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Abstract

In this paper, we present two results on slime mold computations. The first one treats a
biologically-grounded model, originally proposed by biologists analyzing the behavior of the
slime mold Physarum polycephalum. This primitive organism was empirically shown by Naka-
gaki et al. to solve shortest path problems in wet-lab experiments (Nature’00). We show that
the proposed simple mathematical model actually generalizes to a much wider class of problems,
namely undirected linear programs with a non-negative cost vector.

For our second result, we consider the discretization of a biologically-inspired model. This
model is a directed variant of the biologically-grounded one and was never claimed to describe
the behavior of a biological system. Straszak and Vishnoi showed that it can ε-approximately
solve flow problems (SODA’16) and even general linear programs with positive cost vector
(ITCS’16) within a finite number of steps. We give a refined convergence analysis that improves
the dependence on ε from polynomial to logarithmic and simultaneously allows to choose a step
size that is independent of ε. Furthermore, we show that the dynamics can be initialized with
a more general set of (infeasible) starting points.

∗This work has been funded by the Cluster of Excellence “Multimodal Computing and Interaction” within the
Excellence Initiative of the German Federal Government.
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Figure 1: The experiment in [NYT00] (reprinted from there): (a) shows the maze uniformly covered
by Physarum; yellow color indicates presence of Physarum. Food (oatmeal) is provided at the
locations labeled AG. After a while the mold retracts to the shortest path connecting the food
sources as shown in (b) and (c). (d) shows the underlying abstract graph. The video [Phy] shows
the experiment.

1 Introduction

We present two results on slime mold computations, one on the biologically-grounded model and
one on the biologically-inspired model.

Physarum polycephalum is a slime mold that apparently is able to solve shortest path problems.
Nakagaki, Yamada, and Tóth [NYT00] report about the following experiment; see Figure 1. They
built a maze, covered it by pieces of Physarum (the slime can be cut into pieces which will reunite if
brought into vicinity), and then fed the slime with oatmeal at two locations. After a few hours the
slime retracted to a path that follows the shortest path in the maze connecting the food sources.
The authors report that they repeated the experiment with different mazes; in all experiments,
Physarum retracted to the shortest path.

The paper [TKN07] proposes a mathematical model for the behavior of the slime and argues
extensively that the model is adequate. Physarum is modeled as an electrical network with time
varying resistors. We have a simple undirected graph G = (N, E) with distinguished nodes s0 and
s1 modeling the food sources. Each edge e ∈ E has a positive length ce and a positive capacity
xe(t); ce is fixed, but xe(t) is a function of time. The resistance re(t) of e is re(t) = ce/xe(t). In the
electrical network defined by these resistances, a current of value 1 is forced from s0 to s1. For an
(arbitrarily oriented) edge e = (u, v), let qe(t) be the resulting current over e. Then, the capacity
of e evolves according to the differential equation

ẋe(t) = |qe(t)| − xe(t), (1)

where ẋe is the derivative of xe with respect to time. In equilibrium (ẋe = 0 for all e), the flow
through any edge is equal to its capacity. In non-equilibrium, the capacity grows (shrinks) if the
absolute value of the flow is larger (smaller) than the capacity. In the sequel, we will mostly drop
the argument t as is customary in the treatment of dynamical systems.

We refer to the dynamics above as biologically-grounded as it was introduced by biologists to
model the behavior of a biological system. Miyaji and Ohnishi were the first to analyze convergence
for special graphs (parallel links and planar graphs with source and sink on the same face) in [MO08].
In [BMV12] convergence was proven for all graphs. We state the result from [BMV12] for the special
case that the shortest path is unique.
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Theorem 1.1 ([BMV12]). Suppose the undirected shortest path P ∗ from s0 to s1 w.r.t. the cost
vector c is unique. Then x(t) in (1) converges to P ∗. Namely, xe(t) → 1 for e ∈ P ∗ and xe → 0
for e 6∈ P as t → ∞.

In this paper, we extend this result to non-negative undirected linear programs

min{cT x : Af = b, |f | = x}, (2)

where A ∈ R
n×m, b ∈ R

n, x ∈ R
m, and c ∈ R

m
≥0. Absolute values are taken componentwise.

Observe that n denotes the number of rows of A, m denotes the number of columns, and c is
required to be non-negative. We assume b 6= 0 as otherwise the problem has the trivial solution
x = 0. A vector f is feasible if Af = b. We assume that the system Af = b has a feasible solution
and that there is no non-zero f in the kernel of A with cefe = 0 for all e. A vector f lies in the
kernel of A if Af = 0. The unique vector q in (1) is now the minimum energy feasible solution

q(t) = argmin
f

{

∑

e:xe 6=0

ce

xe(t)
f2

e : Af = b ∧ fe = 0 whenever xe = 0
}

. (3)

In the network case, A is the signed incidence matrix of a graph, and (2) is a transshipment problem,
with flow sources and sinks encoded by the vector b. In that setting, q(t) as defined by (3) coincides
with the electrical flow induced by resistors of value ce/xe(t).

Theorem 1.2. Let c ≥ 0 satisfy cT |f | > 0 for every nonzero f in the kernel of A. Let x∗ be an
optimum solution of (2) and let X∗ be the set of optimum solutions. The following holds for the
dynamics (1) with q as in (3):

– The cost cT x(t) converges to cT x∗ as t goes to infinity.
– The vector x(t) converges to X∗. For all e with ce > 0, xe(t) − |qe(t)| converges to zero as t

goes to infinity. If x∗ is unique, x(t) and q(t) converge to it as t goes to infinity.

We stress that the dynamics (1) is biologically-grounded. It was proposed to model a biological
system and not as an optimization method. Nevertheless, it can solve this non-trivial class of LPs.

Ito et al. [IJNT11] initiated the study of the dynamics

ẋ(t) = q(t) − x(t). (4)

This dynamics is biologically-inspired – the similarity to (1) is the inspiration. It is not biologically-
grounded as it was never claimed to model the behavior of a biological system. Rather, it was
introduced as a biologically-inspired optimization method. The work in [IJNT11] shows convergence
of this directed dynamics (4) for the directed shortest path problem and [JZ12, SV16c, Bon16] show
convergence for general positive linear programs, i.e., linear programs with positive cost vector c > 0
of the form

min{cT x : Ax = b, x ≥ 0}. (5)

The discrete versions of both dynamics define sequences x(t), t = 0, 1, 2, . . . through

x(t+1) = (1 − h)x(t) + hq(t) discrete directed dynamics (6)

x(t+1) = (1 − h)x(t) + h|q(t)| discrete undirected dynamics, (7)

where h is the step size and q(t) is the minimum energy feasible solution as in (3). For the discrete
dynamics we can ask complexity questions. This is particularly relevant for the discrete directed
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dynamics.1 Straszak and Vishnoi [SV16c] showed its convergence for positive LPs (5) and proved an
efficiency bound depending on D := max{| det(A′)| : A′ is square sub-matrix of A}. Let us denote
with opt the cost of an optimal solution to (5).

Theorem 1.3 ([SV16c]). Let c > 0. Suppose the Physarum dynamics (6) is initialized with a

feasible point x(0) > 0 of (5) such that M−1 ≤ x
(0)
i ≤ M for all i and cT x(0) ≤ M · opt, for some

M ≥ 1. Then for any ε > 0 and a step size h ≤ ε/(6‖c‖1D2), after k = O((ε−1‖c‖1D)4 · ln M)
steps, x(k) is feasible solution with cT x(k) ≤ (1 + ε)opt.

We strengthen their result in two directions. First, we show that the Physarum dynamics (6)
can be initialized with strongly dominating points X (α), and not only feasible points. Informally,
x ∈ X (α) for some α > 0 implies the existence of a feasible vector f such that 0 ≤ f ≤ αx,
see Subsection 2.4 for the precise definition. Second, we give a refined convergence analysis that
improves the dependence on ε from polynomial to logarithmic and simultaneously allows to choose
a step size independent of ε. Let Ψ(0) := max{mD2‖b‖1, ‖x(0)‖∞} and let f⋆ be an optimal solution
to (5).

Theorem 1.4. Let c > 0. Suppose α, β > 0, β1 ≤ x(0) ∈ X (α) and ε ∈ (0, 1). For any h ≤
c2

min/(2cT f⋆ · D4‖c‖2
1), t ≤ 3h−1 max{1, α2} and k ≤ 4h−1D3‖c‖1‖b‖1 ln(8mD3‖b‖1Ψ(0)/εβ), the

Physarum dynamics (6) initialized with x(0) outputs a vector x(t+k) > 0 such that ‖x(t+k) − f⋆‖∞ <
ε/D. The step size of the first t iterations is h · min{1, 1/α2}, whereas the subsequent k iterations
allow a larger step size equal to h.

Theorem 1.4 subsumes the result in [SV16b, Theorem 1.2] for the transshipment problem and it
provides a tighter asymptotic convergence rate, since for flow problems A is a vertex-edge incidence
matrix satisfying D = 1 (in this case A is a totally unimodular matrix).

Organization of the paper: In Section 2, we treat preliminaries and derive important properties
of the minimum energy solution. In Section 3, we show that the continuous undirected dynamics
solves undirected non-negative linear programs. In Section 4, we give the improved convergence
bound for the discrete directed dynamics which solves positive linear programs. Sections 3 and 4
are inspired by [Bon13, BMV12, SV16a, SV16b, SV16c]. The general structure of the arguments is
similar, but many details differ and are significantly more involved. Due to space constraints, we
defer the proofs of several results to the appendix.

2 Preliminaries

Note that we may assume that A has full row-rank since any equation that is linearly dependent
on other equations can be deleted without changing the feasible set. We continue to use n and
m for the dimension of A. Thus A has rank n. We continue by fixing some terms and notation.
A basic feasible solution of Af = b is a vector f = (fB , fN ), where fB = A−1

B b, where AB is a
square n × n non-singular sub-matrix of A, and fN = 0 is the vector indexed by the coordinates

1For the undirected shortest path problem, the convergence of the discrete undirected dynamics (7) was shown
in [BBD+13]. The convergence proof gives an upper bound on the step size and on the number of steps required
until an ε-approximation of the optimum is obtained. In [SV16b], this was extended to the transshipment problem.
Finally, [SV16a] shows convergence of the discrete undirected dynamics (7) for the one-norm minimization problem
min { ||x||1 : Ax = b }. This is the special case of (2) when c = 1. Thus this paper is related to our first result. It
shows convergence of the discretized undirected dynamics (7), we show convergence of the continuous undirected
dynamics (1) for a more general cost vector.
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not in B. A feasible solution f is kernel-free or non-circulatory if it is contained in the convex
hull of the basic feasible solutions.2 For a given capacity vector x and a vector f ∈ R

m with
supp(f) ⊆ supp(x), we use E(f) =

∑

e(ce/xe)f2
e to denote the energy of f . The energy of f is

infinite, if supp(f) 6⊆ supp(x). We use cost(f) =
∑

e ce |fe| = cT |f | to denote the cost of f . Note
that E(x) =

∑

e cexe = cost(x); recall that x ≥ 0 and fe = 0 if xe = 0. We say that a vector f ′

is sign-compatible with a vector f (of the same dimension) or f -sign-compatible if f ′
e 6= 0 implies

f ′
efe > 0. In particular, supp(f ′) ⊆ supp(f). We use the following two constants cmax = ‖c‖∞ and

cmin = mine:ce>0 ce.

2.1 Finite Basis Theorem

The following lemma is useful and probably known. Their proofs as well as many other proofs from
this section are omitted due to space constraints and can be found in Appendix A.

Lemma 2.1. Let f be a feasible solution to Af = b. Then f is the sum of a convex combination
of at most n basic feasible solutions plus a vector in the kernel of A. Moreover, all elements in this
representation are sign-compatible with f .

Note that the above lemma also yields that a feasible solution to the directed linear program,
i.e., a solution f with Af = b and f ≥ 0 admits a decomposition into non-negative basic feasible
solutions and a non-negative vector in the kernel of A.

2.2 The Minimum Energy Solution

Lemma 2.2. If every nonzero vector in the kernel of A has positive cost, the minimum energy
feasible solution is kernel-free and unique.

Lemma 2.3. Assume that every nonzero vector in the kernel of A has positive cost. Let q be the
minimum energy feasible solution. Then |qe| ≤ ||b||1D for every e.

In [SV16c], the bound |qe| ≤ D2m||b||1 was shown. We will now derive explicit formula for the
minimum energy solution q. We will express q in terms of a vector p ∈ R

n, which we refer to as
the potential, by analogy with the network setting, in which p can be interpreted as the electric
potential of the nodes. The energy of the minimum energy solution is equal to bT p. We also derive
a local Lipschitz condition for the mapping from x to q. Note that for c > 0 most of these facts are
well-known.

Lemma 2.4. Assume that every nonzero vector in the kernel of A has positive cost. Let re = ce/xe

and let R denote the corresponding diagonal matrix. Let us split [m] into Z = { e : ce = 0 } and
P = E \ Z, similarly A into AP and AZ and q into qP and qZ . Then the minimum energy feasible
solution satisfies

[

AP AZ

]

[

qP

qZ

]

= b and

[

RP

0

] [

qP

qZ

]

=

[

AT
P

AT
Z

]

p. (8)

2 For the undirected shortest path problem, we assume that we drop the equation corresponding to the sink. Then
b becomes the negative indicator vector corresponding to the source node. Note that n is one less than the number of
nodes of the graph. The basic feasible solutions are the simple undirected source-sink paths. A circulatory solution
contains a cycle on which there is flow.
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Since AZ has linearly independent columns, we may assume that the first |Z| rows of AZ form

a square non-singular matrix. We can thus write A =
[A′

P
A′

Z

A′′

P
A′′

Z

]

with invertible A′
Z . The above

equation system (8) has a unique solution that satisfies

[

qZ

qP

]

=

[

[A′
Z ]−1(b′ − A′

P qP )
R−1

P AT
P p

]

and

[

p′

p′′

]

=

[

−[A′
Z ]−T [A′′

Z ]T p′′

MR−1MT (b′′ − A′′
Z [A′

Z ]−1b′)

]

, (9)

where M = A′′
P − A′′

Z(A′
Z)−1A′

P and p is split into p′ and p′′ analogously to AZ .

We next observe that the equality E(q) = bT p holds also in the case where the cost vector might
have vanishing entries.

Lemma 2.5. Let q be the minimum energy feasible solution and let f be any feasible solution.
Then E(q) = bT p = fT AT p.

In the following lemma, we show that the mapping x 7→ q is locally Lipschitz. Our analysis
builds upon Cramer’s rule and the Cauchy-Binet formula. We note that for the undirected shortest
path problem, the Cauchy-Binet formula yields the famous Kirchhoff’s spanning tree theorem,
which was used in [BMV12].

Lemma 2.6. Assume c ≥ 0, no non-zero vector in the kernel of A has cost zero, and that A, b, and
c are integral. Let α, β > 0. Then for any e ∈ [m] and any two vectors x and x̃ in R

m with α1 ≤
x, x̃ ≤ β1, define M = 2mn(β/α)ncn

maxD2||b||1. Then, it holds that
∣

∣ |qe(x)| − |qe(x̃)|
∣

∣ ≤ M ||x − x̃||∞.

2.3 Existence of a Solution to the Undirected Physarum Dynamics

We use Grönwall’s Lemma to derive bounds on a function from a differential inequality.

Lemma 2.7 (Grönwall’s Lemma). 1. Let u(t) and β(t) be functions satisfying u̇(t) ≤ β(t)u(t).
Then u(t) ≤ u(0) ·exp(

∫ t
0 β(s) ds). In particular, choosing β(t) := −1 and u(t) := −v(t) yields

that v(t) ≥ v(0) · exp(−t), if v̇(t) ≥ −v(t).

2. Let Y (t) be a function satisfying Ẏ ≥ a − Y for some constant a. Then Y (t) ≥ a + (Y (0) −
a) exp(−t). Similarly, if Ẏ ≤ a − Y , then Y (t) ≤ a + (Y (0) − a) exp(−t).

Lemma 2.8. The solution to the undirected dynamics in (1) has domain [0, ∞). Moreover,
x(0)e−t ≤ x(t) ≤ max(||b||1D · 1, x(0)e−t − ||b||1D · 1(1 − e−t)) for all t.

2.4 Generalizing the Max-Flow Min-Cut Theorem through LP Duality

The max-flow min-cut theorem plays an essential role in the analysis in [BMV12]. We use instead
linear programming duality that generalizes the max-flow min-cut argument to general LPs.

Lemma 2.9. Let x ∈ R
m
>0. The following linear programs are feasible and

max{α : Af = αb, |f | ≤ x} = min{
∣

∣

∣yT A
∣

∣

∣x : bT y = −1}. (10)

Moreover, there is a finite set D = { d1, . . . , dK } of vectors di ∈ R
m
≥0 that are independent of x

such that the minimum above is equal to C⋆ = mind∈D dT x. In particular, there is a feasible f with
|f | ≤ x/C⋆.
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Next, we give a similar result for the the directed case. Let α > 0, we define an α-weakly
dominating set by X W (α) := {x ∈ R

m : ∃ feasible f : 0 ≤ f ≤ αx}. Note that for every x > 0 there
exist α > 0 and a feasible vector f such that 0 ≤ f ≤ αx. Moreover, the set of feasible points is
a subset of X W (1). Thus, as α increases, we obtain a gradually looser relaxation of the notion of
feasible point.

Lemma 2.10. Let x > 0, x ∈ R
m and α > 0. It follows that

min{0 : Af = b, 0 ≤ f ≤ αx} = max{bT y − αxT max{0, AT y} : y ∈ R
n}.

Let D′ be the finite set of vertices of P := {(y, z) ∈ R
n+m : z ≥ max{0, AT y}, ‖y‖∞ ≤ 1, bT y ≥ 0}.

Then, x ∈ X W (α) if and only if bT y ≤ αxT max{0, AT y} for every (y, z) ∈ D′.

Inspired by this lemma, we define an α-strongly dominating set by X (α) := {x ∈ R≥0 : αyT Ax ≥
bT y for every (y, z) ∈ D′}. By Lemma 2.10, X (α) ⊆ X W (α) and X (α) ⊆ X (β) for any 0 < α ≤ β.

3 Convergence Results for Undirected Linear Programs

In this section, we generalize [BMV12, SV16b] in two directions. First, we treat general undirected
LPs and not just the undirected shortest path problem, respectively, the transshipment problem.
Second, we substitute the condition c > 0 with c ≥ 0 and every nonzero vector in the kernel of A
has positive cost.3

3.1 Convergence to Dominance and Resulting Simple Bounds

In the network setting, an important role is played by the set of edge capacity vectors that support
a feasible flow. In the LP setting, we generalize this notion to the set of dominating states, which
is defined as

Xdom := {x ∈ R
m : ∃ feasible f : |f | ≤ x}.

An alternative characterization, using the set D from Lemma 2.9, is

X1 := {x ∈ R
m
≥0 : dT x ≥ 1 for all d ∈ D}.

We prove that Xdom = X1 and that the set X1 is attracting in the sense that the distance between
x(t) and X1 goes to zero, as t increases.

Lemma 3.1. 1. It holds that Xdom = X1. Moreover, limt→∞ dist(x(t), X1) = 0, where dist(x, X1)
is the Euclidean distance between x and X1.

2. If x(t0) ∈ X1, then x(t) ∈ X1 for all t ≥ t0. Finally, x(t) ∈ X1/2 := {x ∈ R
n
≥0 : dT x ≥

1/2 for all d ∈ D} for all sufficiently large t, and if x ∈ X1/2 then there is a feasible f with
|f | ≤ 2x.

The following lemma summarizes simple bounds on the values of resistors, potentials, and states
that eventually hold for large enough t.

3For the undirected shortest path problem, the latter condition states that the underlying undirected graph has
no zero-cost cycle.
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Lemma 3.2. 1. For sufficiently large t, it holds that re ≥ ce/(2||b||1D), bT p ≤ 8cmax||b||1D and
∣

∣

∣AT
e p
∣

∣

∣ ≤ 8cmax||b||1D2 for all e.

2. For all e, it holds that ẋe/xe ≥ −1 and for all e ∈ P , it holds that ẋe/xe ≤ 8 cmax

cmin
||b||1D2.

3. There is a positive constant C such that for all t ≥ t0, there is a feasible f (depending on t)
such that xe(t) ≥ C for all edges e in the support of f .

3.2 The Equilibrium Points

We next characterize the equilibrium points F = { x ∈ R≥0 : |q| = x }. Let us first elaborate on
the special case of the undirected shortest path problem. Here the equilibria are the flows of value
one from source to sink in a network formed by undirected source-sink paths of the same length.
This can be seen as follows. Consider any x ≥ 0 and assume supp(x) is a network of undirected
source-sink paths of the same length. Call this network N . Assign to each node u, a potential pu

equal to the length of the shortest undirected path from the sink s1 to u. These potentials are
well-defined as all paths from s1 to u in N must have the same length. For an edge e = (u, v) in
N , we have qe = xe/ce(pu − pv) = xe/ce · ce = xe, i.e., q = x is the electrical flow with respect to
the resistances ce/xe. Conversely, if x is an equilibrium point and the network is oriented such that
q ≥ 0, we have xe = qe = xe/ce(pu − pv) for all edges e = (u, v) ∈ supp(x). Thus ce = pu − pv and
this is only possible if for every node u, all paths from u to the sink have the same length. Thus
supp(x) must be a network of undirected source-sink paths of the same length. We next generalize
this reasoning.

Theorem 3.3. If x = |q| is an equilibrium point and the columns of A are oriented such that q ≥ 0,
then all feasible solutions f with supp(f) ⊆ supp(x) satisfy cT f = cT x. Conversely, if x = |q| for a
feasible q, A is oriented such that q ≥ 0, and all feasible solutions f with supp(f) ⊆ supp(x) satisfy
cT f = cT x, then x is an equilibrium point.

Proof. If x is an equilibrium point, |qe| = xe for every e. By changing the signs of some columns of
A, we may assume q ≥ 0, i.e., q = x. Let p be the potential with respect to x. For every edge e of
positive cost in the support of x, we have qe = xe

ce
AT

e p and hence ce = AT
e p. For the edges of zero

cost in the support of x, we also have ce = 0 = AT
e p due to the second block of equations on the

right hand side in (8). Let f be any feasible solution whose support is contained in the support of
x. Then the first part follows by

∑

e∈supp(f)

cefe =
∑

e∈supp(f)

feA
T
e p = bT p = E(q) = E(x) = cost(x).

For the second part, we misuse notation and use A to also denote the submatrix of the constraint
matrix indexed by the columns in the support of x. We may assume that the rows of A are
independent. Otherwise, we simply drop redundant constraints. We may assume q ≥ 0; otherwise
we simply change the sign of some columns of A. Then x is feasible. Let AB be a square non-
singular submatrix of A and let AN consist of the remaining columns of A. The feasible solutions
f with supp(f) ⊆ supp(x) satisfy ABfB + ANfN = b and hence fB = A−1

B (b − ANfN ). Then

cT f = cT
BfB + cT

N fN = cBA−1
B b + (cT

N − cT
BA−1

B AN )fN .

Since, by assumption, cT f is constant for all feasible solutions whose support is contained
in the support of x, we must have cN = AT

N A−T
B cB . Let p = A−T

B cB . Then it follows that
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AT p =
[ AT

B

AT

N

]

A−T
B cB =

[ cB
cN

]

and hence Rx = AT p. Thus the pair (x, p) satisfies the right hand side

of (8). Since x is feasible, it also satisfies the left hand side of (8). Therefore, x is the minimum
energy solution with respect to x.

Corollary 3.4. Let g be a basic feasible solution. Then |g| is an equilibrium point.

Proof. Let g be a basic feasible solution. Orient A such that g ≥ 0. Since g is basic, there is a B ⊆
[m] such that g = (gB , gN ) = (A−1

B b, 0). Consider any feasible solution f with supp(f) ⊆ supp(g).
Then f = (fB , 0) and hence b = Af = ABfB. Therefore, fB = gB and hence cT f = cT g. Thus
x = |g| is an equilibrium point.

This characterization of equilibria has an interesting consequence.

Lemma 3.5. The set L := {cT x : x ∈ F} of costs of equilibria is finite.

Proof. If x is an equilibrium, x = |q|, where q is the minimum energy solution with respect to
x. Orient A such that q ≥ 0. Then by Theorem 3.3, cT f = cT x for all feasible solutions f with
supp(f) ⊆ supp(x). In particular, this holds true for all basic feasible solutions f . Thus L is a
subset of the set of costs of all basic feasible solutions, which is a finite set.

We conclude this subsection by showing that the optimal solutions of the undirected linear
program (2) are equilibria.

Theorem 3.6. Let x be an optimal solution to (2). Then x is an equilbrium.

Proof. By definition, there is a feasible f with |f | = x. Let us reorient the columns of A such that
f ≥ 0 and let us delete all columns e of A with fe = 0. Consider any feasible g with supp(g) ⊆
supp(x). We claim that cT x = cT g. Assume otherwise and consider the point y = x + λ(g − x).
If |λ| is sufficiently small, y ≥ 0. Furthermore, y is feasible and cT y = cT x + λ(cT g − cT x). If
cT g 6= cT x, x is not an optimal solution to (2). The claim now follows from Theorem 3.3.

3.3 Convergence

In order to show convergence, we construct Lyapunov functions. The following functions play a
crucial role in our analysis. Let Cd = dT x for d ∈ D, and recall that C⋆ = mind∈D dT x be the
optimum. Moreover, we define by

h(t) :=
∑

e

re |qe|
xe

C⋆
− E

(

x

C⋆

)

and Vd :=
cT x

Cd
for every d ∈ D.

Theorem 3.7. (1) For every d ∈ D, Ċd ≥ 1 − Cd. Thus, if Cd < 1 then Ċd > 0.
(2) If x(t) ∈ X1, then d

dtcost(x(t)) ≤ 0 with equality if and only if x = |q|.
(3) Let d ∈ D be such that C⋆ = dT x at time t. Then it holds that V̇d ≤ h(t).
(4) It holds that h(t) ≤ 0 with equality if and only if |q| = x

C⋆
.

We show now convergence against the set of equilibrium points. We need the following technical
Lemma from [BMV12].

Lemma 3.8 (Lemma 9 in [BMV12]). Let f(t) = maxd∈D fd(t), where each fd is continuous and
differentiable. If ḟ(t) exists, then there is a d ∈ D such that f(t) = fd(t) and ḟ(t) = ḟd(t).
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Theorem 3.9. All trajectories converge to the set F of equilibrium points.

Proof. We distinguish cases according to whether the trajectory ever enters X1 or not. If the
trajectory enters X1, say x(t0) ∈ X1, then d

dtcost(x) ≤ 0 for all t ≥ t0 with equality only of
x = |q|. Thus the trajectory converges to the set of fixpoints. If the trajectory never enters X1,
consider V = maxd∈D(Vd + 1 − Cd). We show that V̇ exists for almost all t. Moreover, if V̇ (t)
exists, then V̇ (t) ≤ 0 with equality if and only if |qe| = xe for all e. It holds that V is Lipschitz-
continuous, as the maximum of a finite number of continuously differentiable functions. Since V is
Lipschitz-continuous, the set of t’s where V̇ (t) does not exist has zero Lebesgue measure (see for
example [CLSW98, Ch. 3]). If V̇ (t) exists, we have V̇ (t) = V̇d(t) + Ċd(t) for some d ∈ D according
to Lemma 3.8. Then, it holds that V̇ (t) ≤ h(t) − (1 − Cd) ≤ 0. Thus x(t) converges to the set

{

x ∈ R≥0 : V̇ = 0
}

= { x ∈ R≥0 : |q| = x/C and C = 1 } = { x ∈ R≥0 : |q| = x } .

At this point, we know that all trajectories x(t) converge to F . Our next goal is to show that
cT x(t) converges to the cost of an optimum solution of (2) and that |q| − x converges to zero. We
are only able to show the latter for all edges of positive cost.

3.4 Details of the Convergence

In the argument to follow, we will encounter the following situation several times. We have a
non-negative function f(t) ≥ 0 and we know that

∫∞
0 f(t)dt is finite. We want to conclude that

f(t) converges to zero for t → ∞. This holds true if f is Lipschitz continuous. Note that the proof
of the following lemma is very similar to the proof in [BMV12, Lemma 11]. However, in our case
we apply the Local Lipschitz condition that we showed in Lemma 2.6.

Lemma 3.10. Let f(t) ≥ 0 for all t. If
∫∞

0 f(t)d(t) is finite and f(t) is Lipschitz-continuous, i.e.,
for every ε > 0, there is a δ > 0 such that |f(t′) − f(t)| ≤ ε for all t′ ∈ [t, t+ δ], then f(t) converges
to zero as t goes to infinity. Thus, the functions t 7→ xT R |q| − xT Rx = cT |q| − cT x and t 7→ h(t)
are Lipschitz continuous.

Lemma 3.11. For all e of positive cost, it holds that |xe − |qe|| → 0 as t goes to infinity.

Note that the above does not say anything about the edges of cost zero. Recall that AP qP +
AZqZ = b and that the columns of AZ are independent. Thus, qZ is uniquely determined by qP .
For the undirected shortest path problem, the potential difference pT b between source and sink
converges to the length of a shortest source-sink path. If an edge of positive cost is used by some
shortest undirected path, then no shortest undirected path uses it with the opposite direction. We
prove the natural generalizations.

Let OPT be the set of optimal solutions to (2) and let Eopt = ∪x∈OP T supp(x) be the set of
columns used in some optimal solution. The columns of positive cost in Eopt can be consistently
oriented as the following Lemma shows.

Lemma 3.12. Let x∗
1 and x∗

2 be optimal solutions to (2) and let f and g be feasible solutions with
|f | = x∗

1 and |g| = x∗
2. Then there is no e such that fege < 0 and ce > 0.

Proof. Assume otherwise. Then |ge − fe| = |ge| + |fe| > 0. Consider h = (gef − feg)/(ge − fe).
Then Ah = (geAf − feAg)/(ge − fe) = b and h is feasible. Also, he = gefe−fege

ge−fe
= 0 and for every
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edge e′, it holds that |he′ | = |gef
e′ −feg

e′ |
|ge−fe)| ≤

|ge||f
e′ |+|fe||g

e′ |
|ge|+|fe| and hence

cost(h) < cost(f) + cost(g) =
|ge|

|ge| + |fe|
cost(x∗

1) +
|fe|

|ge| + |fe|
cost(x∗

2) = cost(x∗
1),

a contradiction to the optimality of x∗
1 and x∗

2.

By the preceding Lemma, we can orient A such that fe ≥ 0 whenever |f | is an optimal solution
to (2) and ce > 0. We then call A positively oriented. The proof of the following lemma can be
found in the appendix.

Lemma 3.13. It holds that pT b converges to the cost of an optimum solution of (2). If A is
positively oriented, then lim inft→∞ AT

e p ≥ 0 for all e.

Corollary 3.14. E(x) and cost(x) converge to cT x∗, whereas x and |q| converge to OPT . If the
optimum solution is unique, x and |q| converge to it. Moreover, if e /∈ Eopt , xe and |qe| converge to
zero.

Proof. The first part follows from E(x) = cost(x) = bT p and the preceding Lemma. Thus x and q
converge to the set of equilibrium points that are optimum solutions to (2). Since every optimum
solution is an equilibrium point by Theorem 3.6, x and q converge to OPT . For e 6∈ Eopt , fe = 0
for every f ∈ F ∩ OPT . Since x and |q| converge to F ∩ OPT , xe and |qe| converge to zero for
every e ∈ Eopt .

4 Improved Convergence Analysis of Discrete Directed Physarum

Dynamics

In this section, we give a proof sketch of Theorem 1.4. Due to space constraints, we defer all
intermediate proofs to Appendix C.

4.1 Convergence to Dominance

In [BBD+13, SV16b, SV16c], the authors implicitly show that the discrete Physarum dynamics
(6) can be initialized with a point in X (α) for any α ∈ (0, 1]. We demonstrate that the dynamics
initialized with an arbitrary starting point in X (α), for any α > 1, converges to a point in X (1+o(1))
after at most O(αD‖c‖1) non-adaptive steps each of size h = cmin/(2αD‖c‖1). Moreover, similarly
to X1 for the continuous undirected dynamics, see Section 3, we show that X (1) is an attracting
set for the discrete directed Physarum dynamics (6).

Lemma 4.1. (Attracting Set) Let k, t ∈ N. Suppose α(t) > 0 and x(t) ∈ X (α(t)) are arbitrary.
Then for any k ≥ 1 and h ≤ min{1, 1/α(t)} · cmin/(2D‖c‖1), it holds that x(t+k) ∈ X (α(t+k)), where
α(t+k) = [1 − (1 − h)k(1 − 1/α(t))]−1.

The above lemma motivates the following two-phase process. Phase one occurs only if α > 2,
it takes an x(0) ∈ X (α) and it outputs an x(t) ∈ X (2). Then, phase two takes the point x(t) and it
outputs a near optimal solution x(t+k) of (5), as indicated in Theorem 1.4.
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4.2 x
(k) is Close to a Non-Negative and Kernel-Free Vector

In this subsection, we generalize [SV16b, Lemma 5.4].

Lemma 4.2. Suppose a matrix A ∈ Z
n×m has full row rank and vector b ∈ Z

n. Let g be a feasible
solution to Ag = b and S ⊆ [n] be a subset of the variables such that

∑

i∈S |gi| < 1/D. Then there
is a feasible solution f such that gi · fi ≥ 0 for all i ∈ [n], and fi = 0 for all i ∈ S. In particular, it
holds that ‖g − f‖∞ < 1/D.

Lemma 4.3. Let q ∈ R
m, p ∈ R

n and N = {e ∈ E : qe ≤ 0 or pT A:,e ≤ 0}. Suppose
∑

e∈N |qe| <
1/D. Then there is a feasible kernel-free vector f such that supp(f) ⊆ E\N and ‖f − g‖∞ < 1/D.

Building on Lemmas 4.2 and 4.3, we obtain the following generalization of [SV16b, Lemma 5.4].

Lemma 4.4. Suppose x(t) ∈ X (2), h ≤ cmin/(4D‖c‖1) and ε ∈ (0, 1). Then, for any k ≥
h−1 ln(4ε−1mD3‖b‖1Ψ(0)) there is a feasible kernel-free vector f with ‖x(t+k) − f‖∞ < ε/D.

4.3 x
(k) is ε-Close to an Optimal Solution

We will now establish an optimality criterion for a feasible kernel-free vector.

Lemma 4.5. Let f be a feasible kernel-free vector and ε ∈ (0, 1) a parameter. Suppose for every
non-optimal basic feasible solution g, there exists an index e ∈ E such that ge > 0 and fe <
εφ/(2D2m‖b‖1). Then ‖f − f⋆‖∞ < ε/D for some optimal f⋆.

Let B be the set of all basic feasible solutions of (5) and O ⊆ B be the set of the optimal ones.
We define by φ = ming∈B mine∈supp(g) ge and Φ = ming∈B\O cT g − cT f⋆. Furthermore, we show
in Lemma C.9 that φ ≥ 1/D and Φ ≥ 1/D2, for any linear program with integral A, b, c. Hence,
since Cramer’s rule yields that ‖f‖∞ ≤ D‖b‖1, a natural choice for the parameters α, β > 0 in the
assumption β1 ≤ x(0) ∈ X (α), is β = φ and α = D2‖b‖1.

In the next lemma, we extend the analysis in [SV16b, Lemma 5.6] to general linear programs.

Lemma 4.6. Let α, β > 0 be parameters. Suppose g is a non-optimal basic feasible solution,
β1 ≤ x(0) ∈ X (α), h ≤ (Φ/2opt) · (cmin/D ‖c‖1)2, t = (3/h) max{1, α2} and h(ℓ) = h · min{1, α−2}
if 0 ≤ ℓ ≤ t or h(ℓ) = h when ℓ > t. Then, the Physarum dynamics (6) initialized with x(0), step
size h(ℓ) and number of iterations k ≥ 4(hΦ)−1cT g ln(Ψ(0)/εβ), guarantees the existence of an index

e ∈ E such that ge > 0 and x
(t+k)
e < ε.

4.4 Proof of Theorem 1.4

Let g be an arbitrary non-optimal basic feasible solution. By Cramer’s rule we have cT g ≤
D‖c‖1‖b‖1. Then, by Lemma 4.6 applied with ε′ = εφ/

(

8mD2‖b‖1
)

, it follows that the Physarum
dynamics (6) for every k ≥ 4D‖c‖1‖b‖1/(hΦ) · ln(8mD2‖b‖1Ψ(0)/(εφβ) guarantees the existence of
an index e ∈ E such that ge > 0 and

x(t+k)
e < εφ/(8D2m‖b‖1). (11)

By Lemma 4.4 applied with ε′ = εφ/
(

8mD2‖b‖1
)

and h, we obtain that for any

z ≥ 1
h ln

(

25m2D5‖b‖2
1Ψ(0)/εφ

)
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there is a feasible kernel-free vector f such that ‖x(z+t) − f‖∞ < εφ/8D2m‖b‖1. Note that k ≥ z
and hence we also have ‖x(t+k) − f‖∞ < εφ/8D2m‖b‖1. Thus, by (11), it follows that

fe ≤ x(t+k)
e + εφ/(8D2m‖b‖1) < εφ/(4D2m‖b‖1).

We have established that ge > 0 and fe < εφ/(4D2m‖b‖1). Then, by Lemma Lemma 4.5 it holds
that ‖f − f⋆‖∞ < ε/(2D). The statement follows by triangle inequality.
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A Omitted Proofs for Section 2

A.1 Finite Basis Theorem

Lemma 2.1 (from page 5). Let f be a feasible solution to Af = b. Then f is the sum of a convex
combination of at most n basic feasible solutions plus a vector in the kernel of A. Moreover, all
elements in this representation are sign-compatible with f .

Proof. We may assume f ≥ 0. Otherwise, we flip the sign of the appropriate columns of A. Thus
the system Af = b, f ≥ 0 is feasible and f is the sum of a convex combination of at most n basic
feasible solutions plus a vector in the kernel of A by the finite basis theorem [Sch86, Corollary
7.1b]. By definition, the elements in this representation are non-negative vectors and hence sign-
compatible with f .

A.2 The Minimum Energy Solution

Lemma A.1. If every nonzero vector in the kernel of A has positive cost, the minimum energy
feasible solution is kernel-free and unique.

Proof. Let q be a minimum energy feasible solution. Since q is feasible, it can be written as qn + qr,
where qn is a convex combination of basic feasible solutions and qr lies in the kernel of A. Moreover,
all elements in this representation are sign-compatible with q by Lemma 2.1. If qr 6= 0, the vector
q − qr is feasible and has smaller energy, a contradiction. Thus qr = 0.

We next prove uniqueness. Assume for the sake of a contradiction that there are two distinct
minimum energy feasible solutions q(1) and q(2). We show that the solution (q(1) + q(2))/2 uses less
energy than q(1) and q(2). Since h 7→ h2 is a strictly convex function from R to R, the average of
the two solutions will be better than either solution if there is an edge e with re > 0 and q

(1)
e 6= q

(2)
e .

The difference z = q(1) − q(2) lies in the kernel of A and hence cost(z) =
∑

e ce |ze| > 0. Thus there
is an e with ce > 0 and ze 6= 0. We have now shown the uniqueness.

Lemma A.2. Assume that every nonzero vector in the kernel of A has positive cost. Let q be the
minimum energy feasible solution. Then |qe| ≤ ||b||1D for every e.

Proof. Since q is a convex combination of basic feasible solutions, |qe| ≤ maxz |ze| where z ranges
over basic feasible solutions. Any basic feasible solution is of the form (zB , 0), where zB = A−1

B b and
AB is a n × n non-singular submatrix of A. Thus every component of z is bounded by ||b||1D.

Lemma 2.4 (from page 5). Assume that every nonzero vector in the kernel of A has positive
cost. Let re = ce/xe and let R denote the corresponding diagonal matrix. Let us split [m] into
Z = { e : ce = 0 } and P = E \ Z, similarly A into AP and AZ and q into qP and qZ. Then the
minimum energy feasible solution satisfies

[

AP AZ

]

[

qP

qZ

]

= b and

[

RP

0

] [

qP

qZ

]

=

[

AT
P

AT
Z

]

p. (8)
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Since AZ has linearly independent columns, we may assume that the first |Z| rows of AZ form

a square non-singular matrix. We can thus write A =
[A′

P
A′

Z

A′′

P
A′′

Z

]

with invertible A′
Z . The above

equation system (8) has a unique solution that satisfies

[

qZ

qP

]

=

[

[A′
Z ]−1(b′ − A′

P qP )
R−1

P AT
P p

]

and

[

p′

p′′

]

=

[

−[A′
Z ]−T [A′′

Z ]T p′′

MR−1MT (b′′ − A′′
Z [A′

Z ]−1b′)

]

, (9)

where M = A′′
P − A′′

Z(A′
Z)−1A′

P and p is split into p′ and p′′ analogously to AZ .

Proof. Clearly Aq = b becomes
[

AP AZ

]

[

qP

qZ

]

= b. (12)

Note that the matrix AZ has independent columns as otherwise there would be a non-zero vector
in the kernel of A with zero cost. The KKT conditions state that q must satisfy Rq = AT p for
some p.4 We may absorb the factor 2 in p. The equation Rq = AT p becomes

[

RP

0

] [

qP

qZ

]

=

[

AT
P

AT
Z

]

p. (13)

We show next that the linear system composed of equations (8) has a unique solution. Using the

partition A =
[A′

P
A′

Z

A′′

P
A′′

Z

]

with invertible A′
Z , the first part of (8) becomes

[

A′
P A′

Z

A′′
P A′′

Z

] [

qP

qZ

]

=

[

b′

b′′

]

, (14)

where A′
P , A′

Z and b′ have |Z| rows and A′′
P , A′′

Z , and b′′ have n − |Z| rows. Note that M =
A′′

P − A′′
Z(A′

Z)−1A′
P as defined in the statement of the lemma denotes the Schur complement of the

block A′
Z of the matrix A. The top |Z| rows of (14) give

qZ = [A′
Z ]−1(b′ − A′

P qP ). (15)

Substituion of (15) into the bottom n − |Z| rows of (14) yields

MqP = b′′ − A′′
Z(A′

Z)−1b′.

From the top |P | rows of (13) it holds that qP = R−1
P AT

P · p. Thus

MR−1
P AT

P · p = b′′ − A′′
Z [A′

Z ]−1 · b′. (16)

Now considering the partition of p into p′ and p′′ where p′ has |Z| components gives that the last
n − |Z| rows of (13) yield 0 = AT

Zp = (A′
Z)T p′ + (A′′

Z)T p′′ and hence

p′ = −[A′
Z ]−T [A′′

Z ]T p′′. (17)

4Note that 2Rf is the gradient of the energy E(f) with respect to f and that the −AT p is the gradient of pT (b−Af)
with respect to f .
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Substituting (17) into (16) yields

b′′ − A′′
Z(A′

Z)−1b′ = MR−1
P

(

[A′
P ]T p′ + [A′′

P ]T p′′
)

= MR−1
P

(

[A′′
P ]T − [A′

P ]T (A′
Z)−T (A′′

Z)T
)

p′′

= MR−1
P MT p′′. (18)

It remains to show that the matrix MR−1
P MT is non-singular. Since R−1

P is a positive diagonal
matrix, ker(MR−1

P MT ) = ker(MMT ). Thus it suffices to show that the rows of matrix M are
linearly independent. Consider (14). Multiplying the first |Z| rows by (A′

Z)−1 and then subtracting
A′′

Z times the resulting rows from the last n−|Z| rows turns A into the matrix Q =
[ [A′

Z
]−1A′

P
I

M 0

]

. By
assumption, A has independent rows. Moreover, the preceding operations guarantee that rank(A) =
rank(Q). Therefore, M has independent rows.

There is a shorter proof that the system (8) has a unique solution. However, the argument does
not give an explicit expression for the solution. In the case of a convex objective function and affine
constraints, the KKT conditions are sufficient for being a global minimum. Thus any solution to (8)
is a global optimum. We have already shown in Lemma 2.2 that the global minimum is unique.

Lemma A.3. Let q be the minimum energy feasible solution and let f be any feasible solution.
Then E(q) = bT p = fT AT p.

Proof. As in the proof of Lemma 2.4, we split q into qP and qZ , R into RP and RZ , and A into AP

and AZ . Then, it holds that

E(q) = qT
P RP qP by the definition of E(q) and RZ = 0

= pT AP qp by the upper block of equations in (13)

= pT (b − AZqZ) by (12)

= bT p by the lower block of equations in (13).

For any feasible solution f , we have fT AT p = bT p.

Lemma 2.6 (from page 6). Assume c ≥ 0, no non-zero vector in the kernel of A has cost zero,
and that A, b, and c are integral. Let α, β > 0. Then for any e ∈ [m] and any two vectors
x and x̃ in R

m with α1 ≤ x, x̃ ≤ β1, define M = 2mn(β/α)ncn
maxD2||b||1. Then, it holds that

∣

∣ |qe(x)| − |qe(x̃)|
∣

∣ ≤ M ||x − x̃||∞.

Proof. First assume that c > 0. Recall that Cramer’s rule yields

(AR−1AT )−1 =
1

det(AR−1AT )
((−1)i+j det M−j,−i)ij ,

where M−i,−j is obtained from AR−1AT by deleting the i-th row and the j-th column. For a subset
S of [m] and an index i ∈ [n], let AS be the n × |S| matrix consisting of the columns selected by
S and let A−i,S be the matrix obtained from AS by deleting row i. If D is a diagonal matrix of
size m, then (AD)S = ASDS . The Cauchy-Binet theorem expresses the determinant of a product
of two matrices (not necessarily square) as a sum of determinants of square matrices. It yields

det(AR−1AT ) =
∑

S⊆[m]; |S|=n

(det((AR−1/2)S))2

=
∑

S⊆[m]; |S|=n

(
∏

e∈S

xe/ce) · (det AS)2.
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Similarly,

det(AR−1AT )−i,−j =
∑

S⊆[m]; |S|=n−1

(
∏

e∈S

xe/ce) · (det A−i,S · det A−j,S).

Thus using p = (AR−1AT )−1b, we obtain

pi =

∑

j∈[n](−1)i+j ∑

S⊆[m]; |S|=n−1(
∏

e∈S xe/ce) · (det A−i,S · det A−j,S)bj
∑

S⊆[m]; |S|=n(
∏

e∈S xe/ce) · (det AS)2
, (19)

and using q = R−1AT p, this yields

qe =
xe

ce
AT

e p

=
xe

ce

∑

i

Ai,e ·

∑

j∈[n](−1)i+j+2n∑

S⊆[m]; |S|=n−1(
∏

e′∈S xe′/ce′) · (det A−i,S · det A−j,S)bj
∑

S⊆[m]; |S|=n(
∏

e′∈S xe′/ce′) · (det AS)2

=

∑

S⊆[m]; |S|=n−1

(

(
∏

e′∈S∪e xe′/ce′) ·
∑

i∈[n](−1)i+nAi,e det A−i,S ·
∑

j∈[n](−1)j+nbj det A−j,S

)

∑

S⊆[m]; |S|=n(
∏

e′∈S xe′/ce′) · (det AS)2

=

∑

S⊆[m]; |S|=n−1(
∏

e′∈S∪e xe′/ce′) · det(AS |Ae) · det(AS |b)
∑

S⊆[m]; |S|=n(
∏

e′∈S xe′/ce′) · (det AS)2
, (20)

where (AS |Ae), respectively (AS |b), denotes the n × n matrix whose columns are selected from A
by S and whose last column is equal to Ae, respectively b. A more detailed derivation of (20) can
be found in the appendix.

We are now ready to estimate the derivative ∂qe/∂xi. Assume first that e 6= i. By the above,
qe = xe

ce

F +Gxi/ci

H+Ixi/ci
, where F , G, H and I are given implicitly by (20). Then

∣

∣

∣

∣

∂qe

∂xi

∣

∣

∣

∣

=
∣

∣

∣

∣

xe

ce

FI/ci − GH/ci

(H + Ixi/ci)2

∣

∣

∣

∣

≤
2 ·
( m

n−1

)

βnD2||b||1

(α/cmax)n
≤ M.

For e = i, we have qe = Gxe/ce

H+Ixe/ce
, where G, H, and I are given implicitly by (20). Then

∣

∣

∣

∣

∂qe

∂xe

∣

∣

∣

∣

=
∣

∣

∣

∣

GH/ce

(H + Ixe/ce)2

∣

∣

∣

∣

≤

( m
n−1

)

βnD2||b||1

(α/cmax)n
≤ M.

Finally, consider x and x̃ with α1 ≤ x, x̃ ≤ β1. Let x̄ℓ = (x̃1, . . . , x̃ℓ, xℓ+1, . . . , xm). Then

||qe(x)| − |qe(x̃)|| ≤ |qe(x) − qe(x̃)| ≤
∑

0≤ℓ<m

|qe(x̄ℓ) − qe(x̄ℓ+1)| ≤ M ||x − x̃||1.

In the general case where c ≥ 0, we first derive an expression for p′′ similar to (19). Then the
equations for p′ in (9) yield p′, the equations for qP in (9) yield qP , and finally the equations for qZ

in (9) yield qZ .

A.3 Existence of a Solution to the Undirected Physarum Dynamics

Lemma A.4 (Grönwall’s Lemma). 1. Let u(t) and β(t) be functions satisfying u̇(t) ≤ β(t)u(t).
Then u(t) ≤ u(0) ·exp(

∫ t
0 β(s) ds). In particular, choosing β(t) := −1 and u(t) := −v(t) yields

that v(t) ≥ v(0) · exp(−t), if v̇(t) ≥ −v(t).

17



2. Let Y (t) be a function satisfying Ẏ ≥ a − Y for some constant a. Then Y (t) ≥ a + (Y (0) −
a) exp(−t). Similarly, if Ẏ ≤ a − Y , then Y (t) ≤ a + (Y (0) − a) exp(−t).

Proof. The first part is a classical result, we only show the second part here. We have

d

ds
Y (s)es = Ẏ (s)es + Y (s)es = (Ẏ (s) + Y (s))es ≥ a · es,

and hence by integrating on both sides from 0 to t, we get Y (t)et −Y (0) ≥ a(et −1). and the bound
on Y (t) follows.

Lemma A.5. The solution to the undirected dynamics in (1) has domain [0, ∞). Moreover,
x(0)e−t ≤ x(t) ≤ max(||b||1D · 1, x(0)e−t − ||b||1D · 1(1 − e−t)) for all t.

Proof. Consider any x0 > 0 and any t0 ≥ 0. We first show that there is a positive δ′ (depending
on x0) such that a unique solution x(t) with x(t0) = x0 exists for t ∈ (t0 − δ′, t0 + δ′). By the
Picard-Lindelöf Theorem, this holds true if the mapping x 7→ |q| − x is continuous and satisfies a
Lipschitz condition in a neighborhood of x0. Continuity clearly holds. Let ε = mini(x0)i/2 and let
U = { x : ||x − x0||∞ < ε }. Then for every x, x̃ ∈ U and every e

∣

∣ |qe(x)| − |qe(x̃)|
∣

∣ ≤ M ||x − x̃||1,

where M is as in Lemma 2.6. Local existence implies the existence of a solution which cannot
be extended. Since q is bounded (Lemma 2.3), x is bounded at all finite times, and hence the
solution exists for all t. The lower bound x(t) ≥ x(0)e−t > 0 holds by Grönwall’s Lemma. Since
|qe| ≤ ||b||1D, ẋ = |q| − x ≤ ||b||1D1 − x. Thus, by the second part of Lemma 2.7, we have
x(t) ≤ ||b||1D1 + max(0, x(0) − ||b||1D · 1)e−t.

A.4 Generalizing the Max-Flow Min-Cut Theorem through LP Duality

Lemma 2.9 (from page 6). Let x ∈ R
m
>0. The following linear programs are feasible and

max{α : Af = αb, |f | ≤ x} = min{
∣

∣

∣yT A
∣

∣

∣x : bT y = −1}. (21)

Moreover, there is a finite set D = { d1, . . . , dK } of vectors di ∈ R
m
≥0 that are independent of x

such that the minimum above is equal to C⋆ = mind∈D dT x. In particular, there is a feasible f with
|f | ≤ x/C⋆.

Proof. It holds that α, f = 0 is a feasible solution for the maximization problem. Since b 6= 0, there
exists y with bT y = −1 and thus both problems are feasible. The dual of max{α : Af −αb = 0, f ≤
x, −f ≤ x has unconstrained variables y ∈ R

n and non-negative variables z+, z− ∈ R
m and reads

min{xT (z+ + z−) : −bT y = 1, AT y + z+ − z− = 0, z+, z− ≥ 0}. (22)

From z− = AT y + z+, z+ ≥ 0, z− ≥ 0 and x > 0, we conclude min(z+, z−) = 0 in an optimal
solution. Thus z− = max(0, AT y) and z+ = max(0, −AT y) and hence z+ + z− =

∣

∣

∣AT y
∣

∣

∣ in an
optimal dual solution. Thus (22) is equivalent to the right hand side of (21).

We next show that the feasible set of the dual contains no line. Assume the dual contains a
line. Then there are vectors d = (y1, z+

1 , z−
1 ), d non-zero, and p = (y0, z+

0 , z−
0 ) such that p + λd

is feasible for all λ ∈ R. This implies z+
1 = z−

1 = 0 as otherwise the dual would be unbounded
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which is impossible since the primal is feasible. Hence AT y1 = 0. Since A has full row rank, we
have y1 = 0. Thus the dual contains no line and the minimum is attained at a vertex of its feasible
region. Furthermore, the feasible region does not depend on x.

Let (y1, z+
1 , z−

1 ) to (yK , z+
K , z−

K) be the vertices of (22), and let D = {
∣

∣

∣AT y1
∣

∣

∣ , . . . ,
∣

∣

∣AT yK
∣

∣

∣ }.
Notice that for

x′ =
x

mind∈D dT x
> 0 we have min

d∈D
dT x′ = 1,

and thus the LP at the RHS of (21) has objective value 1. Hence, there is a feasible f with
|f | ≤ x′.

Lemma 2.10 (from page 7). Let x > 0, x ∈ R
m and α > 0. It follows that

min{0 : Af = b, 0 ≤ f ≤ αx} = max{bT y − αxT max{0, AT y} : y ∈ R
n}.

Let D′ be the finite set of vertices of P := {(y, z) ∈ R
n+m : z ≥ max{0, AT y}, ‖y‖∞ ≤ 1, bT y ≥ 0}.

Then, x ∈ X W (α) if and only if bT y ≤ αxT max{0, AT y} for every (y, z) ∈ D′.

Proof. The minimization problem can be written as

min

{

0 :

[

A 0
I I

] [

f
s

]

=

[

b
αx

]

and f, s ≥ 0

}

. (23)

Hence, its dual has unconstrained variables y ∈ R
n and z ∈ R

m and reads

max







[

b
αx

]T [

y
z

]

:

[

AT I
0 I

] [

y
z

]

≤ 0







= max
{

bT y − αxT z : z ≥ max{0, AT y}
}

. (24)

The lower bound on z is fulfilled with equality in any optimal solution since x > 0. Thus the
maximization problem can be written as max{bT y −αxT max{0, AT y} : y ∈ R

n}, which establishes
the first part of the lemma. For the second conclusion, notice that x ∈ X W (α) if and only if the
optimum value of the primal-dual (23,24) equals 0, or equivalently

max{bT y − αxT z : z ≥ max{0, AT y}, ‖y‖∞ ≤ 1, bT y ≥ 0} = 0. (25)

Since the polyhedron P does not contain a line and the optimum is finite, it follows that (25) has
an extreme point that is optimal.

B Omitted Proofs for Section 3

B.1 Convergence to Dominance and Resulting Simple Bounds

Lemma 3.1 (from page 7).

1. It holds that Xdom = X1. Moreover, limt→∞ dist(x(t), X1) = 0, where dist(x, X1) is the
Euclidean distance between x and X1.

2. If x(t0) ∈ X1, then x(t) ∈ X1 for all t ≥ t0. Finally, x(t) ∈ X1/2 := {x ∈ R
n
≥0 : dT x ≥

1/2 for all d ∈ D} for all sufficiently large t, and if x ∈ X1/2 then there is a feasible f with
|f | ≤ 2x.
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Proof. 1. If x ∈ X1, then dT x ≥ 1 for all d ∈ D and hence Lemma 2.9 implies the existence of
a feasible solution f with |f | ≤ x. Conversely, if x ∈ Xdom, then there is a feasible f with
|f | ≤ x. Thus dT x ≥ 1 for all d ∈ D and hence x ∈ X1. By the proof of Lemma 2.9, for any
d ∈ D, there is a y such that d =

∣

∣

∣AT y
∣

∣

∣ and bT y = −1. Let Y (t) = dT x. Then

Ẏ =
∣

∣

∣yT A
∣

∣

∣ ẋ =
∣

∣

∣yT A
∣

∣

∣ (|q| − x) ≥
∣

∣

∣yT Aq
∣

∣

∣− Y =
∣

∣

∣yT b
∣

∣

∣− Y = 1 − Y.

Thus for any t0 and t ≥ t0, Y (t) ≥ 1 + (Y (t0) − 1)e−(t−t0) by Lemma 2.7. In particular,
lim inft→∞ Y (t) ≥ 1. Thus lim inft→∞ mind∈D dT x ≥ 1 and hence limt→∞ dist(x(t), X1) = 0.

2. Moreover, if Y (t0) ≥ 1, then Y (t) ≥ 1 for all t ≥ t0. Hence x(t0) ∈ X1 implies x(t) ∈ X1 for
all t ≥ t0. Since x(t) converges to X1, x(t) ∈ X1/2 for all sufficiently large t. If x ∈ X1/2 there
is f such that Af = 1

2b and |f | ≤ x. Thus 2f is feasible and |2f | ≤ 2x.

Lemma 3.2 (from page 8).

1. For sufficiently large t, it holds that re ≥ ce/(2||b||1D), bT p ≤ 8cmax||b||1D and
∣

∣

∣AT
e p
∣

∣

∣ ≤

8cmax||b||1D2 for all e.

2. For all e, it holds that ẋe/xe ≥ −1 and for all e ∈ P , it holds that ẋe/xe ≤ 8 cmax

cmin
||b||1D2.

3. There is a positive constant C such that for all t ≥ t0, there is a feasible f (depending on t)
such that xe(t) ≥ C for all edges e in the support of f .

Proof. 1. By Lemma 2.8, xe(t) ≤ 2||b||1 ·D for all sufficiently large t. It follows that re = ce/xe ≥
ce/(2||b||1 · D). Due to Lemma 3.1, for large enough t, there is a feasible flow with |f | ≤ 2x.
Together with xe(t) ≤ 2||b||1 · D, it follows that

bT p = E(q) ≤ E(2x) = 4cT x ≤ 8cmax||b||1 · D.

Now, orient A according to q and consider any edge e′. Recall that for all edges e, AT
e p = 0

if e ∈ Z and qe = (xe/ce) · AT
e p if e ∈ P . Thus AT

e p ≥ 0 for all e. If e′ ∈ Z or e′ ∈ P and
qe′ = 0, the claim is obvious. So assume e′ ∈ P and qe′ > 0. Since q is a convex combination
of q-sign-compatible basic feasible solutions, there is a basic feasible solution f with f ≥ 0
and fe′ > 0. Since f is basic feasible, fe′ ≥ 1/D. Therefore

fe′AT
e′p ≤

∑

e

feA
T
e p = bT p ≤ 8cmax||b||1 · D

for all sufficiently large t. The inequality follows from fe ≥ 0 and AT
e p ≥ 0 for all e. Thus

AT
e′p ≤ 8cmax||b||1 · D2 for all sufficiently large t.

2. We have ẋe

xe
= |qe|−xe

xe
≥ −1 for all e. For e with ce > 0

ẋe

xe
=

|qe| − xe

xe
≤

∣

∣

∣AT
e p
∣

∣

∣

ce
≤

8 · cmax

cmin
· ||b||1 · D2.
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3. Let t0 be such that dT x(t) ≥ 1/2 for all d ∈ D and t ≥ t0. Then for all t ≥ t0, there is f
such that Af = 1

2b and |f | ≤ x(t); f may depend on t. By Lemma 2.1, we can write 2f as
convex combination of f -sign-compatible basic feasible solutions (at most m of them) and a
f -sign-compatible solution in the kernel of A. Dropping the solution in the kernel of A leaves
us with a solution which is still dominated by x.

It holds that for every e ∈ E with fe 6= 0, there is a basic feasible solution g used in the
convex decomposition such that |fe| ≥ |ge| > 0. Every non-zero component of g is at least
1/D. We conclude xe ≥ 1/(2nD) for every e in the support of g.

B.2 Convergence

Theorem 3.7 (from page 9).
(1) For every d ∈ D, Ċd ≥ 1 − Cd. Thus, if Cd < 1 then Ċd > 0.
(2) If x(t) ∈ X1, then d

dtcost(x(t)) ≤ 0 with equality if and only if x = |q|.
(3) Let d ∈ D be such that C⋆ = dT x at time t. Then it holds that V̇d ≤ h(t).
(4) It holds that h(t) ≤ 0 with equality if and only if |q| = x

C⋆
.

Proof. 1. Recall that for d ∈ D, there is a y such that bT y = −1 and d =
∣

∣

∣AT y
∣

∣

∣. Thus

Ċd = dT (|q| − x) ≥
∣

∣

∣yT Aq
∣

∣

∣− Cd = 1 − Cd thus Ċd > 0, whenever Cd < 1.

2. Remember that E(x) = cost(x) and that x(t) ∈ X1 implies that there is a feasible f with
|f | = x. Thus E(q) ≤ E(f) ≤ E(x). Let R be the diagonal matrix of entries ce/xe. Then

d

dt
cost(x) = cT (|q| − x) by (1)

= xT R1/2R1/2 |q| − xT Rx since c = Rx

≤ (qT Rq)1/2(xT Rx)1/2 − xT Rx by Cauchy-Schwarz

≤ 0 since E(q) ≤ E(x).

If the derivative is zero, both inequalities above have to be equalities. This is only possible
if the vectors |q| and x are parallel and E(q) = E(x). Let λ be such that |q| = λx. Then
E(q) =

∑

e
ce

xe
q2

e = λ2∑

e cexe = λ2E(x). Since E(x) > 0, this implies λ = 1.
3. By definition of d, C⋆ = Cd. By the first two items, we have Ċ⋆ = dT |q|− C⋆ and d

dtcost(x) =
cT |q| − cost(x). Thus

d

dt

cost(x)
C⋆

=
C⋆

d
dtcost(x) − Ċ⋆cost(x)

C2
⋆

=
C⋆(cT |q| − cost(x)) − (dT |q| − C⋆)cost(x)

C2
⋆

=
C⋆ · cT |q| − dT |q| · cT x

C2
⋆

≤
∑

e

re |qe|
xe

C⋆
−
∑

e

re

( xe

C⋆

)2 = h(t),

where we used re = ce/xe and hence cT |q| =
∑

e rexe |qe|, cT x = E(x), and dT |q| ≥
∣

∣

∣yT Aq
∣

∣

∣ = 1

since d =
∣

∣

∣yT A
∣

∣

∣ for some y with bT y = −1.
4. We have

∑

e

re
xe

C⋆
|qe| =

∑

e

r1/2
e

xe

C⋆
r1/2

e |qe| ≤
(

∑

e

re( xe

C⋆
)2
)1/2(∑

e

req2
e

)1/2
= E

( x
C⋆

)1/2
E(q)1/2
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by Cauchy-Schwarz. Since h(t) =
∑

e re |qe| xe

C⋆
− E( x

C⋆
) by definition, it follows that

h(t) ≤ E
( x

C⋆

)1/2
· E(q)1/2 − E

( x
C⋆

)

= E
( x

C⋆

)1/2
·
(

E(q)1/2 − E
( x

C⋆

)1/2
)

≤ 0

since x/C⋆ dominates a feasible solution and hence E(q) ≤ E(x/C⋆). If h(t) = 0, we must
have equality in the application of Cauchy-Schwartz, i.e., the vectors x/C⋆ and |q| must be
parallel, and we must have E(q) = E(x/C⋆) as in the proof of part 2.

B.3 Details of the Convergence

Lemma 3.10 (from page 10). Let f(t) ≥ 0 for all t. If
∫∞

0 f(t)d(t) is finite and f(t) is Lipschitz-
continuous, i.e., for every ε > 0, there is a δ > 0 such that |f(t′) − f(t)| ≤ ε for all t′ ∈ [t, t+δ], then
f(t) converges to zero as t goes to infinity. Thus, the functions t 7→ xT R |q| − xT Rx = cT |q| − cT x
and t 7→ h(t) are Lipschitz continuous.

Proof. If f(t) does not converge to zero, there is ε > 0 and an infinite unbounded sequence t1, t2,
. . . such that f(ti) ≥ ε for all i. Since f is Lipschitz continuous there is δ > 0 such that f(t′

i) ≥ ε/2
for t′

i ∈ [ti, ti + δ] and all i. Hence, the integral
∫∞

0 f(t)dt is unbounded.
Since ẋe is continuous and bounded (by Lemma 2.8), xe is Lipschitz-continuous. Thus, it is

enough to show that qe is Lipschitz-continuous for all e. Since qZ (recall that Z = { e : ce = 0 }
and P = [m] \ Z) is an affine function of qP , it suffices to establish the claim for e ∈ P . So let e
be an edge of positive cost. First, we claim that xe(t + ε) ≤ (1 + 2Kε)xe for all ε ≤ K/4, where
K = 8cmax/cmin · ||b||1D. Assume that this is not the case. Let

ε = inf{δ ≤ 1/4K : xe(t + δ) > (1 + 2Kδ)xe(t)},

then ε > 0 (since ẋe(t) ≤ Kxe(t) by Lemma 3.2) and, by continuity, xe(t + ε) ≥ (1 + 2Kε)xe(t).
There must be t′ ∈ [t, t + ε] such that ẋe(t′) = 2Kxe(t). On the other hand,

ẋe(t′) ≤ Kxe(t′) ≤ K(1 + 2Kε)xe(t) ≤ K(1 + 2K/4K)xe(t) < 2Kxe(t),

which is a contradiction. Thus, xe(t + ε) ≤ (1 + 2Kε)xe for all ε ≤ 1/4K. Similarly, xe(t + ε) ≥
(1 − 2Kε)xe. Now, let α = (1 − 2Kε)xe and β = (1 + 2Kε)xe. Then

||qe(t + δ)| − |qe(t)|| ≤ M ||x(t + δ) − x(t)||1 ≤ Mm(4Kε)xe ≤ 8MmK||b||1Dε,

since xe ≤ 2||b1||1D for sufficiently large t and where M is as in Lemma 2.6. Since C⋆ is at least
1/2 for all sufficiently large t, the division by C⋆ and C2

⋆ in the definition of h(t) does not affect the
claim.

Lemma 3.11 (from page 10). For all e of positive cost, it holds that |xe − |qe|| → 0 as t goes to
infinity.

Proof. For a trajectory ultimately running in X1, we showed d
dtcost(x) ≤ xT R |q| − xT Rx ≤ 0

with equality if and only if x = |q|. Also, E(q) ≤ E(x), since x dominates a feasible solution.
Furthermore, xT R |q| − xT Rx goes to zero using Lemma 3.10. Thus

∑

e

re(xe − |qe|)2 =
∑

e

rex2
e +

∑

e

req2
e − 2

∑

e

rexe |qe| ≤ 2
(

∑

e

rex
2
e −

∑

e

rexe |qe|
)
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goes to zero. Next observe that there is a constant C such that xe(t) ≤ C for all e and t as a result
of Lemma 2.8. Also cmin > 0 and hence re ≥ cmin/C. Thus

∑

e re(xe − |qe|)2 ≤ C
cmin

·
∑

e(xe − |qe|)2

and hence |xe − |qe|| → 0 for every e with positive cost. For trajectories outside X1, we argue about
| |qe| − x

C⋆
| and use C⋆ → 1, namely

∑

e

re( xe

C⋆
− |qe|)2 ≤ 2

(

∑

e

re( xe

C⋆
)2 −

∑

e

re
xe

C⋆
|qe|

)

→ 0.

Lemma 3.13 (from page 11). It holds that pT b converges to the cost of an optimum solution of (2).
If A is positively oriented, then lim inft→∞ AT

e p ≥ 0 for all e.

Proof. Let x∗ be an optimal solution of (2). We first show convergence to a point in L and then
convergence to cT x∗. Let ε > 0 be arbitrary. Consider any time t ≥ t0, where t0 and C as in
Lemma 3.2 and moreover ||qe| − xe| ≤ Cε

cmax
for every edge e of positive cost. Then xe ≥ C for all

edges e in the support of some basic feasible solution f . For every e ∈ P , we have qe = xe

ce
AT

e p. We
also assume q ≥ 0 by possibly reorienting columns of A. Hence

∣

∣

∣ce − AT
e p
∣

∣

∣ =
∣

∣1 −
qe

xe

∣

∣ce =
∣

∣

xe − qe

xe

∣

∣ce ≤
cmax

C
|qe − xe| ≤ ε.

For edges e of zero cost, we have AT
e p = 0 = ce. Thus, we conclude

cT f − pT b =
∑

e∈supp(f)

(ce − pT Ae)fe ≤ ε
∑

e

|fe| ≤ ε · m||b||1D.

Since the set L is finite, we can let ε > 0 be smaller than half the minimal distance between elements
in L. By the preceding paragraph, there is for all sufficiently large t, a basic feasible solution f such
that

∣

∣

∣cT f − bT p
∣

∣

∣ ≤ ε. Since bT p is a continuous function of time, cT f must become constant. We

have now shown that bT p converges to an element in L. We will next show that bT p converges to
the optimum cost. Let x∗ be an optimum solution to (2) and let W =

∑

e x∗
ece ln xe. Since x(t) is

bounded, W is bounded. We assume that A is positively oriented, thus there is a feasible f∗ with
|f∗| = x∗ and f∗

e ≥ 0 whenever ce > 0. By reorienting zero cost columns, we may assume f∗
e ≥ 0

for all e. Then Ax∗ = b. We have

Ẇ =
∑

e

x∗
ece

|qe| − xe

xe

=
∑

e; ce>0

x∗
e

∣

∣

∣AT
e p
∣

∣

∣− cost(x∗) since qe = xe

ce
AT

e p whenever ce > 0

=
∑

e

x∗
e

∣

∣

∣AT
e p
∣

∣

∣− cost(x∗) since AT
e p = 0 whenever ce = 0

=
∑

e

x∗
e(
∣

∣

∣AT
e p
∣

∣

∣− AT
e p) + bT p − cost(x∗)

and hence bT p − cost(x∗) must converge to zero; note that bT p is Lipschitz continuous in t.
Similarly,

∣

∣

∣AT
e p
∣

∣

∣ − AT
e p must converge to zero whenever x∗

e > 0. This implies lim inf AT
e p ≥ 0.

Assume otherwise, i.e., for every ε > 0, we have AT
e p < −ε for arbitrarily large t. Since p is

Lipschitz-continuous in t, there is a δ > 0 such that AT
e p < −ε/2 for infinitely many disjoint

intervals of length δ. In these intervals,
∣

∣

∣AT
e p
∣

∣

∣ − AT
e p ≥ ε and hence W must grow beyond any

bound, a contradiction.
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C Omitted Proofs for Section 4

C.1 Useful Lemmas

This is a set of lemmas that are necessary to prove the main results in Section 4. We denote with
p(k) the unique solution of L(k)p(k) = b, where matrix L(k) def= A[R(k)]−1AT is invertible. We omit
the superscript ·(k) when it is clear from the context.

Lemma C.1. [SV16c, Lemma 5.2] Suppose x > 0, R is a positive diagonal matrix and L =
AR−1AT . Then for every e ∈ [m], it holds that ‖AT L−1A:,e‖∞ ≤ D · ce/xe.

Lemma C.2. [SV16b, extension of Corollary 5.3] Let p be the unique solution of Lp = b, where
L = AR−1AT , and suppose there is x ∈ X W (α) for some α > 0. Then ‖AT p‖∞ ≤ αD‖c‖1.

Proof. Since there is x ∈ X W (α), there exists f with Af = b and 0 ≤ f ≤ αx. This yields

‖AT p‖∞ = ‖AT L−1b‖∞ = ‖AT L−1Af‖∞ = ‖
∑

e

feA
T L−1A:,e‖∞

≤
∑

e

fe‖AT L−1A:,e‖∞

(Lem. C.1)

≤ D
∑

e

fe
ce

xe
≤ αD‖c‖1.

Lemma C.3. For any x ≥ 0 and f satisfying Af = b, it holds that ‖q‖∞ ≤ mD2‖b‖1.

Proof. By definition qe = (xe/ce)[A:,e]T L−1b and b = Af =
∑

u A:,ufu. Hence,

|qe| =
∣

∣

∣

∣

xe

ce
[A:,e]T L−1b

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

xe

ce

∑

u

[A:,e]T L−1A:,ufu

∣

∣

∣

∣

∣

≤
xe

ce

∑

u

|fu| ·
∣

∣

∣[A:,e]T L−1A:,u

∣

∣

∣ ≤ D‖f‖1,

where the last inequality follows by

∣

∣

∣[A:,e]T L−1A:,u

∣

∣

∣ =
∣

∣

∣[A:,u]T L−1A:,e

∣

∣

∣ ≤ ‖AT L−1A:,e‖∞

(Lem. C.1)
≤ Dce/xe.

Therefore, by Cramer’s Rule, we have |qe| ≤ D‖f‖1 ≤ mD2‖b‖1.

Lemma C.4. Let k, t ∈ N. We denote by

q(t,k)
e =

k+t−1
∑

i=t

h (1 − h)k+t−1−i

1 − (1 − h)k
q(i)

e and p(t,k)
e =

k+t−1
∑

i=t

p(i)
e .

Then, for every k, t ∈ N such that t + k ≥ 1 it holds that

x(t)
e

k+t−1
∏

i=t

[1 + h(c−1
e [A:,e]T p(i) − 1)] = x(t+k)

e = (1 − h)kx(t)
e + [1 − (1 − h)k]q(t,k)

e .

Lemma C.5. Let Ψ(0) = max{mD2‖b‖1, ‖x(0)‖∞}. Then ‖x(k)‖∞ ≤ Ψ(0) for every k ∈ N.

Proof. We prove the statement by induction. The base case ‖x(0)‖∞ ≤ Ψ(0) is clear. Suppose the
statement holds for some k > 0. Then, triangle inequality and Lemma C.3 yield

‖x(k+1)‖∞ ≤ (1 − h)‖x(k)‖∞ + h‖q(k)‖∞ ≤ (1 − h)Ψ(0) + hΨ(0) ≤ Ψ(0).
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C.2 Convergence to Dominance

Lemma 4.1 (from page 11). Let k, t ∈ N. Suppose α(t) > 0 and x(t) ∈ X (α(t)) are arbitrary.
Then for any k ≥ 1 and h ≤ min{1, 1/α(t)} · cmin/(2D‖c‖1), it holds that x(t+k) ∈ X (α(t+k)), where
α(t+k) = [1 − (1 − h)k(1 − 1/α(t))]−1.

Proof. By (6), Lemma C.2 and the definition of q(t) and R(t), we have for every t ∈ N that

x(t+1) = (1 − h)x(t) + h · [R(t)]−1AT p(t) = x(t)(1 + h · [C−1AT p(t) − 1]) > 0.

Recall that x(t) ∈ X (α(t)) if and only if α(t) · yT Ax(t) ≥ bT y for every vertex (y, z) ∈ P. Let
(y, z) ∈ P be an arbitrary vertex. Then Lemma C.4, x(t) ∈ X (α(t)) and Aq(t,k) = b yield

α(t) · yT Ax(t+k) = α(t) · yT A
[

(1 − h)kx(t)
e + [1 − (1 − h)k]q(t,k)

e

]

≥ (1 − h)k · bT y + α(t) · [1 − (1 − h)k] · bT y = (α(t)/α(t+k)) · bT y.

C.3 x
(k) is Close to a Non-Negative and Kernel-Free Vector

Lemma C.6. Suppose a matrix A ∈ Z
n×m has full row rank and vector b ∈ Z

n. Let g be a feasible
solution to Ag = b and S ⊆ [n] be a subset of the variables such that

∑

i∈S |gi| < 1/D. Then there
is a feasible solution f such that gi · fi ≥ 0 for all i ∈ [n], and fi = 0 for all i ∈ S. In particular, it
holds that ‖g − f‖∞ < 1/D.

Proof. W.l.o.g. we may assume that g ≥ 0 as we could change the signs of the columns of A
accordingly. Let 1S be the indicator vector of S. Consider the linear program min{1T

S x : Ax =
b, x ≥ 0} and let opt be its optimum value. Notice that 0 ≤ opt ≤ 1T

S g < 1/D. Since the feasible
region does not contain a line and the minimum is bounded, the optimum is attained at a basic
feasible solution, say f . Suppose that there is an index i ∈ S with fi > 0. By Cramer’s rule, this
implies that fi ≥ 1/D. This is a contradiction to the optimality of f and hence fi = 0 for all
i ∈ S.

Lemma C.7. Let q ∈ R
m and p ∈ R

n be given. If
∑

e∈N |qe| < 1/D, with N = {e ∈ E :
qe ≤ 0 or pT A:,e ≤ 0}, then there is a feasible kernel-free vector f such that supp(f) ⊆ E\N and
‖f − g‖∞ < 1/D.

Proof. Let v 6= 0 be a non-negative vector in the kernel of A. By definition, 0 = pT Av =
∑

e∈E pT A:,eve and since v ≥ 0 and v 6= 0, it follows that there is an index e ∈ E satisfying

ve > 0 and pT A:,e ≤ 0. (26)

We apply Lemma 4.2 to q with S = N . Then, there is a feasible vector f such that supp(f) ⊆
E\N and ‖f − q‖∞ < 1/D. Note that f ≥ 0, by the definition of N . We will now show that f
is kernel-free. By Lemma 2.1, it holds that f is the sum of a convex combination of basic feasible
solutions plus a vector w in the kernel of A. Moreover, all elements in this representation are sign
compatible with f , i.e., they are non-negative.

Suppose for contradiction that w 6= 0. By (26) there is an index e ∈ N such that we > 0. By
construction, e ∈ N implies fe = 0. Since all basic feasible solutions in the convex combination of
f are sign-compatible with f , i.e. non-negative, this leads a contradiction and thus w = 0.
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Lemma C.8. Suppose x(t) ∈ X (2), h ≤ cmin/(4D‖c‖1) and ε ∈ (0, 1). Then, for any k ≥
h−1 ln(4ε−1mD3‖b‖1Ψ(0)) there is a feasible kernel-free vector f with ‖x(t+k) − f‖∞ < ε/D.

Proof. Let β(k) def= 1 − (1 − h)k. By Lemma C.4, vector q(t,k) satisfies Aq(t,k) = b and thus Lemma
C.5 yields

‖x(t+k) − β(k)q(t,k)‖∞ = (1 − h)k · ‖x(t)‖∞ ≤ e−hk · Ψ(0) < ε/(4mD). (27)

By Lemma 4.1, x(t+k) ∈ X (2) for every k ∈ N, and in particular limk→∞ x(t+k) ∈ X (1). Let
Fk = Qk ∪ Pk, where Qk = {e ∈ E : q

(t,k)
e ≤ 0} and Pk = {e ∈ E : [A:,e]T p(t,k) ≤ 0}. Then, for

every e ∈ Qk we have

|q(t,k)
e | ≤ [β(k)]−1 · |x(t+k)

e − β(k)q(t,k)
e | ≤ ε/(4β(k)Dm) ≤ ε/(3mD). (28)

Note that ‖x(·)‖ ≤ Ψ(0), by Lemma C.5. Moreover, by Lemma C.4 for every e ∈ Pk we have

x(t+k)
e = x(t)

e

k+t−1
∏

i=t

[

1 + h
(

c−1
e [A:,e]T p(i) − 1

)]

≤ x(t)
e · exp

{

h

ce

(

−k + [A:,e]T p(t,k)
)

}

≤ Ψ(0) · exp {−kh}

≤ ε/(4mD3‖b‖1),

and by combining triangle inequality with (27), it follows that

|q(t,k)
e | ≤ [β(k)]−1 ·

[

|x(t+k)
e − β(k)q(t,k)

e | + |x(t+k)
e |

]

≤ [β(k)]−1 ·
[

ε/(4mD) + ε/(4mD3‖b‖1)
]

≤ ε/(3mD). (29)

Therefore, (28) and (29) yields that
∑

e∈Fk

|q(t,k)
e | ≤ (mε)/(3mD) ≤ ε/(3D). (30)

By Lemma 4.3 applied with q
(t,k)
e and N = Fk, it follows by (30) that there is a feasible kernel-

free vector f such that supp(f) ⊆ E\N and ‖f − q(t,k)‖∞ < ε/(3D). By Lemma C.3, we have
‖q(t,k)‖∞ ≤ mD2‖b‖1 and thus

‖x(t+k) − f‖∞ = ‖x(t+k) − β(k)q(t+k) + β(k)q(t+k) − f‖∞

≤ ‖x(t+k) − β(k)q(t+k)‖∞ + ‖f − q(t+k)‖∞ + (1 − h)k ‖q(t+k)‖∞

≤
ε

4Dm
+

ε

3D
+

ε · mD2‖b‖1

4mD3‖b‖1
≤

ε

D
.

C.4 x
(k) is ε-Close to an Optimal Solution

Lemma C.9. Suppose A, b, c have integer values. Then φ ≥ 1/D and Φ ≥ 1/D2.
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Proof. Let g ∈ B be arbitrary. By Cramer’s rule, ge =
∑

i∈E bi(Di/D) for any index e ∈ E, where
Di is the determinant of a square submatrix of A. Since A has integer values, we have |De| ≥ 1 for
all e ∈ E. Moreover, as ge > 0 for any e ∈ supp(g) and b has integer values, it follows that φ ≥ 1/D.
On the other hand, since g and f⋆ are rational vectors, each vector has a common denominator
bounded by D, i.e., ge ∈ Z ·G−1 and fe ∈ Z ·F −1 for all e and some G, F ≤ D. Thus Φ ≥ 1/D2.

Lemma 4.5 (from page 12). Let f be a feasible kernel-free vector and ε ∈ (0, 1) a parameter.
Suppose for every non-optimal basic feasible solution g, there exists an index e ∈ E such that ge > 0
and fe < εφ/(2D2m‖b‖1). Then ‖f − f⋆‖∞ < ε/D for some optimal f⋆.

Proof. Since f is kernel-free, by Lemma 2.1 it can be expressed as a convex combination of basic
feasible solutions f =

∑ℓ
i=1 αif

(i)+
∑m

i=ℓ+1 αif
(i), where f (1), . . . , f (ℓ) denotes the optimal solutions.

Note that ge > 0 implies ge ≥ φ, since g is basic. By the hypothesis, for every non-optimal f (i),
i.e., i ≥ ℓ + 1, there exists an index e(i) ∈ E such that f

(i)
e(i) ≥ φ and fe(i) < εφ/(2D2m‖b‖1). By

Cramer’s Rule, we have for every w ∈ E and j ∈ [m] that 0 ≤ f
(j)
w ≤ D‖b‖1. Moreover, for every

i ≥ ℓ + 1 we have

αiφ ≤ αif
(i)
e(i) ≤

m
∑

j=1

αjf
(j)
e(i) = fe(i) < εφ/(2D2m‖b‖1),

and hence
∑m

i=ℓ+1 αi < ε/(2D2‖b‖1). By triangle inequality, it follows that
∥

∥

∥

∥

∥

∥

m
∑

i=ℓ+1

αi · f (i)

∥

∥

∥

∥

∥

∥

∞

≤
m
∑

i=ℓ+1

αi‖f (i)‖∞ <
ε · D‖b‖1

2D2‖b‖1
=

ε

2D
. (31)

Let γ ≥ 0 be an arbitrary vector such that
∑l

i=1 γi =
∑m

i=ℓ+1 αi. Let f⋆ =
∑ℓ

i=1 βif
(i), where

βi = αi + γi for every i ∈ [ℓ]. Then,

∥

∥

∥

∥

∥

f⋆ −
ℓ
∑

i=1

αif
(i)

∥

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

∥

ℓ
∑

i=1

γif
(i)

∥

∥

∥

∥

∥

∞

≤ max
i∈[ℓ]

∥

∥

∥f (i)
∥

∥

∥

∞

ℓ
∑

i=1

γi <
ε · D‖b‖1

2D2‖b‖1
=

ε

2D
(32)

The statement follows by combining (31), (32) and triangle inequality.

Lemma 4.6 (from page 12). Let α, β > 0 be parameters. Suppose g is a non-optimal basic
feasible solution, β1 ≤ x(0) ∈ X (α), h ≤ (Φ/2opt) · (cmin/D ‖c‖1)2, t = (3/h) max{1, α2} and
h(ℓ) = h · min{1, α−2} if 0 ≤ ℓ ≤ t or h(ℓ) = h when ℓ > t. Then, the Physarum dynamics (6)
initialized with x(0), step size h(ℓ) and number of iterations k ≥ 4(hΦ)−1cT g ln(Ψ(0)/εβ), guarantees

the existence of an index e ∈ E such that ge > 0 and x
(t+k)
e < ε.

Proof. Let α(0) = α, ℓ ∈ N and B
(k)
g =

∑

e∈E gece ln x
(k)
e . By definition, ρ = X−1q = C−1AT p

implies x
(ℓ+1)
e = x

(ℓ)
e (1 + h(ℓ)[c−1

e · [p(ℓ)]T A:,e − 1]) and thus

B(ℓ+1)
g − B(ℓ)

g =
∑

e

gece ln
x

(ℓ+1)
e

x
(ℓ)
e

=
∑

e

gece ln

(

1 + h(ℓ)

[

[p(ℓ)]T A:,e

ce
− 1

])

≤ h(ℓ)
∑

e

gece

[

[p(ℓ)]T A:,e

ce
− 1

]

= h(ℓ)
[

−cT g + [p(ℓ)]T Ag
]

= h(ℓ)
[

−cT g + bT p(ℓ)
]

.
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We use the following inequality ln(1 + x) ≥ x − x2, for all x ∈ [−1
2 , 1

2 ]. By Lemma C.2 we have
‖AT p(ℓ)‖∞ ≤ α(ℓ)D‖c‖1. Moreover, by Lemma 4.1 and the choice of h(ℓ) it holds that

B
(ℓ+1)
f⋆ − B

(ℓ)
f⋆ =

∑

e

f⋆
e ce ln

x
(ℓ+1)
e

x
(ℓ)
e

=
∑

e

f⋆
e ce ln

(

1 + h(ℓ)

[

[p(ℓ)]T A:,e

ce
− 1

])

≥
∑

e

f⋆
e ce



h(ℓ)

[

[p(ℓ)]T A:,e

ce
− 1

]

− [h(ℓ)]2
[

[p(ℓ)]T A:,e

ce
− 1

]2




≥ h(ℓ)
(

bT p(ℓ) − opt −
Φ
2

)

, (33)

where the last inequality follows by
∑

e

f⋆
e ce[(c−1

e [p(ℓ)]T A:,e) − 1] = [p(ℓ)]T Af⋆ − opt = bT p(ℓ) − opt

and
h(ℓ)

∑

e

f⋆
e ce · (c−1

e [p(ℓ)]T A:,e − 1)2 ≤ h min{1, α−2} · c−2
minα2D2‖c‖2

1 · opt ≤ Φ/2.

Since cT g − opt ≥ Φ for every non-optimal basic feasible solution g, by (33) we have

B
(ℓ+1)
f⋆ − B

(ℓ)
f⋆ ≥ h(ℓ)

(

bT p(ℓ) − cT g
)

+ h(ℓ)
(

cT g − opt −
Φ
2

)

≥ B(ℓ+1)
g − B(ℓ)

g +
h(ℓ)Φ

2
. (34)

Hence, by (34) it holds that

B
(t+k)
f⋆ − B

(0)
f⋆ =

(

t−1
∑

ℓ=0

B
(ℓ+1)
f⋆ − B

(ℓ)
f⋆

)

+

(

k+t−1
∑

ℓ=t

B
(ℓ+1)
f⋆ − B

(ℓ)
f⋆

)

≥

(

t−1
∑

ℓ=0

B(ℓ+1)
g − B(ℓ)

g +
h(ℓ)Φ

2

)

+

(

k+t−1
∑

ℓ=t

B(ℓ+1)
g − B(ℓ)

g +
h(ℓ)Φ

2

)

= B(t+k)
g − B(0)

g +
Φ
2

[

t−1
∑

ℓ=0

h(ℓ) +
k+t−1
∑

ℓ=t

h(ℓ)

]

≥ B(t+k)
g − B(0)

g + k ·
hΦ
2

.

Moreover, by Lemma C.5 for every k ∈ N and every g ∈ B, it holds that B
(k)
g ≤ cT g ln Ψ(0). Hence,

B(t+k)
g ≤ −k ·

hΦ
2

+ 2cT g ln
Ψ(0)

β
.

Suppose for contradiction that for every e ∈ E with ge > 0 it holds x
(t+k)
e > ε. Then, B

(t+k)
g >

cT g ln ε and hence

k <
4cT g

hΦ
ln

Ψ(0)

εβ
, (35)

a contradiction to the choice of k.
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