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Thesis abstract 

Dissolved organic matter (DOM) constitutes the biggest organic carbon pool in the 

ocean, fueling the marine carbon cycle. Most of the DOM is generated by 

autotrophic primary production and subsequently assimilated or transformed to 

sustain heterotrophic organisms. A minor part escapes degradation and enters the 

refractory DOM pool, where it remains unaltered for thousands of years. This thesis 

includes two field studies and one laboratory incubation experiment focusing on the 

production and turnover of freshly produced DOM by microorganisms. High 

resolution methods were applied to elucidate the DOM molecular composition and 

the microbial community structure, and the data was analyzed via multivariate 

statistics to provide novel insights into the relationship between the two key players. 

DOM turnover at high latitudes was studied in fjords of Svalbard, Norway. The 

sampling campaign took place approximately 2 months after the decline of the 

phytoplankton blooms which usually occur from April to June in the archipelago. 

Denaturing gradient gel electrophoresis (DGGE) fingerprinting revealed differences 

in microbial community composition with location and water depth. The molecular 

DOM fingerprint obtained via ultrahigh-resolution mass spectrometry (Fourier 

Transform Ion Cyclotron Resonance Mass Spectrometry, FT ICR MS), however, did 

not significantly differ between surface water, which had recently experienced 

primary production, and the more saline, N-rich bottom waters. Consequently, the 

freshly produced DOM must be degraded within the short, but despite the cold 

conditions, highly productive warm season by the resident microbial community. 

The refractory DOM background found at most oceanic locations worldwide persists 

in the fjord water masses. 

In order to test whether this universal signature of deep sea DOM which is 

considered a result of decadal to millennial transformation can be produced solely 

by microbially mediated reworking of DOM on timescales of weeks to months, a 

long-term batch incubation study was carried out. The production and degradation of 

the freshly produced organic matter by the microbial community was followed over 
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the course of almost three years and bulk as well as molecular DOM characteristics 

were monitored. After only ~1 month of incubation, the molecular DOM 

composition was highly diverse and on the level of presence/absence of assigned 

molecular formulae exhibited high coherence with deep ocean refractory DOM. In-

depth analysis via ultrahigh resolution mass spectrometry taking into account the 

characteristic intensity distribution of deep ocean DOM revealed that, independent 

from the community composition of the producers, only up to 3 µmol C L-1, or 0.2-

0.4% of the net community production, can be considered truly refractory marine 

DOM. This estimate is in the same order of magnitude as the rates of global 

refractory DOM production, suggesting that biological processes alone produce 

sufficient amounts of biologically resistant DOM to sustain the marine refractory 

DOM pool. 

DOM availability may restrict the abundance of certain bacterial taxa, while 

microorganisms shape the composition of the DOM pool through selective uptake or 

production. Insight into the relationship of molecular DOM composition and 

microbial community structure - examined via pyrosequencing of 16S rRNA 

amplicons of environmental RNA and DNA - was gained through a third study: 

Within the pronounced salinity gradient of the North Sea, the DOM composition and 

the total microbial community (DNA based) composition were strongly linked and 

driven by freshwater input at the southern coastline. The active microbial 

community (RNA based) showed a weaker link to DOM and was less impacted by 

salinity-driven changes. The proposed statistical approach represents the first 

combination of results from high resolution mass spectrometry and a next generation 

sequencing approach, providing a good basis for the exploration of similar, even 

larger datasets.  

Together, the results obtained from field and laboratory studies indicate a rapid 

turnover of freshly produced DOM by the respective resident microbial community 

that might ultimately result in the universal background signature observed in 

oceanic DOM.  
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Zusammenfassung 

Gelöstes organisches Material (engl. dissolved organic matter, DOM) als größtes 

organisches Kohlenstoffreservoir im Meer ist von entscheidender Bedeutung für den 

marinen Kohlenstoffkreislauf. Der vorwiegende Teil des DOM wird von 

autotrophen Primärproduzenten erzeugt und anschließend zum Aufbau von 

Biomasse genutzt oder dient heterotrophen Organismen als Nahrungsgrundlage. Ein 

kleiner Anteil entgeht jedoch dem Abbau und bleibt als refraktäres DOM über 

tausende von Jahren erhalten. In dieser Arbeit werden zwei Feldstudien sowie ein im 

Labor durchgeführtes Experiment beschrieben, deren Hauptaugenmerk auf der 

Produktion und dem anschließenden Abbau des neu produzierten DOM durch 

Mikroorganismen liegt. Anhand hochauflösender Methoden wurden die molekulare 

Zusammensetzung des DOM und die Struktur der entsprechenden mikrobiellen 

Gemeinschaft untersucht und die Ergebnisse anschließend mit multivariater Statistik 

ausgewertet um neue Einblicke in die wechselseitigen Beziehungen der beiden 

wesentlichen Akteure des Kohlenstoffkreislaufes zu erlangen. 

Die Umsetzung von DOM in Gewässern hoher Breitengrade wurde in den Fjorden 

von Svalbard, Norwegen, untersucht. Die Probennahme fand etwa zwei Monate 

nach den Phytoplanktonblüten statt, die in den Gewässern um die Inselgruppe 

zwischen April und Juni ihr Maximum erreichen. Die Bakteriengemeinschaft, 

beschrieben anhand der denaturierenden Gradienten-Gelelektrophorese (DGGE) 

zeigte je nach Standort und Wassertiefe Unterschiede in ihrer Struktur. 

Ultrahochauflösende Massenspektrometrie (Fouriertransformation Ionenzyklotron-

resonanz Massenspektrometrie, FT ICR MS) ließ keinerlei Unterschiede in der 

molekularen Zusammensetzung des DOM zwischen dem Oberflächenwasser, in 

dem unlängst die Phytoplanktonblüten herrschten, und dem stickstoffreicheren 

Tiefenwasser mit höherem Salzgehalt erkennen. Folglich muss das unlängst neu 

produzierte DOM im kurzen, trotz niedriger Temperaturen aber hochproduktivem, 

Sommer von der Bakteriengemeinschaft umgesetzt worden sein. Das Signal des 
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refraktären DOM, welches in allen Ozeanen der Welt zu finden ist, besteht auch in 

den Wassermassen der Fjorde.  

Diese universale Signatur des Tiefsee-DOM kann durch Transformationsprozesse 

im Laufe tausender Jahre herausgebildet werden. Ob auch mikrobieller Umsatz 

innerhalb weniger Monate oder Jahre DOM einer ähnlichen Zusammensetzung 

hervorbringt, wurde anhand einer Langzeitinkubationsstudie untersucht. Die 

Produktion und der anschließende Abbau des organischen Materials durch eine 

gemischte Bakterien- und Phytoplanktongemeinschaft wurde über einen Zeitraum 

von fast drei Jahren beobachtet und die Zusammensetzung des DOM sowohl anhand 

von Summenparametern als auch auf molekularer Ebene verfolgt. Nach nur einem 

Monat wies das DOM eine hohe molekulare Diversität auf und ein hoher Anteil der 

zugeordneten Summenformeln stimmte mit denen von refraktärem Tiefsee-DOM 

überein. Eine detailliertere Analyse bei der auch die charakteristische 

Intensitätsverteilung des refraktären DOM in den ultrahochaufgelösten 

Massenspektren herangezogen wurde zeigte jedoch, dass maximal 3 µmol C L-1, 

oder 0.2-0.4% der Nettoproduktion der Gemeinschaft, als wirklich refraktäres DOM 

angesehen werden können. Diese Abschätzung liegt in der gleichen Größenordnung 

wie die Raten der globalen Produktion von refraktärem DOM und zeigt so, dass 

biologische Prozesse allein ausreichen um die Größe des refraktären, organischen 

Kohlenstoffreservoirs im Ozean zu erhalten. 

Die Verfügbarkeit des DOM kann einerseits das Vorkommen bestimmter Arten von 

Bakterien einschränken, andererseits können Mikroorganismen die Zusammen-

setzung des DOM durch selektive Aufnahme oder Produktion bestimmter 

Komponenten verändern. Ein Einblick in die Zusammenhänge der molekularen 

Zusammensetzung des DOM und der Struktur der mikrobiellen Gemeinschaft - 

ermittelt anhand von Pyrosequenzierung der 16S rRNA Amplifikate aus RNA- und 

DNA-Extrakten – wurde durch eine dritte Studie ermöglicht. Entlang des 

ausgeprägten Salzgradienten der Nordsee zeigte sich eine hochsignifikante 

Korrelation der molekularen Zusammensetzung des DOM und der Gesamt-

bakteriengemeinschaft (DNA-basiert), die offensichtlich vom Süßwassereintrag an 

den Küsten beeinflusst wurde. Die aktive Bakteriengemeinschaft (RNA-basiert) war 
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weniger deutlich mit der molekularen DOM Zusammensetzung verknüpft und auch 

der Einfluss des Salzgradienten war wesentlich geringer. Die herausgearbeitete 

statistische Herangehensweise kombiniert erstmals Ergebnisse hochauflösender 

Massenspektrometrie mit denen des „next generation sequencing“ und stellt damit 

eine solide Basis für die weitere Auswertung dieser Art von Datensätzen dar. 

Die Ergebnisse der Arbeit lassen insgesamt darauf schließen, dass Mikroorganismen 

eine Schlüsselrolle in der schnellen Umsetzung von frisch produziertem DOM 

spielen, die letztendlich auch die universale Signatur des refraktären DOM-

Hintergrunds der Ozeane herbeiführt.   
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List of Abbreviations 

16S rRNA 16S ribosomal ribonucleic acid 
BPCA Benzenepolycarboxylic acid 
CTD Sonde to determine conductivity, temperature, and depth of the ocean 
DBC Dissolved black carbon 
DBE Double bond equivalent 
DGGE Denaturing gradient gel electrophoresis 
DNA Desoxyribonucleic acid 
DOC Dissolved organic carbon 
DOM Dissolved organic matter 
DON Dissolved organic nitrogen 
EDTA Ethylenediaminetetraacetic acid 
ESI Electrospray ionization 
FDNS Free dissolved neutral sugars 
FT ICR MS Fourier transform ion cyclotron resonance mass spectrometry 
HMW High molecular weight 
HPLC High performance liquid chromatography 
ICBM Institute for Chemistry and Biology of the Marine Environment 
LMW low molecular weight 
m/z Mass to charge ratio 
MC Microbial community 
MF Molecular formulae 
MUC Molecularly uncharacterized component 
NMR Nuclear magnetic resonance 
NPDW North Pacific Deep Water 
NSW North Sea Water 
PC Polycarbonate 
PCA Principal component analysis 
PCoA Principal coordinate analysis 
PCR Polymerase chain reaction 
PEG Polyethylene glycol 
S/N Signal to noise ratio 
SPE Solid phase extraction 
TDN Total dissolved nitrogen 
TEP Transparent exopolymer particles 
THDAA Total hydrolysable dissolved amino acids 
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1 General Introduction 

1.1 Introduction 

The first section provides an overview of the global dissolved organic matter (DOM) 

distribution and summarizes the current state of knowledge in DOM composition. 

Furthermore, the sources and sinks will be discussed to describe the role of DOM in 

the Earth’s biogeochemical cycles. The following section begins with a short 

introduction to molecular microbial community analysis before the linkage between 

DOM and microbial community composition is introduced. The last section 

describes topics presently discussed in the field of DOM research that were touched 

upon in at least one of the studies included in this thesis. 

1.1.1 What is dissolved organic matter? 

Carbon is often termed the building block of life. This seems justified when 

considering that it comprises about half of the total dry mass of living things on 

Earth. But carbon is also abundant in the non-living reservoirs in the Earth’s crust, 

soils and the atmosphere. The global carbon cycle describes the path of carbon-

containing compounds through the atmosphere, continents and oceans. Chemical 

transformations involving plants and microorganisms play an important role in this 

cycle, linking abiotic and biotic carbon pools on different timescales.  

Embedded in this frame of the global carbon cycle, and impossibly considered 

separately, the dissolved organic matter (DOM) in the oceans plays a vital role as 

one of the largest active carbon stocks. With 662 Pg C, it comprises a similar 

amount of carbon as is bound in CO2 in the atmosphere (Hansell et al. 2009; Hedges 

1992), but its composition and role in biogeochemical cycles are far less understood. 

The distribution of dissolved organic carbon (DOC) as a quantitative measure of 

DOM throughout the world’s oceans then again has been studied in increasing 

spatial and temporal resolution since DOM has first been recognized in the literature 
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Reactivity fractions of DOM. The partitioning of DOM into fractions with discrete 

reactivity (Hansell 2013) allows more consideration of the inherent properties of 

DOM. On the downside, the groups are less easily distinguished by analytical 

methods as the classification relies mostly on removal times and relative 

contribution to bulk DOC. The reactivity of organic molecules in the ocean ranges 

from labile compounds that are turned over within minutes to days, to the most 

refractory compounds that persist for millennia (Fig. 3). Small amino acids, sugars, 

and short-chain fatty acids are easily taken up by bacteria and mostly escape 

analytical detection due to their short residence times. Semi-labile DOM is mostly 

present in surface waters for several months up to 1.5 years in the euphotic zone 

above a seasonal pycnocline. Semi-refractory DOM is stable for about 20 years and 

generally observed in the upper ocean layer (0-1000 m), but its production and 

removal processes are largely unknown. While the labile and semi-refractory 

fractions occur almost exclusively at water depths above 1000 m, refractory and 

ultra-refractory DOM are ubiquitously distributed in the ocean. With ~630 Pg C, the 

refractory DOM pool accounts for the largest fraction. The lifetimes of single 

compounds in this pool may exceed 16,000 years and thus surpass the circulation 

time of the ocean several times. The bulk age has been determined to vary between 

4,000 to 6,000 years due to mixing of compounds of different ages (Bauer et al. 

1992; Williams and Druffel 1987). Recently, the ultra-refractory DOM which 

persists for ~40,000 years was differentiated as the least reactive carbon fraction 

(Dittmar et al. 2012; Dittmar and Paeng 2009). Evidence exists that this kind of 

DOM is formed during the combustion of biomass on land (Jaffé et al. 2013) or may 

be formed during burial in deep ocean sediments, representing a link to the inactive 

carbon pools such as kerogen (Killops and Killops 1993), that undergo only small 

changes on geological timescales. 

 

 

 

 



G
 

 

F
t

Co

mo

cy

sh

pr

et 

ac

qu

co

Sk

cy

an

am

mo

co

Th

General Introd

Fig. 3. Conce
the decay of
fraction of 

ompound c

olecular lev

ycles. Bulk c

hown that su

eferentially

al. 1993). 

cids, carboh

uota, can b

omposition. 

koog and Be

ycling. On th

nd Middelbu

mino acids 

ore or les

ombined neu

he sugars ar

duction  

eptual schem
f freshly rele
f DOC accum

classes in D

vel is needed

chemical ch

urface wate

y decompose

In more d

hydrates an

be quantifie

This fractio

enner 1997)

he basis of 

urg 1998) c

that vary in

s effective

utral sugars

re produced

me illustratin
eased DOC 
mulates in th

DOM. Ulti

d to underst

haracterizati

er is usually

ed (Hopkin

detail, mole

d fatty acid

ed with che

on rarely ex

), but provid

amino acid

can be calcu

n nitrogen 

ly used by

s provide in

d by phytop

ng the age d
(green). Mo
he ocean ove

2014). 

imately, ch

tand its path

ion, e.g. the

y enriched i

nson et al. 1

ecularly def

ds, represe

emical met

xceeds 30%

des valuable

s, for exam

ulated using

content, siz

y microorg

nformation 

plankton at 

distribution 
ost DOC is q
er thousand

hemical cha

hways throu

e C/N ratios

in organical

997; Loh a

fined buildi

nting most

thods due 

% of bulk DO

e insight int

mple, a degra

g the relativ

ze or funct

ganisms. S

about the 

the sea surf

of marine D
quickly cons
ds of years (f

aracterizatio

ugh global b

 of differen

lly bound N

nd Bauer 2

ing blocks 

ly the labil

to their kn

OM (Mccar

to the early 

adation state

ve contribut

tional group

imilarly to

diagenetic 

face where 

 

DOC (blue) a
sumed, a sm
from Dittma

on of DOM

biogeochem

nt fractions h

N which is 

2000; Sambr

such as am

le, bioavail

nown struc

rthy et al. 1

stages of D

e index (Da

utions of sev

ps and are 

o amino ac

state of D

enough lig

13 

and 
mall 

ar 

M on 

mical 

have 

then 

rotto 

mino 

lable 

tural 

996; 

DOM 

auwe 

veral 

thus 

cids, 

OM. 

ght is 



14 General Introduction 
 

available and then are readily used by heterotrophs (Amon and Benner 2003). So 

far, little is known about fatty acids in DOM, but it has been shown that they provide 

information about the source of the DOM since they are important constituents of 

bacterial membranes, especially in Gram negative species (Wakeham et al. 2003). 

The fact that specific DOM compounds can be traced back to their origin reveals 

their high biomarker potential (Mccallister et al. 2006). This is also true for lignin 

phenols: rivers do not only supply nutrients, but also terrigenous organic matter to 

the oceans. A special case is the Arctic Ocean, which, despite its small size, receives 

10% of the global freshwater input (Benner et al. 2005). The lignin phenol 

concentration and composition, an unambiguous marker for vascular plant material, 

were traced by Hernes and Benner (2006) from the Arctic through the Atlantic into 

the Pacific and decreasing concentrations hint towards diagenesis and mixing of 

these compounds. In the North Atlantic, these compounds account for 1 to 2% of the 

bulk DOC concentration. Moreover, black carbon, a product of incomplete 

combustion, has for a long time only been recognized as an important component of 

soil particulate organic matter. Marine dissolved black carbon (dBC) has now been 

recognized to contribute to ultra-refractory DOM (Hansell 2013) and is thought to 

account for about 10% of the global riverine DOC flux (Jaffé et al. 2013). 

However, the oceanic DOM pool also includes thousands of compounds that are of 

unknown structural composition and whose diversity exceeds the resolving power of 

established methods (Dittmar et al. 2007; Woods et al. 2011). The combination of 

desalting and concentration methods such as solid phase extraction (SPE, Dittmar et 

al. 2008), ultrafiltration (Benner et al. 1992) or reverse osmosis coupled with 

electrodialysis (RO/ED, Vetter et al. 2007) of seawater with ultrahigh resolution 

mass spectrometry, namely Fourier-transform ion cyclotron resonance mass 

spectrometry (FT ICR MS), has made it possible to address the composition of the 

“molecularly uncharacterized component” (MUC, Loh et al. 2006) in natural waters. 

Several compounds of different elemental composition can now be resolved per 

nominal mass and the high resolution and mass accuracy enable the assignment of 

molecular formulae to thousands of peaks per sample employing the mass defect 

(Fig. 4). DOM compounds consist mainly of combinations of the elements C, H, N, 
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functional groups (Liu et al. 2011; Witt et al. 2009). Nuclear magnetic resonance 

(NMR), in combination with FT ICR MS, is a very suitable addition to the in depth 

characterization of DOM since it can provide information about key structural 

components in a sample (Mopper et al. 2007). Using this combined approach, 

Hertkorn et al. 2013 found for example that surface Atlantic Ocean DOM contains 

fewer methyl esters than the deep waters and that carboxylic acids and ketones 

increase with depth.  

The beneficial combination of all available chemical analytical methods, from bulk 

parameters over molecular composition to the point of structure determination has 

led and will continue to lead to an improved understanding of the marine DOM 

composition, which in turn is the base for the reconstruction of biogeochemical 

cycles. 

1.1.2 Sources and sinks of DOM 

DOM sources - autochthonous production. The dominant source of DOM in the 

ocean is photosynthesis in the euphotic zones (Baines and Pace 1991; Fogg 1983; 

Pomeroy 1974). Photoautotrophic organisms take up CO2 and H2O to build organic 

compounds using the energy from light. Organic carbon compounds derived from 

chemoautotrophic fixation in the deep ocean also contribute to the autochthonous 

DOM production, but are less explored and presumably amount to less than 1 Pg C 

yr-1 (Middelburg 2011). Overall, 45 to 50 Pg C are fixed by phytoplankton, which in 

its biomass only comprises roughly 1 Pg C, every year (Carr et al. 2006). Much of 

this organically bound carbon is needed for respiration, so that the net uptake of CO2 

comes out at only 2±1 Pg C yr-1. According to Ducklow and Carlson (1992), about 

50% of the carbon fixed by phytoplankton then reaches the DOM pool through 

various processes: Phytoplankton may use the carbon that is not needed to sustain 

their metabolism for cell growth or reproduction. Excess carbon is released by the 

cells at variable rates depending on community structure, environmental conditions 

or physiological state (Fogg 1983; Myklestad 1995; Wetz and Wheeler 2007). DOM 

is furthermore released through the grazing by zooplankton - sloppy feeding, 
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excretion and egestion release DOM in the environment during the process (Jumars 

et al. 1989; Nagata and Kirchman 1992). Bacterial or phytoplankton cell lysis due to 

viral infection and bacterially induced phytoplankton lysis are additional factors 

contributing to DOM production (Lonborg et al. 2013). POM and larger DOM 

molecules are effectively broken down by bacterial ectoenzymes and then released 

as DOM (Arnosti et al. 2011; Smith et al. 1995).  

DOM sources - allochthonous input. Most of the allochthonous carbon reaches the 

ocean by riverine inflow, groundwater discharge or wet and dry atmospheric 

deposition.  

DOM is released from particulate organic matter by leaching processes in the soil 

system or within the water column, which is accompanied by fractionation processes 

such as the sorption to mineral surfaces (Hedges et al. 1994). By the time the DOM 

reaches the ocean, it carries a distinct terrigenous signature including a high C/N 

ratio, a stable carbon isotopic composition with low δ13C values and relatively high 

concentrations of lignin phenols as unambiguous tracers of vascular plant material 

(Lobbes et al. 2000). The world’s rivers discharge about 0.4 Pg C yr-1 in dissolved 

and particulate form into the oceans (Schlesinger and Melack 2011). Roughly half of 

this is contributed in the form of DOM (0.25 Gt C yr-1, Cauwet 2002; Hedges et al. 

1997) Compared to the marine primary production, this input is small, but may 

provide an important carbon source for bacteria in the pelagic zones (Tranvik 1992). 

However, also large amounts of highly degraded, nitrogen-poor remains of 

terrestrial organisms (Hedges et al. 1997) and black carbon (Jaffé et al. 2013), 

representing recalcitrant DOM fractions enter the ocean via the rivers.  

Generally, submarine groundwater discharge represents a diffuse flow and is as such 

not easily quantified. The current lack of knowledge is illustrated by a global 

estimate of the amount of water transported via these systems that ranges from 0.01 

to 10% of the surface runoff (Taniguchi et al. 2002), spanning three orders of 

magnitude. One of the few studies tracing the contribution of DOC by the diffuse 

input was conducted by Kim et al. (2012), who were able to show that the 
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subterranean estuary of Hampyeaong Bay, Korea is indeed a net source of DOC, 

introducing 2 to 5×109 g C yr-1 into the bay.  

Atmospheric dust deposition is mainly regarded as a source of minerals and trace 

metals to the ocean (Lawrence and Neff 2009). That organic carbon deposition may 

also be of ecological relevance has so far only been recognized for C-limited alpine 

catchments, where amount of carbon inputs via wet and dry deposition similar to the 

C contribution from microbial autotrophic production in barren soils have been 

reported (Mladenov et al. 2012). The analysis of a particular form of wet deposition, 

the hailstones, revealed the existence of diverse DOM with low fractions of easily 

biodegradable compounds such as carbohydrates or lipids (Šantl-Temkiv et al. 

2013). 

DOM sinks – the biological pump. The biological pump describes the ocean’s 

mechanism of biologically driven carbon sequestration (Sigman and Haug 2003; 

Volk and Hoffert 1985). Atmospheric CO2 is dissolved in the surface ocean and 

through deep water formation at high latitudes transported into the ocean interior 

(Fig. 5). Primary producers take up the reduced carbon in the photic zones for use in 

photosynthetic processes and divert it to organic matter at a ratio of C:N:P of 

106:16:1, the Redfield ratio (Redfield 1934). The organisms and non-living particles 

may stay in the euphotic zone or slowly sink through the water column, 1 to 40% of 

them reaching the dark ocean (Herndl and Reinthaler 2013). On their way, they are 

slowly degraded by heterotrophic organisms or form larger aggregates, that way 

increasing their sinking velocity and escaping degradation. Once the organic matter 

arrives at the sea floor, most of the carbon will have been consumed by 

microorganisms, and remineralization will have released nutrients that can then 

again be used by primary producers. Only 1% of the global primary production will 

be buried in the sediments and remain there for thousands of years. Embedded 

within the biological pump, the microbial loop (Azam et al. 1983) describes the 

return of mainly phytoplankton-derived DOC into the food chain and through the 

uptake by bacteria and incorporation into biomass. The bacteria are in turn 

consumed by zooplankton, which serves as nutrition for higher trophic levels.  



G
 

 

Fi
a

 

DO

mi

co

als

ha

19

et 

dif

of 

int

the

pr

su

Sa

General Introd

ig. 5. The bio
atmosphere 

solar energ
heterotrop

column c

OM sinks –

ineralization

oncentration

so render th

ave shown a

990; Moran 

al. 1996) o

fferent conc

f solar rad

terconnecte

e productio

ocess leadin

uch as aggre

atterberg et 

duction  

ological pum
to the ocean

gy. The POC
phic microbe
onverts the 

– abiotic p

n of DOM 

n at the oce

he susceptib

an enhanced

and Zepp 

or no effect 

clusions fro

diation on 

ed processes

on of refrac

ng to the re

egates and 

al. 2003). T

mp describes
n interior. P
C is grazed o
es. Reminer
organic car

R

processes. P

to CO2 (M

an’s surface

bility of DO

d degradabil

1997), the p

on DOM co

om these stu

DOM is 

s, such as th

ctory DOM

emoval of D

diatom fru

These proce

s the microb
Phytoplankt
on by herbiv
alization of 

rbon back to
Reinthaler 20

Photochemi

Mopper et a

e especially

OM to biolog

lity by micr

production 

oncentratio

udies and e

rather com

he coupling

M (Tranvik 

DOM is the

ustules or to

esses are pr

bially media
ton in the eu
vorous zoop
organic ma

o carbon dio
013) 

cal process

al. 1991) an

y at low lat

gical transfo

robes after U

of more ref

n at all (Th

experiments

mplex and 

g of UV rad

and Kokalj

e sorption t

o mineral s

obably of h

ated flux of c
uphotic zone

lankton or c
tter in the o

oxide (from H

ses may lea

nd thus dec

itudes. UV 

ormation. D

UV exposur

fractory DO

homas and L

suggest tha

may cons

iation and h

j 1998). A 

to either bio

surfaces (K

highest impo

 

carbon from
e fix CO2 usi
consumed b

oceanic wate
Herndl and

ad to the d

crease the D

excitation 

Different stu

re (Kieber e

OM (Nagan

Lara 1995). 

at the influ

sist of sev

humic matt

second ab

ogenic part

Keil et al. 1

ortance in a

19 

m the 
ing 
by 
er 
 

direct 

DOC 

may 

udies 

et al. 

numa 

The 

ence 

veral 

er in 

iotic 

icles 

994; 

areas 



20 General Introduction 
 

of extensive phytoplankton blooms close to the coast and in sediments, where 90% 

of the DOM are immediately scavenged by minerals (Keil et al. 1994). Adsorption 

to biogenic particles that then sink through the water column leads to rapid burial in 

the ocean where the aggregated DOM is then only slowly degraded. Adsorption to 

minerals physically protects DOM from bacterial uptake because it may enclose the 

DOM in pores smaller than 10 µm (Mayer 1994), too small to allow the functioning 

of hydrolytic enzymes. 

1.1.3 Linking DOM and microorganisms 

Culture-independent methods in molecular microbial community analysis. 

Microorganisms dominate the biosphere, totaling up to 4 to 6×1030 prokaryotic cells 

(Whitman et al. 1998). Hence, they represent key players in the recycling of 

elements and nutrients, while their genetic diversity is largely unexplored. Culture-

based methods currently capture less than 1% of the community (Hugenholtz 2002). 

Over the last decades molecular, culture-independent methods that are based on the 

comparative analysis of rRNA gene signatures, especially of the highly conserved 

16S rRNA gene, have advanced. In the following, only the denaturing gradient gel 

electrophoresis (DGGE) fingerprinting and next-generation sequencing 454 

pyrosequencing approaches will be exemplified as they are most relevant to the 

work contained in this thesis. 

Usually, DNA or RNA is extracted from an environmental sample and the gene 

region of interest is amplified via a polymerase chain reaction (PCR, Mullis and 

Faloona 1987). The PCR products can then directly be submitted to genetic 

fingerprinting methods such as DGGE. The DNA templates, amended with a 5’-GC 

clamp to prevent complete cleaving of the DNA strand, are electrophoresed on a 

polyacrylamide gel containing a linear gradient of a DNA denaturant. The 

nucleotide sequence of the DNA determines their melting behavior and the 

amplicons cleave and stop migration at different positions in the gel (Fig. 6, Muyzer 

et al. 1993). The gel is then stained, photographed and the fingerprints of the 

samples compared using computer-based clustering methods. Furthermore, single 
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high throughput pyrosequencing and metatranscriptome analyses and ultrahigh 

resolution mass spectrometry have provided new opportunities to study the 

interactions in situ.  

The diversity of pelagic bacteria is strongly correlated to latitude and temperature, 

weaker correlations were detected to productivity-related parameters based on the 

analysis of 103 globally distributed community fingerprints (Fuhrman et al. 2008). 

At a much higher resolution based on more than 500 samples throughout various 

environments, distinct communities were detected for surface, deep water, coastal, 

open ocean and benthic habitats, confirming latitudinal trends and unraveling 

vertical trends (Zinger et al. 2011). But even on the smaller scales of an estuary, a 

succession of the microbial community succession could be followed along the 

salinity gradient (Crump et al. 2004; Fortunato et al. 2012). From Arnosti et al. 

(2011) we learn that a latitudinal gradient not only exists for the microbial 

communities, but is also reflected in the range of complex substrates that are 

available and degradable by the respective community. Most studies, however, focus 

on trends in DOM composition over the seasonal variation or the change in DOM 

lability with depth. The annual new production in the photic zone leads to an 

increased DOC concentration in the upper water layers (Carlson et al. 1998; Jiao and 

Zheng 2011; Ogawa and Tanoue 2003) and the more recently produced DOM can 

be distinguished from aged DOM by established methods such as the amino acid 

composition (Dauwe and Middelburg 1998) or radiocarbon dating (Flerus et al. 

2012). 

Although DOM and microbial community composition have no essential need to 

correlate due to the high genetic potential of the bacterial populations (Wilmes and 

Bond 2009) and the capability to perform lateral gene transfer (Cottrell et al. 2000), 

studies nevertheless suggest an important coherence. The amount of bioavailable 

DOM fuels the microbial diversity (Landa et al. 2013), but also the composition of 

the DOM plays a role. According to Pinhassi et al. (1999), a shift in microbial 

community composition occurred in incubation experiments after the addition of 

protein. Similarly, Kirchman et al. (2004) report that DOM from different sources 
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can affect the abundance of major bacterial groups (Alphaproteo-, Betaproteo-, 

Gammaproteo-, Cytophaga-like bacteria), which in turn have different capabilities 

to impact DOM hydrolysis. This phenomenon has also been observed in situ – 

Bacteroidetes, Gammaproteobacteria and Alphaproteobacteria consecutively 

constituted the most abundant bacterial taxa during the degradation of organic 

matter after an algal bloom (Teeling et al. 2012). Alphaproteobacteria, especially 

the ubiquitous SAR11 clade, seem to be well adapted to the uptake of amino acids 

and sugars (Malmstrom et al. 2004), while e.g. Archaea assimilate L-aspartic acid 

faster than Bacteria (Teira et al. 2006). 

Over the last decades, the understanding of microbe-DOM interactions have greatly 

improved and continue to deepen, but we still need to learn more about the detailed 

relationships on molecular level, and on both sides – the microbial community and 

the DOM composition. One of the most prominent examples of our lack of 

knowledge and need of further research is the fact that huge amounts of carbon 

reside in the DOM pool for thousands of years in the deep ocean and are not 

metabolized by the microorganisms, in spite of containing a perfectly suitable 

substrate including essential elements like C, H, O, N, P, and S. A disruption of the 

balance of carbon bound in CO2 and fixed in organic matter through an increase in 

DOM uptake by 1% would yield a CO2 flux into the atmosphere equal to the annual 

global CO2 emission by fossil fuel combustion – a process with unknown impact on 

the global carbon cycle (Nagata 2008). 

1.1.4 Current issues in DOM research 

Researchers have over the last century recognized the high significance of DOM for 

the global carbon cycle and gained insight into most major sources and sinks. The 

detailed mechanisms behind DOM cycling and pathways through the oceans, 

however, remain to be unraveled. 

Stability of DOM. Most of the organically bound carbon dissolved in the oceans 

resides in the DOM pool for thousands of years and is not metabolized by the 
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microbes (Hansell 2013), despite the limited nutrient supply in the deep ocean. A 

role of microorganisms in the formation of this refractory material is assumed, but 

do they also play a role in its removal? Dittmar (2014) summarized mechanisms that 

might be, also in combination, responsible for the long-term stability of the oceanic 

DOM. The lack of essential minerals needed during the degradation may hinder the 

uptake (Kritzberg et al. 2010), or the molecules may possess an intrinsic stability 

protecting them from metabolization (Jiao et al. 2010). Furthermore is it possible 

that the diversity of the single compounds is too high (Dittmar and Paeng 2009; 

Hertkorn et al. 2007) and their respective concentrations too low to induce metabolic 

pathways. Abiotic processes such as photochemically induced transformations, 

adsorption to particles and burial in sediments have not yet been excluded as 

possible sinks of refractory DOM. Because of the long timescales and low changes 

in concentrations, these processes can hardly be studied under controlled laboratory 

conditions using marine DOM. Evidence of refractory, high molecular weight DOM 

turnover involving the addition of a labile substrate have however been obtained 

from lake DOM incubations (Geller 1985). 

Quantification and structure determination. The advent of ultrahigh resolution 

techniques has brought the characterization of the complex mixture that is natural 

DOM a huge step forward. One disadvantage of the ultrahigh resolutions mass 

spectrometry via ESI FT ICR MS is its semi-quantitative nature. The use of internal 

standards is difficult due to the complex matrix as well as unknown influences on 

the ionization and thus so far not established for this method. However, the 

quantification of metabolites through the addition of isotopically-labeled internal 

standards has been successfully applied (Han et al. 2008). Moreover, FT ICR MS 

does not provide information on the structure of a compound, which may be crucial 

for the possible microbial uptake of the molecule (Onumpai et al. 2011). One 

molecular formula may represent thousands of structures with a characteristic 

distribution over environments (Hertkorn et al. 2013; Hertkorn et al. 2007), a 

diversity that remains hidden so far.  
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Fate of terrigenous DOM. Every year, 0.25 Pg C reach the world’s oceans via 

rivers (Cauwet 2002). This DOM, despite its high molecular compliance with 

marine DOM (Koch et al. 2005), is generally regarded as more degraded and carries 

lignin-derived phenols as a tracer of vascular plant-derived material (Opsahl and 

Benner 1997). However, only traces of lignin phenols can be detected in most main 

water masses and the calculated residence times are rather short compared to bulk 

DOM. There is some evidence that riverine DOM provides valuable nutrients to 

otherwise potentially nutrient limited microbial communities in coastal zones 

(Tranvik 1992), but this factor is not sufficient to explain its ephemerality. 

Terrigenous DOM is usually more aromatic and thus more susceptible to 

photodegradation – which again does not provide an explanation for the terrigenous 

DOM turnover in the Arctic Ocean where the solar irradiation is low (Benner et al. 

2005). The overall distribution and reactivity of terrigenous DOM, especially the 

potential microbially mediated turnover, need to be studied in more detail to 

understand its fate.  

Environmental “omics” and synthesis of datasets. High throughput sequencing 

methods such as 454 pyrosequencing (Elahi and Ronaghi 2004) enable the large-

scale characterization of microbial communities, which in combination with meta-

transcriptome and -proteome studies allow the inference of the function of the 

community (Grossart 2011). Through these techniques, the microbial community 

can be analyzed at a resolution similar to or even superior to the molecular analysis 

of DOM via FT ICR MS. The generation of data is now possible, but the 

bioinformatics tools to intelligibly evaluate (Bakker et al. 2012) and combine the 

huge datasets in order to obtain the best possible knowledge are still in their infancy.  
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1.2 Objectives and outline of this thesis 

The aim of this PhD work is the elucidation of the origin and fate of DOM in the 

ocean on molecular level. Specifically, the present study addresses the following 

questions regarding marine DOM: 

 What is the diversity and composition of marine DOM on molecular level? 

 What are the sources and sinks of refractory DOM? 

 Can we trace terrigenous DOM input to the ocean? 

 Which role do microorganisms play in the production and reshaping of the 

DOM pool? 

 Can we identify common trends between microbial community and DOM 

molecular composition and identify key players? 

Chapter 2 focuses on the fast turnover of DOM produced during the spring and 

summer phytoplankton blooms during the short productive season in the high Arctic. 

Chapter 3 describes a long-term laboratory incubation study, which followed the 

production and subsequent degradation of DOM on molecular level. Chapter 4 

examines possible links between DOM and microbial community composition 

within the salinity gradient of the North Sea and introduces statistical methods to 

handle complex data sets. 
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1.3 Contributions to publications 

This thesis includes the complete version of one published manuscript (chapter 2). 

Chapter 3 and Chapter 4 each include manuscripts in a form ready for submission. 

The content of the published manuscript is unchanged but the style adapted to the 

format of this thesis. 

Chapter 2 - Molecular evidence for rapid dissolved organic 

matter turnover in Arctic fjords (published manuscript) 

Helena Osterholz, Thorsten Dittmar, Jutta Niggemann 

The study was initiated and designed by J.N. and T.D.. H.O. and J.N. carried out 

field work and sample preparation. H.O. performed all microbiological analyses and 

ultrahigh resolution mass spectrometry, J.N. did dBC analysis. All data analysis 

including statistical analysis was done by H.O., advised by J.N. and T.D.. All 

authors contributed to data interpretation and general discussion. H.O. wrote the 

manuscript with input from J.N. and T.D.. 

published in Marine Chemistry, vol 160, pages 1-10, doi: 10.1016/j.marchem. 

2014.01.002 

Chapter 3 – Do marine microorganisms really produce 

refractory dissolved organic matter? (manuscript in preparation) 

Helena Osterholz, Jutta Niggemann, Helge-Ansgar Giebel, Meinhard Simon, 

Thorsten Dittmar 

TD, JN, HO and MS conceived the study, HO performed all analyses and data 

handling. HAG performed flow cytometric analysis and enumeration of 

microorganisms. All authors contributed to data interpretation. HO wrote the 

manuscript with significant input from all coauthors. 
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This manuscript is intended for submission to Nature and therefore prepared in the 

journal’s style.  

Chapter 4 - Terrigenous input and microbial processing - 

driving forces of dissolved organic matter composition in the 

North Sea (manuscript in preparation) 

Helena Osterholz, Gabriel Singer, Jutta Niggemann, Meinhard Simon Thorsten 

Dittmar 

This manuscript includes data acquired during RV Heincke cruise 361 by the 

participants from the ICBM. H.O. took the samples for DOM characterization and 

performed FT-ICR-MS analyses. G.S. provided expertise in multivariate analyses 

combining microbial community and DOM datasets. J.N. and T.D. aided with data 

evaluation and interpretation. H.O. wrote the manuscript with editorial input from all 

co-authors. 

The manuscript is intended for submission to The ISME Journal. 
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2.1 Highlights 

 DOM produced during spring and summer plankton blooms is efficiently 
recycled. 

 Autochthonous production does not leave persistent imprint in Arctic DOM 
pool. 

 In late summer, DOM concentration in Svalbard fjords was uniformly low. 

 Molecular DOM composition was indistinguishable among locations and 
water depths.  

 Microbial community composition changed with location and water depth. 

2.2 Abstract 

Dissolved organic matter (DOM) in the ocean comprises one of the largest active 

carbon pools on earth. Deep water formation at high latitudes carries DOM from the 

active surface layers to the deep ocean. However, information on sources and fate of 

DOM in the Arctic Ocean is limited. To reveal the relevance of autochthonous DOM 

production and transformation in Arctic fjord systems to the global deep ocean 

DOM pool, we performed a comprehensive study on the molecular composition of 

DOM and the composition of the associated microbial communities in four selected 

fjords of Svalbard. At various water depths, a total of 34 samples were taken in fall 

2010 for the determination of bulk concentrations of dissolved organic carbon 

(DOC) and total dissolved nitrogen (TDN), for the molecular characterization of 

solid-phase extractable DOM as well as for microbial community fingerprinting. 

While TDN concentration and the composition of the microbial community showed 

a clear distinction between surface and bottom water samples, bulk DOC (~60 µmol 

C L-1) and dissolved black carbon (~1.8% of DOC) as a marker for terrestrial input 

were uniformly distributed. In-depth molecular-level analyses of the DOM 

composition using ultrahigh resolution mass spectrometry via Fourier-transform ion 

cyclotron resonance mass spectrometry (FT-ICR-MS) revealed insignificant 

variation of the relative abundance of 11630 molecular masses that were detected in 

the water samples. 
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From these findings we conclude that DOM produced during the spring/summer 

bloom is rapidly transformed within the short, but productive warm season by the 

specialized resident microbial community. Thus, in fall the DOM pool mainly 

consists of semi-refractory and refractory material, most of which has been 

introduced from Arctic Ocean water inflow. Assuming that our findings are 

representative for high latitude marine systems in general, the contribution of 

autochthonous seasonal DOC production in plankton bloom situations to the DOC 

pool in regions of deep water formation might be marginal. 

2.3 Introduction 

Marine dissolved organic matter (DOM) comprises one of the largest active carbon 

pools on earth, similar in size to atmospheric CO2 or all land plant biomass (Hedges 

1992). The global oceanic net primary production is estimated at 50 Gt C per year 

(Hedges 1992; Williams and Druffel 1987). A significant fraction of the fixed 

carbon is transferred to the DOM pool, where it is readily remineralized by 

microorganisms within the microbial loop (Azam 1998; Jiao et al. 2010; Pomeroy 

1974) or channelled into the deep ocean, where it resides for hundreds to thousands 

of years. 

Hansell (2013) divided the oceanic DOM pool into five fractions with distinct 

lifetimes along a continuum of reactivity starting with labile DOM that is removed 

within hours to days and thus does not accumulate in seawater. The observable, 

recalcitrant DOC fractions are further distinguished as semi-labile DOM with 

turnover times between months and years, which can be followed as seasonal DOC 

variation in the surface ocean, semi-refractory DOM with a model lifetime of about 

20 years, refractory DOM with a model lifetime of 16,000 years, and the ultra-

refractory DOM with a lifetime of around 40,000 years. Most DOC is retained in the 

refractory DOM pool in the deep ocean, comprising ~630 Gt carbon. The reasons 

why so much DOM escapes the microbial respiration even though it constitutes the 

major carbon and energy resource to support bacterial life are not yet well 

understood (Dittmar and Paeng 2009; Jiao et al. 2011).  
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For a long time, focus in DOM research has been on the analysis of selected 

compound classes in DOM, e.g. amino acids, carbohydrates (Amon et al. 2001), 

lignin (Opsahl et al. 1999) or dissolved black carbon (DBC, Dittmar 2008). Together 

these groups account for only ~5% of the total DOM, however, thus ignoring the 

major share. Only recent advances in technology, especially of ultrahigh resolution 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), have 

made it possible to molecularly characterize the compounds making up this huge 

DOM reservoir on a molecular level. Combined with soft electrospray ionization 

(ESI), intact polar molecules can be analysed, and the high mass accuracy allows for 

the assignment of molecular formulae to >70% of the tens of thousands of detected 

peaks per sample (Stenson et al. 2003). Previous research on the molecular 

composition of DOM by FT-ICR-MS revealed a universal fingerprint consisting of 

apparently biologically refractory compounds that is found all over the world’s 

oceans (Dittmar and Paeng 2009; Flerus et al. 2012). Other examples of successful 

FT-ICR-MS applications include the differentiation of terrigenous and marine DOM 

(Koch et al. 2005), the characterization of biodegradable DOM in rivers (Kim et al. 

2006), the identification of possible source markers for photodegradation and 

bacterial alteration (Kujawinski et al. 2009), and the tracing of the age of bulk 

marine DOM by combining FT-ICR-MS measurements with radiocarbon age 

determination (Flerus et al. 2012). 

The Arctic is, besides the Southern Ocean, a major site of ocean deep water 

formation (Rudels and Quadfasel 1991). Thus, Arctic waters are a major source of 

DOM to the deep ocean (Amon et al. 2003), but reports on DOM concentration and 

especially composition in the Arctic Ocean are scarce. Previous studies focused on 

input and distribution of terrigenous DOM by the major Russian and Canadian rivers 

(e.g. McClelland et al. 2012). Here, in order to reveal the relevance of 

autochthonous DOM production and transformation in Arctic fjord systems, we 

performed a comprehensive study on the molecular composition of DOM and the 

composition of the simultaneously sampled microbial community in four fjords of 

Svalbard. The archipelago of Svalbard is located in the high Arctic between 76 and 

81° north latitude and 10 to 30° east longitude (Fig. 1). The fjords on the western 
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coast are influenced by Atlantic and Arctic water masses and the glacial meltwater 

inflow at their heads (Hop et al. 2002). Among them, the Kongsfjorden ecosystem is 

the best-studied area with respect to phytoplankton dynamics, microbial 

communities and oceanography (Cottier et al. 2005; Hop et al. 2002; Iversen and 

Seuthe 2011; Svendsen et al. 2002).  

Anthropogenic influence on the remote ecosystem of Svalbard is marginal, and the 

fjord water masses are well stratified (Svendsen et al. 2002). Thus, Svalbard fjords 

are ideal model systems to study the differences between fresher surface water that 

has recently experienced primary production and the older bottom waters. We 

hypothesized that glacial meltwater input and phytoplankton blooms affect surface 

water DOM composition and the resident microbial community, and that this 

imprint is clearly distinguishable when compared to bottom waters. In order to 

characterize the molecular composition of the fjord DOM, we applied ultrahigh 

resolution mass spectrometry via FT-ICR-MS. In addition, dissolved black carbon 

(DBC) was quantified as a molecular marker to assess land-derived DOM, which 

has been shown to carry a universal thermogenic imprint worldwide (Jaffé et al. 

2013). Surface and bottom water microbial communities were characterized by total 

bacterial cell counts using flow cytometry and fingerprinting via denaturing gradient 

gel electrophoresis (DGGE). 

2.4 Materials & Methods 

Site description and sampling. During the field campaign (August 28 to September 

5, 2010), the water masses of four fjords on the west coast of Svalbard, Norway, 

were sampled (Table 1, Fig. 1). Vertical profiles of temperature and salinity were 

recorded by a CTD (Seabird MicroCAT-SBE-37) for three stations per fjord located 

on transects from fjord head towards the ocean. Three to four water depths were 

chosen at each station based on the CTD profiles: surface water was taken with a 

bucket, intermediate water samples from the pycnocline and deep water samples 

close to the bottom were retrieved with a 4 L Niskin bottle. Subsamples for total cell 

counts were preserved with glutaraldehyde (25%, Carl Roth, Germany) at a final 
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Table 1: Sampling sites by fjord, station name, coordinates, water depth, depth 
group, temperature and salinity of sampled waters. 

 

Fjord Station Coordinates 
Depth 

[m] 
Depth Group 

Temperature 
[°C] 

Salinity 

Van  
Keulenfjord 

HA 77°32.02 N 
15°50.31 E 

 

0 
4 

20 

surface 
intermediate 

deep 

1.5 
1.5 
1.2 

31.6 
32.4 
32.8 

 AC 77°33.29 N 
15°39.29 E 

 

0 
5 

40 

surface 
intermediate 

deep 

1.8 
1.9 
0.7 

27.0 
27.4 
33.3 

 AB 77°35.19 N 
15°05.24 E 

 

0 
5 

86 

surface 
intermediate 

deep 

3.2 
2.6 
0.5 

32.6 
33.0 
33.8 

Van  
Meijenfjord 

AH 77°45.75 N 
15°03.23 E 

 

0 
5 

60 
108 

surface 
intermediate 
intermediate 

deep 

4.3 
3.5 
1.0 
-1.2 

29.9 
31.5 
32.8 
33.5 

Kongsfjord Q 78°59.43 N 
12°17.87 E 

 

0 
10 
40 

surface 
intermediate 

deep 

1.2 
1.1 
0.8 

32.0 
32.1 
33.3 

 F 78.54.97 N 
12°16.04 E 

 

0 
8.5 
69 

surface 
intermediate 

deep 

2.2 
2.2 
0.1 

30.3 
30.4 
33.8 

 P 78 54.47 N 
12 10.16 E 
 

 

0 
5 

57 

surface 
intermediate 

deep 

1.3 
1.3 
-0.4 

30.9 
31.8 
33.8 

 HB 79°02.09 N 
11°42.12 E 
 

 

0 
4.5 
195 

surface 
intermediate 

deep 

3.5 
3.9 
1.2 

31.0 
32.1 
34.0 

Smeerenburg- 
fjord 

GK 79°38.49 N 
11°20.97 E 

 

0 
12 

165 

surface 
intermediate 

deep 

2.7 
2.6 
1.8 

32.9 
33.3 
33.8 

 J 79°42.74 N 
11°05.19 E 

 

0 
8 

200 

surface 
intermediate 

deep 

2.9 
2.9 
1.0 

33.7 
33.2 
33.7 

 GN 79°45.08 N 
11°05.18 E 

 

0 
20 

181 

surface 
intermediate 

deep 

3.0 
2.8 
0.7 

31.0 
33.4 
33.7 

 

Microbial community analysis (DGGE). Samples taken in Smeerenburgfjord and in 

van Keulenfjord were prepared for microbial community analysis. 500 mL of 

seawater were filtered through 3 µm polycarbonate (PC) filters (Millipore, USA) to 

retain the particle-associated bacteria. Of this filtrate, 250 mL were passed through 

0.2 µm PC filters (Millipore, USA) to retain the free-living microbial community. 

The filters were stored frozen at -20°C. The DNA extraction procedure was 

modified after Zhou et al. (1996). The bacterial primer set 907R (5´- CCG TCA 
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ATT CM TTT GAG TTT - 3´) and GM5F (5´- (CGC CCG CCG CGC CCC GCG 

CCC GTC CCG CCG CCC CCG CCC G)-CC TAC GGG AGG CAG CAG - 3´, 

both MWG Biotech, Germany) was used for amplification of 16S rRNA gene 

fragments in a touchdown PCR program modified after Muyzer et al. (1993). DGGE 

was performed on an Ingeny phor U 2x2 (Ingeny International BV, Netherlands) 

system with a gradient from 40 to 70% urea/formamide at a constant voltage of 100 

V for 20 h in TAE buffer (40 mmol L-1 Tris-acetate, 1 mmol L-1 EDTA, pH 7.4). 

Cluster analysis of DGGE band pattern using densitometric curves was carried out 

with the Gel ComparII software package (Similarity: Pearson Correlation, 

Clustering Method: UPGMA, Version 6.5, Applied Maths, Belgium).  

Dissolved organic matter. Water samples for DOM extraction were filtered through 

glass fiber filters, using a 2 µm filter on top of a 0.7 µm filter (GMF and GF/F, 

Whatman, United Kingdom, combusted 400°C, 4 h) and acidified to pH 2 (HCl 25% 

p.a., Carl Roth, Germany). An aliquot of this acidified 0.7 µm filtrate was sampled 

for quantification of dissolved organic carbon (DOC) and total dissolved nitrogen 

(TDN). Additional duplicate samples for DOC and TDN were prepared from 

unfiltered water using GHP syringe top filters (0.2 µm, GHP Acrodisc, PALL Life 

Science, USA). Determined DOC and TDN concentrations of GF/F and GHP 

filtrates were without systematic trends (average difference is 3.5%, thus within 

analytical precision, see below). Reported concentrations are averaged values from 

triplicate samples. 

DOC and TDN concentrations were analyzed by high temperature catalytic 

combustion using a Shimadzu TOC-VCPH/CPN Total Organic Carbon Analyzer 

equipped with an ASI-V autosampler and a TNM-1 module. Prior to analysis, the 

acidified samples were purged with synthetic air to remove dissolved inorganic 

carbon. L-arginine solutions ranging from 5 to 500 μmol C L-1 and 6.6 to 

333.3 µmol N L-1, respectively, were used for calibration and Deep Atlantic 

Seawater reference material (DSR, D.A. Hansell, University of Miami, Florida, 

USA) was measured during each run to control for instrumental precision and 

accuracy. Except for two obvious outliers, the standard deviation of triplicates was 
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always below 2.9 µmol C L-1 for DOC and 1.2 µmol N L-1 for TDN analysis. 

Precision was 3.6±1.8% for DOC and 2.2±0.4% for TDN, while accuracy was 

4.3±5.3% for DOC and -6.6±2.8% for TDN, respectively. 

DOM was extracted from 2 liters of filtered and acidified water with commercially 

available modified styrene divinyl benzene polymer cartridges (PPL, Agilent, USA) 

as described in Dittmar et al. (2008). After extraction, cartridges were rinsed with 

acidified ultrapure water (pH 2, HCl 25%, p.a., Carl Roth, Germany) to remove 

remaining salts, dried by flushing with nitrogen gas and eluted with 6 ml of 

methanol (HPLC-grade, Sigma-Aldrich, USA). Extracts were stored in amber vials 

at -20°C. The extraction efficiency was 61.3±4.7% on a carbon basis for fjord water 

DOM, similar to published extraction efficiencies for seawater DOM extraction on 

PPL resins (Dittmar et al. 2008). In previous studies, the same extraction method 

and sample preparation has successfully been applied to trace the aging of oceanic 

DOM by molecular-level characterization via ultrahigh resolution FT-ICR-MS (e.g. 

Dittmar and Paeng 2009; Flerus et al. 2012). Thus, the extracted DOM fraction 

should provide a representative subsample of the prevailing DOM independent of 

source and degradation stage.  

Dissolved black carbon (DBC) was quantified in aliquots of the methanol extracts 

according to Dittmar (2008). In short, an equivalent of 2 µmol C per extract was 

oxidized with nitric acid at 170°C for 9 hours in sealed glass ampules placed in high 

pressure reaction vessels. After the oxidation, the samples were dried by evaporation 

of the nitric acid and redissolved in phosphate buffer (Na2HPO4 and NaH2PO4 each 

5 mM in ultrapure water, pH 7.2). Separation of the benzenepolycarboxylic acids 

(BPCAs) was achieved on an ultra performance liquid chromatography system 

(Waters Acquity UPLC) using a BEH C18 Column (2.1×150 mm, 1.7 μm, Waters) 

with an aqueous phase/methanol gradient modified after Dittmar (2008). The 

aqueous phase consisted of a tetrabutylammonium bromide solution (4 mM) in 

phosphate buffer (Na2HPO4 and NaH2PO4 each 5mM in ultrapure water, pH 7.2). 

The BPCAs were identified according to retention time and absorbance spectra (220 

to 380 nm). Quantification was performed using the adsorption signal at 240 nm and 
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external calibration with 4-point-standard curves covering the respective 

concentration range. The concentration of DBC was calculated from the 

concentrations of the individual BPCAs according to Dittmar (2008). Standard 

deviation of triplicate analysis was <5% for concentrations of individual BPCAs and 

DBC, and detection limit for DBC was 0.2 μmol L-1 seawater.  

The mass spectra were obtained on a 15 Tesla Solarix FT-ICR-MS (Bruker 

Daltonics, USA) equipped with an electrospray ionization source (Bruker Apollo II) 

applied in negative mode. DOM extracts were diluted to a final DOC concentration 

of 10 mg C L-1 in a 1:1 mixture of ultrapure water and methanol (HPLC-grade, 

Sigma-Aldrich, USA). A total of 500 scans were accumulated per run, the mass 

window was set to 150-2000 Da. The spectra were calibrated with an internal 

calibration list using the Bruker Daltonics Data Analysis software package. The 

mass to charge, resolution and intensity were then exported and processed using in-

house Matlab routines. Molecular formulae were assigned to peaks with a minimum 

signal-to-noise ratio of 4 following the rules published in Koch et al. (2007). For 

each molecular fomula, the double bond equivalents (DBE, DBE=1+½(2C-H+N+P)) 

as a measure for the degree of unsaturation and the Aromaticity Index (AI=(1+C-O-

S-½H)/C-O-S-N-P)) as well as the modified Aromaticity Index (AImod=(1+C-½O-S-

½H)/(C-½O-S-N-P)) to assess the presence and extent of aromatic structures (Koch 

and Dittmar 2006) were calculated. 

North Pacific Deep Water reference. The North Pacific Deep Water (NPDW) is 

one of the oldest water masses on earth (Stuiver et al. 1983) and considered to be 

dominated by refractory DOM (e.g. Hansell 2013). To produce the in-house 

reference, large volumes of water from the North Pacific oxygen minimum zone at 

670 m depth near Big Island (Hawaii) were extracted using the same extraction 

method described above for the Svalbard fjord samples. 

Statistical analysis of FT-ICR-MS data. The 34 fjord samples were analyzed on the 

FT-ICR-MS alternating with the NPDW DOM reference and a mixed sample 

reference consisting of equal parts of the 34 fjord extracts. This analysis scheme 

allowed to assess and account for FT-ICR-MS instrument variability during the time 
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span needed for analysis of the complete sample set (4 days), thereby providing a 

robust basis for in-depth statistical analysis. Spectra were normalized to the sum of 

peak intensities per sample. For a more conservative approach, and in addition to the 

threshold of S/N 4, molecular masses were only included when they occurred at 

least three times in one of the groups (NPDW reference, mixed fjord sample 

reference, fjord samples). This removed rare and uncertain peaks. Three fjord 

samples were excluded from further analysis because of obvious contamination of 

the DOM extracts (station Q at 0 m, station HA at 4 m, station AC at 5 m).  

FT-ICR-MS data was subjected to principal component analysis (PCA) conducted 

with the software The Unscrambler X 10.2 (validation method: cross validation, 

sample weights: 1, CAMO Software AS, Norway). For a first PCA aiming at the 

separation of Svalbard fjord DOM and NPDW DOM, only assigned molecular 

formulae present in all Svalbard fjord samples and the NPDW DOM reference were 

included. A second PCA intended to visualize the differences among the Svalbard 

fjord samples was based on all detected masses of the fjord samples. 

We further compared the multivariate variability (dispersion) of the fjord samples 

with the variability due to instrumental error, using a dissimilarity-based approach. 

From a matrix of Euclidean distances computed from scaled (normalized and 

standardized) data, we calculated for each group the average distance to each group 

centroid. The average distance to the centroid is equivalent to the average distance 

among all pairwise group member combinations and serves as a measure of 

dispersion. Differences in dispersion between groups were tested for significance by 

permutation (Anderson 2006). 

2.5 Results 

Irrespective of location and water depth, DOC and DBC concentrations were similar 

in all 34 fjord water samples and averaged 59.5±1.7 µmol DOC L-1 and 1.8±0.1% 

DBC of DOC, respectively (Fig. 2). TDN concentrations were significantly higher in 

the deep fjord samples (surface 7.8±1.0 µmol L-1, deep 12.6±2.2 µmol L-1), while 

total bacterial cell counts (surface 2.25x106±0.78x106 cells mL-1, deep 
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1.23x106±0.28x106) were significantly lower in the deep fjord samples than at the 

surface (Mann-Whitney Rank Sum Test, p<0.01, Fig. 2). 

The cluster analysis of the DGGE band pattern revealed differences in the microbial 

community composition of the stations (Fig. 3). The two main clusters separate free-

living (0.2-3 µm) and particle-associated (>3 µm) bacteria. Minor clusters divide 

surface and bottom water samples, and the microbial community is more closely 

related within the same fjord. The clustering was more expressed for the free-living 

than for the particle-associated microbes.  

A total of 11630 resolved molecular masses of singly charged compounds were 

detected in the FT-ICR-MS spectra, covering a mass range of 159-920 Da. A 

Constrained Analysis of Principal Coordinates (CAP, Oksanen et al. 2012) was 

conducted in order to reveal correlations between the environmental parameters and 

the relative intensities of the measured masses. Neither DOC, TDN, DBC and 

bacterial cell counts, nor sampling related parameters like extraction efficiency or 

time lag between sampling and sample processing significantly correlated with the 

molecular DOM composition.  

From a first visual inspection, the mass spectra of the fjord samples exhibited a great 

similarity to those of the NPDW DOM reference material analyzed repeatedly (Fig. 

4), even when comparing the spectra obtained for a single nominal mass (Fig. 4, top 

right). However, thorough visual inspection of the mass spectra revealed minor 

changes in presence and abundance of individual peaks (Fig. 4, bottom right).  
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Table 2: Comparison of FT-ICR-MS spectra, summarizing all Svalbard fjord samples 

(n = 31) and all replicate analyses of the NPDW (North Pacific Deep Water) DOM 
reference (n = 34). All numbers are averages (weighted by FT-ICR-MS peak intensity), 

s.d. = standard deviation, MF = molecular formulae. 
 

Svalbard 
(average±s.d.) 

NPDW 
(average±s.d.) 

General   

number of peaks 6087(±634) 5787(±272) 

number of assigned MF 3653(±227) 3638(±107) 

% of masses with assigned MF 60(±3) 63(±1) 

average m/z of all peaks 410.4(±2.4) 434.8(±2.2) 

Elemental Composition   

average C 19.63(±0.10) 20.66(±0.09) 

average H 24.85(±0.14) 25.97(±0.11) 

average O 8.92(±0.08) 9.41(±0.05) 

average N 0.41(±0.01) 0.41(±0.01) 

average P 0.04(±0.00) 0.05(±0.00) 

average S 0.10(±0.01) 0.13(±0.00) 

average O/C 0.46(±0.00) 0.46(±0.00) 

average H/C 1.27(±0.00) 1.26(±0.00) 

Molecular Indices   

average DBE 8.43(±0.05) 8.91(±0.04) 

average AI 0.20(±0.00) 0.20(±0.00) 

average AImod 0.26(±0.00) 0.26(±0.00) 

2.6 Discussion 

Characterization of prevailing water masses. During the sampling campaign, the 

water columns of the fjords were partially stratified according to gradients in 

salinity, temperature and TDN concentrations. The salinity gradient was most 

pronounced in the southernmost Van Keulenfjord with a surface water salinity of 

27.0 increasing to 33.3 at 40 m depth (station AC), indicating dilution of prevailing 

seawater with up to ~26% of freshwater, while Kongsfjord and Smeerenburgfjord in 

the North showed almost no salinity gradient. In all fjords, the comparatively low 

water temperatures (-1.2 to 1.8°C) and constantly high salinities (33.3-34.0) of the 

deep water layers indicate influence of Transformed Atlantic Water (T>1°C, 

S>34.7) which originates from mixing of Arctic Water (>3°C, S>34.9) transported 
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by the West Spitsbergen Current with colder, less saline Arctic Water. The even 

lower salinities of the surface waters reflect freshwater input to the fjords (Svendsen 

et al. 2002). Cottier et al. (2005) report increased contribution of Atlantic Water in 

the Kongsfjord over summer months, with a cumulative annual freshwater input 

(glaciers, snowmelt, precipitation, runoff, groundwater discharge) accounting for up 

to 5% of the total fjord volume of 29.4 km3. Thus, lowest surface water salinity and 

strongest water column stratification occur during peak freshwater input, i.e. times 

of snowmelt during early summer. 

In our study, the chemical parameter most suitable to trace the recent history of the 

water masses in the fjord is the concentration of TDN. The surface nitrogen pool is 

partially replenished by the freshwater input (8.2-9.0 µmol L-1 TDN measured in the 

freshwater and melted iceberg samples), but TDN concentrations were generally 

higher in the deeper water layers where no primary production takes place. The 

inorganic nitrogen in the photic zone is an essential nutrient and used by the 

plankton especially during spring and summer blooms to build proteins, nucleic 

acids and other cell parts. Phytoplankton blooms, the major source of autochthonous 

labile DOM to the fjord system, occur from March to June, peaking around April 

(Eilertsen et al. 1989; Iversen and Seuthe 2011). Wängberg et al. (2008) report DOC 

concentrations ranging from 63 to 73 µmol C L-1 in June in Kongsfjord, an up to 

35% higher DOC concentration compared to our study in August, when DOC 

concentrations averaged 59.5±1.7 µmol DOC L-1 and were rather constant along the 

narrow salinity gradient (Fig. 2). The two potential freshwater endmembers, 

sampled near Ny Ålesund (a glacial meltwater river and a melted iceberg) were low 

in DOC (7.0-12.5 µmol C L-1) and DBC (1.7-0.3 % BC of DOC), and would thus 

dilute the surface water DOC and DBC concentrations rather than serving as 

sources. Furthermore, it has been shown that glacial runoff contains mainly labile 

reduced carbon of microbial origin (Hood and Berner 2009), which can be degraded 

quickly in the fjords. However, the freshwater input at the time of the sampling 

campaign was low due to the cold temperatures and complete freezing of the small 

rivers only a few days after sampling.  
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Microbial community composition and rapid processing of fresh DOM. The 

prokaryotic abundance was significantly higher in surface waters than in the deep 

water layers (Fig. 2) and differences were also evident with regard to the microbial 

community composition: variability related to habitat (free-living or particle-

attached), location (fjord) and water depth were revealed via DGGE (Fig. 3). Since 

DOM composition is indistinguishable whereas the microbial community can be 

discerned between sites and depths, the initial hypothesis that DOM composition 

and bacterial community structure are directly related cannot be confirmed in this 

case. Other environmental parameters regulating the microbial community structure 

must exist. While DOM did not retain a characteristic molecular signature of its 

recent history, the microbial community composition might still carry a specific 

imprint of the recent bloom events. Furthermore, the preference of or metabolic 

advantage at a certain temperature, light condition or nutrient availability might also 

be responsible for the observed differences in microbial community composition. 

It is well established that the community composition of particle-associated bacteria 

differs from that of free-living bacteria (Fandino et al. 2001; Grossart et al. 2005; 

Stevens et al. 2005). Teske et al. (2011) also observed differences in community 

composition between surface and bottom water in Smeerenburgfjord (station J). 

Furthermore, these authors were able to show that despite the cold temperatures, 

efficient carbon cycling exists at high latitudes. This may be due to enzymes with 

low temperature optima adapted to the Arctic conditions (Arnosti and Jørgensen 

2003, Arnosti and Steen 2013). Iversen and Seuthe (2011) report efficient DOC 

cycling following the spring blooms in the Arctic, and average turnover times of 0.1 

to 1.1 years for semi-labile DOM in the Arctic were calculated by Wheeler et al. 

(1996). There is thus much evidence that bacterial activity is not necessarily 

depressed in cold Arctic waters and that it is likely that freshly produced DOM 

during phytoplankton blooms is rapidly turned over by the resident microbial 

community.  

In order to test the plausibility of our results, we conservatively estimated whether 

the DOM that had accumulated during the spring/summer bloom can be consumed 
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within the short Arctic summer period. We assumed that the dissolved inorganic 

nitrogen (DIN) in the surface water resulted from DOM mineralization, implying 

that DIN was limiting primary production and thus depleted during the 

phytoplankton bloom. Since only TDN was measured, we estimated the DIN by 

applying the average C/N ratio of 13.4±6.6 for surface ocean DOM summarized by 

Bronk (2002), yielding a minimum surface DIN concentration of 1.6 to 3.2 µmol L-

1. The concentration may however be overestimated when inorganic nitrogen from 

the deep water was mixed into the surface (increasing TDN) or the C/N ratio of 

DOM was lower than the presumed range. The estimated amount of DIN in surface 

waters could be produced by the remineralization of 17-53 µmol L-1 DOC if only 

DOM with a C/N ratio of 13.4±6.6 (Bronk 2002) was taken up as a substrate. 

Kirchman et al. (1991) estimated DOC turnover rates during a spring phytoplankton 

bloom in the North Atlantic ranging from 0.006 to 0.1 d-1. Applying these rates to a 

calculated maximum DOC concentration of 69-105 µmol L-1 (lowest measured DOC 

concentration of 52 µmol L-1 plus estimated remineralized DOC of 17 to 53 µmol L-

1), we found that the difference to the observed minimum DOC concentration of 52 

µmol L-1 can be degraded within 3 to 86 days. In support of our findings, Wheeler et 

al. (1997) estimated that during the productive season in the central Arctic Ocean, 

bacterial consumption exceeds the in situ primary production of DOC. Kirchman et 

al. (1991) report slight increases in DOC concentration of 10-50 µmol L-1 during a 

spring bloom in the open ocean, and Duursma (1963) observed that DOC 

concentrations decreased from a bloom situation in spring by a third until winter. 

These observations together with the reports on well-adapted and efficient Arctic 

microbial communities are consistent with the proposed scenario of episodic DOM 

production during spring and summer phytoplankton blooms in Svalbard fjords and 

an almost instantaneous degradation of the introduced fresh DOM signature.  

Molecular-level characterization of fjord DOM. We hypothesize that the 

consistently low DOC concentrations observed during our field study in August 

2010 represent a typical early fall situation in Arctic fjords. Fresh labile DOM added 

by primary production during spring and summer plankton blooms is readily turned 

over and does not persist in the fjord waters. In support of this, the recent primary 
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production left no detectable imprint on the molecular DOM composition. While 

samples are not available to directly trace the rapid DOM turnover, our dataset 

includes the seasonal endmembers, i.e. high TDN deep water representing the pre-

bloom condition and low TDN surface water representing the past-bloom 

conditions. Thus, the spatial resolution of the sampling provides information on the 

timescale of the proposed processes. 

Overall, contributions of nitrogen-containing, peptide molecular formulae typically 

produced during plankton blooms and marker compounds for fresh organic matter 

(Berman and Bronk 2003; Singer et al. 2012) were not elevated in surface water 

samples and the composition of the surface fjord DOM with a history of recent 

primary production was indistinguishable from that of the deep fjord water samples. 

In accordance with this, extraction efficiencies were similar for all samples and in 

the range reported for refractory marine DOM (Dittmar et al. 2008; Flerus et al. 

2012). Taking into account the distribution of all compounds as assessed via FT-

ICR-MS, we find very low variation in the DOM pool without significant 

correlation to any of the known environmental parameters (salinity, depth, DOC, 

TDN or microbial cell counts), leading to the assumption that most of the labile and 

semi-labile DOM that was produced during the spring/summer blooms in the fjords 

was already transformed into semi-refractory/refractory DOM at the time of 

sampling. This is remarkable considering the multitude of degradation and 

transformation processes involved in the microbial recycling of DOM. Thus, the 

autochthonous organic matter added to the fjords during spring and summer 

phytoplankton blooms does not persistently affect the fjord DOM pool, neither 

quantitatively regarding the carbon budget nor qualitatively regarding the molecular 

composition. 

The fjord DOM samples are still significantly different from NPDW DOM despite 

their similarity in most chemical parameters (Fig. 5, Tab. 2). The lower average 

mass of the fjord DOM molecules (410±4 Da, weighted average) and the higher 

average mass of the NPDW reference (434±8 Da) are consistent with the findings of 

Flerus et al. (2012), who describe a shift of the average molecule size from recent to 
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aged DOM. However, their values are generally lower, ranging from 408 Da for 

fresher to 418 Da for aged DOM on a transect in the eastern Atlantic Ocean. The 

smaller average size of the fjord molecules could be explained by input of terrestrial 

DOM (Amon and Meon 2004). The islands of Svalbard have a low plant species 

richness dominated by lichens and mosses with few higher plants (Elvebakk 1994), 

but the Arctic Ocean in total receives considerable amounts of terrestrial DOM via 

the large Russian and Canadian rivers (Dittmar and Kattner 2003; Wheeler et al. 

1997). An extensive input of DBC originating from glacier abrasion and erosion of 

coal seams by rivers and meltwater from the islands of Svalbard could not be 

confirmed, and thus the DBC detected in the fjords must originate from Arctic 

Water flowing into the fjords. 

On the timescale covered by this study (a few months), including pre-bloom (deep) 

and post-bloom (surface) water, there were no significant modifications of the 

DOM. However, the differences between the DOM from the Arctic and the North 

Pacific can be interpreted as a selective decomposition of specific compounds over 

long terms of several hundred years. A differential spectrum subtracting the 

normalized peak intensities of the NPDW from the averaged normalized peak 

intensities of the fjord sample (Fig. 7D) reveals the long-term modifications on the 

molecular level. Negative remainders indicate peaks with higher relative intensities 

in NPDW DOM (Fig. 7C), while positive remainders indicate peaks with higher 

relative intensities in Svalbard fjord DOM (Fig. 7B). Compounds that were 

relatively more abundant in the Svalbard fjord compared to the NPDW widely 

spread over the van Krevelen space (O/C versus H/C ratios). Characteristic NPDW 

molecules, on the other hand, occupy distinct regions in the van Krevelen diagram 

with most molecules being confined to the center and a few in the condensed 

aromatic carbon region at low O/C and H/C ratios. However, the average O/C 

(Svalbard DOM 0.49±0.08, NPDW DOM 0.39±0.18) and H/C (Svalbard DOM 

1.25±0.14, NPDW DOM 1.18±0.36) ratios of the characteristic molecules are still 

similar for both environments, though the ranges are more variable. The difference 

between DOM from the Arctic and Pacific becomes more obvious if the average 

molecular mass of only those molecules that varied between the sites is compared: 
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Compounds that had a higher abundance in the fjords had an average molecular 

mass of 357, those that were higher in NPDW 468 Da. Presumably, the smaller 

molecules represent less refractory DOM and are selectively removed during the 

transport and transformation from the surface into the deep ocean. The DBC 

molecules were enriched in the NPDW presumably because black carbon is barely 

modified during the aging process in the deep sea (Dittmar and Paeng 2009) and due 

to the removal of other molecules, DBC increases in relative abundance. 

Conclusions. Here we could show that the resident, highly active microbial 

community in Arctic fjords rapidly decomposed DOM that was produced during 

phytoplankton blooms in spring and early summer. The phytoplankton bloom did 

not leave any detectable imprint neither on the molecular composition of DOM, nor 

on its bulk concentration. This is most remarkable given the fact that we considered 

for our molecular characterization a total of 11,630 different compounds that were 

distinguished by their molecular mass. Because Arctic waters are an important 

source of DOM to the deep ocean, this finding is of major relevance. Assuming that 

our findings are representative for high latitude marine systems in general, we 

conclude that autochthonous seasonal DOC production in plankton bloom situations 

possibly contributes only marginally to the bulk DOC pool in these regions, likely 

also including the major deep water formation sites. In the course of global ocean 

circulation, Arctic DOM will eventually decompose and undergo changes in its 

molecular composition. Although Arctic fjord DOM and aged, refractory deep 

Pacific Ocean water DOM shared 95% of the detected masses, the relative intensity 

distributions of the components reveal significant differences in the molecular DOM 

composition, reflecting ageing during deep ocean circulation. 
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3.1 Abstract 

Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool 

involved in global biogeochemical cycles1. The existence of this reservoir, 

containing almost 700 Gt of carbon, seems paradoxical considering its potential as 

nutrient source to microbial life and its occurrence in an aqueous, oxic environment. 

More than 96% of the marine DOM appear resistant to microbial degradation on 

timescales of several thousands of years2 whereas microbial transformation of labile 

into refractory DOM (RDOM) appears to be fast3-5. This implies that RDOM is 

produced at enormously high efficiency, by far higher than needed to sustain the 

global RDOM pool. Challenging to any experimental approach is the involved 

millennium timescale. We overcame this issue by investigating the microbial 

formation and transformation of DOM on an unprecedented molecular level during a 

3-years mesocosm study. We show that most of the apparent microbially produced 

RDOM is molecularly different from millennium-old oceanic RDOM. Only a tiny 

fraction (<3%) of the net community production was channeled into a form of 

RDOM molecularly undistinguishable from DOM in the deep ocean, consistent with 

global estimates on the production, turnover and accumulation of DOM in the global 

ocean.  

3.2 Results & Discussion 

A useful concept in marine biogeochemistry is the operational definition of DOM 

reactivity fractions2. Labile DOM comprises organic compounds with lifetimes from 

minutes to days, while semi-labile and semi-refractory DOM are turned over within 

1 to 20 years. RDOM is the most ubiquitous fraction and resides in the world’s 

oceans for thousands of years. It may be formed through abiotic processes6-9, but 

biological production of recalcitrant DOM has also been proposed10. The microbial 

production of DOM from simple substrates that persists further degradation for 

months3,5,11 to years4 was demonstrated based on quantification of bulk dissolved 

organic carbon (DOC) and its fraction of amino acids and carbohydrates. However, 

less than 5% of deep ocean RDOM consists of these molecularly defined 
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compounds classes12. An inherent property of RDOM is its enormous molecular 

diversity that can only be revealed through ultrahigh-resolution analytical 

techniques, most prominently Fourier-transform ion cyclotron resonance mass 

spectrometry (FT ICR MS)13. The molecular diversity of microbially formed DOM 

assessed by this approach is very similar to natural oceanic RDOM14. A currently 

unresolved conundrum is the observation that RDOM is apparently produced by 

microorganisms from labile substrates with far higher efficiency than required to 

sustain the characteristics of the natural DOM pool14. Hence, the oceanic DOM pool 

would be several times larger if the experimentally derived production rates were 

representative14. This obvious paradox with respect to RDOM formation is of 

concern considering the fact that minor changes in the global RDOM pool could 

substantially influence atmospheric carbon dioxide concentration and the radiation 

balance on Earth.  

A major caveat of all laboratory experiments is their short duration, compared to the 

millennium-scale stability of oceanic RDOM. The question remains whether the 

“non-labile” DOM detected in experimental studies is truly equal to oceanic RDOM. 

To overcome this issue we here define RDOM not only by its stability on an 

experimental time scale (years), but also by its molecular composition. We define 

“truly” refractory DOM as equal in molecular composition to abyssal RDOM in 

terms of relative abundance of individual DOM constituents. For this assessment we 

combined conventional molecular analysis specifically targeting amino acids and 

carbohydrates with non-targeted ultrahigh-resolution FT-ICR MS. Thousands of 

molecular formulae can be identified in DOM via this technique13,15, and further 

fragmentation studies provide detailed structural information beyond this level16. We 

hypothesized that RDOM, as found in the deep ocean, is generated by diverse 

microbial communities, but at much lower efficiency than previously assumed based 

on experimental approaches.  

To test our hypothesis, we inoculated low-DOC artificial seawater (~7 µmol C L-1) 

containing all essential inorganic nutrients with a coastal North Sea phytoplankton 

and bacterial community. This approach was chosen to include as many of the 
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naturally occurring interactions between primary producers and heterotrophic 

microbes as possible. Triplicate mesocosms (M1-M3) were incubated at a 12:12 

hour light-dark cycle and incubated at room temperature (~22°C). After 167 days, a 

portion of each mesocosm was filtered (1.2 µm) to exclude large particles and 

further incubated in the dark (M1-M3dark). The mesocosms were subsampled at 

increasing intervals ranging from 2 to 300 days for a total of 1011 days. Over the 

duration of the experiment, algal and bacterial abundance and community 

composition, inorganic nutrients (NO3
-, NO2

-, NH4
+, PO4

3-), total hydrolysable 

dissolved amino acids (THDAA), carbohydrates, DOC and the molecular 

composition of solid-phase extracted DOM were monitored. North Pacific Deep 

Water (NPDW), one of the oldest water masses on Earth, served as reference 

material for the composition of refractory DOM17. 

Three consecutive phases of the mesocosm experiment were identified: 

phytoplankton blooms, the post-bloom stage and the net-heterotrophic phase of 

DOM consumption.  

I. Phytoplankton blooms. Between day 1 and 56, favorable experimental conditions 

with high nutrient supply resembling conditions in upwelling regions or coastal 

seas18, induced a sequence of phytoplankton blooms: the first one was dominated by 

diatoms, followed by blooms with high proportions of flagellates and 

prymnesiophytes with maxima at days 21 and 38, similar to the natural 

phytoplankton succession19 (Fig. 1, Table S2.1). Nitrate and ammonium were 

depleted below the detection limit within one week, while phosphate was never 

limiting. Bacteria reached 0.2-1×107 cells mL-1 (Fig. 1) and diverse communities 

(Bray-Curtis dissimilarity 0.64±0.1, Fig. 2b), dominated by members of the 

Rhodobacteraceae family and some Bacteroidetes representatives, developed (Tab. 

S2.2). About 100 µmol DOC L-1 were generated during the bloom phase regardless 

of phytoplankton community composition (Fig. 3). THDAA as percent of DOC 

peaked during the first phytoplankton bloom with up to 10.5% (Fig. S2.4e), 

indicating freshly produced labile DOM20. Also the relative proportion of individual 

amino acids was consistent with fresh DOM according to the calculated degradation 
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state index21 (Fig. S2.4g). Molecular analysis of solid-phase extracted DOM22 by FT 

ICR MS revealed that the number of resolved molecular formulae rapidly increased 

during the first days of the incubation to levels of deep-sea DOM (5800 detected 

formulae in NPDW). Notably, an increasing proportion of the new molecular 

formulae was identical to those found in the deep ocean (NPDW reference, up to 

50% for routine analyses, Fig. S2.4o). With a more detailed investigation of 

mesocosm DOM via FT ICR MS at increased instrument sensitivity settings the 

agreement of molecular formulae could be raised to 82-97%. Based on the presence 

of molecular formulae, the experimental DOM was almost undistinguishable from 

deep-sea DOM within less than two months of incubation. This is most remarkable, 

because among the almost 8000 molecular formulae identified (with the same 

instrumentation) in the exometabolome of a pure Pseudovibrio strain less than 2% 

were identical to deep-sea DOM (NPDW)23. We attribute the high number of deep-

sea molecular formulae in our experiment to the high microbial diversity in the 

mesocosms. 

II. Post-bloom phase. Low chlorophyll a fluorescence prevailed in mesocosms M1 

and M3 after day 56. In M2, a constant increase in fluorescence until day 785 was 

related to N2-fixation in that particular mesocosm. The AA-C/DOC ratio fell below 

3% in all light and dark mesocosms and remained low until day 1011; also the 

amino acid degradation state was consistent with aged DOM (Fig. S2.4g). Between 

days 167 and 370, most algal and many bacterial cells lysed, which led, together 

with recycled production, to DOC concentrations of up to 350 µmol C L-1 in the 

light mesocosms (Fig. 3). The dark mesocosms that started at day 167 showed little 

DOC production, presumably derived from decaying cells.  

III. Net-heterotrophic phase. From day 370, consumption processes prevailed over 

new DOM production: bacterial numbers remained low and DOC concentrations 

decreased by ~200 µmol C L-1 in M1 and M3, but increased by 360 µmol C L-1 in 

M2. In the dark mesocosms, DOC concentrations decreased between 41 and 58%. 

Despite strong quantitative changes in DOC concentration, molecular DOM 
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dissolved combined carbohydrates (DCCHO) at day 1011 (M1, M3 ~3 µmol L-1, M2 

~26 µmol L-1, M1-M3dark <1 µmol L-1, Tab. S2.3). We defined “pseudo-RDOM” 

as being very similar but not fully identical to deep-sea DOM (NPDW), both with 

respect to chemical properties and molecular characteristics. Pseudo-RDOM was 

formed during the bloom phase and remained at concentrations of ~100 µmol C L-1. 

We propose that much of the DOM in this class had previously been termed RDOM 

because of its longevity on experimental timescales and chemical similarity to 

RDOM. Ultrahigh-resolution mass spectrometry now enabled us to define the 

smallest DOM fraction: it is equal to deep-sea DOM (NPDW) in terms of presence 

and relative intensities of resolved masses. To match this definition, the molecular 

formulae detected in deep-sea DOM cannot be larger in relative intensity to their 

respective counterparts in the mesocosm DOM sample, on a given confidence level 

(see S1.6 for details). Based on this definition, at most 2.9±1.4 µmol L-1 refractory 

DOM existed in the mesocosm DOM at day 56 and thereafter, representing <0.18 to 

0.36% of the net community production in the mesocosms (NCP; new production 

based on inorganic nitrogen and phosphate uptake).  

Our estimates are well within the same order of magnitude of global RDOM 

production. Global estimates report a NCP of 0.6 Pmol C yr-1, 0.63% of which are 

channeled into the RDOM pool2,24. Also the observed production of “pseudo-

RDOM” is consistent with estimates on the global production of semi-labile and 

semi-refractory DOM2,24. Photochemical alteration8, thermogenic processes9 and 

other abiotic factors may be significant for the formation of RDOM, but our study 

indicates that diverse microbial communities produce DOM that is similar in 

reactivity and composition to RDOM found in the global ocean. We were able to 

shed light on the production of large amounts of seemingly refractory DOM in 

mesocosm experiments and conclude that less RDOM than previously thought10, but 

still enough to sustain the global RDOM pool, is produced by microorganisms. The 

underlying mechanisms behind the relationship between NCP and RDOM 

production remain to be understood, particularly in consideration of the yet 

unknown implications of global change25 on DOM dynamics. 
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Table 1: Reactivity of DOM fractions. Three fractions of DOM that are 
produced during the mesocosm experiment, assigned by their chemical 
properties and including proposed reactivity and formation processes. 

 
Name Chemical definition Mathematical 

definition 
Observed 
reactivity 
 

Observed 
formation 

RDOM 
(deep sea 
DOM) 

- Identical to deep sea DOM in terms 
of bulk parameters (C/N ratio, solid-
phase extractability22 (2/3 of DOC is 
solid-phase extractable, i.e., SPE-
DOC), amino acid content and 
composition) and molecular 
parameters (presence/absence and 
intensity distribution of molecular 
formulae) 

[RDOC] =  
%NPDW × 
[SPE-DOC] × 
3/2 
 
 

semi-
refractory 
 to refractory 
(stable for 
thousands of 
years) 

-produced in 
all 
mesocosms 
mainly during 
phase of new 
production 

pseudo-
RDOM 

- Identical to deep sea DOM in terms 
of bulk parameters (C/N ratio, solid-
phase extractability (2/3), amino acid 
content and composition) 
- Similar to deep sea DOM in terms of 
presence/absence of molecular 
formulae 
- Different to deep sea DOM in terms 
of intensity distribution of molecular 
formulae and molecular structures 

[pseudo-
RDOC] = 
[SPE-DOC] × 
3/2 – [RDOC] 
 

semi-
refractory to 
refractory 
(stable for 
years) 

produced in 
all 
mesocosms 
mainly during 
phase of new 
production 

transient 
DOM 

- Non-extractable via solid phase 
extraction from seawater 
- Contains little to no nitrogen 
- Contains at least ~1/3 carbohydrates 

[transient-
DOC] = 
[DOC] – 
[RDOC] – 
[pseudo-
RDOC] 

Semi-labile 
(half-life of 
months)  

Accumulation 
during first 
phase of 
recycled 
production 

3.3 Methods summary 

9.9 L of artificial seawater (marine broth26 without yeast extract and peptone, DOC 

7.4 µmol C L-1) were inoculated with 0.1 L of coastal North Sea water (May 30 

2011, N53°31’48” E7°9’26”, prefiltered 200 µm) as a source of microorganisms. 

Initial concentrations of inorganic nutrients were 20 µmol L-1 nitrate, 20 µmol L-1 

ammonium, 25 µmol L-1 phosphate and 16 µmol L-1 silicate. Silicate concentrations 

over time were not reported since the incubations were performed in glass vessels. 

The incubation was performed in triplicate at room temperature (av. 22.5°C), in a 

12:12 h light:dark cycle (light source: 120 µmol m-2 s-1, 400-700 nm) and constant 

stirring. Controls consisted of ultrapure water to monitor external contamination; the 
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DOC concentration in the controls never exceeded 12 µmol C L-1. Subsamples were 

taken in irregular intervals to monitor bacterial and microalgal community, nutrient 

availability as well as DOM quantity and quality. After 167 days, a proportion of the 

incubation medium was filtered through 1.2 µm to remove particles and larger 

organisms and subsequently kept in the dark to exclude primary production (M1-

M3dark). They were sampled identically to the continued light mesocosms. The 

microalgal community composition was determined via direct counts under an 

inverted microscope at five timepoints. At all other sampling points, chlorophyll a 

fluorescence was monitored due to the limited volume. Microbial cell numbers were 

enumerated via flow cytometry27 (Accuri C6, BD Biosciences) and the community 

composition was assessed via DGGE (denaturing gradient gel electrophoresis) 

fingerprinting of 16S rRNA gene fragments28 and sequencing of excised bands. 

Inorganic nutrients (NH4
+, NO3

-, NO2
-, PO4

3-) were analyzed using standard 

photochemical methods29,30. DOC and TDN concentration were quantified by high 

temperature catalytic oxidation31 (Shimadzu TOC-VCPH/CPN Total Organic 

Carbon Analyzer, ASI-V autosampler, TNM-1 module). Total hydrolysable 

dissolved amino acids (THDAA) were quantified by HPLC (Agilent Technologies, 

LC 1200) after acid hydrolysis32. Solid phase extraction22 was used to concentrate 

and desalt the samples for the characterization of the molecular DOM composition 

via 15 T Solarix ESI FT ICR MS (Bruker Daltonics) in negative mode. Methanol 

extracts were diluted to 20 mg C L-1 at a ratio of 1:1 (v/v) MeOH to water, spiked 

with an internal standard (octaethylene glycol) and 500 scans were obtained with an 

ion accumulation time of 0.25 s. Mass spectra were exported and processed with in-

house Matlab routines for peak matching and molecular formula assignment15, 

yielding 11365 molecular formula assignments for all samples including the 70 

mesocosm samples as well as repeat measurements of a North Pacific Deep Water 

(NPDW) reference sample17 and the solid phase extracted North Sea inoculum 

(NSW). The molecular DOM composition of the mesocosm samples and the 

references was compared on the basis of normalized peak intensities of detected 

masses with assigned molecular formulae. Fragmentation experiments for 3 masses 

of 2 homologous series were conducted to explore the structural resemblance of 
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molecular formulae assigned to NPDW DOM and a pooled mesocosm DOM sample 

(M3, days 370-785). 
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S1 Supplementary Methods 

S1.1 Mesocosm set-up 

At the start of the mesocosm experiment, 9.9 L artificial seawater (Difco MB 22161 

without yeast extract and peptone, DOC 7.4 µmol C L-1) were transferred into 

carefully acid-rinsed 10 L glass bottles and mixed with 0.1 L coastal North Sea 

water (Norderney, Germany, May 30 2011, 30 psu, 247 µmol C L-1, pre-filtered 

200 µm) in triplicates (M1, M2, M3). The mesocosms were incubated at room 

temperature (av. 22.5°C), 12:12 hour light:dark (120 µmol m-2 s-1, 400-700 nm) and 

the water was constantly stirred. After 167 days, 1.5 L of each mesocosm were 

filtered through 1.2 µm glass fiber filters (Whatmann, precombusted 400°C, 4 hrs) 

to remove aggregates and phytoplankton, and then further incubated in the dark 

(M1dark, M2dark, M3dark). At each of the 17 sampling points, 300-400 mL were 

withdrawn from the 10 L bottles and further processed and preserved for the 

analyses. 

S1.2 Phytoplankton and chlorophyll a  

Relative chlorophyll a fluorescence was determined fluorometrically at every 

sampling interval (excitation 540 nm, emission 684 nm, TD-700 Fluorometer, 

Turner Designs, USA). 

Of the inoculum (North Sea water NSW) and at five time points during the 

experiment (days 4, 21, 38, 231, 469), 50-100 mL of the mesocosms/inoculum were 

fixed with acidic Lugol’s iodine solution (1 mL per 50 mL sample) and stored in the 

dark at 7°C. Enumeration and classification of phytoplankton cells was performed in 

triplicates by AquaEcology (Oldenburg, Germany, Table S2.1). 

Additional confirmation of the presence of cyanobacteria that were not identified by 

direct counts could be obtained via flow cytometric investigation of the 

autofluorescence of live samples on day 473. High phycobilin fluorescence provides 

strong evidence for a population of Synechococcus sp. (1.6×105 cells mL-1) in M2, 
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while 4.4 ×103 cells mL-1 of Prochlorococcus sp. were found in M1. M3 did not 

exhibit phycobilin fluorescence on day 473. 

S1.3 Microbial cell counts and community analysis 

The determination of cell numbers of the free-living microorganisms was conducted 

with a BD Accuri C6 cytometer (BD Biosciences, USA) using SybrGreen I 

(InvitrogenTM, United Kingdom) staining and the internal fluidics calibration of the 

device. The fixed samples (2% f.c. glutardialdehyde, Carl Roth, Germany) were 

thawed and filtered through 50 µm filters (Cell Trics, Partec) to remove larger 

particles. Volume verification was done using TruCount beads (BD) as described 

previously2,3. Data were processed by BD Accuri C6 C-Flow software (Version 

1.026421).  

For the analysis of the bacterial community composition by denaturing gradient gel 

electrophoresis (DGGE)4 of PCR-amplified 16S rRNA gene fragments, 30 to 40 mL 

of the sample were passed through 0.2 µm PC filters (Millipore, USA). The filters 

were stored frozen at -20°C. DNA extraction and DGGE was conducted as 

described in Osterholz et al. (2014)5. 

Prominent bands were excised with a sterile scalpel, transferred into 49 µL of PCR-

grade water and stored at -20°C. The DNA was reamplified and purified (Gold DNA 

purification kit, Quiagen, Netherlands) prior to sequencing at GATC Biotech AG 

(Germany). The obtained sequences were compared with those in GenBank using 

the Blast tool (www.ncbi.nlm.nih.gov) and results are summarized in Table S2.2. 

Sequences are deposited at GenBank under accession number KJ914554 to 

KJ914571. 

S1.4 Inorganic nutrients 

Subsamples for nutrient analysis (NH4
+, NO3

-, NO2
-, PO4

3-) were filtered through 

0.2 µm polycarbonate filters (IsoporeTM Membrane Filter, EMD Millipore 

Corporation, USA), preserved with HgCl2 and stored at 7°C until analysis. PO4
3- 

(limit of detection 0.8 µmol L-1, limit of quantification 2.2 µmol L-1) and NH4
+ (limit 

of detection 1.2 µmol L-1, limit of quantification 3.7 µmol L-1) were analyzed via 
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micro-photometric methods6. NO3
- (NOx limit of detection 0.4 µmol L-1, limit of 

quantification 1.0 µmol L-1) and NO2
- (limit of detection 0.2 µmol L-1, limit of 

quantification 0.6 µmol L-1) were determined via vanadium(III)chloride reduction7. 

S1.5 DOM quantification and characterization 

Amino acid quantification. Aliquots for the quantification of total dissolved 

hydrolysable amino acids (THDAA) were filtered through GHP syringe filters 

(0.2 µm, Acrodisc, PALL Life Science, USA) and stored at -20°C. The amino acids 

were quantified after orthophthaldialdehyde precolumn derivatization as described 

in Lunau et al. (2006)8 on a high performance liquid chromatography system 

(HPLC, 1200 series, Zorbax Eclipse XDB-C18-4.6x12.5 mm precolumn, Zorbax 

Eclipse XDB-C18-4.6x150 mm main column, Agilent Technologies, USA). 

Aspartic acid, glutamic acid, histidine, serine, arginine, glycine, threonine, alanine, 

tyrosine, methionine, valine, and phenylalanine were resolved and quantified via 

external standards (Fig. S2.1d-f). The degradation state index DI was calculated 

after Dauwe & Middelburg (1998, Fig. S2.1g )9. 

Carbohydrate quantification. Samples for dissolved total neutral carbohydrates 

(DCCHO) were prepared in the same way as for THDAA quantification, but only 

analyzed in the sample of day 1011. DCCHO (Tab. S2.3, glucose, mannose, 

galactose, fucose, rhamnose, arabinose, xylose) quantification was performed by 

HPLC with a Carbopac PA 1 column (Dionex, Thermo Fisher Scientific Inc., USA) 

and pulsed amperometric detection10. 

DOC/TDN quantification. Between 100 and 250 mL of sample were sequentially 

filtered through a 0.7 µm glass fiber (Whatman, United Kingdom, combusted 

400°C, 4 h) and a 0.2 µm polycarbonate filter (IsoporeTM Membrane Filter, EMD 

Millipore Corporation, USA) and acidified to pH 2 (HCl 25% p.a., Carl Roth, 

Germany). An aliquot of this acidified 0.2 µm filtrate was sampled for duplicate 

quantification of dissolved organic carbon (DOC, Fig. S2.1a) and total dissolved 

nitrogen (TDN, Fig. S2.1b) via high temperature catalytic combustion using a 

Shimadzu TOC-VCPH/CPN Total Organic Carbon Analyzer equipped with an ASI-

V autosampler and a TNM-1 module5. For the calculation of C/N ratios, the 
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inorganic nitrogen concentration was subtracted from TDN (Fig. S2.1c). The error 

of DOC and TDN analysis was on average 4 % and 10 %, respectively. The DOC 

concentration in the control treatment (consisting of ultrapure water only) to monitor 

external DOC contamination, e.g. by use of solvents in the laboratory, did never 

exceed 12.3 µM. 

Solid-phase extraction and FT ICR MS analysis. DOM was solid phase-extracted 

from the remaining filtered and acidified water (150-250 mL) with commercially 

available 100 mg modified styrene divinyl benzene polymer cartridges (PPL, 

Agilent, USA)11. After extraction, cartridges were rinsed with acidified ultrapure 

water (pH 2, HCl 25%, p.a., Carl Roth, Germany) to remove remaining salts, dried 

by flushing with nitrogen gas and eluted with 500 µl of methanol (HPLC-grade, 

Sigma-Aldrich, USA). Extracts were stored in amber vials at -20°C. The extraction 

efficiency varied between 14.6 and 85.2 % (average: 42.9±16.6 %) on carbon basis 

(Fig. S2.1h). The extractable DOC is calculated by multiplying the original DOC 

concentration in each sample by its determined extraction efficiency (Fig. S2.1i).  

The mass spectra were obtained on a 15 Tesla Solarix FT ICR MS (Fourier 

Transform Ion Cyclotron Resonance Mass Spectrometer, Bruker Daltonics, USA) 

equipped with an electrospray ionization source (Bruker Apollo II) applied in 

negative mode. DOM extracts were diluted to a final DOC concentration of 

20 mg C L-1 in a 1:1 (v/v) mixture of ultrapure water and methanol (HPLC-grade, 

Sigma-Aldrich, USA). For routine analyses, a total of 500 scans were accumulated 

per run in a mass window from 150 to 2000 Da. The spectra were calibrated with an 

internal calibration list using the Bruker Daltonics Data Analysis software package. 

The mass to charge, resolution and intensity were then exported and processed using 

in-house Matlab routines. Diluted octaethylene glycol solution (PEG-8, 

H(OCH2CH2)8-OH, ≥95% oligomer purity, Sigma Aldrich) was added to the diluted 

extracts as an internal standard before FT ICR MS analysis for better quantitative 

comparison of the spectra. The PEG-8 compound was kept at room temperature in 

water before use and thus underwent oxidation reactions. All samples were 

measured at the same time, and five peaks of the octaethylene glycol standard were 
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present in every mass spectrum and used for scaling of the samples. Molecular 

formulae were assigned to peaks with a minimum signal-to-noise ratio of 4 

following the rules published in Koch et al. (2007)12. The number of assigned 

molecular formulae (Fig. S2.1j), relative peak intensity-weighted molecule mass 

(Fig. S2.1k), double bond equivalents (DBE, Fig. S2.1l), H/C ratio (Fig. S2.1m) and 

O/C ratio (Fig. S2.1n) were calculated for each sample. 

Reference samples. The North Sea inoculum (NSW), was solid phase extracted as 

described for the mesocosm samples and analyzed repeatedly via FT ICR MS 

(n=15) to provide an estimate of the background DOM introduced into the 

mesocosms at the start.  

The refractory DOM reference sample was obtained from North Pacific Deep Water 

(NPDW) at 674 m depths near Hawaii using the same extraction method13. The 

NPDW is one of the oldest water masses on earth14 and thus considered to carry 

primarily refractory DOM15. The reference sample was measured repeatedly (n=12) 

to assess possible instrument variability and used for comparison with the spectra of 

the incubated DOM.  

Agreement of molecular formulae in mesocosm and NPDW DOM. The ratio of the 

molecular masses detected in the mesocosm DOM samples to the molecular masses 

that were also detected in the NPDW DOM reference was calculated on presence-

absence basis (Fig. S2.1o). The proportion of shared molecular formulae increased 

rapidly during the first days and then remained between 45-50%. In the mass range 

of 280 to 320 Da, however, where the signal intensities of the mesocosm DOM were 

highest (Fig. S1.1a), as much as 97% of the deep-sea molecular formulae were 

found in routine analysis mode. For a more detailed look, a mixed sample of 

mesocosm DOM (M3, days 370, 469, 785) was measured in triplicate at a 

concentration of 100 mg C L-1 and 700 scans were accumulated in a mass window 

from 380 to 420 Da to increase the sensitivity. The repeated the FT ICR MS analysis 

in time-consuming, high-sensitivity mode for the mass window (where the NPDW 

samples had the intensity maximum, Fig. S1.1a), could resolve an 82% agreement of 

molecular formulae between deep-sea and produced DOM. This finding indicates 
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that a part of the sample similarity is obscured by the detection limit of the FT ICR 

MS, inherent to any analytical method. 

S1.6 DOM fragmentation experiments 

In order to explore structural agreement between assigned molecular formulae 

detected in the NPDW reference sample and the mesocosm, we fragmented three 

nominal masses of two homologous series, respectively, in the NPDW reference and 

a pooled mesocosm sample (M3, days 370, 469, 785). The nominal masses were 

isolated in the FT ICR MS and fragmented via controlled collision with argon. The 

collision energy was optimized for each mass in negative mode using ESI 

ionization, and 150 broadband scans were accumulated per run. The samples were 

injected at 100 mg C L-1. Fragmentations were conducted in triplicate for each 

nominal mass. Twelve main fragments (H2O, CH4O, 2H2O, 2H2O, CO2, CO2+H2O, 

2CO2, 2CO2+H2O, 2CO2+CH4O, 3CO2, 2CO2+H2O,3CO2+CH4O) and their 

occurrence was compared between NPDW and mesocosm DOM fragmentation of 

the nominal masses 269, 283, 297, 327, 341 and 365. Peaks with assigned molecular 

formulae that were detected in all three replicate measurements were considered for 

data evaluation. Of the 268 identified fragments, 152 (57%) were found in both 

samples, all 12 main fragments were found in both sample types. Of the 115 

fragments that were only detected in one of the samples, 84 were present only in the 

mesocosm DOM and 31 were present only in the NPDW DOM. Of the 84 exclusive 

mesocosm DOM fragments, 49 possible fragments were below the detection limit, 

while 34 fragments were definitely not present in the NPDW sample. All of the 

exclusive NPDW DOM fragments should have been above detection limit in the 

mesocosm DOM due to the calculated intensity relative to the mother ion, but were 

not detected after fragmentation. 

S1.7 Estimate of RDOM concentration 

Masses with assigned molecular formula that were detected in all FT ICR MS 

analyses of NPDW DOM were taken into account for the estimate of RDOM 

concentration in the freshly produced DOM. Each sample was normalized to its sum 

of peak intensities. Each peak intensity of a sample was then divided by the 
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respective NPDW DOM peak intensity from which the standard deviation of all 

NPDW DOM analyses multiplied by σ = 2.576 had been subtracted to account for 

some variability, e.g. measurement uncertainty. The ratio was then log-transformed 

to obtain normal distribution. The number of outliers was determined by counting 

the log-transformed ratios that deviated from the normal distribution by more than 

2.576 times the standard deviation per sample (99% confidence level). This 

confidence level was chosen because it allowed us to fit ~100% of each NPDW 

DOM reference analysis into the average NPDW DOM reference. By means of this 

method, on average 33 masses per sample were excluded from the fit. Next, the 

maximum percentage of NPDW DOM that could be fitted into the mesocosm DOM 

was calculated based on normalized peak intensities (Fig. S1.1). Finally, this 

percentage was multiplied by the solid phase extractable DOC concentration 

(µmol C L-1) and a factor of 3/2 to account for the solid phase extractability of DOM 

(~2/3 for RDOM13) in order to derive the respective RDOC concentration contained 

within the mesocosm DOC. This concentration was then used to calculate the 

percentage of the net community production of DOC (see section S1.8). A 

proportional behavior of peak intensities and the concentration at which the sample 

was analyzed could be empirically shown by injecting the NPDW DOM at different 

concentrations from 4 to 20 mg C L-1 amended with the polyethylene glycol internal 

standard as described in section 1.5 (Fig. S1.2). 
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mesocosms, we additionally calculated the phosphorus-based new production: 

5.6±0.9 µmol P L-1 were assimilated, resulting in a new production of 589±94 µmol 

C L-1. It has to be noted that the biological drawdown of inorganic carbon and 

nitrogen was underestimated in some oceanic regions18 when a Redfield 

stoichiometry was assumed, but we regard the accuracy as sufficient for the 

purposes of this study. Among others, one important motivation for the 

implementation of this study was the fact that previous studies have reported RDOM 

production rates that exceeded the amounts needed to sustain the global RDOM pool 

by far (Table 1.3). According to the results presented in this study, a maximum of 

0.2 to 0.4% of the net community production of the mesocosms were channeled into 

the RDOM pool. This result is well within an order of magnitude as the estimates of 

global RDOM production from the NCP of 0.6%16.  

 

Table 1.3: Previous estimates of RDOM production. The results of five studies 
that investigated biological RDOM production in laboratory experiments are 

summarized. The original amount and type of substrate used as well as the 
estimated percentage of RDOM production are reported. 

 
Study Original substrate Estimated RDOM production as % of original 

substrate 
Brophy & 
Carlson 198919 

equivalents of 415 ng C of 
leucine and glucose 

83 to 99% of produced higher molecular weight 
material persisted for weeks to months. 
 

Ogawa et al. 
200120 

208 µmol C L-1 as glucose, 
132 µmol C L-1 as 
glutamate 

5% of glucose- and 7% of glutamate- derived DOC 
persisted, but also 37 and 50% of the bacterially 
derived DOC remained and remained largely 
uncharacterized. 
 

Tranvik 199321 14C labeled glucose (6 µg 
of DOC L-1) 

9-15% of originally added total organic carbon 
remained for 70 days. 

Gruber et al. 
200622 

glucose (10 mmol C L-1) 3-5% of initial glucose-C persisted for 36 days of 
incubation. 
 

Koch et al. 
2014 

algal exudates (144 µmol C 
L-1) and glucose (326 µmol 
C L-1) 

A calculated minimum 6 µmol C L-1 of “non-labile” 
DOC was produced for algal exudates (~4%), but 
115 µmol C L-1 (80%) remained after 695 days of 
incubation. Non-labile DOC production from 
glucose was estimated at a minimum ~17 µmol C L-

1 (5%), but 34 µmol C L-1 remained after 695 days 
(~10%). 
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S2 Supplementary Results 

 

Table S2.1: Abundance of phytoplankton classes over the duration of the 
experiment. Phytoplankton cell counts for the inoculum (NSW) and the 
mesocosm M1-M3 until day 469 summarized at class level (104 cells L-1). 

 
Sample NSW M1 M2 M3 M1 M2 M3 M1 
Day 0 4 4 4 21 21 21 38 
Bacillariophyceae 6.6 15.2 4.3 6.0 74.4 1.4 44.9 73.6 
Coscinodiscophyceae 152.6 1012.1 770.6 837.8 192.7 222.1 368.6 31.5 
Fragilariophyceae 15.4 69.1 11.2 70.6 9.4 0.4 1.3 0.1 
Mediophyceae 1.0 0 0.2 0.3 0 0 0 0 
Chlorophyceae 0 0 0 0 12.8 71.8 102.5 625.3 
Chrysophyceae 0 0 0 0 0 0 0 5.1 
Cyanophyceae 0 2665.2 38184 4612.9 4331.0 0 1614.5 2347.5 
Cryptophyceae 13.0 9.4 0 2.7 2.7 10.0 10.3 0 
Dinophyceae 0.2 0 0 0 0 0 0 0 
Euglenophyceae 146.0 1010.9 762.5 834.8 191.4 221.5 368.3 31.5 
Protozoa inc. sed. 0 0 0 0 0 15.4 0 0 
Prymnesiophyceae 0 217.8 95.6 225.5 53.8 153.8 153.8 4899.9 
other Flagellates 69.1 171.7 0 225.5 1829.8 5986.5 5750.8 0 

Sample M2 M3 M1 M2 M3 M1 M2 M3 
Day 38 38 231 231 231 469 469 469 
Bacillariophyceae 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 
Coscinodiscophyceae 1309.1 209.0 1.2 392.4 74.1 0 313.9 6.7 
Fragilariophyceae 64.7 64.2 0 0 0 0 0 0 
Mediophyceae 0 0 0 0 0 0 0 0 
Chlorophyceae 0 0 0 0 0 0 0 0 
Chrysophyceae 0 0 0 0 0 0 0 0 
Cyanophyceae 0 0 0 0 0 0 0 0 
Cryptophyceae 0 0 50998 671435 1260.7 563.8 9277.1 1640.1 
Dinophyceae 5.1 0 58327 32290 130044 21783 102868 102.5 
Euglenophyceae 0 0 0 0 0 0 0 0 
Protozoa inc. sed. 64.7 64.2 0 0 0 0 0 0 
Prymnesiophyceae/ 
Flagellates 0 0 0 0 0 0 0 0 
other Flagellates 4607.8 515.1 17809 48129 414.8 5459.4 14853 343.4 
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Table S2.2: Sequencing results of excised bands of DGGE fingerprints. Phylogenetic affiliation, accession number (Acc. no.) of the 16S rRNA 
phylotypes retrieved in this study from cut DGGE band, and their closest relative, similarity and origin. 

 

Acc. no. Closest relative (accession no.) % similarity Origin 

Alphaproteobacteria 
  

KJ914554 Rhodobacteraceae bacterium (KF023497.1) 99 North Sea coastal diatom bloom 
KJ914555 Marivita sp. SSW136 (KC534331.2) 96 shallow water hydrothermal vent, Azores 
KJ914556 Marivita cryptomonadis (NR_044514.1) 99 Marine phytoplankton Cryptomonas sp. 
KJ914557 Marivita cryptomonadis (NR_044514.1) 99 Marine phytoplankton Cryptomonas sp. 
KJ914558 Sulfitobacter sp. KLE1217 (GU644361.1) 99 Marine sediment biofilm, North Atlantic Coast 
KJ914559 Roseovarius sp. M-M10 (JQ739459.1) 99 Seashore sediment, South Korea 
KJ914560 Maribius salinus CL-SP27 (NR_043272.1) 97 Solar saltern in Korea 
KJ914561 Roseovarius crassostreae CV919-312 (AF114484.2) 99 Crassostrea virginica, Maine, USA 

Bacteroidetes   

KJ914562 Uncultured Bacteroidetes bacterium (HM368331.1) 99 Humic acid-degrading estuarine/marine bacterial communities 
KJ914563 Bacteroidetes bacterium MOLA 411 (AM990678.1) 99 Guanabara Bay, Brazil 

Unclassified Sequences   

KJ914564 Unidentified bacterium K2-S-5 16S (AY344413.1) 96 Hawaiian Archipelago 
KJ914565 Uncultured bacterium clone REP6-45 (KC853163.1) 97 Surface sea water around decaying Enteromorpha prolifera 

KJ914566 Uncultured organism clone SBZO_1899 (JN530474.1) 96 Guerrero Negro hypersaline microbial mat 

KJ914567 Uncultured bacterium clone CBM01B05 (EF395620.1) 99 Seasonally anoxic estuarine waters 

KJ914568 Uncultured bacterium clone D10 NEREIS T270d (JF774440.1) 98 Bioturbated sediments 

KJ914569 Uncultured bacterium clone G81-44 (HQ601863.1) 97 Biofilm, Great Barrier Reef 

KJ914570 Bacterium HTCC4037 (EF628479) 99 Oregon coast or Bermuda Atlantic Time Series site 

KJ914571 Bacterium Ellin7504 (HM748714.1) 89 Soil 

 
 

 
 



Do marine microorganisms really produce refractory dissolved organic matter? 89
 

Table S2.3: Concentrations of total dissolved carbohydrates (DCCHO) in the 
mesocosms M1-M3 and M1-M3dark on day 1011. DCCHO concentrations are 
based on the analysis after hydrolysis of the seven neutral monosaccharaides 

listed. 
 

 M1 M2 M3 M1dark M2dark M3dark 
 DCCO (µmol L-1) 
Fucose 0.2 1.7 0.1 0.0 0.2 0.0 
Rhamnose 0.8 1.4 1.1 0.1 0.2 0.4 
Arabinose 0.1 0.4 0.1 0.0 0.0 0.0 
Galactose 0.4 11.4 0.1 0.1 0.1 0.0 
Glucose 0.9 6.7 0.9 0.2 0.1 0.2 
Mannose 0.1 2.5 0.2 0.0 0.0 0.0 
Xylose 0.3 1.8 0.1 0.1 0.2 0.0 

Sum 2.8 25.9 2.7 0.6 0.8 0.7 
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Fig. S2.4cont. North Sea Water reference (NSW) values determined in the 
inoculum of the mesocosms, North Pacific Deep Water reference (NPDW) 

values are taken from Green et al. 201413 or literature compiled in Hansell & 
Carlson 200223 for the deep ocean. M1-M3 denote light mesocosms, M1-M3dark 

denote dark mesocosms. 
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4.1 Abstract 

The North Sea as marginal sea of the North Atlantic is largely surrounded by land 

and receives most of the riverine discharge of the central European drainage system. 

High loads of dissolved organic matter (DOM) carried by the rivers together with 

autochthonous production and degradation processes heavily impact the carbon 

budget of the confined ocean. The main drivers of bulk dissolved organic carbon 

(DOC) concentration and molecular DOM as well as microbial community 

composition were identified in the water column along a transect from the island 

Helgoland towards the Norwegian coast and in the Skagerrak area. DOC 

concentrations ranged between 60 and 170 µmol C L-1, reflecting the conservative 

mixing of high DOC freshwater with Atlantic Water masses from the North. The 

DOM quality, analyzed via ultrahigh resolution mass spectrometry, was heavily 

impacted by terrigenous DOM compounds such as dissolved black carbon and 

polyphenolic compounds, which decreased from ~27% to ~17% of all detected 

molecular formulae along the salinity gradient. Besides salinity, strong correlations 

were revealed between the total microbial community (DNA-based) and molecular 

DOM composition, whereas the active microbial community (RNA-based) only 

exhibited a weak link to the DOM molecular composition. We hypothesize that 

while the modifications of the DOM through the active microbial community rather 

affect the labile DOM pool that is rapidly turned over and cannot completely be 

captured by the applied methods, the semi-labile DOM and total microbial 

community retain the history of the water masses on similar timescales of several 

months. 

4.2. Introduction 

The North Sea is a 750,000 km2 large marginal sea of the Atlantic Ocean bordered 

by Great Britain, Norway, Denmark, Germany, the Netherlands, Belgium and 

France. The main water exchange with the Atlantic Ocean (51,000 km3 yr-1 inflow 

and 56,700 km3 yr-1 outflow) occurs via the northern boundary. The water exchange 

through the Dover Strait between the Netherlands and Great Britain contributes 
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~4,900 km3 yr-1 (Eisma and Kalf (1987). Compared to these numbers, the freshwater 

flow into the system consisting of precipitation, freshwater input from rivers, and the 

outflow from the Baltic Sea in the East is relatively small and sums up to 895-955 

km3 yr-1 (Radach and Pätsch 2007; Thomas et al. 2005). The major discharging 

rivers are the Rhine and the Elbe, which together transport water from a large part of 

the central European drainage basin. These two rivers are responsible for a 

significant input of pollutants, nutrients and organic material into the North Sea 

(Radach and Pätsch 2007). Dissolved organic matter (DOM), the dominant form of 

organic matter transported by the rivers (Wetzel 1984), is an important source of 

energy and nutrients (N, P) for coastal microbial metabolism and primary production 

(Azam et al. 1983; Tranvik 1992). The input of nutrients is traditionally 

underestimated as organic forms of nutrients are infrequently quantified, but may 

constitute the prevailing form of dissolved terrestrial nutrient supply to the ocean 

(Guo et al. 2004).  

The huge amounts of DOM carried by rivers are either derived from autochthonous 

primary production or of terrigenous origin. From a molecular perspective, 

terrigenous components are mainly lignin phenols derived from constituent 

compounds of vascular plants (Hernes and Benner 2006; Opsahl and Benner 1997) 

and pyrogenic black carbon, a product of biomass burning (Dittmar and Paeng 2009; 

Jaffé et al. 2013) with rather distinct composition and structural properties. 

Mobilized mainly from soils and subsequently transported to the oceans by rivers, 

terrigenous DOM contributes between <1% of the dissolved organic carbon (DOC) 

in the Pacific to 33% of the DOC in the Arctic Ocean (Hernes and Benner 2002; 

Opsahl and Benner 1997; Opsahl et al. 1999). The fate of terrigenous DOM in the 

ocean is still unclear. Especially in coastal areas, which are the first receivers of 

terrigenous DOM, remineralization is a possible source of nutrients for primary 

production (Moran and Hodson 1994; Opsahl and Benner 1997). Further, in the 

shallow coastal waters, photodegradation reduces the aromaticity of condensed 

aromatic compounds (Opsahl and Benner 1997; Stubbins et al. 2010), which has 

been proposed to render DOM more susceptible to microbial consumption (Benner 

and Ziegler 2000; Miller and Moran 1997). Also, redox interfaces at oxic-anoxic 



98 
Terrigenous input and microbial processing - driving forces of dissolved organic matter 

composition in the North Sea 
 
transitions in the sediments of e.g. estuaries or tidal flats may play an important role 

in molecularly modifying the flux of DOM from land to ocean by selectively 

trapping vascular plant-derived and pyrogenic DOM (Riedel et al. 2013). 

In addition to the allochthonous input of DOM to the North Sea through rivers, 

groundwater discharge or aeolian deposition, and primary production in the marine 

environment may add substantial amounts of autochthonous DOM (Hedges 1992), 

thereby affecting concentration and composition of the marine DOM pool. Besides 

autotrophic production, the interactions between heterotroph organisms and DOM 

are numerous and further alter DOM composition. Conceptually based in the 

microbial loop (Azam 1998) and partly in the microbial carbon pump (Jiao et al. 

2010), these processes include selective consumption for growth, energy storage and 

metabolism, transformation, production of secondary compounds and cleavage 

products as well as excretion. In order to understand these interactions, it is 

important to identify the key players on both sides, the composition of the DOM and 

the microbial community (hereafter MC) structure, in detail. 

For the North Sea and the German Bight and based on samples collected during the 

same cruise as this study, Wemheuer et al. (in prep.) showed that bacteria of the 

orders Flavobacteriales and Rhodobacterales were most abundant in surface waters 

during the summer. They assessed MC composition using 454 pyrosequencing of 

RNA and DNA with the aim to differentiate actively growing taxa from a total 

community potentially including numerous inactive taxa. In this study, 

Alphaproteobacteria, especially the different clusters of the Roseobacter clade, were 

found to be most abundant and active, followed by Bacteroidetes and 

Cyanobacteria. Alphaproteobacteria have already previously been found to 

dominate the MC in the North Sea during spring, i.e., before the onset of the annual 

phytoplankton bloom (Teeling et al. 2012). During the bloom, the number of 

Bacteroidetes strongly increased, while Gammaproteobacteria were dominating 

during later stages of algal decay. The heterotrophic Bacteroidetes are known to be 

important degraders of high molecular weight organic matter in the ocean and 

preferably grow attached to particles (e.g. Fernandez-Gomez et al. 2013). In 
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contrast, Proteobacteria, especially the most abundant and highly diverse 

Roseobacter clade of the Alphaproteobacteria subclass, preferentially consume 

monomers and live freely suspended in the pelagial (Buchan et al. 2005; Giebel et 

al. 2011). There is growing evidence that the MC composition in the marine realm is 

driven to a large extent by deterministic selection (Stegen et al. 2012; Valentin-

Vargas et al. 2012) through environmental factors, among which substrate 

availability and composition of DOM rank prominently. Closely related and 

functionally similar taxa are found in similar habitats more often than expected by 

chance (Kraft et al. 2007) and substrate-specific allocation to the vast niche space 

offered by complex DOM may contribute to maintaining the highly diverse 

microbial communities in the oceans (Carlson et al. 2007; Zinger et al. 2011) as it 

has been proposed for phytoplankton (Hutchinson 1961). 

Technical advances in molecular microbial ecology (Edwards and Dinsdale 2007) 

and organic geochemistry (Koch et al. 2005; Kujawinski 2002) have made it 

possible to analyze both, the microbial community and the dissolved organic matter, 

at similarly high resolution. Pyrosequencing facilitates the classification of 100,000s 

of DNA sequences below phylum level and FT ICR MS (Fourier Transform Ion 

Cyclotron Resonance Mass Spectrometry) typically yields tens of thousands of 

molecular formulae for an oceanic DOM sample. Linking this detailed information 

from molecular microbiology and organic geochemistry is a promising step towards 

the understanding of the role of microorganisms in the global marine carbon cycle. 

A major challenge is the combination and interpretation of the complex information 

obtained by the ultrahigh resolution methods via multivariate statistics.  

In this study we aim to (i) characterize the molecular composition of the North Sea 

DOM pool along a gradient of terrestrial influence starting from Helgoland up to 

~60°N, and (ii) identify environmental variables as well as features of the MC 

associated with the gradient of DOM composition. We hypothesize that the MC 

composition, especially the active community, is closely related to the composition 

of their sustaining energy source (Azam et al. 1983), the DOM. 
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DOC/TDN quantification and solid phase extraction. Water samples for DOM 

analysis were filtered through GF/F filters (precombusted 400°C, 4 hrs, Whatmann, 

United Kingdom) and acidified to pH 2 with 25 % HCl (p.a. grade, Carl Roth, 

Germany). Triplicate subsamples for dissolved organic carbon (DOC) and total 

dissolved nitrogen (TDN) analysis were stored at 7°C in the dark pending laboratory 

analyses. DOC and TDN concentrations were analyzed by high temperature 

catalytic combustion using a Shimadzu TOC-VCPH/CPN Total Organic Carbon 

Analyzer equipped with an ASI-V autosampler and a TNM-1 module. TDN reported 

in this study encompasses both organic and inorganic fractions. Prior to analysis, the 

acidified samples were purged with synthetic air to remove dissolved inorganic 

carbon. L-arginine solutions ranging from 5 to 500 μmol C L-1 and 6.6 to 

333.3 µmol N L-1, respectively, were used for calibration and Deep Atlantic 

Seawater reference material (DSR, D.A. Hansell, University of Miami, Florida, 

USA) was measured to control for instrumental precision and accuracy. The 

standard deviation of triplicate sample analyses was on average 2 µmol C L-1 for 

DOC and 1 µmol N L-1 for TDN analysis. According to the DSR analyses (n=10), 

the precision was 2.8±0.9% for DOC and 3.3±1.1% for TDN, while the accuracy 

was 5.1±4.2% for DOC and -4.8±1.2% for TDN, respectively. For mass 

spectrometry, DOM was extracted from 2 liters of filtered and acidified seawater 

with commercially available modified styrene divinyl benzene polymer cartridges 

(PPL, Varian, USA) as described in Dittmar et al. (2008). After loading the sample 

onto the adsorber, cartridges were rinsed with acidified ultrapure water (pH 2, HCl 

25%, p.a., Carl Roth, Germany) to remove salts, dried by flushing with nitrogen gas, 

and eluted with 6 ml of methanol (HPLC-grade, Sigma-Aldrich, USA). Extracts 

were stored in amber vials at -20°C. The extraction efficiency was on average 

52±5% on carbon basis. 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT ICR MS). 

The mass spectra were obtained on a 15 Tesla Solarix FT ICR MS (Bruker 

Daltonics, USA) equipped with an electrospray ionization source (Bruker Apollo II) 

applied in negative mode. DOM extracts were diluted to a final DOC concentration 

of 20 mg C L-1 in a 1:1 mixture of ultrapure water and methanol (HPLC-grade, 
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Sigma-Aldrich, USA). A total of 500 scans were accumulated for each sample, the 

mass window was set to 150-2000 Da. The spectra were calibrated with an internal 

calibration list containing more than 50 known peaks with identified molecular 

formulae spanning the mass range between 281 and 621 Da using the Bruker 

Daltonics Data Analysis software package. The mass to charge ratio, resolution and 

intensity were then exported and processed using in-house Matlab routines. Detected 

peaks were matched over the whole dataset and molecular formulae (maximum 

elemental abundances set to CnHnOnN4S2) were assigned to peaks with a minimum 

signal-to-noise ratio of 4 and based on a maximum error of 0.5 ppm on the mass 

axis. CH2 homologous series were calculated and longer homologous series 

extending to lower masses were considered correct for multiple assignments. The 

modified Aromaticity Index (AImod=(1+C-½O-S-½H)/(C-½O-S-N-P)) was 

calculated to assess the presence and extent of aromatic structures (Koch and 

Dittmar 2006). Based on the elemental composition, molecules detected via FT ICR 

MS were assigned to “molecular categories” (black carbon, polyphenols, highly 

unsaturated, unsaturated, aliphatics, saturated fatty acids, sugars, peptides) following 

the approach of Šantl-Temkiv et al. (2013). 

Statistical Evaluation. Total and active MC composition obtained by 

pyrosequencing-based analysis of 16S rRNA amplicons from environmental DNA 

and RNA were provided by Wemheuer et al. (in prep). In short, the acquired 

sequences were clustered at 1% similarity (UCLUST algorithm, Edgar 2010) and 

then grouped to operational taxonomic units (OTUs) according to phylogenetic 

affiliation. Six resolutions from phylum to approximately species level were each 

tested in the following analyses. MC composition was expressed in terms of relative 

abundances (as fractions of 1) of sequences for each of the 6 phylogenetic 

resolutions and RNA as well as DNA. Similarly, the DOM composition was 

assessed based on the relative peak intensities of the FT ICR MS spectra, i.e. 

absolute peak intensities normalized to the total sum of peak intensities of a given 

spectrum. Only peaks with assigned molecular formula were taken into account 

(n=6542) in two datasets: DOM45 included all measured samples, DOM12 included 

the DOM analyses at the 12 stations for which pyrosequencing data was available. 
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To describe gradients of compositional change in the MC and in DOM, we 

transformed matrices of relative abundance (or intensity, respectively) into separate 

dissimilarity matrices based on Bray-Curtis compositional dissimilarity (Bray and 

Curtis 1957; Legendre and Legendre 1998). For each dissimilarity matrix, principal 

coordinate analysis (PCoA) was then used to graphically describe relationships 

among sites (i.e., samples) based on the first two major axes of variation. We opted 

for PCoA as a means to show major variation the datasets (instead of non-metric 

multidimensional scaling, NMDS) to make this step of our analyses compliant with 

the following canonical analyses; PCoA and NMDS (data not shown) did not result 

in visually obviously differing ordinations of sites. Canonical analyses targeted (i) 

the relationships of MC or DOM composition to environmental factors and (ii) the 

linkage between MC and DOM compositions. The first was achieved by running a 

canonical correlation analysis (CCorA) using any of the PCoA-results and a chosen 

environmental factor. This analysis aims at identifying a gradient of compositional 

change (of MC or DOM) which most strongly correlates with the environmental 

factor, the analysis is also known as a canonical analysis of principal coordinates 

(CAP, Anderson and Willis 2003) and offers the possibility of a formal hypothesis 

test by permutation. We here note that CAP of, for instance, DOM with an 

environmental variable may yield a significant result, while the same environmental 

variable is not necessarily significantly correlated to first principal coordinates of 

DOM. This merely indicates that a relationship of DOM composition with the 

environmental variable must be rather subtle and does not express itself in major 

compositional changes of DOM; in such a case a canonical analysis (as CAP) offers 

the necessary power to detect the relationship, which, however, may remain 

undetected in an unconstrained, descriptive analysis as PCoA, To link MC 

composition with the composition of DOM we followed an approach similar to 

CAP, but needed to first select a subset of principal coordinates for both involved 

dissimilarity matrices (one for MC, one for DOM) to avoid overfitting; this was 

done based on scree plots and with the aim to capture at least 70% of the total 

variation of each dataset. We then fed the selected subsets of principal coordinates 

into a CCorA aiming to identify the first canonical axes pair with maximized 
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correlation between MC composition and the composition of DOM. Significance of 

canonical correlation was again computed by permutation. To check if the subset of 

principal coordinates was able to capture the relevant parts of variation contained in 

the full dissimilarity matrices we added a Mantel test checking for a significant 

association of MC composition with the composition of DOM. While the latter 

offers a global hypothesis test of association, the canonical analysis step is able to 

quantitatively map this association onto dimensions in the spaces of MC and DOM, 

i.e., the canonical axes pair. As a last step we (i) correlated relative peak intensities 

with the canonical axis in DOM space and color-coded sum formulas in Van-

Krevelen plots according to this correlation, and (ii) correlated relative abundances 

with the canonical axis in MC space and color-coded OTU names on a phylogenetic 

tree according to this correlation. All multivariate statistics were performed in R 

(version 2.15.2, R Development Core Team 2012, [http://cran.r-project.org/]) and 

using the package “vegan” (Oksanen et al. 2012). 

4.4 Results & Discussion 

Sources and distribution of DOC and TDN in the North Sea. Salinity along our 

700 km North Sea study transect ranged from 29.8 psu at the southernmost station 

(station 1) to 35.4 psu at almost 60°N (station 16) with slight vertical stratification 

(<5 psu difference between surface and bottom water, on average: 1.3±1.6 psu). 

Exceptions were the tidally impacted areas south of 56°N and the shallow Skagerrak 

(stations 8, 10, 27). Our results are readily interpretable by North Atlantic water 

flowing in at the northern boundary and circling through the North Sea (Thomas et 

al. 2005), and an influence from less saline Baltic Water in the Skagerrak  

(Danielssen et al. 1996). DOC concentrations ranged between 68 and 170 µmol C L-

1 and correlated significantly with salinity (Pearson’s correlation: r=-0.94, p<0.001, 

Fig. 2a). This finding indicates conservative mixing of high-DOC freshwater, 

largely consisting of riverine input from Rhine, Meuse and Scheldt in the 

Netherlands, as well as the Elbe, Weser and Ems at the German coast (Radach and 

Pätsch 2007), and Atlantic water with lower DOC concentrations (Hansell and 
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Carlson 1998). Fully conservative mixing would yield a DOC concentration of 630 

µmol L-1 at a salinity of 0 (y=-15.873x+630.51, calculated from measured 

concentrations, this study) which is well within the range of the Ems (570 to 675 

µmol C L-1), but higher than the 340-380 µmol C L-1 and the 240-440 µmol C L-1 

reported for Elbe and Rhine, respectively (Abril et al. 2002). According to Thomas 

et al. (2005), the Baltic inflow impacts the North Sea water salinity and DOC 

content in the area along a narrow strip along the Norwegian coast; in our study this 

is merely reflected in the elevated DOC concentration of 149 µmol L-1 at the low 

salinity (30.06 psu) surface water of station 13 located in the Norwegian Trench. At 

the oceanic end of our investigated gradient (station 16), we find the lowest 

measured DOC concentration of 54 µmol C L-1, which is still higher than the 

concentrations reported for the Greenland Sea Deep Water with 48 µmol C L-1 or 

the North Atlantic Deep Water with 45 µmol C L-1 (Hansell and Carlson 1998). This 

supports the hypothesis by Thomas et al. (2003) who suggested the North Sea to 

represent a “bypass pump” that increases the carbon content of the Atlantic Ocean 

water during its circulation. For the temporarily stratified central North Sea previous 

studies are limited, but Suratman et al. (2009) report DOC concentrations between 

68 and 318 µmol L-1, with the highest values occurring during the phytoplankton 

blooms in spring and summer. In the tidally mixed southern North Sea, the influence 

of riverine input increases and DOC concentrations range between 83 and 

417 µmol L-1 (Cadée 1982).  

We measured TDN concentrations ranging between 2.5 and 20.5 µmol N L-1 (Fig. 

2b) with many surface stations being depleted in N, most likely due to removal 

during recent phytoplankton blooms (Colijn and Cadée 2003). The water depths 

between 100 and 350 m were enriched in TDN, which can be attributed to the lack 

of active autotrophs and dominance of remineralization processes at these depths 

(Herndl and Reinthaler 2013; Shaffer 1996). Mean total N concentrations, including 

particulate nitrogen, of the rivers discharging into the North Sea were calculated to 

range between 300 and 400 µmol N L-1 (Brion et al. 2004), but TDN concentrations 

in the Elbe estuary were reported at 72.2±17.6 µmol N L-1 (Kerner and Spitzy 2001). 

Coastal ecosystems in general are considered to be important sinks for nutrients 
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420 Da from the lowest to the highest salinity (Pearson’s correlation: r=0.43, 

p<0.05). Accordingly, we detected changes along the salinity gradient within the 

molecular classes of DOM (Fig. 3). The percentage of black carbon and polyphenol-

type molecules decreased with increasing salinity, the modified aromaticity index 

similarly decreased with increasing salinity (-0.81, p<0.05, data not shown). In 

contrast, the fraction of highly unsaturated molecules, peptides and sugars decreased 

with increasing salinity (Fig. 3), while the contributions of saturated fatty acids and 

unsaturated aliphatics to the total formulae count remained constant and did not 

show significant gradients with salinity. Black carbon, a product of incomplete 

combustion (Goldberg 1985; Jaffé et al. 2013), and polyphenolic compounds, which 

occur only in vascular plants, are unambiguous tracers of terrigenous DOM. Based 

on the sum of the intensity-weighted percentages of the molecular classes black 

carbon and polyphenols we estimate the fraction of terrigenous DOM as 10.8% of 

the total DOC at station 1, the southernmost station close to the island of Helgoland. 

Even though this estimate is based on only two compound classes, the decrease to 

3.6% at the northernmost station with the lowest DOC concentration of only 54 

µmol L-1 compares well to the findings of Hernes and Benner (2006). These authors 

describe a terrigenous contribution to DOC in the North Atlantic of 1-2% as 

quantified by the analysis of lignin phenols in the water column. 

Canonical Analysis of Principal Coordinates (CAP) with all 45 DOM samples and 

using salinity as a constraint revealed a highly significant (p<0.001) association of 

the molecular composition of DOM with salinity across the North Sea sampling 

transect (Fig. 4a). This finding corresponds well to the previously described largely 

conservative mixing of the low-salinity coastal water masses with Atlantic Water in 

the North Sea and establishes salinity, i.e. the conservative mixing process itself, as 

the main determinant of DOM composition. However, 47% of the variability 

remains unexplained, pointing to additional factors that influence molecular DOM 

composition, e.g. microbial interactions, including production, degradation and 

transformation processes. 
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are overall not significantly correlated to any environmental variable except salinity 

at any phylogenetic level according to Constrained Analysis of Principal 

Coordinates (CAP).  

Tab. 1: Overview of (a) OTUs per phylogenetic level for RNA- and DNA-based, 
percentage of OTUs in DNA-based dataset which were also found in the RNA-

based dataset (and vice versa), number of OTUs found in both datasets 
(percentage computed from total number of OTUs found by either approach); 
(b) Results of canonical correlation analysis and redundancy per phylogenetic 

level; (c) Redundancy of DNA on DOM and RNA on DOM, as well as 
correlation and significance of the correlation of the first canonical axes. 

 

a. phylogenetic 
level 

# of DNA 
OTUs 

# of RNA 
OTUs 

%DNA/RNA %RNA/DNA 
# of OTUs in 

both RNA and 
DNA datasets 

 phylum 17 22 82 64 14 (54%) 
 class 40 50 78 62 31 (50%) 
 order 105 124 74 63 78 (50%) 
 family 192 240 76 60 145 (48%) 
 genus 372 513 74 54 277 (44%) 
 species 599 946 71 45 423 (36%) 

b. phylogenetic 
level 

DNA 
CCorA 

RNA 
CCorA 

 

 phylum 0.60 0.030*   
 class 0.049* 0.440   
 order 0.011* 0.067   
 family 0.014* 0.16   
 genus 0.0046*** 0.046*   
 species 0.0007*** 0.028*   

c. phylogenetic 
level 

Redundancy 
DNAonDOM 

Redundancy 
RNAonDOM 

Correlation & significance of 1st 
canonical axes DNAonDOM vs. 

RNAonDOM 

 

 phylum 0.30 0.28 0.89***  
 class 0.33 0.29 0.65*  
 order 0.46 0.38 0.25  
 family 0.44 0.38 0.34  
 genus 0.55 0.56 0.20  
 species 0.53 0.49 0.29  
Significance: p<0.05*, p<0.01**, p<0.001*** 
 

An association between the total MC (DNA-level) and molecular DOM composition 

was detected from class level (p<0.05) and increased with lower genetic distance 

(Tab. 1b). The redundancy provides an estimate of the percentage of variability in 

the DOM matrix that can be explained by the DNA matrix, and this fraction 

increased with increasing resolution of the DNA matrix as well (Tab. 1c). A 
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significant association between the molecular DOM composition and the active 

community (RNA-based) was only detected at phylum level and again at genus and 

species resolution of the RNA-based MC. However, the first canonical axes of the 

CCorA of DNA/DOM and RNA/DOM are correlated at the low resolution of 

phylum and class (Tab. 1c), denoting that the resolution is too low to differentiate 

the composition of active and total community. Based on these results, we chose the 

“species”-level phylogenetic resolution for further in-depth analysis of possible 

interactions between the important contributors of the active and of the total MC and 

the prevailing dissolved molecules (Fig. 5). 

Identifying the key players – molecular classes. In total, 6338 molecular formulae 

could be assigned to the samples of the reduced DOM dataset including only 12 

samples. 42% of the compounds are CHO compounds, the others contain at least 

one heteroatom. The molecules with positive correlation to the first canonical DNA 

axis (n=3050, Tab. 2, Fig. 5a/b) centered in a core area above the H/C ratio of 1 

which is typically observed for marine DOM and also contained some condensed 

aromatic compounds (Kim et al. 2003; Sleighter and Hatcher 2008). The molecules 

are larger (~432 Da) than the negatively correlated compounds (~351 Da). This 

corresponds well to the finding that terrigenous DOM is on average of smaller 

molecule size than the characteristic marine compounds (Koch et al. 2005). The 

average O/C ratio was similar for positive and negative correlations (O/C 0.46-0.48, 

Tab. 2). The H/C ratio of the negatively correlated molecules (n=3288, Fig. 5a) was 

on average 1.21, and thus marginally lower than for the positively correlated 

molecules, whose higher H/C ratio of ~1.27 represents the higher saturation of the 

molecules. The classification of the molecular formulae into molecular groups 

emphasizes the differences between the positively and negatively correlated 

molecules. The reason for this is that the H/C and O/C ratios are weighted by 

average peak intensity. The higher peaks are generally found in the center of the van 

Krevelen diagram, thus blurring the differences between positive and negative 

correlations. A negative correlation with the total MC was accompanied by 

proportions of condensed molecules (black carbon, polyphenols) that were more 



112 
Terrigenous input and microbial processing - driving forces of dissolved organic matter 

composition in the North Sea 
 
than twice those of the positively correlated molecules, while the contribution of 

highly unsaturated compounds was lower (Tab. 2).  

For RNA-DOM interrelations, the negatively correlated molecules were fewer 

(n=1848, Fig. 5c) and concentrated at a high H/C and O/C ratios typical for protein-

like substances, but did not contain excessive amounts of nitrogen. Positively 

correlated molecules on the other hand were numerous (n=4490, Fig. 5c) for the 

active MC and widely spread over the whole van Krevelen space with a slight 

accumulation towards lower H/C and O/C values (Fig. 5c). The average values are 

again influenced by the higher intensity peaks being located towards the center of 

the van Krevelen space and similar to the DNA-related molecules, a size difference 

exists between the positively (~427 Da) and negatively (~368 Da) correlated 

molecules. The relative contribution of polyphenol and black carbon molecules 

decreased, highly unsaturated molecules were similar, and highly unsaturated 

aliphatics were enriched in the groups of negatively compared to positively 

correlating compounds (Tab. 2). 

Tab. 2: Molecular characteristics and distribution of molecular classes of 
positively (+) and negatively (-) correlated molecules on DNA and RNA level. 

Values represent averages weighted by relative peak intensity, percentages are 
based on the total number of assigned molelcular formulae per group (DNA+, 

DNA-, RNA+ and RNA-). 
 

DNA 
+ 

DNA  
- RNA + 

RNA  
- 

Number of molecules (n) 3050 3288 4490 1848 
average size (Da) 432 351 427 368 
O/C 0.48 0.46 0.46 0.48 
H/C 1.27 1.21 1.19 1.28 
% black.carbon 5.4 13.8 11.1 6.6 
% polyphenols 9.9 24.8 20.5 10.6 
% highly unsaturated compounds 72.9 50.5 60.3 63.7 
% unsaturated aliphatics 6.2 8.9 4.4 15.3 
% saturated fatty acids 0.3 0.4 0.4 0.2 
% sugars 0.8 0.4 0.5 0.8 
% peptides 4.5 1.2 2.8 2.9 
%N containing compounds 1.8 1.1 1.7 0.9 

 



Terrigenous input and microbial processing - driving forces of dissolved organic matter 
composition in the North Sea 

113

 
Identifying the key players – microbial community. The 30 OTUs (DNA- and 

RNA-based) showing the most positive/negative correlations to the molecular DOM 

composition, are depicted in figure 5d. The positive correlations were r>0.43, the 

negative correlations were r<-0.55. Although the “species” level provided the 

highest correlations between DNA/RNA and DOM, a drawback of this high 

resolution is that it does not necessarily contain more information on the respective 

species due to the low number of identified, sequenced microorganisms available via 

the existing databases. Hence, the interpretation of the results is often compelled to 

remain superficial in spite of the deep sequencing effort. 

The influence of salinity is weaker on the total MC than on the DOM composition of 

the reduced dataset: with PCoA analysis of the total MC at species level, correlation 

to salinity was not found before the fourth PCoA (r=-0.74, p<0.01), which explained 

8% of the variability in the dataset. When examining the bacterial species on DNA-

level with correlations to a subgroup of DOM molecules, they are dominated by 

representatives of the Proteobacteria and Bacteroidetes phyla, especially the most 

abundant classes of Alphaproteobacteria and Flavobacteria (Fig. 5d). Positive 

correlations were most abundant with Flavobacteria (7 orders), 

Gammaproteobacteria (3 orders) and Alphaproteobacteria (3 orders). Negative 

correlations were dominated by Alpha- and Betaproteobacteria.  

PCoA analysis of the active MC at species level revealed, almost identical to the 

total MC, a correlation to salinity on the fourth PCoA (r=-0.74, p<0.01) which 

explained 11.5% of the variability in the dataset. Dominant representatives of the 

active MC were negatively correlated Alphaproteobacteria (6 orders), 

Cyanobacteria (Fig. 5e). Flavobacteria (5 species), Betaproteobacteria (4 orders) 

and Alphaproteobacteria (3 orders) were found to correlate positively to the DOM 

molecular composition. Of the most influential representatives of the active and total 

MC, five species appeared in both trees (Fig. 5d/e, 2 Flavobacteria, 1 

Alphaproteobacterium, 2 Gammaproteobacteria).  

Molecule classes and microbial species – how do they relate? Opposing views exist 

concerning the degradation/uptake of the highly diverse organic matter by 
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microorganisms in the ocean: On the one hand, a taxa-specific preference could be 

shown by Cottrell and Kirchman (2000) who found that representatives of the 

Cytophaga-Flavobacteria cluster dominated high molecular weight organic matter 

degradation processes. On the other hand, many bacterioplankton species are 

generalists and functional redundancy of metabolic capabilities leads to a minor 

influence of DOM quality on MC structure (Mou et al. 2007). With our study, we 

could not resolve any causal effects shaping MC composition and DOM pool but 

provide first insights into co-occurrences (positive correlations) and absences 

(negative correlations) between certain molecular groups and microbes.  

The canonical variates for the RNA/DOM and DNA/DOM analysis are not related, 

indicating that the association of the active community with DOM is not simply a 

subgroup but completely different from the association of the total community with 

DOM. However, the first canonical variate relating DOM and total MC is strongly 

associated with salinity (r=-0.78). So even if DOM composition and DNA-based 

MC are individually only weakly related to salinity, the canonical correlation 

between these two brings out the connection to the important driver of the system 

North Sea. The representation of the molecular formulae in van Krevelen space 

clearly shows this separation into “marine” compounds at higher H/C ratios and 

“terrigenous” compounds below an H/C ratio of 1 (Fig. 5a/b, (Kim et al. 2003; Koch 

et al. 2005; Sleighter and Hatcher 2008)). The marine DOM is positively associated 

with Flavobacteria, mainly of the Flavobacteriales order, and Gammaproteo-

bacteria, while the terrigenous DOM is associated mainly with Alpha- and 

Betaproteobacteria. The presence of a general salinity gradient is in accordance with 

Fortunato et al. (2012), who established salinity as the main driver of MC 

composition along a pronounced salinity gradient from river to ocean. Also, the 

dominance of Flavo-, Alpha- and Gammaproteobacteria is in line with previous 

studies from the southern North Sea (Alderkamp et al. 2006; Rink et al. 2011). 

Bacteria of the Bacteroidetes phylum are known to be efficient degraders of high 

molecular weight organic matter (Cottrell and Kirchman 2000), the capacity to 

metabolize polymers and a particle-attached lifestyle are coded in the genome 

(Fernandez-Gomez et al. 2013). Bacteroidetes are abundant in most marine 
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environments (review by Kirchman 2002, Alonso et al. 2007) from coastal waters to 

the oligotrophic ocean; a preference matching the terrigenous/marine DOM gradient 

found in this study cannot be derived for this group. Alphaprotebacteria, much like 

Bacteroidetes, are abundant in many marine but also freshwater habitats, as shown 

for the Rosebacter clade in detail by Buchan et al. (2005). To some extent contrary 

to our findings, Rink et al. (2011) found a positive correlation for free-living 

Alphaproteobacteria with salinity in the North Sea South of 55°N in the year 2002, 

but could not confirm this trend one year later. The cosmopolitan NOR5/OM60 

clade of the Gammaproteobacteria class which account for up to 11% of a coastal 

bacterioplankton community during summer (Fuchs et al. 2007) has preferably been 

detected in nearshore surface samples (Yan et al. 2009) – contrary to our positive 

association of most Gammaproteobacteria with marine-type DOM. Testing all 

Gammaproteobacteria species in the DNA dataset to make sure this finding is not 

an artifact of the restriction to the 30 species with highest/lowest correlations, this 

trend was confirmed: 70 of the 106 species show a positive correlation with marine 

DOM. The association of terrigenous DOM with Betaproteobacteria on the other 

hand may reflect the riverine input, since representatives of the Betaproteobacteria 

class are more abundant in freshwater (Kirchman 2002). In the future, in order to 

resolve the interrelation of specific molecules and distinct metabolic pathways of 

certain microbes, studies in single species cultures and habitats with less pronounced 

environmental and hydrographic gradients need to be conducted. 

Overall, the correlation between DNA and DOM is quite strong (Tab. 1b) and 

mainly driven by salinity; thus we hypothesize that the DOM and the total MC 

undergo mixing and transformation processes from the coast towards the Atlantic on 

similar timescales and thus retain the history of the water masses, although the 

involved processes may be different: e.g. the MC may respond to changes in 

temperature or nutrient supply (Fuhrman et al. 2008), while the DOM may be more 

affected by abiotic adsorption/desorption to surfaces (Gogou and Repeta 2010), 

flocculation (Mikes et al. 2004) or photochemical processes (Stubbins et al. 2010).  
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The molecules that negatively correlate to the RNA-based active MC are mainly 

found at high H/C and O/C ratios, and likely consist of more saturated compounds 

that can easily be taken up by bacteria. The microbes thriving on these compounds 

are Flavo- and Alphaproteobacteria, known to be metabolically diverse groups. 

However, the relationship could also be interpreted the other way around: a negative 

correlation may imply rapid uptake of the respective molecules by the respective 

microorganisms. Alphaproteobacteria would then be the most abundant class driving 

this molecule group, followed by minor contributions from Cyano- and 

Flavobacteria (Fig. 5e). The positively correlating molecules are too widespread 

over a whole range of carbon to oxygen or hydrogen ratios to draw conclusions 

concerning their origin or preferential use; on the MC side the occurrence of three 

Cyanobacteria within the top 15 group is noticeable, since they did not appear in the 

group of the active bacteria with a negative correlation to the DOM. 

Prochlorococcus for example, the most abundant genus of the Cyanobacteria class, 

has been shown to outcompete other bacterioplankton for uptake of amino acids 

(Zubkov et al. 2003). The general correlation between active MC and DOM was 

weaker than the DNA/DOM correlation (Tab. 1b). A reason for this may be the 

method applied for the characterization of the DOM pool: solid phase extraction of 

the samples with an efficiency of ~50% may not be suitable to representatively catch 

the most labile component of the DOM such as amino acids or sugars that is rapidly 

turned over by the diverse, active MC. Together with the fact that this relationship is 

not influenced by salinity and not correlated to the RNA/DNA canonical variate, we 

propose that the correlations between RNA-based MC and DOM are driven by 

“patchy”, short term events that are not covered by our survey effort. These 

restricted events may include small phytoplankton blooms, or confined particle-rich 

water masses caused by turbulent, wind-driven mixing. Due to the multitude of 

possible local events in the highly dynamic North Sea on both spatial and temporal 

scales, a much higher sampling resolution is required to cover the natural variability 

of both DOM and MC composition to an extent sufficient for revealing general 

trends of DOM-microbe interactions. 
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Conclusion. The molecular composition of the DOM pool and the composition of 

the total as well as of the active community of the North Sea were studied in 

unprecedented detail in this study. Based on molecular level analysis of DOM via 

FT ICR MS, we found that terrigenous DOM identified as dissolved black carbon 

and polyphenolic compounds makes up a considerable amount of the DOM pool that 

can be traced from the coast, where it enters the North Sea as river/subterranean 

discharge, northwards to the Atlantic Ocean. The total coastal MC is transported 

together with the DOM as the water moves northwards and undergoes changes on a 

similar timescale of several months to a year. Thus, DOM and total MC can act as 

tracers of the intermediate water mass history. The association of the active MC to 

the molecular DOM composition is weak, likely because the applied methods of 

DOM characterization are not suitable to catch changes on the short timescales and 

the activity of the bacterioplankton may be triggered by local and sporadic events 

not exhaustively covered in this study. However, the ultrahigh resolution of the 

methods that were applied in this study, the elucidation of the microbial community 

structure as well as the molecular DOM composition together with the statistical 

tools applied, allow a first glimpse at the identification of the key players on both 

sides.  
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4.7 Supplementary Results 

 

Table 1: Position (latitude, longitude in decimal format) of stations sampled 
during HE361 cruise. Sampled depth, temperature and salinity were obtained 
by CTD sonde, dissolved organic carbon (DOC) and total dissolved nitrogen 

(TDN) were measured via high temperature catalytic oxidation in the 
laboratory. Standard deviation (s.d.) given for triplicate analyses. 

 
Station Latitude 

(degrees N) 
Longitude 
(degrees E) 

Depth 
(m) 

Temperature 
(°C) 

Salinity 
(psu) 

DOC 
(±s.d., 

µmol L-1) 

TDN 
(±s.d.,  

µmol L-1)
1 54.0893 7.9327 3 18.3 29.83 169±1 20±1 

2 54.9667 7.6058 3 15.8 32.25 126±3 14±1 

   10 15.8 32.25 122±1 14±1 

3 55.4662 7.2852 3 14.8 33.42 105±0 10±1 

   10 14.7 33.42 107±1 10±0 

5 56.0118 7.6902 3 15.8 32.35 129±1 15±1 

   10 15.7 32.64 122±1 14±0 

6 56.5018 7.5015 3 15.7 33.22 110±3 11±1 

   10 15.7 33.25 104±1 9±1 

   23 11.8 34.24 95±6 8±0 

7 56.9940 7.2925 3 15.2 33.11 98±2 7±1 

   10 15.2 33.11 98±0 6±0 

   27 10.1 34.68 79±1 7±1 

8 57.2610 8.7320 3 14.8 33.41 101±0 7±0 

   10 14.8 33.41 97±2 7±0 

   18 13.8 33.60 98±0 7±0 

10 57.3173 9.0008 3 15.3 33.17 111±2 4±0 

   8 15.3 33.19 108±2 3±0 

   17 14.4 33.39 103±0 4±0 

12 57.4887 7.1000 3 15.5 31.87 128±2 5±1 

   25 9.7 34.99 79±1 2±0 

   150 7.2 35.24 71±1 13±1 

13 57.8305 6.9185 3 16.5 30.06 149±1 6±1 

   25 12.0 33.33 93±1 3±1 

   350 6.0 35.16 72±3 9±0 

14 58.1657 5.1693 4 14.7 32.57 109±0 5±1 

   250 6.1 35.14 84±1 12±0 

15 58.9985 3.9232 3 14.6 31.86 106±1 8±1 

   18 8.5 34.46 86±1 9±0 

   250 6.5 35.22 71±6 15±1 

16 59.9848 3.0360 4 14.5 32.17 98±1 7±0 
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Station Latitude 

(degrees N) 
Longitude 
(degrees E) 

Depth 
(m) 

Temperature 
(°C) 

Salinity 
(psu) 

DOC 
(±s.d., 

µmol L-1) 

TDN 
(±s.d.,  

µmol L-1)
   22 12.0 35.06 75±2 6±1 

   100 9.3 35.40 55±2 15±0 

27 57.6128 8.5818 3 16.0 34.08 87±1 6±0 

   10 16.0 34.24 85±1 6±0 

   29 12.5 34.80 78±3 6±1 

   100 8.2 35.02 70±1 9±0 

29 57.6115 8.5935 3 16.0 34.37 84±1 5±0 

   30 12.2 34.72 81±1 6±1 

33 56.0110 7.6918 3 16.7 32.97 107±2 8±0 

   16 15.7 33.21 100±2 9±0 

34 55.4692 7.2848 3 16.1 33.04 104±4 9±0 

   20 15.5 33.32 98±1 9±1 

35 54.9662 7.6032 3 17.6 32.12 118±4 16±0 

   21 16.0 32.38 114±1 13±0 

 
 

Table 2: Environmental parameters obtained from HE361 cruise (THDAA 
total hydrolysable dissolved amino acids, FDNS free dissolved neutral sugars, 

n.a. not analyzed). 
 

Station Depth 
(m) 

Relative 
fluorescence 

Chlorophyll 
a (µg L-1) 

Phaeopigments 
(µg L-1) 

Bacterial 
cell counts 
(cells mL-1 

×106)

Biomass 
production 
(nmol L-1 

h-1)

THDAA 
[nmol L-1] 

FDNS 
[µmol L-1] 

1 3 0.76 2.01 0.79 1.66 712.7 966 1.9 

2 3 0.62 1.30 0.49 1.60 321.6 612 0.8 

 10 0.61 1.21 0.43 1.71 381.3 638 -1 

3 3 0.38 0.53 0.38 0.76 155.2 588 0 

 10 0.44 0.69 0.35 0.80 181.8 606 0 

5 3 0.85 1.34 0.43 0.87 156.6 813 0.1 

 10 1.00 1.22 0.61 1.04 296.6 n.a. 1.0 

6 3 0.39 0.79 0.25 0.97 420.0 716 0.7 

 10 0.54 0.91 0.27 0.93 391.6 n.a. 0.2 

 23 2.14 2.50 0.26 0.73 198.8 447 0.6 

7 3 0.39 0.28 0.19 0.86 149.4 723 0.4 

 10 0.47 0.39 0.12 0.95 139.2 n.a. 0.0 

 27 0.75 0.87 0.17 1.22 94.6 381 0.1 

8 3 1.49 1.60 0.61 0.72 252.6 548 0.8 

 10 1.60 1.99 0.42 0.77 202.6 542 0.4 

 18 1.73 2.70 0.80 0.84 n.a. n.a. 0.5 

10 3 1.54 3.16 0.46 0.67 316.4 589 0.3 

 8 2.18 2.49 0.73 0.69 302.7 492 0 
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Station Depth 
(m) 

Relative 
fluorescence 

Chlorophyll 
a (µg L-1) 

Phaeopigments 
(µg L-1) 

Bacterial 
cell counts 
(cells mL-1 

×106)

Biomass 
production 
(nmol L-1 

h-1)

THDAA 
[nmol L-1] 

FDNS 
[µmol L-1] 

 17 1.79 2.80 0.69 0.69 257.7 591 0 

12 3 0.36 0.22 0.13 0.58 161.8 604 0.7 

 25 1.04 1.28 0.23 2.56 82.4 367 0 

 150 0.18 n.a. n.a. n.a. n.a. 623 0.3 

13 3 0.50 0.47 0.03 0.82 147.0 636 1.9 

 25 1.59 -0.47 1.34 1.79 106.7 n.a. 0.1 

 350 0.20 n.a. n.a. n.a. n.a. n.a. n.a. 

14 4 0.57 0.61 0.07 1.10 108.3 799 0.2 

 250 0.17 n.a. n.a. n.a. n.a. n.a. n.a. 

15 3 0.40 0.30 0.10 0.91 183.6 529 1.0 

 18 0.94 0.93 -0.04 1.37 89.1 352 0.1 

 250 0.18 n.a. n.a. n.a. n.a. n.a. n.a. 

16 4 0.47 0.46 0.04 1.14 196.8 414 0.4 

 22 2.25 1.61 0.47 2.61 115.5 n.a. 0.1 

 100 0.16 n.a. n.a. n.a. n.a. n.a. n.a. 

27 3 0.50 0.39 0.01 0.79 179.2 456 0.3 

 10 0.58 0.59 -0.15 0.65 143.6 n.a. 0.0 

 29 0.98 1.22 0.27 n.a. n.a. 405 0 

 100 0.54 n.a. n.a. n.a. n.a. n.a. 1.4 

29 3 0.25 0.28 0.11 0.68 155.0 418 0 

 30 1.09 1.47 0.18 n.a. n.a. 422 1.7 

33 3 0.56 1.03 0.32 0.96 500.9 620 -1 

 16 1.26 3.26 0.89 0.89 391.3 569 0.6 

34 3 0.28 0.41 0.20 0.61 341.3 542 0.2 

 20 1.21 2.78 1.02 0.83 n.a. n.a. 0.6 

35 3 0.51 0.87 -0.06 1.11 397.9 617 0.8 

 21 1.38 2.37 0.84 1.24 455.0 n.a. n.a. 
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5 Concluding remarks and perspectives 

This thesis investigated microbial interactions with DOM in a variety of settings. 

The production and cycling of DOM on molecular level was in the focus of 

comprehensive studies including environmental gradients and microbial 

communities. Additionally, the links between molecular DOM composition and 

associated reactivities of the compounds were emphasized. Below, the thesis is 

summarized into three broad conclusions, along with a short discussion about their 

implications and some potential future research. 

Ultrahigh resolution mass spectrometry provides novel insights into marine DOM 

composition. The application of ESI FT ICR MS in natural organic matter research 

has picked up since the first publications by Stenson et al. in 2002 and Kujawinski in 

2002. Koch et al. published the first molecular-level characterization of marine 

DOM in 2005. In this thesis, ultrahigh resolution mass spectrometry was 

successfully applied to several purposes: The molecular DOM composition in the 

high-latitude fjords of the Svalbard archipelago was explored for the first time. In 

the North Sea, terrigenous compounds could be traced due to their distinct H/C and 

O/C ratios. Furthermore, the technique proved to be irreplaceable in the 

discrimination of truly refractory from semi-refractory or semi-labile DOM in 

laboratory batch incubations. It has, however, been shown that complementary 

analyses of e.g. amino acids or carbohydrates are very valuable for the 

understanding of the total carbon pool dynamics, since these compounds are not 

comprehensively covered by FT ICR MS analysis due to the constraints of the 

applied method including sample processing (Herlemann et al. 2014). The analytical 

window is determined first of all by the extraction method, which is necessary to 

concentrate and desalt the DOM before the sensitive mass spectrometric analysis. 

The frequently applied PPL extraction (Dittmar et al. 2008) non-selectively adsorbs 

a wide range of polar to apolar compounds, but some C enrichment/N depletion 

occurs (Green et al. 2014) with extraction efficiencies of ~60% for oceanic DOM. 

Overall, 20 to 80% of the original DOM can be extracted by current standard 
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methods solid phase extraction, reverse osmosis/electrodialysis or ultrafiltration 

(Benner et al. 1997; Green et al. 2014). Thus, the most suitable method needs to be 

chosen carefully for each study to achieve the most comprehensive sample for the 

characterization of the oceanic, but also the limnic or terrigenous DOM pools. 

Another constraint of the ultrahigh resolution mass spectrometric analysis is the 

electrospray ionization, which is capable of ionizing intact molecules, but the 

ionization mechanism of mixtures is not very well understood and the ionization of 

complex mixtures can hardly be performed quantitatively (Koivusalo et al. 2001). 

Polyethylene glycol was used as an internal standard for a better comparison 

between FT ICR spectra in this thesis (Chapter 3). These first results were promising 

and further investigation of matrix effects, the impact on the ionization, but also the 

testing of other potential standard compounds could significantly improve the 

comparison of spectra between sample sets towards “quantitative” FT ICR MS 

analyses. An essential drawback of DOM analysis via FT ICR MS is the lack of 

structural information. The fragmentation of all compounds resolved on one nominal 

mass in the FT ICR MS revealed that the same molecular formulae detected in DOM 

from constrained laboratory incubations and deep ocean DOM represent molecules 

of different structural composition (Chapter 3). The structure of a compound can 

have significant influence on its reactivity (Drastik et al. 2013; Shimizu et al. 2012) 

and change its susceptibility to biotic or abiotic degradation. The extension of 

studies elucidating the variation of structural composition and diversity of DOM, 

e.g. via FT ICR MS fragmentation experiments or NMR, between different 

environments could lead to a better understanding of the hidden DOM reactivities.  

Biological processes rapidly transform labile substrates and produce highly 

diverse DOM. The production of highly diverse DOM by a microbial community 

was observed on molecular level for the first time and it could be shown that deep 

ocean refractory DOM can be produced by biological processes alone (Chapter 3). 

This refractory DOM with the exact same FT ICR MS intensity distribution pattern 

of molecules has been detected in Svalbard fjords (Chapter 2) as well as in other 

distant oceanic realms including the Antarctic (Lechtenfeld et al. 2014) or the 

Pacific Ocean (Hertkorn et al. 2006). In accordance with the reactivity continuum 
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described by Hansell (2013), the huge refractory DOM pool is similar in molecular 

composition and ubiquitously present in the world’s oceans whereas the small labile, 

semi-labile and semi-refractory DOM pools carry the imprint of recent processes 

such as phytoplankton production, microbial reworking or abiotic reactions. This 

small fraction sufficed for the establishment of correlations between the total as well 

as the active microbial community to the molecular DOM signature (Chapter 4). 

Independent of the respective microbial community composition, DOM of a highly 

consistent molecular DOM signature was produced in experimental incubations 

(Chapter 2). This finding is most likely a product of the diverse, yet habitat and 

resource adapted, metabolic capabilities of the microbial community (Delong et al. 

2006) that occupies all existing ecological niches (Jaspers et al. 2001), supported by 

the global ocean circulation. The average age of refractory DOM is estimated at 

16,000 years (Hansell 2013) and exceeds the ocean’s turnover time of less than 1200 

years (Matsumoto 2007) along the conveyor belt several times. However, the 

question remains why bacteria produce such theoretically energy- and nutrient-rich 

byproducts that can apparently not be utilized further (Danchin and Sekowska 

2014). In this context, another implication demands further investigation: There is 

strong evidence that the amount of refractory DOM that is produced by the 

microbial community is a function of the net community production (NCP, Chapter 

2). Exploring this hypothesis was outside the scope of this thesis, but the 

mechanisms behind it need to be untangled to infer consequences for the ocean in 

the face of climate change. The impact of climate change on marine DOM dynamics 

are yet unknown: how will global warming, ocean acidification, rising temperatures 

and deoxygenation (Gruber 2011) affect these cycles? The sea surface temperatures 

have increased by 0.7°C over the last century (Levitus et al. 2000) leading to a more 

pronounced stratification of the upper ocean, which hinders exchange processes for 

e.g. oxygen, nutrients, but also organic matter, with deeper water layers. Ocean 

acidification, the change in the ocean carbonate system through the uptake of 

anthropogenic CO2, will have an impact on all levels of the microbial food web, and 

some oceanic regions such as the cold waters of the high Arctic will be impacted 

more heavily than others (Riebesell et al. 2013). Engel et al. (2004) were able to 
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show an enhanced production of transparent exopolymeric particles (TEP) by the 

alga Emiliania huxley under increased CO2 conditions, while no increase in DOC 

concentration could be proven. This may be caused by an increase in bacterial 

degradation activity at high CO2 level shown by Piontek et al. (2010). The faster 

microbial polysaccharide turnover might, in the long term, reduce the carbon export 

to the deep ocean and affect the CO2 equilibrium between atmosphere and ocean. An 

increased CO2 level in the surface may increase the net community production since 

more CO2 is available as substrate for the primary producers, and a subsequent 

increase of the production of refractory DOM can in turn influence the marine 

carbon cycle. The relationship of the NCP and the production of refractory DOM 

should be explored in constrained laboratory incubation experiments with varying 

nutrient and CO2 supply to different species or a mixed community of primary 

producers, possibly providing insights into the underlying mechanisms. 

The molecular DOM signature can be linked to the microbial community 

composition. A relationship between phytoplankton species and molecular DOM 

composition is often assumed and has been demonstrated in single species cultures 

(Becker et al. 2014). In the partly stratified fjords of the Svalbard archipelago, 

however, the microbial community structure derived from DGGE fingerprinting was 

distinctly different between surface and bottom water, while the molecular DOM 

composition did not show any correlation to sampling sites and depths (Chapter 2). 

For this study, it could not be precluded that unknown labile, low-molecular weight 

or colloidal compounds that escape the analytical window (Herlemann et al. 2014) 

link bacterial and DOM, but a major constraint was apparently the low resolution of 

the DGGE fingerprinting technique compared to ultrahigh resolution mass 

spectrometry for molecular DOM characterization. A linkage of molecular DOM 

composition to the microbial community composition of the North Sea (Chapter 4) 

that was analyzed via the next-generation 454 deep sequencing approach yielded 

much better results and certain coherences could be established. A novel application 

of statistical tools to deal with the combination of two large datasets was described 

and constitutes a valuable starting point for the analysis of datasets including a 

higher number of samples to validate the proposed method. A factor that influences 
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the microbial community as well as the DOM composition is often not addressed in 

the examination of biogeochemical cycles: A smaller, but likely still significant, 

influence on the cycling of carbon compared to microbes is exerted by viruses 

through the “viral shunt” (Wilhelm and Suttle 1999). Rough estimates indicate that 

10 to 20% of the prokaryotes are lysed daily by viruses (Suttle 1994), and their cell 

wall components and dissolved contents are released. Few studies have explored the 

bulk DOC (Bratbak et al. 1992), amino acid (Middelboe and Jørgensen 2006) and 

carbohydrate contribution (Weinbauer and Peduzzi 1995) or the optical signature 

(Lonborg et al. 2013) of DOM associated with viral lysis. So far molecular analyses 

and a quantitative integration in the carbon cycle are lacking and may be considered 

in future work.  

In conclusion, the results of the studies included in this thesis illustrate that DOM 

composition and dynamics are irrevocably connected with the environment - abiotic, 

but especially the biotic processes shape the oceanic DOM pool. Interdisciplinary 

collaborations among scientists are crucial to advance our understanding of 

biogeochemical cycles on global scales. As it is time- and cost-intensive to obtain 

the data, a public data repository including DOM molecular composition, compared 

to PANGAEA (Grobe et al. 2006), would be highly useful. At the same time, the 

development of tools for the handling and analysis of complex datasets needs to be 

further emphasized.  
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