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A B S T R A C T

Background: Brainstem networks are pivotal in sensory and motor function and in recovery following experi-
mental spinal cord injury (SCI).
Objective: To quantify neurodegeneration and its relation to clinical impairment in major brainstem pathways
and nuclei in traumatic SCI.
Methods: Quantitative MRI data of 30 chronic traumatic SCI patients (15 with tetraplegia and 15 with para-
plegia) and 23 controls were acquired. Patients underwent a full neurological examination. We calculated
quantitative myelin-sensitive (magnetisation transfer saturation (MT) and longitudinal relaxation rate (R1)) and
iron-sensitive (effective transverse relaxation rate (R2*)) maps. We constructed brainstem tissue templates using
a multivariate Gaussian mixture model and assessed volume loss, myelin reductions, and iron accumulation
across the brainstem pathways (e.g. corticospinal tracts (CSTs) and medial lemniscus), and nuclei (e.g. red
nucleus and periaqueductal grey (PAG)). The relationship between structural changes and clinical impairment
were assessed using regression analysis.
Results: Volume loss was detected in the CSTs and in the medial lemniscus. Myelin-sensitive MT and R1 were
reduced in the PAG, the CSTs, the dorsal medulla and pons. No iron-sensitive changes in R2* were detected.
Lower pinprick score related to more myelin reductions in the PAG, whereas lower functional independence was
related to more myelin reductions in the vestibular and pontine nuclei.
Conclusion: Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem
pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment.
Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment
trials.

1. Introduction

Traumatic spinal cord injury (SCI) is a devastating condition and
causes permanent sensorimotor loss and autonomic dysfunction in most
patients, with no cure currently available (Dietz and Fouad, 2014).
Usually patients show some degree of recovery which levels off within
two years after injury. Using computational neuroimaging approaches,
rapid and dynamic trajectories of neurodegenerative processes have
been identified above the level of injury that accompanied the recovery.
Crucially, the magnitude of neurodegeneration was associated with
clinical impairment (Freund et al., 2013; Grabher et al., 2015).

Besides neurodegeneration at the spinal and cortical level (Beaud
et al., 2008; Jirjis et al., 2015), retrograde and transneuronal

degeneration has been shown in experimental SCI in brainstem path-
ways (Jirjis et al., 2015; Jones and Pons, 1998) and nuclei (Jones and
Pons, 1998; Kwon et al., 2002; Wannier-Morino et al., 2008). The
brainstem is phylogenetically highly conserved in mammals and plays a
key role in motor (Lemon, 2008) and sensory function (Benarroch,
2012; Liao et al., 2015). Important substructures of the motor system
entail the rubrospinal system (i.e. execution of precise limb move-
ments), the vestibulospinal system (i.e. balance and posture), the re-
ticular formation (i.e. initiates and coordinates limb movements and
postural support), and the corticospinal system (i.e. skilled motor
function) (Lemon, 2008), while the dorsal column nuclei and medial
lemniscus (Liao et al., 2015) and the periaqueductal grey (PAG)
(Benarroch, 2012) are involved in sensory processing and pain
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modulation. Crucially, structural reorganization of brainstem pathways
and nuclei has been associated with functional recovery following ex-
perimental SCI (Zaaimi et al., 2012; Zörner et al., 2014). Thus, under-
standing trauma-induced pathophysiological processes affecting the
brainstem pathways and nuclei might offer crucial insights into neu-
rodegeneration and plasticity.

However, the brainstem is still understudied in human SCI as ac-
curate and sensitive neuroimaging tools targeting the brainstem have
only recently become available (Lambert et al., 2013b). First attempts
using neuroimaging approaches provided evidence of brainstem
atrophy (i.e. volume loss) (Freund et al., 2013, 2012; Grabher et al.,
2015; Wrigley et al., 2009) and plasticity (i.e. volume increases) during
intensive training (Villiger et al., 2015) in human SCI. Recent im-
provements in quantitative MRI (qMRI) techniques now allow quanti-
fication of the underlying microstructural changes (Weiskopf et al.,
2015) and segmentation of individual brainstem pathways and nuclei
(Lambert et al., 2013b). This is possible because different MR contrasts
can be used to calculate quantitative maps (magnetisation transfer sa-
turation (MT), longitudinal relaxation rate (R1), effective transverse
relaxation rate (R2*)), which are sensitive to myelin (Schmierer et al.,
2004; Turati et al., 2015) and iron (Stüber et al., 2014). Such maps can
be used for multiparametric brainstem tissue segmentation (Lambert
et al., 2013b). Myelin reductions have been shown to accompany
atrophic changes in the cord and cortex, thus offering complementary
insights into the sequela of SCI (Freund et al., 2013; Grabher et al.,
2015). Furthermore, iron accumulation due to myelin breakdown has
been reported in SCI (Kroner et al., 2014; Sauerbeck et al., 2013).

Here, we combined voxel-based quantification and multiparametric
tissue segmentation to address our hypotheses that after traumatic
chronic SCI, (1) atrophy and myelin reduction are evident in major
brainstem pathways and nuclei and, (2) that the extent of atrophy,
myelin reduction and iron accumulation relates to clinical impairment,
lesion level and severity.

2. Methods

2.1. Participants and study design

We recruited 30 individuals with a chronic traumatic SCI (3 female)
and 23 healthy participants (10 female) at the University Hospital
Balgrist between August 2011 and May 2015. Fifteen patients were
tetraplegic and fifteen paraplegic. All patients were treated surgically
for decompression. No participant reported a history of medical, neu-
rological, or psychiatric disorders and all were eligible for MRI ex-
aminations.

Patients underwent a comprehensive clinical protocol including (1)
the International Standards for Neurological Classification of Spinal
Cord Injury (ISNCSCI) (Kirshblum et al., 2011) to assess upper and
lower extremity motor score (UEMS and LEMS), light touch (LT), pin-
prick (PP), lesion level, and severity (i.e. ASIA impairment scale (AIS)),
and (2) the Spinal Cord Independence Measure (SCIM) (Catz et al.,
2007).

To define the level of sensory and motor impairment, the most
caudally intact dermatome for light touch and pinprick sensation (2/2
points) and motor function were considered, respectively (according to
the ISNCSCI protocol). Lesion-level (neurological level of injury) was
defined as the most caudal segment of the cord with intact sensation
and motor function against gravity (min. 3/5 points), provided that
motor and sensory function above this segment were normal. Lesion
completeness was defined as having no motor and sensory function
preserved in the sacral levels S4/5 (AIS A).

All participants gave informed written consent prior to study en-
rolment. The study protocol was in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of the Canton Zurich
(reference number: EK-2010-0271).

2.2. Image acquisition

All participants' structural whole-brain data, including the cervical
cord up to vertebra C5, were acquired on a 3T Magnetom MRI scanner
(Siemens Healthcare, Erlangen, Germany). The system was equipped
with a 16-channel radiofrequency (RF) receive head and neck coil and
RF body transmit coil. A multiecho 3D FLASH (fast low-angle shot)
sequence, with the following parameters, was used within a whole-
brain multiparameter mapping (MPM) qMRI protocol (Draganski et al.,
2011; Weiskopf et al., 2011): field of view (FoV) of 240 × 256 mm2,
matrix size 240 × 256, isotropic resolution of 1 mm, GRAPPA parallel
imaging in phase-encoding direction (anterior-posterior) with speed-up
factor of 2, partial Fourier acquisition with 6/8 sampling factor in
partition direction (left-right), and a readout bandwith of 480 Hz per
pixel. Different weightings were predominantly achieved by choosing
repetition time (TR) and flip angle (α): (1) T1-weighted (T1w): 25 ms/
23°, (2) proton density-weighted (PDw): 25 ms/4°, and (3) MT-
weighted (MTw): 37 ms/9° with off-resonance RF pulse prior to ex-
citation. Echoes were acquired at seven equidistant echo times (TE)
from 2.46 ms to 17.22 ms for all volumes, with an additional echo at
19.68 ms for PDw and T1w.

2.3. Image pre-processing

The acquired T1w, PDw, and MTw echoes were first averaged to
increase the signal to noise ratio (SNR) and then used to calculate
quantitative maps of MT and R1 (Draganski et al., 2011; Weiskopf et al.,
2011) in MATLAB (MathWorks, Natick, MA). R2* was calculated from
the log signal of the PDw echoes. UNICORT (Weiskopf et al., 2011) was
used to correct RF transmit field inhomogeneity.

2.4. Brainstem template generation

We first generated brainstem tissue probability maps (TPMs) for the
spatial alignment of brainstem sub-structures in our study cohort and to
increase sensitivity for pathophysiological processes. Before generating
the TPMs, we extracted the brainstem from quantitative maps from a
longitudinal qMRI dataset of 29 subjects over four time points (Freund
et al., 2013; Grabher et al., 2015) by label propagation using a set of
brain labels (Neuromorphometrics Inc., Somerville, USA). Subse-
quently, whole-brain deformation fields were derived by segmenting
the MT maps (Ashburner and Friston, 2005) and then applying a dif-
feomorphic image registration algorithm (Ashburner, 2007). The de-
rived deformation fields enabled the extracted qMRI brainstem data to
be transformed to the MNI space.

We then used a multivariate Gaussian mixture model to generate
brainstem TPMs (Hasselblad, 1966). Such a model assumes that the
observed image intensities are drawn from a set of multivariate Gaus-
sian probability density functions, where each Gaussian captures the
intensity distribution of one single tissue type. Additionally, we in-
troduced locally-varying, unknown tissue priors, which are learned
directly from the observed data, thus providing a set of population-
specific, average-shaped TPMs (Blaiotta et al., 2016; Lambert et al.,
2013b). The statistical Gaussian mixture model was fit to the spatially
normalized qMRI brainstem data, using the Expectation-Maximization
algorithm (Moon, 1996), which is a general and well-established
technique to obtain maximum likelihood or maximum a posteriori esti-
mates of the model parameters, for probabilistic latent variable models.
Within the neuroimaging community, such a method has been ex-
tensively validated for the classification of neural tissue types from MR
data (Ashburner and Friston, 2005; Blaiotta et al., 2016; Lambert et al.,
2013b). The resulting seven brainstem TPMs (classes 1–7) are shown in
Fig. 1 and contained, amongst others, the red nucleus (RN) (class 6),
cerebral crus including the corticospinal tracts (CSTs) (class 6), and
PAG (class 3). Anatomical locations were validated using a high-field
MRI brainstem atlas (Naidich et al., 2009). The tissue probability maps
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were subsequently aligned and merged with the whole-brain TPMs
provided with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) (subse-
quently referred to as modified TPMs), so as to allow a more accurate
alignment of the brainstem tissue maps with the individual scans,
during the following processing steps. In fact, information derived from
the tissues surrounding the brainstem (i.e. grey and white matter) can
be effectively used to drive the registration of the individual volumes to
the population mean, therefore ensuring more accurate segmentation
results.

2.5. Voxel-based macrostructural and microstructural analysis of the
brainstem

We used our modified TPMs to segment the brain data (using MT
and PDw data) of our study population (30 SCI and 23 controls) into
grey matter, white matter, cerebrospinal fluid, plus the seven brainstem
tissues for each subject (Ashburner and Friston, 2005). Then, a geodesic
shooting registration algorithm (Ashburner and Friston, 2011) was used
to align the seven brainstem tissues of all subjects and to create a
common study population mean (Fig. 2). The estimated deformation
fields were used both to compute Jacobian determinant maps for
tensor-based morphometry (TBM), and to warp the quantitative maps
of MT, R1, and R2* into the study population mean space for voxel-

based quantification (VBQ) (Draganski et al., 2011). Due to the lack of
gyrification of the brainstem and due to the highly accurate warping
algorithm, no smoothing was applied to achieve higher spatial accuracy
for small brainstem structures (Lambert et al., 2013a, 2013b). Note that
using unsmoothed data reduces sensitivity (i.e. fewer false positive re-
sults) and increases specificity due to Random Field theory being overly
conservative at low smoothness (Nichols, 2012).

We used t-tests within the framework of the general linear model
(GLM) to assess morphometric and microstructural differences between
individuals with SCI and healthy controls, between tetraplegic and
paraplegic patients, and between patients with complete and in-
complete lesions. We used regression models to assess the relationship
between morphometric and microstructural measures and neurological
and functional impairment (AIS, lesion level, LEMS; UEMS, LT, PP,
SCIM). Covariates of no interest included age, total intracranial volume
and scanner upgrade to control for confounding linear effects in all
GLMs (Barnes et al., 2010). Cluster-inference was performed using a
cluster-defining threshold of p = 0.001 and a family-wise error (FWE)
corrected threshold of p = 0.05 using Gaussian Random Field theory to
account for multiple comparisons (Friston et al., 1994) within regions
of interest (ROIs) derived from the seven brainstem TPMs. Only sig-
nificant results (p < 0.05) corrected for FWE are reported. The ROIs
(i.e. brainstem TPMs) were used to increase sensitivity for

Fig. 1. Brainstem tissue probability maps (classes 1–7). Seven within-brainstem tissue classes were derived from multiparametric brainstem segmentation using a multivariate mixture of
Gaussians. They contain brainstem nuclei including the substantia nigra (class 1), the periaqueductal grey (class 3), and the red nucleus and cerebral crus (class 6).

Fig. 2. Overlay of study population mean onto high-
resolution Duvernoy Atlas of the brainstem (Naidich
et al., 2009). The population mean was derived by
registration of the seven brainstem tissues of all
subjects and are in correspondence to the obtained
brainstem tissue probability maps (see Fig. 1).
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pathophysiological processes and specificity for anatomical locations in
brainstem sub-structures (e.g. CST, RN, PAG).

3. Results

3.1. Patients' characteristics

The mean age of patients was 44.7 years (standard deviation (SD)
16.7, range 19.1–72.6) and their time since injury was 3.0 years (SD
5.4, range 0.7–23.8) (Table 1). Control subjects had a mean age of
36.9 years (SD 11.8, range 24.0–66.0) that was not statistically dif-
ferent when compared to patients (p = 0.052). Neurological and
functional outcomes of patients were as follows: UEMS 42.4 (SD 11.3,
range 14–50), LEMS 15.1 (SD 20.5, range 0–50), PP 58.0 (SD 28.1,
range 13–112), LT 68.3 (SD 26.0, range 16–112), and SCIM 57.9 (SD
25.7, range 19–100).

3.2. Volume loss and myelin reductions in brainstem pathways and nuclei

Voxel-wise analysis revealed significant atrophy and myelin reduc-
tions in patients compared to healthy controls within the brainstem
(Fig. 3, Table 2). Volume loss was observed in the CSTs and medial
lemniscus at the level of the medulla (p = 0.017). Lower myelin-sen-
sitive MT was evident in the left CST at the level of the medulla
(p = 0.039) and within the PAG (p = 0.001). Lower myelin-sensitive
R1 was observed in the CSTs at the level of the medulla (cluster 1:
p = 0.003; cluster 2: p = 0.025) and bilaterally in the dorsal medulla
(p < 0.001), in the dorsal pontomedullary junction (cluster 1:
p = 0.020; cluster 2: p = 0.038) and in the dorsal pons (7 clusters,
Table 2). Iron-sensitive R2* did not reveal any significant changes in
patients compared to controls. No between group differences were
observed in volume and quantitative maps in tetraplegic and paraplegic

patients and in patients with complete (i.e. AIS A) and incomplete le-
sions (i.e. AIS B-E).

3.3. Clinical impairment relates to neurodegeneration

Lower R1 in the PAG was associated with lower pinprick score in
individuals with SCI (Fig. 4A, p = 0.015, cluster extent (k) = 13, Z
score = 4.44, x = 0, y = −38, z = −7, n = 30). Lower R1 in the left
upper dorsolateral medulla (i.e. vestibular nucleus) (Fig. 4B, p = 0.038,
k = 1, Z score = 3.24, x = −4, y =−45, z = −43, n = 29) and left
upper-mid ventrolateral pons (i.e. pontine nucleus) (Fig. 4C, p = 0.034,
k = 12, Z score = 3.88, x = −13, y = −22, z = −23, n = 29) was
associated with lower SCIM (i.e. functional independence).

4. Discussion

This study revealed atrophy and myelin reductions (i.e. MT and R1)
within major brainstem pathways and nuclei involved in motor and
sensory (dys-) function in chronic traumatic SCI. Interestingly, atrophy
was observed only in the motor and sensory pathways, whereas myelin
reductions occurred also in areas containing brainstem nuclei.
Crucially, the magnitude of myelin reductions was related to the extent
of motor and sensory impairment. Therefore, these structural altera-
tions in the brainstem could be considered, if reproduced in long-
itudinal studies, as new targets to monitor impairment and complement
assessments in clinical trials following SCI.

4.1. Motor system neurodegeneration

First, we confirmed atrophy, the endpoint of neurodegeneration, in
the CST (Freund et al., 2013; Wrigley et al., 2009) and show quanti-
tative myelin reductions in the same areas, which is suggestive of

Table 1
Clinical and behavioural data of 30 patients with chronic traumatic spinal cord injury at time of MRI data acquisition.

ID Age (years) Time since injury
(months)

Completeness AIS Site of impairment (motor/
sensory)

ISNCSCI
LEMS

ISNCSCI
UEMS

ISNCSCI
Pinprick

ISNCSCI Light
Touch

SCIM

1 28.97 12.07 Complete A C5/C4 0 14 13 16 19
2 43.19 15.73 Complete A C6/C4 0 25 18 20 37
3 21.01 12.33 Complete A C6/C5 0 23 26 53 34
4 31.69 10.27 Complete A C6/C5 0 26 20 33 30
5 19.08 13.5 Complete A C6/C7 0 23 33 33 37
6 33.59 12.2 Complete A C7/C7 0 35 29 32 26
7 60.36 68.17 Complete A T1/T1 0 49 40 52 32
8 52.76 54.6 Complete A T3/T3 0 50 44 47 53
9 26.13 10.8 Complete A T4/T4 0 50 46 48 67
10 70.28 9.5 Complete A T7/T7 0 50 68 67 49
11 39.24 9.33 Complete A T7/T7 0 50 58 60 65
12 53.12 8.03 Complete A T9/T9 0 50 66 68 69
13 30.58 10.27 Complete A T10/T10 16 50 78 82 80
14 36.44 185.47 Complete A T12/T12 4 50 78 78 70
15 54.65 18.63 Incomplete D C3/C3 49 42 94 62 84
16 48.13 12.13 Incomplete D C5/C3 47 35 97 98 98
17 68.91 285 Incomplete D T1/C3 40 49 78 69 NA
18 43.01 186.77 Incomplete B C6/C4 0 25 32 77 29
19 51.99 9.7 Incomplete C C7/C5 12 32 44 67 31
20 23.67 12.2 Incomplete D T1/C6 19 48 37 72 70
21 31.26 12.3 Incomplete B T1/C7 0 48 46 68 38
22 71.74 11.9 Incomplete D T1/T2 41 48 41 112 36
23 72.56 11.97 Incomplete E T3/T3a 50 50 112 112 97
24 31.29 12.33 Incomplete B T4/T4 0 50 46 74 54
25 28.9 22.83 Incomplete B T6/T6 0 50 52 77 66
26 53.11 11.97 Incomplete D T10/T10 48 50 90 90 100
27 68.84 12.17 Incomplete B T11/T11 32 49 74 92 42
28 32.49 10.77 Incomplete B T11/T11 0 50 72 78 66
29 44.82 13.4 Incomplete D L3/L4 45 50 106 106 100
30 68.21 12.07 Incomplete D S1/L3 50 50 102 107 100

AIS = ASIA impairment scale. ISNCSCI = International Standards for the Neurological Classification of Spinal Cord Injury. NA = not available.
a Initial level of injury as this patient has recovered (AIS E).
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retrograde fibre degeneration (Beaud et al., 2008). Interestingly, we did
not observe any macrostructural or microstructural changes in the ru-
brospinal system (i.e. RN). Phylogenetically, the formation of direct
cortico-motoneuronal connections (i.e. CST) reaching as far as the
lumbar enlargement (Lemon, 2008) has rendered the rubrospinal
system less important for the control of movements in man, where fi-
bres terminate in the high cervical cord (Nathan and Smith, 1982).
Conversely after experimental SCI, the RN and the rubrospinal fibres,
which reach more caudally into the spinal cord, show signs of neuro-
degeneration (Kwon et al., 2002; Wannier-Morino et al., 2008). Thus,
these findings might illustrate the more dominant role of the CST in
processes of neurodegeneration and plasticity in the context of func-
tional recovery after human SCI (Dietz and Fouad, 2014).

We further observed myelin reductions in areas involved in motor
control such as the cerebellar peduncles and ventromedial brainstem
pathways (Lemon, 2008; Moulton et al., 2010), independent of atrophy.
Reduced postural stability and increased risk of fall in incomplete SCI
patients might result from extrapyramidal changes in the vestibular and
reticular system (Liechti et al., 2008). Crucially, myelin reductions in
the medulla (i.e. vestibular nucleus) and pons (i.e. pontine nucleus)
were related to lower functional independence (i.e. SCIM score). Thus

we provide evidence that the integrity of the pyramidal and extra-
pyramidal systems – crucial for postural control and movement co-
ordination and hence functional independence – are disturbed in
human SCI. Interestingly, no relationships between clinical impair-
ments and atrophy were observed. Volume loss is rather unspecific to
the underlying pathological processes and points to the sensitivity and
accuracy of quantitative markers of the myeloarchitecture. Therefore,
the extrapyramidal system, in combination with advanced neuroima-
ging tools, might offer new treatment targets, which could help to in-
crease levels of independence in activities of daily living by improving
postural stability (Liechti et al., 2008).

4.2. Sensory system neurodegeneration

Next to CST atrophy, we identified atrophic changes in the medial
lemniscus. Although we did not observe any concomitant myelin
changes, this is suggestive of anterograde fibre degeneration of sensory
pathways (Jones and Pons, 1998). The PAG is part of the endogenous
pain inhibition system and involved in motor function (Benarroch,
2012). We observed myelin reductions in the PAG which were directly
related to impaired pinprick sensation (i.e. pain), a modality that

Fig. 3. Volume loss and myelin reductions in brainstem path-
ways and nuclei in chronic SCI. (A & B) Three dimensional il-
lustration of atrophy (Jacobians, blue) and myelin reductions
(R1: yellow, MT: red) in the brainstem. Please note that for il-
lustrative purposes the statistically significant clusters were
smoothed with a Gaussian kernel with 1 mm full width at half
maximum. Overlay of statistical parametric maps showing
atrophy in the corticospinal tracts and medial lemniscus (E) and
myelin reductions in the periaqueductal grey (C), in the dorsal
pons (D), and in the dorsal medulla (E).

Table 2
Group analysis showing volume loss and microstructural changes within the brainstem in individuals with SCI compared to healthy controls.

Modality p-Value (FWE-
corrected)

Cluster extent
(voxels)

Z score Coordinates (mm) Anatomical location

x y z

Jacobian determinant (i.e. volume
loss)

0.017 336 3.87 0 −39 −49 Cluster spanning the CSTs and medial lemniscus
(medulla)

MT (i.e. myelin reduction) 0.001 15 4.32 1 −28 −4 PAG
0.039 8 4.5 −2 −38 −54 CST (L, medulla)

R1 (i.e. myelin reduction) < 0.001 110 4.78 −8 −38 −27 Low-mid pons (L, dorsolateral)
0.019 21 3.77 −8 −40 −29 Low-mid pons (L, dorsolateral)
0.006 18 3.66 9 −43 −31 Low pons (R, dorsolateral)
0.01 16 4.07 2 −41 −34 Low pons (dorsomedial)
0.005 7 3.85 4 −42 −35 Low pons (R, dorsomedial)
0.011 4 3.55 −2 −41 −36 Low pons (L, dorsomedial)
0.024 2 3.41 −1 −39 −36 Low pons (L, dorsomedial)
0.038 1 3.18 6 −44 −37 Pontomedullary junction (R, dorsolateral)
0.02 13 3.82 2 −43 −39 Pontomedullary junction (R, dorsomedial)
< 0.001 485 5.11 −7 −44 −48 Medulla (bilateral, dorsal)
0.025 12 4.99 4 −35 −49 CST (R, medulla)
0.003 22 4.53 −1 −38 −54 CSTs (bilateral, medulla)

CST = corticospinal tract, FWE = family-wise error, L = left, MT = magnetisation transfer saturation, PAG = periaqueductal grey, R = right, R1 = longitudinal relaxation rate.
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conveys afferent information flow via the spinothalamic tract to second
order neurons within the PAG. Altered information flow via the noci-
ceptive dorsal horn neurons and the spinothalamic tract (Haefeli et al.,
2013) into the PAG might therefore contribute to the development of
neuropathic pain (Knerlich-Lukoschus et al., 2011), which is a condi-
tion that affects many SCI patients (Jutzeler et al., 2016). However, the
clinical examination of pinprick sensation per se does not allow as-
sessment of the directionality of this relationship. Therefore, it remains
unclear whether the structural changes within the PAG are a result of
primary loss of first order neurons or due to secondary processes

affecting second order neurons, or both. Understanding the complex
interaction of nociceptive (mal-) processing requires multimodal stu-
dies including direct readouts of nociceptive information flow (i.e.
contact heat evoked potentials (Haefeli et al., 2013)) and structural as
well as functional MRI. These multimodal biomarkers could then in-
form biophysical models of changes of states, which could be used to
assess the directionality and extent of how the coupling between spinal
cord, brainstem and brain is influenced by pain (Freund et al., 2016).

4.3. Iron content in brainstem pathways and nuclei

Interestingly, we did not observe iron accumulation caused by
myelin breakdown (Hametner et al., 2013) causing detrimental in-
flammation in the CNS (Felix et al., 2012; Kroner et al., 2014). This may
be due to rather small effects of iron accumulation in supraspinal re-
gions compared to the spinal cord, where more iron is released by
breakdown of haemoglobin after haemorrhage. Longitudinal assess-
ment of iron accumulation after acute SCI will shed more light into
these mechanisms with greater sensitivity to subtle effects.

4.4. Relationship between severity of injury and neurodegeneration

We did not observe either lesion level (tetra-/paraplegia) or severity
(completeness) dependent neurodegeneration in brainstem sub-struc-
tures. This is in accordance with similar trajectories of atrophy above
the level of injury between tetraplegic and paraplegic patients within
the first year after injury within the spinal cord and brain (Freund et al.,
2013). However, in chronic SCI lesion height and severity determined
the magnitude of cord atrophy (Jutzeler et al., 2016). It therefore re-
mains speculative why a cervical injury with a greater impact on the
structural integrity of a higher number of fibres and neurons than a
comparable thoracic lesion would not lead to more neurodegeneration
within the brainstem. One potential explanation could be a flooring
effect of atrophic progression due to the long-standing injuries. More-
over, given that the effect of trauma per se is strong, inducing linear and
non-linear changes across the entire neuroaxis (Freund et al., 2013;
Grabher et al., 2015), such changes, as well as differences in other
factors (e.g. treatments, time spent in rehabilitation) and their complex
interactions, may have concealed effects between patient sub-groups
(i.e. tetra-/paraplegia, completeness). Finally, the cross-sectional design
restricts conclusions to a single time point and fully characterizing these
dynamic processes requires longitudinal studies. However, the results
of the present study motivate the design of longitudinal studies with
sophisticated neuroimaging protocols to establish these clin-
icopathological relationships.

Of note, quantitative measures of magnetisation transfer saturation
and longitudinal relaxation rate provide information about macro-
molecular content within the neuronal tissue and are thus indirect
measures sensitive to myelin. Post-mortem validation studies have
shown the high association between MT-based measures and myelin as
its main contributor (Schmierer et al., 2004; Turati et al., 2015). Al-
though macromolecular content is the main component in R1, other
contributors are water and iron content (Callaghan et al., 2015; Rooney
et al., 2007). Finally, both quantitative readouts (MT and R1) are
sensitive but not specific to a single underlying pathological me-
chanism. Thus they complement each other by providing insights into
different disease processes (e.g. atrophy, change in myelin and water
content, iron deposition) in brainstem sub-structures (Felix et al., 2012;
Freund et al., 2013; Grabher et al., 2015; Kroner et al., 2014).

4.5. Limitations

We note the following limitations of this study. Patients were on
average 7.8 years older than controls. Furthermore, age was sig-
nificantly different between groups for pre-upgrade, but not for post-
upgrade data. We therefore included age as a nuisance variable in all

Fig. 4. Correlation between microstructural integrity within the brainstem nuclei and
neurological and functional impairment. Regression models from extracted peak-voxel
within the significant cluster are shown for illustrative purposes only (not adjusted for
age, scanner, and total intracranial volume).
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statistical models to account for linear age-related effects. The scanner
was upgraded during the study period (from Verio to Skyrafit). Data
from both patients and controls were acquired on both systems (the
same ratio in each group) to minimize potential confounding effects
due to the scanner upgrade. In addition, we used the scanner upgrade as
nuisance variable in all GLMs. Due to the exploratory nature of this
study, no adjustments for the number of contrasts tested were per-
formed (Bender and Lange, 2001). The anatomical locations of brain-
stem ROIs (i.e. TPMs) and findings in SCI compared to healthy controls
were carefully confirmed using a high-field MRI atlas (Naidich et al.,
2009). The lack of specificity for pathological mechanisms influencing
relaxation times and the small anatomical structures relative to the
acquired resolution may conceal small effects and may be solved by
high-resolution multiparametric MRI techniques (Weiskopf et al.,
2015). The latter will help to improve segmentation of brainstem sub-
structures and increase specificity for brainstem pathways and nuclei.
The cross-sectional study design allows us to only assess differences in
MRI readouts between SCI and healthy controls, but not the underlying
trajectories of structural changes. This design is also less sensitive, as
higher between-subject variability may conceal weak effects (e.g. no
observed differences between tetraplegic and paraplegic patients, no
dependence on lesion level and severity). Of note, lateralized findings
are often introduced by thresholding statistical parametric maps to
account for multiple comparisons. To overcome this limitation, we aim
to develop a longitudinal analysis pipeline to assess trajectories of
structural change in brainstem pathways and nuclei in acute SCI.

5. Conclusion

Refined qMRI methods enable tracking of spatially specific neuro-
degeneration and structural reorganization in the brainstem following
traumatic SCI. Next to measures of atrophy, which are rather insensitive
and unspecific to the underlying pathology, we show myelin reductions
across the brainstem. Therefore, these clinically relevant structural
brainstem alterations, obtained with a qMRI protocol, could serve as
neuroimaging biomarkers to monitor treatment efficacy and comple-
ment clinical assessments in clinical trials following SCI.

Funding

This study was funded by the Clinical Research Priority Program
“NeuroRehab” of the University of Zurich and Wings for Life [WFL-CH-
007/14]. The Wellcome Trust Centre for Neuroimaging is supported by
core funding from the Wellcome Trust [091593/Z/10/Z]. Open access
of this publication was supported by the Wellcome Trust.

Conflicts of interest

We declare no conflicts of interest.

Contributions

All authors were involved in the overall study design. PG analysed
the data. CB and JA were involved in the methodological aspects of the
study. PG and PF wrote the paper. All co-authors reviewed the paper.

Acknowledgements

We would like to thank all volunteers participating in this study and
the staff of the radiology department at University Hospital Balgrist,
Switzerland. We also would like to thank Prof. Volker Dietz for his
helpful comments.

References

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. NeuroImage 38,

95–113. http://dx.doi.org/10.1016/j.neuroimage.2007.07.007.
Ashburner, J., Friston, K.J., 2005. Unified segmentation. NeuroImage 26, 839–851.

http://dx.doi.org/10.1016/j.neuroimage.2005.02.018.
Ashburner, J., Friston, K.J., 2011. Diffeomorphic registration using geodesic shooting and

Gauss-Newton optimisation. NeuroImage 55, 954–967. http://dx.doi.org/10.1016/j.
neuroimage.2010.12.049.

Barnes, J., Ridgway, G.R., Bartlett, J., Henley, S.M.D., Lehmann, M., Hobbs, N., Clarkson,
M.J., MacManus, D.G., Ourselin, S., Fox, N.C., 2010. Head size, age and gender ad-
justment in MRI studies: a necessary nuisance? NeuroImage 53, 1244–1255. http://
dx.doi.org/10.1016/j.neuroimage.2010.06.025.

Beaud, M., Schmidlin, E., Wannier, T., Freund, P., Bloch, J., Mir, A., Schwab, M.E.,
Rouiller, E.M., 2008. Anti-Nogo-A antibody treatment does not prevent cell body
shrinkage in the motor cortex in adult monkeys subjected to unilateral cervical cord
lesion. BMC Neurosci. 9, 5. http://dx.doi.org/10.1186/1471-2202-9-5.

Benarroch, E.E., 2012. Periaqueductal gray: an interface for behavioral control.
Neurology. http://dx.doi.org/10.1212/WNL.0b013e31823fcdee.

Bender, R., Lange, S., 2001. Adjusting for multiple testing - when and how? J. Clin.
Epidemiol. 54, 343–349. http://dx.doi.org/10.1016/S0895-4356(00)00314-0.

Blaiotta, C., Jorge Cardoso, M., Ashburner, J., 2016. Variational inference for medical
image segmentation. Comput. Vis. Image Underst. 0, 1–15. http://dx.doi.org/10.
1016/j.cviu.2016.04.004.

Callaghan, M.F., Helms, G., Lutti, A., Mohammadi, S., Weiskopf, N., 2015. A general
linear relaxometry model of R 1 using imaging data. Magn. Reson. Med. 73,
1309–1314. http://dx.doi.org/10.1002/mrm.25210.

Catz, A., Itzkovich, M., Tesio, L., Biering-Sorensen, F., Weeks, C., Laramee, M.T., Craven,
B.C., Tonack, M., Hitzig, S.L., Glaser, E., Zeilig, G., Aito, S., Scivoletto, G., Mecci, M.,
Chadwick, R.J., El Masry, W.S., Osman, A., Glass, C.A., Silva, P., Soni, B.M., Gardner,
B.P., Savic, G., Bergström, E.M., Bluvshtein, V., Ronen, J., 2007. A multicenter in-
ternational study on the Spinal Cord Independence Measure, version III: Rasch psy-
chometric validation. Spinal Cord 45, 275–291. http://dx.doi.org/10.1038/sj.sc.
3101960.

Dietz, V., Fouad, K., 2014. Restoration of sensorimotor functions after spinal cord injury.
Brain 137, 654–667. http://dx.doi.org/10.1093/brain/awt262.

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R.S.J., Helms, G.,
Weiskopf, N., 2011. Regional specificity of MRI contrast parameter changes in normal
ageing revealed by voxel-based quantification (VBQ). NeuroImage 55, 1423–1434.
http://dx.doi.org/10.1016/j.neuroimage.2011.01.052.

Felix, M.-S., Popa, N., Djelloul, M., Boucraut, J., Gauthier, P., Bauer, S., Matarazzo, V. a,
2012. Alteration of forebrain neurogenesis after cervical spinal cord injury in the
adult rat. Front. Neurosci. 6, 45. http://dx.doi.org/10.3389/fnins.2012.00045.

Freund, P., Wheeler-Kingshott, C., Nagy, Z., Gorgoraptis, N., Weiskopf, N., Friston, K.,
Thompson, A., Hutton, C., 2012. Axonal integrity predicts cortical reorganisation
following cervical injury. J. Neurol. Neurosurg. Psychiatry 83, 629–637. http://dx.
doi.org/10.1136/jnnp-2011-301875.

Freund, P., Weiskopf, N., Ashburner, J., Wolf, K., Sutter, R., Altmann, D.R., Friston, K.,
Thompson, A., Curt, A., 2013. MRI investigation of the sensorimotor cortex and the
corticospinal tract after acute spinal cord injury: a prospective longitudinal study.
Lancet Neurol. 12, 873–881. http://dx.doi.org/10.1016/S1474-4422(13)70146-7.

Freund, P., Friston, K., Thompson, A.J., Stephan, K.E., Ashburner, J., Bach, D.R., Nagy, Z.,
Helms, G., Draganski, B., Mohammadi, S., Schwab, M.E., Curt, A., Weiskopf, N.,
2016. Embodied neurology: an integrative framework for neurological disorders.
Brain 139 (Pt 6), 1855–1861. http://dx.doi.org/10.1093/brain/aww076. (Jun).

Friston, K.J., Worsley, K.J., Frackowiak, R.S., Mazziotta, J.C., Evans, a C., 1994. Assessing
the significance of focal activations using their spatial extent. Hum. Brain Mapp. 1,
210–220. http://dx.doi.org/10.1002/hbm.460010306.

Grabher, P., Callaghan, M.F., Ashburner, J., Weiskopf, N., Thompson, A.J., Curt, A.,
Freund, P., 2015. Tracking sensory system atrophy and outcome prediction in spinal
cord injury. Ann. Neurol. 78, 751–761. http://dx.doi.org/10.1002/ana.24508.

Haefeli, J., Kramer, J.L.K., Blum, J., Curt, A., 2013. Assessment of spinothalamic tract
function beyond pinprick in spinal cord lesions: a contact heat evoked potential
study. Neurorehabil. Neural Repair 28, 494–503. http://dx.doi.org/10.1177/
1545968313517755.

Hametner, S., Wimmer, I., Haider, L., Pfeifenbring, S., Brück, W., Lassmann, H., 2013.
Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74,
848–861. http://dx.doi.org/10.1002/ana.23974.

Hasselblad, V., 1966. Estimation of parameters for a mixture of normal distributions.
Technometrics 8, 431–444.

Jirjis, M.B., Vedantam, A., Budde, M.D., Kalinosky, B., Kurpad, S.N., Schmit, B.D., 2015.
Severity of spinal cord injury influences diffusion tensor imaging of the brain. J.
Magn. Reson. Imaging. http://dx.doi.org/10.1002/jmri.24964. (n/a–n/a).

Jones, E.G., Pons, T.P., 1998. Thalamic and brainstem contributions to large-scale plas-
ticity of primate somatosensory cortex. Science (80-. ) 282, 1121–1125. http://dx.
doi.org/10.1126/science.282.5391.1121.

Jutzeler, C.R., Huber, E., Callaghan, M.F., Luechinger, R., Curt, A., Kramer, J.L.K.,
Freund, P., 2016. Association of pain and CNS structural changes after spinal cord
injury. Sci. Rep. 6, 18534. http://dx.doi.org/10.1038/srep18534.

Kirshblum, S.C., Waring, W., Biering-Sorensen, F., Burns, S.P., Johansen, M., Schmidt-
Read, M., Donovan, W., Graves, D., Jha, A., Jones, L., Mulcahey, M.J., Krassioukov,
A., 2011. Reference for the 2011 revision of the International Standards for
Neurological Classification of Spinal Cord Injury. J. Spinal Cord Med. 34, 547–554.
http://dx.doi.org/10.1179/107902611X13186000420242.

Knerlich-Lukoschus, F., Noack, M., Von Der Ropp-Brenner, B., Lucius, R., Mehdorn, M.H.,
Held-Feindt, J., 2011. Spinal cord injuries induce changes in CB 1 cannabinoid re-
ceptor and C-C chemokine expression in brain areas underlying circuitry of chronic
pain conditions. J. Neurotrauma 634, 619–634. http://dx.doi.org/10.1089/neu.
2010.1652.

P. Grabher et al. NeuroImage: Clinical 15 (2017) 494–501

500

http://dx.doi.org/10.1016/j.neuroimage.2007.07.007
http://dx.doi.org/10.1016/j.neuroimage.2005.02.018
http://dx.doi.org/10.1016/j.neuroimage.2010.12.049
http://dx.doi.org/10.1016/j.neuroimage.2010.12.049
http://dx.doi.org/10.1016/j.neuroimage.2010.06.025
http://dx.doi.org/10.1016/j.neuroimage.2010.06.025
http://dx.doi.org/10.1186/1471-2202-9-5
http://dx.doi.org/10.1212/WNL.0b013e31823fcdee
http://dx.doi.org/10.1016/S0895-4356(00)00314-0
http://dx.doi.org/10.1016/j.cviu.2016.04.004
http://dx.doi.org/10.1016/j.cviu.2016.04.004
http://dx.doi.org/10.1002/mrm.25210
http://dx.doi.org/10.1038/sj.sc.3101960
http://dx.doi.org/10.1038/sj.sc.3101960
http://dx.doi.org/10.1093/brain/awt262
http://dx.doi.org/10.1016/j.neuroimage.2011.01.052
http://dx.doi.org/10.3389/fnins.2012.00045
http://dx.doi.org/10.1136/jnnp-2011-301875
http://dx.doi.org/10.1136/jnnp-2011-301875
http://dx.doi.org/10.1016/S1474-4422(13)70146-7
http://dx.doi.org/10.1093/brain/aww076
http://dx.doi.org/10.1002/hbm.460010306
http://dx.doi.org/10.1002/ana.24508
http://dx.doi.org/10.1177/1545968313517755
http://dx.doi.org/10.1177/1545968313517755
http://dx.doi.org/10.1002/ana.23974
http://refhub.elsevier.com/S2213-1582(17)30131-6/rf0105
http://refhub.elsevier.com/S2213-1582(17)30131-6/rf0105
http://dx.doi.org/10.1002/jmri.24964
http://dx.doi.org/10.1126/science.282.5391.1121
http://dx.doi.org/10.1126/science.282.5391.1121
http://dx.doi.org/10.1038/srep18534
http://dx.doi.org/10.1179/107902611X13186000420242
http://dx.doi.org/10.1089/neu.2010.1652
http://dx.doi.org/10.1089/neu.2010.1652


Kroner, A., Greenhalgh, A.D., Zarruk, J.G., PassosdosSantos, R., Gaestel, M., David, S.,
2014. TNF and increased intracellular iron alter macrophage polarization to a det-
rimental M1 phenotype in the injured spinal cord. Neuron 83, 1098–1116. http://dx.
doi.org/10.1016/j.neuron.2014.07.027.

Kwon, B.K., Liu, J., Messerer, C., Kobayashi, N.R., McGraw, J., Oschipok, L., Tetzlaff, W.,
2002. Survival and regeneration of rubrospinal neurons 1 year after spinal cord in-
jury. Proc. Natl. Acad. Sci. U. S. A. 99, 3246–3251. http://dx.doi.org/10.1073/pnas.
052308899.

Lambert, C., Chowdhury, R., Fitzgerald, T.H.B., Fleming, S.M., Lutti, A., Hutton, C.,
Draganski, B., Frackowiak, R., Ashburner, J., 2013a. Characterizing aging in the
human brainstem using quantitative multimodal MRI analysis. Front. Hum. Neurosci.
7, 462. http://dx.doi.org/10.3389/fnhum.2013.00462.

Lambert, C., Lutti, A., Helms, G., Frackowiak, R., Ashburner, J., 2013b. Multiparametric
brainstem segmentation using a modified multivariate mixture of Gaussians.
NeuroImage. Clin. 2, 684–694. http://dx.doi.org/10.1016/j.nicl.2013.04.017.

Lemon, R.N., 2008. Descending pathways in motor control. Annu. Rev. Neurosci. 31,
195–218. http://dx.doi.org/10.1146/annurev.neuro.31.060407.125547.

Liao, C.C., Dicarlo, G.E., Gharbawie, O.a., Qi, H.X., Kaas, J.H., 2015. Spinal cord neuron
inputs to the cuneate nucleus that partially survive dorsal column lesions: a pathway
that could contribute to recovery after spinal cord injury. J. Comp. Neurol. 523,
2138–2160. http://dx.doi.org/10.1002/cne.23783.

Liechti, M., Müller, R., Lam, T., Curt, A., 2008. Vestibulospinal responses in motor in-
complete spinal cord injury. Clin. Neurophysiol. 119, 2804–2812. http://dx.doi.org/
10.1016/j.clinph.2008.05.033.

Moon, T.K., 1996. The expectation-maximization algorithm. IEEE Signal Process. Mag.
13, 47–60. http://dx.doi.org/10.1109/79.543975.

Moulton, E.a., Schmahmann, J.D., Becerra, L., Borsook, D., 2010. The cerebellum and
pain: passive integrator or active participator? Brain Res. Rev. http://dx.doi.org/10.
1016/j.brainresrev.2010.05.005.

Naidich, T.P., Duvernoy, H.M., Delman, B.N., Sorensen, a.G., Kollias, S.S., Haacke, E.M.,
2009. Duvernoy's Atlas of the Human Brain Stem and Cerebellum: High-field MRI,
Surface Anatomy, Internal Structure, Vascularization and 3 D Sectional Anatomy.
Springer Verlaghttp://dx.doi.org/10.1017/CBO9781107415324.004.

Nathan, P.W., Smith, M.C., 1982. The rubrospinal and central tegmental tracts in man.
Brain 105, 223–269. http://dx.doi.org/10.1093/brain/105.2.223.

Nichols, T.E., 2012. Multiple testing corrections, nonparametric methods, and random
field theory. NeuroImage 62, 811–815. http://dx.doi.org/10.1016/j.neuroimage.
2012.04.014.

Rooney, W.D., Johnson, G., Li, X., Cohen, E.R., Kim, S.-G., Ugurbil, K., Springer, C.S.,
2007. Magnetic field and tissue dependencies of human brain longitudinal1H2O re-
laxation in vivo. Magn. Reson. Med. 57, 308–318. http://dx.doi.org/10.1002/mrm.
21122.

Sauerbeck, A., Schonberg, D.L., Laws, J.L., McTigue, D.M., 2013. Systemic iron chelation

results in limited functional and histological recovery after traumatic spinal cord
injury in rats. Exp. Neurol. 248, 53–61. http://dx.doi.org/10.1016/j.expneurol.2013.
05.011.

Schmierer, K., Scaravilli, F., Altmann, D.R., Barker, G.J., Miller, D.H., 2004.
Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann.
Neurol. 56, 407–415. http://dx.doi.org/10.1002/ana.20202.

Stüber, C., Morawski, M., Schäfer, A., Labadie, C., Wähnert, M., Leuze, C., Streicher, M.,
Barapatre, N., Reimann, K., Geyer, S., Spemann, D., Turner, R., 2014. Myelin and iron
concentration in the human brain: a quantitative study of MRI contrast. NeuroImage
93, 95–106. http://dx.doi.org/10.1016/j.neuroimage.2014.02.026.

Turati, L., Moscatelli, M., Mastropietro, A., Dowell, N.G., Zucca, I., Erbetta, A.,
Cordiglieri, C., Brenna, G., Bianchi, B., Mantegazza, R., Cercignani, M., Baggi, F.,
Minati, L., 2015. In vivo quantitative magnetization transfer imaging correlates with
histology during de- and remyelination in cuprizone-treated mice. NMR Biomed.
http://dx.doi.org/10.1002/nbm.3253.

Villiger, M., Grabher, P., Hepp-Reymond, M.-C., Kiper, D., Curt, A., Bolliger, M., Hotz-
Boendermaker, S., Kollias, S., Eng, K., Freund, P., 2015. Relationship between
structural brainstem and brain plasticity and lower-limb training in spinal cord in-
jury: a longitudinal pilot study. Front. Hum. Neurosci. 9, 1–10. http://dx.doi.org/10.
3389/fnhum.2015.00254.

Wannier-Morino, P., Schmidlin, E., Freund, P., Belhaj-Saif, A., Bloch, J., Mir, A., Schwab,
M.E., Rouiller, E.M., Wannier, T., 2008. Fate of rubrospinal neurons after unilateral
section of the cervical spinal cord in adult macaque monkeys: effects of an antibody
treatment neutralizing Nogo-A. Brain Res. 1217, 96–109. http://dx.doi.org/10.1016/
j.brainres.2007.11.019.

Weiskopf, N., Lutti, A., Helms, G., Novak, M., Ashburner, J., Hutton, C., 2011. Unified
segmentation based correction of R1 brain maps for RF transmit field in-
homogeneities (UNICORT). NeuroImage 54, 2116–2124. http://dx.doi.org/10.1016/
j.neuroimage.2010.10.023.

Weiskopf, N., Mohammadi, S., Lutti, A., Callaghan, M.F., 2015. Advances in MRI-based
computational neuroanatomy: from morphometry to in-vivo histology. Curr. Opin.
Neurol. 28, 313–322. http://dx.doi.org/10.1097/WCO.0000000000000222.

Wrigley, P.J., Gustin, S.M., Macey, P.M., Nash, P.G., Gandevia, S.C., Macefield, V.G.,
Siddall, P.J., Henderson, L. a, 2009. Anatomical changes in human motor cortex and
motor pathways following complete thoracic spinal cord injury. Cereb. Cortex 19,
224–232. http://dx.doi.org/10.1093/cercor/bhn072.

Zaaimi, B., Edgley, S.a., Soteropoulos, D.S., Baker, S.N., 2012. Changes in descending
motor pathway connectivity after corticospinal tract lesion in macaque monkey.
Brain 135, 2277–2289. http://dx.doi.org/10.1093/brain/aws115.

Zörner, B., Bachmann, L.C., Filli, L., Kapitza, S., Gullo, M., Bolliger, M., Starkey, M.L.,
Röthlisberger, M., Gonzenbach, R.R., Schwab, M.E., 2014. Chasing central nervous
system plasticity: the brainstem's contribution to locomotor recovery in rats with
spinal cord injury. Brain 137, 1716–1732. http://dx.doi.org/10.1093/brain/awu078.

P. Grabher et al. NeuroImage: Clinical 15 (2017) 494–501

501

http://dx.doi.org/10.1016/j.neuron.2014.07.027
http://dx.doi.org/10.1016/j.neuron.2014.07.027
http://dx.doi.org/10.1073/pnas.052308899
http://dx.doi.org/10.1073/pnas.052308899
http://dx.doi.org/10.3389/fnhum.2013.00462
http://dx.doi.org/10.1016/j.nicl.2013.04.017
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125547
http://dx.doi.org/10.1002/cne.23783
http://dx.doi.org/10.1016/j.clinph.2008.05.033
http://dx.doi.org/10.1016/j.clinph.2008.05.033
http://dx.doi.org/10.1109/79.543975
http://dx.doi.org/10.1016/j.brainresrev.2010.05.005
http://dx.doi.org/10.1016/j.brainresrev.2010.05.005
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1093/brain/105.2.223
http://dx.doi.org/10.1016/j.neuroimage.2012.04.014
http://dx.doi.org/10.1016/j.neuroimage.2012.04.014
http://dx.doi.org/10.1002/mrm.21122
http://dx.doi.org/10.1002/mrm.21122
http://dx.doi.org/10.1016/j.expneurol.2013.05.011
http://dx.doi.org/10.1016/j.expneurol.2013.05.011
http://dx.doi.org/10.1002/ana.20202
http://dx.doi.org/10.1016/j.neuroimage.2014.02.026
http://dx.doi.org/10.1002/nbm.3253
http://dx.doi.org/10.3389/fnhum.2015.00254
http://dx.doi.org/10.3389/fnhum.2015.00254
http://dx.doi.org/10.1016/j.brainres.2007.11.019
http://dx.doi.org/10.1016/j.brainres.2007.11.019
http://dx.doi.org/10.1016/j.neuroimage.2010.10.023
http://dx.doi.org/10.1016/j.neuroimage.2010.10.023
http://dx.doi.org/10.1097/WCO.0000000000000222
http://dx.doi.org/10.1093/cercor/bhn072
http://dx.doi.org/10.1093/brain/aws115
http://dx.doi.org/10.1093/brain/awu078

	Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury
	Introduction
	Methods
	Participants and study design
	Image acquisition
	Image pre-processing
	Brainstem template generation
	Voxel-based macrostructural and microstructural analysis of the brainstem

	Results
	Patients' characteristics
	Volume loss and myelin reductions in brainstem pathways and nuclei
	Clinical impairment relates to neurodegeneration

	Discussion
	Motor system neurodegeneration
	Sensory system neurodegeneration
	Iron content in brainstem pathways and nuclei
	Relationship between severity of injury and neurodegeneration
	Limitations

	Conclusion
	Funding
	Conflicts of interest
	Contributions
	Acknowledgements
	References




