

Polymer Chemistry

Accepted Manuscript

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>author guidelines</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

DOI: 10.1039/C7PY01607G

Journal Name

COMMUNICATION

Free radical and RAFT polymerization of vinyl esters in metalorganic-frameworks

Received 00th January 20xx, Accepted 00th January 20xx

Jongkook Hwang,^a Hui-Chun Lee,^a Markus Antonietti,^a and Bernhard V. K. J. Schmidt*^a

DOI: 10.1039/x0xx00000x

www.rsc.org/

Free radical and RAFT polymerization of vinyl esters with different molecular dimensions are conducted in the nanochannels of metal-organic-framework (MOF). The combination of MOF with RAFT technique enables synthesis of highly isotactic poly(vinyl ester)s with controlled molecular weight and narrow molecular weight distribution, and stereocontrolled isotactic-block-atactic vinyl ester block copolymers.

Poly(vinyl ester)s (PVEs) are an industrially important class of polymers with a broad range of applications such as adhesives, paints and coating. Moreover, PVEs are utilized as precursors for poly(vinyl alcohol)s (PVAs) which attract considerable attention due to their water solubility, non-toxicity and biocompatibility that are suitable for various bio- and medicalapplications.² To meet the growing demand for functional PVEs, the ability to realize precision polymers having the needed properties and structures is an essential prerequisite.

Control over primary structures of PVEs, e.g., molecular weight (MW) and - less often considered - tacticity, is an essential yet challenging task to control the properties of polymers. Because vinyl esters lack conjugated substituents, their propagating radicals have high reactivity and low stability, resulting often in uncontrollable chain transfer and side reactions. Although a few reversible deactivation radical polymerization (RDRP) techniques including iodine transfer-, cobalt mediated-,4 organostibine mediated-,5 iron complex catalyzed-radical polymerization⁶ and reversible addition fragmentation transfer (RAFT)⁷ have provided PVEs with relatively controlled MW and polydispersity (D), only negligible or no effect on stereostructures was induced. Indeed, the tacticity control of PVEs can only be achieved by using monomers with bulky/polar substituents and adding Lewis acids or fluoroalcohols into the reaction medium.8 Nevertheless, these approaches sometimes require expensive chemicals or specific conditions at very low temperature (-78

°C) which are not appropriate for most of RDRP processes, and thus are mostly limited to free radical polymerization, affording on this end polymers with uncontrolled MW and relatively high D. In addition, common methods effectively produce syndiotacticity-rich PVEs only. In this context, development of efficient method that simultaneously controls MW, D and tacticity - preferably towards isotacticity which is not accessible by conventional methods – of PVEs is relevant.

Recently, metal-organic-frameworks (MOF)s, crystalline porous materials constructed by joining metal-ion-containing nodes with organic ligands, have shown promise as versatile hosts for controlled polymerization or as polymerization catalysts. Their unique structural characteristics such as highly-ordered and chemically homogeneous micropores (nanochannels), controllable pore size and pore functionality can provide a steric discrimination to promote specific size and shape effects on the monomer arrangements/conformation, possibly enabling the production of vinyl polymers with controlled MW, stereo- and regio-structures, reaction sites, monomer sequence and chain alignment. 10, 11-13 Despite this remarkable progress, there are still several issues to be addressed. First, the previously described effect of the MOF nanochannels on tacticity was relatively small. e.g., poly(vinyl acetate) obtained from MOF shows an increase in mesodiads of only 8% when compared with that of bulk counterpart. 13 Second, understanding of detailed aspects of polymerization in MOFs (e.g., effect of monomer or nanochannel size on polymerization) is still limited. Few systematic studies based on a specific monomer have been reported. 12, 13 Third, polymerization of vinyl monomers in MOF still remains restricted to free radical polymerization. Although propagating radicals in MOF are remarkably stabilized and show a living-like characteristic, the inherent drawbacks of free radical polymerization inevitably lead to relatively broad molecular weight distribution (MWD) and limited control over macromolecular architectures or end groups.

To overcome these limitations, here we introduce free radical and RAFT polymerization of vinyl esters in MOF, $[Zn_2(bdc)_2ted]_n$ (bdc = benzene-1,4-dicarboxylic acid and ted =

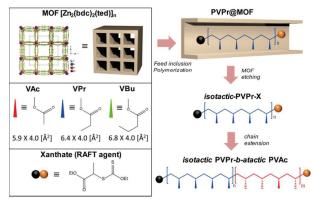
DOI: 10.1039/x0xx00000x

available:

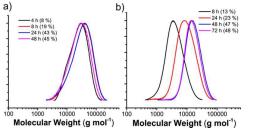
a. Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany Supplementary

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Open Access Article. Published on 29 September 2017. Downloaded on 02/10/2017 14:34:50.


DOI: 10.1039/C7PY01607G

Journal Name


Table 1. Free Radical^a and RAFT^b Polymerization of Vinyl Ester in MOF at 60 °C for 48 h.

Sample	Adsorbed monomer [number/unit cell] ^c	Conv.[%] ^c	$M_{n, SEC}$ [g mol ⁻¹] ^d	Đ	Tacticity, mm:mr:rr (m) [%] ^e
f-PVAc in MOF	3.6	63	42500	2.17	30: 50: 20 (55)
<i>f</i> -PVPr in MOF	2.8	43	20400	1.71	36: 49: 15 (61)
<i>f</i> -PVBu in MOF	2.4	32	17500	1.51	25: 49: 26 (50)
r-PVAc in MOF	3.6	65	21700	1.25	30: 50: 20 (55)
r-PVPr in MOF	2.8	47	14300	1.34	36: 50: 14 (61)

^a [AIBN]: [monomer]=1:471 at 60 °C for 48 h. ^b [AIBN]: [RAFT agent]:[monomer]=1:3:471 at 60 °C for 48 h. ^c Determined by TGA. ^d Determined by SEC against PS calibration. ^e Determined by ¹H NMR of PVA in dimethyl sulfoxide (DMSO)-d₆ at ambient temperature.

Scheme 1 Free radical and RAFT polymerization of vinyl esters in MOF and sequential preparation of isotactic-*b*-atactic block copolymers.

Fig. 1 MWDs (obtained *via* SEC in THF with PS calibration) of (a) PVPr prepared by free radical polymerization in MOF and (b) PVPr prepared by RAFT polymerization in MOF for various reaction times (conversions).

triethylenediamine), 14 which has a uniform one-dimensional nanochannels of 7.5 × 7.5 Å 2 along the c axis (Scheme 1). MOF nanochannel is utilized as a nanoreactor to regulate the stereostructures (i.e., increase in isotacticity), while RAFT further provides access to PVEs with narrow MWD and controlled molecular architectures. The combination strategy allows synthesis of highly isotactic PVEs with controllable MW and low \mathcal{D} , which in turn enables preparation of stereocontrolled isotactic-b-atactic vinyl ester block copolymers for the first time.

We first studied monomer size effect on free radical polymerization by using vinyl esters with different molecular dimensions (length × width), i.e., vinyl acetate (VAc) (5.9 × 4.0 Ų), vinyl propionate (VPr) (6.4 × 4.0 Ų), and vinyl butyrate (VBu) (6.8 × 4.1 Ų). The monomer/AIBN/(RAFT agent) solution was adsorbed in the nanochannels of MOF by wetness impregnation. The excess monomer external to MOF was removed under reduced pressure. The monomer loaded MOF (monomer@MOF) was heated at 60 °C for 48 h under a nitrogen atmosphere to form polymer@MOF composite.

Subsequently, the MOF host was decomposed in an aqueous Na_2EDTA solution to liberate the polymers from the frameworks. The results of f- /r-PVE in MOF were summarized in Table 1, where f and r denote free radical and RAFT polymerization, respectively.

The amount of adsorbed monomer in the MOF decreases slightly with increasing of molecular dimension of monomer, as determined by thermogravimetric analysis (TGA) (Fig. S1; Table 1). Powder x-ray diffraction patterns of polymer@MOF composites are in good agreement with that of the pristine MOF, indicating that microstructures of MOF are well-retained without structural deformation during polymerization (Fig. S2a). The relative peak intensity changed, which results from introduction of the PVEs in the nanochannels of MOF. 11, 15 To further support the incorporation of PVEs, N2 gas physisorption experiments were performed for the MOF and polymer@MOF composites (Fig. S2b). All the isotherms correspond to Type-I curve with a steep gas uptake at very low $P/P_0 \sim 0.02$, suggesting that uniform micropores are dominant. The decrease in the amount of N₂ adsorption and the pore volume of polymer@MOF indicates that the nanochannels of MOF are partially occupied by the PVEs. 16 Such decrease becomes more noticeable as the monomer size decreases from VBu to VAc, implying that the amount of encapsulated polymer in MOF increases in the order of PVBu < PVPr < PVAc, which is consistent with the conversions for polymerization of VBu (32%), VPr (43%), and VAc (63%).

The monomer conversion is strongly affected by the monomer size. Only a slight increase in monomer size leads to significant decrease in conversion. Previously, a similar behavior was observed in the polymerization of vinyl monomers in MOFs with different nanochannel size (4.3 - 10.8 Å). As the size of nanochannels narrowed, the polymer yields and conversion decreased because of the reduced monomer mobility in the narrow nanochannels, which was confirmed by solid state nuclear magnetic resonance (NMR) spectroscopy. Likewise, the mobility of large monomer (i.e., VBu) is more strongly restricted by the given nanochannels than that of small monomer (i.e., VAc), which results in the relatively poor reactivity and low conversion of VBu. For comparison, when a bulkier monomer, vinyl pivalate, was employed for polymerization in MOF, no polymeric products were obtained possibly due to the poor mobility of monomer, although the adsorbed amount of monomer per unit cell (~2 molecules) is enough for polymerization.

Journal Name

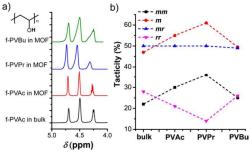


Fig. 2 (a) 1 H NMR spectra of PVA (obtained by saponification of corresponding PVE) in DMSO- d_6 at ambient temperature and (b) plots of tacticity change with respect to monomer types used for polymerization in MOF.

The MWDs become narrower with an increase of monomer size. The $\mathcal D$ decreases markedly from 2.17 for f-PVAc, 1.71 for f-PVPr and 1.51 for f-PVBu, which are much smaller than those prepared in bulk (Table S1). The conventional free radical polymerizations of vinyl esters underwent uncontrollable chain transfer and termination due to the high reactivity of propagating radicals, which led to extremely broad MWD (Fig. S3). In contrast, the propagating radicals in MOF are remarkably stabilized and the termination reactions are largely suppressed because of effective entrapment in the nanochannels. These effects become prominent in the large monomer (VBu), enabling the preparation of f-PVBu with $\mathcal D$ as low as $^\sim$ 1.5.

To further understand the free radical polymerization process in MOF, the MW dependence on reaction time and thus conversion was investigated. The representative size exclusive chromatography (SEC) profiles of f-PVPr with different reaction times show that MW has no correlation with conversion in the given nanochannels of MOF (Fig. 1a). The MW reaches a high value ~20,000 g mol⁻¹ at an early stage of polymerization and remains constant, whereas the conversion increases steadily with reaction time. The primary radicals may be slowly generated in the initiation step and undergo a fast propagation reaction to consume the monomers confined in a compartment (Note that the reactant only partially occupies the nanochannels). Thus, an increase of monomer size can lead to a decrease of MW, because of the relatively low monomer loading (i.e., small compartment) and low mobility of large monomer in the nanochannels.

The relation between monomer size and stereostructure was studied, where the polymers obtained from MOF (Table 1) have a higher isotacticity than those obtained from the bulk (Table S1). The fractions of isotactic (*mm*)- heterotactic (*mr*)-and syndiotactic (*rr*)-triads in each polymer were determined by ¹H NMR spectroscopy after saponification of the PVEs to PVAs (Fig. 2a). Compared with the bulk counterparts, the substantial increase in mesodiads (*m*) was observed in *f*-PVAc by 8%, *f*-PVPr by 14% and *f*-PVBu by 5% (Fig. 2b). Because there is no specific interaction between nanochannel walls and adsorbed monomers, the change in tacticity mostly depends on the monomer arrangement in confined space. Polymerization in the confined nanochannels preferably induces the formation of less sterically bulky isotactic moieties, ¹², ¹³ because isotactic polymer has smaller

conformational diameter than its corresponding syndiotactic polymer. 17 However, we found that the mesodiad fraction does not always increase with increasing monomer size, but has a certain maximum value of 61% of f-PVPr in MOF. Unlike the others, the tacticity change of f-PVBu is very small, probably due to the relatively large steric repulsion among the butyl substituents which could induce the formation of syndiotactic units, compromising the increase of isotactic units induced by nanochannels of MOF. However, the detailed aspects of such behavior still remain elusive and will be the subject of future work. Notably, polymerization in MOF is the only way known to increase the isotacticity of PVEs. Previous approaches such as the use of bulky monomers, protic solvents or additives can only afford syndiotactic-rich PVEs so far, e.g., fluoroalcohols form hydrogen bonds with the carbonyl group of the monomer and increase the effective size of side groups (steric hindrance), thereby inducing syndiotactic-specific polymerization. In polymerization of vinyl esters in MOF is an effective method to control isotacticity of PVEs and thus enables the preparation of PVPr with higher isotactic fractions (61% mesodiads).

Although free radical polymerization in MOF allowed synthesis of PVEs with significant isotacticity, it still lacks control over MW, MWD and molecular architectures. One possible solution to overcome these limitations is combination of MOF with RDRP techniques. Among the various RDRP techniques, RAFT was chosen because of its ease of use, versatility, and compatibility with a wide range of monomers. It should be noted that nitroxide mediated polymerization 18 and atom transfer radical polymerization (ATRP) of vinyl esters have proven to be very difficult. Here, a RAFT agent, (S)-2-(ethyl propionate)-(O-ethyl xanthate), was prepared according to the literature procedures (Fig. S4) and used for mediating polymerization of vinyl esters in MOF.

Addition of RAFT agent into the reaction feed of free radical polymerization led to preparation of isotactic PVAc and PVPr (denoted as r-PVAc/r-PVPr in MOF) (Table 1). 1 H NMR spectra of resulting polymers show characteristic peaks of xanthate-end groups (Fig. S5; Fig. S6). The tacticities of r-PVAc and r-PVPr in MOF are similar to those of f-PVAc and f-PVPr in MOF, which strongly suggests that RAFT polymerization mostly proceeds within the nanochannels of MOF.

In sharp contrast to free radical polymerization in MOF, the MW is determined by the monomer conversion (Fig. 1), which is a clear indication for the controlled characteristic of RAFT process. For instance, during the RAFT polymerization of VPr in MOF, the MW increases linearly from 3200 to 7600 to 14300 g mol⁻¹, as the monomer conversion (reaction time) increases from 13% (8 h) to 23% (24 h) to 47% (48 h), while maintaining low *D* 1.3-1.6 (Fig. 1b). The conversion is saturated after polymerization for 48 h, which takes two times longer than *f*-PVPr in MOF does. It is common that RAFT polymerization is slower than free radical polymerization in bulk and solution partly because of the adduct intermediate radical. We cannot exclude the possibility that the rate of degenerate transfer, *i.e.*, main equilibrium in RAFT process (Fig. S7), can be slowed down by largely restricted mobility of polymer/radical adducts

COMMUNICATION

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Access Article. Published on 29 September 2017. Downloaded on 02/10/2017 14:34:50.

DOI: 10.1039/C7PY01607G

Journal Name

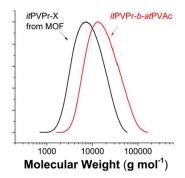


Fig. 3 MWDs of itPVPr macro-RAFT agent and itPVPr-b-atPVAc block copolymer.

in the narrow nanochannels. The MWDs of resulting *r*-PVAc (1.25) and *r*-PVPr (1.34) in MOF are as narrow as those of bulk RAFT counterparts (Fig. S8), and are significantly narrower than those of *f*-PVAc (2.17) and *f*-PVPr (1.71) in MOF (Fig. S3). All experimental results suggest that the RAFT agent efficiently mediates the controlled polymerization of vinyl ester in the nanochannels of MOF.

One of the main advantages of RAFT is its ability to prepare complex architectures such as block copolymers. Sequential bulk RAFT polymerization with different vinyl esters allowed synthesis of isotactic (it)-block-atactic (at) vinyl ester block copolymers, which are not accessible otherwise. The chain extension procedure is also important to confirm end group fidelity of the initial block. r-PVPr in MOF was used as a macro-RAFT agent for chain extension with VAc at 60 °C ([AIBN]: [r-PVPr]: [VAc] = 0.4: 1: 2500). SEC traces of the initial itPVPr and final itPVPr-b-atPVAc show a clear shift of MWD from M_n 7600 g mol⁻¹ (\mathcal{D} 1.60) to M_n 12500 g mol⁻¹ (\mathcal{D} 1.71), which is slightly deviated from theoretical value ($M_{n, theo}$ 19500 g mol⁻¹) (Fig. 3). However, considering the relatively high monomer to macro-RAFT agent ratio, such deviation is in a reasonable error range. The formation of block copolymer was further confirmed by ¹H NMR spectrum, showing the characteristic peaks of two distinct blocks at 2.0-2.1 ppm for PVAc and at 1.0-1.2 ppm for PVPr (Fig. S9). Although the living characteristics of the presented RAFT polymerization were confirmed by the linear molecular weight increment with conversion and the clear shift of full MWD without bimodalities or tailing after chain extension, it is still elusive whether the RAFT mechanism in MOF really works in a similar way to conventional RAFT polymerization. The detailed aspects of RAFT mechanism in MOF are beyond the scope of the present contribution and still under investigation.

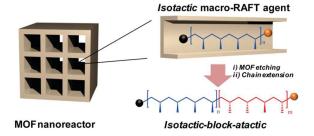
In conclusion, we have demonstrated free radical and RAFT polymerization of various vinyl esters with different monomer dimensions (VAc, VPr, and VBu) in the identical nanochannels of MOF. Strong correlations between monomer size and polymerization behaviors were observed. As the monomer size increased from VAc to VPr to VBu, the conversion, MW, and $\mathcal D$ decreased accordingly. PVPr showed the highest isotacticity (61% mesodiads) among the PVEs. The polymerization system was further combined with RAFT technique to prepare isotactic PVEs with controllable MW and narrow MWDs. The

resulting PVPr was used as a macro-RAFT agent to prepare stereocontrolled block copolymer, *it*PVPr-*b-at*PVAc. The results show that polymerization in MOF enables simultaneous control over molecular weight and tacticity of vinyl esters and expand the use of MOF nanochannel-reactors into the area of RDRP techniques for the first time, which might be extended to other types of RDRP, *e.g.*, ATRP. Therefore, we believe that the combination of MOF and RDRP techniques enriches the macromolecular engineering tools and opens up new possibilities that enable preparation of unique macromolecules with tailored microstructures.

The authors thank the Max Planck Society for funding.

Conflicts of interest

There are no conflicts to declare.


Notes and references

- S. Harrisson, X. Liu, J.-N. Ollagnier, O. Coutelier, J.-D. Marty and M. Destarac, *Polymers*, 2014, 6, 1437-1488; H. Rinno, in *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
- K. Y. Lee and D. J. Mooney, *Chem. Rev.*, 2001, **101**, 1869-1880.
- 3 M. C. Iovu and K. Matyjaszewski, Macromolecules, 2003, 36, 9346-9354; K. Koumura, K. Satoh, M. Kamigaito and Y. Okamoto, Macromolecules, 2006, 39, 4054-4061.
- 4 A. Debuigne, J. R. Caille and R. Jérôme, *Angew. Chem., Int. Ed.*, 2005, **44**, 1101-1104.
- 5 S. Yamago, B. Ray, K. Iida, J.-i. Yoshida, T. Tada, K. Yoshizawa, Y. Kwak, A. Goto and T. Fukuda, J. Am. Chem. Soc., 2004, 126, 13908-13909.
- 6 M. Wakioka, K.-Y. Baek, T. Ando, M. Kamigaito and M. Sawamoto, *Macromolecules*, 2002, 35, 330-333.
- 7 M. H. Stenzel, L. Cummins, G. E. Roberts, T. P. Davis, P. Vana and C. Barner-Kowollik, *Macromol. Chem. Phys.*, 2003, 204, 1160-1168; S.-H. Shim, M.-k. Ham, J. Huh, Y.-K. Kwon and Y.-J. Kwark, *Polym. Chem.*, 2013, 4, 5449-5455; C. E. Lipscomb and M. K. Mahanthappa, *Macromolecules*, 2009, 42, 4571-4579.
- K. Yamada, T. Nakano and Y. Okamoto, *Polym. J.*, 1998, **30**, 641-645; W. Liu, Y. Koike and Y. Okamoto, *Polymer*, 2004, **45**, 5491-5495; K. Yamada, T. Nakano and Y. Okamoto, *Polym. J.*, 2000, **32**, 707-710; K. Yamada, T. Nakano and Y. Okamoto, *Macromolecules*, 1998, **31**, 7598-7605; K. Satoh and M. Kamigaito, *Chem. Rev.*, 2009, **109**, 5120-5156.
- H.-C. Lee, M. Antonietti and B. V. K. J. Schmidt, *Polym. Chem.*, 2016, **7**, 7199-7203; T. Kitao, Y. Zhang, S. Kitagawa, B. Wang and T. Uemura, *Chem. Soc. Rev.*, 2017, **46**, 3108-3133; T. Uemura, N. Yanai and S. Kitagawa, *Chem. Soc. Rev.*, 2009, **38**, 1228-1236.
- 10 G. Distefano, H. Suzuki, M. Tsujimoto, S. Isoda, S. Bracco, A. Comotti, P. Sozzani, T. Uemura and S. Kitagawa, Nat. Chem., 2013, 5, 335-341; Y.-S. Wei, M. Zhang, P.-Q. Liao, R.-B. Lin, T.-Y. Li, G. Shao, J.-P. Zhang and X.-M. Chen, Nat. Commun., 2015, 6, 8348; I. H. Park, R. Medishetty, H. H. Lee, C. E. Mulijanto, H. S. Quah, S. S. Lee and J. J. Vittal, Angew. Chem., Int. Ed., 2015, 54, 7313-7317; R. Medishetty, I.-H. Park, S. S. Lee and J. J. Vittal, Chem. Commun., 2016, 52, 3989-4001.
- 11 T. Uemura, K. Kitagawa, S. Horike, T. Kawamura, S. Kitagawa, M. Mizuno and K. Endo, Chem. Commun., 2005, 5968-5970.
- 12 T. Uemura, Y. Ono, Y. Hijikata and S. Kitagawa, *J. Am. Chem. Soc.*, 2010, **132**, 4917-4924.

Journal Name

- 13 T. Uemura, Y. Ono, K. Kitagawa and S. Kitagawa, Macromolecules, 2008, 41, 87-94.
- 14 D. N. Dybtsev, H. Chun and K. Kim, Angew. Chem., Int. Ed., 2004, 43, 5033-5036.
- 15 K. Moller, T. Bein and R. X. Fischer, Chem. Mater., 1998, 10, 1841-1852.
- 16 16. C.-G. Wu and T. Bein, Science, 1994, 1013-1015; J. Hwang, S. H. Woo, J. Shim, C. Jo, K. T. Lee and J. Lee, ACS Nano, 2013, 7, 1036-1044.
- 17 M. Hunt, D.-W. Jung, M. Shamsheer, T. Uyar and A. Tonelli, Polymer, 2004, 45, 1345-1347.
- J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes and B. Charleux, Prog. Polym. Sci., 2013, 38, 63-235.
- 19 M. B. Gillies, K. Matyjaszewski, P.-O. Norrby, T. Pintauer, R. Poli and P. Richard, Macromolecules, 2003, 36, 8551-8559.
- 20 V. K. Patel, N. K. Vishwakarma, A. K. Mishra, C. S. Biswas and B. Ray, J. Appl. Polym. Sci., 2012, 125, 2946-2955.

Table of contents

