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Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly
influences microbial ecology and biogeochemical cycling in the environment. In this study, we
examined the catabolic temperature response of natural communities of sulfate-reducing micro-
organisms (SRM) in polar, temperate and tropical marine sediments. In short-term sediment
incubation experiments with 35S-sulfate, we demonstrated how the cardinal temperatures for sulfate
reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations
of the dominant SRM in each of the investigated ecosystems. The community structure of putative
SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and
phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but
not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several
species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with
similar mean annual temperatures, regardless of geographic distance. The observed temperature
adaptations of SRM imply that environmental temperature is a major controlling variable for
physiological selection and ecological and evolutionary differentiation of microbial communities.
The ISME Journal (2016) 10, 796–809; doi:10.1038/ismej.2015.157; published online 11 September 2015

Introduction

Microorganisms in the natural environment cope
with changing and sometimes hostile conditions that
require a wide range of metabolic adaptations
(Neidhardt et al., 1990). Microorganisms that are
physiologically best adapted to exploit prevailing
physical, chemical and biological factors will pre-
dominate, which can lead to varying patterns of
microbial diversity over different temporal and
spatial scales (Prosser et al., 2007). The convergence
of ecological and evolutionary timescales is sub-
stantiated by the observation of biogeographic
patterns in microbial diversity (Hanson et al.,
2012). For example, latitudinal gradients of micro-
bial diversity associated with temperature have been

observed in marine free-living microbial taxa
(Fuhrman, 2009). However, it is not well known
whether the same applies to microorganisms in
benthic environments. The data available on marine
sediments are scarce and the correlation of the
expression of microbial metabolism and co-
occurrence of microbial taxa with environmental
temperatures is largely unknown.

Over seasonal time scales, the rates of microbial
sulfate reduction strongly correlate with changes in
sediment temperature (Jørgensen, 1977; Aller and
Yingst, 1980; Moeslund et al., 1994; Kristensen et al.,
2000), indicating a response of the metabolic activity
of the sulfate-reducing community to ambient tem-
peratures. It has been observed that organic matter
limitation has a regulating effect on the temperature
dependence of sulfate reduction in marine sedi-
ments, as the availability of reactive organic matter
becomes the overriding limiting factor (Kostka et al.,
1999; Sawicka et al., 2012). However, recent studies
support the notion that the short-term thermal
response of sulfate reduction is related to the
metabolic temperature adaptations of the individual
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sulfate-reducing microbial populations (Robador
et al., 2009; Sawicka et al., 2012).

Studies on the temperature dependence of sulfate
reduction in different climatic regions have shown
that sulfate-reducing microorganisms (SRM) at high
latitudes, that is, in Arctic and Antarctic marine
sediments, are predominantly psychrophilic (Isaksen
and Jørgensen, 1996; Sagemann et al., 1998), while
SRM in temperate sediments at lower latitudes are
mostly mesophilic (Isaksen et al., 1994). Yet, the
available phylogenetic data on sedimentary SRM
communities (for example, Ravenschlag et al., 1999;
Leloup et al., 2007, 2009) have been insufficient to
reveal diversity distribution patterns that would
associate with different temperature regimes.

In this study, we explored how temperature
controls the anaerobic respiration rate of natural
communities of SRM by means of short-term
incubation experiments with 35S-sulfate in a thermal
gradient using sediment samples from a wide range
of geographic regions that differ with respect to the
prevailing temperature. Furthermore, we studied
the in situ diversity of the corresponding SRM
communities by analyzing bacterial 16S rRNA gene
amplicon pyrosequencing libraries for the presence
of sequences of known sulfate-reducing lineages. We
found distinct patterns of metabolic adaptations to
environmental temperatures that coincided with the
presence of specific SRM populations at sites with
similar mean annual temperatures.

Materials and methods
Study sites
Marine sediment samples for the present work
ranged from polar regions to temperate and tropical
latitudes. Brief descriptions of the study sites are
provided in Table 1. Samples were obtained from the
upper 15 cm of sediment from each site, which
corresponds to the depth range where bacterial
sulfate reduction peaks (Abed et al., 2006;
Mazumdar et al., 2007; Kristensen et al., 2008;
Niemann et al., 2009; Robador et al., 2009; Sawicka
et al., 2010; Holmkvist et al., 2014; Xu et al., 2014).
After sampling, sediments were kept under anoxic
conditions at in situ temperatures until further
processing in the laboratory, which occurred within
1 week of sampling. Our earlier experiments have
shown that 1 week is too short for the SRM
communities to grow or change detectably
(Robador et al., 2009).

Index properties and elemental analysis
Wet-bulk density and porosity were calculated from
one sediment sample, taken at each sampling site.
Measurements were based on the ratio between the
wet and dry masses and density of the sample.

Elemental analyses were performed on triplicate
samples of 20–100mg of freeze-dried and ground

sediment. Total carbon and total nitrogen content
were determined using a Fisons NA 1500 (Series 2)
elemental analyzer (Thermo scientific, Inc.,
Waltham, MA, USA). Freeze-dried material was
combusted with vanadium pentoxide catalyst at
900–1000 °C in a stream of oxygen and the produced
gases were separated by gas chromatography and
quantified with a thermal conductivity detector.

Total inorganic carbon was determined by coulo-
metry using a CM5240 TIC acidification module
attached to a CM5014 CO2 analyzer (UIC, Inc., Joliet,
IL, USA), which measures CO2 evolved from sample
acidification. Total organic carbon in the sediments
was determined from the difference between total
carbon and total inorganic carbon.

Temperature-gradient experiments
Sediment slurries were prepared by diluting sedi-
ment 1:1 (vol/vol) with anoxic artificial seawater
prepared as described by Widdel and Bak (1992).
Slurries were prepared under N2, and 5ml of slurry
was transferred into each Hungate tube. Hungate
tubes were flushed with N2 according to the
Hungate technique (Bryant, 1972) and sealed with
butyl rubber stoppers. Sediment slurries in Hun-
gate tubes were incubated in an aluminum
temperature-gradient block heated electrically at
one end and cooled at the other end with a
refrigerated and thermostated water bath. Hungate
tubes were pre-incubated for at least 5 h to allow
them to reach thermal equilibrium. Triplicate
samples were incubated in parallel (at the same
temperature) at several points along the tempera-
ture gradient block to confirm the reproducibility of
sulfate reduction rates (SRR). The temperature span
was from 0° to +50 °C to cover the potential
physiological temperature range of the active
microorganisms. The incubation temperature gra-
dient for the Arctic Ocean (Ymerbukta, Svalbard),
North Sea and Baltic Sea sites (Table 1) was
extended to − 10 °C to explore the physiological
limits of microorganisms at temperatures below the
freezing point.

Measurements of bacterial sulfate reduction
were performed using 35S-sulfate according to
Kallmeyer et al. (2004) and Roy et al. (2014). To
minimize bacterial growth and reoxidation of
radiolabeled sulfate during the experiment, the
incubation time with the radiotracer was restricted
to 24 h. Growth of SRM in marine sediments is too
slow to generate significant changes in the com-
munity during the short pre-incubation (Hoehler
and Jørgensen, 2013).

Temperature dependence
The Arrhenius equation (Arrhenius, 1908) was
applied to model the temperature dependence
of SRR. Arrhenius curves were obtained from
temperature-gradient incubation data and represent
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the metabolic rate as a function of temperature
as follows:

lnðkÞ ¼ lnðAÞ þ �Ea

R
´
1
T

� �

where Ea is the activation energy (J mol− 1),
k is the rate of sulfate reduction (nmol cm−3 day−1),
A is the Arrhenius constant, R is the gas constant
(8.314 J K− 1 mol− 1) and T is the absolute temperature
(K). It should be noted that, in a biochemical context,
Ea estimated from the slope of the linear temperature
ranges is commonly interpreted to reflect the
temperature response of the rate-limiting step in a
physiological process, for example, membrane trans-
port or enzymatic catalytic conversion. The catalysis
of a chemical reaction by an efficient enzyme with
low temperature dependence will yield a low Ea

(D'Amico et al., 2002; Marx et al., 2007). For
naturally occurring microbial communities, Ea

values are not activation energies of a single
sulfate-reducing population, but are a ‘temperature
characteristic’ and reflect the combined response of a
complex SRM community (for example, Figure 1).
Despite this complexity, Knoblauch and Jørgensen
(1999) found that calculated Ea values for pure
cultures of SRM were similar to those estimated for
the natural SRM communities in the marine sedi-
ments from which these cultures were derived.
Coincident Ea values indicate that SRM have similar
responses to increasing temperatures in pure cul-
tures and in natural sediments. Ea was therefore used
to describe the temperature sensitivity of SRM
communities in sediments from different tempera-
ture regions.

The temperature dependence can also be
described by the temperature coefficient (Q10), which
describes the factor by which rate increases in
response to a temperature increase of 10 °C. Q10

values were calculated for the 10 °C interval below
the temperature at which SRR were highest in the
linear thermal range of Arrhenius plots according to:

Q10 ¼ exp
Ea ´10

RTðT þ 10Þ
� �

This equation shows that the Q10 value, in contrast to
the Ea value, depends on which temperature interval
is chosen within the linear thermal range of the
Arrhenius plot.

Sequence analysis and phylogenetic identification of
putative sulfate-reducing bacteria
Bacterial 16S rRNA gene libraries from the
same sediment samples used in this study
were constructed as part of a previous study
(Müller et al., 2014a, b, NCBI Sequence Read Archive
accession number SRP028774). These libraries were
re-analyzed here focusing on the presence of
sequences affiliated with known lineages of SRM.
Amplicon pyrosequencing reads were clustered into
phylotypes using a 97% identity threshold with

UCLUST (Edgar, 2010). Representative sequences
were aligned with mothur using the Needleman–
Wunsch pairwise alignment method default settings
(Schloss et al., 2009). Chimeras were detected using
Chimera Slayer (Haas et al., 2011) and excluded from
further analysis, resulting in 6935 phylotypes across
the nine locations. Taxonomy was automatically
assigned using the RDP classifier (Wang et al., 2007).
In addition, the web-based SINA aligner (Pruesse
et al., 2012) was used to automatically align
representative phylotype sequences and to deter-
mine the most closely related sequences that were
then imported into the SILVA SSU Ref NR 111
database (Quast et al., 2013) for phylogenetic
analysis in ARB (Ludwig et al., 2004). Short
amplicon sequences were added to the SILVA
reference tree using the ARB Parsimony Interactive
tool. Phylotypes were defined as candidate
SRM phylotypes if they clustered phylogenetically
with known SRM lineages and/or were assigned to
known SRM lineages by the RDP classifier. The
alignment of candidate SRM phylotype sequences
was manually curated and used to re-cluster the
representative sequences into species-level phylo-
types of ⩾97% sequence similarity based on the
average neighbor algorithm in mothur (Schloss et al.,
2009). A maximum likelihood (RAxML) tree was
calculated with almost full-length 16S rRNA
sequences (⩾1400 nt) of known SRM (n=167) and
most closely related sequences (n=328) based on
1222 alignment positions by using a 50% sequence
conservation filter for bacteria. The candidate SRM
phylotype sequences from the amplicon libraries
were then added to the tree without changing the
overall tree topology using the ARB Parsimony
Interactive tool and applying the 50% conservation
filter. This resulted in 384 putative SRM phylotypes
that clustered phylogenetically with known SRM
lineages and shared ⩾90% sequence similarity with
described SRM species.

Bacterial community analysis
Pyrosequencing libraries, which contained a median
of 5190 reads (min/max: 1024/10 082) and a median
of 1028 reads assigned to putative SRM (min/max:
117/2323), were rarefied to the smallest library for all
analyses (that is, 1024 reads for total communities
and 117 reads for SRM). Principal coordinates
analysis was performed based on a Bray-Curtis
dissimilarity matrix (using presence–absence as well
as relative abundance data) using the package
‘vegan’ in R (Oksanen et al., 2012). The significance
of environmental factors affecting community com-
position was assessed using the non-parameteric
perMANOVA (permutational multivariate analysis
of variance) test (Anderson, 2001). To assess
co-occurrence of SRM phylotypes in multiple sedi-
ments, a correlation network was produced from
SRM phylotype relative abundance across the
nine sites. Briefly, pairwise Pearson correlation
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coefficients (r) were calculated for phylotypes. The
statistical significance of r was determined by
generating a null distribution for r by randomly
permuting relative abundances across the nine sites
for 1000 iterations and calculating the P-value of the
observed r from the null distribution. P-values were
corrected for multiple testing using the False
Discovery Rate approach (Benjamini and Hochberg,
1995) and corrected P-values with a value of ⩽ 0.05
were used to create a correlation network that was
visualized in Cytoscape (Saito et al., 2012). The site

occupancy of a phylotype was calculated as the
number of sample locations at which the phylotype
was detected. The mean temperature at which each
phylotype was enriched was calculated by multi-
plying its relative abundance at each site by the
mean temperature at the site, summing these
products, and dividing by the sum of abundances
over all nine sites. This produced a weighted value
signifying the temperature at which the phylotype
was most abundant. All calculations were done in R
(Team, 2011).

Figure 1 (a) SRR of seven pure cultures of sulfate-reducing bacteria measured in temperature-gradient incubation experiments. Data are
from Isaksen and Jørgensen (1996); Knoblauch and Jørgensen (1999); and Tarpgaard et al. (2006). (b) Sum of SRR of the seven strains from
(a), calculated at 2 °C temperature intervals. Equal weight is given to each SRM strain in (a) to illustrate the cumulative effect of a mixed
SRM community. The temperature dependence of individual isolates and summed SRRs is presented as Arrhenius plots in (c) and (d),
respectively.
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Results
Sulfate reduction rates
Sulfate reduction rates (SRR) as a function of
temperature were determined for all nine sediments
(Figure 2). Sulfate reduction was detected within the
studied temperature range (0° to +50 °C) for all
sediments, including temperatures well outside the
in situ range corresponding to the sampled environ-
ments. The lowest SRR, 0.1–0.5 nmol cm− 3 day− 1,
were measured in the sediment with the greatest
water depth in the Southern Ocean, Weddell Sea

(Figure 2a and Table 1) while the highest rates, 230–
2200 nmol cm− 3 day− 1, were observed in a shallow
Arctic Ocean intertidal lagoon, Ymerbukta on Sval-
bard, characterized by a relatively higher content of
organic matter derived from decomposing macro-
phytes (Figure 2b and Table 1).

The temperature curves for SRR all show a distinct
peak corresponding to the optimal temperature (Topt)
that is, the temperature at which the rates are
highest. Arctic and Antarctic sediments showed Topt

for sulfate reduction of 24–26 °C (Figures 2a–c),
which is 25 °C above the in situ temperatures in

Figure 2 SRR measured in temperature-gradient incubation experiments of sediment slurries from all sampling sites. In situ temperature
range is indicated by the area shaded in red, always to the left of the band shaded in blue indicating the Topt for sulfate reduction.
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these sediments. Temperate sediments have broader
in situ temperature ranges than polar sediments,
and in these samples sulfate reduction was detected
from below 0 °C up to Topt at 35 °C (Figures 2d and e).
The thermal optimum for sulfate reduction in
tropical sediments was shifted toward 38–44 °C
(Figures 2f–i).

SRR measured in polar sediments at in situ
temperatures of ca. 0 °C were 9–20% of the maximal
rates (Figures 2a–c and Tables 1 and 2). In temperate
sediments, SRR at the mean in situ temperatures
of ca. 12 °C were 9–13% of maximal rates (Figures
2d and e and Tables 1 and 2) while in tropical
sediments, SRR at in situ temperatures of 26–30 °C
were 23–76% of maximal rates (Figures 2f–i and
Tables 1 and 2).

Several of the studied sediments, irrespective
of their in situ temperature, displayed an increase
in SRR at temperatures exceeding 40–45 °C,
well above the psychrophilic or mesophilic Topt

(Figures 2a and c–h).

Temperature characterization of sulfate reduction
The Arrhenius plots are characterized by a range of
linear slopes, mostly extending below and above
the respective environmental temperature ranges
(Figure 3). Apparent Ea values in all sediments
ranged between 36 and 97 kJ mol− 1. Q10 values
ranged from 1.6 to 3.4 in the 10 °C temperature range
leading to the Topt (Table 2, Figure 3). In polar and
temperate sediments, the linear range of sulfate
reduction extended below 0 °C (Figures 3a and b).
The SRR–temperature relationship was linear down
to − 4 to − 6 °C (Figure 4), which is at the freezing
range for the sediment slurries. Rates thus dropped
off steeply below this temperature range. By contrast,
in sediments from tropical latitudes, with the
exception of the South China Sea, Ea remained
constant over a linear range that extended from the
Topt down to an apparent transition between +4 and

+18 °C (Figures 3d and f–i). Below these tempera-
tures the slope changed sharply to higher Ea values of
130–234 kJ mol− 1 (Q10, 5.7–23). The temperature at
which the Ea values changed was estimated by
calculating the best-fit line for the experimental data
using linear regression analysis. The temperature at
the intersection of the two lines is here defined as the
critical temperature (Tcrit).

Diversity and colocalization of SRM phylotypes in
marine sediments
All but one of the 384 putative SRM phylotypes were
affiliated with the class Deltaproteobacteria and
accounted for 9.7–25.9% of the total bacterial 16S
rRNA gene sequences from the nine marine sediment
samples (Figure 5, Supplementary Figures S1 and S2).
SRM phylotype diversity in all nine samples was
dominated by members of the Desulfobacteraceae,
Desulfobulbaceae and Desulfatiglans anilini
lineage (Müller et al., 2014a, b) (Figures 5a and b,
Supplementary Figure S2). A slight exception to this
pattern is the sediment sample from Sadeyat,
which contained less Desulfobulbaceae but a
substantial fraction of Desulfohalobiaceae, a family
that comprises many halophilic SRM species
(Kjeldsen et al., 2007), which is consistent with the
higher salinity of this sediment.

Principal coordinates analysis of total bacterial
communities using the Bray-Curtis metric revealed
clustering of sites by mean temperature, when either
presence/absence or relative abundance was used to
calculate sulfate-reducing and total community dis-
similarities between locations (Figure 6). The one
exception to this tight clustering by temperature was
the saline Sadeyat sediment sample. To evaluate
which environmental parameters were important in
shaping the community compositions, a non-
parametric perMANOVA was applied to test the
significance of temperature, salinity, C:N ratio, total
organic carbon and activation energy for sulfate

Table 2 Summary of temperature gradient experiments based on data from Figure 2

Study sites Sulfate reduction Sulfate reduction rates (nmol cm−3 day−1) Ea (kJ mol−1) Q10
a

Topt (°C) Tcrit (°C) At 0 °C At Topt 0 °C vs
Topt (%)b

Range of
linearity (°C)c

Southern Ocean (Weddell Sea) 21.3 N/A 0.1 0.5 20 0, +21 51.2 ± 8.0 2.1
Arctic Ocean (Ymerbukta, Svalbard) 24.9 N/A 232 2233 10 0, +25 54.9 ± 6.9 2.2
Arctic Ocean (Smeerenburgfjord, Svalbard) 26.4 N/A 15 161 9 0, +26 64.5 ± 1.7 2.4
North Sea (Wadden Sea, German Bight) 34.8 N/A 12 518 2 +4, +35 63.7 ± 3.2 2.3
Baltic Sea (Arkona Basin) 34.8 N/A 13 236 5 0, +35 67.0 ± 3.9 2.4
Arabian Sea (off the coast of Goa, India) 38.3 11 1 55 2 +11, +38 55.7 ± 5.7 2.0
Arabian Sea (Sadeyat island, United Arab Emirates) 40 18 0.02 21 0.1 +18, +40 97.4 ± 11.9 3.4
Andaman Sea (Phuket Island, Thailand) 41.8 13 5 316 2 +13, +42 44.6 ± 4.8 1.7
South China Sea (Hainan Island, China) 43.7 8 1 25 3 +6, +44 36.0 ± 5.0 1.6

Abbreviations: SRR, sulfate reduction rates; Tcrit, critical temperature; Topt, optimal temperature.
aThe temperature interval for the calculation of Q10 is +20 °C to +30 °C.
bPercentage of SRR at 0 °C of maximum SRR at Topt.
cThe term 'Range of linearity' refers to the linear part of the Arrhenius plot.

Temperature control of sulfate reduction
A Robador et al

802

The ISME Journal



reduction. Temperature and salinity, but not the
other factors, were significantly associated with SRM
community composition (perMANOVA, Po0.001,
Table 1).

To evaluate colocalization of individual SRM
phylotypes across the nine sites, a correlation
network based on the abundance of SRM phylotypes
relative to the entire SRM community was devel-
oped. Strong clustering of phylotypes into nine
modules, that is, clusters of co-occurring phylotypes,

was observed (Figure 7). Many phylotypes associated
with each module were enriched at only one site.
Consistent with the principal coordinates analysis,
phylotype modules clustered in the overall network
according to mean temperature. Several phylotypes
detected at multiple sites (that is, site occupancy41)
were correlated with other phylotypes in multiple
modules (that is, phylotypes that represent links
between modules in the network), and these correla-
tions were predominantly between modules

Figure 3 Arrhenius plots of data from Figure 1. Corresponding Ea values are shown.
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associated with sites having similar mean tempera-
tures. Some module-connecting phylotypes (for
example, Desulfobulbaceae phylotypes 195, 1511
and 2651; Desulfatiglans anilini lineage phylotypes
5671 and 4726) were characteristic of sediments with
cold temperatures, while others (Desulfobacteraceae
phylotypes 134, 1263 and 5726; Desulfobulbaceae
phylotypes 2510 and 6454; Desulfoarculus baarsii
lineage phylotype 1201; Desulfobacca acetoxidans
lineage phylotype 5807) were characteristic of sedi-
ments with warmer temperatures. The phylotype
module associated with the warm and high-salinity
site, Sadeyat, was unique and disconnected from all
other sites. No trend was observed with respect to
taxonomic affiliation and co-occurrence of phylo-
types (data not shown).

Discussion

Temperature response and diversity of SRM are site
specific
The temperature response of microbial respira-
tion and growth has commonly been determined
in temperature-gradient incubation experiments
(Battley, 1964) where the thermal response of an
individual organism can be described using three
cardinal temperatures (Neidhardt et al., 1990). The
minimum temperature (Tmin) and maximum tem-
perature (Tmax) delimit the range of growth, while the
optimum temperature (Topt) denotes the temperature
at which the growth rate is highest. On the basis
of these defining cardinal parameters, micro-
organisms are frequently divided into broad classes:
psychrophilic (Tmino0 °C, Topt⩽ 15 °C, Tmax⩽20 °C),
psychrotolerant (Tmin⩽0 °C, Topt⩽25 °C, Tmax⩽35 °C),
mesophilic (Topt~25–40 °C, Tmax~ 35–45 °C) and
thermophilic (445 °C) (Morita, 1975). In the case of
complex SRM communities in marine sediments,
their temperature response can be interpreted as the
combination of SRR of many different SRM popula-
tions, each with a given set of cardinal temperatures.
Such a mixed community response is illustrated in
Figure 1, where the SRR of different psychrophilic,
psychrotolerant and mesophilic sulfate-reducing
strains (Figure 1a) are summed to give a theoretical
temperature response of a mixed SRM community
(Figure 1b). As an example, a hypothetical mixture of
SRM (Figure 1b), each with characteristic tempera-
ture ranges but predominantly psychrophilic, results
in a relatively broad temperature response similar to
that observed for many natural communities in cold
sediments (Isaksen and Jørgensen, 1996; Sagemann
et al., 1998). The composite of the temperature
responses of these organisms (Figure 1c) translates
into a temperature characteristic with an average
Ea of 70 kJ mol− 1 (Figure 1d), corresponding to
a Q10 of 2.6.

These values fall within the range for active SRM
(Isaksen and Jørgensen, 1996; Sagemann et al., 1998)
as well as other heterotrophic bacterial communities

Figure 4 Arrhenius plots of SRR (nmol cm− 3 day− 1) measured in
temperature-gradient incubation experiments down to −10 °C of
sediment slurries from sampling sites at the Arctic Ocean
(Smeerenburgfjord, Svalbard), Wadden Sea and Baltic Sea.
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(Pomeroy and Wiebe, 2001). Accordingly, the reg-
ulation of Topt for sulfate reduction by mean ambient
temperatures (Figure 2) denotes the dominant tem-
perature sensitivities of the active SRM community
in the studied environments and is indicative of the
enrichment of particular SRM. In this study, we
present new data and extend previous findings (for
example, Isaksen and Jørgensen, 1996; Arnosti et al.,
1998; Sagemann et al., 1998; Canion et al., 2014) that
suggested temperature-dependent adaptations of
SRM communities based on whole-community
SRR. Moreover, our observations reveal that the
environment selects organisms that are physiologi-
cally best adapted to the prevailing temperature.

SRR measured at the in situ temperature in polar
sediments (0 °C) were 9–20% of the maximal rates
at Topt (Figures 2a–c, Table 2). By comparison, in
temperate sediments, the relative SRR at 0 °C were
only 2–5% of the rates at Topt (Figures 2d and e and
Table 2). Relatively high metabolic rates at tempera-
tures near the freezing point are characteristic of
microorganisms adapted to cold habitats (Harder and
Veldkamp, 1968). The SRR at 0 °C relative to Topt in
the polar sediments are in the range previously
described for psychrophilic sulfate-reducing micro-
bial communities in cold polar marine sediments
(Isaksen and Jørgensen, 1996; Robador et al., 2009).
This shows a distinct adaptation of SRM to the low
temperature in the polar region. Of the three polar
environments, the Antarctic sediment had the high-
est relative SRR at low temperatures (20% of SRR at
Topt; Figure 2, Table 2). Arctic sediments collected
from Smeerenburgfjorden and Ymerbukta on the
west coast of Svalbard are influenced by the slightly
higher temperatures of the North Atlantic Water
compared with Antarctic waters (Walczowski and
Piechura, 2007), which may explain the broader
temperature adaptation range of the Arctic SRM
communities. Similar response patterns to water
temperatures have been observed in permanently but
moderately cold sediments from temperate regions,
where sulfate reduction showed a mesophilic tem-
perature response (Isaksen and Jørgensen, 1996).
Sediments with seasonally changing temperatures
are only exposed to low temperature during winter,
whereas the psychrotolerant and mesophilic com-
munity develops primarily in summer when tem-
peratures are warmer and the influx of organic
matter is greater. Psychrophiles may be better
adapted to winter conditions, but with a mean cell
turnover time of about 1 year (Hoehler and
Jørgensen, 2013), they apparently grow too slowly
for a ‘winter community’ to develop. Psychrotoler-
ants and mesophiles predominate in temperate
habitats even at low temperatures during winter
(Robador et al., 2009). In tropical sediments, high
SRR at in situ temperatures relative to Topt (23–76%,
Figure 2, Table 2) suggest that a mesophilic SRM
community dominates these environments with an
optimal activity close to the ambient temperature.
The permanently warm conditions in these

environments select for a community adapted to
temperatures that remain above 10–15 °C and are
generally 25–30 °C.

Relative rates of sulfate reduction at 45–50 °C are
13–148% of highest rates in all but the intertidal
Arctic Sea and South China Sea sediments, indicat-
ing the presence of spores of thermophilic SRM that
germinated at these high temperatures, even though
these study sites would not support in situ growth at
their ambient temperatures. Thermophilic spore-
forming bacteria, among them SRM, have been
reported from a variety of marine environments
ranging from high Arctic to temperate environments
(Isaksen et al., 1994; Hubert et al., 2009; de Rezende
et al., 2013; Mueller et al., 2014). Their distribution
patterns are suggested to be linked to a combination
of dispersal by ocean currents, regional hydrography
and local geological factors.

This distinct physiological differentiation of SRM
communities in polar, temperate and tropical regions
is consistent with differences in phylotype composi-
tion among the nine study sites (Figure 5). SRM
and total community phylotypes from remotely
isolated samples exhibit patterns of diversity related
to similar mean environmental temperatures
(Figure 6, Supplementary Table S1). Our data
suggest that, despite the high abundance and
potentially high dispersal of microorganisms, the
prevailing ambient temperature exerts strong
environmental selection on microbial community
composition in marine sediments.

Respiration rates and community structure of SRM are
determined by temperature
In sediments investigated here, the temperature
dependence of the short-term SRR was linear
extending from the lower temperature limit of sulfate
reduction, which varied according to the observed
Tcrit, up to the Topt (Figures 3 and 4). The Ea of
36–97 kJ mol− 1 (Figure 3 and Table 2) is within the
range of apparent Ea estimated in seasonal studies of
shallow coastal marine sediments, 36–132 kJ mol− 1

(Westrich and Berner, 1988). Below the Tcrit, SRR
decreased abruptly exhibiting a stronger temperature
dependency, that is, higher Ea values (Figure 3).
This can be attributed to a different physiological
temperature regulation of sulfate reduction below
the Tcrit and shows that some SRM were stressed
below the temperature range to which they are
adapted. The existence of a critical temperature
(Tcrit) (Lamanna et al., 1973) has been proposed for
bacterial growth at low temperatures to explain the
transition between optimal and sub-optimal thermal
activity ranges (Guillou and Guespin-Michel, 1996).
A Tcrit has also been described for thermophilic,
mesophilic and psychrotolerant microorganisms
(Harder and Veldkamp, 1968; Mohr and Krawiec,
1980; Reichardt and Morita, 1982). The biochemical
basis for Tcrit remains uncertain, but this temperature
is likely the result of the uncoupling of DNA
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synthesis rate and growth rate at low temperatures
(Bakermans and Nealson, 2004). Although a Tcrit has
been described for pure isolates of sulfate-reducing
bacteria (Tarpgaard et al., 2006), there have been no
reports for natural communities of SRM in marine
sediments.

In tropical sediments the Tcrit was close to the
respective in situ temperatures and much higher
than in polar and temperate sediments, where the
linear temperature dependence of SRR extended
down to −10 °C and showed no evidence of a low-
temperature threshold (Figure 4). The low Tcrit in the
Arctic sediment likely reflected the physicochemical
constraints (that is, ice crystallization, high salinity
and low nutrient availability) imposed by sediment
freezing. Our results show that sulfate-reducing
communities in these cold habitats can tolerate
temperatures down to or below the freezing point
of seawater, which may permit survival and recovery
after temporary freezing of the sediment. Studies of
Arctic sediments show that sulfate reduction
decreases strongly during freezing, yet SRM may
exhibit relatively high metabolic rates immediately
upon thawing, even after repeated freeze-thaw cycles
(Sawicka et al., 2010). Water on mineral surfaces and
in liquid veins in ice can provide adequate habitats
for active microbial populations (Price, 2007;
Bowman et al., 2012; Ewert and Deming, 2014).
Moreover, there is no evidence of a minimum
temperature for metabolism even at temperatures as
low as −20 °C (Rivkina et al., 2000). In addition to
psychrophily, cryotolerance (for example, D'Amico
et al., 2006) may be an important characteristic of
SRM for survival in polar coastal environments that
freeze during winter. The larger difference between
the Topt and the Tcrit in the polar and temperate
habitats shows that the active SRM consist of a
mixture of divergent temperature adaptations that
may include psychrophiles, psychrotolerants and
mesophiles, whereas in the tropical habitats a more
narrowly adapted mesophilic community is present.

While the overall phylotype composition of the
SRM communities is unique at each site, certain
phylotypes are specific to warm or cold regions
(Figure 7 and Supplementary Figure S2). Notably,
sediments from the geographically distant Arctic and
Antarctic hosted microbial communities that are
more similar to each other than to geographically
closer low-latitude sediments from, for example, the
Arabian Sea (Goa) or the southern North Sea
(Dangast). This provides further evidence that the
SRM diversity is largely controlled and maintained
by effects of ambient temperatures.

Conclusions

The combination of our respiration rate measure-
ments with phylogenetic community analysis of
different climatic regions shows that physiological
temperature adaptations allow certain SRM to

capitalize on their respective environmental thermal
range thus selecting for different SRM and structur-
ing community diversity. This implies that, as
the different thermal SRM groups grow and meta-
bolize effectively at their corresponding ambient
temperatures, a high specific sedimentary carbon
mineralization rate is possible in all environments.
Indeed, process studies in Arctic sediments revealed
sulfate reduction rates that were as high as SRR
in temperate sediments (Sagemann et al., 1998)
implying significant functional redundancy of
seabed microbial communities at all temperatures.
An intriguing implication is therefore that changes in
microbial community composition that could arise
in response to increasing ambient temperatures may
not result in higher carbon mineralization rates on
the long term, because microbial communities
always thrive to optimize the metabolic rate under
the prevailing temperature regime.
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