoclaved and left to cool to 55 °C when desired antibiotics are 
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added. ~20 mL of LB agar were poured per 10 cm polystyrene Petri dish next to a Bunsen 

burner (bench area was kept sterile). 

 

SOC medium 

2 %  Tryptone 

0.5 %  Yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2 

10 mM Glucose 

Tryptone, yeast extract, NaCl, and KCl were mixed and autoclaved. Afterwards, MgCl2 and 

glucose were added. 10 ml aliquots were prepared and stored at -20 °C. 

 

4.11 ES cell culture mediums and solutions 

β-mercaptoethanol 10 mM 

360 µl  β-mercaptoethanol stock (Sigma) 

500 ml  PBS 

∼500 ml  total volume 

It was filter-sterilized with 0.22 µm filter bottles (Corning) and stored at 4 °C. 

 

MEFs medium  

500 ml Knockout-DMEM (Gibco)  

95 ml FBS Hyclone (GE Healthcare)  

6 ml MEM non-essential amino acids (Gibco) 

6 ml Glutamine (Gibco) 

6 ml β-mercaptoethanol 10 mM  

3 ml Pen/Strep (Gibco) 

∼600 ml Total volumen 

The medium was sterile-filtered with 0.22 µm filter bottles (Corning). 

 

Medium for ES cells (129) 

50 ml MEF medium  

6.5 µl LIF (107 U/ml; Millipore) 

6 ml Total volume 

The medium was sterile-filtered with 0.22 µm filter bottles (Corning). 
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2x freezing medium 

8 ml MEF medium  

2 ml DMSO (Sigma) 

10 ml Total 

The medium was sterile-filtered (0.22 µm). 

 

Gelatin solution (0.1 %) 

1 g porcine gelatin (Sigma) was added to 1 L of ddH2O, mixed and autoclaved. Gelatin was 

added to the culture flasks and plates at least 30 min before using them. Before adding 

medium and/or cells gelatin was removed. 

 

Mitomycin C 

50x stock (0.5 mg/ml) mitomycin C (Sigma) was prepared by injecting 4 ml 1x PBS through 

the lid of a 2 mg bottle, using a syringe (because it is highly toxic to mammalian cells the 

bottle is never opened). After shaking it manually to dissolve, the bottle was stored at 4 °C. 

 

Geneticin (G418) 

20 ml of 50 mg/ml G418 was prepared (corrected for active ingredient). It was sterile-filtered 

(0.22 µm), and 1 ml aliquots were prepared. One aliquot was added to 250 ml ES medium. 

 

Lysis buffer for DNA isolation 

10 mM Tris pH 7.5  

10 mM EDTA pH 8.0  

10 mM NaCl 

0.5 % Sarcosyl 

1 mg/ml Proteinase K (Sigma) 

The buffer was prepared with the first four ingredients, and filter-sterile with 0.22 µm filter 

bottles (Corning). The proteinase K was added fresh right before proceeding with DNA 

extraction. 

 

4.12 Chemicals and media for primary cell culture 

Medium 

Neurobasal medium (NBM; Gibco 21103-049) (300 ml): add 6 ml B27 Supplement (Gibco 

17504-044), 3 ml P/S (Sigma P0781) and 3 ml Glutamax (Gibco Cat no. 35050-038). 

Plating medium: NBM + 5 % FCS (Gibco Cat no. 10106-169) (150 ml)  

Medium to stop papain reaction: NBM + 10 % FCS (50ml)  
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HBSS 

HBSS (BioWhittaker Cambrex BE10-543F) 

10 % (w/v) MgSO4 (sterile filtered) 

HBSS +: 500 ml HBSS plus 7.5 ml 10 % (w/v) MgSO4 

 

Poly-L-lysine  

Poly-L-lysine (PLL) (Sigma P1274): dilute stock solution (5 mg/ml) 1:50 to 0.1 mg/ml in borate 

buffer 

Borate buffer (400ml):  

1.24 g boric acid 

1.9 g sodium tetraborate 

300 ml ddH2O 

Adjust pH to 8.5 

Add further distilled H2O to make 400ml and filter 

 

Papain 

Papain solution (Cell Systems Cat.No. LS003126)  

L-cysteine (SIGMA C-7880): 24 mg L-cysteine + 1 ml NBM, sterile filter (0.22 µm), aliquot 

(12 µl) and store at -20 °C 

DNaseI (SIGMA Cat. No. DN25): prepare 10 mg/ml solution, aliquot (42 µl) and store  

at -20 °C 

 

4.13 Enzymes 

Restriction enzymes from purchased from New England Biolabs (NEB) 

REDTaq DNA polymerase  Sigma-Aldrich 

GoTaq polymerase  Promega 

Antartic Phosphatase  New England Biolabs (NEB) 

T4 DNA ligase  Promega 

GoTaq® qPCR master mix 2x  Promega 

Proteinase K Sigma 
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4.14 Antibodies 

4.14.1 Primary antibodies 

Antibody Species Dilution Company Cat. No Application 

Actin mono-ms 1000 Millipore MAB1501 WB 
AKT poly-rb 5000 Cell 

Signaling 
9272 WB 

APP mono-ms 1000 Millipore MAB348 IHC 
Calbindin mono-ms 1000 Sigma C 9848 IHC 
CD3 mono-rat 150 BioRad MCA1477A

488 
IHC 

Cre poly-rb 1000 Covance PRB-106C IHC 
ErbB4 mono-rb 1000 Abcam ab32375 WB 
GAD67 mono-ms 100 Millipore MAB5406 IHC 
GADPH mono-ms 1000 Enzo ADI-CSA-

335-E 
IHC 

Gephyrin mono-ms 500 Synaptic 
Systems 

147 011 IHC 

GFAP poly-rb 500 Dako Z 0334 IHC 
GFP poly-goat 500 Rockland 600-101-

215 
IHC 

GM130 mono-ms 200 BD 
Biosciences 

610823 IHC 

HA chicken 100 Sigma 
Aldrich 

GW22511 IHC 

HA Mono-ms 100 Biolegends 901502 WB/IHC 
IBA1 poly-rb 700 Wako 019-19741 IHC 
Kv2.1 mono-ms 500 Neuromab 75-014 IHC 
NeuN mono-ms 100 Chemicon MAB377 IHC 
Neuregulin-1a/b1/2 
(C-20) 

poly-rb 100 Santa Cruz SC-348 WB/IHC 

Neurogranin poly-rb 1000 Chemicon AB1763 IHC 
Olig2 poly-rb 

 
200 John Alberta, 

Harvard 
DF308 IHC 

Parvalbumin 28 poly-rb 200 Swant PV-28 IHC 
p-AKT (Ser473)(D9E) poly-rb 

 
5000 Cell 

Signaling 
4060 WB 

p-HER4/ErbB4 
(Tyr1284)(21A9) 

mono-rb 1000 Cell 
Signaling 

4757 WB 

p-p44/42 MAPK (Erk1/2) 
(Thr202/Tyr204)(20G11) 

poly-rb 
 

5000 Cell 
Signaling 

4376 WB 

p44/42 MAPK (Erk1/2) 
(137F5) 

poly-rb 5000 Cell 
Signaling 

4695 WB 

PSD95 mono-ms 500 Neuromab 75-028 IHC 
SERT ST C-20 poly-goat 100 Santa Cruz SC-1458 IHC 
Synaptophysin mono-ms 1000 Synaptic 

Systems 
101 011 WB 

VGlut1 poly-
guinea 
pig 

100 Synaptic 
Systems 

135 304 IHC 

 

 

https://www.sysy.com/products/gephyrin/facts-147011.php


Materials 

79 
 

4.14.2 Secondary antibodies 

Antibody Species Dilution Company Application 

α-chicken-cy3 donkey 1000 Dianova IHC 

α-chicken-Alexa488 donkey 1000 Dianova IHC 

α-goat-Alexa488  donkey 500 Dianova IHC 

α-guinea pig-cy3  goat 1000 Dianova IHC 

α-guinea pig-cy5 goat 250 Dianova IHC 

α-mouse-cy2  goat 100 Dianova IHC 

α-mouse-cy3  goat 1000 Dianova IHC 

α-mouse-cy5  donkey 250 Dianova IHC 

α-mouse-Alexa488  goat 100 Molecular 

Probes 

IHC 

α-mouse-Alexa555 goat 500 Molecular 

Probes 

IHC 

α-mouse-DL633 donkey  250 Yopro IHC 

α-mouse-DL649 donkey  250 Dianova IHC 

α-mouse-HRP  goat 5000 Dianova WB 

α- rabbit cy2 goat 100 Dianova IHC 

α- rabbit cy3 goat 1000 Dianova IHC 

α- rabbit cy5 donkey 250 Dianova IHC 

α- rabbit DL633 donkey 250 Yopro IHC 

α- rabbit DL649 donkey 250 Dianova IHC 

α-rabbit-HRP  goat 5000 Promega WB 

α-rabbit-Alexa488  donkey 100 Dianova IHC 

α-rabbit-Alexa555  donkey 500 Dianova IHC 

α-rat-HRP goat 5000 Dianova WB 

 

 

4.15 Mouse lines 

STOP-Nrg1  

Conditional β-actin eGFP-STOP-flox 2HA-Ig-Nrg1 β 1a transgenic mouse (Soto-Bernardini 

et al., in preparation). 

 

NEX-Cre 

Cre driver mouse line, generated by homologous recombination of Cre into the NEX locus 

(Goebbels et al., 2006). 
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NEX-CreERT2 

Cre driver mouse line, generated by homologous recombination of Tamoxifen-inducible 

CreERT2 into the NEX locus (Agarwal et al., 2012). 

 

Thy1.2-Ig-NRG1  

Thy1.2 promoter-driven Ig-Nrg1 β 1a transgenic mouse (Michailov et al., 2004). 

 

Nrg1f/f 

Conditional floxed NRG1 knockout mouse (Li et al., 2002). 

 

Parv-Cre  

Cre driver line, generated by homologous recombination of an IRES-Cre cassette at the 

translational stop codon of parvalbumin gene (Hippenmeyer et al., 2005). 

 

R26R-floxtdTomato 

Rosa26 knock-in floxed tdTomato Cre-reporter mouse line (Madisen et al., 2010).
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5 Methods 

5.1 Generation of conditional Ig-NRG1 transgenic mice 

STOP-Nrg1 mice were generated by PCR-amplification and cloning of an Ig-NRG1 cDNA 

(kindly provided by Dr. Cary Lai Indiana University) in XhoI restriction site of the polylinker of 

the β-actin STOP-eGFP-flox cassette in a pBluescriptKS vector. Primers were designed and 

used to add two HA tags at the 3` to the start codon, and amplify the complete cDNA (forward 

primer: 5`GTTATCTCGAGGCCACCATGTACCCATACGATGTTCCAGATTACGCTCTTTACC 

CATCGATGTTCCAGATTACGCTCTTTCTGAGCGCAAAGAAGGCAGAG-3`; reverse primer: 

5`-CGCAACTCGAGTTATACAGCAATAGGG-3`). The vector backbone harbored a fragment 

of a chicken β-actin promoter, a GFP-STOP cassette flanked by two loxP sites, and a bovine 

growth hormone polyA site. The transgene cassette was excised from the plasmid by digestion 

with SpeI and AgeI. Afterwards, it was injected into C57Bl/6N oocytes. Initial cloning of the 

vector backbone was performed by Maike Gummert and HA-Ig-NRG1 cDNA insertion and 

linearization was conducted by Viktorija Velanac at the Max-Planck-Institute of Experimental 

Medicine in Göttingen. Three positive founders were born. The transgenic line was maintained 

on a C57Bl/6N background. 

 

5.2 Breeding of mouse mutants 

For maintenance and expansion of the colonies, transgenic mice were bred to C57Bl/6N 

wildtype mice starting at 8 weeks of age.  

 

5.3 Animal maintenance and handling 

All mice used in this study were maintained and bred in the animal facility of the Max-Planck-

Institute of Experimental Medicine. Animals were kept and handled in compliance with animal 

policies of the Max-Planck-Institute of Experimental Medicine and approved by the German 

Federal State of Lower Saxony. 

 

5.4 Phenotyping of tail biopsies of STOP-Nrg1 mice 

Fluorescence of the loxP sites-flanked eGFP-STOP-cassette was used for routine genotyping 

of STOP-Nrg1 mice. For this purpose, tail biopsies were examined under fluorescent light of 

488 nm excitation with a fluorescent microscope (Leica MZ16F fluorescent stereomicroscope). 
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5.5 Preparation of mouse genomic DNA 

5.5.1 NexttecTM Tissue & Cells kit-based genomic DNA isolation 

NexttecTM Tissue & Cells kit was used to isolate DNA from tail biopsies for further genotyping. 

Isolation was performed according to manufactures protocol. Biopsies were lysed in 300 μl 

lysis buffer (265 μl buffer G1, 10 μl buffer G2, 25 μl buffer G3) by vigorous shaking for  

60-120 min at 1200 rpm and 62 °C. Meanwhile, NexttecTM cleanPlate96 were equilibrated with 

350 μl Prep buffer for 5 min at RT and centrifuged for 1 min at 350 g. 120 μ l of the lysates 

were loaded onto the columns and centrifuged at 750 g for 1 min into fresh tubes. Lysates were 

diluted 1:5 in ddH2O. 1 μl of the lysate was used in genotyping PCR reactions. 

 

5.5.2 Chloroform DNA extraction 

DNA for genotyping STOP-NRG1 homozygous mice by quantitative real-time PCR (qPCR) 

was isolated from tail biopsies with the following protocol. 400 μl of extraction buffer (4.4) were 

added to each tube. In addition, 75 μl 8 M KAc (sterile-filtered; pH not adjusted), and 400 μl 

chloroform were added. The solution was mixed by vortexing for approximately 10 s, until a 

cloudy appearance was obtained. Samples were then centrifuged (5415 D Eppendorf) for 

10 min at 4 °C (maximum speed). 200 μl of the supernatant were transferred to a new tube 

(chloroform waste was kept under fume cupboard and discarded appropriately). 400 μl ethanol 

were added, and the samples were mixed by inverting the tubes ∼ 10 times. In this step the 

DNA precipitates. Afterwards, samples were centrifuged 10 min at 4 °C (maximum speed). The 

supernatant was completely removed and the pellets were air dried for ∼ 30 min. Finally, 200 μl 

Tris buffer (10 mM Tris pH8.0) were added to resuspend the DNA. Samples were vortexed and 

stored at 4 °C for further experiments. This method allows quantification of resulting DNA with 

UV spectrophotometer, which is indispensable for qPCR analysis. 

 

5.6 Genomic DNA analysis 

5.6.1 DNA amplification in vitro by polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) (Mullis et al., 1986) is an in vitro method for enzymatic 

amplification of a DNA sequence of interest. The reaction requires a thermostable DNA 

polymerase, which is stable at the melting temperature of the double stranded DNA and has 

an optimal activity at around 72 °C. In this reaction, the sequence of interest is flanked by 

primers, that bind to the sense and antisense strands of the template. The DNA amplification 

is carried out in a thermocycler through multiple repetitions of three steps: denaturation, 

annealing, and extension. Standard PCR master mixes for genotyping were set up with 

RedTaq polymerase (Sigma) or GoTaq DNA polymerase (Promega) following manufacture’s 

specification. Specific primers for every mouse line were used (4.9.1). 
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PCR master mix for RedTaq polymerase: 

1 μl   DNA (100 pg-100 ng) 

1 μl   sense primer (10 pM) 

1 μl   antisense primer (10 pM) 

2 μl   dNTP mix (2 mM) 

2 μl   10x RedTaq buffer 

1 μl   RedTaq polymerase (1 U/μl) 

12 μl  ddH2O 

 

PCR master mix for GoTaq polymerase: 

1 μl   DNA (100 pg-100 ng) 

0.2 μl  sense primer (50 pM) 

0.2 μl  antisense primer (50 pM) 

2 μl   dNTP mix (2 mM) 

4 μl   5x GoTaq buffer 

0.1 μl  GoTaq polymerase (5 U/μl) 

12.5 μl ddH2O 

 

AccuPrime™ GC-Rich DNA Polymerase or MyFi™ DNA polymerase (Bioline) were used for 

PCRs in which Taq polymerases with 3' to 5' exonuclease proofreading activity were needed 

for amplification of big fragments (and/or rich-CG content), used for subsequent cloning. 

 

5.6.2 Primer design 

Primers were designed based on the template sequence information using the SnapGene 

software, and OligoAnalyzer 3.1 (http://eu.idtdna.com/calc/analyzer). Primers for genotyping 

had around 20 bp overlap with the template sequence and a melting temperature near 60 °C. 

Oligonucleotides were synthesized in-house at the AGCTlab (AGCTLab@em.mpg.de) of the 

Max-Planck-Institute of Experimental Medicine.  

 

5.6.3 PCR programs for genotyping 

STOP-Nrg1  

1. 95 °C 5 min 

2. 95 °C 45 sec 

3. 56 °C 30 sec 

4. 72 °C 1 min 

 2 to 4 for 36 cycles 

5. 56 °C 1 min 
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6. 72 °C 10 min 

7. 4 °C pause 

 

NEX-Cre and NEX-CreERT2 

1. 95 °C 3 min 

2. 54 °C 30 sec 

3. 72 °C 1 min 

4. 95 °C 30 sec 

 2 to 4 for 39 cycles 

5. 54 °C 1 min 

6. 72 °C 10 min 

7. 4 °C pause 

 

Thy1.2-Ig-NRG1  

1. 95 °C 3 min 

2. 95 °C 30 sec  

3. 54 °C 30 sec 

4. 72 °C 1 min 

 2 to 4 for 39 cycles 

5. 54 °C 1 min 

6. 72 °C 10 min 

7. 4 °C pause 

 

Nrg1f/f 

1. 95 °C 3 min 

2. 95 °C 30 sec  

3. 57.5 °C 30 sec 

4. 72 °C 1 min 

 2 to 4 for 39 cycles 

5. 72 °C 20 min 

6. 4 °C pause 

 

Parv-Cre 

1. 95 °C 3 min 

2. 95 °C 45 sec  

3. 56 °C 30 sec 

4. 72 °C 1 min 
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 2 to 4 for 36 cycles 

5. 56 °C 1 min 

6. 72 °C 10 min 

7. 4 °C pause 

 

R26R-floxtdTomato 

1. 95 °C 3 min 

2. 95 °C 30 sec  

3. 60 °C 30 sec 

4. 72 °C 90 sec 

 2 to 4 for 45 cycles 

5. 60 °C 1 min 

6. 72 °C 10 min 

7. 4 °C pause 

 

5.6.4 Agarose gel electrophoresis separation of DNA fragments 

PCR products were analyzed by agarose gel electrophoresis, which separates DNA fragments 

based on their size. With this method, migration of negatively charged DNA to the positively 

charged cathode is achieved. Smaller DNA fragments migrate faster through the gel than 

bigger fragments (Voytas, 2001). 1.5 % agarose gels were prepared in 1x TBE buffer. For DNA 

visualization 2 to 3 μl of 10x GelREDTM (Biotium) were added to 20 μl DNA sample. Gels were 

placed into the electrophoresis chambers filled with 1x TBE buffer. DNA marker (1 Kb, 

SM0311, Thermo Scientific) and DNA samples (with loading buffer included) were loaded into 

the wells. The chamber was connected to a power supply and the gel was run at 4-10 V/cm 

(taking into account the distance between anode and cathode). After separation of the desired 

fragments, snapshots of UV-trans-illuminated gels were taken (Intas UV-Systeme). 

 

5.6.5 Measurement of the DNA concentration and purity 

Spectrophotometric analysis is based on the fact that nucleic acids absorb UV light at a 

wavelength of 260 nm. A photodetector measures the light that passes through a DNA sample, 

whereby the light is absorbed by the sample indicating the nucleic acid concentration in the 

sample. Less light will reach the photodetector if the absorption is high, resulting in a  

higher OD. 

Concentration and purity of DNA samples were measured using the NanoDrop 2000 

spectrophotometer (Thermo Scientific). 1 µL of ddH2O or TE (depending on the solvent used) 

was used to measure the blank. Afterwards, 1 µL of each sample was used for the 

measurement.  
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5.6.6 Quantitative Real Time PCR (qRT-PCR) 

qRT-PCR is a PCR variant that allows DNA or RNA quantification in a sample. This is achieved 

by measuring the amount of amplified product in each cycle of the PCR, using fluorescent 

probes or fluorescent DNA-binding dyes and a thermal cycler with the capacity to illuminate 

each sample with beams of light of specific wavelengths and detect the fluorescence emitted 

by the excited fluorophore. The threshold cycle (Ct) is the first cycle at which the fluorescent 

signal is detected. In this way, the initial DNA amount is calculated based in the Ct, which is 

inversely related to the starting quantity of the sample. As the initial DNA amount decreases, 

the Ct increases (Biassoni and Raso, 2014). This technique was used to distinguish between 

homozygous and heterozygous STOP-NRG1 mice.  

DNA was isolated as described above (5.5.2) and quantified using the NanoDrop 2000 

spectrophotometer (Thermo Scientific), as described above. Samples were diluted to a final 

concentration of 5 ng/µl. Reactions were run in quadruplicates, with primers to amplify the 

eGFP located in the STOP-cassette (4.9.2). Reactions to amplify β-actin were also performed 

in quadruplicates. In both cases, a master mix was set up as follows: 

 

4 μl   DNA (5 ng/µl) 

0.1 μl  sense primer (10 pM) 

0.1 μl antisense primer (10 pM) 

5 μl   GoTaq qPCR Master Mix (Promega) 

0.8 μl  ddH2O 

 

qPCR was performed using the standard protocol for relative quantification of the 7500 Fast 

Real-Time PCR (Applied Biosystems). Post-amplification melting curve analyses were 

performed to check for primer-dimer artifacts and ensure reaction specificity. Ct values from 

the quadruplicates were analyzed, and outliers were eliminated. At least three of the four 

replicates were included in the analysis. The standard deviation was calculated and considered 

acceptable up to 0.5. Comparative quantification analysis was performed by the ΔΔCt method, 

that compares results from experimental samples with a calibrator (in this case a negative 

control which has a higher ΔCt) and a normalizer (β-actin housekeeping gene). Cts for the gene 

of interest (GFP) in the test samples and the calibrator sample were adjusted in relation to the 

β-actin gene (Ct eGFP - Ct β-actin). The resulting ΔΔCt (ΔCt sample - ΔCt calibrator) value was used to 

determine the fold difference in expression (2-ΔΔCt). Values obtained were plotted, and normally 

3 groups were observed: negative samples, heterozygous and homozygous. Samples that did 

not clearly correspond to those groups were not considered for further analysis. 

 

 



Methods 

87 
 

5.7 Biochemical analysis of protein 

5.7.1 Protein extraction 

Sucrose homogenization buffer (320 mM Sucrose, 10 mM Tris (pH7.4), 1 mM NaHCO3 and 

1 mM MgCl2) with protease and phosphatase inhibitors (Roche) was used for protein 

extraction. Dissected frozen prefrontal cortices and hippocampi from one hemisphere were 

homogenized in 200 μl of the buffer. Homogenization was performed with the Precellys24 

homogenizer (5500 rpm, 2x 10 sec, Bertin Technologies). 130 μl of the resulting homogenate 

were added to 70 μl of 4x LDS sample buffer (NuPAGE) working solution including DTT. The 

samples were immediately denatured at 70 °C for 10 min and stored at -80 °C. Protein 

concentration measurement was performed on dilutions (1:1 up to 1:20 in sucrose 

homogenization buffer) of the leftovers. Afterwards, the rest of the homogenates were stored 

at -80 °C. 

 

5.7.2 Protein concentration measurement  

The protein concentration of samples was determined using the Bio-Rad DC Protein Assay kit. 

The working principle is based on the Lowry assay described by Lowry et al, 1951. Two steps 

are included in this assay. One is the reaction between protein and an alkaline copper tartrate 

solution, followed by the reduction of Folin reagent that produces several reduced species of 

characteristic blue color with a maximum absorbance at 750 nm. The oxidation of the amino 

acids tyrosine and tryptophan, (and to a lesser extent cystine, cysteine, and histidine) is 

responsible for the color development (Lowry et al., 1951; Peterson, 1979).The assay was 

performed in a 96-well plate (flat bottom) and absorbance was measured at 650 nm with a 

microtitre plate reader (ThermoMax Molecular Devises). To estimate protein concentrations, 

dilutions of bovine serum albumin (BSA) were used to produce a standard curve. Protein 

concentrations were calculated according to the dilution factor. 

 

5.7.3 SDS polyacrylamide gel electrophoresis 

Separation of the proteins by size was performed by discontinuous SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) (Laemmli, 1970). The working principle of this procedure is 

based on denaturing the proteins with reducing agents such as dithiothreitol (DTT) or  

β-mercaptoethanol and heat. This way, disulfide bonds between cysteine residues are cleaved, 

disrupting the quaternary and tertiary structure of the proteins, which results in linear chains of 

polypeptides. In addition, the presence of sodium dodecyl sulfate (SDS) or lithium dodecyl 

sulfate in the buffer renders the proteins with a negative charge, thus proteins migrate based 

on their molecular weight.  
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Polyacrylamide gels were cast and poured between Bio-Rad glass plates and 1.75 mm spacer 

plates. The separation gel (8 % acrylamide) was poured first. 1 ml of isopropanol was added 

on top of the gels in order to have a flat and straight front. After 20 min of polymerization at RT, 

the isopropanol was rinsed with ddH2O. Afterwards, the stacking gel was poured and a comb 

(10 or 15 teeth) was inserted into the stacking gel solution. The gels were left to polymerize for 

20 min at RT, and stored overnight at 4 °C. 

Electrophoresis chambers (Bio-Rad) were assembled according to the manufacturer’s manual. 

20-30 μg of protein samples and 10 μl of pre-stained protein marker (Fermentas) were loaded 

onto the gel. The chamber was filled with electrophoresis buffer and connected to a power 

supply (Bio-Rad). The gels were run at 100 mV for 30 min until samples reached the border 

between the stacking and the separation gel. Afterwards, the voltage was increased to 150 mV 

and the gels were run until the tracking dye reached the end of the gel. The gels were removed 

from the glass plates to proceed with further analysis. 

 

5.7.4 Silver staining of polyacrylamide gels 

The gel was fixed in a solution containing 40 % ethanol, 10 % acetic acid for 1 h on a shaker. 

Afterwards, it was washed twice in 30 % ethanol for 20 min (shaking). The gel was transferred 

to ddH2O and washed for 20 min (shaking). It was then transferred to sodium thiosulfate 

(0.8 mM) for 1 min, and washed 3 times in ddH2O for 30 s. The gel was placed in a solution of 

0.2 % silver nitrate and 0.02 % formaldehyde, for 20 min and rinsed with ddH2O for 1 min 

(twice). To develop, an incubation with 150 ml 2 % sodium carbonate with 0.02 % formaldehyde 

was performed until the desired intensity of staining was reached (the developer was replaced 

when it turned yellow). To stop the reaction, the gel was transferred to 150 ml 5 % acetic acid 

for 10 min. This step was repeated with fresh solution. Finally, the gel was rinsed in ddH2O  

for 5 min. 

 

5.7.5 Western Blotting 

Proteins separated by SDS-PAGE were transferred to PVDF membranes by electrophoresis, 

as previously described by (Towbin et al., 1979). Using this method, the negatively charged 

proteins (from SDS-PAGE) migrate from the cathode to the anode and are retained on 

polyvinylidene difluoride (PVDF) membranes by a combination of dipole and hydrophobic 

interactions. PVDF membranes (GE Healthcare LifeSciences, pore size 0.45 μm) were 

activated for 1 min in 100 % methanol, washed twice in ddH2O and then placed into cold 

transfer buffer. 

Blotting pads and Whatman papers were placed in cold transfer buffer and the blotting 

sandwich was assembled taking into account the position of the gel in relation to the membrane 

and the anode (+). Assembly of the transfer sandwich was performed in a container filled with 
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transfer buffer. The sandwich was built on the side of the transfer cassette facing the cathode 

(-) starting with a sponge, followed by Whatman paper, the gel, the membrane, an additional 

Whatman paper, and a second sponge. Later on, this construct was placed in the transfer 

cassette and submerged in an electrotransfer tank containing transfer buffer. The protein 

transfer was performed using Bio-Rad Mini Trans-Blot® cells under a constant current of 350 

mA for 90 min at 4 °C. 

 

5.7.6 Immunological detection of proteins and densitometric quantification  

Membranes were blocked for 60 min at RT in blocking buffer and then placed into 50 ml falcons 

containing 5 ml of the primary antibody diluted in the same buffer. Incubation was performed 

ON at 4 °C with constant rotation. Afterwards, membranes were washed for 10 min in TBST. 

This washing step was repeated 3 times. Next, membranes were incubated with the HRP-

conjugated secondary antibody diluted in blocking buffer for 1 h at RT. Washing steps were 

performed again four times. This was followed by 1 min incubation with a 1:1 dilution of the two 

Enhanced Chemiluminescence Detection (ECL) solutions. Membranes were placed into a 

transparent plastic foil, placed into the Intas ChemoCam Imager, and scanned for 20 min. 

Images were acquired with the Intas ChemoCam Imager, and saved digitally for subsequent 

analysis. Membranes were used to analyze different proteins. Stripping of preceding antibodies 

was performed by incubating the membranes in 0.5 M NaOH for 10-15 min at RT. Before re-

probing the membranes with the next primary antibody, another blocking step was performed. 

For densitometric analyses of western blot bands, the images acquired were opened with 

ImageJ, converted to 8-Bit and inverted in order to have black bands on white background. 

ImageJ’s gel analyzing function was used to measure the densities of bands of interest. Results 

were normalized to loading controls (β-actin or GADPH). Normalized values (±SEM) were 

analyzed for statistical significance using the GraphPad Prism software package. One-way 

ANOVA analyses were performed when more than one group of controls were included in the 

experiment. Bonferroni-post hoc tests for pairwise group comparisons were performed. If no 

differences between control groups were observed, these were pooled and t-tests were 

performed. 

 

5.8 Histology and immunohistochemistry 

5.8.1 Analysis of the STOP-cassette in different organs 

The presence of GFP in the STOP-cassette of the STOP-Nrg1 mice permits visualization of 

Cre-dependent stage-specific activation of Ig-NRG1 overexpression (absence of GFP), and 

can also be used to genotype mice. Expression of the cassette was examined in different 

organs of the transgenic mice (brain, heart, liver, muscles, tail tips, spinal cord and sciatic 
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nerves) by checking for GFP fluorescence. Mice were sacrificed by cervical dislocation 

followed by decapitation. Organs were dissected from the mice, rinsed in 1x PBS, and 

examined with the Leica MZ16F fluorescent stereomicroscope. Brightfield and fluorescent light 

images were acquired and analyzed by ImageJ software. 

 

5.8.2 Perfusion fixation of mouse tissue 

Mice were perfused and fixed in order to preserve the tissue for later histological analysis. For 

this purpose, mice were deeply anesthetized by IP injection of Avertin (0.2 ml per 10 g of body 

weight). After checking the reflexes of the mice, to ensure deep anesthesia, they were fixed 

onto a platform with drainage. 

Two pieces of the tail were collected for re-genotyping. The abdomen and the diaphragm were 

opened, and the rib cage was cut laterally on both sides to the top and above the sternum. It 

was then fully removed to expose the heart. A 27 gauge needle butterfly connected to a 

peristaltic pump was inserted into the left ventricle, making sure not to pierce the septum. 

Afterwards, the right atrium was opened by a small cut to ensure the perfusion flow. Blood was 

flushed out of the circulatory system with 20 ml of HBSS (pre-warmed at 37 °C) using a 

peristaltic pump with a flow rate of 1 ml/min. Then, mice were perfused with 30-40 ml of ice-

cold 4 % PFA fixative at the same flow rate. Afterwards, fixed tissues were dissected and 

placed into cold 4 % PFA ON at 4 °C. Vibratome sectioning was performed the next day. 

Cryosectioning was performed on the post-fixed tissue after a step of cryoprotection in sucrose 

solutions. Tissue for paraffin embedding was immediately processed for this purpose after the 

ON post-fixation. 

 

5.8.3 Vibratome sectioning  

After post-fixation, brains were washed in 1x PBS and sliced coronally into 3 three pieces of 

4 mm thickness (PFC, hippocampal and cerebellar sections) using a brain slicer. 

Subsequently, tissues were transferred to the vibratome (Leica VT 1000S). Each section was 

glued onto the specimen holder of the vibratome using instant glue. The specimen holder was 

fixed to the stage of the vibratome which was then filled with ice-cold 1x PBS. Coronal sections 

of 30 μm thickness were collected and transferred to 24-well plates filled with 1x PBS. The 

sections were kept on ice and immunohistological stainings were immediately performed. 

 

5.8.4 Cryoprotection, embedding and cryosectioning  

Incubations in a row of sucrose solutions with ascending sucrose concentrations were 

performed to cryoprotect tissues. First tissue was shortly rinsed in 1x PBS and then submersed 

in 10 % (w/v), 20 % (w/v) and 30 % (w/v) sucrose solutions at 4 °C (ON in each solution or until 
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the tissue was sunk to the bottom of the tube). Brains were sectioned into three 4 mm thick 

coronal pieces (PFC, hippocampal and cerebellar sections) using a brain slicer, and frozen on 

aluminum foil on dry ice. Tissues were wrapped in aluminum foil and stored at -80 °C for further 

sectioning. 

Embryonic brains, SC, and sciatic nerves were embedded in Shandon cryomatrix in aluminum 

foil molds, in order to facilitate sectioning of such small tissues. The bottom of the molds was 

covered with Shandon cryomatrix at RT and the cryoprotected tissues were placed into the 

molds with the cutting surface facing to the bottom of the mold. Shandon cryomatrix was used 

to fill the molds, which were then placed on dry ice to freeze. Tissues were stored at -80 °C for 

further sectioning. Tissue was transferred from -80 °C to the cryostat (-21 °C) half an hour prior 

to sectioning. Blocks of tissue embedded in Shandon cryomatrix were trimmed to size using 

razor blades.  

Brains or tissues contained in cryomatrix blocks were glued onto a specimen holder of the 

cryostat (Leica Jung CM 3000) with Shandon cryomatrix and fixed into the cryostat. 14 μm to 

20 μm thick sections were collected using a knife-angle of 4°, a chamber temperature of -21 °C 

and an object temperature of -19 °C. Sections were either collected on positively charged 

ultrafrost microscope slides, dried ON at RT in an exicator and then used for immunostainings, 

or collected as free-floating cryosections in multi-well plates filled with 1x PBS, where they 

were also processed for stainings. 

Cryosections from mouse brains frozen in isopentane were also collected for subsequent 

fixation in methanol. This method works best for PSD95 and Gephyrin antibodies. A metal box 

was filled with isopentane, placed on a flat piece of dry ice, surrounded by more dry ice and 

wet ice, inside a styrofoam box. The temperature was adjusted to -35 °C. Mice were sacrificed 

by cervical dislocation followed by decapitation and the brains were quickly removed from the 

skull and drowned in the cold isopentane. They were removed with forceps when no more air 

bubbles were coming out, and directly transferred to the cryostat. 20 μm thick sections were 

collected. Sections were then fixed for 15 min in cold (-20 °C) methanol in a cuvette inside the 

cryostat. Afterwards, sections were washed in 1x PBS for 5 min and then blocked and 

processed for immunohistochemical analysis.  

 

5.8.5 Paraplast impregnation, embedding and sectioning  

After ON post-fixation, brains were shortly rinsed in 1x PBS and sliced into three 4 mm thick 

pieces (PFC, hippocampal and cerebellar sections). The three pieces were placed in tissue 

cassettes, dehydrated and infiltrated with paraplast using the paraplast embedding station 

(Microm HMP110) with the following solution incubation protocol: EtOH 50 % 1 h, EtOH 70 % 

2 h, EtOH 70 % 2 h, EtOH 96 % 1 h, EtOH 96 % 1 h, EtOH 100 % 1 h, EtOH  

100 % 1 h, Isopropanol 1 h, Xylol 2 h, Xylol 2 h, Paraplast 2 h, Paraplast 2 h. Afterwards, 



Methods 

92 
 

tissues were embedded in paraplast blocks, using the paraplast embedding center (Microm 

AP280) and metal molds. Tissue-containing paraplast-blocks were removed from the molds 

and stored at RT until sectioning. 

5 μm sections were sectioned using a sliding microtome (Microm HM 400). Sections were 

collected in ice-cold distilled water, transferred to a 42 °C water bath for straightening, and 

mounted on charged microscope slides. Sections of different genotypes were mounted side-

by-side on one slide (controls and overexpressors/mutants) for parallel processing. Slides were 

dried ON at 37 °C and then stored at RT for further immunohistological stainings. 

 

5.8.6 Immunohistological staining procedures 

Hematoxylin-Eosin staining 

Hematoxylin-Eosin (H+E) staining is a common histological staining method to obtain 

information of overall tissue structures. Basophilic nuclei are stained in dark purple by 

hematoxylin and eosinophilic cytoplasm is stained in pink by the acidic dye Eosin. Paraffin 

sections were deparaffinized by two 10 min incubations in Xylol and one for 10 min in 

Xylol/Isopropanol (1:1), followed by rehydration in descending ethanol dilutions (100 %, 90 %, 

70 %, and 50 %) for 5 min each. After washing for 5 min in ddH2O, sections were stained with 

0.1 % hematoxylin for 5 min and washed with ddH2O. The dark purple color was differentiated 

by a short wash in HCl-alcohol solution. The differentiation process was stopped by incubating 

the sections for 5 min in Scott’s solution. Afterwards, sections were shortly rinsed in ddH2O, 

and counterstained in 0.1 % Eosin for 3-5 min. Excess dye was washed off with ddH2O. 

Sections were dehydrated by short incubation steps (10-30 sec) in an ascending row of ethanol 

(50 %, 70 %, 90 %, and 100 %). Finally, sections were incubated once for 10 min in 

Xylol/Isopropanol (1:1) and twice for 10 min in Xylol, and mounted with the Xylol based 

mounting medium Eukitt and dried at RT. 

 

DAB immunostaining of paraffin sections 

An enzymatic reaction of a secondary antibody-linked horseradish peroxidase (HRP) with DAB 

substrate, which forms a stable brown precipitate that can be visualized by light microscopy, is 

the working principle of DAB immunostaining (Harlow and Lane,1988). 5 μm paraffin sections 

were deparaffinized by two 10 min incubations in Xylol and one for 10 min in Xylol/Isopropanol 

(1:1), followed by rehydration in descending ethanol dilutions (100 %, 90 %, 70 %, and 50 %) 

for 5 min each. Afterwards, sections were incubated for 5 min in ddH2O followed by 5 min 

incubation in citrate buffer. Then, sections were cooked for 10 min in boiling citrate buffer at 

650 W in the microwave for antigen retrieval. To maintain the buffer molarity after evaporation 

ddH2O was added. Sections were left at RT 20-30 min, washed for 5 min in Tris-buffer with 
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2 % milk powder and then mounted with plastic cover-plates for the following steps of the 

protocol. Endogenous peroxidases were inactivated by 5 min incubation with 100 μl of 3 % 

hydrogen peroxide followed by blocking with 100 μl of blocking buffer for 20 min at RT. Then 

100 μl of the primary antibody in PBS/BSA were applied to the slides and incubated ON at 

4 °C. Sections were washed with Tris-buffer with 2 % milk-powder, followed by incubation with 

100 μl of the biotinylated secondary antibody (Dako LSAB2, yellow bottle solution A) for 10 min 

at RT. After washing in Tris-buffer with 2 % milk-powder, 100 μl of Steptavidin conjugated to 

Horseradish Peroxidase (Dako LSAB2, red bottle solution B) were added to the sections and 

incubated for 10 min at RT. After washing with Tris-buffer (no milk) for 10 min at RT, the plastic 

cover-plates were removed and the slides were placed into a box for staining with 100 μl of 

DAB substrate solution (1 ml Dako Substrate buffer with two drops of DAB) for 10 min, followed 

by washing twice in ddH2O for 5 min. In some cases, the sections were counterstained with 

hematoxylin for 30 sec and then washed once in ddH2O for 5 min. Sections were dehydrated 

in an ascending row of ethanol dilution (50 %, 70 %, 90 %, and 100 %) by incubation steps of 

30 sec. Later on, sections were incubated for 10 min in Xylol/Isopropanol (1:1) and twice for 

10 min in Xylol. Finally, they were mounted with the Xylol based mounting medium Eukitt and 

dried at RT.  

 

Fluorescent staining of vibratome sections 

Immunostainings of free floating vibratome sections were performed in 24-well plates. First, 

sections were permeabilized/blocked in 5 % horse serum, 0.1 % Triton X-100 in 1x PBS (200 µl 

per well) for 60 min at RT. Afterwards, blocking solution was carefully removed with a pipette 

and 200 μl of the primary antibodies (diluted in the same blocking solution) were added to each 

well and incubated overnight at 4 °C in a humidified chamber. On the next day, three washing 

steps of 10 min in 1x PBS at RT were performed. Later on, 200 μl of secondary antibodies and 

DAPI diluted in the blocking buffer were added to each well. From this step on slides had to be 

protected from light. Incubation for 120 min at RT, was followed by three washing steps in 1x 

PBS. Sections were carefully transferred with a soft brush to a deep petri dish filled with tap 

water and pulled onto charged microscope slides. After a short air drying, sections were 

mounted with Aqua-PolyMount and stored at 4 °C. 

 

Fluorescent staining of cryosections 

Cryosections collected on positively charged ultrafrost microscope slides were washed for 

10 min in 1x PBS at RT in a cuvette to remove Shandon cryomatrix. Slides were placed in a 

humidified chamber. A Hydrophobic Barrier Pen was used to draw a hydrophobic circle around 

the tissue to avoid loss of solutions and drying of tissue. 200 μl of 5 % Horse-Serum, 0.1 % 

Triton X-100 in 1x PBS were applied onto the slides for permeabilization and blocking for 30 
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min at RT. Afterwards, 200 μl of the primary antibodies (diluted in blocking solution) were 

applied, and incubation was carried out ON at 4 °C. On the next day, three washing steps of 

10 min in 1x PBS at RT in a cuvette were performed, followed by incubation (120 min) in 200 μl 

of secondary antibodies and DAPI diluted in blocking solution. Afterwards, three washes of 

10 min in 1x PBS at RT in a cuvette protected from light were performed. Finally, slides were 

mounted in Aqua-PolyMount and stored at 4 °C. 

 

5.9 Imaging and image analysis 

5.9.1 Cell counting of chromogenic stainings 

Neuron numbers from cortex and hippocampus of transgenic mice were quantified on 5 μm 

thick coronal paraffin sections (bregma -1.3 or -1.7). These sections were stained 

chromogenically for neuronal markers and then imaged as tiles overviews at 10x magnification 

using a Zeiss Imager.Z1 microscope. Cortical and hippocampal cells numbers were blindly 

counted using the cell counter plugin for ImageJ software. Counted cell numbers were 

expressed as cell densities (cells per area counted, in mm2). In some cases, the number of 

cells per cortical layer in precut columns (of the same width) of the cortex (between CA1 and 

CA3 region of hippocampus; bregma -1.3 or -1.7) were counted. Cell numbers of both 

hemispheres were averaged and the data was analyzed using Excel and GraphPad Prism 

software. One-way ANOVA analyses were performed when more than one group of the 

controls were included in the experiment. Bonferroni-post hoc tests for pairwise group 

comparisons were performed. If no differences between control groups were observed, these 

were pooled and t-tests were performed. 

 

5.9.2 Quantification of GFAP+ and IBA1+ areas 

GFAP+ and IBA1+ areas were quantified on chromogenic stainings of coronal brain sections 

with a semi-automatic analysis, using a plug-in for ImageJ software (available online at 

http://www1.em.mpg.de/gfap). 10x overview pictures, acquired with the Zeiss Imager.Z1 

microscope, were blindly loaded into the software. From regions of interest (hippocampus, 

fimbria and the corpus callosum) selected in each hemisphere, the software analyzed the DAB-

positive area over the total area quantified. Positive area fractions of both hemispheres were 

averaged and the data was analyzed using GraphPad Prism software. One-way ANOVA 

analyses were performed when more than one group of the controls were included in the 

experiment. Bonferroni-post hoc tests for pairwise group comparisons were performed. If no 

differences between control groups were observed, these were pooled and t-tests were 

performed. 
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5.10 Behavioral experiments 

Mice were group-housed, and brought to the behavioral unit at least one week before the 

experiment to allow them to adapt to the new environment. Wood chip bedding and nesting 

material (paper tissue) were provided in their home cages. Animals were maintained on a 12 h 

light-dark cycle (light-off at 7 pm), at 20-22 °C, with food and water provided ad libitum. These 

experiments were performed by Anja Ronnenberg and Prof. Dr. Ekrem Dere, as part of a 

collaboration with Prof. Dr. Dr. Hannelore Ehrenreich (MPI-EM, Clinical Neuroscience). 

Experimentators were blind to the genotypes. 

 

5.10.1 Visual cliff test 

A Perspex box (70×35×30 cm) with a transparent floor was placed on the edge of an opaque 

gray box in a way that 50 % of its base was positioned on the box surface (“ground” side). The 

other 50 % of the base protruded over the edge of the box, suspended 1 m above the floor 

(“air” side). The light intensity of the testing room was 140 lux. Mice were placed in the middle 

of the ground side, and the time spent on both sides was measured over 5 min using a video 

tracking system (Viewer2, Biobserve, Germany) (Dere et al., 2014, 2015; Netrakanti  

et al., 2015). 

 

5.10.2 Hot plate test 

The hot plate test (O’Callaghan and Holtzman, 1975) was used to measure pain perception. 

Mice were placed on a metal plate (UgoBasile Srl, Comerio, Italy) that was preheated up to 

55 °C. The latency to show hind paw licking or jumping was recorded. Immediately after 

showing the response, the mice were removed from the platform. A cut-off time of 40 s ensured 

that the mice were not injured. Animals were tested at the age of 27-28 weeks  (Netrakanti  

et al., 2015). 

 

5.10.3 Exploratory activity in the open field  

Exploratory behavior induced by spatial novelty was measured with an open-field set-up. The 

apparatus consisted of a gray circular Perspex arena (120cm diameter; wall height 25cm) with 

a light intensity of 140 lux in the center of the arena. Each mouse was placed in the center of 

the open field and allowed to explore it for 7 min. Latency (s) to cross from the center to the 

periphery, time spent (s) in the peripheral, intermediate, and center zones of the apparatus and 

the total distance travelled (m) as well as the mean running velocity (mm/s) were measured 

using an automated tracking software (Viewer2, Biobserve, Bonn, Germany)  (Dere et al., 

2014, 2015; Netrakanti et al., 2015). 

 



Methods 

96 
 

5.10.4 Pre-pulse inhibition of the startle response  

The phenomenon in which a weak pre-stimulus inhibits the reaction of an organism to a 

subsequent strong startling stimulus is called pre-pulse inhibition. Reduction of the startle 

reaction reflects the ability of the nervous system to temporarily adapt to a strong sensory 

stimulus when a preceding weaker signal is given to warn the organism. The inability to filter 

out the unnecessary information results in deficits in pre-pulse inhibition, and has been linked 

to abnormalities of sensorimotor gating present in schizophrenia patients (Braff et al., 1992; 

Geyer and Braff, 1982). 

To assess sensorimotor gating as a measure of intact neuronal network function, animals were 

placed in small metal cages (82x40x40mm) to restrict major movements and exploratory 

behavior. The cages were equipped with a movable platform floor attached to a sensor that 

recorded vertical movements of the floor. The cages were placed in sound-attenuating cabinets 

(TSE Systems, Germany). Startle reflexes were evoked by acoustic stimuli delivered by a 

loudspeaker that was suspended above the cage and connected to an acoustic generator. 

Movement of a force-sensitive platform induced by the startle reaction to an acoustic stimulus 

was recorded over a period of 260 ms beginning with the onset of the pulse. An experimental 

session consisted of a 2 min habituation period to a 65 dB background white noise (continuous 

throughout the session), followed by a baseline recording for 1 min at background noise. After 

baseline recording, 6 pulse-alone trials using startle stimuli of 120 dB intensity and 40 ms 

duration were applied to decrease the influence of within-session habituation. These data were 

not included in the 120 dB/40 ms analysis of the pre-pulse inhibition. For tests of pre-pulse 

inhibition, the startle pulse was applied alone or after a pre-pulse stimulus of 70, 75, or 80 dB 

intensity and 20 ms duration. A delay of 100 ms with background noise was interposed 

between the presentation of the pre-pulse and pulse stimulus. The trials were presented in a 

pseudorandom order with a variable interval ranging from 8 to 22s. The difference between the 

maximum force detected during the recording window and the force measured immediately 

before the stimulus onset represents the amplitude of the startle response, and is expressed 

in arbitrary units. For each animal, the amplitudes were averaged separately for the 2 types of 

trials (i.e. stimulus alone or stimulus preceded by a pre-pulse). Pre-pulse inhibition was 

calculated as the percentage of the startle response using the following formula: % pre-pulse 

inhibition = 100-[(startle amplitude after pre-pulse)/(startle amplitude after pulse only)x100] 

(Netrakanti et al., 2015). 

 

5.10.5 Social interaction in pairs  

The dyadic social interaction test was performed at 130 lux light intensity in a neutral testing 

cage constructed of gray Perspex (30x30x30cm) with fresh sawdust on the ground. Each 

mouse was individually habituated to the testing cage for 10 min over 2 consecutive days. On 
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the third day, pairs of unfamiliar mice of the same genotype were placed into the testing cage 

and allowed to interact for 10 min. Encounters were scored by a trained observer from 

videotapes of the sessions. The time (s) spent in close contact was registered (Dere et  

al., 2014). 

 

5.10.6 Statistical analyses 

Data presented in figures and tables are expressed as mean±SEM. Behavior data was 

analyzed with one-way ANOVA with and without repeated measures. Bonferroni-post hoc tests 

for pairwise group comparisons were performed in case of significant main effect of genotype. 

Within-group comparisons were performed with t-tests for dependent samples. All statistics 

were performed using SPSSv.17 (IBM; New York City, New York, USA). All p values are  

2-tailed and considered to be significant if <0.05. 

 

5.11 Analysis of -oscillations 

Hippocampal -oscillations are generated by fast-spiking Parv+ interneurons which are the 

primary ErbB4-expressing cell population (Bartos et al., 2007; Neddens and Buonanno, 2010). 

As a collaboration with Prof. Dr. JeonSeop Rhee and Dr. Bekir Altas (MPI-EM, Department of 

Neurobiology) to investigate if NRG1 type 1/ErbB4 hyperstimulation produces an alteration in 

-oscillatory frequencies, 100 nM kainate application was used to induced -oscillations. An 

interface recording chamber (BSCBU Base Unit with the BSC-HT Haas Top, Harvard 

Apparatus) with a constant flow of ACSF at 33oC, was used to record these oscillations in the 

CA3 region of the hippocampus. For this purpose, extracellular recording electrodes (with a 

resistance between 2.0-3.0 mΩ) filled with ACSF solution were placed on the CA3 pyramidal 

cell layer of slices perfused constantly with the same solution. Baseline recordings were 

performed before kainate application for 10 min. Oscillatory recordings were performed for 20 

min upon perfusion with 100 nM kainate solution. In order to find the maximum oscillations, 

electrodes were then re-positioned and slices were recorded for additional 20 min with kainate 

solution application. 700B amplifier (Axon Instruments, Molecular Devices) and Digidata 1440A 

data acquisition system (Axon Instruments, Molecular Devices) with a Bessel filter at 3 kHz 

were used to perform measurements. Data analysis was performed using Axograph X software 

(Axon Instruments). The power spectrum from each trace was calculated for 10 min epochs. 

Baseline power spectrum was subtracted from the power spectrum of kainate-induced 

oscillatory recording. The frequency at maximum power peak, average power, area power and 

maximum power were determined between 25-45 Hz oscillatory frequency band. 

T-tests were performed using GraphPad Prism software. Data presented in figures are 

expressed as mean±SEM. 
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5.12 Primary neuronal culture  

5.12.1 Preparation and maintenance 

Primary cortical neurons were prepared from E16 C57Bl/6N mice and hippocampal primary 

neurons from E18 C57Bl/6N mice. Cells were grown on poly-L-lysine (PLL) coated coverslips 

(24 wells plates for cortical neurons, 12 wells plates for hippocampal neurons). The day before 

dissection, coverslips (13 mm or 18 mm according to the plate size) were treated for 2 h with 

65 % nitric acid on a roll incubator (50 ml falcon tube, closed with parafilm). Then they were 

washed 4 times with ddH2O (10 min each), two times with 70 % ethanol, and placed on petri 

dishes covered with filter paper for 1h at 60 °C to dry. Afterwards, coverslips were placed under 

UV light for 30 min under the sterile hood. Finally, they were sorted in 24 wells plates and 

0.5 ml of PLL in borate buffer were added to each well and left ON at 37 °C.  

On the dissection day, at least 2 h before dissection, 20 ml of NBM 10 % FBS and enough 

plating medium were placed in an incubator (37 °C, 5 % CO2) to warm the media and to adjust 

the pH. The PLL was removed from the plates (can be re-used up to 3 times) and they were 

washed three times with 1x PBS. 0.5 ml of HBSS were added to each well and plates were 

transferred to the incubator for 1 h. Afterwards, HBSS was removed, half of the final volume of 

plating medium was added to the plates, and they were transferred to the incubator until 

dissection. Immediately before dissection 1 ml Neurobasal media was mixed with 40 µl Papain, 

10 µl DNaseI (10 mg/ml), and 10 µl L-cysteine. The solution was incubated at 37 °C (water 

bath) to activate the Papain (at least 10 min before use). 

Dissection tools were cleaned with 70 % EtOH. Cold HBSS was added to three petri dishes 

and to one 15 ml falcon tube. A pregnant mouse was sacrificed outside the cell culture room 

by cervical dislocation and decapitation and sprayed with 70 % EtOH. The abdomen was 

opened with a scissor, the uterus was isolated and embryos were transferred into the first 

HBSS containing petri dish, and taken to the cell culture room. The uterus was opened and 

embryos were quickly decapitated. Heads were transferred to the second petri dish and kept 

on ice. Using two forceps, the head was placed onto a lid of a petri dish and the scull was 

removed. The brain was transferred to the third petri dish using a spoon. The rest of the 

dissection was performed under a stereo dissecting microscope. Hemispheres were 

separated, meninges removed (critical step to prevent contamination of non-neuronal cells), 

and hippocampi (E18) or cortices (E16) were dissected and transferred to the 15 ml falcon 

tube. Then the tissue was washed twice in 10 ml HBSS with a Pasteur pipette (HBSS was 

removed when tissue was in the bottom of the tube). HBSS was slowly removed (everything, 

using a 1000µl pipette to remove the last ml) and 1 ml of activated Papain was added. An 

incubation of 13 min at RT was performed, inverting the tube every 5 min. 10 ml of NBM 10 % 

FBS (from the incubator) were added to stop the Papain treatment. Medium was removed 
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when the tissue was settled at the bottom of the falcon tube. 10 ml of NBM 10 % FBS were 

added and aspirated again. 2 ml of pre-warmed plating medium were added to the tissue. It 

was triturated with a P1000 pipette by gently pipetting up and down close to the bottom of the 

tube (up to 10 times). The cell suspension was pipetted through a Cell strainer into a new 50 ml 

falcon tube. 10 µl of the cell suspension were diluted with 90 µl medium and cells were counted 

in a Neubauer Chamber (only the bright round cells). Cells were diluted with plating medium 

to the desired cell density and then plated and incubated in a cell culture incubator. The hood, 

dissection place, and dissection tools were immediately cleaned. 

On the next day, the medium was changed to a serum-free medium to prevent overgrowth of 

astrocytes. 2 h before the medium replacement, the culture medium was transferred to the 

incubator (37 °C, 5 % CO2). The medium was changed plate-by-plate (one plate at a time was 

taken out of the incubator) with a P1000 pipette. The complete medium was slowly removed 

from each well and immediately replaced by new medium. One third of the medium was 

replaced with fresh, warm and pH adjusted culture medium every 3 days. 

 

5.12.2 Treatment, fixation and staining procedure of primary neurons 

After 12 DIV, cells were treated with 20 ng/ml of the Glutathione-S-transferase (GST)-fused 

EGF-like domain of Neuregulin-2 (GST-NRG2 β) (provided by Dr. Cary Lai, Indiana University) 

for 24h. GST (20 ng/ml) diluted in 1x PBS was added to controls. Afterwards, cells were treated 

10 µM Spironolactone (Sigma-Aldrich, S3378), 10 µM Lapatinib (Lapatinib ditosylate, Axon, 

1395) or DMSO (added to controls, as drugs were dissolved and diluted in DMSO) for 24 h. 

Three coverslips were used for each treatment.  

Cells were gently washed three times by adding and removing 1x PBS (50 µl per coverslip), 

fixed in cold 4 % PFA for 20 min, and permeabilized in 100 % MetOH (pre-cooled at -20 °C) 

for 5 min. Then, cells were washed three times in 1x PBS, and blocked in fish gelatin blocking 

buffer (2 % FCS, 2 % GS, 2 % fish gelatin in 1x PBS) for 1 h at room temperature.  

The p-HER4/ErbB4 antibody (Tyr1284, rabbit, Cell Signaling, 4757) was diluted 1:500 in 10 % 

fish gelatin blocking buffer, and cells were incubated ON at 4 °C. On the next day, cells were 

washed three times in 1x PBS. The secondary antibody and Dapi (1:2000) were diluted in 5 % 

fish gelatin blocking buffer, and cells were incubated for 2h at RT. Finally, coverslips were 

washed three times in 1x PBS, mounted on microscope slides, and sealed with Aqua-

PolyMount. Slides were stored at 4 °C before imaged. 

For quantification of ErbB4 phosphorylation levels, images of fluorescently labeled cells were 

obtained using an Observer Z.1 microscope (Zeiss). From a total of 15 images per treatment 

(five images per coverslip), the fluorescence of 300 cells (20 cells per image) was quantified 

using the ImageJ software. 
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5.13 Generation of conditional NRG2 transgenic mice 

5.13.1 Molecular cloning 

Generation of chemical competent E. coli (XL-1 blue) 

E. coli XL-1 blue cells were grown in 4 ml LB medium with tetracycline (10 μg/ml) ON at 37 °C 

with gentle shaking. 200 ml LB-tetracycline media was inoculated with the bacterial culture and 

grown at 37ºC with gentle shaking until OD600 ~0.5. The culture was centrifuged at 5000 xg 

for 10 min at 4 °C. The supernatant was removed and the bacterial pellet was washed with 

80 ml “TB jap” containing 2 % DMSO. A second centrifugation step was performed (10 min at 

5000 xg, 4 °C). Afterwards, the pellet was resuspended in 18 ml of “TB jap” containing 7 % 

DMSO and incubated on ice for 10 min. 100 μl aliquots of bacterial cells were stored at -80 °C. 

The competence of the cells was 4x107 – 1x108 /μg pUC18 DNA. 

 

Transformation of XL1 blue 

Competent E.coli (100 μl aliquots) were kept on ice. After 10 min 1 μl of plasmid (50-150 ng) 

was added without mixing, and left on ice for 20 min. Afterwards, bacteria were heat shocked 

for 30 s at 42 °C and incubated on ice for 5 min. 500 μl of SOC medium was added and 

incubated for 45 min at 37 °C with constant agitation (1200 rpm, Thermomixer Comfort 

Eppendorf). 200 μl of the bacterial suspension was plated onto LB plates supplemented with 

the appropriate antibiotic and incubated ON at 37 °C. Falcon tubes (50 ml) containing 10 ml of 

LB medium and the proper antibiotic were inoculated with bacterial clones and incubated ON 

at 37 °C with gentle shaking.  

 

Plasmid isolation and purification 

Small scale DNA purification “mini prep” 

Plasmid DNA was purified using a modified 'alkaline lysis' protocol (Bimboim and Doly, 1979) 

followed by purification with a NucleoSpin® Plasmid kit according to the manufacturer’s 

protocol (Macherey-Nagel). 

 

Large scale DNA purification “maxi/midi prep” 

Plasmid DNA was purified using the NucleoBond PC500 EF Maxi kit (Macherey-Nagel) based 

on an 'alkaline lysis' procedure (Bimboim and Doly, 1979) according to the manufacturer’s 

protocol (Macherey-Nagel). Plasmid pellets were resuspended in 300-500 μl endotoxin  

free ddH2O. 
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DNA restriction, dephosphorylation and purification 

50 μl reactions with ~500-1000 ng of DNA were set up. Incubation was performed at 37 ºC (2 h 

to ON depending on the enzyme) with 1-10 units of the enzyme and optimal buffer conditions. 

Restriction enzymes were inactivated by incubation at 65 °C for 20 min. Digestions were loaded 

onto agarose gels and fragments purified from gels as described below.  

To prevent the re-ligation of digested plasmids, 5’-phosphoryl groups were removed by 

Antarctic Phosphatase (NEB). 1 μl of the enzyme (5000 U/ml) and 5 μl of 10x Antarctic 

Phosphatase buffer were added to the digested DNA and incubated at 37 °C for 30 min. 

Afterwards, the phosphatase was inactivated at 70 °C for 5 min. For isolation and purification 

of DNA fragments up to 10 kb, the QIAquick Gel Extraction kit (QIAGEN) was used. For this 

purpose, the DNA product was run on a 0.8-1 % agarose gel in TAE buffer, as described above. 

The desired DNA fragment was visualized by UV light, cut out of the gel and placed into a safe 

lock tube. DNA fragments were isolated from agarose following the procedure described in the 

manufacturer’s protocol. Finally, the DNA was eluted in 25 μl of prewarmed ddH2O (70 °C) and 

quantified. DNA fragments >10 kb were purified using NucleoSpin Gel and PCR Clean-up kits 

(Macherey-Nagel), following manufacturer’s specifications. 

 

DNA ligation 

20 μl ligation reactions were set up with a molar ratio of 1:5 (vector:insert). 1 μl of T4 DNA 

ligase (Promega) and 2 μl of 10x buffer ligase were added to the reaction. Ligation was carried 

out ON at 4 °C, followed by an inactivation step of 10 min at 70 °C. Reactions were used to 

transform competent cells.  

 

DNA sequencing 

DNA samples were sequenced at the sequencing facility of the Max-Planck-Institute of 

Experimental Medicine. 16 μl of DNA samples (100 ng/μl) were diluted in ddH2O and submitted 

for sequencing together with primer information. Sequences were analyzed using BioEdit 

Sequence Alignment Editor, SnapGene software and BLAST at National Centre for 

Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). 

 

Cloning of conditional NRG2 ROSA locus targeting vectors  

Wildtype mouse NRG2 cDNA (NCBI Reference Sequence: XM_006525461.3; in pEGFP-N1) 

was kindly provided by Dr. Cary Lai (Indiana University) and confirmed by sequencing. XL-1 

blue and dam-/dcm- competent cells (NEB) cells were transformed and a miniprep was 

performed to recover the plasmid. PCR with primers containing restriction sites for FseI 

(forward: 5'-ataggccggccATGAGGCGCGACCCGG-3') and PacI (reverse: 5'-gttaattaaTTAG 

AGGGGCCCCGAGTCCTGC-3') were used to amplify and subclone NRG2 cDNA into a ROSA 
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locus targeting vector (pROSA; kindly provided by Dr. Amit Agarwal; John Hopkins University, 

Baltimore). PCR reactions of 12.5 μl were prepared with 0.62 μl of each primer (1 pM), 11.5 μl 

ddH2O, 2.5 μl 5x AccuPrime™ GC-Rich Buffer A, 5 μl pEGFP-NRG2 (10 ng/μl), and 0.5 μl 

AccuPrime™ GC-Rich DNA Polymerase (2U/μl). The thermal profile of the PCR reaction was 

the following:  

 

1. 95 °C 3 min 

2. 95 °C 30 s 

3. 60 °C 30 s 

4. 72 °C 2.25 min 

 2 to 4 for 30 cycles 

5. 72 °C 10 min 

7. 4 °C pause 

 

For subcloning pEGFP-N1- NRG2 and pROSA minipreps were prepared from dam-/dcm- cells. 

Digestion reactions with 2 μl FseI (2 U/μl; sensible to dcm methylation; NEB) and 1 μl PacI 

(10 U/μl; NEB) were performed ON at 37 °C. After 10 h incubation, 1 μl extra of FseI was added 

to the reaction and incubation was performed for two more hours. After subcloning as 

described above, pROSA-NRG2 was confirmed by sequencing. A mouse NRG2 cDNA 

sequence harboring two HA epitope tags located 3' to the NRG2 propeptide sequence as well 

as 5’ FseI and 3’ PacI restriction sites for cloning into pROSA was designed. The composition 

of the sequence was: 5'-NheI-BamHI-FseI-Kozac-NRG2 propeptide-HA-HA-NRG2 cDNA-

PacI-XbaI-HindII-3', and its synthesis and subcloning into a pcDNA3.1(+) vector (cloning site: 

NheI-HindIII) was ordered at GenScript®. The construct (pcDNA3.1-2HA-NRG2) was 

confirmed by sequencing and a miniprep was produced following transformation into  

dam-/dcm- cells. A restriction digest was performed with FseI and PacI to subclone 2HA-NRG2 

into the pROSA vector (as described above). pROSA-2HA-NRG2 was confirmed by restriction 

digestion and sequencing. 

 

5.13.2 Embryonic stem (ES) cell culture, electroporation, preparation for blastocyst 

injection 

The procedure described in this section was performed in the Department of Neurobiology at 

the Max-Planck-Institute of Experimental Medicine under the supervision of Dr. Noa Lipstein. 

It is based on previous protocols developed in this department and primarily derived from the 

Allan Bradley lab. or from www.cellmigration.org. MEFs and ES (OLA/129) cells were obtained 

from the Department of Neurobiology. 
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Establishment of feeder culture or mouse embryonic fibroblasts (MEFs) 

MEFs were thawed at RT and MEF medium (up to 5 ml) was added dropwise under constant 

mixing. Cells were centrifuged for 5 min at 900 rpm. The supernatant was removed, cells were 

resuspended in 1 ml of medium and transferred to a T75 flask (previously coated with 0.1 % 

gelatin). After 2-3 days cells were confluent and split by adding 0.05 % Trypsin and incubating 

for 5 min at 37 °C. Afterwards, MEF medium was added to inactivate Trypsin (8 ml for T75, 

10 ml for T175), and cells were gently triturated to break up the clumps. The cells were 

transferred to new gelatinized flasks containing the necessary volume of medium (T75 total 

volume: 10ml; T175 total volume: 20ml).  

MEFs were used as feeders for ES cells after mitomycin C treatment to avoid MEFs to 

overgrow ES cells. Inactivation was performed the day before ES cell splitting. Mitomycin C 

was added to the flasks (from a 0.5 mg/ml stock 200 μl for T75, 400 μl for T175). Flasks were 

returned to the incubator for 2.5 h. The medium was collected to discard mitomycin C 

appropriately. Three washes with 1x PBS were performed, the first two were collected with the 

mitomycin waste. 0.05 % Trypsin was added as described above, and cells were split 

according to the intended passaging ratio. From a confluent T175 flask with 20 ml of cells after 

splitting, the cells were plated as follows: 

 

Type of plate Amount of cells 

per well (ml) 

Volume of medium 

(ml) 

Plates per T175 

flask 

10 cm plate 3.2 7 6 

96 wells plate 0.05 0.1 4 

24 wells plate 0.4 0.6 2 

6 wells plate 1.6 4.4 2 

T75 10 No additional medium 2 

 

MEFs that were not to be split or inactivated, were frozen. The medium was removed and cells 

were washed with 1x PBS. 0.05 % Trypsin was added, as for regular passaging. One volume 

of MEF medium was added and cells were gently triturated with a 1 ml pipette. Cells were 

transferred to a 15 ml Falcon tube, more medium (up to 5 ml) was added and cells were 

centrifuged for 5 min at 900 rpm. The supernatant was removed and cells were resuspended 

in 500 μl of MEF medium. 500 μl of 2x freezing medium was added dropwise and the solution 

was mixed after each addition. Cells were transferred to freezing vial, placed into a freezing 

container (filled with isopropanol) at -80 °C ON and stored in cryoboxes at -80 °C. 
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Thawing of ES cells 

ES cells were thawed at RT, ES medium (up to 5 ml) was added dropwise (every 5-10 s) under 

constant mixing, and cells were centrifuged for 3 min at 900 rpm. The supernatant was 

removed, cells were resuspended in 1 ml of medium, and transferred to a 10 cm plate with 

inactivated MEFs covered with ES medium (4 ml). ES medium was replaced twice per day by 

removing medium, washing with 1x PBS and adding 4 ml of ES medium. 

 

Expansion of ES cells 

ES cells were split when they were still in their exponential growth phase (around 80 % 

confluence). The medium was changed 3-4 h before splitting. After washing the cells with 1x 

PBS, 0.25 % trypsin was added as follows:  

 

Type of plate Volume of trypsin 

(ml) 

Volume of medium for 

inactivation (ml) 

10 cm plate 3 4 

96 wells plate 0.04 0.1 

24 wells plate 0.16 0.64 

6 wells plate 0.64 2.6 

 

Cells were incubated for 15 min at 37 °C. Afterwards, ES medium was added for inactivation 

as mentioned above. Cells were gently but properly triturated with a pipette to break up the 

clumps. This was critical as clumps differentiate rapidly, and thus do not have to be passaged. 

The first 10 cm dish was split (1:3) three days after cells were thawed. After 2 additional days 

ES cells were split in a ratio of 1:2, to obtain six 10 cm plates the day before electroporation. 

 

Preparation of DNA for electroporation 

Three maxipreps were performed to obtain sufficient DNA for electroporation. The plasmid was 

linearized with AsisI. For this purpose, five restriction digests of 500 μl each were set up with 

50 μg of the plasmid pROSA-2HA-NRG2, 50 μl of 10x CutSmart buffer, 5 μl of the enzyme 

(10 U/μl), and water up to 50 μl, incubated ON at 37 °C, and inactivated 20 min at 80 °C. 2 μl 

of each reaction were run on a 0.7 % TAE Agarose gel. To purify DNA, 500 μl phenol and one 

drop of chloroform were added to each tube. A centrifugation step of 15 min at RT and 

maximum speed was performed. The upper phase was transferred to clean tubes. These two 

steps were repeated twice. 500 μl of chloroform were added and centrifuged again (repeated 

4x). Sodium acetate was added (final concentration 0.25 M). After vigorous mixing, 2 volumes 

of 100 % ethanol were added. Tubes were manually mixed and placed at -20 °C ON. The next 
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day, tubes were centrifuged at maximum speed for 15 min at 4 °C. The following steps were 

performed under the hood. Pellets were washed twice with 1 ml of 70 % ethanol and left open 

to dry for 30 min. 50 μl of filtered sterile 0.1x TE was added and incubated for 30 min at 37 °C 

and 300 rpm. The five aliquots were pooled. 186 μg of the linearized construct were obtained, 

which was sufficient for 7 electroporations. 

  

Electroporation of ES cells 

A 1:2 passage of ES cells was performed the day before electroporation, this resulted in six 

10 cm plates for electroporation. The medium was changed 3 h before electroporation. Next, 

cells were triturated as described above, transferred to two 50 ml Falcon tubes and centrifuged 

for 7 min at 800 rpm. The supernatant was removed and cells were resuspended in 10 ml 1x 

PBS. A 1:10 dilution was made to count cells. Cells were centrifuged again for 3 min at 

800 rpm, the supernatant was removed and cells were resuspended in 6 ml 1x PBS to obtain 

11 million cells/ml. Linearized pROSA-2HA-NRG2 was split in half and added to each Falcon 

tube. Cells were mixed and left at RT for 5 min. 0.9 ml of the mix was transferred to an 

electroporation cuvette and placed on ice for 2 min. The BioRad GenePulser was set to 230 

and 500 μF, and electroporation was performed. Cuvettes were left at RT for 5 min. Cells from 

each cuvette were plated onto 10 cm dishes with inactivated MEFs.   

 

Positive and negative selection of targeted ES cells 

After electroporation, G418 was added to ES medium at a final concentration of 180 μg/ml. 

The medium was replaced twice per day. The pROSA-2HA-NRG2 construct also contained a 

negative selection marker, a DTA (diphtheria toxin A) cassette, which is placed outside of the 

homologous arms and is normally lost during homologous recombination. In the case of a 

random integration event, it inhibits protein synthesis. This negative selection required no 

additional drug treatment. 

 

Picking of ES cell clones 

Six days after electroporation 10 cm dishes with electroporated ES cells contained colonies at 

very high density. Therefore, two of the plates were split 1:3. These 6 new plates were left to 

grow for four days, with medium changes twice a day. When individual colonies were 

observable colonies were transferred to 96 well plates with inactivated MEFs. For colony 

picking, a microscope was cleaned and moved into the tissue culture hood. A 96 well plate 

with round bottom was filled with 25 μl of 0.25 % trypsin per well and placed on ice. ES medium 

was removed, 10 ml of 1x PBS was added, and the plate was placed under the microscope. 

Colonies were picked with a P10 pipette (set to 5 μl) and transferred to 96 well plates. Following 
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picking, plates were incubated for 15 min at 37 °C. Next, 25 μl of ES medium was added to 

each well and cells were gently triturated with a multichannel pipette. The cell suspension was 

then transferred to a 96 well plate with feeders. Three days later, when cells reached 80 % 

confluence (medium was turning orange a few hours after feeding), cells were washed with 1x 

PBS, 50 μl of trypsin was added and plates were incubated as described before. 100 μl of ES 

medium was added to inactivate trypsin and triturated. 100 μl of the cell suspension was 

transferred to two (50 μl each) new 96 wells plates with inactivated MEFs. 50 μl of the cells 

were transferred to two (25 μl each) 96 well plates without feeders, that were used for DNA 

isolation. When plates reached 80 % confluence, they were frozen or processed for DNA 

isolation. 

 

Freezing of ES cells in 96 well plates 

The medium was changed 3-4 h before freezing. Two washing steps with 1x PBS were 

performed. 50 μl of trypsin was added to each well and plates were incubated as before. 

Afterwards, 50 μl of 2x freezing medium was added to each well and cells were gently 

triturated. 100 μl sterile–filtered paraffin oil was added on top of the cells. This prevented 

degassing and evaporation during storage at –80 °C. Plates were sealed with parafilm, placed 

into a polystyrene box, and transferred to –80 °C. This resulted in slow freezing, and a 

temperature drop of approximately 1 °C/min. 

 

Preparation of 96 well plates for DNA isolation 

Once cells in gelatin plates reached 80 % confluence, DNA was isolated. Plates were washed 

twice with 1x PBS. 50 µl of lysis buffer (10 mM Tris pH7.5, 10 mM EDTA pH8, 10 mM NaCl, 

0.5 % Sarcosyl, 1 mg/ml Proteinase K) were added to each well. Plates were sealed with 

parafilm and transferred to a humidified chamber where they were incubated ON at 60 °C. On 

the next day, a fresh solution of 75 mM NaCl in ethanol was prepared, and 100 µl of the 

NaCl/ethanol solution was added to each well. Plates were stored ON at -20 °C. Precipitated 

DNA stuck to the bottom of the plate and plates were inverted to discard the solution. 100 µl of 

70 % ethanol were added to each well, and the plates were inverted again. This step was 

repeated 3 times. After the final wash, plates were inverted and allowed to air-dry. Finally, 

100 µl 0.1x TE was added to each well and plates were incubated ON at 37 °C. 

 

Thawing and expansion of positive clones 

A plate containing 8 homologous recombinant clones was thawed, and these clones were 

expanded together with four non-homologous recombinant controls. The 96 well plate was 

transferred from the -80 °C freezer to the 37 °C incubator for 20 min. Mineral oil was removed 
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from the wells containing the clones that were to be expanded. The clones were transferred to 

a 24 well plate with inactivated MEFs. Once cells reached 80 % confluence, they were 

transferred to 6 well plates. Positive clones were split 1:3 once they reached proper confluence. 

200 μl of all clones (including controls) were transferred to 6 well plates with gelatin for DNA 

isolation and re-confirmations. The rest of the cell suspensions from negative clones were 

frozen in freezing vials as previously described. Once triplicates of positive clones reached 

80 % confluence, they were frozen in freezing vials. 

 

Preparation of homologous recombinant ES cells for blastocyst injection 

Two homologous recombinant clones were chosen for blastocyst injection (based on cell 

quality before freezing) and reconfirmed by PCR. Cells were thawed and transferred to one 

well of a 6 well plate (with feeders) 5 days before injection. The medium was changed twice 

per day. Two days after plating, cells were split 1:3, in 3 wells of a 6 well plate (with feeders), 

24 h before injection, cells from one well were split 1:2 and cells in the other two wells were 

frozen. On injection day, the medium was changed 3-4 h before injection. Cells were washed 

twice with 1x PBS, 640 μl trypsin were added and incubated for 15 min at 37 °C. Afterwards, 

1 ml of ES medium was added and cells were gently triturated. The cell suspension was 

transferred to a 15 ml Falcon tube, medium was added up to 5 ml and cells were centrifuged 

for 5 min at 900 rpm. The supernatant was removed, cells resuspended in 1 ml of ES cell 

medium, transferred to a screw-cap tube, placed on ice and taken to the animal facility of the 

Max-Planck-Institute of Experimental Medicine where injections into C57Bl/6N blastocysts 

were performed. 

 

5.13.3 PCR-based strategy for ES cell clone screening 

Primers for amplification of the ROSA locus short arm in pROSA-2HA-NRG2 were designed 

to confirm the correct integration of the construct into the ROSA locus by PCR. The forward 

primer was located in an endogenous sequence of the mouse genome (upstream of the short 

arm of the ROSA locus), and the reverse primer aligned within the CAG hybrid promoter. PCR 

reactions of 12.5 μl were prepared with 0.25 μl (10 μM) of forward primer  

(5'-GGCAAAAGGAATCCAGGTATAGACAAAACC-3'), 0.25 μl (10 μM) of reverse primer  

(5'-TATTGGCGTTACTATGGGAACATACGTCAT-3'), 7 μl ddH2O, 2.5 μl 5x MyFi Buffer, 2 μl 

genomic ES cell DNA, and 0.5 μl (2U/μl) MyFi™ DNA polymerase (Bioline). The thermal profile 

of the PCR reaction was the following:  

 

1. 95 °C 3 min 

2. 95 °C 30 s 

3. 58 °C 30 s 
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4. 72 °C 2.5 min 

 2 to 4 for 35 cycles 

5. 72 °C 7 min 

7. 4 °C pause 

 

For the implementation of the PCR and as a control, the forward primer was used in a PCR 

reaction together with a reverse primer located in the long arm of the ROSA locus  

(5'-TGTCTGGTTTCATGAGTCATCAGACTTCT-3'). This reaction amplified a product only if 

the construct was not integrated between the two primer sites. Because homologous 

recombination took place in one chromosome, all cells (homologous and non-homologous 

recombinant, as well as wildtype) were to be positive for this PCR. Besides the reverse primer, 

the rest of the conditions in this reaction remained the same as in the homologous  

recombinant PCR.  
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