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Unique metabolites protect earthworms against
plant polyphenols
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David Wallis®, Vitalii Palchykové'f, Jeremy Robertson®, Elma Lahive’, David J. Spurgeon7, David McPhail3,
Zoltan Takats' & Jacob G. Bundy'

All higher plants produce polyphenols, for defence against above-ground herbivory. These
polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter.
Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon
turnover and ecosystem functioning in soils. It is unknown how earthworms, the major
component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show
that earthworms possess a class of unique surface-active metabolites in their gut, which we
term 'drilodefensins’. These compounds counteract the inhibitory effects of polyphenols on
earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in
both laboratory and field populations. This shows that drilodefensins protect earthworms
from the harmful effects of ingested polyphenols. We have identified the key mechanism for
adaptation to a dietary challenge in an animal group that has a major role in organic matter
recycling in soils worldwide.

TDepartment of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK. 2 Department of Symbiosis,
Max-Planck-Institute for Marine Microbiology, Bremen 28359, Germany. 3 Department of Materials, Imperial College London, London SW7 2AZ, UK.

4 Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3AX, UK. 5Bruker Daltonik GmbH, 28359 Bremen, Germany. 6Departmen’[ of
Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK. 7 Centre for Ecology and Hydrology, Maclean
Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK. } Present address: Department of Organic Chemistry, Oles Honchar
Dnipropetrovsk National University, 72 Gagarina Avenue, Dnipropetrovsk 49010, Ukraine (V.P.). Correspondence and requests for materials should be
addressed to M.L. (email: mliebeke@mpi-bremen.de) or to J.G.B. (email: j.bundy@imperial.ac.uk).

| 6:7869 | DOI: 10.1038/ncomms8869 | www.nature.com/naturecommunications

© 2015 Macmillan Publishers Limited. All rights reserved.


mailto:mliebeke@mpi-bremen.de
mailto:j.bundy@imperial.ac.uk
http://www.nature.com/naturecommunications

ARTICLE

n estimated 3.5 x 1010 tonnes of terrestrial leaf litter are

turned over worldwide each year in soils!. Plants

produce polyphenols as a defence against above-ground
herbivory?, but polyphenols can also have indirect effects on the
soil micro- and macrofauna that break down plant leaf litter®*,
Polyphenols are found ubiquitously in plants, and often at high
concentrations (for example, between 1 and 25% leaf dry
weight®), and so the rate of transfer of soluble polyphenols
alone into soil could reach levels of >200kgha ~! per year, from
a combination of throughfall and leaching from decomposing leaf
litter®. They are a complex group of chemicals with varying
degrees of polymerization, ranging from simple phenols, phenolic
acids and flavonoids to oligomers and polymers with tannins
and lignin as main groups’. Polyphenolic compounds bind
to and ]precipitate soluble proteins®® which can inhibit enzyme
activity’®, Mammals counteract these deleterious effects by
producing proline-rich salivary peptides which sequester
polyphenols into insoluble complexes!!. In contrast, some
invertebrates produce §ut surfactants in response to a
polyphenol-rich diet'?>"1>, but little is known about their
structure in general and if they are directly involved in the
interaction with polyphenols. Earthworms form the major
component of animal biomass in many soils, and are
considered ecosystem en%ineers owing to their key role in
organic matter turnover'®!”, Earthworms prefer low-polyphenol-
content plant material if available!8, indicating that polyphenols
can have a negative effect on them, but so far it is not known how
earthworms cope biochemically with high-polyphenol diets as
found in many habitats.

Here, we show that a number of different dialkylfuransulfonate
metabolites are found in all earthworm species that we have
tested so far, but appear to be restricted to earthworms. These
compounds were present in the anterior part of the earthworm
gut, implying they might act as gut surfactants. We established
that the major metabolite (2-hexyl-5-ethyl-furan-3-sulfonate) has
similar surface activity to commercial products such as SDS, and
reduces soluble protein precipitation by polyphenols without
affecting the activity of earthworm gut enzymes. Furthermore,
exposing earthworms (both laboratory and field populations) to
high-polyphenol diets increased their surfactant metabolite
concentration. Together, our results suggest that these metabo-
lites, which we term here ‘drilodefensins’, play a role in protecting
earthworms from the high levels of polyphenols in their diet and
thus help earthworms to live in diverse habitats.

Results

Furansulfonic acid metabolites are localized to the gut. We
used untargetted metabolic profiling (metabolomics) to search for
potential surface-active compounds (Supplementary Table 1) in
the gut fluid of earthworms (obtained either by dissection or by
squeezing out the gut contents). We detected only common
primary metabolites without obvious surface-active structural
properties, that is, we did not observe any metabolites similar to
other small molecule gut surfactants from different species
(Supplementary Fig. 1). However, earthworm samples can be
labile because of unusually high residual enzyme activity'?,
potentially requiring techniques for in situ detection, and so we
used a combination of complementary imaging mass spectro-
metry (IMS) techniques to explore metabolite distributions in
snap-frozen and cryosectioned earthworms. IMS is opening up
many areas of life sciences investigation, by adding critical
information about tissue and cellular localization to
biochemistry?®22, We first used high mass resolution IMS
(MALDI-MS (matrix-assisted laser desorption/ionization) and
DESI-MS (desorption electrospray ionization)) to identify which

2

organ(s) or tissue(s) contained potential biosurfactant molecules.
We were particularly interested in abundant compounds, as
metabolites that play a direct functional role on the basis of their
chemical properties (as opposed to signalling molecules, for
instance) will tend to be present in high concentration. The
highly abundant ion 259.1013 Da was localized to the earthworm
gut (and particularly the gut wall region) in foregut sections,
but not in tail sections (Supplementary Fig. 2a). This m/z
value is consistent with a molecular formula of C;,H;90,S ™
(calc. 259.1010 Da), which most likely represents the [M-H] ~ ion
of the earthworm metabolite with proposed structure 2-hexyl-5-
ethyl-furan-3-sulfonate (compound 1; Fig. 1). This compound has
been previously described as a metabolite in earthworms,
but with no functional role assigned?>. We verified the structure
by synthesizing an authentic standard, and comparing the
spectroscopic data (Supplementary Fig. 3). A related set of
previously undescribed furan sulfonate metabolites (compounds
2-6; Fig. 1) were also co-localized to the gut (Supplementary
Fig. 4). The presence of these compounds in earthworms was
confirmed by  additional  Ultra-Performance  Liquid
Chromatography (UPLC)-MS experiments of tissue extracts,
giving unique retention times and mass spectra (Supplementary
Fig. 5). The proposed structures for (2-6) are based on
mass spectrometry fragmentation (MS") experiments, either via
direct infusion MS™ or on-tissue desorption electrospray ionization
(ESI)-MS™ (Supplementary Fig. 6; Supplementary Table 2).
Compound 2 was also further confirmed by synthesis of an
authentic standard; compounds 3-6 remain putative structures as
they do not yet have associated NMR data. The identified
compounds are strong acids with a lipophilic alkyl chain, so are
likely to be surface active.

Compound 1 was not evenly distributed along the alimentary
system of the worm (Fig. 2a), with the highest concentrations in
the foregut region. In comparison, other high-abundance
metabolites like amino acids were more evenly distributed along
the worm body (Supplementary Fig. 2b). In order to prove that
compound 1 is located directly in the intestinal organs we used
high spatial resolution IMS (time-of-flight secondary ion mass
spectrometry, TOF-SIMS), which showed a clear localization of
compound 1 next to the gut epithelium and within the gut lumen
(Fig. 3a,c; Supplementary Fig. 7) and not in adjacent tissue. In
addition, based on a coronal section, compound 1 was present in
all organs of the alimentary system apart from the oesophagus
and mouth (Fig. 3b). This is consistent with our hypothesis, as a
biosurfactant defence compound would need to be present at an
early point of contact between polyphenols and soluble proteins
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Figure 1| Structures of earthworm 2,5-dialkylfuran-3-sulfonic acid
metabolites 1-6 NB that compounds 3-6 are based on mass spectrometry
data only, and do not yet have associated NMR data.
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Figure 2 | Drilodefensins are ubiquitous and abundant earthworm metabolites. (a) Quantitative longitudinal distribution of 1 in sections of an
earthworm. (b) Abundance of 1 and 2 in earthworm species from three different families, yellow—Lumbricidae (L); green—Megascolecidae (M); orange—
Glossoscolecidae (G); (¢) Relative abundance of 1 during different earthworm developmental states and in earthworm exudates. The average £ s.d, n=>5is
shown for data in b and ¢. (d) Elemental composition of L. rubellus tissue; the bar chart represents sulfur content in non-extractable (~70%, orange) and
extractable (soluble) fractions, with the soluble fraction further separated into drilodefensins (20%, yellow) and other small molecules (10%, blue). Ach,
Allolobophora chlorotica; Atu, Aporrectodea tuberculata; Dve, Dendrobaena veneta; Efe, Eisenia fetida; Lru, Lumbricus rubellus; Lte, Lumbricus terrestris; Aco,
Amynthas cortices; Aro, Amynthas rodericensis; Pco, Pontoscolex corethrurus; Pbi, Pithemera bicincta.
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Figure 3 | Drilodefensins are found solely in the earthworm gut. Transverse tissue cryosections were analysed by high-resolution mass spectrometry
imaging. (@) MALDI-FTICR-MS, compound 1 (m/z 259.1004 + 0.001Da M-H *) distribution overlaid on optical image from tissue transverse section in the
foregut region; (b) TOF-SIMS analysis of a longitudinal cross-section through middle plane of earthworm, compound 1 in orange (m/z 259 Da), upper

image; optical light-microscopic image, lower image. (¢) TOF-SIMS derived ion-map for compound 1 in a full cross-section near the clitellum region, right
image (d) shows higher spatial resolution image from white inset in (¢, left image) showing 1 (m/z 259 Da) in purple and phosphocholine (m/z 184 Da)
derived from tissue material in green. (e) Drilodefensin (compound 1) distribution in an earthworm, schematic multi-modal three-dimensional model based
on micro-computed tomography integrated with IMS data. The colour scale in a and e represents the relative abundance of m/z 259.1004. Labelling: ep,
epithelium; cm, circular muscle; Im, longitudinal muscle; ge, gut (intestinal) epithelium; gl, gut lumen; np, nephridial tubule profiles (in coelomic cavity); ty,

typhlosole fold.

within the digestive system, analogous to the occurrence of
proline-rich defensive peptides in vertebrate saliva'l.

The metabolites are unique to earthworms. These dialkylfur-
ansulfonates appear to be unique to earthworms, as they are not
found in their closest relatives, for example other clitellate
annelids such as enchytraeids, leeches or naidids (Supplementary
Fig. 8). There are high levels of compound 1 and moderate
levels of 2 in all earthworm species that we have studied to

date (14 species, including members from three different families:
Lumbricidae, Glossoscolecidae and Megascolecidae; Fig. 2b), and
1 has also been reported in a non-lumbricid Australian earth-
worm?, During the different life stages of earthworms an
increased amount of compound 1 was observed (Fig. 2¢), with
cocoons being free of compound 1.

Unlike other sulfur-containing secondary metabolites in
animals, which are often only found at low abundance, the
dialkylfuransulfonates are present in high concentration in
earthworms, and so potentially play a major role in the
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earthworms’ sulfur budget. We determined the total tissue sulfur
content of earthworms (7.2-8.0mgg~ ! dry weight), as well as
the sulfur content of different subcellular fractions. Compound 1
comprises about 20% of total earthworm sulfur, and 70% of the
sulfur from small molecules (Fig. 2d), such that earthworm sulfur
biochemistry must have undergone substantial adaptation to
meet this demand. Furthermore, compound 1 comprises ~ 1.3%
of total earthworm biomass dry weight (based on sulfur
determination).

The metabolites act as biological surfactants. To assess the
surfactant properties of these compounds, we tested synthetic
pure standards of the most abundant compounds 1 and 2 in vitro.
Compound 1 dose responsively decreased the surface tension of
aqueous buffer and started to form micelles at 6 mM (critical
micellar concentration), which is comparable to other biological
and synthetic surfactants (for example the bile acid cholic acid,
11mM; and the synthetic compound SDS, 8 mM; Fig. 4a).
Compound 2 was less surface active with a critical micellar
concentration of 30 mM. The dialkylfuransulfonates are clearly
biological surfactants; however, gut surfactants could have two
possible biological functions: they could protect against phenols,
and/or could act as functional analogues of bile acids (which are
not found in earthworms) by solubilizing lipids. Both possibilities
were tested separately. Firstly, the ability of compounds 1 and 2 to
solubilize cholesterol (an essential dietary nutrient for earth-
worms??) was tested: compound 1 was more effective than the
mammalian metabolite cholic acid at solubilizing cholesterol,
although not as powerful as SDS (Fig. 4b). Secondly, though,
compound 1 and 2 also reduced the precipitation of soluble
proteins by polyphenols in vitro, without affecting the activity of
an earthworm gut enzyme (lumbrokinase). Synthetic surfactants
reduced protein precipitation to a similar extent, but at the cost of
reducing enzyme activity (Fig. 4c,d).

The surfactants are protective against dietary polyphenols.
These experiments did not clearly distinguish between lipid
solubilization or polyphenol defence as potential functions of
these metabolites, and so earthworms were kept for 2 weeks in
soil microcosms with either high-fat or high-polyphenol diets in
order to determine the in vivo response. The food sources were
comprised of one control diet (oats only), two with increased lipid
content (amended with either olive oil or animal fat) and two
with high polyphenol levels (amended with either a pure standard
of tannic acid, a typical polyphenol compound, or with oak
leaves, representing an ecologically relevant polyphenol-rich
natural food for earthworms). High-fat diets increased compound
1 levels, but not significantly, whereas both the high-polyphenol
diets led to an increase of ~50% (P <0.01, Student’s ¢-test, n =10
each treatment) in compound 1 (Fig. 4e). Consistent with these
results from manipulative laboratory experiments, autochthonous
earthworms from woodland sites (that is, exposed to greater
amounts of high-polyphenol leaf litter) had higher levels of
compound 1 compared with earthworms from grassland sites,
which in turn had higher levels than earthworms from mine sites
with very low levels of vegetation cover (Fig. 4f).

Discussion

The combination of the intestinal localization, surface activity,
protective effect against precipitation of proteins by polyphenols,
and increase in concentration in response to polyphenols in both
laboratory and wild populations, indicates that dialkylfuransulfo-
nates represent a biochemical adaptation of earthworms that
helps them to cope with polyphenol-rich plant diets. We propose
naming these metabolites drilodefensins (from megadrile, the
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Figure 4 | Gut surfactant levels are influenced by dietary polyphenols,
and protect proteins from polyphenol precipitation while retaining
earthworm gut enzymatic function. Influence of different concentrations of
compound 1 (yellow), 2 (blue), cholic acid (grey) or synthetic surfactant
SDS (black) on (a) surface tension in buffered solution, (b) cholesterol
solubility, (¢) precipitation of protein (BSA) by tannin and (d) enzymatic
activity of an earthworm gut protease (lumbrokinase), experiments were
replicated three times. The levels of compound 1 change in response to (e)
diets containing different levels of either lipid or polyphenols (2 weeks
exposure, 10 earthworms per treatment, shown is the mean (£ 95%
confidence interval)), and (f) different leaf litter types of natural soils
(lifetime exposure, specimens collected from field populations, number of
specimens: pasture n =240, mine sites n =237, woodland n = 21), error bars
are s.d.; P values, Student's t-test.

earthworm group of terrestrial clitellate annelids). Given that
earthworms allocate so many resources to drilodefensins (making
up 1% or more of the total dry biomass, and 20% of the total
sulfur budget) they are clearly critically important to earthworms.
Other terrestrial detritivores are also therefore likely to possess
biochemical adaptations such as gut surfactants as defences
: 14,15 ; :
against polyphenols'®">, although there is no reason to believe
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that they would be chemically related to the drilodefensins,
particularly as sulfonate-containing metabolites are not common
in animals. We conservatively estimate that compound 1
represents a pool of 1 million ton in European soils alone
(assuming 500kgha~! earthworm biomass for forest and
farmland®®). Ultimately, given the global abundance of
earthworms, these metabolites may plaoy a key ecological role in
contributing to the turnover of >10'ton of plant carbon per
annum. Furthermore, this pool is undoubtedly rapidly turned
over: drilodefensins reduce in concentration along the earthworm
gut, and are not detectable in earthworm castings (Fig. 2),
indicating the presence of a recycling system. Hence, an
important question that is yet to be resolved is to determine
exactly what happens to the surfactant complexes—are the
undigested polyphenols simply released from the complex in the
posterior part of the gut for excretion? We also do not know if
drilodefensin molecules are recycled by transport back to the
foregut, or if they are enzymatically degraded and the nutrients
recovered.

Ultimately, these metabolites provide a mechanism for earth-
worms to cope with high levels of polyphenols in their diet—
essential for detritivores that contribute so largely to turning over
plant-derived material in soils. This gives earthworms the ability
to populate many habitats, including those with polyphenol-rich
plant litter, such as woodland soils.

Methods

Feeding experiment. Earthworms used for the feeding experiment were taken
from a culture originally established from a field-collected population. The culture
was kept outdoors in large boxes under a cover in a 1:1:1 soil:bark:compost
medium for 6 months before the test. The feeding test itself was conducted in a clay
loam soil with a pH of 7.1 and a 5% organic matter content that was further
amended with 3% organic matter. Each of the 10 replicate containers per treatment
contained 250 g dry weight of this soil wetted to 50% water holding capacity. A
single adult Lumbricus rubellus was added to each replicate. The food sources were
comprised of one control diet (oats only), two with increased lipid content
(amended with either olive oil or animal fat) and two with high polyphenol levels
(amended with either a pure standard of tannic acid, or oak leaves), and were made
up as follows: oats only (60 g dry weight oats 4+ 100 ml H,O); oats + vegetable oil
(60 g dry weight oats + 12 g olive oil + 90 ml H,0); oats + animal fat (60 g dry
weight oats + 12 g lard + 90 ml H,O); oats + tannic acid (60 g dry weight oats+6 g
tannic acid + 100 ml H,O to give a final concentration of 100 mgg ™! tannic acid
in oats); oak leaves (50 g chopped oak leaves (freshly fallen) + 200 ml H,O). At the
start of the experiments individual earthworms were fed either 8.7 g of wetted oats
(giving 3 g dry weight per replicate for all oats treatments), or 7.5g of oak leaves
(giving 1.5 g dry weight per replicate). After 2 weeks of exposure, the earthworms
were retrieved from the containers, weighed and immediately frozen in liquid
nitrogen. All worms used in the experiment survived the exposure resulting in a full
set of 10 earthworms per treatment for analysis.

Whole earthworms were extracted in 7 ml tubes containing 2.8 mm zirconium
oxide beads (Precellys Ceramic Kit, Peqlab, Germany) and a solvent mixture
of acetonitrile, methanol, water (2:2:1) (ref. 19), with the volume adjusted to the
whole worm weight. Extraction and tissue disruption was done in a Precellys Dual
bead beater (Bertin Technologies) at 5,000 r.p.m. for 40s. The samples were
subsequently centrifuged (3,000g, 2 min, 4 °C) and supernatants were transferred
into new tubes. All steps were performed on ice to prevent enzymatic degradation.
For final analysis, 50 pil of supernatant were diluted to 200 pl with the extraction
solvent and analysed by UPLC with ultraviolet detection.

Earthworm field populations for drilodefensin quantification. Adult L. rubellus
were collected and analysed for drilodefensin (compound 1) quantification from
13 grassland sites, 3 mine sites and 1 woodland site in the United Kingdom. The
details of the sampling procedures and a list of the site characteristics (set 1) have
been previously reported?”.

UPLC-ultraviolet detection of alkylfuransulfonic acids. A Waters Acquity UPLC
system with a ultraviolet/visible absorbance photodiode array detector (monitoring
Aj30) using an Acquity HSS T3 1.8 pm column (2.1 x 30 mm) was used for the
separation and detection of alkylfuransulfonic acids. Elution was performed at
04mlmin—!ina gradient of solvents A (0.1% formic acid in water) and B (0.1%
formic acid in isopropanol:acetonitrile 70:30 vol/vol): 20% B increasing to 60% B
over 1 min, further increase to 99% B over 0.5 min, isocratic for 0.5 min, B was

decreased to 80% over 1 min and re-equilibrating over 1 min. For analysis Mar-
kerLynx Version 4.1 (Waters, Milford, MA, USA) was used.

Analysis of excreted fluids and gut content. Samples for the analysis of excreted
fluids and gut content were prepared as followed. Single adult Lumbricus terrestris
earthworms were placed in a 9 cm Petri dish containing a Whatman No.1 filter
paper disc with 3 ml water to keep them moist. These were kept in the dark at 12°C
for 3 days, afterwards the filter with fluids and gut content was added to 10 ml
water and mixed thoroughly and subsequently centrifuged in 15 ml tubes for 5min
at 3,000 r.p.m. Supernatants from 10 worm samples were combined and dried in a
vacuum concentrator (Eppendorf, Cambridge, UK). Dried samples were resus-
pended in NMR buffer and analysed by 'H NMR.

Determination of elemental composition. Adult L. terrestris earthworms were
frozen in liquid nitrogen and the tissue was powdered under liquid nitrogen
conditions using a cryogenic impact mill (freezer mill 6870, SPEX, Stanmore, UK).
One aliquot of the frozen powder was directly prepared for the analysis of ele-
mental composition, another aliquot was extracted with a solvent mixture of
acetonitrile, methanol, water (2:2:1). The extract was centrifuged (3,000¢, 2 min,
4°C), afterwards the whole pellet containing cell debris and precipitated proteins
was prepared for elemental analysis (‘non-soluble’ sulfur). The supernatant
(‘soluble sulfur’) was further separated via solid-phase extraction to obtain a
fraction solely consisting of drilodefensins and a fraction of other soluble com-
pounds. Each fraction was freeze-dried and the powder sent for elemental analysis
(C, N, S) by a commercial service (Elemental Microanalysis, Okehampton, UK).
The solid-phase extraction used a mixed-mode reversed-phase/weak anion
exchange column (Strata-X-AW, Phenomenex, UK) using acidic methanol (0.05%
trifluoroacetic acid vol/vol) for eluting other soluble compounds, followed by basic
methanol (2.5% ammonium hydroxide vol/vol) for eluting the drilodefensins.

Tissue material for mass spectrometry imaging. Adult L. rubellus were collected
from laboratory cultures maintained at the Centre for Ecology and Hydrology,
Wallingford, UK, washed with distilled water and depurated at 12 °C in the dark
for at least 3 days. Worms were snap-frozen in liquid-nitrogen-cooled isopentane,
and stored at — 80 °C until further processing.

Cryosectioning. Frozen earthworms were cut into ~ 0.5 cm parts with a precooled
scalpel, transferred to a cryostat cooled to — 23 °C and fixed to a sample plate with
a dro;let of optimal cutting temperature medium; for details see Wroblewski

et al.?8. The tissue part for mass spectrometric analysis was not covered with
optimal cutting temperature. Cross-sections with 15 um thickness were cut from
parts of the head region, the clitellum and the tail region. These were immediately
transferred onto glass slides with an artist brush and thaw mounted. Polylysine-
coated glass slides (Glass Slides for MALDI imaging, Bruker Daltonics) were used
for MALDI-MS experiments and plain glass slides for TOF-SIMS experiments,
respectively. The tissue sections were dried in a desiccator connected to a
membrane pump for several hours until completely dry. Optical images were taken
with a standard light microscope connected to a digital camera or with the MIRAX
desk digital slide scanner (Zeiss, Germany). An Olympus VS120-S virtual slide
scanning system was used to scan slides containing samples for DESI-MS and
TOF-SIMS. During all transfers precautions were taken against tissue rehydration
from room atmosphere.

MALDI-MS imaging. For homogeneous matrix deposition, the ImagePrep
instrument (Bruker Daltonics, Germany) was used. This sensor-controlled vibra-
tional vaporization instrument was set according to manufacturer’s instructions for
the application of alpha-cyano-4-hydroxycinnamic acid (HCCA; 7gl~! HCCA
matrix in water/acetonitrile/trifluoroacetic acid = 49.9/49.9/0.2). All chemicals used
were obtained in high purity from Sigma, except HCCA (Bruker Daltonics) and
solutions were prepared after established protocols?’.

For MALDI-MS measurements, the prepared slides were mounted into a Slide
Adapter (Bruker Daltonics) and loaded into the dual source of a 12T Fourier
transform ion cyclotron resonance, (FTICR)-MS (solariX, Bruker Daltonics).
MALDI images were acquired with a x—y-raster width of 50 pm using smartbeam II
laser optics with a 30 um laser focus. For each pixel a single scan was recorded
using the ions generated by 300 laser shots. The laser was pulsed at 1kHz and the
ions were accumulated externally (hexapole) before being transferred into the ICR
cell for a single scan. For each scan 1 M data were acquired for the mass range 130-
1,500 followed by a single zero filling and a sine apodization function. For a given
imaging experiment up to 5,854 pixels were acquired. External calibration was
carried out using arginine clusters in electrospray mode. This provided a mass
measurement accuracy of <1p.p.m. over the m/z range of interest.

After MS acquisition removal of the matrix and haematoxylin and eosin (H&E)
staining was performed according to standard protocols and optical images were
recorded using a MIRAX desk digital slide scanner (Zeiss, Germany). All images,
MALDI-MS image, unstained tissue scan and H&E stained tissue scan were
combined and co-registered using the flexImaging software Version 3.0 (Bruker
Daltonics). Mass spectral information was extracted using a width of 2 mDa.
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TOF-SIMS imaging. TOE-SIMS was carried out using an IONTOF ToF-SIMS®
instrument. The instrument is a dual beam system and can be operated in a non-
destructive static mode for ion mapping and mass spectrometry or in a destructive
‘dynamic’ mode for depth profiling.

Analyses were carried out using the Bi;" ion beam in the burst alignment mode
to give optimal lateral resolution for ion mapping. In all cases, negative secondary
ions were collected and charge compensation of the sample surface was supplied by
an electron flood gun (20 eV). Ion beam doses during the ion mapping were
maintained below the static limit to ensure the sample surface was not sputtered.

Two different modes of ion mapping were carried out: large ion maps were
collected by continuously moving the sample stage over a selected region of interest
and stitching together individual analysis areas of 0.5 mm?. This is known as a
‘stitched” image. To map the whole sample an area of 5 x 5mm? was selected
(containing 3,500 X 3,500 pixels). Smaller ion maps were collected by rastering the
ion beam over a chosen field of view and selected number of pixels, in this case
areas of 500 x 500 um? with 1,024 x 1,024 pixels were used for more specific
regions of interest on the sample.

Following MS acquisition, tissues were stained with the H&E staining protocol
and optical images were taken with above mentioned microscopes and cameras.

Identification of selected metabolites, for example, compound 1 was done by
spotting pure compound solutions onto glass slides and analysing the respective
mass spectra under given tissue imaging conditions.

DESI-MS imaging. DESI experiments were carried out using a home-built
motorized DESI ion source as described elsewhere®® mounted on a Thermo
Orbitrap Discovery XL instrument Thermo Scientific, Bremen, Germany) operated
in negative ion mode. The distance between DESI sprayer and sample surface was
set to 2mm; the distance between the sprayer and the inlet capillary was 14 mm
and the distance between inlet capillary and sample was set to << 1 mm. Nitrogen
(BOC Group, Guildford, UK) was used as nebulizing gas at a pressure of 7 bar.
Methanol/water (95:5 vol/vol) was used as spray solvent at —4.5kV and a flow rate
of 1.5 ulmin ~ L. Ultra gradient solvents were purchased from Romil Ltd.,
Cambridge, UK. Spray angle and collection angle were set to 80° and 10°,
respectively. Spatial resolution for the imaging experiment was set to 40 pm.

Individual line scans were recorded bin the mass range m/z 150-1,000 and raw files
were subsequently converted into.imzML files using the imzML Converter Version
1.1.4.5. Single ion images and RGB images were generated using MSiReader Version
0.05 (ref. 31) with linear interpolation (order 1) and 0.005 Da bin size.

Direct infusion nanospray ionisation (NSI)-MS of earthworm extracts. Direct
infusion nanospray ionization experiments were carried out using a home-built
nanospray ion source mounted on a Thermo Orbitrap Discovery instrument. The
instrument was operated in negative ion mode and covering a mass range of m/z
70-300. Nanospray experiments were performed to obtain tandem mass spectra of
high mass resolution (R = 30,000 at m/z 400) and accuracy (<3 p.p.m.) to deter-
mine structural formulas of the generated fragments. — 1kV high voltage were
applied to gold-coated 5 pm ID nanospray needles (obtained from DNU-MS GbR,
Berlin, Germany) to nebulize the extracts for mass spectrometric analysis.

Mass spectrometer parameters for DESI-MS and NSI-MS. DESI imaging
experiments were performed using the Fourier transform-MS analyzer of the
Orbitrap Discovery XL hybrid instrument. High-resolution full scan mass spectra
were acquired over the mass range m/z 150-2000 using a fixed injection time of
1,000 ms and 1 microscan. Tube lens voltage and capillary voltage were set to
—100 and — 20V, respectively. Inlet capillary temperature was set to 250 °C.

For nanospray ionization experiments, mass spectra were acquired over the
mass range m/z 70-300 using a home-built nanospray ionization source operated
at 1kV spray voltage. Maximum injection was set to 1,000 ms and one microscan
was acquired per mass spectrum (automatic gain control active). Capillary
temperature and capillary voltage were kept constant at 250 °C and —20V,
respectively, while the tube lens voltage was set to — 80 V. All analyses were
performed in negative ion mode.

Three-dimensional model of IMS data. A three-dimensional (3D) model of
earthworm anatomy based on open-access PCT data (specimen #MCZ_24805,
http://dx.doi.org/10.5524/100092)*>%, including volume rendering, clipping and
cropping was created using version 2.4 of the free 3D imaging software Drishti3*
(http://sf.anu.edu.au/Vizlab/drishti/index.shtml). Mass spectrometry imaging data
was registered into this model by locating the planes of sectioning and correlating
histological features.

Synthesis of compound 1 and 2. Compounds 1 and 2 were synthetized after the
scheme shown in Supplementary Fig. 3a. Masked 4-hydroxy-ynone 8, obtained in
three standard transformations from commercially available heptanal 7, proved to
be a viable substrate for hydrobromination and aromatization in situ, in a mod-
ification of Obrecht’s general methodology®. Metal-halogen exchange and
sulfonylation®® gave synthetic 1 as a caramel-coloured solid following column
chromatography and treatment with activated charcoal to remove coloured

6

impurities. 2-ethyl-5-hexylfuran 10, resulting from protonation of the intermediate
organolithium compound (X = Li), was always formed as a significant side product
but was separated by extraction during the work-up. Compound 2 was made
analogously from commercially available oct-1-yn-3-ol. Reagents and conditions:
(i) HC=CMgBr, THF, 0°C to room temperature; (ii) DHP, PPTS, CH2CI2;

(iii) EtMgBr, THF then N-methoxy-N-methylpropionamide, 0 °C to room
temperature (84% from 7); (iv) HBr (4.0 M, aqueous), toluene, 65 °C (75%);

(v) BuLi, hexanes/THF, -78 °C then Me3N - SO3, -78 °C to room temperature
(31%) (THF, tetrahydrofuran; DHP, dihydropyran; PPTS, pyridinium
paratoluenesulfonate; THP, tetrahydropyranyl).

Chemical characterization of compound 1 and 2. Synthetic products of
compound 1 and 2 were characterized analytically: Obtained values for compound
1:'H NMR (400 MHz, CD,0D): § 6.14 (t, J= 1.0 Hz, 1H), 2.87 (t, ] = 7.5 Hz, 2H),
2.57 (qd, J=7.5. 1.0 Hz, 2H), 1.65 (quin, J=7.5 Hz, 2H), 1.26-1.40 (m, 6H), 1.20
(t, J=7.5Hz, 3H), 0.90 (t, ]="7.5 Hz, 3H); *C NMR (101 MHz, CD;0D): § 156.0,
154.8, 126.3, 105.3, 32.8, 30.1, 29.4, 27.6, 23.7, 22.0, 14.4, 12.5; IR (thin film):
3,425 (m), 1,369 (w); HRMS (ESI") m/z: found 259.1009; caled. for C;,H,;90,S™
[(M-HT)7] requires 259.1010. Obtained values for compound 2:'H NMR

(400 MHz, CD50D): § 6.11 (t, J=1.0Hz, 1H), 2.83 (t, J="7.5Hz, 2H), 2.53

(qd, J=7.5. 1.0 Hz, 2H), 1.62 (quin, J = 7.5 Hz, 2H), 1.26-1.35 (m, 4H), 1.16

(t, J=7.5Hz, 3H), 0.87 (t, J=7.5Hz); 13C NMR (101 MHz, CD;0D): § 156.0,
154.8, 126.4, 105.3, 32.6, 29.1, 27.6, 23.5, 22.0, 14.4, 12.5; IR (thin film): 2,970 (w),
1,739 (s), 1,366 (m), 1,217 (s) cm™; HRMS (ESI") m/z: found 245.0851; calcd.
for C;;H,,0,8™ [((M-H*)7] 245.0853. 'H NMR and '3C NMR spectra for
compound 1 and 2 can be found in Supplementary Figs 9 and 10.

Lumbrokinase activity assay. Earthworm gut protease activity can be monitored
using chromogenic substrates>’. The fibrinolytic active enzyme protease EfP-III,
also known as lumbrokinase, was purchased from Nutricology (USA) and its
activity was assayed using N-benzoyl-L-arginine ethyl ester (BAEE) as substrate.
Mixtures of lumbrokinase in buffer with the addition of different amounts of SDS
or compound 1 or 2 were incubated for 10 min at room temperature before adding
to the BAEE solution. For hydrolysis of a 0.25 mM BAEE solution (67 mM
Na,HPO, buffer, pH 7.0), 250 pg lumbrokinase were added and the absorbance
was measured at 253 nm over 5min. Activities were compared using the slope of
the enzymatic reaction within the first 150s.

Protein precipitation assay. Tannic acid precipitates bovine serum albumin
(BSA) from a buffer solution in a concentration-dependent fashion. The ability of
different concentrations of SDS or compound 1 or 2 to reduce BSA precipitation
were monitored. A BSA solution (16 ugml~! in buffer containing 0.2 M acetate,
0.17 M NaCl, pH4.9) was mixed with defined amounts of surfactant or plain buffer,
and incubated for 10 min at room temperature. A 0.1 mM tannic acid solution was
added to the incubations to a final concentration of 0.018 mM, vortexed vigorously
and incubated for a further 30 min. The mixture was centrifuged at 4 °C for 20 min
at 25,000g. The supernatants were removed by aspiration, and the precipitates were
gently washed with 200 pl of buffer and were centrifuged again for 1 min. The
samples were again aspirated and the precipitates analysed. Precipitated protein
was determined using the Amido Black assay, as this is less sensitive to inter-
ferences from polyphenols than other common protein assays®38. Precipitates were
redissolved in 1% SDS solution (0.05M Tris, pH 7.5) and a trifluoracetic acid
solution was added, incubated for 5 min at room temperature. Solutions were
vacuum filtered onto a 0.1 pm nitrocellulose membrane; microtubes were rinsed
with diluted TFA solution. The filter membranes were dried and afterwards stained
for 10 min with Amido Black solution (1gl~! in water). After destaining and
dissolution of the dye following the method of Weiss and Bisson3, Ags, values
were compared to a BSA standard curve prepared with the same procedure.

Cholesterol solubilization assay. To measure the sterol solubilizing power of a
given compound, dried mixtures with cholesterol (25 mM) and either cholic acid,
SDS or compound 1 or 2 in different amounts were hydrated in 1ml of 0.10M
phosphate buffer, pH 7.0, mixed, shaken for 2h at room temperature and cen-
trifuged at 16,000g; the cholesterol concentration in the supernatant was deter-
mined by gas chromatography-mass spectrometry.
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