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Summary 

The biogeochemical nitrogen cycle, including nitrate reduction processes, is highly affected 

by human activity such as fertilization and ammonia deposition caused by fossil fuel burning. 

Consequently, gaining a better understanding about the ecophysiology of nitrate-reducing 

microbial communities is crucial for inferring the impact of anthropogenic nitrogen input. 

Different nitrate-reducing pathways compete with each other for the electron acceptor 

nitrate: Denitrifiers reduce nitrate to dinitrogen and nitrous oxide while dissimilatory nitrate 

reducers reduce nitrate to ammonium. The outcome of this competition has important 

environmental consequences: denitrification removes fixed nitrogen from the ecosystem, 

while dissimilatory nitrite reduction to ammonium (DNRA) keeps fixed nitrogen 

bioavailable. Although a lot of studies have been performed on this topic, no conclusive 

factors responsible for the dominance of one or the other process could be identified so far.  

In this thesis, the competition between nitrate reduction pathways was addressed by 

combining continuous culture incubations of natural microbial communities with stable 

isotope labeling and metagenomics, complemented with metatranscriptomics and 

metaproteomics in order to gain insight into the identity, function and interaction of the 

enriched microbial populations. To be able to make the best use of the obtained metagenomic 

data a new metagenomic binning procedure was developed.  

Before the competition between two different nitrate reduction pathways was studied, 

the relationship between functional and compositional stability over time within one nitrate 

reduction pathway was investigated: In a heterotrophic denitrifying microbial community, 

enriched from a marine intertidal flat, strong community dynamics were occurring under 

constant conditions and during stable conversion of substrates. A stable metabolic interaction 

between the denitrifying populations and co-enriched fermenting microbes persisted 

throughout the experiment unaffected by the ongoing population dynamics. This indicated 

that functional stability was independent of the community composition. Apparently, only 

the persistence of the overall metabolic potential was important to maintain functional 

stability. This suggested that stochastic as well as deterministic processes are responsible for 

the observed community composition. 

Once the functional stability of denitrification was confirmed and interactions with other 

microbial guilds were known the competition between DNRA and denitrification was 

addressed. Several parallel continuous culture incubations that differed in one condition but 



 

 

were otherwise constant led to the identification of the generation time as most important 

control on the competition between DNRA and denitrification. The organic carbon to nitrate 

ratio and the kind of electron acceptor supplied (nitrate or nitrite) were identified as further 

controlling factors that together with the generation time discriminated between the two 

pathways. The metabolic interaction between nitrate- reducing and fermenting populations 

was stable under both pathways. 

One quarter of the nitrate reduction was coupled to the oxidation of sulfide, which was 

produced in the enrichment culture by microbial sulfate reduction, constituting a strong link 

between the nitrogen and sulfur cycle.  

All in all, this thesis provides new insights into the ecophysiology of microbial nitrate 

reducers by unraveling the driving forces of the competition between different nitrate 

reduction pathways and by revealing important metabolic interactions with other microbial 

guilds. 



 

 

 

 

Zusammenfassung 

Der biogeochemische Stickstoffkreislauf wird stark durch den Menschen über einen hohen 

Gebrauch an Düngemitteln und Ammoniumeintrag durch das Verbrennen fossiler 

Brennstoffe belastet. Dies gilt auch für die Nitratreduktion. Um die Auswirkungen zu 

verstehen, die solch eine Einflussnahme mit sich bringt, ist es wichtig ein besseres 

Verständnis über die Ökophysiologie von nitratreduzierenden mikrobiellen Gemeinschaften 

zu gewinnen. 

Verschiedene Nitratreduktionswege konkurrieren mit einander um den Elektronakzeptor 

Nitrat: Während Denitrifizierer Nitrat zu molekularen Stickstoff oder Distickstoffmonoxid 

reduzieren, reduzieren Nitratammonifizierer es zu Ammonium. Daher hat es wichtige 

Konsequenzen für die Umwelt, welcher der beiden Prozesse sich durchsetzt: Durch 

Denitrifikation wird dem Ökosystem bioverfügbarer Stickstoff entzogen. Bei 

Nitratammonifizierung hingegen bleibt dieser Stickstoff dem Ökosystem erhalten. Obgleich 

viele verschiedene Studien die Konkurrenz zwischen diesen beiden Prozessen mit 

verschiedenen Methoden untersucht haben, konnten keine Schlüsselfaktoren, die den einen 

oder anderen Prozesses eindeutig fördern würden, erkannt werden. 

In dieser Dissertation wird die Suche nach solchen Schlüsselfaktoren adressiert, und 

zwar durch die Kombination der Inkubation von natürlichen mikrobiellen Gemeinschaften in 

kontinuierlichen Kulturen mit der Markierung von Substraten durch stabile Isotope und mit 

Metagenomik. Das Ziel besteht darin einen Einblick in die Identität, Funktion und Interaktion 

der verschiedenen angereicherten mikrobiellen Populationen zu bekommen. Komplementiert 

wird dieser Ansatz mit Metatranskriptomik und Metaproteomik. Um die Metagenomedaten 

bestmöglich nutzen zu können, wurde ein neues Verfahren zur Klassifizierung von 

Metagenomedaten, dem sogenannten „Binning“ entwickelt. 

Bevor die Konkurrenz zwischen zwei verschiedenen Nitratreduktionswegen untersucht 

wurde, wurde zunächst der Zusammenhang zwischen funktioneller und kompositioneller 

Stabilität über die Zeit für einen Nitratreduktionsweg adressiert: Eine heterotrophe 

denitrifizierende mikrobielle Gemeinschaft aus dem Watt, die unter konstanten Bedingungen 

angereichert wurde, zeigte eine starke Dynamik in den angereicherten Populationen über die 

Zeit, während die Umwandlung der Substrate stabil war. Eine stabile metabolische 

Interaktion bestand zwischen den denitrifizierenden Populationen und ko-angereicherten 

fermentierenden Mikroben, ungeachtet der starken Populationsdynamik. Dieses zeigt, dass 



 

 

die funktionale Stabilität unabhängig von der Zusammensetzung der mikrobiellen 

Gemeinschaft war und nur die Erhaltung des genetischen Potentials für Nitratrduktion und 

Fermentation wichtig ist, um die Stabilität aufrecht zu erhalten. Die Populationsdynamik 

fand zwischen wenigen verschiedenen denitrifizierenden und fermentierenden Populationen 

statt. Insgesamt deuten die Ergebnisse darauf hin, dass sowohl stochastische als auch 

deterministische Prozesse die Zusammensetzung der mikrobiellen Gemeinschaft 

beeinflussten.  

Nachdem die funktionelle Stabilität von Denitrifikation und die Interaktionen von 

Denitrifizierern mit anderen mikrobiellen Gruppen bekannt waren, wurde die Konkurrenz 

zwischen DNRA und Denitrifikation adressiert. Das Anreichern von mikrobiellen 

Gemeinschaften in mehreren kontinuierlichen Kulturen, die sich nur in einem Faktor 

unterschieden, führte zu der Identifikation der Generationszeit als wichtigsten 

Kontrollparameter für die Selektion zwischen DNRA und Denitrifikation. Im Zusammenspiel 

mit dem Verhältnis von organischem Kohlenstoff zu Nitrat und der Art des verfügbaren 

Elektronakzeptors (Nitrat oder Nitrit) entschied die Generationszeit über den Ausgang der 

Konkurrenz zwischen Denitrifikation und DNRA.  

Ein Viertel der Nitratreduktion war an die Oxidation von Sulfid gekoppelt. Sulfid wurde 

durch mikrobielle Sulfatreduktion produziert und direkt oxidiert ohne zu akkumulieren. 

Dieses zeigt eine starke Verknüpfung zwischen dem Stickstoff- und Schwefelkreislauf. 

Durch die Aufdeckung der Kontrollparameter, die den vorherrschenden 

Nitratreduktionsweg vorgeben, und durch das Aufzeigen von wichtigen metabolischen 

Interaktionen mit anderen mikrobiellen Gruppen trägt diese Dissertation zu dem Verständnis 

der Ökophysiologie von mikrobiellen Nitratreduzierern bei. 
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Chapter 1 

1 Introduction  

1.1 Nitrogen in the environment 

 

Nitrogen is essential to all life on earth as it is a key component of fundamental building 

blocks of a cell such as nucleic acids and proteins. That is the reason why nitrogen limitation 

may limit the productivity of an ecosystem and nitrogen fertilization is used to enhance 

biomass production in agriculture. Biogeochemical cycling of nitrogen almost entirely 

depends on diverse redox reactions of nitrogen compounds primarily sustained by microbial 

energy metabolism (Canfield, 2010). Thereby, nitrogen compounds get transformed and, 

depending on the redox reaction performed, different end-products may accumulate. 

This thesis addresses competition within nitrate reducing communities. Different 

aspects of such competition are treated: on the one hand different populations that carry out 

the same nitrate-reducing pathway may compete among each other. On the other hand 

different nitrate reducing pathways may be in competition with each other: 

 

1.1.1  The Nitrogen Cycle  

When reactive nitrogen enters an ecosystem mostly in the form of ammonium most of it gets 

converted to nitrate and nitrite by nitrification. These compounds can be used as electron 

acceptor for microbial anaerobic respiration. Nitrate and nitrite can be reduced to ammonium 

by a process called dissimilatory nitrate reduction to ammonium (DNRA) or to N2 by the 

process of denitrification (Lam and Kuypers, 2011). In anammox, dinitrogen is formed from 

nitrite and ammonium. The microorganisms performing the different nitrate reduction 

pathways compete for electron acceptors. To understand the outcome of such competition 

and the impact that it may have, it is crucial to examine the different sources and sinks of 

nitrate and nitrite and the links and interplays of nitrate reducing pathways with the different 

microbial processes of the nitrogen cycle. Therefore, the following paragraphs give a short 

overview of the nitrogen cycle (figure 1.1). The different nitrate-reducing processes are only 

briefly summarized. A more detailed description can be found in chapter 2, which is part of 
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the introduction, but it is included in this thesis as an independent chapter, because it 

represents a self-contained, published manuscript. 

 

 

Figure 1.1: The nitrogen cycle: Biological transformation and associated genes. 

 

 

Denitrification  

During denitrification, nitrate is reduced via nitrite, nitric oxide and nitrous oxide to 

dinitrogen. The enzymes catalyzing the different steps of denitrification are the nitrate 

reductases NarGH and NapAB, the nitrite reductases NirS and NirK, the nitric oxide 

reductase NorB and the nitrous oxide reductase NosZ. A single denitrifying bacterium may 

not possess all the enzymes of the complete denitrification pathway and only carry out 

certain steps of denitrification (Zumft, 1997). Denitrification can be performed by a wide 

range of microorganisms from all three domains of life: more than 60 genera of bacteria and 

archaea and several eukaryotes. (Canfield, 2010, Hayatsu et al., 2008, Risgaard-Petersen et 

al., 2006). In the marine environment, among others, members of the genera Arcobacter and 

Sulfurimonas and the SUP05 group have been identified as important denitrifiers (e.g. 

Canfield et al., 2010, Fuchsman et al., 2012, Walsh et al., 2009, Lavik et al., 2009). Marine 

denitrification (including anammox) is responsible for 50-70% of loss of fixed nitrogen to the 

atmosphere, about 50% of which is occurring in coastal sediments (Fowler et al., 2013, 
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Gruber et al., 2004). Denitrification is considered to be one of the major sources of nitrous 

oxide emissions, a greenhouse gas that has 300 times higher warming potential than CO2 and 

scavenges ozone in the stratosphere (Jetten, 2008, Canfield et al., 2010, Ravishankara et al., 

2009). Especially in the presence of oxygen and in the transition from anoxic to oxic 

conditions, denitrification leads to the production of nitrous oxide because nitrous oxide 

reductases seem to be particularly sensitive to oxygen (Otte et al., 1996, Schreiber et al., 

2012).  

 

Dissimilatory Nitrate Reduction to Ammonia 

Dissimilatory nitrate reduction to ammonium (DNRA), also named dissimilatory 

ammonification or nitrate ammonification converts nitrate to nitrite and then further to 

ammonium. In contrast to assimilatory nitrate reduction to ammonium, DNRA is coupled to 

proton translocation across the cytoplasmic membrane. Many different unrelated bacteria are 

capable of this process, but biochemically it has been best studied in Wolinella succinogenes, 

Escherichia coli and Shewanella oneidensis (Einsle et al., 2000, Bamford et al., 2002, 

Simon, 2002). The key enzyme that mediates the reduction of nitrite to ammonium is the 

pentaheme cytochrome c NrfA (Simon, 2002).  

Furthermore, octaheme cytochrome c enzymes evolutionary related to hydroxylamine 

oxidoreductases also have been proposed to be involved in DNRA (Atkinson et al., 2007; 

Klotz et al., 2008). Based on the genome of Nautilia profundicola, an 

Epsilonproteobacterium from a submarine hydrothermal environment, such an octaheme 

(reverse) hydroxylamine:ubiquinone reductase module has been proposed to reduce nitrite to 

hydroxylamine (Campbell et al., 2009). Hydroxylamine is then further reduced to ammonium 

by the hybrid cluster protein hydroxylamine reductase (har) (Hanson et al., 2013, Cabello et 

al., 2004). The proposed pathway was confirmed for this organism based on evidence from 

physiological experiments and transcriptomics (Hanson et al., 2013). However, its 

distribution or relevance in the environment remains unknown. 

Recently, different eukaryotes such as diatoms and the fungus Aspergillus terreus have 

been shown to also perform DNRA (Kamp et al., 2011, Stief et al., 2014). Which enzymes 

are responsible for this pathway in eukaryotes remains to be identified. 
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Denitrification as well as DNRA may be coupled to the heterotrophic oxidation of 

organic carbon or to the lithotrophic oxidation of inorganic compounds such as sulfide 

(Burgin and Hamilton, 2007) The re-oxidation of sulfide produced by sulfate-reduction 

(Fossing et al., 1995, Canfield et al., 2010) prevents the build-up of harmful sulfide 

concentrations (Lavik et al., 2009). As sulfide oxidation and sulfate reduction are often 

closely coupled, this cryptic sulfur cycling is easily overlooked and may be widespread in 

marine habitats (Canfield et al., 2010). So far, sulfide oxidation has mainly been associated 

with denitrification, but not with DNRA, with members of the SUP05 group and the genera 

Arcobacter and Sulfurimonas as important key players (e.g. Canfield et al., 2010, Fuchsman 

et al., 2012, Walsh et al., 2009), while the importance of DNRA coupled to sulfide oxidation 

remains largely undetermined.  

 

 

Anammox 

Dinitrogen is also released to the atmosphere by anaerobic ammonium oxidation (anammox, 

Strous et al. 1999). Anammox is performed by a specialized monophyletic group of 

chemolithoautotrophic bacteria within the phylum of Planctomycetes (Kuenen, 2008). 

Anammox bacteria have long generation times of 7 to 22 days (Kartal et al., 2013). During 

the anammox process, dinitrogen is produced by coupling the reduction of nitrite with the 

oxidation of ammonium. Nitrite is reduced to nitric oxide by the nitrite reductase NirS and 

the enzyme hydrazine synthase forms hydrazine from nitric oxide and ammonium (Kartal et 

al., 2011). Hydrazine is oxidized to dinitrogen by the hydrazine dehydrogenase, an octaheme 

oxidoreductase (Schmidt et al. 2008). The enzymes carrying out the anammox pathway are 

located inside the anammoxosome, an intracytoplasmic compartment carried by all anammox 

bacteria. 

Anammox is another pathway that competes for nitrite and in certain habitats may be 

the main process responsible for dinitrogen generation (Kartal et al., 2013). When 

encountering ammonium limitation, anammox bacteria are able to perform DNRA and thus 

produce ammonium that is subsequently consumed again in the anammox reaction (Kartal et 

al., 2007, Van Niftrik and Jetten, 2012).  

 

 

 



Chapter 1 

5 

 

NO-dismutation 

The reduction of nitrite to dinitrogen may proceed via a third pathway. Instead of reducing 

nitric oxide to nitrous oxide as in canonical denitrification, the bacterium Candidatus 

Methylomirabilis oxyfera, dismutates nitric oxide to dinitrogen and oxygen (Ettwig et al., 

2010). The generated oxygen is used to oxidize methane (Ettwig et al., 2010). Candidatus M. 

oxyfera and other nitrite reducing methanothrophs of the NC10 phylum, potentially 

performing NO-dismutation, have been found in and enriched from different methane and 

nitrite rich freshwater habitats such as peatlands, ditches, lakes and wastewater treatment 

plants (Ettwig et al., 2009, Zhu et al., 2012). A newly discovered characteristic 

bacteriohopanepolyol may serve as diagnostic biomarker for detecting Methylomirabilis sp., 

and possibly other related intra-aerobic methanotrophs in the environment (Kool et al., 

2014). Environmental rates of this process have not been determined yet; in stable isotope 

tracer experiments that use 15N-labelled nitrate or nitrite NO-dismutation produces 30N2 and 

thus is not distinguishable from denitrification. Consequently, its ecological significance 

remains unknown. 

 

 

Nitrogen fixation 

Microbial nitrogen fixation is the only relevant natural nitrogen fixation process replenishing 

the pool of fixed nitrogen lost via denitrification, anammox and NO-dismutation. The second 

known natural N2-fixing process, lightning, only makes up ca 2% of natural nitrogen fixation 

(Fowler et al., 2013). The conversion of dinitrogen to ammonium is an exergonic reaction, 

but high activation energy is required to break the very strong triple bond of dinitrogen. In 

microbial nitrogen fixation this reaction is catalyzed by the oxygen sensitive heterodimeric 

enzyme complex nitrogenase, which requires 16 ATP per N2 fixed to perform this reaction 

(Howard and Rees, 1996). Nitrogenases and thus the ability to fix nitrogen are found in 

different microbial groups that are widespread over the phylogenetic tree including among 

others Cyanobacteria, Proteobacteria, Firmicutes as well as archaea (Zehr et al., 2003, 

Murray et al., 1984). Nitrogen fixation can be linked to a variety of energy metabolisms 

including oxygenic and anoxygenic photosynthesis, fermentation, sulfate reduction, 

methanogenesis (Murray et al., 1984, Raymond et al., 2004, Henderson and Wilson 1969, 

Carpenter and Capone, 2008). It has been detected in a variety of habitats including the open 

ocean, deep ocean sediments, hydrothermal vents, seagrass rhizosphere and in symbioses 
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with eukaryotes in e.g. root nodules of legume or termite guts (Zehr et al., 2003, Dekas et al., 

2009, Mehta and Baross 2006). High rates of marine nitrogen fixation appear to be spatially 

coupled to regions with high rates of water column denitrification, while the presence of 

fixed nitrogen, especially ammonium, has an inhibitory effect (Dixon and Kahn, 2004). This 

suggests that an oceanic feedback loop stabilizes the ocean’s fixed nitrogen content (Deutsch 

et al., 2007, Brandes et al., 2007).  

 

 

Nitrification 

In the presence of oxygen, ammonia can be oxidized to nitrite and further to nitrate. This 

process is called nitrification and constitutes the link between nitrogen fixation and the 

processes that convert fixed nitrogen to N2, e.g. denitrification and anammox. Nitrification is 

performed by chemolithoautotrophic bacteria and archaea (Ward, 2008) and is divided into 

two different steps carried out by distinct microbial groups. The first step, ammonia 

oxidation is performed by bacteria including Betaproteobacteria of the genera Nitrosomonas 

and Nitrosospira and Gammaproteobacteria of the genus Nitrosococcus, and by archaea 

belonging to the phylum Thaumarchaeota e.g. Nitrosopumilus maritimus (Koops et al., 2003, 

Könneke et al., 2005). The enzyme complex carrying out the oxidation of ammonia to 

hydroxylamine is the ammonia monooxygenase. The genes encoding this complex are 

amoABC. In bacteria, hydroxylamine is oxidized to nitrite by the octaheme enzyme 

hydroxylamine oxidoreductase, encoded by the gene hao (Klotz et al., 2008). For the 

archaeal ammonia oxidizers (Walker et al., 2010) the pathway and enzymes responsible for 

hydroxylamine oxidation still need to be identified. The oxidation of nitrite to nitrate is 

catalyzed by the nitrite:nitrate oxidoreductase, a molybdopterin oxidoreductase. The genes 

nxrAB encoding this enzyme complex are homologous to the nitrate reductase narGH 

performing the reverse reaction (Simon and Klotz, 2013). Known nitrite oxidizers have been 

found within the phylum Nitrospirae and within the Proteobacteria. Ammonium oxidation is 

thought to be the rate-limiting step of nitrification (Biller et al., 2012, Stein et al., 2012). The 

nitrite produced by ammonia-oxidizers is consumed by either aerobic nitrite oxidizing 

bacteria or nitrite reducers, which are usually found to occur in interaction with nitrite-

producing microbes (Stein et al., 2012). Furthermore, ammonia oxidizing microbes are 

capable of performing (partial) denitrification, which enables them to convert ammonia to 

N2O or N2 (Wrage et al., 2001, Schleper and Nicol, 2010).  
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Nitrogen assimilation and dissimilation 

During biomass build-up, ammonium gets assimilated and converted to particulate organic 

nitrogen. Nitrate and nitrite are converted to ammonium first. Some organisms can use 

dissolved organic nitrogen compounds such as urea and amino acids for assimilation 

(Mulholland and Lomas, 2008, Bradley et al., 2010). When biomass gets degraded again by 

heterotrophic organisms of all trophic levels of the food chain the organic nitrogen contained 

in biomass is released as ammonium and dissolved organic nitrogen (Canfield et al., 2005).  

Summarizing, the availability of reactive nitrogen and its distribution among the 

different pools (e.g. ammonium, nitrate, nitrite) results from the balance and coupling of 

nitrogen fixation, transformations within the reactive nitrogen pools and processes that 

remove reactive nitrogen such as denitrification and anammox. In this complex network of 

redox reactions nitrite is an important hub and, depending on the predominating 

transformation process of nitrite nitrogen is lost from the reactive pool or transformed within.  

 

1.1.2 Human impact 

About 200 years ago, researchers started to understand the importance of nitrogen 

availability for crop yield and got interested in possibilities to influence the fate of nitrogen 

in agriculture. Soon after, fixed nitrogen was identified as an important nutrient for plants 

(Von Liebig, 1840, Galloway, 2013). Further studies driven by the motivation to feed the 

growing population led to the discovery of nitrification (Schloesing and Muntz, 1877) and 

biological nitrogen fixation (Hellriegel and Wilfarth, 1888). Once denitrification was 

recognized as loss of fixed nitrogen from agricultural soils, the motivation of research was 

the inhibition of this process (Deherain and Maquenne, 1882). In 1886, the first denitrifiers 

were isolated by Gayon and Dupetit (Galloway, 2013). In 1909, Fritz Haber developed a 

process that made it industrially feasible to produce ammonium from dinitrogen and 

hydrogen. In this energy–intensive process N2 and H2 are combined at high pressure and 

temperature in the presence of iron as catalyst (Erisman et al., 2008). Today, anthropogenic 

impact on the nitrogen cycle is tremendous and has been steadily increasing during the last 

century. The steadily increasing demand for food leads to increasing fertilizer and land use. 

The demand for fixed nitrogen as fertilizer is satisfied by the Haber-Bosch process. 

Nowadays, approximately every third reactive nitrogen atom originates from this process and 
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together with ammonia deposition it exceeds biological nitrogen fixation (Fowler et al., 

2013, Galloway et al., 2003). In agricultural soils only 17% of the synthetic fertilizer 

nitrogen supply is recovered in crop or food products (Fowler et al., 2013). Denitrification 

may account for a loss of about 40% of the nitrogen input (Galloway, 2004). This equals a 

waste of energy invested in the Haber–Bosch process of about 1% of the global primary 

energy supply (Erisman et al., 2008). The rest is transported to adjacent freshwater habitats 

and rivers and still up to 25% of the fertilizer is transported to marine coastal areas 

(Mulholland et al. 2008), where it affects ocean chemistry, both regionally in coastal waters 

and globally in the open ocean (Doney et al., 2010). 

In ecosystems with low buffering capacity this additional nitrogen supply can cause 

acidification (Erisman et al., 2013). In nitrogen limited habitats, a surplus in nitrogen input 

may lead to eutrophication with further consequences such as hypoxia, loss of biodiversity 

and changes in species composition (Camargo and Alonso, 2006, Rabalais, 2002). The 

nitrogen cycle is further affected by human activity such as atmospheric deposition of 

ammonia and nitrogen oxides caused by combustion processes and fossil fuel burning, 

(Galloway et al., 2008, Vitousek et al., 1997).  

About 1-5% of the fertilizer nitrogen is released to the atmosphere as nitrous oxide, 

where it acts as a greenhouse gas absorbing infrared radiation given off by the earth’s surface 

that could otherwise escape to space. The increasing emission of nitrous oxide reinforces 

global warming (Fowler et al., 2013, Crutzen et al., 2008, Bouwman et al., 2013). It has been 

estimated that current anthropogenic nitrogen input contributes 5-10% to the enhanced 

greenhouse effect (Hanke and Strous, 2010). Additionally, the extremely energy-intensive 

Haber-Bosch process indirectly contributes to the enhanced greenhouse effect by CO2 

emission occurring during the generation of the required energy. Furthermore, N2O 

emissions are presently the most important emissions responsible for ozone depletion in the 

stratosphere and are projected to remain the largest during the 21st century (Ravishankara et 

al., 2009).  

The anthropogenic impact on the earth’s nitrogen budget has been estimated to further 

increase with increasing need for food, and consequently, nitrogen fertilizer (Schlesinger, 

2009). Fertilization of crops for energy production (fuel crops) would lead to additional 

contributions to global warming, potentially offsetting the benefits. To be able to evaluate 

potential consequences for different ecosystems and implication for the climate it is essential 
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to understand the factors that control the complex interactions of the biogeochemical nitrogen 

network. 

 

1.1.3 Competition between DNRA and Denitrification 

The outcome of the competition between denitrification and DNRA has important 

environmental consequences. Denitrification and anammox convert fixed nitrogen to gaseous 

products (mainly nitrogen) and hence lead to a loss of fixed nitrogen from the system. 

Denitrification also contributes to the emission of the greenhouse gas nitrous oxide to the 

atmosphere. In contrast, DNRA produces ammonium and thus keeps fixed nitrogen available 

for primary production. Different natural and engineered systems sustain or require a 

different fate of nitrate and nitrite. Wastewater treatment plants aim for complete nitrogen 

removal because the discharge of ammonium is undesired causing elevated oxygen 

consumption and eutrophication in the receiving waters (Bernet et al., 2000). In contrast, in 

agriculture, retention of nitrogen in the system is aspired in order to optimize fertilization 

effectiveness. Accordingly, a great interest lies in the question how DNRA could be favored 

at the expense of denitrification. Natural habitats are highly affected by elevated 

anthropogenic nitrogen load (Fowler et al., 2013). Furthermore, the availability of nitrogen 

directly affects key processes in biogeochemical carbon cycling such as primary production 

and decomposition of organic matter. Consequently, understanding the factors that govern 

the outcome of the competition between nitrate reducing pathways is crucial for 

understanding the fate of nitrate in natural and engineered systems and hence for inferring the 

consequences of anthropogenic alteration of the nitrogen cycle’s budgets.  

Nitrate reduction rates attributed to denitrification, anammox and DNRA have been 

assessed in a variety of different habitats ranging from wastewater treatment plants to the 

open ocean: In aquatic marine environments such as marine oxygen minimum zones either 

denitrification (Ward et al., 2009; Bulow et al., 2010) or anammox (Kuypers et al., 2005, 

Thamdrup et al., 2006, Hamersley et al., 2007, Kalvelage et al., 2013) seem to be the 

predominating nitrate reduction processes. Nevertheless, recent studies showed that DNRA 

may also be important in such habitats being coupled to anammox (Jensen et al., 2011, Lam 

et al., 2009). In marine coastal sediments and freshwater or terrestrial habitats mainly 

denitrification (Jäntti et al., 2011, Kaspar, 1983, Gao et al., 2012, Porubsky et al., 2009, Scott 

et al., 2008, Washbourne et al., 2011) or DNRA (Dong et al., 2011, An and Gardner, 2002, 
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Silver et al., 2001) or both together (Jørgensen, 1989, Koop-Jakobsen and Giblin 2010) have 

been identified as the dominating processes, while the relative importance of anammox 

mostly seems to be smaller (Burgin and Hamilton, 2007, Thamdrup et al., 2012, Schubert et 

al., 2006). In such habitats the fate of fixed nitrogen is of special interest because marine 

coastal sediments and freshwater habitats are often especially affected by anthropogenic 

nitrogen input (Voss et al., 2013). Furthermore it has been estimated that up to 70% of 

marine nitrogen loss occurs in coastal shelf sediment (Codispoti, 2007). 

Accordingly, the focus of this thesis is on the competition between denitrification 

(reaction 1 and 2, exemplary with hydrogen and glucose as electron donor) and DNRA 

(reaction 3 and 4). 

 

5 H2 + 2 H+ + 2 NO3
- → N2 + 6 H2O     (1) 

5 C6H12O6 + 24 NO3
- +24 H+ → 30 CO2 + 12 N2 + 42 H2O (2) 

4 H2 + 2 H+ + NO3
- → NH4

+ + 3 H2O    (3) 

C6H12O6 + 3 NO3
- + 6 H+ → 6 CO2 + 3 NH4

+ + 3 H2O  (4) 

 

It is generally assumed that the outcome of this competition is determined mainly by the 

relative supplies of electron donors and acceptors (Tiedje et al., 1982, Schmidt et al., 2011, 

Tugtas and Pavlostathis 2007, Strohm et al., 2007, Van de Leemput et al., 2011). If nitrate is 

supplied in excess, denitrifiers would outcompete dissimilatory nitrate reducers and vice 

versa: Under nitrate limitation dissimilatory nitrate reducers would outcompete denitrifiers. 

Biochemically this makes sense because denitrifiers conserve more energy per electron at 

low electron turnover. Dissimilatory nitrate reducers conserve less energy per electron but 

turn over more electrons (table 1.1). With the supply of nitrite instead of nitrate these 

bioenergetic differences get even more pronounced.  

It has been proposed that the chemical nature of the electron donor also contributes to 

the relative success of denitrifiers versus dissimilatory nitrate reducers: The supply of 

fermentable carbon substrates such as glucose and glycerol are supposed to favor DNRA, 

while fermentation products such as acetate or lactate are assumed to favor denitrification. 

(Akunna et al., 1993, Tugtas and Pavlostathis, 2007). Contrastingly, formate and hydrogen 

have been supposed to be preferred electron donors for DNRA (Simon, 2002). 
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Table 1.1: Theoretical energy yield of denitrification and DNRA and the electrons transferred with 
nitrate and nitrite as electron acceptor. (G0’ values were taken from Thauer et al., 1977.) 

 
 

Reaction Electron 

acceptor 

Electron 

donor 

∆G0’ (kJ/mol) 

per e--donor 

∆G0’ (kJ/mol) 

per e--acceptor 

Electrons transferred 

per e--acceptor 

Denitrification 

NO3
- H2 -224 -560 5 

NO3
- Glucose 2723 567 5 

NO2
- H2 -159 -397 3 

NO2
- Glucose -3212 -402 3 

DNRA 

NO3
- H2 -150 -600 8 

NO3
- Glucose -1828 -609 8 

NO2
- H2 -109 -437 6 

NO2
- Glucose -1774 -443 6 

 

 

Environments where high concentrations of sulfide accumulate are supposed to favor 

DNRA (Brunet and Garcia-Gil, 1996, Wong et al., 2011, Mazéas et al., 2008, Ann and 

Gardner, 2002) because sulfide has been shown to inhibit the enzymes responsible for the 

last steps of denitrification, the reduction of nitric oxide to nitrous oxide and nitrous oxide to 

dinitrogen (Sørensen et al., 1980, Pan and Yuan, 2013). Albeit, sulfide can also serve as 

electron donor for both denitrification and DNRA (Fossing et al., 1995, Canfield et al., 

2010). The ambient temperature has been proposed as a further factor differentiating between 

nitrate-reducing processes. High temperatures have been shown to favor DNRA over 

denitrification, while at low temperatures denitrification is favored (Dong et al., 2011, 

Ogilvie et al., 1997). DNRA is bioenergetically more favorable than denitrification under 

electron acceptor limitation over the range of environmentally relevant temperatures. 

However, the bioenergetic advantage of DNRA over denitrification becomes slightly smaller 

at higher temperatures (Dong et al., 2011, figure 1.2). A higher affinity for nitrate especially 

at higher temperature has been proposed for DNRA (Dong et al., 2011). 

The pH of the environment has also been proposed to influence the ongoing nitrate 

reducing process (Schmidt et al., 2011, Nägele and Conrad 1990). A low pH seems to inhibit 

the last steps of denitrification, NO and N2O reduction (Nägele and Conrad 1990). 
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Figure 1.2: Gibbs free energy changes per mol nitrate [∆G0’ (kJ)] for denitrification and DNRA at 
different temperatures exemplarily for hydrogen as electron donor (according to Dong et al., 2011).  

 

 

Furthermore, the absolute nitrate and nitrite concentrations seemed to have an effect on 

the competition (Dong et al., 2011; Schmidt et al., 2011). Lower nitrate concentrations were 

reported to favour denitrification and higher concentrations DNRA (Dong et al., 2011). 

Furthermore, the affinity for the electron acceptor has been discussed as potential 

differentiating factor (Tiedje et al., 1982). 

The determination of the potential influence of environmental parameters on rates of 

denitrification and dissimilatory nitrate reduction in natural ecosystems is difficult because 

natural ecosystems are dynamic and differ in more than one factor simultaneously 

(Wallenstein et al., 2006). Factors such as dissolved and particulate organic carbon content 

and sulfide concentrations frequently remain undetermined. Consequently, it is not surprising 

that factors responsible for the dominance of one or the other process could not be 

conclusively identified so far. Biochemical and physiological investigations have been 

restricted to very few model organisms (e.g. Strohm et al., 2006) with unresolved 

environmental significance. 

 

 

1.2 Population dynamics in nitrate-respiring communities 

 

For evaluating ecosystem stability it is not only important to get a clear picture of the 

competition between different nitrate reducing processes but also crucial to understand how a 

microbial community maintains stable performance of a process and responds to 
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perturbations such as invasion. To what extent does the stable persistence of a nitrate 

respiring pathway, e.g. denitrification, depend on the microbial species that perform this 

pathway in a given habitat? Is the stable performance linked to the persistence and abundance 

of single microbial populations or the composition and stability of the whole microbial 

community? 

Regarding the strong human influenced alteration of biogeochemical nitrogen budgets it 

is furthermore important to understand how microbial communities and especially the 

populations directly involved in nitrogen cycling react to such environmental changes. 

 

 

1.2.1  Interactions between different populations of a microbial 

community  

 

Interaction between different populations can be mutualistic (both populations benefit), 

commensalistic (one population benefits, while the other does not encounter any advantages 

or disadvantages) and antagonistic. Examples for mutualistic interactions are obligate or 

facultative syntrophy (Schink, 2002). In an antagonistic relationship both populations can 

harm each other, e.g. when competing for nutrients or space, or one population benefits, 

while the other is harmed, e.g. parasitism or predation (Little et al., 2008). A further example 

for antagonistic behavior is the production of toxins (Riley and Wertz, 2002, Czárán et al., 

2002). In a microbial community with multiple members these relationships become 

intertwined and a complex network of interactions is created. 

Furthermore, viral lysis of most abundant populations of a community can introduce 

community dynamics and benefit less abundant populations (Thingstad and Lignell, 1997, 

Thingstad, 2000). 

 

1.2.2  Niche or neutral theory and population dynamics 

Neutral theory assumes that all members of a particular functional group are equally 

competitive and that the community structure results from stochastic dynamics (Hubbell, 

2001). Once a community has adapted to the environmental setting of its habitat, in steady 

state its composition may still change, but these would be random ecologically neutral 
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changes. Accordingly, replicates of the same habitat would never have the same community 

composition even if they were inoculated with the same source community (Curtis and Sloan, 

2004). The extent of reproducibility would depend on the biodiversity of the source 

community: A higher diversity would lead to lower reproducibility. A higher diversity is also 

expected to lead to a higher stability of the community performance and community 

assembly is supposed to be a stochastic process (Curtis and Sloan, 2004).  

In contrast, niche–based theory assumes that coexistence of different populations 

originates from their occupancy of different niches. According to the niche concept 

developed by Hutchinson (Hutchinson, 1953) the combination of a set of biotic and abiotic 

parameters in an environment creates a niche. Populations within a community are adapted to 

different sets of conditions and therefore occupy different niches and can co-exist without 

competition, while species that occupy the same or overlapping niches compete with each 

other (Whittaker, 1972). Changes in species composition can be explained by changes in 

environmental parameters. Populations that are best adapted to the new conditions succeed 

(Dumbrell et al., 2010).  

Nowadays, it is well accepted that deterministic niche-based processes and stochastic-

neutral processes complement each other and together structure community composition 

(Chave, 2004). Nevertheless, the contribution of one or the other process to shaping 

community dynamics in natural habitats is difficult to untangle and studies have come to 

different results when trying to assign relative importance to the two mechanisms (van der 

Gast et al., 2008, Langenheder and Székely, 2011, Ofiteru et al., 2010).  

The assumption that all microbial populations are ubiquitously distributed led to the 

statement of Lourens Baas Becking ‘alles is overal, maar het milieu selecteert’ (Translation: 

Everything is everywhere, but the environment selects) (Baas Becking, 1934). This implies 

that all microbial populations are mostly present at very low abundances often below the 

detection limit. In an environment that a microbial population is well adapted to it gains in 

abundance (De Wit and Bouvier, 2006). Contrastingly, further geographic distance between 

habitats is believed to lead to higher differences in species composition due to limitation of 

dispersal (McGill et al., 2006).  
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1.3 Methodical approach 

1.3.1 Continuous cultivation 

Information about the physiology of isolated microbial strains is often obtained by pure 

culture studies. As microbes are isolated from their natural habitat and from interactions 

within a microbial community, little information can be gained about their ability to compete 

with other microbial populations. The composition of a microbial community and the 

ecophysiological role of each population arise from synergistic or antagonistic interactions 

between the different populations present e.g. cross feeding and competition. Hence, the 

success of a certain microbial population can only be studied in the context of a microbial 

community and the competition between different microbial guilds and/or populations needs 

to be studied under a setting that most closely approaches in situ conditions. 

Natural environments are dynamic systems: Perturbations may lead to changes in the 

biogeochemical settings and thereby directly influence the microbial community and the 

processes it is performing. Multiple variables may change concurrently at one time point and 

may have changed significantly in the recent past. To disentangle the effect that a certain 

factor may have in situ, all variables would need to be captured at and before the time of 

sampling. Thus it is difficult if not impossible to link the abundance and activity of microbial 

populations to specific environmental factors (Curtis and Sloan, 2004). Consequently, the 

questions formulated above can only be answered with a controlled experiment in the 

laboratory with constant conditions, in which only the factor, whose influence is addressed, is 

varied, while all other variables are kept constant. The requirement for a controlled 

experimental set-up that approximates in situ conditions is met by a chemostat. In contrast to 

batch cultures, in which initially supplied substrates are consumed and thus concentrations 

change over time, the conditions in a chemostat are stable. The chemostat consists of culture 

vessel with continuous supply of medium from a reservoir vessel and continuous removal of 

cells and metabolic products at the same rate (figure 1.3; Novick and Szilard, 1950). Thus, 

the volume of the culture and, in steady state, the overall sum of all cells (biomass) is 

constant and so are the substrate and product concentrations in the culture. Furthermore the 

growth rate and cell numbers are under experimental control: The cells within the continuous 

culture are permanently dividing at a rate that equals the volume turnover rate of the 

chemostat (Dykhuizen and Hartl 1983). If the maximum growth rate of a microbial 

population present in the inoculum lies below the growth rate defined by the experimental 
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1.3.2  Metagenomic sequencing 

In this thesis, one mayor aim for the application of metagenomics, the sequencing of a whole 

community’s DNA, was to obtain information on the identity and function of the members of 

the enriched microbial communities. To reach this aim the information contained in the 

sequencing data needs to be associated with the different populations present in the 

community. Ideally, complete genomes or nearly complete genomes can be reconstructed for 

the different population of a microbial community (Sharon and Banfield, 2013). To achieve 

this, sequencing reads need to be assembled into longer sequence contigs and subsequently 

binned (Kunin et al., 2008). During binning the contigs are sorted apart according to the 

different populations from which they derived (Thomas et al., 2012).  

The additional application of metatranscriptomics and/or metaproteomics provides 

information about the activity of genes and their translation into proteins. By the combination 

of metagenomic, transcriptomic and proteomic approaches with the enrichment of well 

adapted microbial communities in chemostats influence of the applied selecting forces on the 

interaction of different populations, partitioning of metabolism, transfer of metabolites and 

cryptic cycling of elements within a community can be identified. 
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1.4 Objectives of the thesis 

 

In view of the strong human influence on the nitrogen cycle the understanding of the fate of 

nitrate and its environmental control is of great importance. 

Therefore, the first objective of this thesis was the evaluation of the relation between 

compositional and functional stability of a denitrifying community. I wanted to answer the 

question whether a stable performance is associated with a stable community composition or 

if the denitrifying populations change over time (chapter 4).  A further aim of this study was 

the enrichment and identification of environmental relevant denitrifiers and their potential 

metabolic interaction with other microbial guilds, for example fermenting populations. 

Several hypotheses exist on the factors that determine the controls that govern the 

competition between denitrification and DNRA. However, solid experimental support for 

these is lacking. Hence, the second mayor aim of this thesis was to systematically determine 

the influence of different environmental factors on the competition between denitrifiers and 

dissimilatory nitrate reducers. More specifically, the role of the organic carbon to nitrogen 

ratio, the kind of electron donor and acceptor supplied and the growth rate in controlling the 

nitrate respiration process are addressed (chapter 5). 

Once the relevant driving forces were identified I wanted to determine how the enriched 

microbial communities changed along with a shift in the predominating nitrate respiration 

process. Furthermore, I wanted to answer the questions if the cross-feeding between nitrate-

reducers and fermenting populations that was identified in chapter 4 was consistent between 

the two nitrate reduction processes and if the different nitrate reduction processes showed 

differences in the turnover of electron donors. The assessment of the electron donors that 

were utilized revealed an important role of sulfide as electron donor. Therefore, the 

contribution of sulfur cycling to the overall community metabolism was investigated (chapter 

5). 

Binning, the separation of sequence data according to the different populations present 

in a microbial community, is a bottle neck in the analysis of metagenomic sequence data. 

Therefore, a new binning approach that was able to also bin populations that were 

taxonomically only distantly related to available reference genomes, delivered reproducible 

results and did not require an estimate of the number of binnable populations present had to 
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be developed. A tool that has been developed to meet these requirements and was used for 

the binning of metagenomic datasets in chapter 4 and 5 is described in chapter 3. 
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2.1 Abstract 

Nitrate is a key node in the network of the assimilatory and respiratory nitrogen pathways. As 

one of the ‘fixed’ forms of nitrogen, nitrate plays an essential role in both nature and 

industry. For bacteria, it is both a nitrogen source and an electron acceptor. In agriculture and 

wastewater treatment, nitrate respiration by microorganisms is an important issue with 

respect to economics, greenhouse gas emission and public health. Several microbial 

processes compete for nitrate: denitrification, dissimilatory nitrate reduction to ammonium 

and anaerobic ammonium oxidation. In this review we provide an up to date overview of the 

organisms, genes and enzymes involved in nitrate respiration. We also address the molecular 

detection of these processes in nature. We show that despite rapid progress in the 

experimental and genomic analyses of pure cultures, knowledge on the mechanism of nitrate 

reduction in natural ecosystems is still largely lacking. 

 

Keywords: Nitrogen cycle, Nitrate respiration, Denitrification, Anammox, DNRA 

 

 

2.2 Introduction 

Nitrate is one of the essential environmental components in the biosphere. It serves as 

nutrient for plants and microorganisms, and is used as an electron acceptor by many bacteria, 

archaea and also by several eukaryotes (Hayatsu et al., 2008; Zumft, 1997). Because of the 

wide distribution of nitrate respiration and the phylogenetic pattern of the involved enzymes, 

it has been argued that nitrate respiration was a common process in microorganisms already 

before the increasing concentration of oxygen in the atmosphere led to the development of 

oxygen respiration (Castresana and Saraste, 1995; Ducluzeau et al., 2009). 

Several microbial processes compete for nitrate, such as denitrification, dissimilatory 

nitrate reduction to ammonium and anaerobic ammonium oxidation. As evidence for the 

widespread existence of these processes accumulated in the past two decades it became 

obvious that the so-called nitrogen cycle is in fact a network of pathways (figure 2.1). One of 

the key reactions of this network is the reduction of nitrate to nitrite, since this reaction is 

always the first step in the use of nitrate. Depending on the microbial community and 

environmental conditions nitrite is then either released or further reduced in different ways. 
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Figure 2.1: Current perspective on the network of nitrate reduction pathways: nitrogen compounds 
(between arrows), processes (arrows) and enzymes (next to arrows) are indicated. ? indicates not yet 
characterized enzyme(s). Nar: membrane-bound nitrate reductase, Nap: periplasmic nitrate reductase, 
HAO: hydrazine oxidoreductase, HH: hydrazine hydrolase, HZO: hydrazine-oxidizing enzyme, Nir: 
nitrite reductase; NOR: nitric oxide reductase, NOS: nitrous oxide reductase, ONR: octaheme 
cytochrome c reductase, NrfA: nitrite reductase, DNRA: dissimilatory nitrate reduction to 
ammonium. 

 

 

Current human impact on the global nitrogen cycling is substantial (Galloway et al., 2008; 

Schlesinger, 2009). The use of nitrogen as fertilizer in agriculture often causes changes in the 

adjacent habitats, mostly due to nitrite pollution or rapid eutrophication (Vitousek et al., 

1997). Intense agricultural fertilization may lead to increased concentrations of nitrate in the 

groundwater (Almasri and Kaluarachchi, 2004). This constitutes a risk for public health, 

given that groundwater is an important drinking-water supply (Ward et al., 2005). 

Increased input of fixed nitrogen has also demonstrated impacts on more distant terrestrial 

(Brooks, 2003; Clark and Tilman, 2008) and marine ecosystems (Duce et al., 2008), where 

fixed inorganic nitrogen, one of the key nutrients, often is a limiting factor for primary 

productivity (Arrigo, 2005). Furthermore, fertilization increases the atmospheric 
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concentrations of methane and nitrous oxide and thus contributes to global warming 

(reviewed by Hanke and Strous, 2010). In waste water treatment plants the conversion of 

nitrate to gaseous nitrogen and thus the loss of fixed nitrogen from the water is the aim. 

Complete denitrification to N2 and anammox are usually the desired processes (Kartal et al., 

2010; Kumar and Lin, 2010; Strous et al., 1997). 

Although a fair amount of studies on pure cultures have been performed, little is known 

about how the natural microbial communities of terrestrial and aqueous habitats react to 

changing nitrate concentrations and nitrogen speciation. Application of high throughput tools 

for DNA, RNA and protein analysis showed that only a small fraction of the entire natural 

microbial diversity has been discovered and described so far (Pace, 2009; Rappe and 

Giovannoni, 2003). All known processes of microbial nitrate and nitrite reduction appear to 

be globally widespread and it is likely that most microbial communities in nature are able to 

use different nitrogen compounds in different ways. This interaction of nitrogen reaction 

pathways will probably be affected as a whole as soon as the concentration or fluxes of one 

of the involved compounds changes. The same might hold true for the composition of the 

affected microbial community, more precisely, for the presence of specific genes and 

enzymes. This review summarizes the current view on the network of respiratory nitrate 

reduction pathways and the enzymes involved, as well as their environmental distribution 

and impact. 

 

 

2.3 Denitrification 

Among the different pathways of microbial nitrate reduction, bacterial denitrification is most 

extensively described and numerous studies have been undertaken to elucidate this pathway. 

A number of comprehensive reviews have been published during the last years discussing 

bacterial and archaeal denitrification and the influencing factors and enzymes involved 

(Berks et al., 1995; Cabello et al., 2004; Hermann et al., 2000; Moura and Moura, 2001; 

Philippot, 2002; Shapleigh, 2006; Wallenstein et al., 2006; Zumft, 1997). 

The trait of denitrification is phylogenetically wide spread. Denitrifiers are found 

among bacteria, archaea and eukaryotes. However, so far most of the isolated and studied 

denitrifying organisms belong to the phylum Proteobacteria (Alpha, Beta, Gamma, and 
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Epsilon Divisions) (Cabello et al., 2004; Green et al., 2010; Hayatsu et al., 2008; Heylen et 

al., 2006; Jones et al., 2008; Kern and Simon, 2009; Risgaard-Petersen et al., 2006). 

Briefly, denitrification is a respiratory process (Conrado and Stuart, 1998) in which 

nitrate is reduced stepwise to dinitrogen (NO3
− → NO2

− → NO → N2O → N2). In bacteria, 

this process is used as an alternative to oxygen respiration under low oxygen or anoxic 

conditions. Like in aerobic respiration, the reaction chain is split over the periplasmic and 

cytoplasmic compartment, and it allows for the generation of a proton motive force across 

the bacterial membrane, which is exploited for ATP synthesis. 

Low oxygen tension is detected by the global oxygen-sensing regulator FNR or its 

homologues. A nitrate sensor detects the presence of nitrate in the periplasm and, for nitrate 

reduction on the cytoplasmic side of the membrane, activates nitrate transport through the 

cytoplasmic membrane via transporters NarK1, and later in the process NarK2. NarK1 is a 

proton motive force driven nitrate importer (nitrate/proton symporter) and NarK2 is a 

nitrate/nitrite antiporter (Moir and Wood, 2001; Wood et al., 2002). The presence of nitrate 

initiates the expression of the denitrification machinery via transcriptional regulators, such as 

FNR and its homologues (Berks et al., 1995; Heinz et al., 2003) or NarR in two Paracoccus 

species (Wood et al., 2001). The four enzymes of the denitrification pathway are best studied 

in gram-negative bacteria: A membrane bound nitrate reductase catalyzes the reduction of 

nitrate to nitrite in the cytoplasm (figure 2.2a). Nitrite is then transported into the periplasm 

(via NarK2), and a periplasmic nitrite reductase catalyzes the reduction of nitrite to nitric 

oxide. Reduction of nitric oxide to nitrous oxide is catalyzed by nitric oxide reductase, an 

integral membrane protein with its active site in the periplasm. The final step, reduction of 

nitrous oxide to dinitrogen is catalyzed by the periplasmic nitrous oxide reductase (figure 

2.3). In gram-positive bacteria and in archaea that lack a periplasmic space evidence suggests 

that all four enzymes are membrane bound (Cabello et al., 2004; Suharti and de Vries, 2005). 

Furthermore there is evidence that in archaea nitrate reduction takes place on the ‘outer’ side 

of the cytoplasmic membrane (Cabello et al., 2004; Martínez-Espinosa et al., 2007). 
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formation of H2O in the course of nitrate reduction and protons are released into the 

periplasm from the quinone pool that passes electrons to NarI (Richardson and Sawers, 2002; 

Simon et al., 2008) (Figure 2.2a). 

 

 

Periplasmic nitrate reductase 

In several bacteria, the nitrate reduction step in the denitrification process is not dependent on 

the presence of NarGHI, but is performed by a periplasmic nitrate reductase. For example, 

Bradyrhizobium japonicum lacks a nar gene cluster, but is capable of denitrification, due to 

the presence of periplasmic nitrate reductase NapAB (nap gene cluster napEDABC) (Bedmar 

et al., 2005). NapA, the large subunit of NapAB, contains the molybdenum cofactor and a 

[4Fe–4S] center. The NapB subunit is a c-type cytochrome. Liu et al. (1999) showed the 

involvement of the nap gene cluster (napKEFD-ABC) in denitrification in Rhodobacter 

sphaeroides f. sp. denitrificans. 

Another example is Pseudomonas sp. strain G-179, equipped with all functional genes 

for denitrification given that nitrate reduction is mediated by NapA, which has been shown 

by Bedzyk et al. (1999). Also in the genome of Sulfurimonas denitrificans, a nap gene cluster 

is present along with all other functional genes of the denitrification pathway, yet a nar gene 

cluster is absent (Sievert et al., 2008). 

 

 

Nitrite reductase 

Two isofunctional periplasmic enzymes, which are evolutionary unrelated, catalyze the 

reduction of nitrite to nitric oxide in gram-negative bacteria: a homotrimeric copper-

containing enzyme, NirK (or CuNIR), and a homodimeric cytochrome cd1 nitrite reductase, 

NirS (or cd1 NIR) (Moura and Moura, 2001; Zumft, 1997). In the gram-positive denitrifying 

bacterium Bacillus azotoformans a copper-containing, membrane bound nitrite reductase was 

detected, and it is hypothesized that also in gram-positive bacteria respiratory nitrite 

reduction occurs on the outer face of the cytoplasmic membrane (Suharti and de Vries, 

2005).  

In NirK each monomer contains two copper centers, type 1 and type 2 (Nojiri et al., 

2009). Nitrite binds to the copper ion in the type 2 center, replacing an exogenous ligand 

(water or chloride), and by electron transfer from the type 1 copper site, nitrite is reduced to 
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nitric oxide. Based on sequence similarity, NirK can be divided into at least two subfamilies. 

Compared to the well characterized group I NirK types, NirK types belonging to group II 

carry an additional domain at the N-terminus (Nojiri et al., 2007), and database searches 

revealed further NirK variants with a C-terminal c-type heme domain extension (Ellis et al., 

2007). Although group I NirK are most frequently detected among denitrifying bacterial 

isolates, there is so far no evidence that this NirK group is most frequently found in 

denitrifiers in general (Jones et al., 2008), and the particular functions of the additional 

domains in other NirK groups have yet to be investigated. 

In NirS each of the two cytochrome cd1 monomers binds two prosthetic heme groups, 

heme c and heme d1. Electrons are known to be transferred from the electron donor 

cytochrome c551 via the heme c of NirS further to heme d1, where nitrite binds and is reduced 

to nitric oxide (Baker et al., 1997; Fülöp et al., 1995). 

Typical electron donors to NirK type I site copper are azurins or pseudoazurins (Murphy 

et al., 2002), in some cases cytochrome c551 (Glockner et al., 1993; Nojiri et al., 2009; Zumft, 

1997). In vitro studies show that in some species NirS also accepts electrons from different 

donors, e.g. cytochrome c550 or azurin (Zumft, 1997). 

The electrons are delivered via ubiquinone and complex III (the cytochrome bc1 

complex). The oxidation of quinones by this complex allows proton translocation from the 

cytoplasm to the periplasm (figure 2.3). Nitrite reductase from B. azotoformans accepts 

electrons from menaquinol via a membrane bound cytochrome c (Suharti and de Vries, 

2005). 

In several species of Neisseria, AniA, a nitrite reductase located in the outer membrane 

was identified and the crystal structure revealed that it is a NirK homologue (Boulanger and 

Murphy, 2002). However, none of the so far examined gene sequences revealed a complete 

functional denitrification pathway in any Neisseria species and it is assumed that each 

species individually adapted to its niche in the host, making use of intermittent supply of 

nitrite as electron acceptor (Barth et al., 2009). 
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exclusively in denitrifying organisms, whereas lcNORs might play a role in other, non-

respiratory processes, such as scavenging of nitric oxide, since this NOR type is mainly 

present in bacteria that do not possess a complete denitrification pathway (Hendriks et al., 

2000). 

Although it was shown earlier that nitric oxide respiration is connected with transient 

proton translocation (Shapleigh and Payne, 1985) the exact mechanism is not known and 

later studies showed that nitric oxide reductase is not a proton pump and evidence 

accumulated that the enzyme derives protons from the periplasm (Huang et al., 2008; 

Reimann et al., 2007). The structural gene of lcNOR was named norZ but is also sometimes 

referred to as norB. In NorZ, an N-terminal domain that does not exist in (sc)NorB takes up 

electrons from quinol and transfers them, via the low spin heme b, towards the reactive 

binuclear site (Tavares et al., 2006; Zumft, 2005). This N-terminal domain is structurally 

similar to NorC, but lacks a heme c binding site (Hendriks et al., 2000). 

In gram-positive B. azotoformans a third type of membrane bound NOR, qCuA NOR, 

was detected. It consists of two subunits. Next to two heme b qCuA NOR contains copper 

(CuA) and uses menaquinol as electron donor, but not cytochrome c (Suharti et al., 2001). 

 

Nitrous oxide reductase 

The multicopper enzyme nitrous oxide reductase, NOS, is a periplasmic enzyme in gram-

negative bacteria, and membrane bound in gram-positive B. azotoformans. NOS is the last of 

the four enzymes required for complete denitrification. However, apart from denitrifiers also 

other microorganisms use nitrous oxide as electron acceptor and reduce it to dinitrogen via 

NOS (Zumft, 1997). The functional enzyme NosZ is a homodimer with two copper centers 

per monomer (Moura and Moura, 2001). Each of the catalytic CuZ sites contains four copper 

atoms, ligated by seven histidine residues, and a bridging sulfur atom (Brown et al., 2000a). 

CuA, the electron entry site in each monomer, is a binuclear copper center. The localization 

of the copper centers in the NosZ dimer suggests that electron transfer proceeds from CuA of 

one subunit to CuZ of the other subunit, where nitrous oxide is reduced to dinitrogen (Brown 

et al., 2000b; Tavares et al., 2006). For several species, such as Paracoccus denitrificans and 

R. sphaeroides, it was shown that electron transfer to NOS occurs via cytochrome c, and that 

the cytochrome bc1 complex is also involved in the reduction process of nitrous oxide, which 

implies coupling of nitrous oxide reduction to proton transfer across the cytoplasmic 
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membrane (Itoh et al., 1989; Tavares et al., 2006; Zumft, 1997). NOS in B. azotoformans 

accepts electrons from menaquinol (Suharti and de Vries, 2005). 

 

Archaeal denitrifying enzymes 

Compared to bacterial denitrification, little is known about this process in archaea, and only a 

few archaeal denitrification genes and enzymes have been investigated so far. From the 

results obtained to date, it appears that all enzymes of the reaction chain are membrane bound 

(Cabello et al., 2004). The most striking difference between bacterial and archaeal 

denitrification appears to be that in archaea the reactive center of the nitrate reductase Nar is 

not located in the cytoplasm and thus the whole process takes place at the outer (potential-

positive) face of the membrane (Cabello et al., 2004; Martínez-Espinosa et al., 2007; 

Yoshimatsu et al., 2002). Nevertheless, both bacterial and archaeal Nar are membrane 

associated protein complexes and show a high percentage of sequence similarity (Cabello et 

al., 2004; Martínez-Espinosa et al., 2007). Furthermore, although archaeal homologues to 

bacterial NarG and NarH could be identified, and some of them were characterized (Afshar et 

al., 2001; Lledó et al., 2004; Martínez-Espinosa et al., 2006 and references therein), no NarI 

homologue has been found in any of the so far investigated archaeal genomes. It is assumed 

that the function of NarI in the bacterial enzyme complex is not required in the archaeal 

system. In bacteria, quinones are oxidized at the periplasmic side of the membrane, and NarI 

takes up the electrons and transports them through the membrane to the NarH subunit. In the 

archaeal system NarGH is located at the outer side of the membrane, and the electrons have 

to be translocated to this ‘periplasmic’ Nar (pNar) in a different way. One proposed 

possibility is the existence of a quinone-cycle coupled system at least in some archaea (figure 

2.2b), in which a protein complex, including a cytochrome b-like protein (NarC) and a 

Rieske iron–sulfur protein (NarB), takes up electrons from the quinone pool and transfers 

them to pNar (Martínez-Espinosa et al., 2007). If this is the case, pNar would be coupled to 

protonmotive activity, as is bacterial NarGHI, since the proposed quinone-cycle allows 

proton translocation through the membrane. This would maintain the same bioenergetic 

effectivity as observed for bacterial NarGHI, and differentiate the role of pNar from that of 

the periplasmic dissimilatory nitrate reductase Nap. 

Also in some bacterial genomes, based on sequence similarity, pNar-type genes were 

proposed (Martínez-Espinosa et al., 2007), for example in the two gram-positive firmicutes 

Carboxythermus hydrogenoformans (Wu et al., 2005) and Moorella thermoacetica (Pierce et 
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al., 2008), as well as in the anammox bacterium Candidatus Kuenenia stuttgartiensis (Strous 

et al., 2006). For the two firmicutes denitrification is not known to be a major energy 

pathway, and also in Candidatus Kuenenia stuttgartiensis, rather than being involved in 

denitrification, the membrane bound nitrate reductase appears to have a role specific to 

anammox (Strous et al., 2006) (see Section 4). 

These findings indicate a considerable diversity of particular enzymes active in the N-

network, regarding their localization within the cell and the pathways in which they are 

involved. They point to a flexible evolutionary adaptation of microbial enzymes supporting 

the process of the adaptation of microorganisms to their respective environments. This 

provides chances yet also poses challenges on the determination of marker genes for 

particular environmental microbial processes. 

Both types of respiratory nitrite reductase genes, nirK and nirS, have been found in 

archaea (Jones et al., 2008). Different to their bacterial homologues, at least some archaeal 

respiratory nitrite reductases are membrane bound enzymes (for example in Pyrobaculum 

aerophilum). One possible explanation is the relatively small volume between the 

cytoplasmic membrane and the surface-layer of archaea compared to the larger periplasmic 

space of gram-negative bacteria (Cabello et al., 2004). 

The characterization of archaeal nitrite reductase proteins is still at its beginnings, only 

two archaeal nitrite reductases have been characterized so far and both are encoded by nirK 

like genes (Bonete et al., 2008; Ichiki et al., 2001). Interestingly, their sequences are most 

similar to outer membrane CuNIR of Neisseria gonorrhoeae (aniA) (Hoehn and Clark, 

1992), which could be an indication for lateral gene transfer (Cabello et al., 2004; Ichiki et 

al., 2001). 

The nitric oxide reductase of the archaeon P. aerophilum is a qNor-type protein with 

menaquinol as electron donor (Cabello et al., 2004; de Vries and Schröder, 2002) and also 

other archaeal nor genes appear to encode qNor. By far not all investigated archaeal genomes 

contain a nor gene, raising the question whether alternative enzymes for nitric oxide 

reduction exist in archaea, and whether these nitric oxide reductases also participate in 

denitrification (Bonete et al., 2008; Cabello et al., 2004). 

Unlike the bacterial nitrous oxide reductase, archaeal NOS is membrane bound and (in 

P. aerophilum) receives electrons from menaquinol. Although nosZ has been detected in 

other archaeal genomes, no other archaeal NOS has been characterized yet (Cabello et al., 

2004; de Vries and Schröder, 2002). Within the genera Haloarcula and Haloferax, several 
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denitrifiers have been found. Some of these species produce mainly nitrous oxide from 

nitrate, however, at least in some species, nitrous oxide and dinitrogen production seems to 

be dependent on the growth phase (Har marismortui, Hfx mediterranei) or on nitrate 

concentration (Hfx denitrificans) (Bonete et al., 2008; Tindall et al., 1989). 

 

Eukaryotic denitrification 

Denitrification has been observed in fungi and in a benthic foraminifer (Hayatsu et al., 2008; 

Kobayashi et al., 1996; Risgaard-Petersen et al., 2006). In fungi, the process is located in the 

mitochondria and is coupled to the synthesis of ATP (Kobayashi et al., 1996). The 

foraminifer Globobulimina pseudospinescens accumulates nitrate in intracellular stores and 

is able to respire this nitrate intracellularly to dinitrogen gas (Risgaard-Petersen et al., 2006). 

Recently it has been discovered that next to several different and diverse groups of 

Foraminifera an additional taxon of the Rhizaria, the Gromiida, is capable of denitrification 

indicating that eukaryotic denitrification may also significantly contribute to the world’s 

oceans fixed nitrogen loss (Pina-Ochoa et al., 2010). 

 

Aerobic denitrification 

Denitrification also occurs when oxygen is present, as has been shown for several isolated 

bacterial species (Bell et al., 1990; Robertson et al., 1989, 1995; Robertson and Kuenen, 

1984) and also in natural aqueous habitats (Gao et al., 2009; Trevors and Starodub, 1987) 

and in soil (Trevors, 1985). Normally, under oxic conditions denitrification is repressed by 

inhibition of nitrate transport through the cytoplasmic membrane (Alefounder and Ferguson, 

1980; Moir and Wood, 2001). Bell et al. (1990) could show that the sulfur bacterium 

Thiosphaera pantotropha (now Paracoccus pantotrophus), in the presence of oxygen, 

expresses a periplasmic nitrate reductase that is not dependent on nitrate transport through 

the cytoplasmic membrane and can thus take over the first step in denitrification. The last 

enzyme in the denitrification reaction chain, NOS, is oxygen sensitive in many species. 

Therefore, aerobic denitrification is often incomplete and an increase in N2O formation has 

been observed when conditions switch from anaerobic to aerobic (Frette et al., 1997; 

Patureau et al., 1994). 

It has been suggested that aerobic denitrification mainly occurs in environments of 

alternating oxic/anoxic conditions (Frette et al., 1997; Patureau et al., 2000). Microorganisms 
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capable of both aerobic and anaerobic denitrification would have the best chances of survival 

in these habitats (Gao et al., 2009; Lloyd et al., 1987). 

 

Denitrification in the environment 

Elucidating the process of denitrification in the environment was the subject of numerous 

studies employing a variety of approaches in many different habitats. Since denitrification is 

not a trait that can be tied to particular taxonomic clades (e.g. Jones et al., 2008), detection of 

denitrifiers on the genome level requires the detection of functional rather than 16S-rRNA 

genes. The nitrite reductase genes nirS and nirK have frequently been used as marker genes 

for denitrifying bacteria. For example, nirS was used to study the denitrifier community 

composition and abundance along an estuarine gradient with a microarray approach (Bulow 

et al., 2008). Ward et al. (2009) studied denitrifier communities in the Arabian Sea via nirS 

amplification by quantitative PCR combined with measuring denitrification rates using 15N 

tracers. Pratscher et al. (2009) used RING-FISH to detect microorganisms carrying nirK in 

activated sludge. Both genes nirS and nirK served as signature genes for analyzing the 

denitrifying community composition for example in the Black Sea by Oakley et al. (2007) 

who measured in situ nitrogen compounds, and performed sequence analysis of PCR 

products obtained from in situ and culture samples, and in the Arabian Sea by Jayakumar et 

al. (2009) who characterized the progression of denitrification by the presence and proportion 

of nitrogen compounds, and by abundance, sequence composition and diversity of the two 

nitrite reductase genes. Due to the apparent exclusivity of Nir-types in denitrifiers it has been 

suggested that despite the functional equivalence of NirK and NirS, a niche differentiation 

between bacteria carrying one or the other reductase exists (Jones et al., 2008; Smith and 

Ogram, 2008). Abell et al. (2010) combined nutrient and N flux measurements with 

determination of abundance and diversity of nirS, nirK and the nitrification marker gene 

amoA in a subtropical estuary. The authors emphasize the interconnection between the 

environmental factors influencing denitrification and point out that the verification of links 

between dominance and diversity of particular genes and physical and chemical variables 

requires further efforts in both field and laboratory work. 

Several studies include further functional genes of the denitrification pathway as marker 

genes (Cuhel et al., 2010; Demaneche et al., 2009; Dong et al., 2009; Nogales et al., 2002; 

Scala and Kerkhof, 1999; Smith et al., 2007). Nogales et al. (2002) studied the expression of 

narG, napA, nirS, nirK and nosZ in estuarine sediments. Of these five genes, only nirS and 
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nosZ could be shown on transcript level via RT-PCR. Furthermore, almost all of the obtained 

nirS sequences were novel sequences, showing a high diversity and site specificity. The 

failure to detect transcripts of the remaining three genes could be an indication that not all of 

the genes were expressed in sufficient amounts, but could also have been at least in part due 

to the fact that environmental sequences are still largely unknown and the generation of 

suitable primers for (RT-)PCR is thus difficult if possible at all. High diversity and 

divergence from database sequences was also shown for narG and napA sequences obtained 

from the same sampling site by Smith et al. (2007). The authors indicate that even for this 

restricted habitat, based on so far obtained DNA sequences, the design of “universal” primers 

and probes for narG, napA and nirS was not possible. Given the ever increasing genetic 

diversity that emerges with ongoing sequencing effort in the field of environmental 

microbiology, this might be the case for almost any of the environmental marker genes. 

Employing alternative methods for the detection of functional genes, such as metagenomic 

and genome sequencing is thus necessary, as has been pointed out for example by 

Wallenstein et al. (2006). In their review Wallenstein et al. discuss the difficulties of 

pinpointing the processes of denitrification in the environment since analysis of 

environmental data regularly shows that changes in denitrifier activity, abundance and 

community composition are generally caused by a multitude of interconnected factors. Dong 

et al. (2009) combined studying the presence of marker genes (narG, napA, nirS and nrfA) 

and transcripts with measuring nitrate reduction rates in sediments along an estuary. The 

processes of denitrification, dissimilatory nitrate reduction to ammonium and anaerobic 

ammonium oxidation were investigated. It was pointed out that relationships between the 

presence of nitrate and electron donors, nitrate reduction rates, and the corresponding 

reductase genes occur only on a broad scale, and that the multifactorial influence on gene 

expression in the environment makes a small scale relationship between nitrate reduction 

rates and abundance of marker genes or transcripts less likely. In their study on soil 

denitrifier communities, Cuhel et al. (2010) combined the investigation of denitrification 

gene abundance (narG, napA, nirS, nirK, nosZ) with measurements of denitrification activity. 

They found that abundance of narG, napA and nirS but not of nirK and nosZ was negatively 

correlated with the N2O/(N2O+N2) production ratio, whereas total N fluxes were not 

correlated with the abundance of any of the tested genes. They discuss that these results 

were, after all, not regularly obtained in other studies, and argue that counting functional 

genes is not sufficient for a comprehensive understanding of how denitrification is affected in 
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situ. The enormous diversity, abundance and widespread distribution of denitrifying 

microorganisms, the possibility of denitrification occurring as a community process 

(Wallenstein et al., 2006; Zumft, 1997), as well as the great variety of their habitats may 

explain why, despite continuing efforts, the identification of relevant environmental 

denitrifiers in situ remains a challenge. 

 

 

2.4  Dissimilatory nitrate reduction to ammonium (DNRA) 

In contrast to denitrification, dissimilatory nitrate reduction to ammonium (DNRA) is 

assumed to occur when nitrate in comparison to organic carbon is limiting (Cole and Brown, 

1980). In DNRA nitrite is reduced to ammonium and eight electrons are transferred. The 

reduction of nitrate to nitrite is assumed to mostly being catalyzed by the periplasmic nitrate 

reductase complex NapAB (figure 2.2c). However, a membrane-bound nitrate reductase, 

NarGHI (figure 2.2a), may also be present in the same organism (Richardson et al., 2001; 

Simon, 2002). The entire reduction of nitrite to ammonium is catalyzed by NrfA, a 

pentaheme cytochrome c nitrite reductase without the release of any intermediate (Einsle et 

al., 1999, 2002). 

Nevertheless, there are some indications that N2O is also released as a byproduct of 

DNRA and not all N2O originates from denitrification (and detoxification) as generally 

assumed. Enzyme bound NO and NH2OH are probable intermediates (Cruz-Garcia et al., 

2007; Vermeiren et al., 2009) of DNRA. The ability to carry out DNRA is phylogenetically 

widespread. The functional gene nrfA occurs in diverse groups of bacteria. It has been found 

in Gamma-, Delta- and Epsilonproteobacteria (Smith et al., 2007) and in members of the 

Bacteroides (Mohan et al., 2004). Many sulfate reducing Deltaproteobacteria are able to 

perform DNRA in the presence of nitrate (Dannenberg et al., 1992; Mitchell et al., 1986; 

Pereira et al., 1996; Seitz and Cypionka, 1986) although there has been recent evidence that 

sulfate reduction is preferred over DNRA if both electron acceptors are present (Marietou et 

al., 2009). NrfA has been purified and characterized from many different organisms as for 

example Escherichia coli (Kajie and Anraku, 1986; Liu et al., 1981), Desulfovibrio 

desulfuricans (Liu and Peck, 1981), Wolinella succinogenes (Blackmore et al., 1986; Liu et 

al., 1983) and Vibrio fischeri (Liu et al., 1988). In other cases, the corresponding enzymes 
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have only been predicted from the nrf genes detected in genome sequences and their 

structural and functional characterization remains the task of further research. 

 

 

Enzymes in DNRA 

 

Nitrate reductase 

The two subunit complex NapAB binds a bis-molybdopterin guanine dinucleotide (bis-

MGD) cofactor at the active site like the membrane bound NarGHI, but differing in the 

number and nature of cofactors. The catalytic subunit NapA receives electrons from NapB, a 

diheme cytochrome c. High resolution structures of a NapA and a NapB fragment have been 

determined (Dias et al., 1999; Brigé et al., 2001). Electrons are mostly transferred from the 

quinol pool to the membrane-bound tetraheme cytochrome c NapC and then to NapB 

(Roldan et al., 1998; Richardson et al., 2001). Next to NapC an alternative electron transport 

system to NapAB exists. W. succinogenes, for example, has a napAGHBFLD gene cluster. 

No NapC orthologue is encoded in the nap cluster and electrons are hypothesized to flow 

from the quinol pool to NapAB via NapH and NapG. NapH is proposed to be anchored in the 

membrane and NapG to form a complex with NapH (Kern and Simon, 2008; Simon et al., 

2003) (figure 2.2c). In contrast to the nar operon, the nap operons differ in gene composition 

and ordering. Almost all gene clusters have the genes napDABC in common while the genes 

napEKFGH are found in different combinations (González et al., 2006; Richardson et al., 

2001). 

 

Nitrite reductase 

In respiratory DNRA energy is obtained by generating an electrochemical proton potential 

across the membrane. Electrons are transported from the substrate (e.g. hydrogen, sulfide, 

formate) to nitrite. The electron transport chain consists of an enzyme that oxidizes the 

electron donor, e.g. a NADH dehydrogenase, formate dehydrogenase or a hydrogenase. Next, 

electrons are transferred to a respiratory menaquinone and then passed to the cytochrome c 

nitrite reductase (NrfA) (Einsle et al., 2002). The catalytic side of the enzyme is orientated 

towards the periplasm (Simon, 2002). In W. succinogenes and other Proteobacteria the 

membrane bound tetraheme cytochrome c subunit NrfH mediates the electron transport from 

menaquinones to NrfA and anchors the NrfHA complex to the membrane (Kern et al., 2008; 
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Rodrigues et al., 2006; Simon et al., 2001) (Figure 2.4a). NrfA and NrfH are encoded by the 

nrfHAIJ operon together with the gene nrfI that is involved in cytochrome c biogenesis (Kern 

et al., 2010; Simon et al., 2000). In enteric Gammaproteobacteria NrfB, a periplasmic 

pentaheme, is the direct electron donor to NrfA. It has been proposed that NrfB transfers 

electrons from the menaquinol pool to NrfA by oxidizing the membrane integrated protein 

complex NrfC-NrfD (Clarke et al., 2007; Einsle et al., 2000) (Figure 2.4b). 

The corresponding gene cluster is the nrfABCDEFG operon (Hussain et al., 1994). The 

detailed function and structure of the transport chain and especially of NrfA has been 

reviewed by Simon (2002). The reaction mechanism has been further described by Einsle et 

al. (2002). 

Most organisms that carry out DNRA also can reduce nitrate to nitrite except some 

sulfate reducing bacteria which are only able to use nitrite (Dannenberg et al., 1992; Mitchell 

et al., 1986). Recently, octaheme enzymes that can reduce nitrite to ammonia were found 

(Atkinson et al., 2007). Octaheme cytochrome c nitrite reductases (ONR) may represent a 

phylogenetic link between pentaheme cytochrome c NrfA and octaheme cytochrome c 

hydroxylamine oxidoreductase involved in the aerobic oxidation of ammonium and 

hydrazine oxidoreductase involved in anammox (Bergmann et al., 2005; Klotz et al., 2008). 

One ONR has been isolated from a sulfuroxidizing bacterium and characterized by 

Tikhonova et al. (2006). 

 

Fermentative DNRA 

For some fermenting bacteria nitrate reduction to ammonium allows NAD regeneration and 

ATP synthesis through acetate formation in contrast to ethanol production during 

fermentation (Cole and Brown, 1980; Polcyn and Podeszwa, 2009). In this case, the enzyme 

NrfA is not coupled to an energy conserving respiratory chain but the bioenergetic advantage 

compared to fermentation is additional ATP generation by substrate-level phosphorylation 

(Bonin, 1996). Fermentative DNRA has been well studied in E. coli (Stewart, 1988). Bacteria 

known to carry out this process mainly originate from gastrointestinal tracts of mammals and 

from wastewater treatment plants (Cole, 1996). 
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respiration pathway have to be determined. The ratio between the available electron donor 

compared to nitrate, the kind of electron donor and the prevailing redox potential in the 

environment are hypothesized factors for the selection of the predominating nitrate reduction 

process (Akunna et al., 1993; Kaspar, 1983; Tiedje et al., 1982). Nevertheless slurry 

incubations with 15N-nitrate showed that DNRA occurs under oxic conditions and is not 

inhibited by oxygen (Morley and Baggs, 2010). 

The application of nrfA as a marker gene is difficult as currently there are only few 

sequences available and they come from culture collections with the majority being 

pathogens and probably not relevant in nature. Furthermore the microorganisms capable of 

DNRA are phylogenetically wide spread. Therefore the isolation of environmentally 

important DNRA performing species is an important step in order to obtain more sequences 

of the nrfA gene. 

Mohan et al. (2004) designed primers for the detection of nrfA based on the alignment 

of six nrfA sequences similar to the E. coli nrfA sequence including the nrfA from 

Sulfurospirillum deleyianum and W. succinogenes. These primers were shown to detect nrfA 

sequences from a wide range of bacteria (Mohan et al., 2004). One of the rare studies that use 

nrfA as a marker gene for DNRA in the environment showed that nrfA is strongly expressed 

in the Peruvian oxygen minimum zone. Based on these results it was assumed that DNRA 

supplies most of the ammonium needed for anammox (Lam et al., 2009). Functional genes 

including nrfA and their mRNA transcripts were used as markers for nitrate respiration 

processes in an estuary (Dong et al., 2009; Smith et al., 2007). 

Recently, the nrfA marker gene was used within a multidisciplinary study (Yagi et al., 

2010) in order to characterize a contaminated terrestrial subsurface site and an apparent 

nitrogen redox cycling linking DNRA and ammonium oxidation was discovered. 

For the investigation of denitrification and anammox in the environment the analysis of 

functional genes in combination with activity measurements has already been effectively 

applied. In future studies on nitrate reduction nrfA should also be addressed more commonly 

as the significance of DNRA in different environments may be higher than previously 

assumed. The diversity and distribution of the responsible microorganisms remain to be 

investigated. 
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2.5 Anaerobic ammonium oxidation (anammox) 

Under anoxic conditions, anammox bacteria are able to gain energy by the formation of 

nitrogen gas from nitrite and ammonium (Jetten et al., 2005; Mulder et al., 1995; Richards, 

1965; Strous et al., 1999; van de Graaf et al., 1995, 1997). 

Since their identification by Strous et al. (1999), several bacteria that were found to be 

able to perform the anammox pathway have been characterized. They all belong to the order 

of Planctomycetales. They form a monophyletic order branching off deep inside the 

planctomycete lineage and have a large evolutionary distance among the genera described so 

far: Candidatus “Brocadia”, “Kuenenia”, “Scalindua”, “Anammoxoglobus” and “Jettenia” 

(Jetten et al., 2009; Kuenen, 2008; Quan et al., 2008; Strous and Jetten, 2004). They are 

slow-growing organisms with a doubling time of eleven days up to three weeks (Jetten et al., 

2005; Strous et al., 1999). Anammox bacteria have been detected in almost every type of 

aquatic habitat that contains oxygen-depleted zones, including marine and freshwater 

sediments, sea ice, and wastewater plants (Dong et al., 2009; Jetten et al., 2005, 2009; 

Kuenen, 2008; Kuypers et al., 2005; Lam et al., 2009; Schubert et al., 2006; Strous and 

Jetten, 2004; Strous et al., 2006). 

Based on the first experimental results from studies with 15N-labeled substrates (van de 

Graaf et al., 1997), hydroxylamine was thought to be used to activate ammonium. At the 

same time, formation of hydrazine as an intermediate in the anammox reaction was 

discovered as a so far unique feature of anammox bacteria (van de Graaf et al., 1997). Later, 

the completion of the first genome sequence of an anammox organism (Strous et al., 2006) 

resulted in the revision of the previously postulated reaction pathway. The presence of the 

nirS gene in the genome of Candidatus Kuenenia stuttgartiensis suggested nitrite reduction to 

nitric oxide followed by hydrazine formation with nitric oxide and ammonium as the two 

substrates of the reaction (Strous et al., 2006). This ‘new’ pathway was consistent with the 

experimental data acquired until then (Schalk et al., 2000; Schmidt et al., 2002; Strous and 

Jetten, 2004; van der Star et al., 2008; van de Graaf et al., 1997) (Figure 2.5).  

 

 

Enzymes in anammox 

Next to known enzymes for nitrate reduction (NarGH), nitrite reduction (NirS), and the 

oxidation of hydrazine to dinitrogen by an anammox-specific hydroxylamine oxidoreductase 

(HAO) (Schalk et al., 2000), novel enzymes were suggested by the genomic data that may be 
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anammox process takes place at the membrane of the innermost compartment of anammox 

bacteria, the anammoxosome, and most likely builds up a proton gradient between 

anammoxosome and riboplasm that is used for the generation of ATP, makes it analogous to 

the energy generation process in mitochondria (van der Star et al., 2010; van Niftrik et al., 

2010). 

 

Anammox in the environment 

The chemolithoautotrophic anammox pathway is advantageous in oxygen-depleted 

environments that are limited in organic substrate. Furthermore, anammox bacteria depend 

on the presence of ammonium and nitrite. Ammonification, associated with the anaerobic 

degradation of organic matter and DNRA are possible sources for ammonium. Nitrate and 

nitrite can be produced by aerobic nitrifying bacteria which inhabit the interface of 

oxic/anoxic habitats. Here, it is likely that competing and/or beneficial interactions occur 

between nitrite and ammonium oxidizers (Hao et al., 2002; Kuenen, 2008). Co-occurrence of 

aerobic and anaerobic ammonium oxidizing bacteria was also observed in oxygen-limited 

reactors (Third et al., 2001). Nitrate reducers could be further advantageous coinhabitants of 

anammox habitats. However, it was found that by oxidation of organic compounds, 

anammox bacteria themselves also can reduce nitrate to nitrite (Guven et al., 2005; Kartal et 

al., 2007a, b). 

The anammox reaction is by now considered to contribute significantly to the removal 

of fixed nitrogen from several natural habitats, mainly in marine anoxic basins, for example 

in the Black Sea (Jensen et al., 2008) or in Golfo Duce, Costa Rica (Dalsgaard et al., 2003), 

and in oxygen minimum zones (OMZs), for example west of Peru, Chile or Namibia (Galán 

et al., 2009; Hamersley et al., 2007; Kuypers et al., 2005; Lam et al., 2009). 

Amplification of 16S rRNA genes is usually the first step for the identification of 

anammox bacteria in the environment. Of the anammox genera known to date, the most 

widespread genus appears to be Candidatus Scalindua, which has first been detected in the 

Black Sea (Kuypers et al., 2003), and later on in many further different, mainly marine, 

natural habitats (Amano et al., 2007; Dang et al., 2010; Dong et al., 2009; Li et al., 2010; 

Penton et al., 2006; Rich et al., 2008; Schmid et al., 2007; Woebken et al., 2008). Based on 

16S rRNA sequences, members of the Candidatus Brocadia clade were detected in a 

temperate stratified lake and in river sediments (Hamersley et al., 2009; Zhang et al., 2007), 
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and 16S rRNA sequences of the Candidatus Kuenenia clade were detected in a deep sea 

hydrothermal vent ecosystem (Byrne et al., 2009). A great diversity of 16S rRNA anammox 

sequences was found by Dale et al. (2009), who studied anammox bacterial communities in 

sediment samples taken along a river estuary, and detected sequences of the C. Scalindua, the 

C. Kuenenia, the C. Brocadia and the C. Jettenia clades. 

Apart from Candidatus Scalindua that was first detected in nature, the other four so far 

known genera were first found in enrichment reactors, inoculated with samples originating 

from fresh water habitats, such as river sediment (Quan et al., 2008) or wastewater (Kartal et 

al., 2007b; Schmid et al., 2000; Strous et al., 1999). The geographical distribution of the 

environmental anammox gene sequences evaluated so far gave rise to theory that C. 

Scalindua is mainly present in marine habitats whereas the other known genera mainly occur 

in fresh water habitats (Schmid et al., 2007). The presence of C. Scalindua together with 

other clades of anammox bacteria in estuaries supports this theory, although the exact effect 

of salinity on the composition of anammox communities in this environment is not totally 

clear yet (Dale et al., 2009). Furthermore, the extent to which currently used primers cover 

the real anammox 16S rRNA sequence diversity might still be too limited to deduce a 

realistic picture of the global distribution and niche separation of anammox organisms (Dang 

et al., 2010; Li et al., 2010; Penton et al., 2006). 

Next to the amplification of 16S rRNA sequences, the hao/hzo gene is used as an 

additional genetic marker for anammox bacteria (Dang et al., 2010; Li et al., 2010; Schmid et 

al., 2008). When both markers were studied, a greater phylogenetic diversity was found for 

hao/hzo genes compared to 16S rRNA genes (Dang et al., 2010; Li et al., 2010). It remains to 

be determined whether this indicates that the primers used for the detection of these genetic 

markers cover different parts of the phylogenetic diversity of anammox bacteria or whether 

there is indeed incongruence in the phylogenies of their 16S rRNA and hao/hzo genes. 

Furthermore, there is considerable variety among the hao/hzo genes. Several divergent 

octaheme cytochrome c (OCC) open reading frames were detected in the genome of 

Candidatus Kuenenia stuttgartiensis (Strous et al., 2006), most probably encoding 

HAO/HZO. Schmid et al. (2008) found that the anammox hao/hzo sequences cluster in three 

groups, one of which was fairly consistent in its phylogeny with anammox 16S rRNA 

sequences. Thus, adding a functional gene, of which several variants are present per genome, 

to the set of genetic markers increases information on both phylogeny and potential 

anammox activity (Dang et al., 2010; Junier et al., 2010; Li et al., 2010; Quan et al., 2008). 
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Another candidate for a functional genetic marker for anammox bacteria is their nirS gene, 

since the known sequences of anammox nirS genes are very different from the nirS 

sequences of denitrifiers (Lam et al., 2009). Nevertheless, further screening of environmental 

clones and metagenomes for new sequences, as well as enrichment and genome sequencing 

of yet unknown anammox species will be necessary to approach the full extent of 

environmental anammox diversity. 

Anammox activity is normally detected via rate measurements using 15N labeled tracers 

(Thamdrup and Dalsgaard, 2002; Risgaard-Petersen et al., 2003). Since anammox 16S rRNA 

sequences can be amplified from sites where no anammox rates are measured, the 

combination of genetic marker detection and rate measurements is now a common strategy to 

detect active anammox communities in the environment (Dalsgaard et al., 2005; Jetten et al., 

2009; Schmid et al., 2005). Another widely used method for anammox detection in 

environmental samples is fluorescence in situ hybridization (FISH). With this approach 

anammox bacteria were found in deep sea hydrothermal vents (Byrne et al., 2009), mangrove 

soils (Wickramasinghe et al., 2009), in several terrestrial (Humbert et al., 2010) and further 

aquatic habitats (Galán et al., 2009; Hamersley et al., 2007; Jaeschke et al., 2009b; Risgaard-

Petersen et al., 2004; Tal et al., 2005; Zhang et al., 2007). Probes usually target 16S rRNA 

genes, and thus the same challenges as for anammox 16S rRNA targeting primers apply. 

Gene based techniques and activity measurements can be complemented by lipid analysis 

since the detection of ladderane lipids is a strong indication for the presence of anammox 

bacteria (Kuypers et al., 2003; Hamersley et al., 2007; Jaeschke et al., 2009a,b; Schmid et 

al., 2003). The phylogenetic information in the composition of these lipids has been 

investigated by Rattray et al. (2008). Ladderane core lipid compositions were found to be 

relatively consistent among the four studied genera, whereas ladderane phospholipid 

compositions varied. Whether these differences were species-related or due to different 

cultivation methods could, however, not be ascertained in this study. 

 

 

2.6 Nitrite reduction drives methane oxidation 

Recently, microbes that couple dinitrogen formation to methane oxidation were enriched 

(Ettwig et al., 2009; Hu et al., 2009) which let to the discovery of a new dinitrogen forming 

pathway. ‘Candidatus Methylomirabilis oxyfera’, the dominant organism of enrichment 
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cultures from different drainage ditch sediments, is capable of oxidizing methane under 

anoxic conditions, using oxygen originating from nitric oxide (Ettwig et al., 2010). The 

pathway was deduced from metagenomic data followed by experimental verification. The 

genome of ‘M. oxyfera’ encodes all genes for the pathway of aerobic methane oxidation, as 

well as an incomplete gene set for denitrification, missing a gene for nitrous oxide reductase. 

Nevertheless, under anoxic conditions, in the presence of methane and nitrite or nitric oxide, 

‘M. oxyfera’ oxidizes methane and, at the same time, produces dinitrogen gas. Nitrous oxide 

was produced only in very small amounts and if nitrous oxide was the only nitrogen 

compound present, no methane oxidation occurred (Ettwig et al., 2009, 2010; Raghoebarsing 

et al., 2006). Based on these observations, a new reaction pathway was proposed: In the last 

step of this ‘alternative’ denitrification pathway, a not yet known enzyme catalyzes the 

formation of dinitrogen and oxygen from two molecules of nitric oxide (figure 2.1, NO 

dismutation pathway). The oxygen is used by particulate methane monooxygenase in the first 

step of the ‘conventional’ methane oxidation pathway (Ettwig et al., 2010). It is unknown to 

what extent this alternative form of denitrification is used to oxidize other electron donors 

than methane and whether it competes with ‘normal’ heterotrophic denitrification. ‘M. 

oxyfera’ produces a membranebound bo-type respiratory terminal oxidase, which might be 

an indication that residual produced oxygen may serve for respiration using reducing 

equivalents from the methane oxidation (Wu et al., 2010).  

 

2.7 Conclusions 

Regarding the numerous biochemical pathways starting from nitrate and their interactions it 

is obvious that the nitrogen cycle is a complex network rather than a cycle. This network 

provides a great variety of ecological niches that bacteria and other (micro-)organisms can 

occupy and linkings between the different pathways add even more complexity to the 

network. For instance, W. succinogenes known for carrying out DNRA also reduces nitrous 

oxide to dinitrogen and thus carries out the last step of denitrification (Simon et al., 2004). 

This organism has a nos gene cluster but no genes for nitrite reduction to nitric oxide or nitric 

oxide reduction to nitrous oxide (Baar et al., 2003). The functional genes for denitrification 

nirK and norB also occur in several aerobic ammonium oxidizing bacteria (Casciotti and 

Ward, 2001, 2005). 
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In the environment, the different physiological groups compete for the substrate nitrate. 

Depending on the predominating nitrate respiration pathway, nitrogen stays in the habitat or 

is released into the atmosphere. Formation of dinitrogen and nitrous oxide, a potent 

greenhouse gas, leads to the removal of nitrogen from a habitat. Anammox also leads to 

nitrogen removal, and nitrous oxide is sometimes released as a byproduct in considerable 

amounts. In a full scale anammox bioreactor approximately 1% of the nitrogen load was 

converted to nitrous oxide (Kampschreur et al., 2008). This points out a further intersection 

in the nitrogen network. In contrast, formation of ammonium by DNRA keeps the nitrogen 

fixed and available for further biological processes. The nitrogen cycle is also tightly linked 

to other biogeochemical cycles like the carbon or the sulfur cycle (Lavik et al., 2009; Ward et 

al., 2007). For the complete understanding of the nitrogen network and its interactions the 

environmentally important microbial performers of each process and the conditions that 

influence the predominance of one or the other pathway have to be identified and studied. To 

obtain such knowledge, interdisciplinarity including geochemical, biochemical and molecular 

biological methods is required. To make efficient use of the interconnection of the cycles of 

matter on local and global scales, for example in agri- and aquaculture and wastewater 

treatment, a thorough knowledge of the involved processes is necessary. Comprehending the 

course of niche adaptation in nature enables and improves the directed and precise practical 

application of microbial activities in the field of biotechnology. 
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3.1 Abstract 

So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross 

feeding and competition are important aspects of microbial physiology and these can only be 

addressed by studying complete communities such as enrichment cultures. Metagenomic 

sequencing is a powerful tool to characterize such mixed cultures. In the analysis of 

metagenomic data, well established algorithms exist for the assembly of short reads into 

contigs and for the annotation of predicted genes. However, the binning of the assembled 

contigs or unassembled reads is still a major bottleneck and required to understand how the 

overall metabolism is partitioned over different community members. Binning consists of the 

clustering of contigs or reads that apparently originate from the same source population. In 

the present study eight metagenomic samples from the same habitat, a laboratory enrichment 

culture, were sequenced. Each sample contained 13–23 Mb of assembled contigs and up to 

eight abundant populations. Binning was attempted with existing methods but they were 

found to produce poor results, were slow, dependent on non-standard platforms or produced 

errors. A new binning procedure was developed based on multivariate statistics of 

tetranucleotide frequencies combined with the use of interpolated Markov models. Its 

performance was evaluated by comparison of the results between samples with BLAST and 

in comparison to existing algorithms for four publicly available metagenomes and one 

previously published artificial metagenome. The accuracy of the new approach was 

comparable or higher than existing methods. Further, it was up to a 100 times faster. It was 

implemented in Java Swing as a complete open source graphical binning application 

available for download and further development (http://sourceforge.net/projects/metawatt). 

 

Keywords: metagenomics, binning, tetranucleotide frequencies, interpolated Markov 

models 
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3.2 Introduction 

Prokaryotes (Bacteria and Archaea) comprise a significant portion of the living biomass on 

earth and sustain the geochemical element cycles, a vastly complicated, planetary-scale 

metabolic network. Prokaryotes form complicated ecological communities consisting of a 

multitude of species and only a small fraction of these species has been cultivated in the 

laboratory, studied experimentally and has a known genome sequence. More importantly, 

these species have been studied in isolation, after a pure culture was obtained. To further 

refine our understanding of geochemical element cycling it is essential to study the 

physiology of microbes in their natural context, i.e., the microbial community. Microbial 

communities can be cultivated in the laboratory under meaningful, near-natural conditions by 

continuous cultivation of microbial enrichment cultures. 

Given such a mixed microbial culture, metagenomics (sequencing and analysis of DNA 

obtained from complete microbial communities) is a powerful approach to determine both 

the community composition and the potential physiology of the abundant community 

members. This way, function-identity relationships (e.g., Walsh et al., 2009; Ettwig et al., 

2010) can be resolved in a simple and standard way. “Binning” is an essential step in this 

analysis. Binning can be performed after assembly of raw sequence reads into contigs and 

consists of the clustering of those contigs that belong together, constitute a (partial) genome 

of a single population (or of a group of closely related populations). When the sequencing 

coverage is sufficiently high and when the “microdiversity” is not too high, the resulting bins 

can be considered provisional whole-genome-sequences of the source populations. The 

ecological function of those populations can then be investigated, first by genome annotation 

and subsequently by experiments. Both for assembly and annotation, well developed 

algorithms and pipelines are available but the binning is still a bottleneck in metagenomic 

analysis. 

Several approaches have been investigated for the binning problem; they can roughly be 

divided into similarity-based methods, such as BLAST (Huson et al., 2011) and hidden 

Markov models (Krause et al., 2008), and compositional approaches such as tetranucleotide 

frequencies (Teeling et al., 2004a,b; McHardy et al., 2006; Chatterji et al., 2007; Bohlin et 

al., 2008; Diaz et al., 2009; Saeed et al., 2011), interpolated Markov models (IMM; Kelley 

and Salzberg, 2010) and Markov chain Monte Carlo models (Kislyuk et al., 2009). The 

advantage of compositional approaches is that they are able to bin contigs with genes that are 

not homologous to the reference species. This advantage is essential because even closely 
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related species share only a relatively small core genome and the detection of non-

homologous genes in related species is the essence of unraveling new function-identity 

relationships. The advantage of similarity-based methods is that these approaches are very 

robust – given a contig of sufficient length they generally provide a clear indication about the 

(approximate) taxonomic position of the source population. Therefore, without a similarity-

based method, it is impossible to evaluate the binning results obtained by a compositional 

algorithm, except with artificial datasets (e.g., FAMeS; Mavromatis et al., 2007). In practice, 

a complete binning procedure should therefore consist of a combination of similarity and 

composition based methods. 

Compositional approaches can further be subdivided into supervised (i.e., comparison of 

the metagenomic contigs to existing genome data) and unsupervised (comparison of the 

metagenomic contigs only to each other) methods. Given the facts that (a) microbial diversity 

is vast and (b) relatively few reference genome sequences are available, an unsupervised 

method is usually essential to prime the binning process; supervised methods do not perform 

well when no closely related organism is available to train the models. Once bins have been 

primed with an unsupervised method, models of different types can be trained on the primed 

bins and the binning can be completed. Such two-step procedures were recently shown to be 

promising (Kelley and Salzberg, 2010; Saeed et al., 2011). 

In the present study we analyzed microbial communities growing in continuous culture 

in the laboratory. These communities were of medium complexity (up to eight “binnable” 

popula-tions). Our metagenomic samples contained 4–10 million 50– 150 basepairs reads 

(Illumina) and these were first assembled into contigs. Assembly yielded contigs of 

reasonable size (longest contigs between 30 and 200 kb). For the binning of these contigs, we 

developed the new integrated binning procedure that is the topic of this paper. It is similar to 

the two-step approach described by Kelley and Salzberg (2010) and Saeed et al. (2011) but 

uses a newly developed, ultrafast algorithm based on multivariate statistics of tetranucleotide 

frequencies for the priming of the bins. 

Compared to previous methods the new unsupervised priming algorithm is very fast 

(seconds) and does not require an estimate for the number of binnable populations. Further, 

for each of the produced bins, a taxonomic signature is calculated with a similarity-based 

approach (BLAST). By inspection of this signature in combination with sequencing coverage 

information, promising bins can be identified and used to train IMM. These models are then 

used for final binning. 
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With this procedure, eight populations from our community could be binned with high 

apparent accuracy (>90% at the genus level, >96% at the family level). The general 

performance of our procedure was further evaluated by comparison to two existing methods 

(Kelley and Salzberg, 2010; Saeed et al., 2011) for four publicly available metagenomes and 

one previously published artificial metagenome (table 3.1). Our evaluation showed that the 

new approach is much faster and achieves better or comparable accuracy. It was 

implemented in a stand-alone graphical interactive binning environment, the “Metawatt 

binner” that is available for download, use, and further development. 

 

Table 3.1: Performance (time,T, minutes, recall, R, percentage, accuracy, A, percentage) of the 
presented binning approach (Metawatt) for five publicly available metagenomes in comparison to two 
published two-step compositional binners: SCIMM (Kelley and Salzberg, 2010) and 2Tbinner (Saeed 

et al., 2011). 

Meta 

genome 

Total 

(Mb) 
Contigs SCIMM 

 
2Tbinner 

 
Metawatt* 

   T R A  T R A  T R A 

Acid mine 

drainage 
11.2 1703 22 79.2 72.3 

 
190 ** ** 

 
1 80.4 82.8 

Olavius 

symbionts 
22.3 868 34 78.2 76.3 

 
371 ** ** 

 
1 77.0 88.4 

EBPR 24.4 11188 30 83.8 74.5  36 39.3 98.4  3 93.3 81.3 

Whalefall 

bone 
28.9 26232 45   

 
24 ** ** 

 
4   

SimBG 39 40000 53 77.6 75.6  33 4.5 90  7 91.6 92.6 

*Time includes tetranucleotide and IMM training and binning, but not the evaluation by BLAST.  

**The R script produced an error and/or no meaningful bins were generated. 
 

3.3 Materials and methods 

 

Samples and metagenomic sequencing 

Eight samples were taken from a microbial enrichment in continuous culture, inoculated with 

sediment from the Janssand tidal flat in the German Wadden Sea (N 53.73518; E 07.69912). 

DNA was extracted. Barcoded Illumina TruSeq libraries were generated and sequencing was 

performed (together with four further libraries of a different study) on one flow cell lane of 
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an Illumina Genome Analyser GA IIx instrument, in a 2x150 cycles paired end run. Reads 

were submitted to the Short Read Archive (SRA, accession number SRP012152) and 

assembled contigs (see below) to the Whole Genome Shotgun repository (WGS, accession 

numbers SUB086333, SUB122313, SUB122314, SUB122316, SUB122317, SUB122318, 

SUB122319. SUB122321). 

 

Assembly 

Assembly was performed with MetaVelvet -v0.31. After quality trimming (sliding window 

approach: window length 15 basepairs, within this window quality value of at least 99%, 

minimal read length after trimming 25 basepairs) between 4,414,212 and 9,986,877 reads 

(392,800,534–901,487,996 bases) per sequenced library were assembled. Assembled contigs 

were submitted to WGS (see above). An overview of the assembly results is presented in 

table 3.2. 

 
Table 3.2: Assembly results of the eight sequenced metagenomes. 

 1 2 3 4 5 6 7 8 

Number of reads (millions) 4.8 7.6 4.4 8.2 5.6 5.7 10 5.2 

Total sequence data in reads (Mb) 474 687 424 751 550 537 901 393 

Number of contigs (thousands) 16 6.3 40 7.6 8.9 52.6 5 19.3 

Total sequence data in contigs (Mb) 15.3 13.7 20.4 15.7 13.4 23.3 13 13.3 

Longest contig (kb) 182 182 77 167 145 37 177 93 

N50 contig length (kb) 2.7 7.7 1 5.2 6.8 0.8 26.3 1.8 

K-mer size for assembly 51 51 51 61 61 61 61 51 

 

Ultrafast unsupervised binning based on tetranucleotide composition 

There exist 256 (44) different tetranucleotides. However, when we assume that both DNA 

strands are sampled equally, the reverse complements of every tetranucleotide become 

redundant and 136 non-redundant tetranucleotide pairs remain. (The number of actual 

degrees of freedom is lower, 103, see Kislyuk et al., 2009). Each of these remaining pairs 

consists of the tetranucleotide itself and its reverse complement. The frequencies of the 136 

                                                 

 
1
 http://metavelvet.dna.bio.keio.ac.jp/ 
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different non-redundant tetranucleotide pairs were calculated for each contig, normalized to 

contig length, and the composition of each contig was represented as a 136-dimensional 

vector. The normalized frequency of tetranucleotide x in contig y was calculated as follows: 

 

After the multiplication by 136 and with a GC content of 50%, average frequencies 

correspond to a value of 1. 

One-hundred artificial contigs of distinct lengths (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 

1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30, 

40, 50, 60, 70, 80, 100 kb) were sampled from each of the 794 prokaryotic whole-genome-

sequences representing the known biodiversity (one genome per genus, table S3.1 in 

Supplementary Material). Tetranucleotide vectors were calculated for each reference genome 

as a whole (the mean vector) and for each artificial contig (sample vectors). Next, at each 

contig length l, the standard deviation of the tetranucleotide frequencies observed in the 

population of sample contigs (s) was plotted against the mean frequency observed in the 

source genome (m). Figure 3.1A displays plots for four different values of l. 

Figure 3.1 shows that independent of the nature of the tetranucleotide and independent 

of the source genome, s can be predicted when m and l are known. 

We attempted to describe the observed empirical relationship s D f (m, l) as a formal 

mathematical function, but no satisfying function was found that accurately described the 

relationship for all relevant values of m and l. Therefore, the observed empirical relationship 

s D f (m, l) was interpolated into a lookup table to be able to estimate the standard deviation 

based on the mean frequency and the contig length. 

With this lookup table [s D f (m, l)] it was now possible to estimate the multivariate 

probability (P) that a contig (length l) of unknown origin belonged to any source organism, 

given the observed tetranucleotide frequency vector v for the contig and a known or 

estimated mean tetranucleotide vector m of the source organism: 

 



The binning of metagenomic contigs for microbial physiology of mixed cultures 

 

88 

 

During binning m, the mean vector of the “source organism” is estimated as described 

below.  

Next, the artificial contigs were used to determine empirical threshold values for P that 

could be used by the algorithm to decide whether the unknown contig belonged to the source 

organism or not (figure 3.1B). Three thresholds were defined, a high confidence threshold 

that only accepted 90% of the artificial contigs belonging to a given organism, a medium 

confidence threshold that accepted 95% of the artificial contigs and a low confidence 

threshold that accepted 98% of the artificial contigs. It was found empirically that the 

threshold value for P depended on the length l of the unknown contig, as shown in figure 

3.1B. Again, this function was interpolated into a lookup table with P threshold D f(90, 95, or 

98%), l). 

 

 

Figure 3.1: (A) When populations of DNA fragments of defined length were sampled from a source 
genome, an empirical relationship was observed between the mean frequency, the frequency of any 
tetranucleotide in the source genome, and the standard deviation in the frequency of that 
tetranucleotide observed in the sample populations. The relationship is shown for four different 
lengths of DNA fragments and at each mean frequency the average standard deviation is shown. For 
an explanation on the calculation of the frequencies, see main text. (B) Empirical relationship that 
defines the probability threshold as a function of DNA fragment length at high (90% recall), medium 
(95% recall) and low (98% recall) confidence. The relationships were determined empirically by 
sampling 794 representative reference genomes (n= 100 for 37 different DNA fragment lengths 
between 0.3 and 100 kb). 

 

Using the relationships of Figure 3.1, the binning now proceeded as follows 

First the contigs were sorted by length and tetranucleotide vectors were calculated for all 

contigs. The longest contig was processed first and a bin was created for this contig. Next, 

contigs were processed one by one, from long to short, and for each existing bin, the 
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probability that the contig belonged to the bin was calculated. Because the probability value 

P only decreases as more dimensions are analyzed, the comparison was aborted once it fell 

below the threshold. When no bin could be found for the new contig (all P values below P 

threshold), it was used to seed a new bin. Otherwise, the contig was joined with the most 

probable bin (highest P) and a new mean tetranucleotide vector was calculated for that bin 

(vectors were weighed by contig length). 

In this comparison, it was necessary to assume that the tetranucleotide vector of any 

existing bin approximated the mean vector of its source genome. This approximation would 

be better for longer contigs, and this was the reason why the contigs were first sorted. For 

short contigs the approximation would not be valid and therefore, no new bins were seeded 

with contigs less than 1000 basepairs long. The entire procedure was performed three times, 

once for every confidence level (low, medium, and high, figure 3.1B). Less than 1 min was 

required to complete each of these calculations with a i5 M430 processor (2.27 GHz) for all 

datasets (up to 39 Mb of assembled contigs, see table 3.1). 

 

Analysis of bin taxonomic compositions with BLAST 

First every contig was fragmented into 500 basepair pieces. BLAST (Camacho et al., 2009) 

was used to compare these pieces to a database with the 794 prokaryotic whole-genome-

sequences representing the known biodiversity (one genome per genus, table S3.1 in 

Supplementary Material). Hits of >200 basepairs length and with at least 25% nucleotide 

identity were used to create a taxonomic profile for each contig. The profile consisted of five 

taxonomic ranks (phylum, class, order, family, genus). At each rank the taxon with the most 

hits was recorded together with the number of hits to this taxon and the median e-value of the 

hits. After binning, the contig profiles were added and averaged to calculate a taxonomic 

profile for the bin as a whole. This profile was displayed as a pie diagram; see figure 3.3 for 

examples. 

 

Calculation of sequencing coverage 

Next to taxonomic composition, the sequencing coverage constitutes a second, independent 

criterium to evaluate binning success. Contigs that belong to the same source population 

should have similar coverage, whereas different source populations can have different 

coverages (dependent on the relative abundances, chromosome copy number, and DNA 

extraction efficiency). Coverage was parsed from the header line of the fasta output produced 
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by the assembler or estimated for each contig from the average read length of the sequencing 

run and the number of source reads for the contig parsed from the header line of the contig 

fasta file produced by the assembler. The regular expressions used for the parsing of 

coverage or number of reads were “cov[a–z]*?[=_]([\\d\\.]+)” and “numreads = (\\d+).” 

 

Interpolated Markov modeling 

After inspection of the unsupervised binning results for all samples, good bins were selected 

for the final binning step. “Good bins” were bins with relatively long contigs, a consistent 

taxonomic profile and a equally distributed sequencing coverage (decision made by the 

scientist). IMM were created with the program “build-icm” from the Glimmer package 

(Delcher et al., 2007). The models were used to score all contigs of all samples with the 

program “simple-score” from the Glimmer package, used with the N option (no negative 

model). For each contig, the scores were compared for each model and the contig was 

binned to the model with the highest score. 

 

Evaluation of binning accuracy with publicly available metagenomes 

Four publicly available metagenomes were selected for evaluation: a metagenome sampled 

from acid mine drainage (Tyson et al., 2004, accession numbers AADL01000110.1-

AADL01001068.1, CH003545.1-CH004435.1,DS995259.1-DS995275.1),one obtained from 

enhanced biological phospate removing (EBPR) sludge (Martin et al., 2006, accession 

numbers AATN01000001.1-AATN01011188.1), one from an Olavius algarvensis microbial 

symbiont community (Woyke et al., 2006, accession numbers AASZ00000000.1, 

DS021108.1-DS022223.1), and one from an Antarctic whale fall bone (Tringe et al., 2005, 

accession num-bers AAGA01000001.1-AAGA01026232.1). In addition, an artificial 

metagenome was used (SimBG, Saeed et al., 2011). All five metagenomes were also used for 

evaluation by Saeed et al. (2011). Additional information is provided in table 3.1. For 

evaluation of the real metagenomes, we assumed that the annotations provided by the authors 

of the original studies were correct. In the EBPR case no annotations were provided, so we 

used the published genome of Candidatus “Accumulibacter phosphatis” as the reference. 

After binning, a bin was assigned to each population and the accuracy was calculated as the 

number of correctly binned nucleotides divided by the total number of nucleotides in the bin 

(100%). Recall was calculated as the number of nucleotides of the source organism assigned 

to the bin divided by the total number of nucleotides of the source organism present in the 
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metagenome (100%). For the Whale Fall metagenome, evaluation of accuracy and recall was 

impossible, as binning was reported to be unsuccessful by the authors. The results (accuracy, 

recall, and computation time) were compared to two comparable previously published state 

of the art de novo compositional binners (Kelley and Salzberg, 2010; Saeed et al., 2011). For 

SCIMM (Kelley and Salzberg, 2010), bins were seeded with a single trial of Likely Bin and 

the algorithm was run multiple times with different estimates for the number of populations. 

In table 3.1 only the results for the optimal choice are shown. 2T binner was run with the 

default options. 

 

Implementation 

The procedure was implemented in java as a Swing application that has been tested on Linux 

(64 bit). A graphical user inter-face was necessary because our method depends on an 

important choice by scientist: which tetranucleotide bins should be used to train IMM 

models? For this reason, visualization of the binning results is important. The application is 

freely (Academic Free License) available for download and further development at 

http://sourceforge.net/projects/metawatt. It depends on BLAST (Camacho et al., 2009), 

Glimmer (Delcher et al., 2007) and the batik library2 for exporting structured vector graphics 

(SVG). For evaluation of binning results a BLAST library of sequenced genomes and a 

taxonomy of these genomes is necessary. Metawatt can generate these files automatically 

when it is provided with the genbank files of all reference organisms (downloadable from 

http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.gbk.tar.gz). 

 

3.4 Results 

When we inspected multivariate distributions of tetranucleotide frequencies of artificial DNA 

fragments sampled from reference genomes we observed that for all organisms these 

distributions can be approximated by a single Gaussian function characterized by a generally 

valid empirical relationship between the mean frequency of any tetranucleotide in a genome, 

the standard deviation of the observed frequency in DNA fragments sampled from this 

genome and the fragment length. See materials and methods and figure 3.1A for details. 

                                                 

 
2 http://xmlgraphics.apache.org/batik 
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Given a DNA fragment of known length and tetranucleotide composition, the relationship 

can be used to calculate a probability that the fragment belongs to a source genome with 

known or estimated mean tetranucleotide composition. Further analysis of calculated 

probabilities for artificially sampled DNA fragments enabled the definition of a threshold for 

the probability value that could be used to determine whether a DNA fragment most likely 

belongs to a source genome or not. figure 3.1B shows the empirical relationship between the 

DNA fragment length and the threshold probability at 90, 95, and 98% recall. See section 

“Materials and Methods” for details. 

The two empirical relationships shown in figures 3.1 A, B enabled us to rapidly 

calculate whether a metagenomic contig should be binned together with another contig. 

Apart from the contig sequences themselves this calculation made use of only a single 

parameter – the confidence value (90, 95, or 98% recall). It depended on only a single 

assumption: that the average tetranucleotide composition of the two contigs under 

consideration approximated the composition of the source genome. The validity of this 

assumption obviously depended on contig length; the longer the contigs, the better their 

tetranucleotide composition would approximate that of their source genome. For this reason, 

contigs were sorted by length before binning. 

We first investigated the possibility to use the two empirical relationships of figure 3.1 

to classify DNA fragments. The classification accuracy was compared to the accuracy 

obtained with IMM as follows: first artificial communities were created from reference 

organisms randomly sampled from 794 available whole-genome-sequences of different 

genera (table S3.1 in Supplementary Material; 10, 25, 50, and 100 species per community). 

For each species three artificial long DNA fragments were created (10, 50, or 1000 kb) and 

also five groups of 100 artificial short DNA fragments (500, 1000, 2000, 4000, and 8000 

basepairs length). Next, all short DNA fragments were classified based on comparisons with 

one of the long fragments: either the tetranucleotide frequencies were compared as explained 

above or an IMM was trained with the long fragment. The classification accuracies are 

shown in figure 3.2. The figure shows that when the DNA fragment used for training was 

longer than 50 kb, IMMs outperformed our algorithm for classification. With shorter 

fragments, the tetranucleotide classifier outperformed IMMs. 

A metagenomic binner was now created that made use of the tetranucleotide classifier. 

Binning started by seeding the first bin with the longest contig. Next, the remaining contigs 

were processed one by one in order of decreasing size. Each contig was binned to the bin that 
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yielded the highest probability value, or when no probability was above the threshold, a new 

bin was created. When a contig was joined into an existing bin, a new mean frequency vector 

was calculated for the bin. And so on. With growing bin sizes (and few misbinnings), the 

mean vectors of the bins would approach those of the source genomes. The two arrows in 

figure 3.2 provide an indication of the level of accuracy achieved during binning. In the 

initial stages with small bin sizes, the estimate for the tetranucleotide composition of the 

source genome is poor, but the binned contigs are long (blue arrow) and the accuracy is 

around 80%. Toward the end, the estimates for the tetranucleotide com-position of the source 

genomes are much better (large bin sizes) but the binned contigs are smaller (green arrow) 

and the accuracy is also around 80%. 

The procedure allowed us to bin a metagenome without an a priori estimate for the 

number of populations that might be binnable, as is necessary for some other algorithms 

(e.g., Kislyuk et al., 2009). As expected, the binning algorithm was very fast (seconds for all 

tested metagenomes, up to 39 Mb, see table 3.1). We found that no general rule existed as to 

what confidence (90, 95, or 98% recall) was best for the calculation of the threshold values. 

In all cases, the application of a high confidence threshold (e.g., 90%) led to a larger number 

of bins. In some cases, this was justified. In other cases it was not and populations that were 

binned into a single bin at lower confidence were distributed over multiple bins at higher 

confidence. For this reason, binning was always performed three times, once for each 

confidence value. 

To evaluate the binning results, a taxonomic profile was created for each bin and its 

sequencing coverage was calculated (as explained in the Materials and Methods section). The 

taxonomic profiles and coverage distribution of the bins produced at all three levels of 

confidence were now inspected. Bins with a consistent taxonomic profile and homogeneous 

sequencing coverage were selected and used to train IMM, one for every selected bin. These 

models were then used to rebin all contigs in a final binning step. As shown above, IMMs 

outperformed our tetranucleotide-based algorithm when much sequence information was 

available. 

The performance of the binner was evaluated with four publicly available metagenomes 

and one artificial metagenome (table 3.1). For comparison the binning was also performed 

with two other state of the art two-step compositional binners (Kelley and Salzberg, 2010; 

Saeed et al., 2011). It appeared that our binning procedure was up to a 100 times faster and 

the accuracy was com-parable or better. The overall binning procedure completed in 7 min 
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for the largest metagenome tested (39 Mb). The binning results presented quantitatively in 

table 3.1 are briefly described qualitatively below. 

The SimBG artificial metagenome contains contigs belonging to eight different bacteria 

and one artificial “fake” bacterium (Saeed et al., 2011). The binner made very few errors, 

except in case of B. halodurans. Its contigs were binned only at 70.2% accuracy because of 

the misbinning of some P. marinus and D. hafniense contigs.  

The EBPR metagenome (Martin et al., 2006) contains contigs belonging to “Candidatus 

Accumulibacter phosphatis” and several side populations. 

 

 

Figure 3.2: Classification accuracy with the empirical relationships of figure 3.1 (black line, closed 
symbols) and Interpolated Markov models (gray lines and symbols). The accuracy was calculated as 
function of community complexity (10, 25, 50, and 100 populations), length of the long DNA 
fragments used for training (10, 50, and 1000 kb, one for each population), and length of the short 
DNA fragment to be classified (100 fragments, 0.5–8 kb). Each point is the average of three 
communities randomly sampled from 794 reference genomes. For the explanation of the blue and 
green arrow, see main text. 



Chapter 3 

 

95 

 

After IMM binning, the contigs belonging to A. phosphatis were binned at excellent 

recall but at relatively low accuracy. Tetranucleotide binning actually yielded some bins with 

very high accuracy (97.4%) but in that case the recall was lower (46.8%), values comparable 

with the Two-tiered binner of Saeed et al. (see table 3.1). Three side populations were 

recovered as taxonomically consistent bins: the Gammaproteobacterium related to 

Thiotrichales (5.3 Mb), already recovered by Saeed et al. (2011), a Flavobacterium (3.5 Mb), 

and a Xanthomonas (2.5 Mb). 

The Olavius algarvensis symbiont metagenome (Woyke et al., 2006) consists of contigs 

of unknown origin and contigs belonging to three symbiotic bacteria: the Gamma-1, Gamma-

3, and Delta-1 symbionts. The contigs of the Delta-1 and Gamma-3 symbionts were binned 

without problems (accuracy 90.6 and 98.1% respectively). The contigs of the Gamma-1 

symbiont were difficult to separate from some contigs of unknown origin leading to a lower 

binning accuracy (76.5%) for this organism. 

The contigs obtained from the Antarctic whale fall bone (Tringe et al., 2005) were not 

binned in the original study, so evaluation of the accuracy was impossible. However, as 

already reported by Saeed et al. (2011), they are binnable with modern methods. After 

tetranucleotide binning, two bins contained contigs of mainly Flavobacterial origin (the first 

bin was 3.9 Mb at 31.7% GC, the second 7.7 Mb at 39.7% GC). Four additional bins with a 

con-sistent taxonomic signature were recovered: a Pseudomonad bin (4.3 Mb, 45.5% GC), an 

Alteromonas bin (2.1 Mb at 40.5% GC), a Rhodobacter bin (3.2 Mb at 55.8% GC) and a 

Sphingomonas bin (3.8 Mb at 57.6% GC). The uncultured Actinomycete sequences 

previously reported were split over three different bins but were well separated from other 

organisms. 

The acid mine drainage metagenome (Tyson et al., 2004) consists of contigs from five 

different populations: “Ferroplasma acidarmanus Type I”, “Ferroplasma sp. Type II”, 

“Thermoplasmatales archaeon,” “Leptospirillum sp. Group III,” and “Leptospirillum sp. 

Group II.” The contigs of the two Ferroplasma’s were binned together with some 

contamination of contigs from the Thermoplasmatales archaeon. The remainder of the 

Thermoplasmatales archaeon contigs were binned accurately in a separate bin. One bin 

contained only Leptospirillum Group III contigs and the final bin the Leptospirillum group II 

contigs with some contamination of Leptospirillum Group III contigs. 

Once the benchmarking and testing was complete, the new binner was applied to eight 

metagenomes sampled from a microbial enrichment in a continuous culture mesocosm. The 
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eight samples were tagged and sequenced on a single lane of an Illumina Genome Analyzer 

GA IIx instrument. Assembly yielded some reasonably long contigs and many short ones 

(table 3.2), as usual in sequencing projects. 

Tetranucleotide binning was performed as described above and again a taxonomic 

profile was calculated for each bin (figure 3.3). The binner binned >99% of all contigs but 

the quality of the bins produced varied between samples, populations, and the applied 

threshold value. figure 3.3A shows that the binning was apparently successful for sample 7, 

at medium threshold. Each of the bins had a distinct taxonomic signature as well as a distinct 

sequencing coverage. For example, apparently two different Epsilonproteobacteria (green 

colors) were present in this sample, one with a GC content of 26.8% and a sequencing 

coverage of 12 times and one with a slightly higher GC content and a coverage of 40 times. 

One of the bins may belong to an uncultured Rhodobacter, relatively unrelated to reference 

Alphaproteobacteria with sequenced genomes. This could be inferred from the relatively high 

BLAST e-values, and the scattering of the BLAST hits over different families. One may 

argue that this bin contains contigs of many different Alphaproteobacteria but this could be 

ruled out by inspecting other samples where this organism was more dominant and yielded 

longer contigs. The distribution of BLAST hits for individual contigs was very similar to the 

distribution of the bin as a whole. In fact, this is a nice example of what happens when 

supervised binning approaches (based on reference genomes) are applied to organisms only 

distantly related to those reference organisms – the contigs get scattered and are assigned to 

many different reference taxa. 

Figure 3.3B shows an example of unsuccessful binning in sample 1 with a low confidence 

threshold (98% recall). Here, contigs from a Pseudomonas population appear to get mixed up 

with contigs from a Vibrio population in bin 1. Bin 2 contains sequences from Vibrio and a 

Clostridum populations. Note that these misbinnings were not observed at the high 

confidence threshold, but in that case the contigs of the Vibrio and the Clostridium were 

divided over many bins. 

 

Figure 3.3 (facing page): Contig size distribution, sequencing coverage and taxonomic distribution 
of the four largest bins of sample 7 binned at medium confidence (A) and sample 1 binned at low 
confidence (B). The exploded pies show the taxonomic distribution of the bins. The distance of each 
part from the center of the pie is a measure for the median e-value of the associated hits (the larger the 
e-value the larger the distance from the center). Coverage is shown for the bin as a whole and 
separately for each pie part. 
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Interpolated Markov models yielded better results than tetranucleotide frequencies once 

sufficient training data was accumulated. Therefore, we again selected the good bins (long 

contigs, consistent taxonomic profile, as described above) from all samples to train IMM 

models. Eight distinct bins were identified that apparently defined the binnable part of the 

microbial community in all samples. All samples were binned de novo with these eight 

models and the resulting bins looked convincing in all cases, both with respect to coverage 

and taxonomic profile 

To further validate the results, BLAST was used to compare every sample with the eight 

reference bins (the bins used to construct the models, arrows in figure 3.4). Only BLAST hits 

that were >98% identical to the reference sequence were considered. The IMM binning and 

the BLAST results were totally consistent, with two exceptions: (1) There was some cross 

binning of the two Clostridia populations. (2) The model predicted an abundant Vibrio 

population in sample 1 whereas this population could not be validated by BLAST. 

Apparently, the Vibrio population in sample 1 was different from the reference population in 

sample 3 (its contigs less than 98% identical to the contigs that constituted the defined Vibrio 

bins) and a different IMM model could be created for these contigs. 

The community enriched in the continuous culture was provided with a marine medium 

with organic carbon as the only electron donor and nitrite as the electron acceptor. Organic 

carbon was present in excess, whereas nitrite was the limiting substrate. The binning results 

showed that the enriched community consisted of denitrifiers (affiliated with Arcobacter, 

Pseudomonadales or Rhodobacterales) and fermenters (affiliated with Vibrionales, 

Clostridiales and Fusobacterales). 

This is in agreement with text book knowledge: one would expect the denitrifiers to 

consume most of the organic carbon while respiring nitrite, while the fermenters would 

consume the remainder of the carbon. Some dynamics appear to occur, but because of 

potential methodological biases between sequencing runs and assembly, this first needs to be 

confirmed with other methods (FISH). The biology of the experiment will be addressed in 

detail elsewhere once these data are available. The aim of the present study was to develop a 

method for metagenomic binning of these and future metagenomes sampled from laboratory 

enrichment cultures. 
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Figure 3.4: Validation of the IMM binning results for the eight samples by BLAST. The black line 
shows the total amount of assembled sequence information assigned to each of the eight populations 
by the IMM binner. The green line shows how much of that data was also recovered by BLAST 
(megaBLAST at 98% identity cutoff). The red line shows how much data was recovered in other bins 
(errors). Arrows indicate the origin of the reference bin used to train the IMM. 
 

3.5 Discussion 

In this study we have shown that it is currently possible to bin metagenomic data obtained 

from relatively simple microbial com-munities with a modest sequencing effort. The eight 

samples investigated were tagged and sequenced on a single lane of an Illumina Genome 

analyzer GA IIx (consumable costs <5 kEuro). Our results also show that it is very important 

to sequence multiple samples from the same habitat: first, there appears to be quite some 

dynamics, even though these samples were obtained from the same bioreactor that was 

running at totally constant environmental conditions. Second, the possibility to assemble and 

bin a target population depends on the context of the overall community. Third the quality of 

the sequencing and/or assembly results differed between samples. This probably resulted 

from (unintended) differences during the manual library preparation and potentially a 

different degree of microdiversity among populations in different samples. Last but not least, 

by comparing results between samples with BLAST it was possible to validate the binning 

results and not depend on a priori estimates of binning accuracy. 
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The first step of the overall binning procedure makes use of a novel algorithm based on 

an empirical relationship between the mean and standard deviation of tetranucleotide 

frequencies. It has some advantages compared to existing methods: it does not depend on an 

estimate for the number of binnable populations, is open source, portable to any platform 

(that supports BLAST and Glimmer) and is extremely fast. The latter advantage also means 

that it is more scalable: it will be able to cope with the large amounts of data that will be 

produced by future sequencing technologies and can be applied to more complicated 

communities. By always running the binner at three different threshold values, all tested 

metagenomes could be binned successfully without the need for optimizing additional 

parameters. 

This newly developed algorithm was combined with the use of IMM, already applied 

previously as a final “polishing” step in binning. Our study confirmed that IMMs outperform 

tetranucleotide frequencies when sufficient training data is available. However, where Kelley 

and Salzberg (2010) use a fully automated iterative method to refine the bins, we created the 

possibility for the scientist to choose which seed bins should be used to build the IMM 

models. This choice should be based on the characteristics of the bins such as contig length, 

sequencing coverage, and a taxonomic profile. We present evidence that this human 

intervention can outperform the fully automated method. This may be caused by difficulties 

in repairing totally failed bins (e.g., figure 3.3B) by an iterative approach. In our enrichment 

culture metagenomes, iterations generally reallocated only a small amount of contigs (less 

than 50). 

To facilitate the necessary human decisions, we implemented the complete procedure in 

Java Swing (the “Metawatt binner”) where the binning results are presented to the scientist as 

a graphical overview like the one displayed in figure 3.3. This enables the selection of 

promising bins for IMM modeling. We made use of the Batik library to enable the export of 

these graphics in SVG format which can be directly used for publications. The produced bins 

can be exported as fasta files for further annotation in standard pipelines. 

There is certainly room for improvement. Perhaps the biggest step forward could be 

achieved by integrating the assembly and the binning. Assembly speeds may increase when 

the assembler can be provided with compositional information, to more efficiently recruit 

promising reads for comparisons. “Associations” between contigs (with paired end reads) 

that are too weak to allow assembly directly may still be used for binning, as was recently 

shown by Iverson et al. (2012). Unfortunately the latter study provided no methodological 
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details. Finally, next to sequencing coverage information, the frequency of single nucleotide 

polymorphisms may be used as an additional parameter to evaluate the binning results. 

 

3.6 Conclusion 

We have developed and implemented a (partially) new approach for the binning of 

metagenomic contigs. This approach was born out of need, existing approaches did not 

produce satisfying results for our metagenomes. Evaluation of the binning accuracy and 

recall was done with artificial as well as real metagenomes and showed that it was 

comparable to the best existing approach tested. In addition several key improvements were 

realized. Most notably, the seeding of the bins does not depend on an estimate of the number 

of binnable populations and is very fast and scalable. The approach has been implemented in 

Java SWING as an open source application (the “Metawatt binner”) with an easy to use 

graphical user interface. Evaluation of the binning results by BLAST, training of models and 

manual editing of bins is included in the implementation. 

Our results show that the metagenomic binning of relatively simple microbial 

communities is currently feasible even when the sequencing effort is moderate. We also 

show that it is important to sequence and compare metagenomes for multiple samples of the 

same habitat. Continuous culture of microbial enrichment combined with metagenomic 

sequencing is a powerful approach that can carry the study of microbial physiology from 

pure cultures to simple communities. An accurate and easy to use binning procedure is an 

essential aspect of this change. 
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4.1 Summary 

Marine denitrification constitutes an important part of the global nitrogen cycle and the 

diversity, abundance and process rates of denitrifying microorganisms have been the focus of 

many studies. Still, there is little insight in the ecophysiology of marine denitrifying 

communities. In this study, a heterotrophic denitrifying community from sediments of a 

marine intertidal flat active in nitrogen cycling was selected in a chemostat and monitored 

over a period of 50 days. The chemostat enabled the maintenance of constant and well-

defined experimental conditions over the time-course of the experiment. Analysis of the 

microbial community composition by automated ribosomal intergenic spacer analysis 

(ARISA), Illumina sequencing and catalyzed reporter deposition fluorescence in situ 

hybridization (CARD-FISH) revealed strong dynamics in community composition over time, 

while overall denitrification by the enrichment culture was stable. Members of the genera 

Arcobacter, Pseudomonas, Pseudovibrio, Rhodobacterales and of the phylum Bacteroidetes 

were identified as the dominant denitrifiers. Among the fermenting organisms co-enriched 

with the denitrifiers was a novel archaeon affiliated with the recently proposed DPANN-

superphylum. The pangenome of populations affiliated to Pseudovibrio encoded a NirK as 

well as a NirS nitrite reductase, indicating the rare co-occurrence of both evolutionary 

unrelated nitrite reductases within coexisting subpopulations. 

 

4.2 Introduction 

Currently, anthropogenic nitrogen input to the environment exceeds natural nitrogen fixation 

(Fowler et al., 2013). To understand the consequences of this aspect of global change, it is 

important to understand the fate of fixed nitrogen compounds such as nitrate and nitrite in the 

environment. Denitrification in marine coastal sediments contributes significantly to the 

removal of fixed nitrogen from the marine environment (Rao et al., 2007; Gao et al., 2012) 

and may be responsible for up to half of the marine export of fixed nitrogen to the 

atmosphere (Gruber, 2004). Especially, sandy coastal sediments are characterized by high-

potential denitrification rates (Gao et al., 2010). Despite the important contribution of 

denitrifying microorganisms to biogeochemical cycling of nitrogen and carbon, the microbial 

community responsible for organic carbon turnover coupled to denitrification in coastal 

sediments remains understudied compared with sulfate reduction in deeper sediment layers 

(Llobet-Brossa et al., 2002; Gittel et al., 2008). The community composition of denitrifiers is 
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often determined via molecular methods targeting the functional genes of denitrification, 

which encode the nitrite reductases NirS or NirK, nitric oxide reductase NorB and nitrous 

oxide reductase NosZ (for review, see Kraft et al., 2011), but incongruence between the 

functional genes and 16S rRNA gene phylogenies makes it hard to link functional gene 

diversity to the microbial community structure (Jones et al., 2008).  

Next to denitrification and aerobic respiration, fermentation is the main organic carbon 

degradation pathway in the upper layers of coastal tidal-flat sediments; fermenting organisms 

may even constitute the largest part of the anaerobic microbial community in marine 

sediments (Wilms et al., 2006, Köpke et al., 2005). They take part in the initial degradation 

of organic carbon substrates and provide a variety of fermentation products, which serve as 

substrate for denitrification and other terminal degradation processes (Schink, 2002).  

Fermenting organisms are mostly facultative anaerobes; they are also able to respire 

oxygen, when it is available. Therefore, in situ detection of active fermenters is difficult and 

little is known about the ecophysiology of fermentative bacteria in situ and their potential 

interactions with respiratory heterotrophs such as denitrifiers. These potential interactions 

also play a role in the stability of ecosystem functions such as denitrification. It has been 

hypothesized that in communities with significant cross feeding, a high (background) 

diversity along with a dynamic population structure maintains functional stability (Briones 

and Raskin, 2003). However, it is difficult to directly observe syntrophic interactions 

between microbes in nature. Indeed, by direct determination of in situ microbial community 

composition, it can already be difficult to link specific phylotypes to specific processes or to 

correlate the abundance of specific phylotypes to specific environmental factors (Leser et al., 

2002; Curtis and Sloan, 2004), because changes in microbial activity, abundance and 

community composition are generally caused by a multitude of interconnected environmental 

factors (Wallenstein et al., 2006).  

Cultivation of natural microbial communities in continuous culture (e.g. chemostats) 

offers the possibility to monitor microbial community composition as well as the stability of 

specific processes (such as denitrification) under constant, environmentally relevant 

conditions. Continuous cultivation selects for a simplified microbial community that is 

optimally adapted to the applied conditions and may thus bridge the gap between direct 

ecosystem observations and pure culture studies.  

In the present study, we cultivated a natural microbial community sampled from a sandy 

coastal sediment in continuous culture under stable, denitrifying conditions for 50 days. We 
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observed that while denitrification was stable, rapid microbial community succession 

occurred as shown by metagenomics and other methods.  

 

4.3 Results 

A chemostat was inoculated with biomass from a coastal intertidal-flat sediment and fed with 

a medium containing nitrite, nitrate and organic carbon in order to select for a nitrate-

respiring microbial community. The organic carbon mixture (consisting of glucose, amino 

acids and acetate) represented the composition (monomers) of decaying biomass, the main 

carbon and energy source in situ. After an initial phase (8 days) in which the concentrations 

in the inflowing medium were gradually increased, nitrate and nitrite were completely 

depleted in the culture liquid (figure 1A).  

 

 

Figure 4.1: Conversion of (A) nitrogen and (B) carbon compounds during continuous culture 
enrichment. The solid lines represent the concentration of compounds in the medium supplied. The 
symbols represent the concentrations measured in the culture. DOC, dissolved organic carbon; N, 
nitrogen. Error bars indicate the standard deviation. For nitrite concentrations, error margins are 
within the sizes of the symbols. 
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From this day onwards, the nitrate and nitrite concentrations in the culture remained in the 

low micromolar range, close to the conditions in situ (< 0.5 µM for nitrite, < 10 µM for 

nitrate). Dinitrogen was identified as the main product and thereby denitrification as the main 

nitrate-reducing process. The ammonium concentrations were between 0.7 mM and 2 mM. 

Because a complete degradation of the provided amino acids in the medium would lead to an 

ammonium concentration of 3.5 mM, the produced ammonium most likely originated from 

the degradation of amino acids. Even if most of the ammonium produced resulted from the 

reduction of nitrite to ammonium, this pathway would have been responsible for less than 5% 

of the nitrite reduction. The concentration of dissolved organic carbon remaining in the 

culture was constant at 5.3 ± 1 mM (figure 1B). The protein content of cell biomass increased 

until day 24 and then stabilized at 180 ± 3 mg protein l−1. This corresponded to a biomass 

yield of 0.36 ± 0.035 C-mol biomass/C-mol substrate. Overall, the continuous culture 

showed stable conversion of substrates.  

Four time points (day 6, 18, 33 and 46) were selected for metagenomic sequencing with 

an Illumina GA IIx. Between 3.2 and 8.3 million reads per sample were generated 

(Supporting Information Table S1). Binning of assembled contigs of the four metagenomic 

samples resulted in the identification of 14 different bins, each associated with a different 

population. The position of each bin on a coverage versus GC plot of the assembled contigs 

as well as the taxonomic profiles of the bins are shown in Supporting Information figure 

S4.1. For almost all bins, corresponding full-length 16S rRNA genes were obtained by de 

novo assembly and iterative read mapping. The phylogenetic affiliation of the 16S rRNA 

sequences is shown in Supporting Information table S4.2 and figure S4.2. 16S rRNA 

sequences could be linked to the corresponding bins based on consistent phylogeny between 

the 16S rRNA gene and the sequence data of each bin and consistent squared Pearson 

productmoment correlation coefficients between bin coverages and 16S rRNA gene 

coverages over the four samples (Supporting Information table S4.3). Generally, high 

correlations between the coverage of a bin and the corresponding 16S rRNA gene were 

observed. Only bin F and I had low correlation coefficients. Together with the taxonomic 

profiles of the bins (Supporting Information figure S4.1), this indicated misbinning of contigs 

from bin E into F [a rather incomplete bin estimated based on the presence of conserved 

single copy genes (CSCGs), table 4.1] and of bins G and H into I.  

The abundance of each of the bins in every sample was estimated by mapping the reads 

of every sample to the contigs of every bin. Fifty to 85% of the sequence data could be 
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mapped to the assembled contigs and 35–80% was mapped against contigs that were part of 

one of the bins. Bin sizes and estimated genome completeness are shown in Table 1. The 

differences in relative abundances between samples indicated a highly dynamic community 

with drastic changes from one time point to the next (figure 4.2B). 

.  

 

Figure 4.2: Dynamics of the microbial community. A. Automated ribosomal intergenic spacer 
analysis (ARISA) pattern over time of the 15 most abundant OTUs. OTUs with the highest overall 
abundance are depicted. Arrows indicate time points of metagenomic sequencing and CARD-FISH. 
RFI, relative fluorescence intensity. B. Relative abundance estimates of metagenomic bins obtained 
by read mapping at different time points. 
 

The main bins present in the first sample were affiliated with Arcobacter (bin B), 

Vibrionales (bin G and bin H) and Archaea (bin A). The closest relatives based on the 16S 

rRNA gene are given in Supporting Information Table S2. The bins G and H (Vibrionales) 

were also recovered in the second sample (day 18) together with two bins affiliated with 

Alphaproteobacteria (bin E and bin F) and a bin affiliated with Fusobacter (bin K). On day 

33, none of the bins of the previous sample was detected. Bins C and D (Arcobacter) 

predominated, accompanied by bin I (affiliated with Psychromonas), bin J (affiliated with  



 

 

 

Table 4.1: Characteristics and inferred metabolism of the metagenomic bins. 

Bin 
Phylogenetic 

affiliation 
CSCGs1 

(duplicates)2 
Bin size 

(Mb) 

N50 
contig 
length 

Denitrification genes 
Fermentation genes 

Inferred 
lifestyle napA narG 

nirS/ 

nirK 
norB nosZ 

A Archaeon 43 (0) 1.54 28074 - - - - - aadh, dld FERM 

B Arcobacter 65 (1) 3.08 5643 + - nirS + + adh, aadh, pta, ackA DEN 

C Arcobacter 111 (0) 2.51 51624 + + nirS + + pta, ackA DEN 

D Arcobacter 85 (1) 2.89 8992 + - - - - adh, aadh, pta, ackA FERM 

E Pseudovibrio 117 (84) 5.18 719 + + 
nirS, 

nirK 
+ + pfl, adh, aadh, ackA, dld DEN 

F Rhodobacterales 21 (7) 1.45 543 + - nirS + + aadh, pta, dld DEN 

G Vibrio 131 (15) 4.26 1594 + - - - - pfl, adh, aadh, pta, ackA, dld 
FERM, 

NO3-
RED 

H Vibrio 119 (57) 3.20 622 + - - - - pfl, adh, aadh, pta, ackA, dld 
FERM, 

NO3-
RED 

I Psychromonas 39 (3) 1.78 685 - - - - - pfl, adh, aadh, ackA, pta, dld FERM 

J Pseudomonas 125 (3) 2.63 1171 - + nirS + + adh, aadh, pta, ackA DEN 

K Fusobacterales 130 (4) 2.63 4592 - - - - - pfl, adh, aadh, pta, ackA, dld FERM 

L Clostridiales 132 (4) 3.45 37879 - - - - - pfl, adh, aadh, pta, ackA, dld FERM 

M Bacteroidetes 72 (6) 2.26 536 - + nirS - - aadh, pta 
part. 
DEN 
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Pseudomonas) and bin L (affiliated with Clostridiales). On day 46, bins E and F 

(Rhodobacterales) were detected again, accounting together for more than 50% of the 

sequenced reads. Furthermore, bins affiliated with Vibrio and Bacteroidetes (bins H and M) 

were obtained 

To independently validate the composition of the microbial community, catalyzed 

reporter deposition fluorescence in situ hybridization (CARD-FISH) was performed for the 

most abundant populations (class and genus level) at the same time points as metagenomic 

sequencing was performed (Table 4.2). An increase in relative abundance of 

Rhodobacterales and a decrease in the fraction of Gammaproteobacteria, particularly Vibrios, 

and Epsilonproteobacteria (Arcobacter) during the course of the experiment supported the 

metagenomic results. Only for day 33, a major difference between the community 

composition of the CARD-FISH and metagenome data was observed. Generally, the relative 

abundance of Gammaproteobacteria, particularly Vibrio and Epsilonproteobacteria, was 

overestimated and the relative abundance of Alphaproteobacteria was underestimated by 

metagenomic abundance estimates based on coverage. However, the overall community 

dynamics detected by CARD-FISH followed the same trend as the metagenomic data.  

 

Table 4.2: Relative abundance of different phylogenetic groups determined by CARD-FISH with 
class and genus specific probes. 
 

day 6 day 18 day 33 day 46 
Gammaproteobacteria 33 30 22 12 

Vibrio 27 13 10 3 

Alphaproteobacteria 46 60 67 87 

Roseobacter 49 55 58 84 

Epsilonproteobacteria 19 1 12 0 

Arcobacter 18 1 1 0 

 

Five bins (B, C, E, F and J) contained the genes necessary for complete denitrification 

(Table 1). In addition, bin M contained the genes for a part of the denitrification pathway. 

Interestingly, in bin E (Pseudovibrio) genes for the two types of nitrite reductases, nirK and 

nirS, were present. The nirS gene had 95% identity to nirS from Pseudovibrio sp. FO-BEG1. 

The nirK gene was most closely related to nirK genes of other Rhodobacterales (63%, 

Roseobacter sp. SK209-2-6; 61%, Phaeobacter gallaeciensis). On the contig with the 

Roseobacter-related nirK gene, we also detected a gene coding for a transposase that had 
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93% identity to Pseudovibrio sp. FO-BEG1. The consistent affiliation of the whole contig 

with the order Rhodobacterales independently supported that it belonged to bin E. 

Phylogenetic analysis showed clustering of the nirS sequence together with other 

alphaproteobacterial nirS gene sequences (Supporting Information figure. S4.4). The 

presence of a gene encoding a transposase suggested that nirK might possibly have been 

acquired by horizontal gene transfer. The phylogenetic analysis of the nirK sequence is 

depicted in Supporting Information figure S4.5.  

Two of the three bins affiliated with the genus Arcobacter (bin B and C) contained the 

complete denitrification pathway, whereas bin D did not (table 4.1). Instead, it contained 

genes for dissimilatory nitrate reduction to ammonium (napA and nrfA). However, the low 

concentration of produced ammonium indicated that the activity of this pathway was low 

compared with denitrification (at most < 5%). Bins B and D both contained a soxCDXYZAB 

operon and thus showed the potential for the complete oxidation of sulfide to sulfate. Bin E 

(Pseudovibrio) also contained genes for sulfide oxidation (soxB, D, X, Z and W), but these 

were distributed over different contigs.  

In bins D, G, H, I, K and L (affiliating with Arcobacter, Vibrio, Psychromonas, 

Fusobacter and Clostridiales), the presence of different sets of genes being associated with a 

fermentative lifestyle (table 4.1) suggested mixed acid fermentation as the metabolism. Bin K 

(Fusobacter) also contained genes encoding capacity for sulfite reduction (dsrABC). The 

abundance of populations associated with denitrification and fermentation appeared to be 

relatively constant during the first three time points (days 6, 18 and 33). Only at day 46, 

denitrifiers seemed to be more abundant.  

At the beginning of the experiment, we observed the transient enrichment of a bin 

related to uncultured Archaea (bin A). Bin A (1.54 Mb, 10× coverage) consisted of 107 

contigs and constituted 4% of the assembled sequence data of the first sample. The archaeal 

16S rRNA gene shared 90% sequence identity with environmental clones and 74% with 

members of the Methanobacteria, the most closely related cultured Archaea. Because the 

phylogeny of the archaeon was not well resolved based on the 16S rRNA gene (Supporting 

Information figure S4.3), a more in-depth phylogenetic analysis was based on 44 

concatenated CSCGs, according to Lloyd and colleagues (2013). This showed that the 

archaeal population clustered within the deeply branching newly proposed DPANN 

superphylum (Rinke et al., 2013), with Nanoarchaeum equitans being the closest relative 



Rapid succession of uncultured marine bacterial and archaeal populations in a denitrifying continuous culture 

 

114 

 

(figure 4.3). The genome size was estimated to be approximately 1.6 Mbp and the genome 

completeness to be 98% (table 4.11).  

The relative abundance of the archaeon estimated by metagenomics was confirmed by 

CARD-FISH. Cells hybridizing to the newly designed probe specific for this group of 

Archaea (Supporting Information Table S4) accounted for 5% of all 4,6-diamidino-2-

phenylindole counts at day 6. Cells had a coccoid shape with a diameter of 0.5–0.8 µm 

(figure 4.4).  

For bin A, we observed that the genes for RNA polymerase A and B were both split into 

two parts. This was also observed previously for N. equitans (Spang et al., 2010). A split 

RNA polymerase subunit B has so far been considered to be a characteristic only present in 

Euryarchaea (Brochier et al., 2004; Spang et al., 2010). Furthermore, topoisomerase type IIa 

subunits A and B were present, which also have been assumed to exist within the Archaea 

exclusively in Euryarchaea (Spang et al., 2010).  

 

 

 

Figure 4.3: Phylogenetic placement of bin A within the archaeal DPANN superphylum. Maximum 
likelihood tree of concatenated conserved single copy genes (RAxML). Bin A is in bold font. 
Bootstrap values higher than 50% are given. 
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Figure 4.4: Epifluorescence microscopy image (CARD-FISH) of the archaeal population present in 
the enrichment culture at day 6. Green: archaeal cells hybridized with probe Darch335; blue= DAPI-
stained cells. The scale bar corresponds to 2 µm. 

 

In bin A, genes were present that encode a complete glycolysis pathway and a lactate 

dehydrogenase gene. Bin A also contained an arcABCD gene cluster encoding the arginine 

deiminase pathway. The presence of these genes suggests a fermentative lifestyle by sugar 

and amino acid fermentation. Consistently, the F-type (proton pumping) ATPase and 

respiratory complexes were not encoded in this bin and the tricarboxylic acid cycle was 

incomplete. The arcABCD genes were most closely related to homologues previously found 

in Clostridia and not to archaeal homologues. Also, the gene encoding a putative D-lactate 

dehydrogenase was most closely related to bacterial genes (Sphaerobacter thermophilus). 

The contigs that contained these genes generally also contained conserved genes that were 

most closely related to homologues of archaeal origin. Genes encoding the complete 

glycolysis pathway and an incomplete pentose phosphate pathway were related to 

homologues of either bacterial or archaeal origin. Because of the large phylogenetic 

distances, a more detailed phylogenetic analysis would be required to trace the origins of 

these genes more robustly. Finally, a muramoyltetrapeptide carboxypeptidase, which 

functions in bacterial cell wall lysis, is present. A RelA- and SpoT-like ppGpp synthetase 

(signalling molecules involved in bacterial stringent response) was also found in the archaeal 

bin. This is the third report of an archaeon that possesses complete multi-domain alarmones, 

with all of them being members of the DPANN superphylum (Rinke et al., 2013). 

 

4.4 Discussion 

Rapid succession of microbial populations was observed despite the maintenance of stable 

conditions in the continuous culture. These populations represented populations also 

observed in situ. For example, Rhodobacterales were found to make up 10%, Bacteroidetes 
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5–25% and Arcobacter ∼ 1% of the microbial community on the sampled tidal flat (Llobet-

Brossa et al., 1998; Stevens et al., 2008; Lenk et al., 2011). Members of the genus 

Psychromonas have previously been identified as important glucose fermenters in sediments 

from the sampling site by RNA-based stable isotope probing (Graue et al., 2011). Based on 

different sets of genes involved in fermentation that were detected in the different bins, we 

inferred the potential production of fermentation products such as lactate, hydrogen, formate 

and acetate. Such compounds would serve as suitable substrates for the part of the 

community that coupled denitrification to heterotrophic oxidation of monomeric carbon 

substrates.  

The enriched community had the potential for cryptic sulfur cycling with the 

involvement of Epsilonproteobactria in the sulfide oxidation step. Members of the genus 

Arcobacter have frequently been associated with autotrophic denitrification coupled to 

sulfide oxidation in marine environments (Lavik et al., 2009; Fuchsman et al., 2012).  

Generally, in marine habitats, the nitrite reductase NirS is considered to be more 

common than NirK (Abell et al., 2010; Jones and Hallin, 2010). This was supported by our 

study. With our metagenomic approach, we could exclude that the overrepresentation of nirS 

with regard to nirK results from a bias based on the available primers, which have been 

shown to fail to detect the nitrite reductases of a great proportion of cultivated denitrifiers 

(Heylen et al., 2006). Interestingly, the bin E (Pseudovibrio) not only contained a nirS gene 

but also a nirK gene. The presence of genes for both types of nitrite reductases within one 

organism is very rare (Jones and Hallin, 2010). Bin E (Pseudovibrio) contained a relatively 

large amount of unique sequence data in relatively small contigs and a high number of 

duplicated CSCGs (Table 1). Together, these observations suggested the presence of multiple 

subpopulations and that the different nitrite reductase genes might be present in different, 

closely related populations. The co-enrichment of two closely related subpopulations with 

different types of nitrite reductases is remarkable as bacteria carrying different Nir types have 

been suggested to occupy different ecological niches (Jones and Hallin, 2010). 

Interestingly, the applied selective pressure did not lead to the enrichment of one single 

dominant denitrifier but to the co-enrichment of different denitrifying microbes and their 

succession over time. With different independent methods, we showed that strong shifts in 

the community composition occurred while the overall performance of the culture was stable. 

A similar continuous cultivation experiment carried out in parallel (at the same time and with 

the same inoculum) showed similar ongoing dynamics over an even longer time scale (350 
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days): strong fluctuations in populations affiliated with Fusobacter, Clostridia and Vibrio 

and succession of populations affiliated with Pseudomonas, Arcobacter and Rhodobacter 

(Strous et al., 2012). This experiment was performed with a higher ratio of inflowing organic 

carbon to nitrate and nitrite, which suggests that the observed population dynamics are 

reproducible even when different conditions are applied. Furthermore, similar dynamics of a 

functional stable methanogenic community have been described by Fernández and colleagues 

(1999).  

In the present study, functional stability was demonstrated not only in the conversion of 

substrates, but also in the presence of different populations that possessed the same metabolic 

potential at all time points. Based on basic kinetic considerations, one could expect the 

constant build-up of the most successful population under the given conditions (Veldkamp 

and Jannasch, 1972). Once the fittest population established the highest cell density, it is hard 

to outcompete and we would expect the stabilization of one dominant population. Because in 

our experiments we supplied a variety of organic carbon substrates supporting different 

metabolisms, we potentially created multiple niches for several coexisting populations. 

Nevertheless, stability of the community composition would still be expected unless other 

processes controlling population abundance come into play (Waters et al., 2013).  

Complex mutualism such as cross feeding or antagonistic behaviour such as competition 

and production of toxins (Huisman and Weissing, 1999; Czárán et al., 2002; Dethlefsen et 

al., 2006; Cordero et al., 2012) are likely drivers of population dynamics. If the community 

structures observed at different time points were characterized by specific interactions 

between specific populations (e.g. obligate cross feeding of specific fermentation products), a 

change in the abundance of one population would have consequences for other interacting 

populations. Functional stability could then only be maintained if the community 

composition would change substantially, as observed in this experiment. In fact, chaotic 

behaviour of community composition has been hypothesized to be important for maintaining 

functional stability of complex food webs (Graham et al., 2007; Benincà et al., 2008). 

Finally, viruses could also be important drivers causing turnover of dominant populations 

according to the ‘killing the winner’ hypothesis (Rodriguez-Brito et al., 2010; Shapiro et al., 

2010). 

The strength of the applied selective force can influence the reproducibility of the final 

community (Pagaling et al., 2013). Thus, the nature of the selected metabolism could define 

the strength of dynamics that occur. For example, specialized aromatic hydrocarbon-
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degrading communities have been shown to produce stable communities (Massol-Deya et al., 

1997). Furthermore, already preadapted communities (communities originating from a 

habitat that better resembles the conditions in the continuous culture) may show a different 

community development compared with not adapted communities (Pagaling et al., 2013). 

Thus, we cannot exclude that different source communities might exhibit different dynamics. 

Multiple repetitions of continuous culture experiments with inocula from multiple sampling 

sites may help to identify such patterns.  

It appears that community composition was governed by niche-based selection as well 

as neutral processes. Niche-based species sorting led to the selection of denitrifying and 

fermenting populations, while it seems that neutral processes were responsible for the 

ongoing dynamics among these populations because stable ecosystem functioning throughout 

the experiment suggests that the changes in community composition can be regarded as 

neutral.  

Although the general trend in changes over time was consistent for metagenomic and 

CARD-FISH data, the different approaches sometimes yielded different estimates of 

community composition. Data obtained by ARISA also showed ongoing dynamics, but it 

was not possible to link the ARISA results to the other results because the intergenic spacer 

regions were not assembled properly. However, the results obtained by ARISA and FISH 

both suggested that some populations only increased in abundance with time whereas the 

metagenome suggested more complex population dynamics. This might be explained by a 

variable degree of micro-diversity leading to poor assembly for some samples (Albertsen et 

al., 2012). Furthermore, differences could be explained by different potential biases of the 

respective methods such as cell lysis and DNA extraction efficiency (Zhou et al., 1996) or 

cell permeabilization efficiency for different microbial populations (Amann and Fuchs, 

2008). For ARISA, different rRNA gene copy numbers and polymerase chain reaction (PCR) 

amplification biases may also lead to artefacts in populationabundance estimates (Crosby and 

Criddle, 2003).  

Among the fermenting organisms was a transiently enriched newly discovered archaeal 

population. We hypothesize a fermentative lifestyle based on the presence of genes for 

glycolysis, lactate dehydrogenase and the arginine deiminase pathway, and the absence of 

genes that could support respiration. This so far unknown archaeon falls into the newly 

proposed DPANN superphylum (Rinke et al., 2013). So far, this superphylum consisted of a 

few very distantly related extremophiles, which mostly have been recently discovered by 
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metagenomics or single-cell sequencing. Nanoarchaeum equitans is the only cultured 

member so far (Huber et al., 2002) and Archaeal Richmond Mine acidophilic nanoorganisms 

Archaea have been recently enriched (Ziegler et al., 2013). With its origin from coastal 

sediments of the North Sea, the archaeal population from this study is the only member of 

this superphylum that does not originate from an extreme habitat. After the addition of the 

enriched archaeon to a multi-protein tree, the monophyly of the DPANN superphylum was 

reproduced, even though different sets of CSCGs were used for the phylogenetic analysis 

(approximately 50% overlap). This finding supported the status of DPANN as a 

superphylum. The topology within the superphylum was not consistent with Rinke and 

colleagues (2013). This is probably due to the different selections of CSCG used for the 

analysis in combination with the very distant relationships between different members and 

the fact that only few representatives were available for the analysis. All the members of the 

DPANN superphylum so far are characterized by small genome size and this was proposed to 

be a defining trait for these Archaea (Baker et al., 2010; Narasingarao et al., 2012; Rinke et 

al., 2013). With an estimated genome size of 1.6 Mbp, our novel archaeum sets a new upper 

limit for this archaeal group. A split of polymerase subunit B has so far been assumed to have 

occurred only once in the archaeal domain, after the divergence of the Thermococcales 

(Brochier et al., 2004; Spang et al., 2010). The observed split RNA polymerase subunit B 

and the presence of topoisomerase type IIa subunit A and B show that members of the 

DPANN superphylum possess characteristics that have so far been believed to be exclusively 

euryarchaeal. A systematic study of the presence of such features in members of the DPANN 

superphylum in comparison with other archaeal phyla may give new insights into phylogeny 

and evolutionary history of Archaea. 

In conclusion, continuous cultivation allowed us to select for environmentally relevant 

denitrifying and fermentative populations, among them a novel member of the archaeal 

DPANN superphylum. The community was highly dynamic despite stable conditions, 

indicating that for functional stability; only the presence of the overall metabolic potential is 

important, independent of the microbial community composition.  
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4.5 Material and Methods 

 

Sediment collection 

Sediment was collected from the back barrier tidal flat Janssand (N53°44.151’ and 

E07°41.945’) located in the German Wadden Sea, in January 2011 at low tide. The upper 

two centimeters of the tidal flat were sampled with a flat trowel. 

 

Continuous cultivation 

The sediment was mixed vigorously in a ratio of 1:1 with red sea salt medium (33.4 g/l; 

Aquaristic.net). After the sediment grains had settled the overlying suspension was used as 

inoculum for the continuous culture. Cycloheximide (50 mg/l) was added to prevent 

eukaryotic growth and thus protect bacteria from being grazed. Continuous cultivation was 

performed in a 3 l glass vessel at controlled temperature (20±1°C). Electron donors and 

acceptors were separated in an acidic and an alkaline medium, which were pumped into the 

vessel at a ratio of 1:1 and a pump speed of 1.5 ml/min each (overall dilution rate 1.6 d-1). 

This dilution rate was chosen according to an estimate of the average growth rate of the 

microbial community of the sampling site based on codon usage bias in the sampling site's 

metagenome (Accession number: SRP015924; Marchant et al., submitted) according to 

Vieira-Silva and Rocha (2010).  

The pH of the two media were adjusted in such a way that the resulting pH was 8 ± 0.2 

in the culture. Substrate concentrations in the media were gradually increased. The final 

composition of the acidic medium (pH=2.2) was (g/l): Red Sea Salt (Aquaristic.net) 66.8, 

NaH2PO4.1H2O 0.276, glucose 0.870, acetate 0.204, glutamic acid 0.207, aspartic acid 0.254, 

alanine 0.166, serine 0.107, tyrosine 0.118, histidine 0.023, methionine 0.048 and trace 

element solution 0.5ml/l. The trace element solution contained (g/l): FeSO4.7H20 0.21, 

H3BO3 0.03, MnCl2.2H20 0.1, CoCl2.6H20 0.12, NiCl2.6H20 0.024, ZnCl2 0.07, 

Na2MoO4.2H20 0.036, CuSO4.5H2O 0.015. The alkaline medium (pH= 12.2±0.2) contained 

(g/l): NaNO2 2.76 and NaNO3 0.34. Medium pH was adjusted with HCl or NaOH. The liquid 

volume in the culture vessel was 2.8 l. The pH and oxidation/reduction potential were 

monitored by gel-filled electrodes with an Ag/AgCl reference system (Mettler-Toledo, 

Giessen, Germany). To maintain anaerobiosis the culture was continuously flushed with 

argon (purity >99,998 %, Air Liquide, Germany) at a flow rate of 10 ml/min dosed by a mass 

flow controller (Alicat Scientific, USA). The culture was mixed by pumping (1.2 l/min; 
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pump: Watson Marlow 620S, USA) gas from the headspace through a sintered glass 

membrane inserted into the bottom of the culture vessel, from where it bubbled through the 

culture. To prevent growth of photosynthetic organisms, the culture vessel was covered with 

a neoprene cover.  

 

Analytical procedures 

Nitrite, nitrate, ammonium and dissolved organic carbon concentrations and protein content 

in the enrichment culture as well as dinitrogen production were measured as described in the 

supplementary information. 

  

Catalyzed Reporter Deposition Fluorescence In Situ hybridization (CARD-FISH) 

CARD-FISH was performed as described in the supplementary information.  

 

Automated ribosomal intergenic spacer analysis (ARISA) 

DNA for ARISA was extracted using the protocol of Martin-Platero et al (2007). The 

quantity of DNA was set to 10 ng per PCR amplification (quantified by a ND-1000 

Nanodrop). The ARISA, including evaluation of the raw fingerprint profiles and binning into 

operational taxonomic units (OTUs), was performed as described by Ramette (2009). 

Primers (ITSF/ITSReub) are listed in supplementary table S4. 

 

Sequencing, assembly, binning and annotation 

DNA extraction and sequencing was performed as described in the supplementary 

information. Assembly was performed with MetaVelvet-v0.3 (supplementary table S2). 

Binning of assembled contigs was performed with the Metawatt binner according to Strous et 

al (2012). More detailed information about the assembly and binning and information about 

full length 16S rRNA reconstruction and phylogenetic analyses are described in the 

supplementary information.  

 

 

Data submission 

Illumina sequencing data sets were submitted to the Short Read Archive 

(http://www.ncbi.nlm.nih.gov/Traces/sra/), and the assembled contigs were submitted to the 

Whole Genome Shotgun Submission Portal (https://submit.ncbi.nlm.nih.gov/subs/wgs/). 
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Both reads and contigs are accessible under the BioProject PRJNA226580 and the 

BioSamples: SAMN02391470 / SRS498469 (day 6), SAMN02391471 / SRS498472 (day 

18), SAMN02391472 / SRS498471 (day 33), SAMN02391473 / SRS498488 (day 46). This 

Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the 

accessions AYRE00000000, AYRF00000000, AYRG00000000, AYRH00000000. The 

version described in this paper is version AYR(E-H)01000000.  
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4.7 Supporting Information 

 

Supplementary Methods 

 

Analytical procedures 

Nitrite and nitrate concentrations in the enrichment culture were measured daily with 

Quantofix test strips (0–80 mg/l NO2
–, 0-500 mg/l NO3

–; Merck, Germany). Every two to 

three days the concentrations of nitrite and ammonium in the culture liquid and the medium 

were measured colorimetrically: Nitrite was measured at 540 nm after a 20 min reaction of 1 

ml sample with 0.25 ml of 1% sulfanilic acid and 0.05 % N-naphthylethylenediamine in 2.2 

M H3PO4 (Van Eck, 1966). Ammonium was measured at 630 nm after a 1h reaction of 1 ml 

sample with 40 µl of 10% phenol in ethanol (95%), 40 µl of 0.5% sodium nitroprusside in 

water and 100 µl of 3% hypochlorite in an alkaline trisodium citrate solution (0.6 M) 

(Solorzano, 1969). Dinitrogen production was measured online with a GAM 400 mass 

spectrometer (In Process Instruments, Germany) supplied with gas from the headspace at a 

rate of 4 ml/min. For determination of the protein content, 0.5 ml of culture was centrifuged 

at 14000x g for 5 min. Biomass pellets were suspended in 1 ml 1 M NaOH and incubated at 

60°C for 45 min. After cooling, the protein content was determined colorimetrically at 750 

nm according to Lowry et al. (1951). The dissolved organic carbon concentration in the 

inflowing medium was obtained by measuring total organic carbon (TOC). The dissolved 

organic carbon (DOC) of the culture liquid was calculated from the chemical oxygen demand 

(COD). TOC and COD were measured with cuvette-tests (Hach Lange GmbH, Düsseldorf, 

Germany) using a Thermostat LT200 and a DR3900 photometer (Hach Lange GmbH, 

Düsseldorf, Germany). 

 

Catalyzed Reporter Deposition Fluorescence In Situ hybridization (CARD-FISH) 

Cells were fixed in 1 % formaldehyde overnight at 4°C and subsequently washed three times 

with PBS (pH 7.4). Cells were stored in a 1:1 PBS:ethanol mixture at -20°C. CARD-FISH 

was performed on 0.2 µm pore-sized polycarbonate filters followed by fluorescently labeled 

tyramide signal amplification as described by Pernthaler et al. (2002). Horseradish 

peroxidase labelled oligonucleotide probes used and hybridization conditions are listed in 

supplementary table S4. Filters were counter-stained with DAPI (4′,6-diamidino-2-
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phenylindole) and counted manually with an epifluorescence microscope (Axioplan 2, Carl 

Zeiss, Jena, Germany). Probe MDarch335 (Marine DPANN archaeon 335) was designed 

using ARB (Ludwig et al., 2004) and the SILVA 16S rRNA SSU Ref 115 and checked for 

specificity against the ARB-SILVA SSU Reference database (release 115) 

(http://www.arbsilva.de) using ‘TestProbe’. 

 

DNA extraction and Sequencing 

Samples of four different time points (day 6, 18, 33 and 46) with a volume of 14 ml were 

centrifuged for 20 min at 4700x g and pellets were stored at –80°C until further processing. 

DNA was extracted according to Zhou et al. (1996) after incubation for 30 min at 37°C with 

2.5 mg/ml lysozyme, 0.1mg/ml RNAse and 100U/ml mutanolysin. Barcoded Illumina 

TruSeq libraries were generated and sequencing was performed (together with 8 further 

libraries not part of the present study) on one flowcell lane of an Illumina Genome Analyzer 

GA IIx instrument, in a 2x150 cycles paired-end run. 

 

Assembly, binning and annotation 

Assembly was performed with MetaVelvet-v0.3 (supplementary table S1). After quality 

trimming (sliding window approach: window length 15 bp, within this window quality value 

of at least 99 %, minimal read length after trimming: 25 bp), between 9.7 and 23.4 Mb 

sequenced library were assembled. 

Binning of assembled contigs was performed with the Metawatt binner based on 

multivariate statistics of tetranucleotide frequencies combined with Interpolated Markov 

Models according to Strous et al. (2012). Briefly, 14 bins were created based on Interpolated 

Markov models trained with bins based on tetranucleotide composition. Per contig 

sequencing coverage was estimated by mapping the reads to the assembled contigs with 

bowtie2 (Langmead & Salzberg, 2012) and coverage and bin size were used to estimate the 

abundance of each binned population. Genome completeness was estimated for each bin as 

described by Campbell et al. (2013). The contigs of each bin were annotated separately with 

Prokka (http://vicbioinformatics.com), RAST (Aziz et al., 2008) and KAAS (Moriya et al., 

2007). The archaeal bin was additionally annotated using GenDB. Full length 16S rRNA 

gene sequences were obtained by searching the assembled contigs with a custom hidden 

Markov Model (Eddy, 2011) trained with representative 16S rRNA gene sequences from the 

SILVA database (Quast et al., 2013) and, independently, by iterative read mapping with 
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Emirge (Miller et al., 2011). Phylogenetic trees of 16S rRNA sequences were calculated by 

maximum likelihood (RAxML). Bootstrap values were generated from 100 replicates.  

 

Phylogenetic analysis 

For the archaeal ribosomal protein tree we used the alignment of 44 conserved single copy 

gene amino acid sequences of 171 completely finished archaeal genomes from Lloyd et al. 

(2012). The corresponding sets of sequences from our archaeal bin and 4 representatives of 

the DPANN superphylum were added to the alignment with MAFFT (Katoh et al., 2002). A 

30% positional conservatory filter was applied and a Maximum likelihood tree was 

calculated using RAxML-HPC2 (Stamatakis et al., 2008) with the JTT protein evolution 

model (Whelan and Goldman, 2001) as provided by the CIPRES cluster at the San Diego 

Supercomputing Center (http://www.phylo.org/; Miller et al., 2010) according to Lloyd et al. 

(2012). The Maximum likelihood tree for nirS and nirK amino acid sequences were 

calculated using RAxML with the JTT protein evolution mode.  
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Table S4.1 Assembly results of the four sequenced metagenomes. 

 

Sampling day day 6 day 18 day 33 day 46 

Number of reads (millions) 8.1 3.2 8.4 4.1 

Total sequence data in reads (Mb) 689 245 783 288 

Number of contigs (thousands) 10.0 123.0 6.5 54.0 

Total sequence data in contigs (Mb) 9.7 23.4 14.6 15.1 

Longest contig (kb) 82 13 143 11 

N50 contig length (kb) 2.8 0.2 9.6 0.3 

K-mer size for assembly 51 41 61 51 



 

 

 

 

 Table S4.2 Closest relatives (based on BLAST) to reconstructed 16S rRNA gene sequences.  

Bin Closest related sequence 
Accession 
code 

Isolation source 
Sequence 
Identity 
(%) 

A 
Uncultured euryarchaeote clone 
Methanobacterium sp. AL-21 

EU731037 
NR102889  

Hypersaline microbial mat 
 

90 
74 

B Arcobacter sp. MA5 AB542077 Gut of abalone 99 

C 
Uncultured bacterium 

Arcobacter sp. CpA_a5 
AJ853504 
FN397893 

Leachate of  municipal solid waste landfill 
Marine sub-surface mud volcano sediments 

99 
99 

D 
Arcobacter marinus strain CL-

S1 
EU512920 Marine 98 

E 
Pseudovibrio japonicus strain 

WSF2 
NR_04139

1 
Coastal seawater 99 

F Uncultured bacterium clone KC631560 Sediment of finfish aquaculture farm 100 

G Vibrio splendidus strain W676 JF836194 Marine sponge 100 

H Vibrio splendidus strain W676 JF836194 Marine sponge 100 

I Alteromonas sp. KT1114 AF235108 North Sea 98 

J Pseudomonas sp. C27 GQ241351 Wastewater 99 

K Fusobacteria bacterium Ko711 AF550592 Extinct smoker pipe, Iceland 99 

L Clostridia bacterium S710(0)-1 GU136592 Marine sediment 99 

M Uncultured bacterium clone HQ190478 Oil field 98 

 



 

 

 

 

Table S4.3 Squared Pearson product-moment correlation coefficients between bin coverages and 16S rRNA gene coverages over four samples.  
Rows: Bin coverages; Columns: 16S rRNA coverages. 

 

 

 

 

 

 

 

 

 

 

 

 

* Low correlation coefficients may be explained by misbinning,  
1#copies is an estimate for the 16S rRNA gene copy numbers based on the slope of the correlation. 

 

  #copies1 A B C D E F G H I J K L M 

A Archaeon 3.6 1.00 1.00 0.12 0.12 0.15 0.14 0.97 0.82 0.04 0.12 0.12 0.12 0.14 
B Arcobacter 14.3 1.00 1.00 0.09 0.09 0.16 0.14 0.94 0.78 0.06 0.09 0.09 0.09 0.14 
C Arcobacter 2.6 0.11 0.11 1.00 1.00 0.16 0.13 0.19 0.28 0.18 1.00 1.00 1.00 0.13 
D Arcobacter 3.8 0.10 0.10 1.00 1.00 0.17 0.13 0.17 0.26 0.18 1.00 1.00 1.00 0.13 
E Pseudovibrio 6.0 0.18 0.18 0.18 0.18 0.99 0.98 0.22 0.24 0.02 0.18 0.18 0.18 0.98 
F Rhodobacterales* 0.4 0.35 0.36 0.28 0.28 0.66 0.59 0.28 0.18 0.14 0.29 0.28 0.28 0.59 
G Vibrio 10.3 0.94 0.94 0.22 0.22 0.17 0.17 1.00 0.95 0.00 0.22 0.22 0.22 0.17 
H Vibrio 25.7 0.99 0.99 0.17 0.17 0.15 0.14 0.99 0.88 0.01 0.16 0.17 0.17 0.15 
I Psychromonas* 6.3 0.74 0.73 0.34 0.34 0.20 0.22 0.89 0.99 0.10 0.34 0.34 0.34 0.22 
J Pseudomonas 2.4 0.01 0.01 0.81 0.81 0.38 0.31 0.00 0.02 0.28 0.82 0.81 0.81 0.31 
K Fusobacter 5.1 0.11 0.11 1.00 1.00 0.16 0.13 0.19 0.28 0.18 1.00 1.00 1.00 0.13 
L Clostridiales 2.8 0.11 0.11 1.00 1.00 0.16 0.13 0.19 0.28 0.18 1.00 1.00 1.00 0.13 
M Bacteroidetes 1.3 0.31 0.31 0.04 0.04 0.95 0.95 0.39 0.44 0.06 0.04 0.04 0.04 0.95 
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Table S4.4 List of oligonucleotide probes and primers used 

Probe  Sequence (5′→3′) 
Target 
organisms 

FA1 
(%) 

E. coli 
position 

Ref 
erence 

EUB338 
 I2 

GCTGCCTCCCGTAGGAGT 
Most 
Bacteria 

35 
338–
355 

Amann et 

al, 1990 

EUB338 II2 GCAGCCACCCGTAGGTGT 
Plancto 

mycetales 
35 

338–
355 

Daims et 

al, 1999 

EUB338 III2 GCTGCCACCCGTAGGTGT 
Verrucomicr

obiales 
35 

338–
355 

Daims et 

al, 1999 

NON338 ACTCCTACGGGAGGCAGC Control 35 
338–
355 

Wallner 
et al, 
1993 

Alf968 GGTAAGGTTCTGCGCGTT 
Alphaproteo 

bacteria 
25 

968–
985 

Neef, 
1997 

Gam42a3,4 

(& com 
petitor) 

GCCTTCCCACATCGTTT 
Gammaprote

obacteria 
35 

1027–
1043 

Manz et 

al, 1992 

Epsy914 GGTCCCCGTCTATTCCTT 
Epsilonprote

obacteria 
30 

914–
931 

Loy, 2003 

GRb GTCAGTATCGAGCCAGTGAG 
Rhodobacter

Roseobacter 
25 

645–
664 

Eilers et 

al, 2000 

GV AGGCCACAACCTCCAAGTAG Vibrio 30 
841–
860 

Eilers et 

al, 2000 

ARC944 TGCGCCACTTAGCTGACA Arcobacter 25 
94– 
111 

Snaidr et 

al, 1997 

ARC14304 TTAGCATCCCCGCTTCGA Arcobacter 25 
1430–
1447 

Snaidr et 

al, 1997 

MDarch335 GCACCCCUUAGGGCUAGG 

Certain 
marine 
DPANN-
archaea 

45 
335–
353 

This 
study 

ITSF  GTCGTAACAAGGTAGCCGTA universal - 
1423–
1443 

Cardinale 
et al, 
2004 

ITSReub5  GCCAAGGCATCCACC Bacteria - 23–38 
Cardinale 
et al, 
2004 

 

1Formamide concentration in the CARD FISH hybridization buffer 

2Used in the mix of EUB I to III 

3Used with the unlabeled competitor BETA42a (GCCTTCCCACTTCGTTT) 
4Used in a mix 

5binds to 23S rRNA 
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Supplementary figure S4.1 Separation of contigs belonging to the most abundant populations in the 
samples of four different time points by combined tetranucleotide and interpolated Markov Model 
binning. Upper panel: The distribution of the contigs on a sequencing coverage versus GC plot 
shows clouds each corresponding to a different bin and population. The contigs of the different 
populations were clearly separated from each other except for bin G and H, two Vibrionales 
subpopulations, and bin I, as well as bin D and K. They only show a small difference in GC content. 
The two separate clouds differing in coverage for bin E at day 46 may result from different 
subpopulations. The squares indicate the contigs, that encode the nitrite reductases of bin E (blue: 
nirS; red: nirK). Lower panel: The pie charts show the taxonomic distribution of blast hits of 
fragmented contigs to reference genomes. The distance of each slice from the center of the pie is a 
measure for the median e-value of the associated hits (larger e-value correspond to larger distances 
from the center).The low number, relatively high e-values and scattering of blast hits obtained for bin 
A (Archaeon) is caused by the distant relationship of the bin to any available reference. 
 
Supplementary figure S4.1 is continued on the next page 
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5.1 Summary 

In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an 

electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed 

nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is 

directly reusable by primary producers. We combined multiple parallel long-term incubations of 

marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel 

how specific environmental conditions select for either process. Microbial generation time, supply 

of nitrite relative to nitrate, and the carbon/nitrogen ratio were identified as key environmental 

controls that determine whether nitrite will be reduced to nitrogenous gas or ammonium. Our 

results define the microbial ecophysiology of a biogeochemical feedback loop that is key to global 

change, eutrophication, and wastewater treatment. 

 

5.2 Main text 

Currently, most fixed nitrogen in the biosphere originates from anthropogenic sources such as the 

industrial production of fertilizer ammonium. Uptake of fertilizer by crops is only 17% efficient, 

and 1 to 5% of fertilizer ammonium is converted biologically into nitrous oxide, a long-lived and 

powerful greenhouse gas (1). Microbial nitrification also converts a large portion of the fertilizer 

ammonium to nitrate in soil, where it subsequently runs off into surface waters and contributes to 

eutrophication in coastal zones. Nitrate emissions are partially remediated by denitrification in 

engineered environments such as wastewater treatment plants. If the end product of microbial 

nitrate reduction could be influenced by tuning environmental conditions, this would yield 

substantial ecological and economic benefits for both natural and engineered systems. 

Two microbial processes compete for nitrate as an electron acceptor: denitrification 

(including anammox) and ammonification (including dissimilatory nitrate reduction to 

ammonium). The carbon/nitrogen ratio (2–5), pH (5), nitrite versus nitrate concentration (5–7), 

soil sand content (5), availability of fermentable carbon compounds (4, 8), temperature (7, 9), and 

sulfide concentration (10–12) are potentially important environmental controls on this 

competition. The lack of consensus regarding which factors are most important, and in which 

environments, is likely due to the complex and highly variable structure of natural microbial 

communities. 

To unravel the selective forces behind the ecological success of denitrification or 

ammonification, we subjected natural communities to specific environmental conditions in 
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multiple parallel long-term incubations (13). The source community was from coastal, sandy tidal 

flat sediments that make substantial contributions to global denitrification and perform both 

denitrification and ammonification (12, 14). We did not aim to reproduce the sediment community 

in the laboratory; we simply used the sediment as a highly microbially diverse inoculum to enable 

the selection of optimally adapted nitrate-reducing communities. We performed 15 parallel anoxic 

incubations (figure 5.1 and table S5.1) with continuous substrate supply, which made it possible to 

maintain the nitrate and/or nitrite concentrations in the in situ micromolar range (<0.5 mM for 

nitrite, <10 mM for nitrate). 

Denitrification and ammonification have two electron acceptors in common: nitrate and 

nitrite. In theory, the outcome of the competition could be most easily explained by which of these 

two compounds is supplied. In natural ecosystems, the relative supply of nitrate and nitrite is 

controlled by nitrification, a two-step process that can yield either compound as the end product. 

In our experiments with nitrate as the terminal electron acceptor, ammonification emerged as the 

prevalent pathway, whereas supply of nitrite resulted in denitrification prevalence (figure 5.1). 

Denitrification was always observed as the prevalent respiratory pathway when nitrite was 

supplied, even in the presence of fermentable substrates and sulfide, at low pH or at a reduced 

copper concentration. Thus, the supply of nitrite or nitrate was a key factor in the outcome of the 

competition between denitrification and ammonification. If elevated sulfide concentrations or 

changes in pH decrease the rate of nitrite production relative to the rate of nitrate production (15, 

16), this would therefore favor ammonification over denitrification, as was observed in some 

previous studies (5, 12). 

We further investigated the apparent success of ammonification with nitrate as the electron 

acceptor in a 400-day chemostat incubation. In a chemostat, the growth rate (or generation time) 

of the cultivated bacteria is controlled by the applied dilution rate, enabling us to test whether this 

factor affected the outcome of the competition in any way. The average in situ generation time of 

the sampled community was estimated at ~0.4 days, a value derived from a metagenome of the 

tidal flat community (17). During the 400-day incubation, the generation time was varied between 

1.0 and 3.4 days and the nitrite and nitrate concentrations always remained in the low micromolar 

range (<0.5 mM for nitrite, <10 mM for nitrate). The generation time strongly affected the 

outcome of the competition for nitrate (figure 5.2). 
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Figure 5.1
incubations (except one) received nitrite as the main electron acceptor and exhibited denitrification. Only a 
single incubation (green circles, exhibited denitrifica
panel) received nitrate and exhibited ammonification. For medium composition, see table S1. Shaded areas 
indicate the composition of nitrogen compounds in the inflowing medium (bronze denotes nitrate
apricot denotes organic nitrogen from the amino acids provided as organic carbon substrates). Circles 
indicate the percentage of supplied nitrogen converted to ammonium. If the amount of ammonium 
produced did not exceed the amount of organic n
degradation of organic nitrogen supplied in the medium. This was confirmed by the detection of nitrogen 
(N2) as the main product. Nitrite and nitrate concentrations were <0.5 mM and <10 mM, respectively 
(except in the “feast and famine” incubations) and electron donors were always present in a slight excess. 
SD (n = 3) values did not exceed symbol diameters.
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was further increased to 3.4 days after day 240. To determine the mechanisms responsible for the 

observed selective effect of microbial generation time, we characterized the selected communities 

with metagenomic sequencing at different time points (figure 5.2). Metagenomic reads were 

assembled into contigs, which were binned as described (18). We obtained 11 different bins, each 

bin constituting a provisional whole-genome sequence of a single population (figure. S5.1 and 

table S5.2). Each bin could also be linked to a full-length 16S ribosomal RNA gene (figure S5.2); 

together the bins accounted for 85% of all sequenced reads in all samples. Population abundances 

estimated from transcriptomes, proteomes, and catalyzed reporter deposition–fluorescence in situ 

hybridization (CARD-FISH) cell counts agreed well with the estimates based on the sequencing 

coverage of the bins (figure S5.3 and table S5.2). The metabolic interactions of the different 

populations can be inferred from the metagenomic, transcriptomic, and proteomic data (figure 5.3 

and table S5.3).  

The results suggested that denitrification was mainly performed by a population affiliated to 

Rhodobacteraceae (bin J) on or around day 54, and by a population related to Arcobacter (bin F) 

on or around day 189. Ammonification appeared to be mainly performed by a population related 

to Desulfuromusa (bin D) on or around day 152, and by a population related to Denitrovibrio (bin 

A) on or around day 336. The Desulfuromusa population showed high transcriptional activity of 

the nrfAH operon (encoding the pentaheme cytochrome c nitrite reductase complex that facilitates 

respiratory nitrite reduction to ammonium), whereas these genes were not detected for the 

Denitrovibrio population (table S5.14). Instead, this function was presumably performed by a 

transcriptionally highly active octaheme cytochrome c protein [OCC (19)]. The protein 

(contig00200_04753) clustered together with related proteins from Deferribacterales within a 

group of sequences from bacteria that thrive in anoxic habitats, several of which are capable of 

performing nitrite reductionto ammonium (figure S5.4). Elevated gene transcripts in the 

transcriptomic and metaproteomic data suggest that both the denitrifiers and the ammonifiers 

reduced nitrate to nitrite with a periplasmic nitrate reductase (NapAB) (table S5.14). 

Proteomics and transcriptomic analyses suggested that at all time points sampled, specialized 

populations fermented sugars and amino acids, as shown by the presence and activity of genes 

involved in mixed acid fermentation and sugar and amino acid transport in bins affiliating with 

different Clostridiales (bins B, C, and E) and Spirochaetales (bin G) species (figure 5.3 and table 

S5.3). All these populations were active in both the denitrifying and ammonifying stages of the 
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Electron acceptor Electron donor Denitrification 

(nmol min
-1

 mg protein
-1

) 

Ammonification 

(nmol min
-1

 mg protein
-1

) 

Nitrate Organic Carbon 61±5 48±1 

Nitrate Sulfide 76 ±5 65 ±1 

Nitrite Organic Carbon 54±5 26±1 

Nitrite Sulfide 36±1 30±1 

Nitrite Acetate 25±5 24±2 

Nitrite Acetate + Sulfide 71±3 33±2 

Ea (nitrate, kJ/mol)  23 28 

Ea (nitrite, kJ/mol)  (n.d.) 34 

Q10 (nitrate)  1.4 1.5 

Q10 (nitrite)  (n.d.) 1.6 

 
Table 5.1 Potential rates for nitrate and nitrite reduction coupled to the oxidation of different electron 
donors, and apparent activation energies Ea and Q10 coefficients for denitrification and ammonification. 
n.d., not determined 
 
 

Transcriptomics and proteomics together revealed that the metabolic interactions between the 

populations were stable and essentially independent of generation time (figure 5.3). Denitrifiers 

and ammonifiers competed for the same substrates and used the same enzyme for nitrate reduction 

(NapAB) and therefore should have similar affinities for nitrate. This means that the observed 

selective force of microbial generation time most likely acted on a slight difference in substrate 

affinity for nitrite, the branching point of the two pathways. Even though specific enzyme 

affinities have been determined for isolated nitrite reductases, their in vivo affinities are unknown. 

Apparent substrate affinities are directly proportional to potential rates, and we observed large 

differences between the potential rates of nitrite reduction of the two pathways, especially when 

multiple electron donors were provided (table 5.1). For ammonification, the rates were lower than 

for denitrification, even leading to the transient accumulation of nitrite during ammonification of 

nitrate, which was not observed during denitrification (figure S5.6). Lower rates with multiple 

electron donors might be explained by a bottleneck in electron supply to the nitrite reductases of 

ammonification. These require six electrons per nitrite, versus only a single electron for 

denitrification. 

In all experiments reported so far, nitrate or nitrite were in limited supply in the presence of a 

slight excess of carbon substrates. According to previous studies (2–5), carbon limitation in the 

presence of excess nitrate should favor denitrification. To investigate this idea in the present 

experimental context, we performed a continuous culture incubation under carbon limitation with 
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excess nitrate. A shorter generation time and a supply of nitrite instead of nitrate were tested in 

two parallel control experiments. In all three cases, denitrification became the prevalent pathway 

(figure S5.7), confirming the importance of carbon/ nitrogen ratio in addition to generation time 

and supply of nitrite relative to nitrate. Finally, we investigated the potential effect of temperature 

on the competition by determining the apparent activation energy (Ea) and the Q10 temperature 

coefficient for both processes (table 5.1 and figure S5.8). The calculated coefficients were not 

significantly different (F2,18 = 1.93, P = 0.174); thus, we were not able to reproduce a previously 

observed effect of temperature on the competition between two bacterial isolates (9). 

Generation time, nitrate versus nitrite supply, and carbon/nitrogen ratio completely and 

reproducibly explained the fate of nitrate in 21 experimental trials with a microbial community 

sampled from a marine tidal flat. For these factors to hold such strong selective pressure, it is 

conceivable that the conditions favored the selected populations for reasons that are unrelated to 

nitrate respiration and cannot be extrapolated to other habitats. However, the combined results 

show that denitrifying and ammonifying populations were competing for the same electron donors 

(mainly organic acids, formate, hydrogen, and sulfide; figure 5.3) provided by the same 

fermentative populations. Further, selective pressure of pH, copper, presence of sulfide, supply of 

fermentation products, natural seawater and temperature could be ruled out on the basis of 

independent experiments (figure 5.1 and figure S5.8). Instead, the results suggest that the selective 

force acted directly on the nitrite reductases. A slightly higher apparent affinity for nitrite of the 

cytochrome cd1 nitrite reductases of denitrification would explain the observed higher fitness of 

denitrification with nitrite as the electron acceptor and at shorter generation times. With nitrate, 

when the generation time is short, NrfA/OCC cannot keep up with the nitrate reductase (figure 

S5.6) and denitrification prevails. At longer generation times, NrfA/OCC keeps up kinetically, its 

stoichiometric advantage with excess electrons (2) pays off, and ammonification outcompetes 

denitrification. 
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5.4.1 Materials and Methods 
 

Sediment collection 

Sediment was collected from the back barrier tidal flat Janssand (N53°44’151 and E07°41’945) 

located in the German Wadden Sea, in January, August and November 2011 at low tide. The 

upper two centimeters of the tidal flat were sampled with a flat trowel. 

 

Continuous culture incubations 

The sediment was mixed vigorously with Red Sea salt medium (33.4 g/l; Aquaristic.net) at a ratio 

of 1:1. After the sediment grains had settled, the overlying suspension was used as inoculum for 

the continuous culture incubations. Cycloheximide (80 mg/l) was added to prevent growth of 

eukaryotes and thus grazing of bacteria. For the 15 parallel incubations, 400 ml of inoculum was 

transferred into 500 ml glass bottles closed with a lid with three gas tight connections, one for the 

supply of fresh medium, one for the removal of gas and spent medium (including bacteria) and 

one for the supply of Argon gas. The incubations were mixed with a magnetic stirrer. The pH was 
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monitored either by gel-filled electrodes with an Ag/AgCl reference system (Mettler-Toledo, 

Giessen, Germany) or by taking daily samples and measuring with an external pH meter. Medium 

was supplied continuously, drop by drop, with a peristaltic pump via one of the gas tight 

connections. To prevent contamination of the fresh medium by bacteria from the culture, the 

connection was shielded with a 10 ml static gas reservoir. Argon was bubbled through the 

continuous culture at a flow rate of 3 ml/min. The spent medium (including bacteria) was 

continuously removed by passive overflow. The filter-sterilized (0.2 µm, Sartopore MidiCaps, 

Satorius, Göttingen, Germany) medium was buffered with 15 mM HEPES at a pH of 8.0. After 

inoculation, during the first days of the incubations, the concentrations of the electron donor and 

acceptor in the inflowing medium were gradually increased, while keeping the ratios constant, to 

prevent high substrate concentrations in the cultures during adaptation of the inoculated bacteria to 

the culture conditions. After 2-5 days, these concentrations were kept constant for the remainder of 

the incubations. Table S1 specifies the substrate supply and dilution rates for all incubations. The 

organic carbon mixture added to the influent medium was made up in such a way that it 

represented the monomer composition of decaying biomass, the main source of carbon and energy 

in the sediment. It contained (% carbon): glucose 44.1, acetate 7.6, glutamic acid 10.7, aspartic 

acid 11.7, alanine 8.5, serine 4.6, tyrosine 8.9, histidine 1.4, methionine 2.4. The trace element 

solution contained (g/l): FeSO4.7H20 (0.21), H3BO3 (0.03), MnCl2.2H20 (0.1), CoCl2.6H20 (0.12), 

NiCl2.6H20 (0.024), ZnCl2 (0.07), Na2MoO4.2H20 (0.036), CuSO4.5H2O (0.015). 0.5ml of trace 

element solution was added to one liter of fresh medium. Incubations with natural seawater and no 

copper in the added trace element solution were carried out as well to ensure that our standard 

incubation conditions were not selective for pathways dependent on copper enzymes. For 

example, higher copper availability compared to in situ conditions could favor the synthesis of 

copper-containing enzymes such as NirK (associated with denitrification). 

For the 400-day continuous culture incubation, the 400-ml incubation receiving nitrate was 

transferred into a 3 l vessel and all substrate concentrations in the inflowing medium were 

doubled. In this experiment electron donors and acceptors were provided separately in an acidic 

and an alkaline medium, respectively, which were pumped into the vessel at a ratio of 1:1. This 

was done to prevent artefacts resulting from the dropwise addition of the medium that might 

otherwise lead to a transient localized competitive advantage of R-strategists. The pH values of the 

two media were adjusted in such a way that the resulting pH in the incubation vessel was 8±0.2. 

The composition of the acidic medium (pH= 2.0±0.2) was: Red Sea salt, Aquaristic.net (66.8 g/l), 

NaH2PO4.1H2O (0.5 mM), organic carbon mixture (see above and table S1), trace element 
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solution (0.5 ml/l). The alkaline medium (pH= 12.2±0.2) contained 20 mM NaNO3. The medium 

pH was adjusted with HCl or NaOH. The liquid volume of the culture was 2.8 l and the inflowing 

medium was supplied dropwise to the culture with peristaltic pumps to keep the substrate 

concentrations in the micromolar range. The culture was mixed vigorously by recycling gas from 

the headspace above the culture to the bottom via a sintered glass filter. Spent culture medium 

including bacteria was continuously removed to keep the liquid volume constant at 2.8 l. Argon 

gas was supplied continuously (10 ml/min) to maintain anoxic conditions. The dilution rate 

(proportional to the inverse of the bacterial generation time) was altered at different time points 

during the experiment by changing the rate at which fresh medium was supplied and spent 

medium was removed (yielding generation times between 1.0 and 3.4 days, see figure 2). 

After 352 and 365 days, bacteria from this long-term incubation were transferred to three 

further continuous culture incubations in three independent transfers. In the first transfer (after 352 

days), the change in generation time was reproduced. After the second transfer (after 365 days), 

the ratio of electron donor and acceptor was altered so that organic carbon became limiting and 

after the third transfer (after 365 days), nitrite instead of nitrate was supplied as electron acceptor 

(table S1). 

 

Analytical procedures 

Nitrite, nitrate and ammonium concentrations were measured as previously described (18). For 

measurement of nitrogen (N2) gas production rates, the alkaline medium was replaced with an alkaline 

medium that contained 15 N-nitrate for several hours and production of 30N2 was measured online with 

a GAM 400 mass spectrometer (In Process Instruments, Germany) supplied with gas from the 

headspace at a rate of 4 ml/min. The dissolved organic carbon concentration (DOC) was determined by 

measuring the chemical oxygen demand (COD) with cuvette-tests (Hach Lange GmbH, Düsseldorf, 

Germany) using a Thermostat LT200 and a DR3900 photometer (Hach Lange GmbH, Düsseldorf, 

Germany). 

For measurements of sulfide concentrations liquid samples were fixed with zink acetate (5 % 

w/v) and sulfide was determined as follows: 900µl of fixed sample were mixed simultaneously with 

100 µL of a dimethylparafenyldiamine (oxalate salt) solution (0.2 % in 20% H2SO4) and 6 µl of a 

Fe(NH4)(SO4)2.12H2O solution (10% in 2% H2SO4). After 20 min of incubation, the absorbance was 

measured at 660 nm. 

Elemental sulfur was analyzed by centrifuging 2 ml of cultureat 15,000 x g for 5 min and 

extracting the pellet with 1 ml acetone. Cyanolysis was carried out by adding 0.1 ml KCN solution 
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(0.125 M). The amount of thiocyanate produced was immediately determined colorimetrically at 

460 nm after the addition of 0.1 ml ferric nitrate solution (10% Fe(NO3)3.9H2O in 13% HNO3). 

 

 

Batch incubations 

The importance of different electron donors (sulfide, acetate, acetate plus sulfide; carbon mixture, 

each identical to the one used in the long-term incubations) for nitrate or nitrite reduction during 

denitrification and ammonification were determined in 120 ml serum bottles with gas tight rubber 

stoppers. The bottles were flushed with Argon (purity >99,998%, 5 cycles of flushing and 

evacuating) and filled with 40 ml of anoxic medium (Red Sea salt, 15 mM HEPES, phosphate and 

trace elements as in the medium of the long-term incubations,). The bacterial community was 

harvested from the continuous incubations, concentrated by centrifugation, washed and added to 

the incubation bottles as follows: 30 ml bacterial suspension was centrifuged at 4700 x g for 20 

min, the supernatant was replaced by 20 ml of anoxic medium and then added to the incubation 

bottles. Energy and carbon substrates as well as nitrate or nitrite were added to a final 

concentration of 1 mM each. During batch incubations, bottle contents were regularly mixed by 

manual shaking. Rates of nitrate and nitrite reduction were analyzed colorimetrically measuring 

the changes in reactant (nitrate and nitrite) and product (ammonium) concentrations. For 

incubations with sulfide, a negative control experiment (sterile medium with substrates) was 

performed to exclude chemical reactions between sulfide and nitrite or nitrate. 

Batch incubations at different temperatures (10, 15, 20, 25 and 30°C) were carried out with 

nitrate and for ammonification also with nitrite as the electron acceptor as already described 

except for the following modifications: glass bottles with a volume of 60 ml were prefilled with 20 

ml of medium containing the organic carbon mixture and 20 ml of bacterial suspension harvested 

from the culture was washed and added to the bottles without prior concentration. An overpressure 

was applied to the headspace (2 bar, Argon). The production of nitrogen gas was measured by 

analyzing the conversion of 15N-nitrate or 15N-nitrite to 30N2 using mass spectrometry as 

described. The activation energies for the ammonification and denitrification pathways were 

obtained by plotting the rate of the respective processes at logarithmic scale against the reciprocal 

of the incubation temperatures. Regression lines were compared by analysis of covariance 

(ANCOVA). Statistical significance was accepted at P < 0.05. 
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Sulfate reduction rates 

The incubation set up consisted of a 100-ml glass bottle filled with 50 ml of the nitrate reducing 

long-term incubation with added HEPES (15 mM final concentration) and argon in the headspace. 

Anoxic medium identical to the medium of the long-term incubation (35 mM organic carbon 

mixture and 10 mM nitrate) was supplied through a needle that pierced the rubber stopper of the 

glass bottle with a peristaltic pump at 3.6 µl/min (=generation time of 3.4 days) for the incubation 

at the ammonifying stage and 20 µl/min (=generation time of 1.3 days) at the denitrifying stage of 

the long term incubation. Sulfate reduction rates were determined by measuring the conversion of 
35SO4

2- to reduced 35S compounds. 2.5 MBq of 35SO4
2- was added to the bottle at the beginning of 

the incubation. For the denitrifying stage, 100 µM of unlabelled sulfide was added to ensure the 

trapping of produced 35S2- in the unlabeled total reduced sulfur pool. Sulfate reducing activity was 

stopped by fixing 1 ml of sample in 4 ml of 5% ZnCl2. The produced total inorganic 35S 

compounds were quantified according to (23). 

 

Catalyzed Reporter Deposition Fluorescence in situ hybridization (CARD-

FISH) 

Cells were fixed in 1% formaldehyde over night at 4°C and subsequently washed three times with 

phosphate buffered saline (PBS, pH 7.4). Fixed cells were stored in a 1:1 PBS:ethanol mixture at -

20°C. CARD-FISH was performed on 0.2 µm pore-sized polycarbonate filters followed by 

fluorescently labeled tyramide signal amplification as reported (1). Horseradish peroxidase labeled 

oligonucleotide probes used and hybridization conditions are listed in Table S4.. Filters were 

counter-stained with DAPI (4′,6-diamidino-2-phenylindole) and counted manually with an 

epifluorescence microscope (Axioplan 2, Carl Zeiss, Jena, Germany). 

 

 

 

DNA extraction and DNA library generation, Ion Torrent Personal Genome 

Machine sequencing and assembly 

Samples at four different time points (day 54, 152, 189, 336) during the nitrate-reducing 

incubation and one time point for each of the transfers with a change in generation time (day 52) 

and with supply of nitrite instead of nitrate (day 38) with a volume of 14 ml were centrifuged for 
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20 min at 4,700 x g and pellets were stored at -80°C until further processing. DNA was extracted 

as previously described (18, 24). 

For metagenome shotgun sequencing, 2.5 µg of the extracted DNA per sample were 

mechanically fragmentend using Nebulizers (Roche) with 32 psi applied for 6 min, in 500µl 

nebulization buffer (Roche). The fragmented DNA was purified using MinElute PCR purification 

columns (Qiagen) and eluted in 50µl low TE (Life Technologies). The entire eluate was used for 

the preparation of barcoded PGM sequencing libraries with the Ion XpressTM Plus gDNA 

Fragment Library Preparation kit (manual Pub. No 4471989, Rev. M, May 2013; Life 

Technologies). Library insert sizes were approximately 200 bp. Libraries were sequenced with the 

Personal Genome Sequencer (PGM) on 318 Chips (pooled with other samples), using the 

chemistry for 200 bp libraries. Base calling was performed with the Torrent Suite v3.2 software, 

with default settings. Reads of the four sequenced DNA samples I-IV were assembled in one 

combined assembly with the Newbler assembler (v. 2.6) with default settings for genomic DNA 

assembly for non-paired reads. The samples V and VI were assembled separately. The reads were 

submitted to the assembly in sff format from the Torrent Suite output, for the V and VI assemblies 

reads were submitted as fastq files. Sequence data were submitted to the short read archive ( 

http://trace.ncbi.nlm.nih.gov/Traces/sra/ ), and assembled contigs were submitted as whole 

genome shotgun sequencing projects at DDBJ/EMBL/GenBank, under bioproject identifier 

PRJNA231836 (http://www.ncbi.nlm.nih.gov/bioproject/231836). 

 

 

In silico procedures for metagenomics 

Binning and annotation of assembled contigs was performed with the Metawatt binner according 

to ( 18). Full length 16S rRNA gene sequences were obtained as previously described (18). 16S 

rRNA gene sequences cannot be binned with high confidence based on tetranucleotide frequencies 

because of the atypical base composition of these genes. For this reason, the 16S rRNA gene 

sequences were linked to bins based on phylogeny (consistent phylogeny between the 16S rRNA 

gene and the phylogenetic signature of the sequence data of each bin; see table S2, Figure. S1), 

and high squared Pearson product-moment correlation coefficients between bin sequencing 

coverage and 16S rRNA gene sequencing coverage for the four samples (table S5). 

Phylogenetic analysis of the 16S rRNA gene sequences was carried out with the ARB 

software package ( 25) using the SILVA 16S rRNA SSU Reference database, release 115. A 

phylogenetic tree was constructed by the maximum-likelihood method (RAxML, JTT substitution 
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matrix) (26). Bootstrap values were generated from 100 replicates. The average growth rate of the 

microbial community of the sampling site (18) was estimated based on codon usage bias in the 

sampling site's metagenome according to Viera and Rocha (17). 

 

 

RNA extraction, cDNA library generation and Ion Torrent Personal Genome 

Machine sequencing 

For transcriptome analysis, 2 ml of sample were pelleted and the pellets were stored in RNA later 

solution at -20°C. Total RNA was extracted from pellets as follows: The pellet was re-suspended 

in 1 ml of TRI Reagent® solution (Applied Biosystems). The suspension was transferred to a bead 

beater tube containing 0.25 ml sterile glass beads (0.1 mm diameter) for bead beating at 6.5 m/s 

for 45 sec. After incubation at room temperature (RT), the tube was centrifuged for 5 min at 

12,000 x g and 4 °C, and the supernatant was transferred to a fresh tube. 200 µl of chloroform was 

added followed by vigorous shaking by hand for 15 sec, incubation at RT for 10 min, and 

centrifugation at 12,000 x g and 4 °C for 15 min. The upper phase was transferred to a fresh tube, 

500 µl of ice-cold isopropanol was added and the tube was inverted several times, followed by 

incubation on ice for at least 30 min for RNA precipitation. After centrifugation at 20,000 x g and 

4 °C for 25 min, the pellet was washed with 1 ml ice-cold ethanol three times (10 min 

centrifugation at 20,000 x g, 4 °C, between washing steps) and air dried at RT for approximately 

10 min. The pellet was re-suspended in sterile TE buffer (pH 8.0) and incubated on ice for 

approximately 30 min for complete dissolving. The extracted RNA was treated with DNase 

(Promega) and purified using RNeasy MinElute spin columns (Qiagen). 

Prior to library preparation for ion torrent sequencing, rRNA was depleted from 5 µg total 

purified RNA of each sample using the Ribo-Zero™ rRNA Removal Kit (Bacteria) (epicentre). 

The rRNA-depleted sample was then used for library preparation with the Ion total RNA-Seq 

Kit v2 (Life Technologies) following the protocol for whole transcriptome library preparation. 

Generated cDNA libraries were sequenced with the Personal Genome Sequencer (PGM) on 

314 and 318 Chips (pooled with other samples), using the chemistry for 200-bp libraries. Base 

calling was performed with the Torrent Suite v3.2 (R-Fast und R-NO2: v3.6) software, with 

default settings. Gene transcriptional activities were normalized for length for each bin. This way 

in table S14 a value of 1.0 corresponds to the length-normalized average transcriptional activity 

for the bin. To calculate the activities in Table S3, the average transcriptional activities (n=5) and 

average peptide coverages for the translated proteins (n=6) were averaged for the complete 
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pathway or enzyme complex and normalized to 100% for the pathways and enzyme complexes 

investigated. Because the assembled contigs contained many sequence frameshifts that were 

presumably caused by artifacts related to homopolymers, a known issue of the applied sequencing 

technology (Ion Torrent), the analysis presented here is based on the presence/absence of multiple 

genes that form complete pathways or enzyme complexes and also the abundance of the 

transcripts/detection of peptides were integrated for the complete pathway or enzyme complex. 

 

 

Phylogenetic analysis of multiheme cytochrome c protein sequences 

Sequence-related pentaheme and octaheme (OCC) cytochrome c protein sequences, retrieved from 

public databases and embargo genome projects with BLAST, were aligned using MUSCLE 

provided at the EMBL-EBI webserver (http://www.ebi.ac.uk/Tools/msa/muscle/). These 

alignments were manually refined by comparison with previously published results from 

phylogenetic analyses including structural and protein sequence-analytical features (27,28); N- 

and C-terminally extending sequences beyond the first and last heme-binding motif (CxxCH), 

respectively, were trimmed and the final alignment was subjected to a Bayesian inference of 

phylogeny using the BEAST package (v1.7.5 of BEAUti, BEAST and TreeAnnotator; FigTree 

v.1.4; 29). By utilizing unique sites, tree likelihoods (ignoring ambiguities) were determined for 

the alignment by creating a Monte-Carlo Markov Chain (10,000,000 generations) in three 

independent runs. The searches were conducted assuming an equal distribution of rates across 

sites, sampling every 1000th generation and using the WAG empirical amino acid substitution 

model (30). The resulting 10,000 trees (omitting the first 350 trees as burn-in) were used to 

construct a phylogenetic consensus tree (Fig. S4) that was used as the basis to discuss the 

ammonification-relevant multiheme cytochrome c proteins in context with their evolution as 

defined in (27,28). 

 

 

Proteomics Sample Preparation 

Proteomics measurements were carried out from aliquots taken out at three time points during the 

incubation period: day 189 (BK1), day 207 (BK2) and day 336 (BK3) of the nitrate reducing 

incubation. Based on the protein estimation results from cultures, an aliquot corresponding to 300 

µg total protein was used for proteomics sample preparation via the Filter-aided Sample Prep 

method (FASP) as previously described (18). Briefly, to 82 µl of sample in an Eppendorf tube, 30 
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µl of HPLC grade water, 30 µl of 10 % SDS, and 8 µl of 1 M DTT were added. The tube was then 

boiled at 95 °C for 10 min. The sample was cooled to room temperature, and the crude lysate was 

put on top of a 30 kDa molecular-weight cut-off (MWCO) filter provided with FASP Kits 

(Expedeon Inc., San Diego, CA, USA). The kits were operated in the standard manner specified 

for handling GELFrEE fractions. Briefly, the lysed sample was first washed with 200 µl of 8 M 

urea in 100 mM Tris-HCl (pH 8.5) at 14 000 x g for 25 min. The step was repeated twice. 

Following urea washes, the proteins were alkylated with IAA treatment by incubation in dark for 

30 min. Then, the sample was washed three times with 100 µl of 50 mM ammonium bicarbonate 

solution by centrifuging at 14 000 x g for 10 min. Protein digestion was carried out first for 4 h at 

37 °C using trypsin (Promega) in 1:20 protease to protein ratio. A second aliquot of trypsin was 

added following first 4 hours and the sample was incubated at 37 °C for an overnight digestion. 

Peptides were then collected in a fresh tube after washing the filter with two washes of 50 mM 

ammonium bicarbonate and a final addition of 0.5 M NaCl and spinning at 14 000 x g. The pH of 

resulting peptides solution was adjusted to < 3 by addition of formic acid. 

 

Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 

Approximately 25 µg of peptides were pressure-loaded onto an integrated, self-packed 3 cm 

Reverse Phase (RP) resin (Aqua, 300 Å pore size, Phenomenex, Torrance, CA, USA) and 3 cm 

Strong Cation Exchange (SCX) resin in a 150 µm inner diameter fused silica back column. The 

peptides were desalted on the column by washing from solvent A (95 % HPLC H2O, 5 % AcN, 

0.1 % Formic acid) to solvent B (30 % HPLC H2O, 70 % AcN, 0.1 % Formic acid) 3 times over a 

period of 25 min. The desalted back column was connected to a 15 cm-long 100 µm-I.D. C-18 RP 

resin PicoFrit column (New Objective, Woburn, MA, USA) and placed in line with a U3000 

quaternary HPLC (Dionex, San Francisco, CA, USA). The SCX-RP LC separation was carried out 

by eleven salt pulses with increasing concentrations of 500 mM ammonium acetate solution. Each 

of the first ten salt pulses was followed with 120 minute RP gradient from 100 % solvent A to 50 

% solvent B, while the last salt pulse used 150 minute RP gradient from 100 % solvent A to 100 % 

solvent B. The LC eluent from the front column was directly nanosprayed into an LTQ-Orbitrap 

Elite mass spectrometer (Thermo Scientific). The mass spectrometer was operated in a data-

dependent mode under the control of Xcalibur software (Thermo Scientific). The following 

parameters were used for the data-dependent acquisition: collision induced dissociation was 

carried out for top 20 parent ions in the ion trap following a full scan in the Orbitrap at 30 000 

resolution, a 0.5 m/z isolation width, 35 % collision energy was used for fragmentation; and a 
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dynamic exclusion repeat count of 1 with duration of 30 s. The raw MS/MS data was searched 

using MyriMatch as previously described (18) against a predicted protein database (63,635 

sequences) constructed from the metagenome assembly, along with common contaminants (44 

sequences) and reverse sequences (supplementary table S8). A fixed modification of +57.0214 Da 

for carbamidomethylation of cysteine and a +16 Da modification for oxidation of methionine and 

a +43 Da modification for N-terminal carbamylation were included as dynamic modifications in 

the search parameters. Identified peptides were then filtered at <1 % peptide level FDR and 

assembled into proteins (minimum of two peptides per protein) by IDPicker 3. For more 

information on the search settings see supplementary table S7. For each time point, two technical 

replicates were performed. Identified peptides and proteins are listed in supplementary tables S9 - 

S14. 
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Table S5.1: Substrate supply rates (mmol or C-mmol/day for electron donors and acceptors)  and 
generation times (days) during selection in continuous incubations. 

Incubations C/N 

ratio 

Electron 

donor 

Electron 

donor 

Electron 

acceptor  

nitrite       

nitrate 

Generatio

n time  

com

ment 

Organic carbon 1.5 Org. C-mix 23.8  14.4 1.4 0.5  

Organic carbon 2.7 Org. C-mix 42.5  14.4 1.4 0.5 1) 

Organic carbon 12 Org. C-mix 43.2  3.6 0.36 0.5  

Hydrogen - Hydrogen 0.4 ml/min 3.6 0.36 0.5 + 

CO2 

Lactate 2.7 Lactate 20.9  3.6 0.36 0.5  

Organic carbon + 

sulfide 

2.7 Org. C-mix  

and sulfide 

10.8 +  

0.7 mmol/d 

3.6 0.36 0.5  

Organic carbon 2.7 Org. C-mix 4.4  1.5 0.15 1.7  

Feast and famine 2.7 Org. C-mix 4.4  1.5 0.15 1.7 2) 

Nitrate  + Organic 

carbon 

2.7 Org. C-mix 4.4  - 1.5 1.7  

Hydrogen + formate 2.7 Formate + 

hydrogen   

4.4 + 0.4 

ml/min 

1.5 0.15 1.7  

Organic carbon + 

sulfide 

2.7 Org. C-mix  

and sulfide 

4.4 +0.3 

mmol/d 

1.5 0.15 1.7  

Feast and famine 2.7 Org. C-mix 4.4  1.5 0.15 1.7 2) 

No copper addition 2.7 Org. C-mix 4.4  1.5 0.15 1.7 3) 

Low pH (6.8) 2.7 Org. C-mix 4.4  1.5 0.15 1.7  

Natural seawater 2.7 Org. C-mix 4.4  1.5 0.15 1.7 4) 

400 day nitrate +  

organic carbon 

3 Org. C-mix 33.0   - 11.0 See Fig. 2 5) 

Short generation time 3 Org. C-mix 43.2  - 14.4 See Fig. 7  

Nitrite instead of 

nitrate 

3 Org. C-mix 17.3  5.8 - 3.4  

Organic carbon limiting 2 Org. C-mix 11.5  - 5.8 3.4  
1)

 Data on the enrichment have been published in Strous et al, 2012
 

2) 
Medium was fed in pulses leading to the transient accumulation of nitrite.  

The generation time refers to the overall average. 
3)

 No copper was supplied with the trace elements
 

4)
 The substrates were added to sterilized seawater from the sampling site. 

5)
 Substrate influx given for a generation time of 1.7 days 
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Table S5.2: Characteristics and abundance estimates of the 11 metagenomic bins based on  
the metagenomic analyses and CARD-FISH. 

 

Population 

Denitrovibrio Arcobacter Epsilon 

proteo 

bacteria 

Delta 

proteo 

bacteria 

Clostridiale

s 

Probes used (Table S4) N2460A 
ARC94+ 

ARC1430 
Epsy682 DELTA495abc 

Lac0435 

+CLO864 

Rel. abundance 

CARD-FISH (%) 

Day 189 0 62 63 15 17 

Day 336 57 0 1 2 2 

 

 Bin 

 A B C D E F G H I J K 

Affiliation 

Denit

rovibr

io 

Clos

tridi

a 

les 

Firmi 

cutes 

Desul

furo

musa 

Clostr

idia 

les 

Arco 

bact 

er 

Spiro 

chae 

tales 

Sulfur

ospiri

llum 

Bacte

roide 

tes 

Rhod

obact

erace

ae 

Alter

omon

adale

s 

Bin size (Mb) 2.9 6.4 5.1 4.2 4.4 3.1 3.3 3.3 4.3 4.2 3.8 

GC content (%) 42 34.3 37.3 45.7 37.5 28.1 46.2 31 40.7 63.4 57.7 

N50 contig length 

(kb) 
260.9 87.6 59.3 23.5 77.5 4.8 31.8 0.9 0.6 95.8 27.9 

Contigs (#) 22 224 235 294 105 1693 182 4944 7709 76 192 

coverage (x) 95.9 36.2 34.1 34.3 33.9 23.2 17.6 12.5 6 17 11.3 

Transfer RNA's (#) 35 49 36 42 39 29 46 10 38 46 38 

Completeness (%) 72 94 92 99 86 91 92 68 63 86 91 

Redundancy (%) 0 6 2 2 1 6 1 6 11 2 2 

Rel. ab-

undance 

metageno

mes 

(%) 

Day 54 0 0.1 5.4 0.1 0 6.6 0 1.3 0.2 33.4 5.6 

Day 152 0 35.7 6.9 21.5 6.4 1.0 0 13.7 1.1 0 0 

Day 189 0.1 3.4 16.8 24.1 18.1 14.6 0.2 1.7 0.9 0.1 0.3 

Day 336 38.0 19.3 11.8 0.4 8.6 0.2 7.7 0.3 2.4 0 0.3 

Short Td  14.2 1.8 8.5 4.9 35.8 15.6 0.0 1.6 0 0 0.1 

Nitrite 5.1 0.7 2.7 0 2.1 0 12.1 0 5.0 25.7 16.5 

Rel. ab-

undance 

transcripto

mes (%) 

Day 189 0.1 1.6 26.3 18.5 15.4 16.9 0.2 0.3 0.3 0.5 0 

Day 199 0.0 2.4 19.8 19.2 28.9 7.7 0 0.6 1.2 0.3 0 

Day 207 0.1 2.1 8.5 39.6 17.5 9.3 0 1.4 1.3 0.4 0 

Day 336 34.2 13.2 12.3 0.3 11.6 0 7.1 0 1.1 0.3 0 

Day 368 35.2 3.3 9.3 0.3 35.5 2.5 1.6 0.1 0.7 0.4 0.2 

Rel. ab-

undance 

proteomes 

(%) 

Day 189 0.2 4.2 20.0 25.9 14.5 33.8 0.1 1.2 0 0 0 

Day 207 0.1 5.7 17.6 33.4 13.1 26.6 0 3.4 0 0 0 

Day 336 40.5 25.6 16.3 1.1 9.9 0.3 6.1 0.1 0 0 0 



 

 

 

Table S5.3: Average (n=8) normalized transcriptional/translational activities of key metabolic pathways 
and enzyme complexes for the abundant populations selected in the continuous incubations (see Table S14 
for gene annotations and activities for all bins). 
 

Bin A B C D E F G H I J K 

Pathway or enzyme complex 

D
e

n
itro

v
ib

rio
 

La
ch

n
o

sp
ira

 

F
irm

icu
te

s 

D
e

su
lfu

ro
m

u
sa

 

La
ch

n
o

sp
ira

 

A
rco

b
a

cte
r 

S
p

h
a

e
ro

ch
e

te
 

S
u

lfu
ro

sp
irillu

m
 

B
a

cte
ro

id
e

te
s 

R
h

o
d

o
b

a
cte

r 

A
lte

ro
m

o
n

a
s 

Nitrate reductase 5±2 0±0 0±0 4±1 0±0 7±4 0±0 12±10 0±0 0±0 1±1 

Denitrification 0±0 0±0 0±0 0±0 0±0 8±2 0±0 0±0 3±1* 21±17 4±0 

Ammonification 14±9 5±3* 3±3* 11±11 1±1* 0±0 0±0 0±0 11±10* 0±0 0±0 

Respiratory chain 12±0 5±4 5±0 15±3 7±4 20±5 4±1 14±8 13±16 27±39 7±10 

ATP synthase 7±2 7±5 22±4 6±2 6±3 12±6 2±2 4±1 11±6 12±14 8±4 

Hydrogen/formate oxidation 5±4 6±3 7±2 4±3 5±1 6±3 4±1 17±8 4±5 1±1 0±0 

Sulfur metabolism 9±4 2±0 1±1 3±1 1±1 7±3 0±0 3±4 9±2 0±0 0±0 

Acetate 

metabolism/fermentation 1±1 3±2 4±3 2±1 6±4 5±1 3±2 1±0 4±3 2±3 1±1 

Citric acid cycle 28±3 3±3 4±2 23±11 4±3 19±4 1±1 15±9 28±5 29±23 63±31 

Glycolysis/Pentose 

phosphate 8±7 17±14 23±12 5±4 19±13 5±4 15±9 6±4 9±1 0±0 6±0 

Substrate import 10±3 51±31 30±24 27±7 51±24 10±1 71±7 28±8 9±1 8±11 10±14 
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Table S5.4: List of oligonucleotide probes and primers used (see www.microbial-

ecology.net/probebase/). 

 

Probe  Sequence (5′→3′) Target organisms 
FA

1
 

(%) 
Ref 

EUB338  I
2
 GCTGCCTCCCGTAGGAGT Most Bacteria 35 

Amann et 

al., 1990 

EUB338 II
2
 GCAGCCACCCGTAGGTGT Planctomycetales 35 

Daims et 

al., 1999 

EUB338 III
2
 GCTGCCACCCGTAGGTGT Verrucomicrobiales 35 

Daims et 

al., 1999 

NON338 ACTCCTACGGGAGGCAGC Control 35 
Wallner et 

al., 1993 

Epsy682 CGGATTTTACCCCTACAC Epsilonproteobacteria 35 
Moussard 

et al., 2006 

ARC94 TGCGCCACTTAGCTGACA Arcobacter 25 
Snaidr et 

al., 1997 

ARC1430 TTAGCATCCCCGCTTCGA Arcobacter 25 
Snaidr et 

al., 1997 

DELTA495a   

(& competitor)
2
 

AGTTAGCCGGTGCTTCCT 

(AGTTAGCCGGTGCTTCTT) 

Most Deltaproteobacteria 

and most 

Gemmatimonadetes 

25 

Lueker et 

al.,2002, 

Loy et al., 

2007 

DELTA495b 

(& competitor)
2
 

AGTTAGCCGGCGCTTCCT 

(AGTTAGCCGGCGCTTC(T/G)T) 
Some  Deltaproteobacteria 25 

Lueker et 

al.,2002, 

Loy et al., 

2007 

DELTA495c   

(& competitor)
2
 

AATTAGCCGGTGCTTCCT 

(AATTAGCCGGTGCTTCTT) 
Some  Deltaproteobacteria 25 

Lueker et 

al.,2002, 

Loy et al., 

2007 

Lac0435 TCTTCCCTGCTGATAGA Lachnospira 35 
Kong et  

al., 2010 

CLO864 TTCCTCCTAATATCT ACGCA Clostridiales 30 This study 

Denitrovibrio 

N2460A 
GAACCATTTCTTCCCTGCTG Denitrovibrio 5 

Myhr & 

Torsvik 

2000 
1
Formamide concentration in the CARD FISH hybridization buffer

 

2
Used in the mix of EUB I to III or DELTA495a –c 
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Table S5.5: Squared Pearson product-moment correlation coefficients between bin coverages and 
16S rRNA gene sequencing coverages over sequenced samples. Correlations agreed well with 
taxonomic signatures of bins except for bins B, C and bin G. This was caused by low read counts (bin 
G) and by higher Firmicutes diversity binned into bins B and C. 
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Figure S5.1: Binning of contigs to the most abundant populations in the samples of different 
time points by combined tetranucleotide and interpolated Markov Model binning: a)(this 

page) The distribution of the contigs on a sequencing coverage versus GC plot with each 
"cloud" corresponding to a different bin and population. Left: combined assembly for 
metagenomes of day 54,152, 189 and 336 (Figure 5.2). Right: assembly of day 52 of the 
incubation with nitrite (Figure S5.7b). Brackets indicate that a bin was detected in the sample 
but was better assembled in another sample. b) (facing page) The pie charts show the 
taxonomic distribution of blast hits of fragmented contigs to reference genomes. The distance 
of each slice from the center of the pie is a measure for the median e-value of the associated 
hits (larger e-values correspond to larger distances from the center). 
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Figure S5.3 Epifluorescence microscopy image (CARD-FISH) of the dominant denitrifying 
(Arcobacter, probes ARC94, ARC1430, left) and arnrnonifying populations (Denitrovibrio, probe 
N246oa, right) present in the incubation of Figure 5.2 (probes see table S5.4). Green: hybridized 
cells; blue: DAPI-stained cells. Scale bar: 2 µm. 
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Figure S5.4. Phylogenetic consensus tree constructed after Bayesian inference of phylogeny from a 
MUSCLE alignment of multiheme cytochrome c (MCC) protein sequences. Experimentally derived 
MCC sequences were aligned and analyzed together with sequences of pentaheme cytochrome c 
nitrate reductase (NrfA) and octaheme cytochrome c (OCC) oxidoreductase proteins obtained from 
public databases, some of which have been experimentally identified as octaheme cytochrome c 
nitrite reductases (ONR), hydroxylamine (HAO) or hydrazine (HZO) dehydrogenases. MCC protein 
sequences from a different member of the superfamily were used as out-group for tree construction. 
Sequences from this study are colored in red, Alpha-, Beta- and Gammaproteobacteria in light green, 
Deltaproteobacteria in dark blue, Epsilonrnicrobia in dark green, Planctomycetes and NC10 in dark 
red, Verrucomicrobia in pink, Firrnicutes in black, Deferribacteres in dark yellow and Archaea in 
light blue, others in grey. 
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Figure S5.5 Sulfate-reduction activity of denitrifying and ammonifying cultures determined by 
radiotracer labeling experiments. The radio tracer experiment with denitrification as the dominating 
pathway, did not yield significant production of labeled sulfide (performed on day 61 of the transfer 
with short generation time, figure S5.7a), but the unlabeled sulfide pool was consumed after the 
experiment. This suggests that reduction and oxidation reactions of sulfur species were closely linked 
and that sulfide was produced by microbial sulfate reduction and directly oxidized again, coupled to 
nitrate reduction. This is supported by experimentally determined high potential rates of sulfide-
dependent reduction of nitrate and nitrite (table 5.1) and the finding that sulfide accumulated in 
experiments without nitrate or nitrite, confirming ongoing sulfate reduction. 
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Figure S5.6: Sulfate-reduction activity of denitrifying and ammonifying cultures determined by 
radiotracer labeling experiments. The radio tracer experiment with denitrification as the dominating 
pathway, did not yield significant production of labeled sulfide (performed on day 61 of the transfer 
with short generation time, figure S5.7a), but the unlabeled sulfide pool was consumed after the 
experiment. This suggests that reduction and oxidation reactions of sulfur species were closely linked 
and that sulfide was produced by microbial sulfate reduction and directly oxidized again, coupled to 
nitrate reduction. This is supported by experimentally determined high potential rates of sulfide-
dependent reduction of nitrate and nitrite (table 5.1) and the finding that sulfide accumulated in 
experiments without nitrate or nitrite, confirming ongoing sulfate reduction. 
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Figure S5.8: Temperature dependence of denitrification and ammonification. a) Temperature 
dependence of nitrate reduction rates. As nitrite accumulated for incubations when ammonification 
dominated, in this case, the conversion rate for nitrite as substrate was determined as well; b) 
Arrhenius plot. r: nitrate reduction rate, T: absolute temperature. 
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The additional data table listed below can be found at  

http://www.sciencemag.org/content/345/6197/676/suppl/DC1 
 
 

Additional Data table S6 (separate file) 

Settings used by MyriMatch (2.1.111) and IDPicker (3.0.537) to search and filter MS data 

 

Additional Data table S7 (separate file) 

Summary of MyriMatch/Idpicker results from searching two technical replicates for each 

time point against the predicted metaproteome. 

 

Additional Data table S8a (separate file) 

List of proteins identified in replicate 1 of sample BK1 (Day 189) by MyriMatch/Idpicker 

platform by searching raw data against the predicted metagenome. 

 

Additional Data table S8b (separate file) 

List of proteins identified in replicate 2 of sample BK1 (Day 189) by MyriMatch/Idpicker 

platform by searching raw data against the predicted metagenome. 

 

Additional Data table S9a (separate file) 

List of proteins identified in replicate 1 of sample BK2 (Day 207) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S9b (separate file) 

List of proteins identified in replicate 2 of sample BK2 (Day 207) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S10a (separate file) 

List of proteins identified in replicate 1 of sample BK3 (Day 336) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 
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Additional Data table S10b (separate file) 

List of proteins identified in replicate 2 of sample BK3 (Day 336) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S11a (separate file) 

List of peptides identified in replicate 1 of sample BK1 (Day 189) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S11b (separate file) 

List of peptides identified in replicate 2 of sample BK1 (Day 189) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S12a (separate file) 

List of peptides identified in replicate 1 of sample BK2 (Day 207) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 
 

Additional Data table S12b (separate file) 

List of peptides identified in replicate 2 of sample BK2 (Day 207) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 
 

Additional Data table S13a (separate file) 
 

List of peptides identified in replicate 1 of sample BK3 (Day 336) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S13b (separate file) 

List of peptides identified in replicate 1 of sample BK3 (Day 336) by MyriMatch/Idpicker 

platfrom by searching raw data against the predicted metagenome. 

 

Additional Data table S14 (separate file) 

Annotated provisional genomes for each bin with transcriptomic and proteomic activities for 

each gene. 



Chapter 5 

 

181 

 

5.4.2 References 

1. D. Fowler, M. Coyle, U. Skiba, M.A. Sutton, J.N. Cape, S. Reis, L.J. Sheppard, A. 
Jenkins, B. Grizzetti, J.N. Galloway, P. Vitousek, A. Leach, A.F. Bouwman, K. 
Butterbach-Bahl, F. Dentener, D. Stevenson, M. Amann, M. Voss, The global nitrogen 
cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).  

2. J.M. Tiedje, A.J. Sexstone, D.D. Myrold, J.A. Robinson, Denitrification: Ecological 
niches, competition and survival. Antonie Leeuwenhoek 48, 569–583 (1983).  

3. T.O. Strohm, B. Griffin, W.G. Zumft, B. Schink, Growth yields in bacterial denitrification 
and nitrate ammonification. Appl. Environ. Microbiol. 73, 1420–1424 (2007 

4. A E. Tugtas, S.G. Pavlostathis, Electron donor effect on nitrate reduction pathway and 
kinetics in a mixed methanogenic culture. Biotechnol. Bioeng. 98, 756–763 (2007).  

5. C.S. Schmidt, D.J. Richardson, E.M. Baggs, Constraining the conditions conducive to 
dissimilatory nitrate reduction to ammonium in temperate arable soils. Soil Biol. 

Biochem. 43, 1607–1611 (2011).  

6. L.F. Dong, C.J. Smith, S. Papaspyrou, A. Stott, A.M. Osborn, D.B. Nedwell, Changes in 
benthic denitrification, nitrate ammonification, and anammox process rates and nitrate 
and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne 
estuary, United Kingdom). Appl. Environ. Microbiol. 75, 3171–3179 (2009).  

7. L.F. Dong, M. Naqasima Sobey, C.J. Smith, I. Rusmana, W. Phillips, A. Stott, A.M. 
Osborn, D.B. Nedwell, Dissimilatory reduction of nitrate to ammonium, not 
denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. 
Limnol. Oceanogr. 56, 279–291 (2011).  

8. J.C. Akunna, C. Bizeau, R. Moletta, Nitrate and nitrite reductions with anaerobic sludge 
using various carbon sources: Glucose, glycerol, acetic acid, lactic acid and methanol. 
Water Res. 27, 1303–1312 (1993).  

9. B.G. Ogilvie, M. Rutter, D.B. Nedwell, Selection by temperature of nitrate-reducing 
bacteria from estuarine sediments: Species composition and competition for nitrate. 
FEMS Microbiol. Ecol. 23, 11–22 (1997).  

10. R.C. Brunet, L.J. Garcia-Gil, Sulfide-induced dissimilatory nitrate reduction to ammonia 
in anaerobic freshwater sediments. FEMS Microbiol. Ecol. 21, 131–138 (1996).  

11. L. Mazéas, V. Vigneron, K. Le-Ménach, H. Budzinski, J. M. Audic, N. Bernet, T. 
Bouchez, Elucidation of nitrate reduction pathways in anaerobic bioreactors using a 
stable isotope approach. Rapid Commun. Mass Spectrom. 22, 1746–1750 (2008). 

12. A. Behrendt, D. de Beer, P. Stief, Vertical activity distribution of dissimilatory nitrate 
reduction in coastal marine sediments. Biogeosciences 10, 8065–8101 (2013).  



The environmental controls that govern the end product of bacterial nitrate respiration 

 

182 

 

13. See supplementary materials on Science Online.  

14. H. Gao, M. Matyka, B. Liu, A. Khalili, J.E. Kostka, G. Collins, S. Jansen, M. Holtappels, 
M.M. Jensen, T.H. Badewien, M. Beck, M. Grunwald, D. de Beer, G. Lavik, M.M.M. 
Kuypers, Intensive and extensive nitrogen loss from intertidal permeable sediments of 
the Wadden Sea. Limnol. Oceanogr. 57, 185–198 (2012).  

15. S. B. Joye, J.T. Hollibaugh, Influence of sulfide inhibition of nitrification on nitrogen 
regeneration in sediments. Science 270, 623–625 (1995).  

16. D. Bru, A. Ramette, N.P. Saby, S. Dequiedt, L. Ranjard, C. Jolivet, D. Arrouays, L. 
Philippot, Determinants of the distribution of nitrogen-cycling microbial communities at 
the landscape scale. ISME J. 5, 532–542 (2011).  

17. S. Vieira-Silva, E.P.C. Rocha, The systemic imprint of growth and its uses in ecological 
(meta)genomics. PLOS Genet. 6, e1000808 (2010).  

18. A. Hanke, E. Hamann, R. Sharma, J. S. Geelhoed, T. Hargesheimer, B. Kraft, V. Meyer, 
S. Lenk, H. Osmers, R. Wu, K. Makinwa, R.L. Hettich, J.F. Banfield, H.E. Tegetmeyer, 
M. Strous, Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and 
niche partitioning between α- and γ-proteobacteria in a tidal sediment microbial 
community naturally selected in a laboratory chemostat. Front. Microbiol. 5, 231 
(2014).  

19. T.E. Hanson, B.J. Campbell, K.M. Kalis, M.A. Campbell, M.G. Klotz, Nitrate 
ammonification by Nautilia profundicola AmH: Experimental evidence consistent with 
a free hydroxylamine intermediate. Front. Microbiol. 4, 180 (2013).  

20. D.E. Canfield, F. J. Stewart, B. Thamdrup, L. De Brabandere, T. Dalsgaard, E.F. Delong, 
N.P. Revsbech, O. Ulloa, A cryptic sulfur cycle in oxygen-minimum-zone waters off the 
Chilean coast. Science 330, 1375–1378 (2010).  

21. B. Kraft, M. Strous, H.E. Tegetmeyer, Microbial nitrate respiration—genes, enzymes and 
environmental distribution. J. Biotechnol. 155, 104–117 (2011).  

22. W.G. Zumft, Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. 

Rev. 61, 533–616 (1997).  

23. J. Kallmeyer, T.G. Ferdelman, A. Weber, H. Fossing, B.B. Jørgensen, Evaluation of a 
cold chromium distillation procedure for recovering very small amounts of radiolabeled 
sulfide related to sulfate reduction measurements. Limnol. Oceanogr. Methods 2, 171–
180 (2004).  

24. M. Strous, B. Kraft, R. Bisdorf, H.E. Tegetmeyer, The binning of metagenomic contigs 
for microbial physiology of mixed cultures. Front. Microbiol. 3, 410 (2012).  

25. W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, A. Yadhukumar, T. Buchner, 
S. Lai, G. Steppi, W. Jobb, I. Förster, S. Brettske, A. W. Gerber, O. Ginhart, S. Gross, S. 
Grumann, R. Hermann, A. Jost, T. König, R. Liss, M. Lüssmann, B. May, B. Nonhoff, 



Chapter 5 

 

183 

 

R. Reichel, A. Strehlow, N. Stamatakis, A. Stuckmann, M. Vilbig, T. Lenke, A. 
Ludwig, K. H. Bode, Schleifer, ARB: A software environment for sequence data. 
Nucleic Acids Res. 32, 1363–1371 (2004).  

26. A. Stamatakis, P. Hoover, J. Rougemont, A rapid bootstrap algorithm for the RAxML 
Web servers. Syst. Biol. 57, 758–771 (2008).  

27. M.G. Klotz, M.C. Schmid, M. Strous, H.J. op den Camp, M.S. Jetten, A.B. Hooper, 
Evolution of an octahaem cytochrome c protein family that is key to aerobic and 
anaerobic ammonia oxidation by bacteria. Environ. Microbiol. 10, 3150–3163 (2008).  

28. M. Kern, M. G. Klotz, J. Simon, The Wolinella succinogenes mcc gene cluster encodes 
an unconventional respiratory sulphite reduction system. Mol. Microbiol. 82, 1515–
1530 (2011).  

29. A.J. Drummond, M.A. Suchard, D. Xie, A. Rambaut, Bayesian phylogenetics with 
BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).  

30. S. Whelan, N. Goldman, A general empirical model of protein evolution derived from 
multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 
691–699 (2001).  



 

 

 



 

185 

 

Chapter 6 

6 Integration and perspectives 

 

This thesis contributes to a more comprehensive understanding of the ecophysiology of two 

different pathways of nitrate respiration, denitrification and DNRA. To achieve this, the 

enrichment of microbial communities under nitrate reducing conditions was combined with 

metagenomic sequencing with the aim of identifying the metabolic potential of the enriched 

populations. In order to improve the analysis of the metagenomic datasets obtained, a new 

tool for the binning of metagenomic contigs was developed (chapter 3). 

First, the relationship between functional and compositional stability over time within 

one nitrate reduction pathway was investigated (chapter 4). A heterotrophic denitrifying 

microbial community was enriched from a marine intertidal flat in a continuous culture. By 

monitoring the community composition over time it could be shown that strong community 

dynamics were occurring under constant conditions and during stable conversion of 

substrates. This indicated that for functional stability only the presence of the overall 

metabolic potential was important, independent of the community composition. Denitrifiers 

were co-enriched with fermenting populations and a stable metabolic interaction between the 

two microbial guilds persisted throughout the experiment unaffected by the ongoing 

population dynamics. 

Once the ongoing competition between different populations within one nitrate reducing 

pathway was evaluated, the competition between different nitrate-respiration pathways could 

be addressed. Three environmental controls on the outcome of microbial nitrate reduction 

were identified (chapter 5). DNRA was the prevalent respiratory pathway when nitrate (but 

not nitrite) was the main electron acceptor, when the microbial generation time was long and 

when nitrate (but not carbon) was in limited supply. With the identification of these 

environmental conditions that decide which of the pathways dominates, new insights into the 

controls that regulate the fate of fixed nitrogen in the environment were obtained. 

Furthermore, sulfide, produced by microbial sulfate reduction, was identified as an important 

electron donor for denitrification and DNRA. Sulfide oxidation was responsible for reducing 

~25% of the nitrate reduction revealing a close coupling between nitrate reduction and 

cycling of sulfur.  
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While changes in the nitrate reduction process itself and the associated microbial 

populations were induced based on the factors listed above, the general functional 

community composition and metabolic partitioning between fermenting and nitrate reducing 

populations stayed the same. 

 

6.1 Functional stability is independent of community composition 

Inherent to all enriched microbial communities was the syntrophy of fermenting and nitrate 

reducing populations. In all cases fermentation products were utilized as substrates by the 

nitrate-respiring populations. This functional structure was stable over time and over all 

different realizations of enrichments in which this was addressed (chapters 3, 4 and 5). 

Furthermore, this syntrophy was established over a range of different generation times and 

was independent of the predominating nitrate reduction pathway. 

In contrast to the functional stability, the microbial community composition was 

unstable: The persistence of population dynamics under stable conditions was shown for two 

denitrifying enrichments and with different independent methods (chapters 3 and 4). 

Although enriched communities were highly dynamic, the diversity of the dominant 

populations was low: Fluctuations occurred between few different populations and generally 

the same populations were enriched in the different chemostat enrichments. The denitrifying 

populations affiliated with Arcobacter, Pseudomonas, Rhodobacterales, Pseudovibrio and 

Bacteroidetes and the DNRA-performing populations with Denitrovibrio and 

Desulfuromusa. The dominant fermenting populations affiliated with Vibrio, Clostridiales, 

Fusobacter and Psychromonas. Fluctuations also occurred between different subpopulations 

of Arcobacter, Rhodobacterales and Clostridiales. Functional redundancy among different 

populations within a community is thought to be a cornerstone of a stable performance, as 

populations able to perform the same ecological function may replace the dominant 

population of the same microbial guild in the case of its break down, e.g. due to disturbances 

or viral lysis (Briones and Raskin, 2003; Curtis and Sloan, 2004, Norberg et al., 2001, 

Allison and Martiny, 2008). Functional redundancy was not only observed on the level of 

populations that possessed the same metabolic capacities but also on the enzymatic level. 

Subpopulations of Pseudovibrio with the genes for different types of NO-forming nitrite 

reductases, nirS and nirK, were co-enriched (chapter 4). Upon the different shifts from 

denitrification to DNRA, not only different microbial populations built up, but they also 
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carried out different pathways for the reduction of nitrate to ammonium (chapter 5). A 

Desulfuromusa population possessed the nitrite reductase NrfA, while the Denitrovibrio 

population apparently reduced nitrite via an octaheme cytochrome c to hydroxylamine and 

then further to ammonium via the hybrid cluster protein hydroxylamine reductase. However, 

it remains to be determined whether these two pathways are indeed functionally redundant or 

whether the enzymes are characterized by different enzyme kinetics. 

 

6.2 Population dynamics are driven by deterministic and neutral 

processes 

In chapter 4, it was argued that the community composition was influenced by niche-based 

selection as well as neutral processes, with niche-based sorting being responsible for the 

selection of denitrifying and fermenting microbes and neutral processes for the specific 

populations of the respective guild encountered at a certain time point. The reasoning behind 

this was that the conditions encountered in these chemostat experiments were constant and 

thus changes in community composition can be regarded as neutral. The comparison of the 

microbial community composition between enrichment experiments confirms this 

hypothesis. The combination of the applied experimental conditions reproducibly selected for 

a specific set of populations that was best adapted to the environment created in the 

chemostats. There was no evident driving force that controlled which populations dominated 

at a certain time point.  

Several previous studies also came to the conclusion that a combination of neutral and 

deterministic processes governs the assembly and further development of microbial 

communities over time (Zhou et al., 2013, Ofiteru et al., 2010, Zumstein et al., 2000, 

Langenheder and Szekely, 2011, Fernandez et al., 1999). Other studies reported contrasting 

results and concluded that community dynamics were primarily governed by deterministic 

processes (Vanwonterghem et al., 2014, McGuiness et al., 2006, Falk 2009). In this context, 

it should be taken into account that the experimental set-up may very likely influence the 

experimental outcome. Some studies made use of fed-batch systems (Vanwonterghem et al., 

2014, Falk et al., 2009) and a reactor set-up that facilitates attachment and biofilm formation 

such as granules, electrodes, suspended substrate particles (Zumstein et al., 2000, 

McGuinesss, Zhou et al., 2012, Vanwonterghem et al., 2014).  
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In wastewater treatment plants or other large-scale applications the inflowing substrate 

concentration and composition is often not constant (Valentín-Vargas et al., 2012, Ofiteru et 

al., 2010). Thus, changes in community composition may also have been influenced by the 

change of external conditions. A biofilm community may highly differ from the suspended 

biomass of the same reactor (Briones and Raskin, 2003) and biofilms can be highly spatially 

structured (Battin et al., 2007). Attached cells may be exposed to a different set of 

community structure shaping processes. These factors would explain the differences in 

community assembly and function-structure relationships observed in comparison to the 

enrichments described in this thesis. The community behavior observed in chapter 4 mostly 

resembled the results of a study by Fernandez et al. (1999), which was also performed in a 

well controlled laboratory chemostat with highly constant conditions over time. 

In a chemostat functional redundancy and the ability of one population to build up to 

replace another may be more important for stable functioning and survival of the whole 

community compared to a biofilm-supporting environment.  

 

6.3 Environmental controls that govern nitrate-respiration  

The generation time, supply of nitrite relative to nitrate and the carbon/nitrogen ratio (C/N-

ratio) were identified as the selective forces that determined the outcome of the competition 

between denitrification and DNRA (chapter 5). Of these three controls, only the C/N-ratio 

has been previously proposed. Denitrifying bacteria conserve more energy per electron, 

which makes them more competitive when electron donors are in limited supply (chapter 1 

and 2, Tiedje et al., 1982). The effect of the other two controls can be explained by the 

kinetics of the nitrite reductase active in either pathway. If the ammonium-producing nitrite 

reductases (NrfA and OCC) have a lower affinity for nitrite compared to the nitric oxide-

forming nitrite reductases (NirS and NirK), at a high conversion rate, the DNRA-performing 

microbes would reduce nitrate to nitrite, which then would be lost to competing denitrifiers. 

A comparison of the enzyme kinetics of purified enzymes measured for different nitrite 

reductases from certain model organisms such as Wolinella succinogenes, Desulfovibrio 

desulfuricans, Escherichia coli or Paraccocus pantotrophus does not yield a clear trend 

(Clarke et al., 2005, Einsle, 2011, Kondo et al., 2012, Richter et al., 2002, Tikhonova et al., 

2012). It is difficult to directly compare and evaluate the affinity of isolated enzymes because 

for example generally artificial electron donors are used. Furthermore, the actual in vivo 
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affinity may not only be determined by the enzyme itself, but the electron transfer to the 

enzyme may also play a role. For example, the ammonium-producing nitrite reductase NrfA 

requires six electrons, which are provided by three quinol molecules that sequentially dock at 

the quinol-binding site. In contrast, the NirS and NirK enzymes involved in denitrification 

only depend on the delivery of individual electrons. A slower operation rate of the 

ammonium-forming pentaheme and octaheme cytochrome c nitrite reductases compared to 

the NO-forming NirS and NirK enzymes would lead to a lower affinity for nitrite, and this 

explains both the dependence of DNRA on a supply of nitrate and on a lower generation 

time. 

Up to 25% of the nitrate reduction was coupled to sulfide oxidation (chapter 5). The 

utilization of sulfide as electron donor next to organic carbon substrates for nitrate reduction 

adds an additional component to the bioenergetic considerations. Sulfide may be completely 

oxidized to sulfate or only partly to sulfur or thiosulfate. Metagenomics and metaproteomics, 

batch incubations with biomass from the chemostat enrichments and chemical analysis of 

sulfur compounds indicated that sulfur cycling most likely preceded via sulfur or sulfate 

(reactions 5-12).  

 

8 NO3
- +5 HS- +3 H+ → 4 N2 + 5 SO4

2- +4 H2O    (5) 

8 NO2
- +3 HS- +5 H+ → 4 N2 + 3 SO4

2- +4 H2O   (6) 

1 NO3
- + HS- + H+ + H2O → NH4

+ + SO4
2-    (7) 

4 NO2
- + 3 HS- +5 H+ +4 H2O → 4 NH4

+ + 3 SO4
2-   (8) 

 

2 NO3
- + 5 HS- + 7 H+ → N2 + 5 S°+ 6 H2O    (9)  

2 NO2
- + 3 HS- + 5 H+ → N2 + 3 S°+ 4 H2O    (10) 

NO3
- + 4 HS- + 6 H+ → NH4

+ + 4 S°+ 3 H2O    (11) 

NO2
- + 3 HS- + 5 H+ → NH4

+ + 3 S°+ 2 H2O    (12)  

 

Remarkably, with sulfide as electron donor DNRA is not necessarily the 

bioenergetically more favorable pathway when the electron acceptor is limiting (Table 6.1). 

This is only the case if nitrate is the electron donor and sulfide is oxidized to sulfur. When 

sulfide is oxidized to sulfur and nitrite is the electron acceptor denitrification and DNRA 

have the same energy yield per electron acceptor. When sulfide is oxidized to sulfate and the 

electron acceptor is limiting denitrification is even slightly more favorable than DNRA. This 
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gives an additional explanation for the dominance of denitrification provided that sulfide is 

available.  

Furthermore, the proportion, in which organic carbon compounds, hydrogen and sulfide 

are utilized as electron donor, may additionally influence the outcome of the competition 

between DNRA and denitrification. 

 

Table 6.1: Theoretical energy yield of denitrification and DNRA and the electrons transferred with 
nitrate and nitrite as electron acceptor and sulfide as electron donor. (G0’ values were taken from 
Thauer et al., 1977.) 

 

Reaction Electron 
acceptor 

Sulfide 
oxidized 

to 

∆G0’ 
(kJ/mol) per 

e--donor 

∆G0’ 
(kJ/mol) per 
e--acceptor 

Electrons 
transferred per 

e--acceptor 

Denitrification 

NO3
- S° -197 -491 5 

NO3
- SO4

2- -745 -465 5 

NO2
- S° -237 -356 3 

NO2
- SO4

2- -908 -340 3 

DNRA 

NO3
- S° -181 -728 8 

NO3
- SO4

2- -448 -448 8 

NO2
- S° -118 -355 6 

NO2
- SO4

2- -431 -323 6 
 

 

6.4 An alternative pathway for DNRA 

In the nitrate-reducing chemostat enrichment of chapter 5, a Denitrovibrio population was 

enriched when DNRA was the predominating nitrate reduction process. In the metagenomic 

bin of the Denitrovibrio population no gene encoding for NrfA, the pentaheme cytochrome c 

nitrite reductase typically associated with respiratory ammonification could be detected. 

Instead, an octaheme cytochrome c (OCC) protein-encoding gene was highly transcribed and 

translated together. The capacity to reduce nitrite has been shown for certain OCC proteins 

(Tikhonova et al., 2006, Atkinson et al., 2007), but only recently the first experimental 

evidence has been shown that an organism (Nautila profundicola) was reducing nitrate to 

ammonium with such an OCC protein as the responsible enzyme for the reduction of nitrite 
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(Hanson et al., 2013). The OCC proteins belong to the same large multiheme cytochrome c 

protein superfamily as NrfA (Klotz et al., 2008, Kern et al., 2011).  

 The sequence encoding the OCC from the metagenomic bin of the Denitrovibrio 

population clustered with sequences of the OCCs with proven nitrite reducing capabilities. It 

further shared structural characteristics such as the absence of a CxxCK motif at the active 

site, axial His residues aligning well with those of OCCs, a tyrosine forming an 

intermolecular cross-linking to the catalytic heme. Together with the OCC protein a hybrid 

cluster protein was highly expressed and most likely had a hydroxylamine reducing function. 

In the absence of other genes with a known function in nitrite reduction to ammonium in this 

bin or any other bin important on that time point, the detected OCC protein-encoding gene 

and the putative hydroxylamine reductase encoding gene are the only candidate genes 

encoding enzymes that together are capable of catalyzing nitrite reduction to ammonium.  

 It has been proposed that ammonium generation via the OCC protein in Nautila 

profunidcola is a novel nitrate assimilation pathway. In this thesis, I provide evidence that 

OCCs are involved in respiratory nitrate reduction and constitutes an alternative to the 

conventional pathway via NrfA. It remains to be determined how wide spread this pathway 

actually is in the environment. Hydroxylamine is highly toxic for the cell. Therefore, in 

nitrifying microbes the oxidation of hydroxylamine is tightly coupled to its production (Stein 

et al., 2012). Rate measurements of hydroxylamine oxidation indicate that this is also the 

case for hydroxylamine reduction in Nautila profunidcola (Hanson et al., 2013). This can 

explain why hydroxylamine has not been detected as intermediate in DNRA. So far, DNRA 

has mainly been studied for a few model organisms. Little is known about the identity of 

DNRA-performing microorganisms in natural habitats and the pathways that they perform. It 

would be interesting to investigate whether a niche differentiation between the DNRA 

pathways exists e.g. whether the two nitrite reductases have differences in affinity. Besides 

rate measurements, the importance of DNRA relative to denitrification is often evaluated by 

the abundance of relevant functional genes (chapter 2). Because usually only nrfA is used as 

a marker gene for DNRA, the importance of this pathway may have been substantially 

underestimated. 
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6.5 Can the identified controls explain the distribution of nitrate 
respiration pathways occurring in situ? 

 

The different studies included in this thesis did not aim at reproducing the conditions and 

communities found in situ, but tested hypotheses that should apply to (marine) microbial 

metabolism and communities in general. However, this implies that these hypotheses and the 

identified controls should also, if not above all, hold true for the habitat the inoculum was 

taken from. Denitrification is the main nitrate reduction pathway at the sampling site, the 

tidal flat Janssand, while DNRA, although present, only constitutes up to 10% of the total 

nitrate reduction (Gao et al., 2012, Behrendt et al., 2013). 

The dissolved organic carbon concentrations in the pore water of the sampling site 

accounts for several hundred micromoles per liter (Beck et al., 2008, Beck et al., 2009, 

Seidel et al., 2014), while nitrate concentrations of up to 60 µM have been measured (Gao et 

al., 2012). Thus, the C/N ratio is well in the range that would enable DNRA. However, this 

assessment relies on the assumption that most of the dissolved organic carbon is bioavailable.  

Nitrate and nitrite concentrations are often determined together as total NOx
-. This was 

also the case for the sampling site (Billerbeck et al., 2006, Gao et al., 2010, Gao., 2012). 

Although it can be assumed that most NOx
- was present in the form of nitrate, no conclusion 

can be drawn with regard to the influence of nitrite on the nitrate reduction pathway. This 

example depicts the importance of the conceptual approach of this study: the role of the 

availability of nitrite as important driving force has so far not been recognized and 

consequently corresponding data were not recorded. 

The generation time was identified as important control of the nitrate respiration 

pathway. In the environment this translates into the retention time of the system, which is 

difficult to determine. The tidal flat, where our sampling site was located, experiences a high 

advective flow (50-100 l/m2/d) leading to high turnover rates of nutrients (Precht and Huettel, 

2003, Billerbeck et al., 2006). However, the main part of the microbial community is 

probably attached to sediment particles, and consequently generation times would not be 

determined by the rates of advective pore water flow through the sediment. A further 

potential control of the bacterial generation time is grazing, but again it is difficult to estimate 

the resulting generation time in situ. The average generation time of a microbial community 

can be estimated based on the codon usage bias in its metagenome (Viera and Rocha, 2010). 

The estimate for the generation time of the microbial community on Janssand is with 0.4 
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days remarkably lower than the generation time at the transition point from DNRA to 

denitrification (chapter 5). This is consistent with the prevalence of denitrification on the 

tidal flat, even though it has to be considered that the estimated generation time holds true for 

the average of the whole in situ community and deviations may occur. All in all, the 

combined selecting forces identified in chapter 5 are able to explain the dominance of 

denitrification observed at the sampling site within the constraints of data availability for in 

situ nitrite concentrations. Nevertheless, the general validity of the identified selecting forces 

remains to be verified. To test for this, continuous culture enrichments could be repeated with 

inocula from a variety of different ecosystems including limnic and terrestrial habitats. 

Furthermore, future in situ studies should differentiate between nitrate and nitrite 

concentrations and try to address the retention time of the habitat. 

 

 

6.6 Behavior of microbial communities close to the tipping point between 
denitrification and DNRA  

 

Dynamic systems can abruptly shift from one stable state into another (Scheffer et al., 

2001), although the underlying environmental changes causing this loss of resilience may 

seem gradual and minor. The observation of several distinct shifts from a state of 

denitrification to a state of DNRA in the experiments described in chapter 5 indicates a 

potential for such alternative stable equilibria in nitrate-reducing communities. Because the 

continuous culture enrichments were performed at several different generation times and 

C/N-ratios (chapter 5), we have a good indication for the range in which the respective 

tipping points lie. This gives us important clues on how to force a system from one state into 

the other. Although threshold values are likely habitat specific, general patterns could occur, 

which could be the focus of future experiments. From a systems ecology perspective, it 

would also be interesting to observe the behavior of the microbial communities in proximity 

to the tipping points more closely in order to identify indicators that may predict when a shift 

from denitrification to DNRA or vice versa is about to occur. 

 So far, only gradually changing indicators for the loss of resilience, as for example the 

slowing down of the recovery rate from perturbations and consequent rises in 

autocorrelation, have been identified (Veraart et al., 2012, van Nes and Scheffer, 2007). The 
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next challenge is to find indicators that provide a measure of how close a system is to a 

tipping point, as well as the type of transition that will occur (Kefi et al., 2012). The 

competition between different nitrate reducing pathways in a chemostat could deliver 

valuable insights as the underlying driving mechanisms are known and under experimental 

control. For example, one could observe differences between shifts from e.g. denitrification 

to DNRA upon a change in generation time for a range of different C/N-ratios.  

 

6.7 Potential application in sustainable management of nitrogen fertilizer 

The anthropogenic input of fixed nitrogen to the environment is immense (chapter 1) 

and it is expected to increase in the future (Canfield, 2010). Regionally, severe impacts on 

natural ecosystems can already be observed (Howarth and Marino, 2006, Smith et al., 1999).  

Agricultural run-off is by far the biggest source of anthropogenic nitrogen in the 

environment (Fowler et al., 2013). Therefore, there is a large interest in strategies that reduce 

the nitrogen leakage from agricultural areas. The sustainable management of fertilizers is not 

only of ecological importance but also would constitute an economical benefit for the 

agricultural sector (Seitzinger, 2006). Several attempts are already being made to improve the 

nitrogen use efficiency of crops (the ratio between the crop yield attributed to fertilization 

and the amount of nitrogen fertilizer applied) (Cherry et al., 2008). Those strategies try to 

reduce the amount of nitrogen fertilizer used through e.g. crop rotation including legumes, a 

better prediction of the field- and crop-specific nitrogen requirements and optimization of the 

time of fertilization or the chemical inhibition of nitrifying bacteria (Robertson and Vitousek, 

2009, Canfield, 2010). They mainly target the uptake of nitrogen by plants and mostly do not 

address the importance of microbial communities as the integral component of the nitrogen 

cycle. 

  The controls determined in chapter 5 may be helpful for the development of a 

more sustainable management of fertilizer usage that is cost efficient and reduces the export 

of fixed nitrogen to neighboring areas. A desirable application could be the stimulation of 

denitrification in run-off areas that experience high nitrogen loads and of DNRA on the 

agricultural fields. Nevertheless, though easy to manipulate in a continuous culture set-up, it 

is challenging to address these controls within an ecosystem. However, approaches that aim 

to recapture nitrogen lost from fields in agricultural watersheds could be a promising starting 

point. Water that is drained from agricultural fields often contains high loads of fixed 
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nitrogen. It can be captured in (artificial reconstructed) wetland reservoirs (Tan et al., 2007). 

Here, the retention time could be manipulated in order to stimulate DNRA. That way the 

fixed nitrogen would be preserved and the captured water can be used for irrigation of the 

crop, and hence the contained nitrogen would be recycled. Also the application of bioreactors 

is conceivable (Blowes et al., 2004). That way, surface water ecosystems would not be 

impacted by elevated ammonium concentrations. 

 In contrast to agriculture, wastewater treatment strategies have rapidly adopted new 

advances in knowledge about the microbiology of the nitrogen cycle. Several examples 

demonstrate the successful application of different microbial nitrogen transformation 

pathways for the effective improvement of nitrogen removal such as the combination of 

partial nitrification and denitrification or anammox (Van Kempen et al., 2011, Van der Star 

et al., 2007, Kumar and Lin 2010, Winkler et al., 2012). The factors identified in chapter 5 

are relatively easy to control in a wastewater treatment plants. In the coupling of nitrification 

and anammox and denitrification, for example, retention times are kept short to prevent the 

enrichment of nitrite oxidizing microbes (Van der Star et al., 2007, Van Kempen et al., 

2011). In certain cases, for example when wastewater treatment plants are located close to 

agricultural areas, they could manipulate nitrate respiration towards DNRA and thus keep 

fixed nitrogen available for further re-use. 

 In any case, the consequences of different management practices need to be well 

thought of and experimentally addressed to fully understand the complex interaction and 

potential feedback loops among different transformations within the nitrogen cycle. 

 

6.8 Application of the experimental approach on the competition between 

other important biogeochemical processes 

 

The combination of multiple parallel enrichments in chemostats with rate 

measurements, meta-genomics and, where required, -transcriptomics and -proteomics has 

proved to be a successful approach to study interactions and dynamics in microbial 

communities and the ecophysiology of microbes in conjunction with their natural interaction 

partners. This way, it was possible to extract the environmental factors that shape such 

interactions. 
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It would be interesting to apply this strategy to similar questions. For example, the 

competition for the electron donors acetate and hydrogen by sulfate-reducing prokaryotes 

and methanogens and for the latter also by homoacetogens in deep sediments has been 

intensively studied for years. Generally, sulfate-reducers are expected to prevail as long as 

sulfate is available, and methanogens should win over homoacetogens due to differences in 

substrate affinities (Lovley & Goodwin, 1988, Muyzer and Stams, 2008). However, also in 

this competition between different microbial guilds the outcome seems to be more complex 

than that: Homoacetogens may successfully co-exist with methanogens and sulfate-reducers 

(Conrad et al., 1986, Emde & Schink, 1987, Hoehler et al., 1999). Close syntrophies between 

sulfate-reducers and methanogens (Schink, 1997) and the capacity of some sulfate-reducing 

prokaryotes to perform homoacetogenesis themselves obscure the picture (Klemps et al., 

1985, Ramamoorthy et al., 2006, Kraft et al., 2012). Multiple parallel continuous culture 

incubation of microbial communities at e.g. different sulfate to hydrogen ratios and 

generation times may show if this competition is influenced by similar controls as nitrate 

respiration. Therefore, I suggest addressing the complex interaction and competition between 

microbial sulfate-reduction, methanogenesis and homoacetogenesis in the same way as the 

competition between nitrate respiration pathways was addressed in this thesis.  

 

 

6.9 Where do other NOx
- -reducing pathways enter in the competition? 

 

 Discoveries in the past 15 years added a lot more complexity to the nitrogen cycle, 

which has become rather a network than a cycle with complex interactions and feedback 

loops among the different pathways (reviewed in chapter 1 and 2). Alone two further 

microbial pathways reduce nitrate or nitrite to dinitrogen: Anammox and NO-dismutation. 

The identification of three controls that determine the outcome of the competition between 

DNRA and denitrification in this thesis leads to the questions if such controls also can be 

determined for other NOx-reducing pathways and to what extend the identified controls also 

influence anammox and NO-dismutation. Where do they enter in the competitions? The C/N-

ratio and the affinity for nitrite, for example, have been proposed to influence the 

predominance of anammox versus denitrification in oxygen minimum zones (Kalvelage et 

al., 2013, Babbin et al., 2014, Kartal et al., 2013).   
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