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Summary 
Phosphorous is a fundamental macronutrient for all living organisms, 

since it plays essential metabolic, structural, and regulatory roles in the cell. The 

preferential phosphorous source for bacteria is phosphate (Pi), which is available 

only in nanomolar concentrations in many marine environments, limiting, 

therefore, bacterial growth. However, the response of heterotrophic marine 

bacteria to phosphate limitation has been poorly investigated. In the present 

thesis, I characterized the response of the marine heterotrophic 

alphaproteobacterium Pseudovibrio sp. FO-BEG1 to phosphate limitation, 

investigating multiple aspects of its physiology. Bacteria belonging to this genus 

are receiving progressively more scientific attention due to their versatile 

metabolism, their ability to produce bioactive compounds, and their frequent 

detection in association with marine invertebrates.  

In the study presented in Chapter 2 physiological experiments in 

combination with proteomic and bioinformatic analyses, showed that phosphate 

limitation does not only affect the phosphorus metabolism but also other 

important physiological traits such as cell morphology, carbon metabolism, and 

cellular lipid composition. Additionally, the data obtained indicated that 

phosphate limitation triggers the production and secretion of bioactive 

secondary metabolites and the expression of proteins potentially involved in the 

interaction with the eukaryotic host. 

The physiological study conducted in Chapter 2 suggested that 

phosphate limitation greatly influences the composition of the metabolites 

secreted into the medium by Pseudovibrio sp. FO-BEG1. The ability of bacteria to 

produce and release a large variety of compounds into the environment has long 

been suggested; however, no studies have yet been performed to quantify this 

diversity with high resolution methods. Phosphate limitation has been described 
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to have a drastic effect on these processes, affecting primary and secondary 

metabolisms.  

In Chapter 3 the secreted compounds, also referred to as 

exo-metabolome, were quantified and their composition was chemically 

characterized. We analyzed and compared the exo-metabolome of  Pseudovibrio 

sp. FO-BEG1 under phosphate-limited and phosphate-surplus conditions using 

ultra-high resolution mass spectrometry. The data showed an unexpectedly large 

and diverse exo-metabolome, characterized by a dynamic recycling of 

compounds during bacterial growth, and drastically affected in composition by 

the physiological state of the strain induced by phosphate limitation. 

Surprisingly, phosphate limitation also had a pronounced influence on 

the iron metabolism of Pseudovibrio sp. FO-BEG1. The concentration of total 

soluble iron decreased in both phosphate regimes during the exponential growth 

phase and only under phosphate-limited conditions it increased again during 

stationary phase. In Chapter 4 physiological experiments and chemical analyses 

showed that Pseudovibrio sp. FO-BEG1 releases one or several chelating 

molecules, which were responsible for the solubilization of precipitated iron. 

Environmental phosphate concentrations have been known to 

significantly influence bacterial metabolism and lifestyle, and, as shown by 

recent “omic” studies, also the bacterial distribution and evolution. In Chapter 5 

I contextualized the data obtained during my work in an ecological frame. 

Additionally, I proposed and discussed four hypotheses that can explain the 

puzzling production of chelating molecules by Pseudovibrio sp. FO-BEG1 when 

growing under phosphate-limited conditions. 
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Zusammenfassung 

Phosphor ist ein essentieller Makronährstoff für alle Lebewesen, der 

entscheidende metabolische, strukturelle und regulatorische Funktionen erfüllt. 

Die wichtigste Phosphorquelle für Bakterien ist das Phosphat, welches in 

marinen Ökosystemen jedoch oft nur in geringen, wachstumslimitierenden 

Mengen verfügbar ist. Dennoch ist die Reaktion von marinen, heterotrophen 

Bakterien auf Phosphatlimitierung kaum erforscht. Gegenstand dieser Arbeit ist 

daher die Charakterisierung der Reaktion des marinen, heterotrophen 

Alphaproteobakteriums Pseudovibrio sp. FO-BEG1 auf Phosphatlimitierung, 

vorwiegendunter physiologischen Gesichtspunkten. Mitglieder dieser Gattung 

rücken zunehmend in den Fokus des wissenschaftlichen Interesses, da sie einen 

außerordentlich anpassungsfähigen Stoffwechsel besitzen, bioaktive Substanzen 

produzieren und häufig mit marinen, wirbellosen Tieren assoziiert sind.  

In Kapitel 2 wird anhand von physiologische Experimenten und 

Proteomanalysen gezeigt, dass Phosphatlimitierung nicht nur den 

Phosphorstoffwechsel sondern auch die Zellform, den Kohlenstoffstoffwechsel 

und die Zusammensetzung der Lipide beeinflusst. Ebenfalls lassen die 

erhobenen Daten vermuten, dass Phosphatlimitierung sich auf die Produktion 

von bioaktiven Sekundärmetaboliten und die Expression von Proteinen auswirkt, 

welche möglicherweise in einer Interaktion mit dem eukaryotischen Wirt 

involviert sind.  

Die in Kapitel 2 beschriebenenphysiologischen Beobachtungen legen  

nahe, dass die Zusammenstetzung der von Pseudovibrio sp. FO-BEG1 

abgegebenen Stoffe stark von der Phosphatlimitierung beeinflusst wird.  Obwohl  

seit Längerem angenommen wird, dass Bakterien die Fähigkeit besitzen, eine 

Vielzahl an Stoffen in die Umwelt abzugeben, wurden keinerlei 

Forschungsstudien durchgeführt, welche die Diversität und Quantität dieser 

Substanzen untersuchen. In Kapitel 3 wird die Zusammensetzung dieses 

sogenannten Exo-Metaboloms von Pseudovibrio sp. FO-BEG1 unter 
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Phosphatüberschuss und Phosphatlimitation zu verschiedenen 

Zeitpunkten mittels hochauflösender Massenspektrometrie bestimmt. Das 

unerwartet große und diverse Exo-Metabolom ist durch eine dynamische 

Wiederverwertung von Stoffwechselprodukten charakterisiert und abhänging 

vom physiologischen Zustand des Stammes, der durch Phosphatlimitierung 

beeinflusst wird. 

Überraschenderweise zeigte sich, dass Phosphatlimitierung auch den 

Eisenstoffwechsel von Pseudovibrio sp. FO-BEG1 drastisch beeinflusst. 

Unabhängig von der Phosphat-Verfügbarkeit sank die Konzentration des 

löslichen Eisens während der exponentiellen Wachstumsphase ab, stieg jedoch 

während der stationären Phase nur unter Phosphatlimitierung wieder an. In 

Kapitel 4 wird anhand von physiologischen Experimenten und chemischen 

Analysen gezeigt, dass Pseudovibrio sp. FO-BEG1 ein oder mehrere 

komplexbildende Moleküle abgibt, welche präzipitiertes Eisen wieder in Lösung 

bringen. Bislang wurde eine Verbindung zwischen Phosphat- und 

Eisenstoffwechsel  nur indirekt beschrieben und das hier beobachtete Phänomen 

wurde noch nie berichtet. 

Es ist seit langem bekannt, dass Phosphatkonzentrationen den 

Stoffwechsel und die Lebensweise von Bakterien in der Umwelt signifikant 

beeinflussen und sich ebenfalls auf bakterielle Verbreitung und Evolution 

auswirken können. Aufgrund dieser großen Bedeutung des Phosphats werden 

daher in Kapitel 5  die im Rahmen dieser Arbeit erlangten Ergebnisse in einem 

größeren ökologischen Zusammenhang betrachtet. Dabei werden vier 

verschiedene Hypothesen entwickelt und diskutiert, welche die Produktion 

komplexbildender Moleküle durch Pseudovibrio sp. FO-BEG1 unter 

Phosphatlimitierung erklären könnten. 
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1 

 

 

Introduction 

 

 

1.1 The genus Pseudovibrio 

 

Strain FO-BEG1 is an alphaproteobacterium belonging to the 

genus Pseudovibrio in the family Rhodobacteraceae, and shares 99.9% similarity at 

the 16S rDNA level with the type strain Pseudovibrio denitrificans (Figure 1.1). 

FO-BEG1 was isolated from an enrichment culture of Beggiatoa sp. 35Flor, a 

filamentous sulfide-oxidizing bacterium originally sampled from a black-band 

diseased coral in the coastal waters of Florida (Brock and Schulz-Vogt, 2011; 

Schwedt, 2011). The bacterium is a straight rod with an average cell length of 

2-4 µm and cell width of 0.4-0.6 µm when cultivated under nutrient rich 
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conditions (Figure 1.1). To date the genus Pseudovibrio consists of four type 

strains: P. denitrificans and P. japonicus, isolated from coastal seawater (Shieh et al., 

2004; Hosoya and Yokota, 2007), P. ascidiaceicola isolated from a marine tunicate 

(Fukunaga et al., 2006), and P. axinellae isolated from a marine sponge 

(O'Halloran et al., 2013). All type strains share similar physiological traits, being 

described as marine, heterotrophic, and facultative anaerobic bacteria capable of 

denitrification and fermentation.  

Bacteria belonging to the genus Pseudovibrio were isolated or detected 

via 16S rDNA analysis all over the world, in coastal waters (Agogué et al., 2005), 

in oil reservoirs (Silva et al., 2013), as members of biofilms or as epibionts of algae 

(Penesyan et al., 2011; Pratheepa et al., 2013), in the intestine of sea cucumbers 

(Zhang et al., 2013), associated with marine polychaetes, tunicates, corals and 

bryozoa (Koren and Rosenberg, 2006; Sertan-de Guzman et al., 2007; Riesenfeld et 

al., 2008; Heindl et al., 2010; Rypien et al., 2010; Rizzo et al., 2013), and in most 

cases associated with marine sponges (Hentschel et al., 2001; Olson et al., 2002; 

Thakur et al., 2003; Thiel and Imhoff, 2003; Thoms et al., 2003; Lafi et al., 2005; 

Kennedy et al., 2009; Santos et al., 2010; Flemer et al., 2012; Dupont et al., 2013). 

These recurrent associations were considered as an indication for the existence of 

a symbiotic relationship between members of the Pseudovibrio genus and these 

marine invertebrates (Webster and Hill, 2001; Enticknap et al., 2006; Taylor et al., 

2007). In support of this hypothesis bacteria belonging to the Pseudovibrio genus 

were found to be the most abundant prokaryotes associated with larvae of the 

sponge Mycale laxissima, indicating vertical transmission (direct transmission 

from the parental line to the progeny) of these bacteria within their hosts 
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(Enticknap et al., 2006). Moreover, for some marine sponges the culturable 

fraction of their bacterial community was dominated by Pseudovibrio related 

strains (Webster and Hill, 2001; Muscholl-Silberhorn et al., 2008).  

In a recently published paper the genomes of two isolates belonging to 

the Pseudovibrio genus were analyzed and compared (Bondarev et al., 2013; 

Contributed works). The analysis revealed their metabolic versatility and at the 

same time the presence of several genes encoding proteins that potentially play a 

role in prokaryote-eukaryote interaction. A high number of tripartite 

ATP-independent periplasmic (TRAP) and ATP-binding cassette (ABC) 

transporters for a variety of molecules together with the potential for utilizing 

different substrates to satisfy their carbon (C), nitrogen (N), and phosphorus (P) 

requirements were shared traits between the two isolates. Moreover, both 

bacteria were able to proliferate under extremely oligotrophic conditions 

(Bondarev et al., 2013; for more information refer to the Contributed works 

section). These features make Pseudovibrio a bacterium well adapted to thrive in 

the open ocean, where often the nutrient availability is fluctuating in time and 

space. In addition, the presence of type III secretion systems (T3SSs) with three 

different types of effector molecules and type VI secretion systems (T6SSs), both 

described to be involved in virulence, together with the presence of several 

toxins and proteins potentially involved in the adhesion to the host cells 

(Bondarev et al., 2013; Contributed works), underlined the potential of bacteria 

belonging to this genus to successfully establish and maintain symbiotic 

relationships with marine invertebrates.  
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To date, the nature of the symbiosis (mutualistic/commensalistic or 

pathogenic/parasitic) between Pseudovibrio and marine invertebrates is still 

unclear. However, bacteria related to Pseudovibrio have been isolated only from 

healthy sponges, which would indicate that they do not harm the host and might 

even be required for its living (Webster and Hill, 2001). Only recently 

Pseudovibrio related bacteria were isolated from bleached scleractinian corals 

(Moreira et al., 2013), but so far this putative direct association with a diseased 

metazoan is the only reported occurrence. 

In general, obligate symbiotic bacteria undergo a progressive 

reduction of the genome size. Especially when they are vertically transmitted 

virulence genes such as T3SSs and their respective effectors are lost 

(McCutcheon and Moran, 2012). Pseudovibrio has a large genome for a 

heterotrophic marine bacterium, more than five million base pairs (bp) and 

more than five thousand protein-encoding genes (Bondarev et al., 2013; 

Contributed works). In addition, it possesses several genes encoding secretion 

systems and effectors which would indicate that these bacteria could be acquired 

by the hosts from the surrounding environment. Therefore, it seems likely that 

bacteria belonging to the Pseudovibrio genus are mainly facultative symbionts of 

marine invertebrates, and still maintain a great metabolic versatility, which 

makes them well adapted to thrive in environments subject to nutrient 

fluctuations, such us the open ocean. 

One characteristic shared among almost all isolates belonging to this 

genus is the ability to produce bioactive secondary metabolites. For example, the 

potent antibiotic tropodithietic acid (TDA) characteristically produced by 

members of the Roseobacter clade, was shown to be produced by different 

Pseudovibrio isolates (Penesyan et al., 2011; Bondarev et al., 2013; Contributed 
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works). In several other studies their ability to produce bioactive compounds 

was reported (Hentschel et al., 2001; Thiel and Imhoff, 2003; Muscholl-Silberhorn 

et al., 2008; Kennedy et al., 2009; Heindl et al., 2010; Rypien et al., 2010; Santos et al., 

2010; O'Halloran et al., 2011; Flemer et al., 2012), but isolation and chemical 

characterization was successful only in one case (Sertan-de Guzman et al., 2007). 

Sponges in general are seen as a source of new compounds of biotechnological 

interest, and recently it became more clear that parts of these compounds are 

produced by their symbionts (Piel, 2004; Thakur et al., 2005; Hochmuth et al., 2010; 

Roué et al., 2012). Therefore, in the last number of years particular attention was 

directed to the isolation and characterization of new sponge symbionts.  

 

1.2 Microbes and the phosphorus cycle 

 

Phosphorus (P) is an essential element for life, being a structural and 

functional component of all organisms. It provides the phosphate ester backbone 

of DNA and RNA, and is crucial in the transmission of chemical energy through 

ATP molecules. In addition, phosphorus is a key constituent of many cell 

components such as phosphoproteins and phospholipids in the cell membranes. 

Moreover, most of the cellular processes are regulated by protein 

phosphorylation and de-phosphorylation. This underlines the importance of this 

element not only as constituent of cell biomass but also as a key component for 

the regulation of the overall cell metabolism (Stock et al., 1989; Hubbard and 

Cohen, 1993).
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Phosphorus availability can impact primary production rates in the 

ocean as well as species distribution and ecosystem structure (Smith, 1984; Karl et 

al., 2001; Coleman and Chisholm, 2010). Moreover, there is evidence suggesting 

that the phosphorus availability can directly influence bacterial speciation and 

that it might have impacted both the expansion and decline of animal taxa in the 

history of life (Elser et al., 2006; Souza et al., 2008). Phosphorus has been 

traditionally considered to be the “ultimate” limiting macronutrient in marine 

systems, because unlike nitrogen it cannot be fixed from atmospheric gas (Tyrrell, 

1999). This theory is based on the assumption that over prolonged time scales the 

phytoplankton nitrogen demand can be satisfied by N2-fixation. Consequently, 

the standing stock of N2-fixing organisms will increase as the N:P ratio in the 

ocean decreases. Since the reservoir of nitrogen in the atmosphere is so large, 

N2-fixing organisms would eventually be limited by other nutrients. Given the 

long residence time of phosphorus in the ocean compared to other potentially 

bio-limiting nutrients and trace elements, such as silica (Si) and iron (Fe), 

phosphorus is considered limiting over long time scales (VanCappellen and 

Ingall, 1996; Tyrrell, 1999).  

The main part of bio-available phosphorus-input in the ocean has 

continental origin and is transported by rivers (Figure 1.2). Only a small 

percentage of the total phosphorus-input (maximum 10%) was estimated to 

originate from soluble phosphorus present in atmospheric particles (Figure 1.2; 

Paytan and McLaughlin, 2007). Continental weathering of crustal materials, 

which contain on average 0.1% PO43─, is the major source of riverine 

phosphorus-input, which can be transported in two main forms: particulate and 
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“nutrient trend” such that surface waters are depleted due to intense biological 

uptake in the euphotic zone, and concentrations increase with depth as a result of 

the conversion of sinking organic phosphorus into inorganic soluble forms 

(Benitez-Nelson, 2000). The primary oceanic sinks for phosphorus are believed to 

be the deposition of biogenic sediments (Froelich et al., 1982) and the formation 

of apatite, which are minerals mainly composed of phosphorus and calcium (Ca). 

In coastal environments removal of phosphate (Pi) from the water column 

through adsorption onto sediment particles can be one of the dominant processes. 

Sediment composition greatly affects the adsorption of phosphate, and iron and 

aluminum (hydr)oxides have been reported to have the higher adsorption 

capacity, retaining in some cases almost 50% of the inorganic phosphorus in the 

superficial sediment (Lucotte and d’Anglejan, 1988; Brinkman, 1993; Jensen and 

Thamdrup, 1993). Dissolved phosphate reacts with hydrous iron oxides, in a 

process which could remove 5 to 40% of the total phosphorus input to the oceans, 

particularly in areas with high ridge crest volcanogenic iron oxide concentrations 

(Berner, 1973; Froelich et al., 1977; Feely et al., 1998) 

Despite technical difficulties in the quantification of phosphorus 

turnover in the ocean, several researchers have successfully shown that 

phosphorus recycling rates in the dissolved and particulate pools in surface 

waters are more rapid than previously thought (less than a day to two weeks), 

suggesting that low phosphorus concentrations can support relatively high 

primary production (reviewed in Paytan and McLaughlin, 2007). Up to 95% of 

the bio-available phosphorus reaching the ocean surface waters is incorporated 

into particulate organic matter (POM) and exported from the euphotic zone to 
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deeper layers. At the sea-floor 99% of phosphorus derived from falling particles 

is then regenerated to the dissolved state (Delaney, 1998). The remaining 1% is 

removed from the ocean reservoir into the sediment. Here it interacts with 

calcium minerals and oxyhydroxides and takes part in re-mineralization and 

re-dissolution processes which depend, for intensity and typology, on the 

amount of oxygen (reviewed in Paytan and McLaughlin, 2007). In general these 

processes cause an increase in phosphorus concentration in the sediment-water 

interface and there are some indications that, in anoxic sediments, phosphorus 

can partially re-diffuse back into the water column (reviewed in Paytan and 

McLaughlin, 2007). 

In certain areas of the ocean, particularly in surface waters, much of 

the dissolved and bio-available phosphorus for bacteria is in the form of 

dissolved organic phosphorus (DOP), but so far only a minor fraction of DOP has 

been characterized (Karl and Björkman, 2002; Young and Ingall, 2010). There are 

indications that in the dissolved organic matter phosphorus is mainly part of 

carbohydrates and amino acids, whereas in the particulate organic matter 

phosphorus is also present in lipids (Sannigrahi et al., 2006). DOP can be divided 

into high molecular weight DOP (HMWDOP, >50kDa), which represents about a 

quarter of total DOP, and low molecular weight DOP (LMWDOP, <10kDa), 

which can reach up to 80% of total DOP. A recent study showed that LMWDOP 

could contain small phosphate esters such as nucleotides, phospho-sugars, 

phosphonates, and up to 13% of polyphosphate (Young and Ingall, 2010). The 

HMWDOP, instead, was shown to mainly consists of phosphate esters (75%) and 

phosphonates (25%) (Kolowith et al., 2001).  
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There is growing evidence that DOP represents an important pool of 

phosphorus for bacteria (Björkman and Karl, 2003; Luo et al., 2011). For example, 

pospho-ester bonds (C-O-P) can be cleaved by enzymes called alkaline 

phosphatases (AP). So far three AP have been described, and bioinformatic 

analyses revealed that, unlike previously thought, they can be localized in the 

cytoplasm, in the periplasm, and can also be secreted (Luo et al., 2009). This 

underlines different strategies in the utilization of DOP, with the small 

phospho-ester compounds being imported into the cell and the bigger ones being 

digested extracellularly. Other components of DOP are phosphonates, which are 

characterized by the very stable C-P bound, which is resistant to chemical 

hydrolysis and thermal decomposition (Quinn et al., 2007). They are found in 

glycolipids, glycoproteins, and phospholipids and they have been identified in 

different marine invertebrates (Quin, 1965; Kittredg and Roberts, 1969). In 

addition, recently it was shown that Trichodesmium erythraeum is able to produce 

phosphonates in amounts of up to 10% of its biomass (Dyhrman et al., 2009). 

Accordingly, growing evidence suggests that these stable compounds can be also 

utilized as a source of phosphorus by marine bacteria (Dyhrman et al., 2006; 

Gilbert et al., 2009; Martinez et al., 2010; Thomas et al., 2010). 

Not much is know about the phosphorus cycle in marine sponges, the 

principal potential host for bacteria belonging to the Pseudovibrio genus. The few 

data available report that some sponges have a positive phosphorus balance, 

meaning that they release more inorganic dissolved phosphorus than they take 

up (Yahel et al., 2007; Ribes et al., 2012). These data support the hypothesis that 

sufficient phosphorus is obtained by the sponges from their diet (Taylor et al., 
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2007). Interestingly, a recent study reported that actinomycetes isolated from 

sponges were able to solubilize minerals containing phosphate. Therefore, it was 

speculated that, since sponges are filter feeders and pump a large volume of 

seawater every day, they can accumulate large quantities of inorganic insoluble 

phosphorus forms originating from close continental areas. Bacteria able to 

solubilize these compounds can provide an adjunctive phosphorus source for the 

microbial community and the host (Sabarathnam et al., 2010). 

 

1.3 The phosphate limitation response 

 

Bacteria acquire phosphorus preferably as phosphate, which is often 

found in nanomolar concentrations in marine systems (Björkman and Karl, 1994; 

Thomson-Bulldis and Karl, 1998). Regions such as the Sargasso Sea in the 

North-West Atlantic Ocean, the Mediterranean Sea and the North Pacific 

subtropical gyre, have low phosphate concentrations with evidence suggesting 

that phosphate is limiting bacterial growth (Krom et al., 1991; Fanning, 1992; 

Cotner et al., 1997; Karl, 2000; Wu et al., 2000; Thingstad et al., 2005). Low 

phosphate concentrations have been reported to limit or co-limit the growth of 

phytoplankton species in the eastern tropical North Atlantic and central Atlantic 

Ocean (Sañudo-Wilhelmy et al., 2001; Mills et al., 2004). Moreover, Thingstad et al. 

(1998) reported evidence for bacterial phosphate limitation in the coastal region 

of the North-West Mediterranean Sea. Consistently, in the same regions seasonal 

changes in dissolved inorganic phosphorus concentrations were reported, and 
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this influenced the structure of the bacterial community during the year (Pinhassi 

et al., 2006).  

The differences in phosphate concentrations detected in different 

environments are reflected in specific adaptations observed in bacteria living in 

low phosphate regions. In a recent study Coleman and Chislohm (2010) 

performed a comparative genomic analysis quantifying the heterogeneity in gene 

contents of Prochlorococcus and Pelagibacter strains, within and between 

populations from the Atlantic and the Pacific Oceans. They showed that nearly 

all genes that differed significantly in abundance between the two 

biogeochemically distinct environments were related to phosphorus metabolism 

and were enriched in the Atlantic region, which is characterized by low 

phosphate concentrations. Their findings implicate that the phosphate 

availability was a driving force in the genetic divergence between the two 

populations. Moreover, exposure to long term phosphate limitation has selected 

specific traits that allow microorganisms to proliferate in such environments. For 

example Prochlorococus and Synechoccoccus, ubiquitous and abundant 

cyanobacteria in the photic zone of oligotrophic marine environments depleted 

in phosphate, have replaced their phospholipids with phosphorus-free lipids 

such as glycolipids and sulfur containing glycolipids. In this way they are able to 

decrease their cellular phosphorus demand by up to 43% (Van Mooy et al., 2006; 

Van Mooy et al., 2009). 

In addition to long-term adaptations, bacteria evolved several 

mechanisms to sense phosphate concentrations and regulate their phosphorus 

metabolism accordingly. The global regulatory circuit involved in bacterial 
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phosphorus management is called phosphate(Pho)-regulon and it has been well 

studied in the model organism Escherichia coli (Wanner, 1996). The circuit is 

controlled by the two component regulatory system (TCRS) PhoR-PhoB 

(PhoR-PhoP in Gram-positive bacteria) and the ABC transporter system for 

phosphate Pst (Wanner, 1996; Hsieh and Wanner, 2010). PhoR is a 

transmembrane histidine kinase and is essential for three distinct processes that 

control PhoB activity as transcription factor: inhibition, via preventing the 

phosphorylation, activation via phosphorylation, and deactivation via 

dephosphorylation of phospho-PhoB. However, PhoR is unable to sense 

phosphate concentration and the current model suggests that this is mediated by 

the interaction with the Pst system, which works as transporter and as detector 

(Figure 1.3).  

In conditions of high phosphate concentration in the environment (for 

E. coli >4 µmol L−1) the Pst transport system is working as a transporter and it is 

in a conformational state that inhibits the activity of PhoR, via the interaction 

with the protein PhoU. When the environmental concentration of phosphate is 

below threshold the Pst system still works as transporter but is in a different 

conformational state and, not interacting with PhoU anymore, does not inhibit 

PhoR. The latter one becomes now active, it undergoes autophosphorylation and 

acts as a kinase phosphorylating the transcription regulator PhoB. PhoB is now in 

the active form, binds to a specific site in the promoter region of genes belonging 

to the Pho-regulon called Pho-box and regulates their transcription. When the 

concentration of phosphate in the environment increases again, the complex 



Cha

 

Pst-

redu

Fig
sys
The
con

Pho

und

(alm

limi

pred

that

the 

apter | 1 

-PhoU is re

ucing gene

gure 1.3 | R
stem for ph
e phosphate
nducted on E

The

o-regulon v

der phosph

most 10% o

ited condit

dictions of

t in E. coli 

Pho-regul

e-formed, P

e regulation

Representat
hosphate, P
e threshold 
Escherichia coli

e number 

vary widel

hate exces

of the E. coli

tions (Van

f potential 

there are s

lon (Baek a

PhoR is dea

n.  

tion of the 
Pst, and the

at which th
i. Picture tak

of genes t

ly. A prote

s and lim

i genome) 

Bogelen et

 PhoB bind

several hun

and Lee, 2

activated a

 interaction
 two comp
he different

ken from Hsie

that is regu

eomic stud

mitation sho

had a diffe

t al., 1996).

ding sites i

ndreds of 

2006; Yuan

and can act

n between t
onent regu

t processes 
eh and Wann

ulated and

dy conduc

owed that

erential exp

 This is in

in bacteria

genes that

n et al., 200

t to dephos

the high af
ulatory syste

take place 
ner (2010). 

d therefore

ted on E. 

t more tha

pression un

n agreemen

al genomes

t are poten

06). Altoge

21 | P

sphorylate 

ffinity trans
em PhoR-P
refers to st

e belongs t

coli cells g

an 400 pro

nder phosp

nt with gen

s which sh

ntial memb

ether these

P a g e  

 PhoB, 

 

sport 
PhoB. 
tudies 

to the 

grown 

oteins 

phate-

nomic 

howed 

bers of 

e data 



Introduction 
 

22 | P a g e  
 

underline the importance of phosphate in the regulation of cellular physiology, 

including a large variety of metabolic processes not only related to phosphorus 

homeostasis. 

 

1.4 Importance of environmental phosphate concentration for 

bacterial metabolism and lifestyle 

 

It is constantly becoming more evident that the environmental 

concentration of phosphate affects primary metabolism, bacterial lifestyles as 

well as intra and interspecies relationships via modulating quorum sensing, 

secondary metabolite production, and virulence gene expression. Most of all, 

phosphate-limiting conditions trigger the expression of proteins involved in 

scavenging phosphate from the environment. At the same time, it can also affect 

nitrogen and carbon metabolism of the cells, leading, for example, to an 

accumulation of carbon storage compounds and to a direct control of the global 

nitrogen transcription regulator (Schembri et al., 1995; Wanner, 1996; 

Rodríguez-García et al., 2009; Levering et al., 2012). Interestingly, a study 

conducted on Streptococcus sp. showed that the intracellular phosphate 

concentration had a direct effect on glycolysis by regulating the activity of the 

pyruvate kinase (Mason et al., 1981). Moreover, the repression of secondary 

metabolite production by high phosphate concentrations is a well known 

phenomenon. This effect was especially investigated in Actinobacteria species, but 

recently it was shown that phosphate limitation was responsible for activating 

the production of antibiotics and quorum sensing molecules also in strains 
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belonging to the genera Pseudomonas and Serratia (Gunnarsson et al., 2003; Slater 

et al., 2003; Martín, 2004; Mendes et al., 2007; Gristwood et al., 2009; Zaborin et al., 

2009).  

Bacteria live in a dynamic equilibrium with the environment, taking 

up and releasing specific compounds in a manner that is greatly influenced by 

environmental conditions. As described for phosphate, in most marine systems 

the nutrient availability is temporally and spatially variable, and this can have a 

great influence on bacterial proliferation and consequently on both the uptake 

and the release of specific molecules. Secretion of different kinds of compounds, 

for example involved in intraspecies signaling (e.g. acyl-homoserine lactone) or 

nutrient scavenging (e.g. siderophores), is tightly regulated by nutrient 

concentrations. The mentioned effect of phosphate limitation on the production 

of antibiotics in Actinobacteria is a classical example of these influences. However, 

bacteria can take up and release a huge variety of compounds from and into the 

environment, but only recently with the advent of high and ultra-high resolution 

analytical chemical techniques this diversity is starting to be investigated (Want 

et al., 2007; Mapelli et al., 2008; Kujawinski et al., 2009). Therefore, it will be a 

future challenge to understand to which extent different nutrient regimes 

influence the exchange of molecules between the environment and bacteria, 

considering not only specific production or secretion, but also the overall 

ensemble of organic compounds involved in these processes. In this respect, 

metabolomic approaches could help to gain a systematic and comprehensive 

picture about the dynamics of these phenomena and about the effect of the 

environmental conditions on them. 
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The environmental phosphate concentration and the TCRS PhoR-PhoB 

can also have an effect on biofilm development and expression of genes involved 

in virulence (Lamarche et al., 2008 and references therein). For example, in 

Agrobacterium tumefaciens it was shown that phosphate limitation significantly 

increases attachment and biofilm formation (Xu et al., 2012). In addition, it was 

reported that PhoB directly binds and regulates the transcription of A. tumefaciens 

virulence genes (Aoyama et al., 1991). Moreover, phoB mutants of Vibrio cholerae 

were shown to be less able to colonize the host intestine than the wild type (von 

Kruger et al., 1999). Recently, several studies clearly showed that phosphate 

depletion increases the virulence of Pseudmonas aeruginosa, with lethal effect on 

the host in in-vivo experiments (Long et al., 2008; Zaborin et al., 2009; Zaborin et al., 

2012). In this specie phosphate limitation enhanced toxin production and biofilm 

formation, and operative injured mice with decreased intestinal phosphate 

content had 60% higher mortality due to P. aeruginosa infection. This was 

completely prevented when phosphate was supplemented in the diet and the 

intestinal phosphate concentration was restored (Long et al., 2008). The same 

virulent phenotype was induced by phosphate limitation in strains of the genus 

Candida (Romanowskiet al., 2012). 

However, the picture describing the interactions between the 

phosphate limitation response, the TCRS PhoR-PhoB, and bacterial virulence is 

far more complicated. For example, in uropathogenic E. coli, the deletion of the 

genes involved in the synthesis of the high affinity transport system for 

phosphate (Pst) was shown to constitutively activate the Pho-regulon and 

decrease fimbriae production and virulence (Crépin et al., 2012). Accordingly, 
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different pathogenic E. coli strains showed a decrease in virulence combined with 

an increased sensitivity to the bactericidal effect of the host serum and 

antimicrobial peptides when the pst genes were inactivated and the Pho-regulon 

was constitutively active (reviewed in Lamarche et al., 2008). Most of the studies 

concerning the effects of nutrient limitation, and in particular phosphate and the 

interaction between the PhoR-PhoB system with the regulation of virulent 

features, have been performed using human pathogens or bacteria of agricultural 

interest. It is imaginable that also in other bacteria, for example, facultative 

symbionts or pathogens of different metazoa, these aspects could play an 

important role in regulating mechanisms involved in their interaction with the 

host. However, to date studies addressing these questions are missing. This 

information would help to better understand how environmental nutrient 

stresses affect the lifestyle and the symbiotic/pathogenic behaviors of 

environmentally relevant bacterial species. 

 

Aim of the work 

 

Although phosphate limitation has a drastic effect on multiple aspects 

of bacterial physiology, and even though these conditions occur in several areas 

of the ocean, the response of heterotrophic marine bacteria to phosphate 

limitation has been poorly investigated. With the present thesis I seek to expand 

and deepen the knowledge on this topic, filling the gap concerning the response 

of heterotrophic marine bacteria to this environmentally important nutrient 

regime. 
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Applying different methodologies, I aimed to study the response to 

phosphate limitation of the versatile bacterium Pseudovibrio sp. FO-BEG1, 

investigating multiple aspects of its physiology. In the work presented in 

Chapter 2 physiological experiments were combined with proteomic and 

bioinformatic analyses, with the intention to gain a comprehensive picture of the 

effects that phosphate limitation induced on the overall physiology of 

Pseudovibrio sp. FO-BEG1.  

One of the most intriguing effects observed was the secretion by the 

bacterium of compounds that conferred a yellow-orange coloration to the 

cell-free supernatant. This observation suggested that phosphate-limited 

conditions also influence significantly the compounds released by FO-BEG1 

during growth. In order to quantify and chemically characterize the observed 

diversity, ultra-high resolution mass spectrometry was used to analyze and 

compare the composition of the secreted metabolites under phosphate-limited 

and phosphate-surplus conditions (Chapter 3). In this study I aimed to elucidate 

the composition of the compounds that Pseudovibrio sp. FO-BEG1 secreted into 

the medium, considering and quantifying the effect of phosphate limitation. 

While investigating the physiological response to phosphate limitation 

it was observed that these growth conditions also had a drastic effect on the iron 

metabolism of Pseudovibrio sp. FO-BEG1. During the exponential growth phase, 

the concentration of the total soluble iron decreased in both phosphate regimes 

and surprisingly, only under phosphate-limited conditions it increased again 

during stationary phase. There are no available studies which consider the direct 

interconnection between phosphate and iron metabolism and the observed 
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phenomenon has never been reported. Therefore, in Chapter 4, I investigated this 

response in more detail, with the idea that this could be a more common process 

among marine bacteria being so far overlooked. Initially, physiological 

experiments were carried out to understand the origin of the increasing iron. 

Subsequently, chemical analysis were performed to further characterize the 

molecules responsible for this process. Then the observed phenomenon was 

investigated in strains belonging to the Roseobacter clade.  Finally, a bioinformatic 

study was performed in the attempt to identify possible genes involved in the 

production of molecules that own characteristics consistent with the 

experimental evidence. 
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Abstract 

Phosphorus is a vital nutrient for all living organisms, however, phosphate, the 

primary source of phosphorus for bacteria, is typically present in the ocean in 

concentrations limiting bacterial growth. The phosphate starvation response has 

been deeply investigated in the model organisms Escherichia coli and 

Sinorhizobium meliloti, but studies on heterotrophic marine bacteria are still scarce. 

In this study, we investigated the response to phosphate limitation of 

Pseudovibrio sp. FO-BEG1, a metabolically versatile alphaproteobacterium and 

potential symbiont of marine sponges, which has the genomic potential to 

produce bioactive compounds. We compared the physiology, the protein 

expression and the secondary metabolite production under phosphate-limited 

and phosphate-surplus conditions. Phosphate limitation triggered the expression 

of proteins involved in uptake and degradation of phospho-organic compounds, 

led to a severe cell elongation and to the exchange of membrane lipids in favor of 

phosphorus-free lipids, such as sulfoquinovosyl diacylglycerols. Moreover, we 

observed an increased expression of proteins that could play an important role in 

the interaction with the eukaryotic host. When phosphate-limited cultures 

entered stationary phase cells released compounds that conferred an intense 

yellow-orange coloration to the cell-free supernatant. One of these compounds 

was identified as the potent antibiotic tropodithietic acid (TDA). Our data 

suggest that strain FO-BEG1 has evolved a sophisticated response to phosphate 

limitation, which involves multiple physiological strategies affecting 

phosphorus, carbon and sulfur metabolisms, cell morphology, secondary 

metabolite production and expression of virulence related genes. 
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Introduction 

 

Phosphorus (P) is an essential macronutrient for all living organisms, 

since it is an important component of bio-molecules and it is a fundamental 

element in cellular regulation processes. The preferential source of phosphorus 

for bacteria is phosphate, even though organic molecules containing phosphorus, 

such as phospho-esters (molecules with C-O-P bonds), and phosphonates 

(molecules with C-P bonds), which are components of the dissolved organic 

phosphorus pool (DOP), can also be used (Dyhrman et al., 2007). In many marine 

environments, the concentration of phosphate is in the nanomolar range, and 

there is growing evidence that phosphorus is limiting bacterial growth and 

productivity in many areas of the ocean, at least during part of the year (Cotner 

et al., 1997; Wu et al., 2000; Thingstad et al., 2005). In addition, unlike nitrogen, 

phosphorus cannot be fixed from the atmosphere, thus, over geological time 

scales it is considered to be the ultimate limiting macronutrient in marine 

ecosystems (Paytan and McLaughlin, 2007).  

Due to its crucial role in cell metabolism and to its scarcity in natural 

environments, bacteria evolved several mechanisms to sense phosphate 

concentrations and regulate their phosphorus metabolism accordingly. 

Phosphate starvation induces the expression of the so-called phosphate 

starvation inducible (psi) genes which encode several proteins involved in 

phosphorus uptake and metabolism. Among these, there are genes coding for 

high affinity transporters (ABC transporters) for phosphate and enzymes 

involved in the uptake and degradation of organic molecules containing 
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phosphorus. All these genes are members of the Pho-regulon, a global regulatory 

circuit involved in bacterial phosphorus management (Hsieh and Wanner, 2010). 

This circuit is controlled by a two component regulatory system (TCRS), 

composed of a transmembrane histidine kinase PhoR and a response regulator 

PhoB. When the concentration of the environmental phosphate is low, PhoR 

undergoes autophosphorylation using ATP and acts as a kinase for the response 

regulator. PhoB then binds to a specific target sequence named Pho-box in the 

upstream region of the genes belonging to the Pho-regulon, regulating their 

transcription (Hsieh and Wanner, 2010). In Escherichia coli the phosphate 

limitation response can involve the regulation of up to 400 genes, which 

represent almost 10% of the E. coli genome (VanBogelen et al., 1996). This high 

number of proteins reflects the importance of phosphate in the regulation of 

cellular physiology, including processes not directly correlated with phosphorus 

metabolism, such as the production of secondary metabolites (Martín, 2004). 

Moreover, it is well documented, that the PhoR-PhoB system is involved in the 

regulation of virulence related genes (Lamarche et al., 2008).  

The Pho-regulon and the phosphate limitation response have been 

deeply studied in the model organism E. coli, and in other important pathogenic 

bacteria, plant-symbionts, and bacteria of biotechnological interest (Wanner, 1996; 

Ishige et al., 2003; Krol and Becker, 2004; von Kruger et al., 2006; 

Rodríguez-García et al., 2007). Despite the growing evidence suggesting that 

phosphate limitation is a common condition in many areas of the ocean, among 

marine microorganisms the phosphate limitation response was mainly 

investigated in phototrophs (Tetu et al., 2009; Wurch et al., 2011; Dyhrman et al., 
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2012) and studies on the phosphate limitation response of heterotrophic marine 

bacteria are scarce. In this study, we investigated the response to phosphate 

limitation of the chemorganoheterotrophic strain FO-BEG1, an 

alphaproteobacterium closely related to Pseudovibrio denitrificans. Bacteria 

belonging to this genus have been isolated worldwide, often from sponges, and 

are, therefore, assumed to be their symbionts (Enticknap et al., 2006; Taylor et al., 

2007). 

In a previous study (Bondarev et al., 2013; Contributed works) we 

analyzed the genome of strain FO-BEG1 and showed that it is metabolically 

versatile and possesses several genes that could play a role in prokaryote-

eukaryote interaction, indicating that FO-BEG1 is well adapted to a free-living 

and a symbiotic lifestyle. Furthermore, we identified genes and gene clusters 

involved in the synthesis of bioactive secondary metabolites, in accordance with 

the numerous studies that showed a production of these compounds in many 

strains belonging to the Pseudovibrio genus (Sertan-de Guzman et al., 2007; 

O'Halloran et al., 2011). 

In this study, we investigated the physiology, the protein expression, 

and the secondary metabolite production of strain FO-BEG1, comparing 

phosphate-limited (−Pi) and phosphate-surplus (+Pi) conditions. In addition, we 

performed a bioinformatic analysis for the identification of genes that present 

Pho-boxes in their upstream regions and are thus potential members of the 

Pho-regulon of strain FO-BEG1. We observed that phosphate limitation triggers a 

severe physiological reorganization, influencing not only the phosphorus 

metabolism but also the carbon and sulfur metabolism. Moreover, we gained a 
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first insight into the pronounced effect of phosphate limitation on secondary 

metabolite production and on the regulation of virulence related genes, which 

could play a crucial role in the establishment and maintenance of the 

host-symbiont interaction. 

 

Materials and methods 

Growth conditions 

Strain FO-BEG1 was cultivated in the carbohydrate/mineral medium 

(CM) as described by Shieh et al. (2004) and modified by Bondarev et al. (2013; 

Collaborated works). For the +Pi conditions phosphate was added to a final 

concentration of 1.4 mmol L−1. For the –Pi conditions the sole phosphate sources 

supplied was the buffer used for the preparation of vitamins, resulting in a final 

concentration of 0.1 mmol L−1. Erlenmeyer flasks of 250 mL were filled with 100 

mL of medium and inoculated with 100 µL of a pre-culture grown under +Pi 

conditions. Cultures were incubated at 28 oC in the dark and shaken at 120 rpm. 

We monitored bacterial growth by means of Optical Density (OD) measured at 

600 nm using an Eppendorf BioPhotometer (Eppendorf AG, Hamburg, 

Germany). The OD600 was then correlated with the cell number, determined 

using a Thoma counting chamber (Brand GmbH, Wertheim, Germany; data not 

shown). Micrographs were taken during bacterial growth using an Axioplan 

universal microscope (Carl Zeiss GmbH, Oberkochen, Germany), and at least 100 

cells for each time point and each condition were measured using the program 

AxioVision Rel. 4.8 Imagining system (Carl Zeiss GmbH, Oberkochen, Germany). 
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During the entire growth period the UV-visible spectra of the cell-free 

supernatants were recorded using a Beckman DU 640 spectrophotometer 

(Beckman Coulter, Fullerton, CA, USA).  

 

Chemical analyses, determination of alkaline phosphatase activity, 

and detection of inclusions  

Glucose and acetate concentrations were determined using a high 

performance liquid chromatography (HPLC) system (Sykam GmbH, Gilching, 

Germany) as described previously (Bondarev et al., 2013; Contributed works). 

Phosphate concentrations were determined colorimetrically by the ascorbic acid 

method (Hansen and Karoleff, 1999), using a SpectroDirect Spectrophotometer 

(Aqualytic, Dortmund, Germany). The activity of alkaline phosphatase (AP) 

during bacterial growth was measured monitoring the degradation of 

4-nitrophenyl phosphate bis(tris) salt (pNPP; ≥ 97.00%; Sigma Aldrich, St. Louis, 

MO, USA). Experiments were performed two times independently, always 

analyzing biological triplicates. Tropodithietic acid (TDA) was measured in 

collaboration with BioViotica Naturstoffe GmbH (Göttingen, Germany) by 

means of reverse phase HPLC and using pure TDA as reference standard (purity 

≥ 98%; BioViotica Naturstoffe GmbH, Göttingen, Germany). Presence and 

quantification of polyphosphate (poly-Pi) was investigated by staining the cells 

with 4´,6-diamidino-2-phenylindole dihydrochloride (DAPI) performed 

according to the method described by Kulakova et al. (2011). Nile Red was used 

for staining polyhydroxyalkanoate (PHA) inclusions. Polar lipid analysis was 

carried out by the identification service of the DSMZ and Dr. B. J. Tindall (DSMZ, 
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Braunschweig, Germany). Detailed information about materials and protocols 

used can be found in the Supplementary materials and methods section. 

 

Proteome analysis  

To investigate the effect of phosphate limitation on protein expression 

we chose an MS shotgun proteomic approach coupled with isotope coded 

protein labeling (ICPL) (Schmidt et al., 2005). Two biological replicates were 

independently analyzed for each time point. Biomass from −Pi cultures was 

harvested in the growth stage where we previously detected the first increase in 

AP activity, corresponding to the middle exponential growth phase (OD600 ≈ 0.55). 

These samples were used as reference in the proteomic analysis, and they were 

compared with the protein profiles of +Pi growing cells, collected in the middle 

exponential growth phase (OD600 ≈ 0.82). Moreover, to evaluate the effect of 

prolonged phosphate starvation we also collected samples in the first half of the 

stationary phase of −Pi conditions (OD600 ≈ 1.28), and compared them with the 

samples collected in the exponential phase.  

Proteins from different samples were labeled at the free amino groups 

with one of the four isotopic forms of nicotinoyloxysuccinamide. The labeled 

extracts were combined resulting in one mix for each replicate, and their 

complexity was reduced via SDS-PAGE. Proteins were then digested into 

peptides and analyzed via LC-ESI-MS/MS. Since peptides with identical amino 

acid sequences derived from the differentially labeled samples differ in mass, 

they appeared in the acquired MS spectra as sister peaks (multiplets; complete 

multiplets if the peptides were detected in all samples; incomplete if not), with a 
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mass shift corresponding to the difference between the masses of the labels. The 

abundance ratio of each protein was then calculated using the ratios of the ion 

intensities of the sister peptides. An abundance change of ≤−2.0-fold or ≥2.0-fold 

was regarded as significant regulation. The regulated proteins were then divided 

into 15 arbitrary categories: [A] carbon metabolism; [B] phosphorus metabolism; 

[C] amino acid and nucleotide metabolism; [D] protein and peptide metabolism; 

[E] transport and secretion; [F] fatty acid and lipid metabolism; [G] cell wall and 

membrane biogenesis; [H] translation, transcription and DNA metabolism; [I] 

regulation of transcription; [J] oxidative stress response and detoxification; [K] 

cofactor and vitamin synthesis; [L] chemotaxis and motility; [M] secondary 

metabolite production; [N] only general function predicted; [O] unknown 

function. Detailed description of the experimental procedure and the data 

analysis is given in the Supplementary materials and methods section 

 

Screening of the genome of FO-BEG1 for the presence of Pho-boxes 

The in-silico screening for the identification of Pho-boxes in the 

genome of strain FO-BEG1 was based on the method described by Yuan et al. 

(2006). The Pho-box sequences they propose were used to build a position-

weight matrix (Staden, 1984; Stormo, 2000) utilized to scan the intergenic regions 

in the genome of FO-BEG1. This resulted in a first list from which we selected a 

total of 28 genes with the best alignment scores against the position-weight 

matrix (scores calculated according to Staden, 1984; Table S3) and which encode 

for proteins detected to be up-regulated in the proteomic approach we 

performed. These genes were used to build a new position-weight matrix specific 
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for Pseudovibrio sp. FO-BEG1. The latter one was then used to obtain the final list 

of genes, which presented a potential Pho-box in their upstream regions. 

Detailed description of the method used is provided in the Supplementary 

materials and methods section. 

 

Results  

Effect of phosphate limitation on bacterial growth, cell morphology, 

and nutrient uptake 

 Phosphate limitation significantly repressed bacterial growth, leading 

to a final cell density 2.5-3.5 times lower than the one observed under +Pi 

conditions (Fig. 2.1).  Cultures growing under +Pi conditions were characterized 

by a doubling time (td) of 4.33 h and a growth rate (µ) of 0.16 gen h−1. –Pi cultures 

had a similar growth during the first half of the exponential phase (td of 4.77 h, 

µ 0.15 gen h−1), but in the second half, when phosphate was completely taken up 

by the cells (Fig. 2.1), the td increased to 7.68 h and the µ dropped to 0.09 gen h−1. 

Cells growing under +Pi conditions did not consume all phosphate provided, 

indicating that they were not phosphate-limited, whereas phosphate was 

completely taken up under –Pi conditions during the first 30 h of growth 

(Fig. 2.1). Exactly after this point we detected a considerable increase in alkaline 

phosphatase (AP) activity (Fig. S2.1), which was negligible during the whole 

growth period under +Pi conditions (data not shown). 
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proteins were detected in category [H] (“translation, transcription and DNA 

metabolism”; Table S2.1; Fig. 2.3). These represented 45.5% of all 

down-regulated proteins detected in the exponential phase under −Pi conditions 

and reflected the repressed growth. The difference in protein expression between 

the exponential and the stationary phase under −Pi conditions was mainly due to 

the arrest of cell proliferation. In fact, 84.5% of the 102 regulated proteins were 

down-regulated and belonged mainly to category [C] and [H] (Table S2.2; 

Fig. 2.3).  

The in-silico analysis for the identification of PhoB binding sites 

revealed that strain FO-BEG1 possesses an 18 nucleotides long Pho-box, 

characterized by two repetitions 5´-CTGTCAT-3´ separated by a region of four 

nucleotides (Fig. S2.3). In the first repetition the first position does not show a 

high degree of conservation, however, due to the absence of molecular data that 

could elucidate the Pho-box structure of this bacterium, we assumed that it 

resembles the well conserved 18 nucleotides sequence known from 

Escherichia coli and Sinorhizobium meliloti (Makino et al., 1998; Yuan et al., 2006). 

The list of all genes (1004) which presented a potential Pho-box in their upstream 

regions is reported in Table S2.4. Of these, 61 were detected to be regulated 

during the proteomic analysis (Table S2.1 and S2.2). 
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After the complete consumption of the provided phosphate in −Pi 

cultures, and the consequent increase in AP activity, we still observed cell 

proliferation (Fig. 2.1; Fig. S2.1). Since no other source of phosphorus was 

provided, we quantified the stored polyphosphate (poly-Pi), previously detected 

in the cells, in order to verify their use as a phosphorus source. Indeed, under −Pi 

conditions we detected a poly-Pi decrease from 87.3 ± 3.4 fg cell−1 to 

30.2 ± 2.4 fg cell−1 occurring right after that the provided phosphate was 

completely taken up by the cells (Fig. S2.4). Under phosphate-limited conditions, 

we also detected an up-regulation of a protein homologous to poly-Pi kinase 1 

(Ppk1, PSE_2769; Table S1), which catalyzes the reversible synthesis of poly-Pi 

from ATP (Rao et al., 2009).  

In consistence with the enzymatic assay performed to detect 

AP activity, a protein homologous to the AP PhoX (PSE_1012) was found to be 

two-fold up-regulated, and a potential Pho-box was identified in the upstream 

region of its gene (Table S2.1). Moreover, we detected two up-regulated proteins, 

PhnD (PSE_3629) and PhnC (PSE_3630), of the ABC transport system for 

phosphonates, three proteins involved in their degradation (PhnI PSE_4851; 

PhnJ PSE_4852; PhnM PSE_4857), and three subunits of the ABC transport 

system for sn-glycerol-3-phosphate (UgpB PSE_0472; PSE_0680; UgpC PSE_0683; 

Table S2.1). Potential Pho-boxes were identified in the upstream regions of 

PSE_0680 and PSE_3630 genes. Finally, we detected an up-regulation of three 

nucleosidases (PSE_1783; PSE_1587; PSE_2573; Table S2.1), and for two of them 

we identified a potential Pho-box in the promoter region of their genes.  
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Effect of phosphate limitation on cellular lipid composition  

The thin layer chromatography (TLC) analysis performed to 

characterize the cellular polar lipids revealed that under +Pi conditions most of 

the detected lipids contained phosphorus, whereas under −Pi conditions amino 

lipids (AL) and glycolipids (GL) were dominant (Fig. 2.4). Consistently, under 

phosphate-limited conditions several proteins involved in lipid metabolism were 

up-regulated (category [F] “fatty acid and lipid metabolism” and [G] “cell wall 

and membrane biogenesis”; Fig. 2.3; Table S2.1). For instance, we detected 

up-regulated a protein containing a phospholipase D/transphosphatidylase 

domain (PSE_0624) and a protein homologous to a phosphatidic acid 

phosphatase (PA-phosphatase, PSE_2249; Table S2.1), both involved in the 

catabolism of phospholipids. The gene for the PA-phosphatase presented a 

potential Pho-box in its upstream region. In addition, we detected an 

up-regulated protein homologous to acyl-CoA dehydrogenase (PSE_ 0035) and 

two proteins homologous to enoyl-CoA hydratase (PSE_0406; PSE_3595; 

Table S2.1), which are involved in the oxidation of fatty acids and could be 

required for the degradation of the exchanged lipids.  

Under phosphate limitation, four different types of GL were detected 

(Fig. 2.4). One (GL4) was consistent with being the sulfur containing lipid 

sulfoquinovosyl diacylglycerol (SQDG). Consistently, under −Pi conditions we 

detected a 22-fold up-regulated protein homologous to SqdB (PSEp_0373; 

Table S2.1), an enzyme which catalyzes the first step in the SQDG synthesis 

(Benning, 1998). A similar enzyme (PSE_2321) was up-regulated as well, but it 
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tricarboxylic acid cycle (TCA), was down-regulated (Table S2.1). In addition, we 

detected two up-regulated enzymes involved in the acetate 

kinase-phosphotransacetylase (Pta-AckA) pathway (PSE_1087; PSE_1086), which 

converts acetyl-CoA into acetate via acetyl phosphate. In agreement with this, we 

observed acetate production, starting during the second half of the exponential 

phase (0.15 mmol L−1 ± 0.02) and reaching the maximum (0.73 mmol L−1 ± 0.09) at 

the beginning of the stationary phase. The acetate was then taken up by the cells 

during the rest of the growth period (data not shown).  

 

Control of oxidative stress  

Under −Pi conditions we identified several proteins, such as a protein 

homologous to an alkyl hydroperoxidase (AhpD, PSE_0181; Table S2.1), 

potentially involved in the oxidative stress response. Ahps are enzymes 

responsible for detoxification of peroxides and were shown to be specifically 

required for viability of E. coli cells starved for phosphate (Moreau et al., 2001). 

Also up-regulated were two proteins homologous to bacterioferritin (PSE_1030; 

PSE_3844; Table S2.1), which is responsible for iron storage and protection 

against oxidative stress via iron detoxification (Carrondo, 2003).  

Under −Pi conditions we detected two highly up-regulated proteins 

homologous to PotD and PotA (PSE_1679; PSE_1681; Table S2.1), which belong 

to the Pot ABC transporter system for putrescine and spermidine. These 

molecules are polyamines, and they are described to play an important role in 

the protection of macromolecules against radicals (Wortham et al., 2007). In 

addition, the potD gene presented a Pho-box in its upstream region (Table S2.1), 



Response to phosphate limitation of Pseudovibrio sp. FO-BEG1 

46 | P a g e  
 

which is consistent with previous studies conducted on S. meliloti (Jensen et al., 

2006; Yuan et al., 2006). Up-regulated was also a protein responsible for the 

synthesis of glutathione (PSE_0381), a molecule that can help cells to protect 

macromolecules via scavenging reactive oxygen species (ROS). Protection against 

oxidative stress also requires a secondary line of defense consisting of repairing 

enzymes (Cabiscol et al., 2000). Indeed, in strain FO-BEG1, phosphate limitation 

triggered up-regulation of several proteases, peptidases, chaperon-like proteins 

and proteins involved in DNA repairing (category [D] “protein and peptide 

metabolism” and [H] “translation, transcription and DNA metabolism”; Fig. 2.3; 

Table S2.1). 

 

Phosphate limitation affects cell-envelope stability and secondary 

metabolite production  

Under −Pi conditions, we detected an up-regulated protein 

homologous to TolB (PSE_4678), belonging to the Tol-Pal complex and two 

bacterial outer membrane proteins containing an OmpA domain (PSE_1259; 

PSE_4677; Table S2.1) described to interact with the Tol-Pal system. Different 

functions were purposed for this system, but it seems to be mainly involved in 

the maintenance of cell-envelope stability (Lloubès et al., 2001). The gene 

PSE_4677 presented a potential Pho-box in its promoter region and it is located in 

the same genomic region of the tolB gene, suggesting that the transcription of the 

complete region increased under phosphate limitation. Also, two proteins 

homologous to the phage shock proteins PspA (PSE_4192; PSE_4592; Table S2.1) 

were detected to be up-regulated. They are members of the phage shock regulon, 
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which is induced by impairment of inner membrane integrity, and they regulate 

the transcription of enzymes involved in the maintenance of membrane stability, 

proton motive force and protein secretion (Joly et al., 2010).  

Phosphate limitation triggered the secretion of compounds that gave a 

yellow-orange coloration to the cultures and to the cell-free supernatant. This 

showed a characteristic UV-visible absorption spectra, with a maximum 

absorbance around 320 nm and a broad shoulder at 400 nm (Fig. S2.5). The color 

appeared when cells entered stationary phase, and its intensity increased during 

the remaining incubation time. The high performance liquid chromatography 

(HPLC) analysis of the –Pi cell-free supernatants revealed the presence of a 

compound with retention time and UV-visible spectra consistent with the ones of 

tropodithietic acid (TDA). This is an antibiotic compound usually produced 

together with a yellow pigment by members of the Roseobacter clade (Bruhn et al., 

2005). Its production was detected only under –Pi conditions (1.55 mg L−1) and 

only during stationary phase. Consistently, TdaD (PSE_2260), an enzyme 

involved in TDA production, was up-regulated during –Pi stationary phase and 

down regulated in the exponential phase (Table S2.1 and S2.2). Moreover, a 

potential Pho-box was identified in the promoter region of two genes directly 

upstream tdaD, tdaC (PSE_2261) and paaK (PSE_1790; Table S2.4), both 

potentially involved in TDA production (Bondarev et al., 2013; Contributed 

works).   
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Effect of phosphate limitation on proteins potentially involved in 

host-symbiont interaction 

Under –Pi conditions, we detected the up-regulation of proteins, such 

as TolB, OmpA and PspA, which can be involved in host-symbiont interactions 

(Bowe et al., 1998; Smith et al., 2007; Godlewska et al., 2009; Karlinsey et al., 2010). 

Moreover, we detected an up-regulated protein homologous to the 

transcriptional regulator PhoP (PSE_2475; Table S2.1). This is a member of the 

two component regulatory system PhoP-PhoQ, which controls the expression of 

virulence genes. The expression of a protein homologous to TolC was increased 

more than four-fold under phosphate limitation (PSE_3720; Table S2.1). This is a 

versatile outer membrane protein utilized for efflux of noxious molecules and 

secretion of antibiotics or virulence factors (Federici et al., 2004; Holland et al., 

2005). The tolC gene is located in a genomic region encoding proteins for a type I 

secretion system (T1SS). Adjacent to this region, there is the largest gene of the 

whole genome (PSE_3716). It encodes a protein of 4,159 amino acids containing 

five T1SS-143 repeat domains usually found in proteins of the genus Vibrio and 

Legionella, which share properties with RTX (repeats in toxin) proteins. These 

proteins are secreted by Gram-negative bacteria via the T1SS and represent 

virulence factors with cytotoxic functions, proteolytic and lipolytic activities, or 

can have a role in adhesion and biofilm formation (Linhartová et al., 2010; 

Satchell, 2011). The RTX-like protein was up-regulated in one replicate under –Pi 

conditions and, in agreement with Yoshida et al. (Yoshida et al., 2010), its gene 

and the tolC gene had a potential Pho-box in their upstream regions (Table S2.1). 
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Discussion 

Reduced growth and rearrangement of phosphorus metabolism 

Phosphate has essential metabolic, structural and regulatory roles in 

all bacteria (Stock et al., 1989; Wanner, 1996). Environmental phosphate 

concentrations influence not only bacterial phosphorus metabolism but also 

bacterial life-style and inter-species and inter-kingdom relations via affecting 

secondary metabolite production and expression of virulence factors (Martín, 

2004; Lamarche et al., 2008). Much attention has been paid to the effect of 

phosphate limitation on the antibiotic production of Streptomyces species, and on 

the physiology of human pathogens and plant-symbiotic bacteria of agricultural 

interest (Krol and Becker, 2004; Martín, 2004; Yuan et al., 2006; Crépin et al., 2011). 

In contrast, despite growing evidence suggesting that this condition is common 

in many areas of the ocean (Wu et al., 2000; Thingstad et al., 2005), the response of 

heterotrophic marine bacteria to phosphate limitation has been rarely 

investigated. In the present work, we studied in detail the response to phosphate 

limitation of a heterotrophic marine bacterium belonging to the genus 

Pseudovibrio. This genus is receiving progressively more scientific attention 

owing to its ability to produce bioactive secondary metabolites and to its 

frequent detection in association with marine invertebrates all over the world 

(Sertan-de Guzman et al., 2007; O’Halloran et al., 2011; Bondarev et al., 2013; 

Collaborated works). 

Fig. 2.5 represents a schematic overview of the physiological 

adaptation observed in Pseudovibrio sp. FO-BEG1 during growth under 
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phosphate limitation. As described in other strains (VanBogelen et al., 1996; 

Ishige et al., 2003; Krol and Becker, 2004) phosphate limitation significantly 

repressed bacterial growth and this was reflected in the down-regulation of 

proteins involved in DNA replication and protein synthesis (category [C] and [E]; 

Fig. 2.1; Table S1). The µ dropped concomitantly with the complete consumption 

of phosphate (Fig. 2.1) and a consistent increase in alkaline phosphatase (AP) 

activity was observed immediately afterwards. Therefore, it is reasonable to 

assume that in FO-BEG1 the phosphate limitation response is activated at this 

growth stage, with an environmental phosphate concentration below 10 µmol L−1 

(Fig. 2.1; Fig. S2.1). APs are enzymes which cleave the phosphate groups in 

organic molecules containing phospho-ester bonds, and their expression has 

been widely used as an indicator of phosphorus limitation in bacteria (Torriani, 

1960; Hoppe, 2003). As described for other bacteria (Wanner, 1996; Krol and 

Becker, 2004; von Kruger et al., 2006), the strategy of FO-BEG1 to scavenge 

phosphate from the environment is characterized by the up-regulation of ABC 

transporters for phosphate and proteins involved in the uptake and degradation 

of organic molecules containing phosphorus. These genes are typically present 

and expressed in bacteria adapted to thrive in environments limited in 

phosphate (Martiny et al., 2011). Therefore, these data underline the versatility of 

Pseudovibrio and indicate that it is well adapted to thrive as a free-living organism 

in the open ocean, where phosphate has often been described as limiting nutrient 

and DOP can represent the only bio-available phosphorus pool (Dyhrman et al., 

2007). This is consistent with recent evidence, which suggest that DOP is an 

important phosphorus source for marine bacteria (Gilbert et al., 2009). 
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Pseudovibrio sp. FO-BEG1 did not degrade poly-Pi completely due to its 

important role in the regulation of the overall cell machinery.  

Even though in the genome of strain FO-BEG1 several enzymes 

involved in poly-Pi degradation are present (e.g. exopolyphosphatase, PSE_2770) 

we did not detect any of them during the proteomic analysis. Instead, we 

detected an up-regulated protein homologous to Ppk1, which is an enzyme 

involved in the reversible synthesis of poly-Pi (Rao et al., 2009), and as described 

in other species (Geißdörfer et al., 1998; Ghorbel et al., 2006) it can also be 

responsible for their degradation. Interestingly, in Escherichia coli and 

Pseudomonas sp. strains it was shown that mutations in the ppk1 gene affected 

motility, tolerance to stress, quorum sensing, biofilm formation, and virulence 

(Fraley et al., 2007; Peng et al., 2012). Thus, we cannot exclude that the 

up-regulation of this protein in FO-BEG1 is related to its role in cellular processes 

other then poly-Pi metabolism. 

In the model organisms E. coli and Sinorhizobium meliloti the phosphate 

limitation response is controlled by the two component regulatory system (TCRS) 

PhoR-PhoB. Both were detected in the genome of FO-BEG1 (PSE_1693 and 

PSE_1687), but not in the proteomic analysis. However, their genes are in the 

same genomic region as the Pst system which was greatly up-regulated under –Pi 

conditions. This indicates that the whole genomic region was likely up-regulated 

under phosphate-limited conditions. Moreover, we detected many similarities to 

other organisms concerning the regulated proteins and the genes which 

presented a potential Pho-box in their promoter regions. Therefore, we assume 
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that also in Pseudovibrio the response to phosphate limitation is controlled by the 

PhoR-PhoB system.  

 

Adjustment of the carbon metabolism, membrane lipids 

rearrangement, and protection against oxidative stress 

 Confirming the importance of phosphorus in the regulation of the 

overall cell physiology we showed that phosphate limitation greatly affects also 

the carbon metabolism of Pseudovibrio sp. FO-BEG1. Phosphate-limited cells took 

up all glucose provided and, due to a lower cell density, the consumption of 

carbon per cells was consequently higher than in +Pi cultures. Some carbon 

might have been used for the synthesis of new lipids, during the membrane 

rearrangement, or for the accumulation of polyhydroxyalkanoates (PHA). PHA 

accumulation may represent a strategy which bacteria adopt, under conditions of 

nutrient limitation and carbon surplus, to survive in future periods of carbon or 

energy shortage  (Malmcronafriberg et al., 1986; Anderson and Dawes, 1990; 

Løvdal et al., 2008). In consistency with the PHA accumulation we detected 

up-regulated two phasin-like proteins and in the promoter region of one of their 

genes a Pho-box was identified (Table S2.1). Altogether these data are in 

agreement with previous reports, which showed that PHA synthesis can be a 

process part of the Pho-regulon (Schembri et al., 1995). PHA could be produced 

via condensation of acetyl-CoA, since, as suggested by the down-regulation of 

the citrate synthase, its flow through the TCA cycle was repressed. Another 

possibility could be that PHA were synthesized starting from the degradation of 

fatty acids, as it was described that this pathway would require a 
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PHA polymerase, enoyl-CoA hydratase, and phasin-like proteins (reviewed in 

Madison and Huisman, 1999), of which the latter two were detected 

up-regulated in FO-BEG1 under phosphate limitation. Finally, the acetate 

production and the up-regulation of the two proteins responsible for the 

kinase-phosphotransacetylase pathway (Pta-AckA) indicated acetogenesis, a 

process required for the regeneration of NAD+ and CoA whenever the full TCA 

cycle does not operate properly or when the carbon flux into cells exceeds its 

capacity (reviewed in Wolfe, 2005).  

Pseudovibrio sp. FO-BEG1 undergoes a pronounced cell elongation 

under phosphate-limited conditions. This has been frequently described in 

phosphate-starved cells, and can be due to the activation of the SOS stress 

response (Løvdal et al., 2008; van der Veen et al., 2010; Goclaw-Binder et al., 2012). 

Longer cells would result in an increase of the cellular phosphorus demand for 

phospholipid synthesis. However, we were able to show a rearrangement in the 

composition of the cellular lipids in favor of phosphorus-free lipids, such as AL 

and GL (Fig. 2.4). The latter are more common in plants, algae, and Gram-

positive bacteria (Holzl and Dormann, 2007), but can also be important in the 

restructuration of the membranes of Gram-negative bacteria during 

phosphate-limited growth (Minnikin et al., 1974; Benning et al., 1995; Geske et al., 

2013). Consistently, we detected an up-regulation of several proteins involved in 

lipid metabolism. The phospholipase D and the PA-phosphatase were likely 

responsible for the phospholipid degradation, which would allow FO-BEG1 to 

access an “internal” phosphorus source while facing phosphate limitation. As 

suggested by previous studies performed on S. meliloti (Krol and Becker, 2004; 
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Yuan et al., 2006; Schlüter et al., 2013) this process seems to be directly controlled 

by the environmental phosphate concentration, as Pho-boxes were identified in 

the upstream region of the genes encoding PA-phosphatase. In addition, as in 

S. meliloti, our data indicate that in Pseudovibrio sp. FO-BEG1 the production of 

SQDGs is directly controlled by phosphate concentrations, as their synthesis and 

the expression of a key enzyme involved in their synthesis were enhanced under 

–Pi conditions.  

Changes of the membrane phospholipids were suggested to activate 

the psp response, which control enzymes involved in membrane stability and 

maintenance of proton motive force (reviewed in Joly et al., 2010). Therefore, the 

up-regulation of PspA and other proteins involved in the maintenance of cell-

envelope stability supports the hypothesis that Pseudovibrio sp. FO-BEG1 

experiences membrane stress during growth under phosphate limitation, likely 

due to the lipid rearrangement. 

In oceanic surface waters phosphorus uptake for phospholipids 

synthesis can represent an important contribution to the total bacterial phosphate 

incorporation (Van Mooy et al., 2008), since phosphate presents in phospholipids 

can constitute up to 36% of the total cellular phosphorus demand (Geider and La 

Roche, 2002). During phosphate limitation phospholipids can decrease by 97% 

(Minnikin et al., 1972; Benning et al., 1995), therefore, membrane lipid 

rearrangement provides Pseudovibrio with an additional phosphorus source, and 

decreases its cellular phosphorus demand resulting in a competitive advantage 

in environments depleted in this element. SQDGs can play an important role in 

the membrane restructuration under phosphate-limited conditions (Benning et al., 
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1993; Geiger et al., 1999; Wurch et al., 2011; Dyhrman et al., 2012), but to the best 

of our knowledge this is the first study where their production was observed as a 

direct response to phosphate limitation in a heterotrophic marine bacterium. 

Conversely, it was shown that members of the SAR11 clade and other 

heterotrophic bacteria of the Sargasso Sea were not able to decrease their 

phosphorus demand via lipid exchange, despite being well adapted to thrive 

under oligotrophic conditions (Van Mooy et al., 2009). Our data support recent 

molecular evidence, which suggested that many heterotrophic marine bacteria 

have the genomic potential to produce SQDGs (Villanueva et al., 2013). 

As observed in other strains (Moreau et al., 2001; Ishige et al., 2003; 

Yuan et al., 2005), under –Pi conditions we detected several proteins potentially 

involved in protection against oxidative stress. So far it has not been clarified 

why cells growing under phosphate limitation experience increased oxidative 

stress. Yuan et al. (2005) suggested that the physiological changes induced by 

phosphate limitation, such as membrane lipid rearrangement, could make cells 

more sensitive to ROS. Accordingly, the membranes rearrangement observed in 

Pseudovibrio sp FO-BEG1 could generate a more intense lipid metabolism making 

these molecules more exposed to radicals. Lipids can be easily oxidized by 

radicals, generating a chain reaction that damage proteins and DNA (Cabiscol et 

al., 2000). Even though mono-unsaturated lipids, commonly present in Bacteria, 

were shown to be less reactive to ROS (Bielski et al., 1983), there is evidence 

suggesting that bacteria are affected by oxidative lipid damage (Yoon et al., 2002; 

Becerra et al., 2006; Pradenas et al., 2012), supporting the hypothesis that the lipid 



Chapter | 2 

57 | P a g e  
 

rearrangement, occurring under phosphate limitation, increases the cells 

sensitivity to oxidative stress.   

 

Secretion of secondary metabolites and expression of virulence 

related genes 

The production of compounds that conferred the yellow-orange 

coloration and the characteristic UV-visible spectra to the cell-free supernatant 

(Fig. S2.5) suggest that phosphate limitation triggered the production of 

secondary metabolites in Pseudovibrio sp. FO-BEG1. Among those we identified 

the potent antibiotic tropodithietic acid (TDA) for which stably resistant strains 

could not yet be obtained (Porsby et al., 2011). Consequently, its production 

confers to Pseudovibrio a great ecological advantage when competing for limiting 

resources. Moreover, the production of the antibiotic can also be beneficial for the 

hosts, providing protection against potentially pathogenic bacteria. The 

production of TDA, which has two atoms of sulfur per molecule, together with 

the synthesis of sulfur containing lipids shows how phosphate limitation can also 

affect the sulfur metabolism of Pseudovibrio sp. FO-BEG1, increasing its cellular 

demand.  

So far only static growth conditions were described to stimulate TDA 

production (Bruhn et al., 2007) and its synthesis was never observed under of 

phosphate-limited conditions. There is evidence that TDA production is 

regulated by acyl-homoserine lactone (AHL) quorum sensing (QS) (Berger et al., 

2011) and in Pseudomonas it was shown that phosphate limitation can induce QS 

(Zaborin et al., 2009). This information would explain the up-regulation of TdaD 
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and the production of TDA under –Pi stationary phase, when a higher cell 

density was reached. However, genes for the synthesis of known autoinducers 

were not identified in the genome of strain FO-BEG1 (Bondarev et al., 2013; 

Contributed works). This observation is consistent with recent evidence that 

showed how in Phaeobacter TDA production can occur independently from AHL 

QS (Prol Garcia et al., 2013), suggesting multiple regulation processes. Altogether 

these data do not clarify whether TDA production in FO-BEG1 is a response to 

phosphate limitation, to QS or to a combination of both processes, and further 

molecular work is required to elucidate the regulatory network behind its 

synthesis.  

The PhoR-PhoB system and the Pho-regulon were repeatedly shown 

to influence microbial colonization of the host and to directly control the 

expression of virulence related genes (Lamarche et al., 2008; Long et al., 2008; 

Zaborin et al., 2009). Accordingly, we detected several up-regulated protein 

homologues which have been described to be involved in prokaryote-eukaryote 

interaction. For example, TolB, OmpA, and PspA were described to induce the 

immune response in macrophages of damaged plant tissue, to be involved in 

adhesion and invasion of host cells, to interact with the hosts defense mechanism, 

and to be up-regulated during macrophage infection and biofilm formation 

(Bowe et al., 1998; Smith et al., 2007; Godlewska et al., 2009; Karlinsey et al., 2010). 

Several virulence factors are regulated by the TCRS PhoQ-PhoP, which has been 

well studied in Salmonella. It is activated by Mg2+-limitation, low pH, and acetyl 

phosphate (Chamnongpol and Groisman, 2000; Groisman, 2001). We detected an 

up-regulation of PhoP, but in our system, both the Mg2+ concentration and the 



Chapter | 2 

59 | P a g e  
 

pH (final pH was 7.8) can be ruled out as possible inducing factors. One potential 

source of activation is acetyl phosphate, deriving from the up-regulated 

Pta-AckA pathway (Table S2.1). Acetyl phosphate can activate the regulator 

proteins of TCRSs independently from the respective histidine kinase (Mccleary 

and Stock, 1994; Wanner, 1996). Therefore, it was suggested that over-expression 

of the Pta–AckA pathway is a way to connect phosphate limitation with the 

general induction of a large number of genes (Summers et al., 1998; Klein et al., 

2007). 

 The up-regulation of TolC and an RTX-like protein, and the presence 

of Pho-boxes in the promoter region of their genes are strong indications that the 

whole genomic region, which contains also two subunits required for a 

functional T1SS (hlyD, PSE_3718; hlyB, PSE_3719), is under the direct control of 

PhoB and it was up-regulated under phosphate-limited conditions. The 

RTX-like protein possesses a serralysin-like metalloprotease domain and two 

galactose-binding domains, which could interact with the glycosylated groups 

on the eukaryotic cell surface, suggesting that, as described in other bacteria 

(Morova et al., 2008; Linhartová et al., 2010; Satchell, 2011), FO-BEG1 could use 

this protein to adhere to the host cells surface and penetrate via disruption of the 

host tissues.  

Interestingly, the in-silico analysis for the identification of Pho-boxes 

revealed that several genes encoding proteins potentially involved in 

prokaryote-eukaryote interaction (e.g. hemolysin) are likely controlled by PhoB 

(Table S2.4). Altogether these data suggest that phosphate limitation or the 

general stress response induced by phosphate limitation could enhance the 



Response to phosphate limitation of Pseudovibrio sp. FO-BEG1 

60 | P a g e  
 

expression of proteins involved in the establishment and maintenance of a 

symbiotic relationship with marine invertebrates such as sponges. These are 

filter-feeding organisms and are able to pump hundreds of liters of seawater per 

day (Vogel, 1977). Consequently, the colonization of such organisms might 

represent a strategy adopted by Pseudovibrio to overcome nutrient limitation 

encountered as free-living organism in the surrounding water, since the 

association with the sponge will expose the bacterium to a continuous flow of 

water and nutrients.  
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Supplementary materials and methods 

Chemical analyses, determination of alkaline phosphatase activity, 

and detection of inclusions 

Alkaline phosphatase (AP) activity was detected by adding to 1 mL of 

culture 4-nitrophenyl phosphate bis(tris) salt (pNPP; ≥ 97.00%; Sigma Aldrich, St. 

Louis, MO, USA) to a final concentration of 540 µmol L−1. Samples were 

incubated at 28 oC and absorbance at 420 and 550 nm was monitored using a 

Beckman DU 640 spectrophotometer. Absorbance was recorded every 30 min for 

a time period sufficient for the detection of activity (2 h). AP activity was 

expressed in Miller unit (Miller, 1972), which were calculated using the formula: 

10,000 x [A420 – (1.75 x A550) ] / t x log(cells ml−1) x V, where A420 and A550 are 

the absorbances of the reactions at the respective wavelengths after a defined 

incubation time t (min) and V is the volume in ml used in the assay.  

Detection of tropodithietic acid (TDA) in the cell-free supernatant of 

−Pi and +Pi cultures was performed in collaboration with BioViotica Naturstoffe 

GmbH (Göttingen, Germany). Samples were collected during the exponential 

and stationary phase from two parallel flasks under −Pi and +Pi conditions. Cells 

were removed by centrifugation at 11,000 x g for 15 min at 5 °C. Cell-free 

supernatant was acidified to pH 3 with 2 mol L−1 HCl and 20 mL of each sample 

were extracted twice with an equal volume of ethyl acetate. Solvent was 

evaporated, and samples were resuspended in 1 mL acetonitrile. Analysis was 

performed via reverse phase high performance liquid chromatography 

(RP-HPLC) using a Nucleodur 100-5 C18 ec (250 x 3 mm) column. The mobile 
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phase consisted of A: deionized water with 0.1% trifluoroacetic acid (TFA) 

and B: acetonitrile with 0.1% TFA. The method was: 0–25 min: 20% B to 100% B; 

25–30 min: 100% B and the flow rate 0.5 mL min−1. 

Polyphosphate (poly-Pi) was quantified using the method described 

by Kulakova et al. (2011). In short, cell pellets were washed with 50 mmol L−1 

HEPES buffer (pH 7.5), snap-frozen in liquid nitrogen and thawed at room 

temperature. Cells were resuspended in 4´,6-diamidino-2-phenylindole 

dihydrochloride (DAPI) assay buffer (150 mmol L−1 KCl, 20 mmol L−1 

HEPES-KOH, pH 7.0) containing 25 µmol L−1 DAPI at a dilution appropriate for 

the used calibration. After 30 min of incubation the DAPI fluorescence was 

measured using a luminescence spectrometer LS 50 B (Perkin Elmer, Germany) 

with an excitation filter of 420 nm and an emission filter of 550 nm. The 

calibration was performed using a poly-Pi standard (sodium phosphate glass 

type 45, Sigma-Aldrich, Germany) between 0.5 and 6 µg mL─1. The background 

fluorescence of the cells and the fluorescence of the HEPES buffer (without DAPI) 

were subtracted from the fluorescent signal for normalization. Presence of 

poly-Pi was confirmed microscopically by staining cells with 0.1 g L─1 DAPI for 1 

h at room temperature. Inclusions were observed by fluorescence microscopy 

using an Axioplan universal microscope (Zeiss, Oberkochen, Germany) with an 

HBO 50 mercury lamp (Osram, Germany) for excitation with UV light and a 

UV-G 365 filter set (G 365 exciter filter, FT 395 chromatic beam splitter and an LP 

420 barrier filter, Zeiss, Oberkochen, Germany; data not shown).  

In order to verify the presence of polyhydroxyalkanoates (PHA) cells 

were stained for 15 min in the dark with Nile red in dimethyl sulfoxide 
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(Sigma-Aldrich, St. Louis, MO, USA) to a final concentration of 2.5 µg L−1. 

Inclusions were observed using the same microscope as described above with 

filter set 15 (Zeiss, Oberkochen, Germany), with excitation at 546 nm and 

emission at 590 nm. 

Polar lipids of cells collected at the beginning of the stationary phase 

in both –Pi and +Pi cultures were extracted using a chloroform:methanol:0.3% 

aqueous NaCl mixture 1:2:0.8 (v/v/v) (modified after Bligh and Dyer, 1959). The 

extraction solvent was stirred overnight, and the polar lipids were recovered into 

the chloroform phase by adjusting the chloroform:methanol:0.3% aqueous NaCl 

mixture to a ratio of 1:1:0.9 (v/v/v). Separation was achieved by two 

dimensional silica gel thin layer chromatography (Macherey-Nagel 

Art. No. 818 135), according to Tindall et al. (2007), with the first direction 

developed in chloroform:methanol:water (65:25:4, v/v/v), and the second in 

chloroform:methanol:acetic acid:water (80:12:15:4, v/v/v/v). Total lipid material 

and specific functional groups were detected using dodecamolybdophosphoric 

acid (total lipids), Zinzadze reagent (phosphate), ninhydrin (free amino groups), 

periodate-Schiff (α-glycols), Dragendorff (quaternary nitrogen), and 

α-naphthol-sulphuric acid (glycolipids). Plates were stained with 5% 

molybdophosphoric acid to show all lipids. 

 

Proteome analysis 

Protein extraction, labeling, and separation 

Cultures were centrifuged at 11,000 x g for 10 min at 5 °C, using a 

J-26XP Beckmann centrifuge (Beckman Instruments, Inc., CA, USA), supernatant 
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was discarded and cells were frozen immediately and stored at –80 °C until 

further processing. The proteomic analysis was performed by TopLab GmbH 

(Martinsried, Germany). Cells were lysed on ice by means of sonication (tip, 

Benedelin Sonoplus; Bandelin Electronics, Berlin, Germany) 6 times for 

10 seconds with power amplitude of 25%. Samples were then shaken for 20 min, 

to improve protein solubilization. After centrifugation at 20,000 x g for 30 min 

and removal of the cellular debris, the supernatant was transferred into a low 

binding tube for subsequent ICPL labeling and an aliquot was used to determine 

the protein concentration by Bradford assay (Bradford, 1976).  

100 µg total protein was used for each ICPL labeling reaction 

performed using SERVA ICPLTM Quadruplex-Kit (SERVA Electrophoresis 

GmbH, Heidelberg, Germany) according to the manufacturer’s instruction. The 

labeling was performed independently for the two biological replicates. ICPL0, 

not containing isotope, was used for the sample −Pi exponential phase; ICPL4, 

containing four D, was used for the sample −Pi stationary phase; ICPL6, 

containing six 13C, was used for the sample +Pi exponential phase; ICPL10, 

containing four D and six 13C, was used for labeling a sample obtained pooling 

all six protein extracts. The acetone precipitated ICPL labeled proteins were 

dissolved in sodium dodecyl sulfate (SDS) sample buffer. Complexity of the 

samples was reduced via SDS-PAGE, performed according to Laemmli (1970) 

using a 4-20% gradient gel for separation (SERVAGelTM, SERVA Electrophoresis 

GmbH, Heidelberg, Germany). For each biological replicate the samples labeled 

with ICPL0, ICPL4, ICPL6, and ICPL10 were pooled, and these mixtures were 

run in two different lines (run 1 and run 2), one for each replicate. In addition, all 
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three protein extracts of both biological replicates were combined, stained with 

the four ICPL compounds, and run in a third line (run 3). In this run all detected 

peptides will appear in the MS analysis as complete multiplets (quadruplets), 

increasing the probability of a correct identification. Run 3 was used as a 

reference run for the identification of proteins not present in all biological sample 

runs. After staining with colloidal Coommassie Brilliant Blue, each line in the 

SDS-PAGE gel was sliced in five pieces. De-staining was then performed using 

50 mmol L−1 NH4HCO3 in 30% acetonitrile. Reduction and alkylation were 

performed during the ICPL labeling. In-gel digestion was carried out overnight 

with trypsin sequencing grade (SERVA Electrophoresis GmbH, Germany) using 

a protein to enzyme ratio of 200:1 in 10 mmol L−1 NH4HCO3. Then 

Glu-C MS grade (ProteaTM Chemicals, South Africa) was added using a protein 

to enzyme ratio of 50:1. The cleavage was performed for approximately 8 h at 

room temperature. Due to the complete labeling of lysine residues the tryptic 

digest will result only in an Arg-C cleavage, producing peptides that show the 

tendency to be outside the working range of the MS. Therefore, the second 

cleavage with Glu-C generates smaller peptides that lie within the working range 

of the MS. The peptides were extracted and acidified to 1% formic acid for 

subsequent MS analysis. 

 

LC-ESI-MS/MS and protein identification 

For nanoLC-ESI-MS/MS approximately a quarter of the digested 

proteins were used. 1D-nano-LC separation was performed on a 

multi-dimensional liquid chromatography system (Ettan MDLC, GE Healthcare, 
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Munich, Germany). Peptides were separated with an analytical column (C18 

PepMap 100, 3 µm bead size, 75 µm i.d., 15 cm length LC Packings) with a three 

step 120 min linear gradient (A: 0.1% formic acid, B: 84% Acetonitrile and 0.1% 

formic acid) at a flow rate of 260 nL per min. The gradient used was: 0-30% B for 

80 min, 30-60% B for 30 min and 60-100% B for 10 min. 

Mass spectrometry was performed on a linear ion trap mass 

spectrometer (Thermo LTQ, Thermo Scientific, USA) operating in positive 

polarity mode online coupled to the nano-LC system. For electrospray ionization 

a distal coated SilicaTip (FS-360-50-15-D-20) and a needle voltage of 1.4 kV were 

used. The MS method consisted of a cycle combining one full MS scan (Mass 

range: 300-2,000 m/z) with data dependent MS/MS events (CID; 35% collision 

energy). The dynamic exclusion was set to 30 secs. The raw data were converted 

to mzXML format using the software Trans-Proteomic Pipeline. Then the peak 

detection, deconvolution, deisotoping and quantification were done using 

ICPL-ESIQuant. Quadruplets detection was first performed for each run 

separately. Subsequently, the detected quadruplets of the reference run (run 3) 

were used to search for incomplete quadruplets in the biological sample (run 1 

and run 2). In this way complete and incomplete quadruplets were identified. 

Only peptides with a Mascot score above 20, defined as the 95% confidence level, 

were considered. The Glu-C cleavage specificity was set for Glu. A specific 

database was built using the genome of the strain (available at 

DDBJ/EMBL/GenBank under the accession number CP003147 for the 

chromosome and CP003148 for the plasmid). For each LC-ESI-MS/MS run four 

separate database queries were always done using one of the ICPL labels as 
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second fixed modification. For database searches a mass tolerance of 50 ppm in 

the MS mode and 0.5 Da in MS/MS mode with two missed cleavages were set.  

 

Data analysis 

The fold of change of each protein, identified via Mascot, was 

determined by calculating the median of all respective peptides intensity ratios, 

but only if at least two quadruplets per protein were present. Proteins 

represented by incomplete quadruplets in the MS data cannot be quantified and, 

therefore, were only valued as turned ON or OFF at the respective condition. The 

false discovery rate (FDR) was calculated at the peptides level for all 

experimental runs using a randomized Decoy database (Peng et al., 2003), 

applying the same restriction as used for protein identification. The results of the 

calculation of the protein fold of change are values from 1 to infinity for 

up-regulated and from 1 to 0, for down-regulated proteins. This generates an 

asymmetry, which could lead to an incorrect interpretation during the evaluation 

process. For this reason, we multiplied the inverse of the down-regulated protein 

by –1. In this way, all the down-regulated proteins under the condition tested 

will have a negative but symmetric value to the up-regulated ones. As a 

consequence, in the comparison between +Pi and −Pi, if a protein is up-regulated 

in the reference condition (−Pi exponential phase), we will have a negative value, 

due to the normalization described above. However, the main aim of the present 

paper is to describe the variation occurring exactly at this growth stage. For this 

reason, we decided that it will be more intuitive to refer to the proteins 

up-regulated in the reference condition with positive value. To achieve this, we 
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multiplied all values for –1. This correction was not performed for the values 

obtained in the comparison between −Pi exponential and stationary phase.  

Subsequently, the average values were newly calculated and a new 

dataset was created with all regulated proteins defined by a fold of change equal 

or below −2, for down-regulated proteins, and equal or above 2, for up-regulated 

proteins. The latter dataset was further filtered according to the following criteria: 

for each protein we considered the standard deviation (STDV) from the median 

intensity ratio of the peptides. If the value of the STDV was lower than 50% of 

the protein regulatory ratio, or if it was higher but not affecting the definition of 

the regulation of the protein (e.g. from up-regulated to down-regulated), the 

protein was kept in the database otherwise, we investigated manually the 

peptide intensity ratios. If all peptide intensity ratios were below the threshold of 

0.75 for down-regulated proteins and above 1.33 for up-regulated proteins, the 

proteins were kept; otherwise they were removed due to the low statistical 

significance of their regulation. The proteins were then sorted in 15 arbitrary 

categories as described in the Materials and Methods section. 

 

Screening of the genome of strain FO-BEG1 for the presence of Pho-

boxes 

The prediction of potential PhoB binding sites within the genome of 

Pseudovibrio sp. FO-BEG1 was based on a position-weight matrix constructed 

using the Pho-box described for Sinorhizobium meliloti and Escherichia coli by Yuan 

et al. (2006). As a first approach, an 18 nucleotides long position-weight matrix 

based on ten E. coli and five S. meliloti PhoB binding sites was constructed. This 
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matrix was then used to scan each of the intergenic regions of the FO-BEG1 

genome for the highest score (log-odds), using an in-house Python script. To 

verify the length and the position of the Pho-box in strain FO-BEG1, 

18 nucleotides of the potential Pho-box, plus 10 nucleotides upstream and 

downstream of the target were retrieved. These sequences were then used in the 

successive analysis for the identification of the conserved Pho-box. From the first 

gene list we selected all those genes that encode for proteins that were found to 

be up-regulated in the proteomic approach. The result was a list of 67 genes 

which possessed a potential Pho-box with a score (log-odds) ranging from 0.27 to 

17.06. For strain FO-BEG1 there are no molecular studies available which 

describe the Pho-box sequences or genes directly regulated by PhoB; therefore 

we did not have any reference that could have been used to set a threshold that 

defines a good “hit” in our bioinformatic screening. Consequently, we manually 

screened the list of candidates to find genes directly controlled by PhoB in other 

strains. The last gene for which we could find a correspondence in literature was 

PSE_3720, which encodes an outer membrane protein TolC, described in Yoshida 

et al. (2010). The score for this gene was 4.86, which was taken as the lowest value 

which defines a reliable hit in the Pho-box search. 

Subsequently, to construct a Pho-box position-weight matrix specific 

for Pseudovibrio sp. FO-BEG1, we considered all genes that encode up-regulated 

proteins under phosphate-limited conditions and having a sequence score 

between 17.06 and 4.86 for the Pho-box. This resulted in 32 sequences (Table S2.3) 

that were aligned and used to create a logo using WebLogo 3.0 (Schneider and 

Stephens, 1990; Crooks et al., 2004). This analysis showed (Figure S2.1) that the 
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inner region of the 38 nucleotides, between nucleotide 11 and 28, possesses the 

typical conserved sequence known for E. coli and S. meliloti (Makino et al., 1998; 

Yuan et al., 2006). Thus, for the successive analysis we only considered for all 

selected sequences this region of 18 nucleotides. In the last step, we created a 

new position-weight matrix using the 32 selected genes of Pseudovibrio sp. 

FO-BEG1 and scanned the intergenic regions of its genome once again. The scan 

resulted in 1004 sequences, which can be found in Table S2.4. As a threshold for 

the lowest score that defines a good “hit” we took the lowest score of the proteins 

which we found up-regulated under phosphate-limited conditions in strain 

FO-BEG1 and which was part of the second matrix (PSE_3720, encoding an outer 

membrane protein TolC; score 6.66).  
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Supplementary tables are provided as digital material 

 
Table S2.1 | List of proteins regulated during phosphate limitation. The fold of 

change (Fc) was calculated comparing the protein expression of cells in the 

exponential phase of −Pi and +Pi cultures. 

Table S2.2 | List of proteins regulated during prolonged phosphate limitation. 

The fold of change (Fc) was calculated comparing the protein expression of cells 

in the exponential and stationary phase of −Pi cultures. 

Table S2.3 | List of genes used for the construction of a specific Pho-box 

position-weight matrix for strain FO-BEG1. 

Table S2.4 | List of genes that present a potential Pho-box in their upstream 

regions. 
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Abstract 

Dissolved organic matter (DOM) in the ocean is an assemblage of reduced carbon 

compounds and it is the result of biotic and abiotic processes. The biotic 

processes consist of either release or uptake of specific molecules by marine 

organisms. Heterotrophic bacteria have been mostly considered to influence the 

DOM composition by preferential uptake of certain compounds. However, they 

also secrete a variety of molecules depending on physiological state, 

environmental and growth conditions. In this study we analyzed the 

exo-metabolome, metabolites secreted into the environment, of the heterotrophic 

marine bacterium Pseudovibrio sp. FO-BEG1 via ultra-high resolution mass 

spectrometry, comparing phosphate-limited with phosphate-surplus growth 

conditions. Bacteria belonging to the Pseudovibrio genus have been isolated 

worldwide, mainly from marine invertebrates. They are metabolically versatile 

Alphaproteobacteria and have the potential to produce bioactive secondary 

metabolites. We show that the exo-metabolome is unexpectedly large and 

diverse, it is characterized by a dynamic recycling of compounds, and it is 

drastically affected by the physiological state of the strain. Moreover, we show 

that phosphate limitation greatly influences both the amount and the 

composition of the secreted molecules. By assigning the detected masses to 

general chemical categories we observed that under phosphate-surplus 

conditions peptides and highly unsaturated compounds were the dominant 

constituent of the exo-metabolome. In contrast, under phosphate limitation the 

composition of the molecules released into the medium changed during bacterial 

growth, showing an increase in highly unsaturated, phenolic, and polyphenolic 
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compounds. Finally, we annotated the detected masses using the KEGG database 

as reference. This revealed a big discrepancy between the number of detected 

masses and the number of uniquely annotated metabolites (less than 3%), which 

underlines the current gap in knowledge concerning the biosynthetic ability of 

marine heterotrophic bacteria. 
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Introduction 

 

Microorganisms dynamically interact with their environment, they are 

influenced by its composition and, in turn, they influence its composition. This 

reciprocity has an effect on bacterial gene expression, protein synthesis and 

metabolite uptake and production. In the ocean the dissolved organic matter 

(DOM), which consists of a collection of reduced carbon compounds often 

containing heteroatoms (e.g. N, P, S), is the result of these interconnected 

processes. Photosynthetic and non-photosynthetic bacteria can release 

metabolites into the environment according to their physiological state (Carlson, 

2002). Examples are compounds secreted for nutrient acquisition 

(e.g. siderophores), for communication (e.g. acyl-homoserine lactones), and for 

interspecies competition (e.g. antibiotics). Several studies have investigated the 

effect of photosynthetic bacteria on DOM composition (reviewed in Carlson, 2002 

and Kujawinski, 2011), but the composition of the DOM produced by 

heterotrophic bacteria is almost unknown. Special attention has been paid to 

metabolites of biotechnological application, but little is known about the full 

suite of compounds produced by bacteria under different nutrient regimes and 

growth phases, resulting in a general lack of information on the effect of marine 

heterotrophic bacteria on DOM composition in the ocean (Kujawinski, 2011).  

Metabolomics is the field of science that aims to characterize and 

quantify metabolites, or low molecular weight molecules, originating from 

cellular activity under a given set of physiological conditions. This collection of 

metabolites is termed the metabolome (Oliver et al., 1998), which can be 

partitioned into the so called endo-metabolome (all intracellular metabolites) and 
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exo-metabolome (all extracellular metabolites; Fiehn, 2001; Allen et al., 2003; 

Mapelli et al., 2008). The investigation of the metabolome has many benefits for 

understanding the effect of environmental changes on the cell phenotype, and it 

complements the associated techniques of proteomics and transcriptomics. 

Metabolomics is a “downstream” approach and reflects the final response of cells 

to specific environmental conditions (Oliver et al., 1998). Microbial metabolomic 

studies have already been performed for different purposes, e.g. to elucidate 

metabolic pathways, to investigate the response of bacterial metabolism to 

environmental stresses, to support bacterial identification, and to diagnose 

bacterial infections (Carlier, 1990; Cundy et al., 1991; Rinas et al., 1995; Boersma et 

al., 2001; Shnayderman et al., 2005; Brauer et al., 2006; Coucheney et al., 2008). 

Such studies have the potential to provide new insights into the composition of 

the metabolites secreted by marine heterotrophic bacteria and into their influence 

on the oceanic DOM composition. 

Among the different analytical techniques, high resolution accurate 

mass (HRAM) mass spectrometry has acquired a predominant position in 

metabolic studies (Want et al., 2007). Among these techniques, Fourier transform 

ion cyclotron resonance mass spectrometry (FT-ICR-MS) is emerging as the most 

promising technology since it provides accurate mass measurement with ppm or 

sub-ppm error. It allows to obtain ultra-high resolved profiles with thousands of 

accurate masses, which in principle can be transformed into real elemental 

composition (Aharoni et al., 2002; Marshall, 2004; Brown et al., 2005; Junot et al., 

2010). Therefore, it permits high-throughput screening of intracellular and 

extracellular metabolites providing overall information on bacterial metabolism. 

This technique was successfully employed to analyze the variation in 

the endo-metabolome during bacterial growth, in studies of metabolic diversity 

among different ecotypes and in analyzing bacterial response to stress conditions 

(Rosselló-Móra et al., 2008; Takahashi et al., 2008; Brito-Echeverria et al., 2011; 

Antón et al., 2013). However, studies that analyze the bacterial exo-metabolome 
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during growth and in response to nutrient limitation are missing. In the present 

manuscript, we report a detailed analysis of the exo-metabolome of strain 

Pseudovibrio sp. FO-BEG1, a heterotrophic alphaproteobacterium potential 

symbiont of marine sponges (Bondarev et al., 2013; Contributed works).  Bacteria 

belonging to this genus have often been shown to produce bioactive secondary 

metabolites, and they are considered a potential source of new molecules of 

medical interest (Kennedy et al., 2009; O’Halloran et al., 2011; Flemer et al., 2012; 

Bondarev et al., 2013; Contributed works).  

We investigated the composition of the secreted metabolites during 

bacterial growth and we analyzed the effect of phosphate (Pi) limitation. 

Phosphate limitation was chosen because it is a common environmental 

condition encountered in many marine systems (Cotner et al., 1997; Wu et al., 

2000; Thingstad et al., 2005), and it has been described to have a significant effect 

not only on the overall cell physiology, but also on secondary metabolite 

production (Martín, 2004 and references therein). We report here the astonishing 

diversity of the exo-metabolome of strain FO-BEG1 and the drastic effect that 

phosphate limitation has on its composition. These data shed new light onto the 

complexity of the metabolites secreted by heterotrophic marine bacteria and onto 

the effect that their metabolic state can have on the composition of DOM in the 

ocean. 

 

Materials and Methods 

Growth conditions 

Strain FO-BEG1 was cultivated in the carbohydrate/mineral medium 

(CM) as described by Shieh et al. (2004) and modified by Bondarev et al. (2013; 
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Contributed works). For the phosphate-surplus conditions (+Pi) phosphate was 

added to a final concentration of 1.4 mmol L─1, whereas no phosphate was added 

to the phosphate-limited (−Pi) medium. Under –Pi conditions the sole phosphate 

source was the buffer used for the vitamin solutions, resulting in a final 

concentration of 0.1 mmol L─1 phosphate. Erlenmeyer flasks of 250 mL were 

filled with 100 mL of medium and inoculated with 100 µL of a pre-culture grown 

under +Pi conditions. Cultures were incubated at 28 oC in the dark and shaken at 

120 rpm. We monitored bacterial growth by means of Optical Density (OD) 

measured at 600 nm using an Eppendorf BioPhotometer (Eppendorf AG, 

Hamburg, Germany). The OD600 was then correlated with the cell number, 

determined by counting cells in a Thoma chamber (Brand GmbH, Wertheim, 

Germany; data not shown).  

 

Solid phase extraction of dissolved organic matter (SPE-DOM), 

dissolved organic carbon (DOC) measurements, and Fourier 

transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) 

of DOM 

For both −Pi and +Pi cultures, samples were collected immediately 

after the inoculation (T0) and in the exponential growth phase (T1). Two more 

samples during the late exponential phase (T2) and the middle stationary phase 

(T3) were collected for the –Pi cultures, and one more was collected in stationary 

phase (T2) of +Pi cultures. Samples were centrifuged at 10,000 × g for 10 min at 

5 °C. The supernatant was filtered into 150 mL combusted glass serum-bottles 

using Acrodisc 25 mm syringe filters with a 0.2 µm pore size GHP membrane 



Exo-metabolome of Pseudovibrio sp. FO-BEG1 

92 | P a g e  
 

(Pall LifeSciences, Ann Arbor, MI, USA), acidified to pH 2.5 with 2 mol L−1 HCl, 

and stored at 4 °C until further analysis. We collected the samples from all 

biological triplicates in both +Pi and –Pi conditions, with the exception of T0.  

DOM of the cell-free supernatants was extracted according to the solid 

phase extraction of dissolved organic matter (SPE-DOM) method described by 

Dittmar et al. (2008). The extraction was performed using Bond Elute PPL 

(Agilent Technologies, Wildbronn, Germany) cartridges with a styrene-

divinylbenzene (SDVB) polymer modified with a proprietary surface able to 

retain also the most polar classes of analytes. DOC content of each extract was 

analyzed using a Shimadzu TOC-VCPH total organic carbon analyzer (Shimadzu, 

Kyoto, Japan). The extracted DOM samples were then diluted with a mixture of 

methanol (MS grade) and ultrapure water (50:50 v/v) to yield a DOC 

concentration of 20 mg L–1 carbon, filtered using a 0.2 µm pore size PTFE filter 

(Rotilabo, Carl Roth GmbH, Karlsruhe, Germany), and analyzed in the negative 

ion mode with a solariX FT-ICR-MS (Bruker  Daltonik GmbH, Bremen, Germany) 

with a 15.0 Tesla magnet and equipped with an electrospray ionization (ESI) 

source. All data were acquired with a time domain size of 4 megawords with a 

detection range of m/z 150 to 2,000. For each run, 500 broadband scans were 

accumulated. The acquired mass spectra were analyzed with the Data Analysis 

software Version 4.0 SP4 (Bruker Daltonik GmbH).  

Calibration of the mass spectra was performed as follows: one 

replicate of −Pi T3 was spiked with 0.05 ppm L-arginine (Sigma-Aldrich, 

Steinheim, Germany). The resulting mass spectra were calibrated internally with 

a reference mass list for L-arginine, and molecular formulae were assigned for 
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the remaining peaks in the spectrum using the Data Analysis software. The 

molecular formulae were assigned to an elemental composition in the following 

ranges: C 1-∞, H 1-∞, O 1-∞, N 0-4, S 0-2, P 0-1, allowing an error of 0.15 ppm. A 

mass list with more than 300 masses in the range 150-800 m/z was obtained, and 

used to calibrate all other acquired mass spectra. Due to the diversity of the 

samples, the calibration list was adjusted manually to always cover the full 

detected mass range with at least 40 calibration points. All linear calibrations 

resulted in an average mass error of below 0.05 ppm. Additionally, the 

instrument was externally calibrated with an in-house marine deep sea DOM 

reference sample (mass accuracy of less than 0.1 ppm). Before each sample set, 

blank checks with methanol/ultrapure water 1:1 were measured. 

 

Samples comparison, molecular formulae assignment, filtration of 

the dataset, and statistical analysis 

Comparison of the mass spectra, formulae assignment and isotope 

(13C) identification were performed using an in-house Matlab routine developed 

by the Max Planck Research Group for Marine Geochemistry. The molecular 

formulae were assigned in the elemental composition in the following ranges: 

C 1-40, H 1-∞, O 1-∞, N 0-4, S 0-2, P 0-1, no Na, Fe, Cl, and allowing a mass error 

of 500 ppb. Only peaks with signal to noise ratio higher than 4 were considered 

and only formulae with a minimum H/C ratio of 0.3 and a maximum O/C ratio 

of 1 were accepted. All detected ions were singly charged, as indicated by the 

mass difference between isotopologues (of 12C versus 13C). Therefore, all detected 

m/z values were equivalent to molecular masses. 
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Ion intensities were normalized by dividing the intensity of each mass 

by the sum of the 500 highest intensities measured in the respective sample. This 

normalization process was performed independently for each sample. After 

normalization, singlets were removed, i.e. masses detected only in one sample 

out of the seventeen analyzed. In order to have an overview of the similarity 

among the samples, we performed a non-metric multidimensional scaling 

(NMDS), using the Bray-Curtis similarity index for the calculation of the distance 

matrix. Minimum-spanning tree between all samples was constructed to 

visualize pairwise sample similarities. Nearest neighbors, the most similar 

samples, were connected according to their degree of similarity. In order to 

reduce contingent noise and to consider only the molecules produced by the 

bacteria, we further filtered the dataset using the following criteria. We removed 

all masses detected in the samples −Pi and +Pi T0 that did not at least double 

their normalized intensity during the experiment; we removed all masses that 

were not present in at least all triplicates of one condition in a specific time point; 

we removed all masses which could contain an isotope 13C. The filtered dataset 

was newly analyzed by means of NMDS, but the samples collected at T0 for both 

growth conditions were not considered, due to the significant alteration in their 

m/z composition derived by the filtration of the dataset described above. A 

minimum-spanning tree between all samples was newly constructed. NMDSs, 

the relative stress values, which is a measure that reflects the degree of deviation 

of NMDS distances from the original matrix distances, and the 

minimum-spanning trees were carried out by means of the PAST program 

(Hammer et al., 2001). Subsequently, in order to identify the unique masses 
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present per time point under both conditions and the masses shared among the 

growth stages, we created a Venn diagram always considering masses present in 

all triplicates at the respective time point. 

The elemental composition and the modified aromaticity index (AImod; 

Koch and Dittmar, 2006) of each molecular formula were used to divide them 

into molecular categories according to the criteria modified after Šantl-Temkiv et 

al. (2013). For this analysis we excluded all masses for which multiple molecular 

formulae were obtained. We divided the molecular formulae in the following 

categories: peptides (if the molecular formula has a H/C ratio between 1.5 and 2, 

an O/C ratio lower than 0.9 and includes N), sugars (if the molecular formula 

has an O/C ratio higher or equal to 0.9 and an AImod lower than 0.5), saturated 

fatty acids (if the molecular formula has H/C ratio higher or equal to 2 and an 

O/C ratio lower or equal to 0.9), unsaturated aliphatic compounds (if the 

molecular formula has a H/C ratio between 1.5 and 2, an O/C ratio lower than 

0.9, and does not contain N), highly unsaturated compounds (if the molecular 

formula has an AImod lower than 0.5, an H/C ratio lower than 1.5, and an O/C 

ratio lower than 0.9), phenols (if the molecular formula has an AImod higher or 

equal than 0.5 and less than 12 C atoms), and polyphenols (if the molecular 

formula has an AImod higher or equal than 0.5 and 12 or more C atoms).  

 

Metabolite and pathway annotation 

Masses detected in all three biological replicates at each time point 

were putatively annotated (i.e. level 2 of metabolite identification as defined by 

the Metabolomics Standards Initiative; Summer et al., 2007) using the 
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“transformation mapping” approach (Weber and Viant, 2010), after correcting 

the mass values for the H+ loss. This method is based on mapping an 

experimentally-derived empirical formula difference for a pair of peaks to a 

known empirical formula difference between substrate-product pairs derived 

from the KEGG database (Kyoto Encyclopedia of Genes and Genomes; Kanehisa 

and Goto, 2000). To reduce the number of false positive assignments even more 

only metabolites that occurred in one of the Pseudovibrio sp. FO-BEG1 pathways 

(KEGG identifier: psf) were selected for annotation (as listed in KEGG on July 

2013). 

 

Results 

Measurement of the DOC released during bacterial growth and 

FT-ICR-MS analysis 

Phosphate limitation repressed the growth of Pseudovibrio sp. 

FO-BEG1, leading to a final cell density 2.5-3.5 times lower than under 

phosphate-surplus conditions (Fig. 3.1A). Under –Pi conditions a slightly higher 

amount of solid phase extractable dissolved organic carbon (SPE-DOC) was 

produced during the first half of the exponential phase (T1; Fig. 3.1B). As 

observed in T0, the SPE extraction did not retain the provided glucose, which 

would correspond alone to 60 mmol L–1 DOC. Therefore the measured DOC 

represented the organic compounds produced and secreted by Pseudovibrio sp. 

FO-BEG1. At T1 under both conditions only around 2 mmol L─1 of glucose was 

taken up by the cells  (Chapter 2), resulting in a conversion of the initial carbon 
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source in SPE-DOC of 0.4% for –Pi cultures and 0.3% for +Pi cultures. 

Surprisingly, in the samples collected in the late exponential (T2) and in the 

middle stationary phase (T3) under –Pi conditions the SPE-DOC production 

increased to 266.9 ± 57.9 µmol L–1 and 510.6 ± 191.9 µmol L–1, respectively. At T2 

the glucose consumed was around 5 mmol L─1, which was then taken up by the 

cells during the rest of the growth (Chapter 2). Consequently, the SPE-DOC 

produced represented in both growth stages 0.9% of the used glucose. Compared 

to this, the SPE-DOC content under +Pi conditions during the stationary phase 

was more than 3 times lower (144.3 ± 17.6 µmol L–1) (Fig. 3.1B), representing 0.2% 

of the consumed glucose. 

The raw data obtained from the FT-ICR-MS analysis consisted of 

23,892 masses ranging from 154 m/z to 1,930 m/z. After normalization of the ion 

intensity, we performed a non-metrical multidimensional scaling (NMDS) in 

order to evaluate the similarities among the samples (Fig. 3.2). As the stress value 

of the NMDS plot was 0.06, it can be considered a good representation of the 

calculated distance matrix and thus, of the similarity among the samples. The 

samples collected at T1 for each biological triplicate under both –Pi and +Pi 

conditions clustered together and were clearly separated from the samples 

collected during the rest of the growth period (Fig. 3.2). All biological triplicates 

of the –Pi conditions collected in the late exponential and in the stationary phase 

(T2 and T3) were completely divergent from the triplicates of the +Pi stationary 

phase (T2). Moreover, the samples T2 and T3 for the –Pi conditions also clustered 

separately in the plot (Fig. 3.2). 
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m/z value of 154 to 998. The NMDS plot (Fig. S3.1) performed for this new 

dataset showed the same clustering pattern as the unreduced dataset (Fig. 3.2).  

In the Venn diagram (Fig. 3.3), it was evident that the samples 

collected during the exponential growth phase under +Pi and –Pi conditions 

presented 23 and 100 unique masses, respectively, and 202 shared masses never 

detected in the other samples collected during the later growth phases. 

Independent of the condition and the growth phase, we detected 573 masses 

shared among all samples. The samples collected in the late exponential and in 

the stationary phase under –Pi conditions (T2 and T3), together showed 1,088 

unique masses never detected in the other samples, whereas in the samples 

collected in the stationary phase under +Pi conditions we detected 832 unique 

masses not present in the other samples (Fig. 3.3). 

 

Conversion of masses in molecular formulae and annotation of 

metabolites 

Of the 8,381 detected masses, we were able to assign molecular 

formulae to 4,914. Of these, 4,122 were unique molecular formulae, 

corresponding to 49% of the m/z of the filtered dataset. A greater number of 

molecular formulae could be assigned to the masses obtained from samples 

collected at T1 under both +Pi and –Pi conditions (Table 3.1). Under +Pi 

conditions an increase in the relative number of formulae containing nitrogen 

was observed from exponential to stationary phase, whereas the percentage of 

these compounds decreased under –Pi conditions. Interestingly, during bacterial 

growth under –Pi conditions the relative amount of formulae containing sulfur 
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substrate-product pairs retried from KEGG. It was previously shown that this 

approach reduced the false positive rate of identification by more than four-fold 

versus a traditional peak by peak search using accurate mass measurements only, 

while maintaining a minimal false negative rate (Weber and Viant, 2010). A 

molecular name could be assigned only to a minor proportion of compounds 

(less than 3%; Dataset S3.1). For the sample –Pi T1, we could annotate 85 masses 

with 55 assigned to unique metabolites (1.8% of the detected masses in all 

triplicates). The number of masses assigned to unique metabolites decreased to 

46 (65 total annotated masses) for the samples –Pi T2 and to 30 for –Pi T3 (37 total 

annotated masses), representing 1.3% and 1.2% of the detected masses in all 

triplicates, respectively. 49 and 64 masses could be assigned to unique 

metabolites (73 and 97 total annotated masses) in the samples +Pi T1 and +Pi T2 

(1.8% and 1.5% of the detected masses in all triplicates), respectively. Most of the 

annotated compounds were intermediates in the metabolism of the amino acids 

lysine, tyrosine, tryptophan, and phenylalanine (Dataset S3.2 and Fig. S3.2). In 

all samples, except –Pi T3, several metabolites were also annotated in the 

pathway of the purine metabolism (Dataset S3.2 and Fig. S3.2). 

 

Discussion 

In order to quantify and characterize the metabolites secreted by strain 

Pseudovibrio sp. FO-BEG1, and to evaluate the effect of phosphate limitation on 

them, we performed an ultra-high resolution mass spectrometry analysis of the 

bacterial exo-metabolome. Mass spectrometry is the most widely used approach 

in metabolomic studies (Want et al., 2007). In particular high resolution accurate 
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mass (HRAM) mass spectrometry instruments are receiving progressively more 

attention, owing to their ability to resolve highly complex samples, yielding 

accurate mass measurements, which allow precise calculation of their elemental  

composition (Aharoni et al., 2002; Marshall, 2004; Junot et al., 2010). 

 

Table 3.1 | Overview of the data obtained from the FT-ICR-MS analysis  
In the table the number of masses detected in all biological triplicates of each specific time point 
are reported. The values in brackets represent the percentage of masses to which a unique 
molecular formula could be assigned and the percentage of unique molecular formulae 
containing heteroatoms.  
 

 

When cells growing under –Pi conditions entered stationary phase, 

they released three times more solid phase extractable dissolved organic carbon 

(SPE-DOC) than cells grown under +Pi conditions (Fig. 3.1). We are confident 

that the SPE-DOC concentrations and the number of metabolites obtained are not 

biased by the composition of the cultivation medium because, as shown by the 

amount of SPE-DOC at T0, the SPE process did not retain significant amounts of 

organic compounds present in the medium (Fig. 3.1). Moreover, during the 

 +Pi T1 +Pi T2 −Pi T1 −Pi T2 −Pi T3 
detected masses 2596 4206 3112 3566 2479 

unique molecular 

formulae 
1578 (60.8%) 2426 (57.7%) 1931 (62.1%) 1876 (52.6%) 1241 (50.1%) 

formulae containing 

nitrogen 
1193 (75.6%) 2085 (85.9%) 1362 (70.5%) 1387 (73.9%) 813 (65.5%) 

formulae containing 

sulfur 
648 (41.0%) 1087 (44.8%) 859 (44.5%) 1138 (60.7%) 802 (64.6%) 

formulae containing 

phosphorus 
221 (14.0%) 374 (15.4%) 247 (12.8%) 301 (16.0%) 176 (14.2%) 
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filtration of our dataset we removed all m/z which were detected in T0 and did 

not at least double their ion intensity during the experiment. Therefore, all 

compounds originally present in the medium were excluded from the analyses.  

It has been known for several years that low phosphate concentrations 

can induce the production of secondary metabolites (Martín, 2004 and references 

therein), which would suggest that under –Pi conditions a higher fraction of the 

carbon source provided was used by Pseudovibrio sp. FO-BEG1 for the production 

of such compounds. In addition, it is known that phosphate limitation can trigger 

membrane lipid rearrangement, with the substitution of phospho-containing 

with phospho-free lipids (Minnikin et al., 1972; Benning et al., 1995), a 

phenomenon that we also observed for Pseudovibrio sp. FO-BEG1 (Chapter 2). 

Therefore, it is reasonable to hypothesize that due to the membrane 

rearrangement more cytosolic metabolites could leak out from the cells, 

justifying the higher production of SPE-DOC under –Pi conditions. Consistently, 

nutrient leakage was also described in a marine yeast strain growing under 

phosphate-limited conditions (Robertson and Button, 1979). Other studies 

showed that bacteria can convert 5 to 15% of the provided carbon to DOC 

(Ogawa et al., 2001; Gruber et al., 2006; Kawasaki and Benner, 2006), which is one 

order of magnitude higher than observed in our experiments. However, a precise 

comparison is difficult because in all mentioned experiments different medium 

composition, growth parameters, and analytic procedures were used.  
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limitation. In this respect, FT-ICR-MS represents an ideal and powerful technique 

to unravel this complexity. We could clearly show that the exo-metabolome 

composition differs during different growth phases and between the two tested 

conditions (Fig. 3.2, S3.1). These data are consistent with previous studies, which 

using low resolution techniques reported variation in the secreted metabolites 

due to the growth phase or to environmental stress (Shnayderman et al., 2005; 

Coucheney et al., 2008; Takahashi et al., 2008; Barreto et al., 2011). Moreover, our 

data indicate that phosphate limitation also affects the sulfur metabolism of 

Pseudovibrio sp. FO-BEG1, leading to an increased release of compounds 

containing this element (Table 3.1).  

The presence of unique masses detected only at specific time points 

under both conditions shows a dynamic cycling of organic compounds. 

Molecules produced during the beginning of the exponential growth phase were 

then taken up again when cells entered stationary phase. A similar phenomenon 

was observed in a study that investigated the grazing effect on the DOC 

production in a pure culture of Pseudomonas chlororaphis (Gruber et al., 2006). 

Interestingly, even though for each sampling point and each condition we 

identified hundreds of unique masses, we also detected 573 masses that were 

always present in our samples independent from the growth stage or the growth 

condition. It will be interesting to verify if this “core” exo-metabolome is affected 

by other environmental changes or if it represents a distinctive “metabolic 

signature” of the strain.  

It has been suggested that the trophic status of the environment affects 

DOM composition via shaping the ecological processes that are responsible for 
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its production (Kujawinski, 2011). Productive, nutrient rich regions have 

significant DOM production directly from photosynthesis, whereas oligotrophic, 

nutrient poor regions have significant DOM production from grazing processes 

(Nagata, 2000; Maranón et al., 2004). This difference was attributed to the 

complexity of the microbial food web in different environments, with the 

oligotrophic region having a more effective microbial loop compared to the 

classical food web described in the productive regions (Teira et al., 2001). Our 

data suggest that to understand DOM composition the effect of the 

environmental nutrient regimes on bacterial physiology should not be 

underestimated. As we show, it can greatly affect both the amount and the 

composition of the produced organic compounds.  

Comparing the variation of the metabolome of Escherichia coli and 

Saccharomyces cerevisiae in response to carbon and nitrogen limitation, Brauer et al. 

(2006) showed global metabolic trends remarkably conserved among these two 

distantly related microorganisms. Therefore, in order to verify the presence of 

shared metabolic responses, which could indicate the presence of highly 

conserved regulatory schemes, it would be of great interest to compare the 

variations of the exo-metabolome in response to nutrient limitation among 

different bacteria. This information could also help to better understand the 

influences of microbes on DOM composition in natural environments 

characterized by particular nutrient regimes. 

The molecular formula assignment allowed us to classify the detected 

masses in molecular categories, giving a broad overview of the compounds 

released during the growth under both –Pi and +Pi conditions. Under phosphate 
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limitation, we observed a higher production of phenolic and polyphenolic 

compounds when cells entered stationary phase (Fig. 3.4). Production of phenol 

was described for the strains Pseudovibrio sp. D323 and L4-8 (Penesyan et al., 2011; 

Roué et al., 2012). The crude extract of the spent medium of the latter strain 

showed a strong antioxidant activity, which is consistent with our finding that 

strain FO-BEG1 produces different types of phenols and polyphenols, known for 

their antioxidant properties (Scalbert et al., 2005). Higher production of these 

compounds under –Pi conditions could be related to the increased oxidative 

stress that cells growing under phosphate limitation can experience (Gérard et al., 

1999; Moreau, 2004; Yuan et al., 2005), and which we also inferred for strain 

FO-BEG1 from the comparison of the protein expression between +Pi and –Pi 

conditions (Chapter 2). 

  Some of the detected phenolic and polyphenolic compounds can be, 

for instance, tropone derivates. These molecules are commonly produced by 

bacteria members of the Roseobacter clade and can have algaecide and 

antibacterial activity, such as, for example, the potent antibiotic tropodithietic 

acid (TDA; Thiel et al., 2010; Seyedsayamdost et al., 2011). Previous 

high-performance liquid chromatography experiments suggested that a 

compound with the same retention time and UV-visible spectra as the TDA 

standard was produced by Pseudovibrio sp. FO-BEG1 under –Pi conditions when 

cells entered stationary phase (Chapter 2). Also during the FT-ICR-MS analysis, 

we identified a m/z 210.952904 with the molecular formula assigned C8H4O3S2, 

which is, also considering its peculiar isotopic patterns due to the presence of 

two sulfur atoms per molecule, consistent with being TDA. As observed 
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previously (Chapter 2), this compound was detected only in stationary phase 

under phosphate limitation, and its ion intensity increased from T2 to T3. 

Members of the genus Pseudovibrio possess several traits in common with 

members of the abundant and ubiquitous Roseobacter clade, such as the ability to 

utilize dimethylsulfoniopropionate, the symbiotic lifestyle, and the ability to 

produce bioactive secondary metabolites such as TDA (Buchan et al., 2005; 

Bondarev et al., 2013; Contributed works). Members of the Roseobacter clade 

produce TDA together with an uncharacterized yellow pigment (Buchan et al., 

2005), and consistently also the Pseudovibrio cultures growing under –Pi 

conditions developed an intense yellow coloration when entered stationary 

phase (Chapter 2). Considering these similarities, it is reasonable to speculate that 

among the phenolic and polyphenolic fractions of the detected compounds there 

were some molecules with similar characteristics to the one described for the 

Roseobacter clade, which might be of biotechnological interest.  

The ultra-high resolution of the FT-ICR-MS helps to provide the 

elemental composition of the measured masses and, therefore, also to perform 

metabolic annotations using existing databases. We used the KEGG database to 

interpret the information concerning the metabolic pathways of strain FO-BEG1. 

Only a small fraction of the detected masses were registered in KEGG, and most 

of the annotated metabolites, in all samples, were compounds involved in the 

synthesis of mainly aromatic amino acids (e.g. tyrosine, tryptophan, 

phenylalanine) and nucleotides. Release of these compounds was also observed 

in the analysis of the exo-metabolome of other bacterial and yeast strains 

(Behrends et al., 2009; Paczia et al., 2012). In conditions of “overflow metabolism”, 
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meaning in conditions with an excess of carbon or energy source or in presence 

of nutrient limitation, intermediates of different metabolic pathways can be 

released (Kramer, 1994). Recent evidence suggests that this is a common 

phenomenon in different microorganisms when cultivated under conditions of 

non-inhibited carbon uptake (Paczia et al., 2012). Aromatic amino acids are key 

intermediates in the production of aromatic secondary metabolites (Herrmann, 

1995) suggesting that strain FO-BEG1 is potentially producing such compounds, 

which, however, are of unknown structure.  

Production and release of amino acids by bacterial communities was 

also reported by Kawasaki and Benner (2006), and these compounds are 

important constituents of DOC in some coastal environments (Coble, 1996; 

Yamashita and Tanoue, 2003). It is worth pointing out that comparing the list of 

molecular formulae retrieved from our exo-metabolome study with a list of 

formulae detected in DOM of the deep North Pacific Ocean (Rossel et al., 2013), 

we found only 83 shared compounds. However, comparing our data with a list 

of molecular formulae detected in DOM during and after a phytoplankton bloom 

in the North Sea (Dittmar et al., unpublished data), we detected 729 matches and 

90.8% of them were always present in the natural samples, independently from 

the bloom of the phytoplankton (Dataset S3.3). This indicates that, at least on a 

molecular formula level, the compounds we were able to detect are indeed part 

of natural DOM, and their presence does not seem to be directly related to the 

activity of the primary producers of the community. Consistently, also 

Kujawinski et al. (2009), showed that molecules detected in a pure culture of 

“Candidatus Pelagibacter ubique” were also detected in open ocean DOM. 



Chapter | 3 

111 | P a g e  
 

We were able to detect several hundreds of masses for each sample, 

but we only managed to annotate less than 3% of them using the KEGG database 

as reference. Among the identified compounds, a smaller number of metabolites 

could be annotated for the samples collected at T3 under –Pi conditions. 

However, the majority of the annotated compounds belonged to the same 

pathways also identified in the other samples. Under phosphate limitation the 

number of formulae annotated in the pathway “Tyrosine metabolism” and 

“Tryptophan metabolism” decreased strongly from T1 to T3, indicating a 

reuptake of such molecules by the cells when they enter stationary phase.  

Although our approach represents a high-throughput way of 

performing metabolomic studies, it is limited by the incompleteness of the 

targeted database. For instance, even though we have strong indications that 

TDA production occurred under –Pi conditions (Chapter 2) and we also detected 

the respective ion in the FT-ICR-MS analysis, we could not identify this 

compound during the annotation process using the KEGG database. The reason 

is the absence of the pathway for TDA production among the annotated one in 

the KEGG pathways of Pseudovibrio sp. FO-BEG1. This represents a limit of this 

approach and, at the same time, underlines the lack of knowledge we have about 

the biosynthetic ability of marine bacteria. Since databases such as KEGG are 

mostly restricted to genome-reconstruction pathways, wrongly annotated genes 

and absence of compounds for which the biosynthetic pathways have not yet 

been elucidated for the target organism can decrease the number of identified 

molecules in metabolic studies and limit the capabilities of techniques such as 

FT-ICR-MS.  
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Conclusions 

In this work for the first time the exo-metabolome of a marine 

heterotrophic bacterium was investigated in detail using ultrahigh-resolution 

mass spectrometry. We show that the exo-metabolome is unexpectedly large and 

diverse, it is characterized by a dynamic recycling of compounds, and it is 

drastically affected by the physiological state of the strain. Our data clearly 

illustrate that phosphate limitation triggered a pronounced increase in the 

secretion of DOC and at the same time greatly affected its composition. We 

reported that a part of the molecular formulae discovered in the exo-metabolome 

were detected in natural DOM. Future studies on the exo-metabolomes of 

different strains and DOM from different locations may help to understand to 

what extent the compounds secreted by heterotrophic bacteria influence DOM 

composition in the ocean. By assigning unique molecular formulae, we were able 

to chemically categorize the detected masses and we showed that phosphate 

limitation leads to an increased production of phenols and polyphenols, which 

could represent new metabolites of biotechnological interest. Our work shows 

that HRAM instruments represent a promising technique to unravel the 

complexity of the metabolites secreted from microorganisms. However, the great 

discrepancy between the number of measured masses and the number of 

annotated molecules using the KEGG database underlines the large gap in our 

knowledge concerning the biosynthetic ability of marine bacteria, indicating the 

necessity of further work directed to the chemical characterization of secreted 

metabolites. At the same time the large exo-metabolome would represent a big 

“chemical reservoir”, of bacterial origin, for the discovery of new molecules of 
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biotechnological interest. Our data underline the great biosynthetic ability of 

heterotrophic bacteria and suggest that, using the words of Traxler and Kolter 

(2012), ‘‘the chemical landscape inhabited and manipulated by bacteria is vastly more 

complex and sophisticated than previously thought’’.  
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Supplementary tables are provided as digital material 

 
Dataset S3.1 | Metabolites annotated using as target the metabolic pathways 

of Pseudovibrio sp. FO-BEG1 reported in the KEGG database. 

Dataset S3.2 | Metabolic pathways present in the KEGG database, which 

contain the annotated metabolites. 

Dataset S3.3 | Molecular formulae shared between the experiments conducted 

in the present work and the DOM retrieved from the North Sea. 
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Abstract 

Iron and phosphate are fundamental nutrients for all living organisms and in 

nature their biogeochemical cycles are intimately connected. In aerobic systems 

the only stable iron form is Fe(III), however, its solubility is extremely low at 

pH values found in seawater. Therefore, Fe(III) tends to aggregate forming iron 

oxyhydroxides, which rapidly precipitate. These represent an “iron trap” for 

phosphate since it can adsorb on the oxyhydroxide surface and can therefore be 

removed from the surrounding environment. Environmental concentrations of 

both iron and phosphate have a drastic effect on the bacterial cell physiology, 

controlling, for example, the production of secondary metabolites and the 

expression of virulence related genes. In the course of our studies on the 

physiological response of Pseudovibrio sp. FO-BEG1 to phosphate limitation, we 

detected an increase in the total soluble iron in the cell-free medium when 

phosphate starved cells entered stationary phase. We proved that this 

undescribed phenomenon was due to the secretion of molecules with chelating 

properties. First attempts to characterize the chelators via chemical tests, size 

exclusion chromatography, reverse phase liquid chromatography, and mass 

spectrometry revealed the presence of compounds with molecular masses of 

around 1 kDa and containing catechol subunits. To a certain extent a similar 

response was also observed in strains belonging to the Roseobacter clade, 

suggesting that this phenomenon could be more widespread in nature.  
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Introduction  

Cells rely on iron (Fe) for a wide range of key metabolic and signaling 

functions. Under oxic conditions Fe(III) is the only thermodynamically stable 

form. However, the solubility of Fe(III) at circumneutral pH is below 

10─18 mol L─1 (Neilands, 1981), which is several orders of magnitude lower than 

the average amount of iron required for bacterial growth (Andrews et al., 2003). 

Iron concentration in the open ocean is generally below 1 nmol L─1 and it exhibits 

a nutrient-like vertical profile, with lower values detected in surface waters 

(Tortell et al., 1999). Unlike most of the other trace metals, iron is not present 

freely soluble, but it is found in form of particulate material (silicates, 

aluminosilicates, and oxyhydroxides) or dissolved as complexes with organic 

matter (Price and Morel, 1998; Macrellis et al., 2001).  

Generally, bacteria living in aerobic aquatic systems take up Fe(III) 

complexed with organic molecules. Due to its low solubility and concentration in 

oxic environments, microorganisms produce and secrete organic molecules that 

complex Fe(III) with high affinity and are able to solubilize iron particles (Byers 

and Arceneaux, 1998). These molecules are called siderophores, and they are low 

molecular weight compounds with masses generally lower than 1,000 Da. They 

are produced in response to iron limitation in order to facilitate iron acquisition 

(reviewed in Wandersman and Delepelaire, 2004). Siderophores can be classified 

according to their chemical characteristics or to their bio-synthetic mechanisms. 

Considering their structures, they are divided into hydroxamate or catechol 

containing molecules and polyhydroxy carboxylic acid. The structural variety is 

big and often molecules with mixed sub-unit types are produced (Neilands, 
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1993). Siderophores can either be synthesized by non-ribosomal peptide 

synthetases (NRPS) or by NRPS-independent pathways (Barry and Challis, 2009). 

So far the most common siderophores are produced via NRPS systems, which 

are modular multienzymes involved in the production of a large variety of 

secondary metabolites (Moss et al., 2004).  

Due to the chemical characteristics of iron, its biogeochemical cycle is 

tightly connected with the cycles of other elements essential for bacterial growth. 

Among those, one of the most important is phosphorus (P), which can also be a 

limiting nutrient for bacterial growth in marine environments (Wu et al., 2000; 

Thingstad et al., 2005). Iron and phosphorus cycles are intimately linked because 

phosphate (Pi), the preferred phosphorus source of bacteria, strongly adsorbs to 

the surface of iron oxyhydroxides and is released when the oxides are degraded 

or reduced. The interaction of phosphate with hydrous iron oxides could remove 

from 5 to 40% of the total phosphate-input to the oceans, particularly in 

environments with high iron oxide concentrations (Berner, 1973; Froelich et al., 

1977; Feely et al., 1990; Rudnicki and Elderfield, 1993; Kadko et al., 1994; Blake et 

al., 2001).  

Changes in environmental concentrations of either iron or phosphate 

have a great effect on similar physiological traits of bacteria. For instance, 

phosphate limitation or iron limitation triggers the production of different kinds 

of secondary metabolites ranging from molecules involved in quorum sensing to 

siderophores and antibiotics (Vining, 1990; Martín, 2004). There are many areas 

in the ocean where bacterial growth was described to be limited by one of these 

two nutrients (Behrenfeld et al., 1996; Wu et al., 2000). Moreover, iron limitation is 
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a common condition that pathogenic bacteria have to overcome inside their hosts. 

A successful colonization is often associated with the production of 

iron-scavenging molecules, which, therefore, are considered virulence factors. 

Phosphate can also drastically influence bacterial virulence, and it was shown 

that virulent phenotypes can be induced by both iron and phosphate limiting 

conditions (Litwin and Calderwood, 1993; Lamarche et al., 2008; Zaborin et al., 

2009; Chakraborty et al., 2011). 

We have been investigating the phosphate limitation response of 

strain FO-BEG1, an alphaproteobacterium belonging to the genus Pseudovibrio 

(Chapter 2). Members of this genus are typically thriving in close association 

with, and may even be potential symbionts of, marine invertebrates, and are 

thought to be a promising source for new bioactive compounds (Taylor et al., 

2007; O'Halloran et al., 2011). We observed that phosphate limitation also has a 

significant influence on bacterial iron metabolism. Under these conditions we 

observed an increase in the concentration of the total soluble iron in the cell-free 

supernatant, starting when cells entered stationary phase. In order to understand 

the origin and mechanisms of this phenomenon, and its distribution among 

marine heterotrophic bacteria, we performed physiological and chemical 

experiments on Pseudovibrio sp. FO-BEG1 and on selected strains belonging to the 

Roseobacter clade. Moreover, bioinformatic analyses were conducted, aiming to 

identify genes potentially involved in siderophore production.  
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Materials and methods 

Growth conditions 

Pseudovibrio sp. FO-BEG1 was cultivated under two phosphate 

regimes, phosphate-limited (–Pi) and phosphate-surplus (+Pi), using the 

carbohydrate/mineral medium prepared as previously described (Chapter 2 and 

3). In this medium iron was supplied together with other micronutrients from an 

acidified trace element solution without the addition of chelating agents (Widdel 

and Pfenning, 1984). This medium will be referred to as “normal CM”. 

Phaeobacter gallaeciensis (DSM-17395) and Phaeobacter inhibens (DSM-16374) were 

cultivated under the same conditions, whereas Ruegeria pomeroyi (DSM-15171) 

was cultivated at 30 oC. Bacterial growth was monitored by means of Optical 

Density (OD) measured at 600 nm using an Eppendorf BioPhotometer 

(Eppendorf AG, Germany). The OD600 was then correlated with the cell number, 

determined by counting cells in a Thoma chamber (Brand GmbH, Germany; data 

not shown). During the whole growth period the UV-visible spectra of the 

cell-free supernatants were recorded using a Beckman DU 640 

spectrophotometer (Beckman Coulter, Fullerton, CA, USA). 

The effect of different iron concentrations on the development of the 

color and the UV-visible spectra of the –Pi cell-free supernatant was investigated 

cultivating FO-BEG1 in –Pi CM medium supplied with the same acidified trace 

element solution of the “normal CM”, but prepared without iron addition. Three 

stock solutions of FeSO4 and ethylenediaminetetraacetic acid (EDTA) were 

prepared in the following concentrations: 25 mmol L─1 FeSO4 and 
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50 mmol L─1 EDTA, 45 mmol L─1 FeSO4 and 90 mmol L─1 EDTA, 

75 mmol L─1FeSO4 and 150 mmol L─1 EDTA. Iron was then added into the 

medium to obtain final concentrations of 2.5, 4.5, and 7.5 µmol L─1. Growth was 

monitored via measuring OD600, and UV-visible spectra of the cell-free 

supernatant were recorded during the entire growth period. 

In order to understand whether the observed iron increase was due to 

iron released from the cells or from a solubilization of the precipitated fraction, 

we performed two experiments to which we will refer to as “Refresh experiment” 

and “EDTA experiment”. In the first experiment, we incubated strain FO-BEG1 

in the “normal CM” medium under +Pi and −Pi conditions, up to the point where 

we previously detected the maximum iron uptake. Biomass of all +Pi and –Pi 

replicates were then harvested via centrifugation at 7,000 x g and 15 oC, for 

10 min, using a J-26XP Beckmann centrifuge (Beckman Instruments, Inc., Palo 

Alto, CA). Cell pellets were washed with Fe-free sterile artificial seawater (ASW), 

and equally divided to re-inoculate fresh Fe-free phosphate-limited CM medium 

in biological triplicates. Cultures were incubated again at 28 oC and shaken at 

120 rpm. This resulted in two series of cultures: cultures in –Pi Fe-free medium 

pre-grown under “normal CM” +Pi, and cultures in –Pi Fe-free medium pre-

grown under “normal CM” –Pi medium. The working hypothesis was that the 

elimination of external iron to the second cultures avoids the formation of iron 

precipitates. Therefore, an eventual increase in the total soluble iron in the 

medium could only be attributed to a cellular release. In the second culturing 

step, we monitored bacterial growth via OD600 measurement and the UV-visible 

spectra of the cell-free supernatants for 95 h. Iron concentrations in the cell-free 
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supernatants were determined via ICP-OES. For this second cultivation step all 

glassware was washed two times with 1 mol L─1 HCl and rinsed with 

MembraPure water (Optilab-Standard Water System, MembraPure, Bodenheim, 

Germany), in order to remove residual iron adsorbed to the glass walls. 

In the “EDTA experiment” we cultivated strain FO-BEG1 in a +Pi and 

−Pi CM medium where we supplied iron complexed to EDTA to a final 

concentration of 7.5 µmol L─1 iron and 100 µmol L─1 EDTA. Cultures were 

incubated as described before. All glassware was acid washed prior to use. We 

hypothesized that supplying EDTA-Fe would avoid iron precipitation. 

Consequently, in case of increase in the concentration of total soluble iron in the 

cell-free supernatant, this could only come from cellular release. 

Extraction of the chelating molecules for the isolation process was 

performed on the cell-free supernatant of a 10 L culture obtained using a 

Sartorius bioreactor with a Biostat B Plus control unit (Sartorious GmbH, 

Göttingen, Germany). The temperature was maintained at 28 oC and the culture 

was mixed at 300 rpm. Filtered air was injected into the chemostat at a constant 

flow rate of 1 L min–1. Growth was monitored via OD600 measurement.  

. 

Iron measurement, dialyzation, and size exclusion chromatography 

(SEC) of the cell-free supernatants 

Iron concentration in the supernatants was measured using 

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Samples 

were collected during bacterial growth, centrifuged at 11,000 x g and 5 oC for 

10 min, filtered with 0.22 µm pore size Millipore filter (Millipore, Bedford, MA, 
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USA), diluted 1:10 in 1% supra-pure HNO3 (Merck, Darmstadt, Germany), and 

stored at 4 oC until further processing. Analyses were performed with an Agilent 

720 ICP-OES (Agilent Technologies, Palo Alto, CA, USA). 

Cell-free supernatants of both +Pi and –Pi cultures were dialyzed 

over-night at 4 oC against MQ under stirring conditions using a dialysis tube 

Spectra/PorTM (molecular cut-off of 1000 Da; Serva, Heidelberg, Germany). Iron 

content and chelating activity were measured before and after dialysis.  

SEC of the –Pi cell-free supernatant was performed by injecting 1 mL 

of sample into an Äkta purifier system (GE Healthcare, Freiburg, Germany) 

equipped with a SuperdexTM Peptide 10/300 GL column (GE Healthcare, 

Freiburg, Germany), detecting absorption at 280 nm. Samples were run using 

tris(hydroxymethyl)aminomethane hydrochloride (TRIS-HCl) at pH 7.8 as buffer 

with a flow rate of 0.25 mL min–1. During the chromatographic run, 1 mL 

fractions were collected using a fraction collector Frac-950 (GE Healthcare, 

Piscataway, NJ, USA). Each fraction was then diluted 1:10 in 1% supra-pure 

HNO3 and iron content was analyzed via ICP-OES. The column was calibrated 

using ribonuclease A, aprotinin, [D-Ala2, D-Leu5]-Enkephalin, and vitamin B12 

(Sigma-Aldrich Chemie Gmbh, Munich, Germany), which were run under the 

same conditions. The total volume of the column was estimated considering the 

elution time of the ions in solution detected as increase in conductivity. Cell-free 

supernatants of the “Refresh experiment” were also tested via SEC using the 

same condition described above. 
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Characterization, extraction and isolation of the chelating 

compounds, and detection of tropodithietic acid (TDA) 

Cell-free supernatants were tested with the Chromazurol-S (CAS) 

assay, modified from Schwyn and Neilands (1987). To 0.6 mL of 10 mmol L─1 

hexadecyltrimethylammonium bromide (HDTMA) 0.15 mL of 1 mmol L─1 FeCl3 

prepared in 0.1 mol L─1 HCl was slowly added under stirring. Subsequently, 0.75 

mL of 2 mmol L─1 CAS were added drop-wise. After complete mixing of the 

solution 6.5 mL of 0.5 mmol L─1 piperazine-N,N′-bis(2-ethanesulfonic acid) 

(PIPES), previously adjusted to pH 6.8, were added and the volume of the 

solution was filled up to 10 mL using MQ. To perform the CAS assay an equal 

volume of CAS solution and samples were mixed. Presence of catechol 

containing molecules was assessed using the chemical assay described in Rioux 

et al. (1983) and presence of hydroxamate derivate was verified with the method 

described by Csaky (1948) and modified by Gillam et al. (1981).  

As reported in Neilands (1981) liquid-liquid extraction using 

ethyl acetate as solvent is the most common way to extract catechol-like 

siderophores. Therefore, we employed this method to extract the metabolites 

from the cell-free supernatant of a 10 L culture. After obtaining a crude extract, 

we performed in collaboration with BioViotica GmbH (Göttingen, Germany) 

high performance liquid chromatography (HPLC) experiments aimed to isolate 

the chelating molecules. Fractions were collected and their chelating activity was 

tested using the CAS assay. In addition, we verified by means of reverse phase 

(RP)-HPLC the presence of the antibiotic tropodithietic acid (TDA) in the cell-free 

supernatants of the Roseobacter strains, which developed a yellow coloration. A 
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detailed description of the procedures is provided in the Supplementary 

materials and methods section.  

 

Electrospray ionization mass spectrometry (ESI-MS) of the RP-HPLC 

fractions 

The HPLC fraction that resulted positive to the CAS assay and the 

fraction containing TDA were further analyzed via mass spectrometry. The 

fractions were diluted 1 to 10 in 70% acetonitrile and filtered using a 0.2 µm pore 

size PTFE filter (Rotilabo, Carl Roth GmbH, Karlsruhe, Germany). Mass 

spectrometry analysis was performed in ESI positive mode with a solariX 

FT-ICR-MS (Bruker Daltonik GmbH, Bremen, Germany) with a 15.0 Tesla 

magnet. All data were acquired with a time domain size of 4 megawords with a 

detection range of m/z 150 to 2,500. For each run, 200 broadband scans were 

accumulated. The acquired mass spectra were analyzed with the Data Analysis 

software Version 4.0 SP4 (Bruker Daltonik GmbH). To facilitate the identification 

of chelating molecules both HPLC fractions were analyzed before and after 

adding analytic grade GaCl3 (Sigma-Aldrich Chemie Gmbh, Munich, Germany). 

Ga(III) has chemical properties similar to Fe(III), but its two isotopes 69Ga and 

71Ga have an abundance ratio of 3:2, generating a characteristic isotopic pattern 

in the MS scan. Spectra were manually analyzed and the mass shift and the 

isotopic pattern, resulted from the Ga addition, were considered for the 

identification of compounds with chelating properties. MS/MS of the molecules 

presenting the characteristic Ga isotopic pattern was performed using a collision 

induced dissociation (CID) ranging from 12 to 17. 
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In-silico analysis for the detection of genes potentially involved in 

siderophore production 

Both genome and plasmid sequences of Pseudovibrio sp. FO-BEG1 

(GeneBank ID: CP003147.1 and CP003148.1, respectively) were analyzed with the 

program antiSMASH 2.0 (Blin et al., 2013). The same analysis was performed for 

the genomes and plasmids of P. gallaeciensis (GeneBank ID: CP002976.1, 

CP002977.1, CP002979.1, CP002978.1) and R. pomeroyi (CP000031.1, CP000032.1). 

Since the genome of P. inhibens (GeneBank ID: GCA_000473105.1) was still not 

completely assembled, the two longest scaffolds were downloaded, 

automatically annotated using the RAST server (Aziz et al., 2008), and 

subsequently submitted to antiSMASH 2.0.  

After identification of a hybrid non-ribosomal peptide polyketide 

synthetase (NRPS-PKS) gene cluster, potentially involved in the production of a 

chelating compound in Pseudovibrio sp. FO-BEG1, the respective genomic region 

was selected to perform a multigene BLAST using the MultiGeneBlast platform 

(Medema et al., 2013). This analysis was conducted in order to identify 

homologous clusters in the genome of other bacteria. More details can be found 

in the Supplementary materials and methods section. 

In order to obtain a first broad overview of the affiliation of the 

proteins identified by antiSMASH to be potentially involved in the synthesis and 

transport of a non-ribosomal peptide in Pseudovibrio sp. FO-BEG1, a phylogenetic 

analysis was conducted considering the full length of each protein. After 

retrieving homologous sequences, phylogenetic trees were calculated using the 

Maximum likelihood method. In order to have more accurate information 

concerning the affiliation of the proteins, we conducted an additional 
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phylogenetic analysis using the more important domains of the NRPS (A and C) 

and PKS (AT and KS) systems. Phylogenetic trees were calculated using the 

Maximum likelihood method. A detailed description of the phylogenetic 

analyses can be found in the Supplementary materials and methods section. 

To clarify whether the gene cluster of interest was horizontally 

acquired by Pseudovibrio sp. FO-BEG1, the whole genome was analyzed using the 

integrated interface of IslandViewer (Langille and Brinkman, 2009). 

Tetranucleotide usage of the gene cluster was calculated using the program 

TETRA (Teeling et al., 2004b), correlating the usage patterns of the genomic 

region containing the NRPS-PKS cluster of FO-BEG1 with the colibactin cluster 

identified in the genomes of Escherichia coli (CP001969.1) and Citrobacter koseri 

(CP000822.1). Moreover, the pattern was also correlated with the FO-BEG1 

genome and with the genomes of four enterobacteria (CP001969.1; CP000822.1; 

CP000247.1; CP000308.1). 

Finally, the genome of FO-BEG1 was screened for the presence of 

binding domains for the ferric-uptake-regulator (Fur) family proteins using a 

weighted matrix constructed for the Fur-box of E. coli and retrieved from the 

platform RegulonDB (Salgado et al., 2012). The weighted  matrix was used to scan 

the intergenic regions of Pseudovibrio sp. FO-BEG1 genome using the program 

genome-patser (Hertz and Stormo, 1999). 
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Results 

Pseudovibrio sp. FO-BEG1 solubilizes precipitated iron when 

growing under phosphate-limited conditions 

As reported previously in Chapter 2 and 3, phosphate limitation 

repressed bacterial growth. During the investigated growth period, we 

monitored the concentration of total soluble iron in both +Pi and –Pi mediums 

(Fig. 4.1). In the sterile controls, iron concentrations decreased drastically during 

the first 24 h of incubation. The decrease was more evident under +Pi conditions, 

where the concentration dropped from 6.7 ± 0.15 µmol L─1 to 1.8 ± 1.2 µmol L─1. 

In contrast, under –Pi conditions the iron concentration decreased from 7.0 ± 0.04 

µmol L─1 to 4.6 ± 1.9 µmol L─1. Comparing the residual iron in the sterile controls 

with the minimum iron concentrations detected in the cultures we could infer the 

amount of iron taken up by the cells under both phosphate regimes. Cells 

growing under phosphate limitation took up 2.5 times more iron than cells 

growing under phosphate-surplus. Surprisingly, only under –Pi conditions the 

concentration of the total soluble iron in the medium increased again when cells 

entered stationary phase, reaching 4.7 ± 0.12 µmol L─1 (Fig. 4.1).  

The increase could have been derived either from iron released by the 

cells or by solubilization of the precipitated iron fraction. To address this 

question we performed the “Refresh experiment” and the “EDTA experiment”. 

During the first experiment Pseudovibrio sp. FO-BEG1 was cultivated in a 

“normal CM” medium under both +Pi and –Pi conditions up to the point where 

we previously detected the higher iron uptake. The entire biomass of the cultures 
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increase in the concentration of total soluble iron in the cell-free supernatant 

could only be attributed to cellular release. As hypothesized, we did not observe 

iron precipitation in the sterile controls of both +Pi and –Pi conditions (Fig. 4.1). 

In agreement with the original cultivation approach (“normal CM” medium), 

cells took up 2.5 times more iron under phosphate limitation. In addition, we did 

not observe an increase in the concentration of total soluble iron under both +Pi 

and –Pi conditions, indicating that the cells did not release any iron. 

Since the formation of the color seemed to be affected by the iron 

concentration in the medium, we monitored the color development and the 

UV-visible spectra of the cell-free supernatant in additional experiments, where 

Pseudovibrio sp. FO-BEG1 was cultivated under –Pi conditions providing lower 

amounts of iron than the “normal CM” medium. Although bacterial growth was 

not affected, the intensity of the color and the absorption of the UV-visible 

spectra decreased under lower iron concentration (data not shown). 

In order to verify whether the soluble iron was bound to organic 

molecules in solution, we performed a size exclusion chromatography (SEC) 

experiment using the –Pi cell-free supernatant. We collected the eluted fractions 

and their iron content was measured via ICP-OES. The maximum iron amount 

was detected in the fractions that contained molecules in an apparent mass 

interval from 1,030 to 4,885 Da (data not shown). However, the chromatogram in 

this range was not well resolved. Therefore, it was not possible to derive a 

precise size of the organic complexes. Conversely, these compounds were not 

detected in the SEC experiments performed using the cell-free supernatants 

obtained from the “Refresh experiment” (data not shown).  

Finally, we dialyzed both –Pi and +Pi cell-free supernatants using a 

molecular cut-off of 1 kDa. In contrast to the +Pi supernatant, the iron content of 
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we performed chemical assays for the two main categories of siderophores, 

hydroxamate and catechol derivates. Both +Pi and –Pi cell-free supernatants 

resulted positive for the catechol assay, but the –Pi supernatant gave a signal 

with double the intensity than the +Pi one. The assay for hydroxamate gave 

negative results for both supernatants, even though the test was not always 

reproducible. 

We extracted the hypothetical catechol siderophore using ethyl acetate 

according to Neilands (1981). The extracted metabolites of the –Pi supernatant of 

strain FO-BEG1 had an intense yellow-brown coloration and reacted 

immediately during the CAS assay. The crude extract was then analyzed via 

RP-HPLC and five fractions were isolated. Four of the five fractions showed a 

yellow or yellow-brown coloration (Fig. S4.2). The retention time and the 

UV-visible spectra of the compound contained in fraction 4 were consistent with 

the ones of tropodithietic acid (TDA), which was previously detected and 

quantified via HPLC during the growth of FO-BEG1 under –Pi conditions 

(Chapter 2). The activity of all fractions was tested again using the CAS assay 

and only fraction 1 reacted immediately, whereas the fraction containing TDA 

started to react only after 2 h of incubation. Finally, we verified the purity of 

fraction 1 via analytical HPCL and we could detect eight different peaks. This 

condition did not allow us to proceed further in the isolation of the chelating 

compounds. 

In order to better characterize the compounds with chelating activity, 

fraction 1 was analyzed via mass spectrometry before and after addition of GaCl3. 

Moreover, since the fraction containing TDA mildly reacted with the CAS 
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solution, it was also analyzed using the same approach. Ga(III) has chemical 

properties similar to Fe(III) and can also interact with chelating molecules. 

Peculiarly, its two isotopes have an abundance ratio of 3:2, generating a 

characteristic isotopic pattern in the MS scan, which facilitate the identification of 

molecules bound to it. In fraction 1 we identified several masses that according to 

the analysis of the isotopic patterns contained unequivocally Ga (Fig. 4.3B). 

These masses were not detected in the same sample analyzed before Ga addition 

(Fig. 4.3A). Four of the m/z containing Ga (m/z 633; 874; 845; 887) were further 

analyzed via MS/MS. Unexpectedly, in all fragmentation patterns three m/z 

(311.00; 445.02; 455.02), still showing the Ga isotopic signature, were always 

detected (data not shown). Moreover, several other shared ions were detected in 

all patterns (e.g. m/z 413.28; 442.03; 478.19; 552.29; 574.27). In the TDA containing 

fraction we did not identify any mass showing the Ga isotopic pattern. In this 

fraction we detected a mass which was consistent, considering also the isotopic 

pattern, with the mass of TDA (m/z 234.9; [TDA+Na]+)  

 

Strains from the Roseobacter clade show different iron solubilizing 

activity under phosphate limitation  

In order to verify whether the production of a chelating agent is a 

common physiological response to phosphate limitation among marine 

heterotrophic bacteria and thus could be of environmental relevance, we 

investigated this phenomenon in different strains belonging to the abundant and 

ubiquitous Roseobacter clade. We selected three strains: Phaeobacter gallaeciensis 

DSM-17395, Phaeobacter inhibens DSM-16374, and Ruegeria pomeroyi DSM-15171 



Solubilization of precipitated iron by Pseudovibrio sp. FO-BEG1 

142 | P a g e  
 

and monitored their growth and the soluble iron concentration in the medium 

under the two phosphate regimes. P. gallaeciensis showed a response to 

phosphate limitation similar to Pseudovibrio sp. FO-BEG1. We observed a 

repressed cell growth and formation of a yellow-brown coloration when cells 

entered stationary phase (Fig. S4.3; Fig. S4.4). As observed for Pseudovibrio sp. 

FO-BEG1, also in the –Pi cultures of P. gallaeciensis the total soluble iron increased 

when cells entered stationary phase (Fig. 4.4). Both –Pi and +Pi supernatants 

were tested using the CAS assay, and only the –Pi was positive. Similarly, also its 

crude extract reacted immediately in the CAS assay. 

P. inhibens and R. pomeroyi showed a different response to phosphate 

limitation. For P. inhibens a precise quantification of the bacterial growth was not 

possible due to the formation of compact cell aggregates (Fig. S4.3). Both +Pi and 

–Pi cultures developed a yellow-brown coloration (Fig. S4.4), and under both 

conditions the soluble iron concentration increased during bacterial growth 

(Fig. 4.4). In addition, both supernatants and their respective crude extracts 

resulted positive to the CAS assay. R. pomeroyi was characterized by a slower 

growth and we did not observe significant differences in the final cell density 

between the two treatments (Fig. S4.3). Moreover, no yellow coloration 

developed under the two phosphate regimes (data not shown). Also for this 

strain we observed an increase in the total soluble iron in the cell-free 

supernatant of –Pi cultures, even though significantly less pronounced than in 

the other strains (Fig. 4.4). The UV-visible absorption spectra of the cell-free 

supernatants of all cultures that developed a yellow coloration resembled the 

spectra of the FO-BEG1 –Pi supernatant (Fig. S4.4). 
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Figure 4.5 (displayed on the previous page) | Genomic region containing the gene 
cluster encoding the hybrid NRPS-PKS system in Pseudovibrio sp. FO-BEG1 (A). For 
comparison, homologous regions belonging to different bacteria are shown. The higher similarity 
is shared with the colibactin gene cluster of Escherichia coli strain 536. Genes encoding proteins 
with similar function are indicated by the same color. The gene clbA of E. coli strain 536 encodes a 
protein containing a PPT domain similar to the gene PSE_3317 of Pseudovibrio sp. FO-BEG1. 
However, the phylogenetic analysis revealed that the encoded protein in FO-BEG1 is affiliated to 
a homologous protein of Sinorhizobium sp. To underline the difference, these two genes are 
shown in different colors. For each gene of the Pseudovibrio NRPS-PKS system the respective 
domain content is reported. PPT phosphopantetheinyl transferase domain, C condensation 
domain, KS ketosynthase domain, A adenylation domain, AT acyltransferase domain, CP carrier 
peptide domain. Figure B and C show the phylogenetic trees for the proteins PSE_3323 and 
PSE_3325. Trees were constructed using the Maximum Likelihood method based on the JTT 
matrix-based model. Trees with the highest log likelihood are shown. The percentage of trees in 
which the associated taxa clustered together (bootstrap values) is shown next to the branches. 
Only values equal or higher than 50% are reported. The trees are drawn to scale, with branch 
lengths measured in the number of substitutions per site. Due to space constraints only two trees 
are shown, but they are representative for the trees constructed for all other analyzed proteins. 
 

Genes potentially involved in siderophore production 

After verifying the presence in the cell-free supernatants of molecules 

with chelating properties, we analyzed the genome of FO-BEG1 and of the 

Roseobacter strains in the attempt to identify genes involved in siderophore 

production. The in-silico analysis gave positive results only for P. gallaeciensis 

(PGA_78p00410-PGA_78p00440). In all other strains, FO-BEG1 included, no 

known genes were detected. Interestingly, in the genome of Pseudovibrio sp. 

FO-BEG1 we identified a hybrid non-ribosomal peptide polyketide synthases 

(NRPS-PKS) gene cluster (PSE_3317-18, PSE_3320, PSE_3325, PSE_3328-31, 

PSE_3335-36). Since most of the known siderophores are produced via NRPS 

systems, this genomic region was further analyzed. 

The NRPS and PKS systems are modularly organized multi-domain 

proteins, which represent at the same time template and biosynthetic machinery. 

Each domain catalyzes a specific reaction, representing the individual steps in 
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the synthesis of the final molecule (Schwarzer et al., 2003). Some domains, 

e.g. adenylation domain (A) in NRPS and acyl-transferase domain (AT) in PKS, 

have high specificity for the single monomers which are used for the synthesis of 

the compounds, e.g. amino acids or carboxylic acids (Schwarzer et al., 2003). 

Therefore, if the order of the domains in the synthetic process is known it is 

possible to predict, to a certain extent, the backbone composition of the product  

(Schwarzer et al., 2003). Consequently, two systems that share similar proteins 

and domains are likely producing highly similar compounds. In terms of 

organization and gene content the NRPS-PKS cluster detected in the FO-BEG1 

genome clearly showed a high degree of similarity with a genomic region 

responsible for the synthesis of colibactin in bacteria belonging to the family 

Enterobacteriaceae (Fig. 4.5A).  

In order to gain a first glimpse into the phylogenetic affiliation of the 

proteins predicted by antiSMASH to be involved in the synthesis and transport 

of the non-ribosomal peptide (NRP), we performed a phylogenetic analysis 

considering their full sequences. All megasynthases belonging to the NRPS-PKS 

system clustered together with proteins involved in the synthesis of colibactin 

and belonging to the family Enterobacteriacea. However, they formed always an 

independent branch in the tree (Fig. 4.5B). The only exception was PSE_3317, 

which clustered together with a homologous protein of Sinorizobium melliloti 

(data not shown). The majority of the proteins annotated as members of 

transport systems (PSE_3323; PSE_3324; PSE_3350; Fig. 4.5A) were closely related 

to proteins belonging to Alphaproteobacteria and formed isolated branches in the 

phylogenetic trees (Fig. 4.5B). The only exception was PSE_3326, which clustered 



Chapter | 4 

147 | P a g e  
 

together with homologous proteins of enterobacteria. In the NRPS-PKS genomic 

region also other enzymes not belonging to the NRPS-PKS system, and 

potentially involved in the synthesis of the NRP were identified (PSE_3314; 

PSE_3319; PSE_3327; PSE_3332-3334). The phylogenetic analysis revealed that 

the majority of these enzymes were related to homologous proteins belonging to 

Enterobacteriaceae, with the exception of PSE_3346 and PSE_3347, which clustered 

together with Alphaproteobacteria sequences (data not shown). 

Due to the modularity of the NRPS-PKS systems, a high level of 

genetic recombination can occur. This can cause a reorganization of single 

domains in the megasynthases, leading to a difference in the synthetic process, 

and consequently to a difference in the final structure of the product (Moss et al., 

2004; Jenke-Kodama and Dittmann, 2009). Therefore, gene clusters with identical 

sequential organization, like the one detected in FO-BEG1 and the colibactin 

cluster, can differ at the domain level. For this reason, a phylogenetic analysis 

considering the single domains can give more accurate and indicative results. 

Therefore, we performed an additional phylogenetic analysis using the PKS 

domains KS, AT and the NRPS domains C, A. Consistently with the analysis 

conducted for the full sequences of the megasynthases, all domains clustered 

together with domains involved in the production of colibactin (Fig. S4.5, 

Fig. S4.6 ). 

Due to the high similarity between the colibactin NRPS-PKS gene 

cluster and the one identified in Pseudovibrio sp. FO-BEG1 genome, we 

performed additional analyses to verify if this genomic region was acquired by 

strain FO-BEG1 via horizontal gene transfer (HGT). In the first place, we 
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calculated the GC content of the colibactin and the FO-BEG1 NRPS-PKS gene 

clusters. The difference in GC content between a specific genomic region and the 

overall genome of the bacterium represents a first common indicator for HGT.  

The GC content of the colibactin gene cluster (53%) was highly similar to the one 

of the FO-BEG1 NRPS-PKS cluster (51.1%) and of the overall genome of strain 

FO-BEG1 (52.5%). Additionally, we considered the tetranucleotide usage patterns, 

which were shown to contain a stronger phylogenetic signal than the GC content 

(Teeling et al., 2004a). They have often been used to identify the relatedness 

among genomes and genome fragments considering the degree of correlation 

between the usage patterns of the respective sequences (Teeling et al., 2004a). The 

usage patterns of the genomic region containing the NRPS-PKS was weakly 

correlated with the patterns of the FO-BEG1 genome (0.47). However, the values  

of correlation with the enterobacterial colibactin gene clusters and with the 

genomes of the respective strains were lower than 0.31. Finally, the genome of 

Pseudovibrio sp. FO-BEG1 was screened for the presence of known genomic 

islands (GIs) considering homology with GIs known in other species, presence of 

viral genes, and anomalies in the GC skew (Fig. S4.7). Apart from mobile 

elements in one flanking region (PSE_3337-3345), the NRPS-PKS cluster was not 

identified as a GI (Fig. S4.7). 

Siderophores are regulated by the transcription regulator Fur, which 

controls the expression of genes involved in iron metabolism. It binds to specific 

sequences called Fur-boxes, which are located in the upstream region of the 

genes. Therefore, in order to clarify whether the expressions of the NRPS-PKS 

cluster was regulated according to this scheme, we screened the genome of 
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Pseudovibrio sp. FO-BEG1 for the presence of potential Fur-Boxes. 388 genes that 

presented a potential Fur-box in their upstream region were identified (data not 

shown). Among these there were several gene encoding proteins involved in iron 

metabolism (e.g. ferric uptake regulator, PSE_0496), confirming that the 

approach we applied represented a valid preliminary identification. However, 

none of the genes belonging to the hybrid NRPS-PKS cluster presented a 

potential Fur-box.  

 

Discussion 

Under phosphate limitation Pseudovibrio sp. FO-BEG1 secretes 

molecules with chelating properties, which solubilize precipitated 

iron 

Our investigation on the effect of phosphate limitation on the 

physiology of Pseudovibrio sp. FO-BEG1 showed that this nutrient condition 

strongly influences the iron metabolism of the strain. The concentration of total 

soluble iron under –Pi conditions decreased drastically during the first 40 h of 

incubation and increased again during the rest of the growth (Fig. 4.1). The main 

aim of the presented study was to understand the origin and the mechanisms 

behind this increase.  

In the used medium iron was provided in the form of Fe(II) from an 

acidified trace element solution (Widdel and Pfenning, 1984). During the 

incubation time under aerobic conditions Fe(II) oxidized to Fe(III) and, since the 

solubility of the latter at pH 7.0 is 10–17 to 10–18 mol L─1 (Neilands, 1981), it is 
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reasonable to state that it was removed from the solution due to precipitation. 

This was clearly observed in the sterile controls of both –Pi and +Pi conditions 

(Fig. 4.1). Under +Pi conditions a higher iron decrease was observed and, since 

the only difference between the two treatments was the phosphate concentration 

in the medium, we can conclude that higher phosphate concentration enhanced 

iron precipitation. In both controls during the entire incubation time a portion of 

iron remained in solution. This could be due to the presence of TRIS-HCl, used as 

a buffer system, which was described to have slight chelating properties (Taylor 

et al., 1993).  

Unexpectedly, cells growing under phosphate-limited conditions took 

up 2.5 times more iron than cells proliferating under phosphate-surplus 

conditions. Although iron is an essential nutrient for cells it can also be toxic due 

to its participation in the Haber-Weiss/Fenton reaction, which generates highly 

reactive hydroxyl radicals (Haber and Weiss, 1934; Cabiscol et al., 2000). 

Therefore, the concentration of free iron within the cell is tightly controlled. It 

was proposed that cells growing under phosphate limitation experience 

increased oxidative stress (Gerard et al., 1999; Moreau et al., 2001; Moreau, 2004; 

Yuan et al., 2005). We also have indications that this phenomenon occurred in 

strain FO-BEG1 since proteins involved in protection against reactive oxygen 

species (ROS) were up-regulated under –Pi conditions (Chapter 2). Consequently 

a higher iron uptake might represent a risk for the cells. However, under –Pi 

conditions two proteins homologous to bacterioferritin were up-regulated 

(Chapter 2). These proteins are involved in iron storage and protection against 

oxidative stress via iron detoxification (Carrondo, 2003), and likely allocate the 
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iron taken up by FO-BEG1 under –Pi conditions. This accumulation could 

represent a reservoir to support growth in future conditions of iron restriction. A 

similar luxury uptake was described in diatoms (Sunda, 2001) and it might be an 

important strategy especially in environments where iron availability is variable 

in time and space such as coastal waters, where Pseudovibrio related bacteria were 

often isolated (Shieh et al., 2004; Hosoya and Yokota, 2007). 

In general iron accumulates in bacterioferritin in granules containing 

phosphate in a Fe/Pi ratio varying between 1.4:1 to 1.7:1(Le Brun et al., 2010). 

Sometimes the amount of phosphate can even be higher, so that these proteins 

have also been considered as phosphate storage systems (reviewed in Harrison 

and Arosio, 1996). Therefore, cells facing phosphate shortage could theoretically 

disassemble the iron core in the bacterioferritin to recover phosphate. 

Consequently, due to the toxicity and insolubility of iron in the cytoplasm, cells 

should secrete it into the external environment. However, the 

“Refresh experiment” and the “EDTA experiment” clearly showed that the 

increase in iron observed during the growth of strain FO-BEG1 under –Pi 

conditions was due to solubilization of precipitated iron. The 

“Refresh experiment” together with the growth test we performed with 

increasing iron concentrations also showed that the color observed under –Pi 

conditions (Chapter 2) depends on the availability of this element. Consistently, 

the SEC separation of the cell-free supernatants unequivocally showed the 

presence of organic-Fe complexes, not present in the “Refresh experiment” where 

it could not be formed due to the absence of iron precipitate. Finally, the 
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CAS assay together with the mass spectrometry analysis proved the presence of 

one or more molecules with chelating properties in the –Pi cell-free supernatant.  

The SEC experiment indicates that the chelator-Fe complexes have an 

apparent molecular size ranging from 1 to 4.8 KDa. This is consistent with the 

dialysis experiment, where the iron concentration did not decrease, indicating 

that the Fe-complexes are greater than 1 kDa. During this experiment a slight 

increase in iron concentration in the –Pi cell-free supernatant was observed, 

confirming the presence of chelating molecules able to bind the residual iron in 

solution (as reported by the manufacturing company, dialysis membranes 

contain traces of heavy metals). Interestingly, the dialyzed –Pi cell-free 

supernatant did not react in the CAS assay. This indicates that either the Fe-free 

chelating molecules have a molecular size lower than 1 kDa, and, therefore, 

diffused out of the membrane, or that the chelators completely reacted with 

available iron, and the residual concentration was not sufficient to observe 

positive reaction in the CAS assay. 

Comparing our results with the molecular size of known siderophores 

(e.g. enterobactin 669 Da) it could be hypothesized that the Fe-free chelator has a 

molecular size lower than 1 kDa, but the configuration during the chelating 

process involves the coordination of more than one molecule leading to a greater 

complex. However, the apparent molecular size inferred from the SEC 

experiment exceeds by far the size of known siderophores. Possibly, the 

chelator-Fe complexes form molecular-clusters generating aggregates of bigger 

dimensions, a phenomenon also observed in siderophores such as yersiniabactin 

and marinobactin E (Drechsel et al., 1995; Butler and Theisen, 2010).  
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During the MS analysis, we detected m/z as being perfectly consistent 

with the size of known siderophores. However, these data were partially 

contrasting with the SEC and the dialysis experiments, since the MS analysis 

showed that the chelator-Ga complexes have a molecular mass lower than 1 kDa. 

On the one hand, this could result from partial degradation of the molecules 

during the extraction process, but on the other hand it supports the idea that the 

chelator-Fe complexes form greater molecular-clusters in solution. Intriguingly, 

we identified more than one m/z showing the Ga isotopic pattern. If we assume 

that this does not represent an artifact due to degradation, it is consistent with 

recent findings concerning the siderophores produced by members of the genus 

Marinobacter. These molecules have hydrophobic chains of different lengths 

resulting in compounds with the same chelating scaffold but with a different 

final size (Butler and Theisen, 2010).  This is exactly the information that the 

MS/MS scan showed, where irrespective of the initial parent ion we always 

obtained several shared sister ions containing Ga, which might represent the 

chelating scaffolds.  

 

The genome of Pseudovibrio sp. FO-BEG1 does not contain known 

genes for the synthesis of siderophores 

Siderophores can be distinguished on the basis of the enzymatic 

machinery involved in their bio-synthesis. One group derives from 

non-ribosomal peptide synthetase (NRPS) or hybrid NRPS-polyketide synthetase 

(PKS) modular multienzymes (e.g. enterobactin, yersiniabactin), and the other 

can be produced through NRPS-independent pathways (e.g. aerobactin, alcaligin; 
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Barry and Challis, 2009). After confirming the production of one or more 

chelating molecules under phosphate limitation, we verified the presence of 

genes known to be involved in the synthesis of siderophores. Surprisingly, no 

genes were identified in the genome of FO-BEG1. However, a large hybrid 

NRPS-PKS containing region caught our attention, and we performed 

bioinformatic analyses in order to elucidate whether its proteins could share 

homologies with other proteins involved in siderophore production. Confirming 

a previous analysis (Bondarev et al., 2013; Contributed works) we showed that it 

is highly similar to the gene cluster encoding the cyto-toxin colibactin (Fig. 4.5). 

This compound is produced by pathogenic and non pathogenic members of the 

family Enterobacteriaceae and was shown to induce breaks in the eukaryotic 

dsDNA, arresting the cells in G2 phase (Nougayrède et al., 2006; Putze et al., 

2009).  

Intriguingly, there are few reports that refer to colibactin as a new 

siderophore produced by enterobacteria (Seltmann, 1990; Rabsch et al., 1991; 

Kresse et al., 2007). So far, the structures of both toxin-colibactin and 

siderophore-colibactin have not yet been elucidated, and there is no evidence 

that the siderophore-colibactin corresponds to the molecule encoded by the 

hybrid NRPS-PKS gene cluster, which, instead, was shown to be the 

toxin-colibactin (Nougayrède et al., 2006). Apparently, the toxin-colibactin alone 

is not able to chelate iron in in-vitro experiments (Martin et al., 2013), and it was 

reported to be produced only when Escherichia coli is in contact with eukaryotic 

cells (Nougayrède et al., 2006).  
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Interestingly, in the FO-BEG1 NRPS-PKS gene cluster gene PSE_3336 

and the flanking genes PSE_3314 and PSE_3310 have a potential Pho-box in their 

upstream regions (Table S2.4; Chapter 2), suggesting that their transcription is 

directly regulated by the environmental phosphate concentration. In the 

proteomic analyses we performed previously (Chapter 2), we detected the 

proteins PSE_3328 and PSE_3336, but their relative expression could not be 

quantified. The same is true for other genes located in close proximity to the 

NRPS cluster (PSE_3326; PSE_3344; PSE_3316; PSE_3327).  

The NRPS and PKS systems are formed by synthetic proteins 

containing multiple domains, such as carrier domains (A, AT) and condensation 

domains (C, KS). Carrier domains have a high specificity for defined substrates, 

allowing a prediction of the composition of the molecule backbone if the precise 

domain order is known (Schwarzer et al., 2003). All synthetic domains, which 

define the backbone of the molecule, and all known genes involved in the 

maturation of colibactin were identified in Pseudovibrio sp. FO-BEG1 (Fig. 4.5). In 

the phylogenetic analysis all NRPS-PKS synthetic proteins and domains 

clustered together with proteins belonging to enterobacteria, even though they 

formed independent branches in the trees and never occurred within the family 

Enterobacteriaceae (Fig. 4.5, Fig. S4.5-S4.6). In addition, the composition of the 

molecular backbone, predicted with antiSMASH, was similar for both the 

colibactin and the FO-BEG1 NRPS-PKS gene cluster (data not shown). Altogether 

these data suggest that the FO-BEG1 NRPS-PKS cluster is involved in the 

synthesis of a molecule highly similar to the toxin-colibactin and undermine the 
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hypothesis of a possible involvement in the synthesis of a siderophore-like 

molecule.  

The whole colibactin genomic region is described to be laterally 

transferred among species belonging to the family Enterobacteriaceae (Putze et al., 

2009), and it is likely that this process also occurred in Pseudovibrio sp. FO-BEG1. 

To verify the lateral acquisition we further analyzed this genomic region, using 

different approaches. The GC content, GC skew, tetranucleotide usage and the 

screening for the presence of known genomic islands did not indicate that this 

region was laterally acquired by FO-BEG1 (Fig. S4.7). So far the colibactin 

NRPS-PKS gene cluster was described only in enterobacteria (Putze et al., 2009) 

and in the draft genome of strain JE062, closely related to FO-BEG1, homologous 

genes were not identified (Bondarev et al., 2013; Contributed works). 

Phylogenetic studies performed on a vast number of PKS domains showed that 

these genes are mainly acquired by proteobacteria via HGT, explaining their 

random distribution among strains belonging to the same species (Jenke-Kodama 

et al., 2005). Therefore, it is reasonable to assume that this region was horizontally 

acquired by Pseudovibrio sp. FO-BEG1 and subsequently it underwent 

amelioration processes, characteristically occurring for horizontally acquired 

genes (Lawrence and Ochman, 1997).  

The high similarity between the enterobacteria and the FO-BEG1 

NRPS-PKS cluster suggests a similar end-product. However, in Rhodococcus and 

Serratia it was shown that siderophore production resulted from the coordination 

of more than one gene cluster (Bosello et al., 2011; Seyedsayamdost et al., 2012). In 

addition, non-ribosomal peptides undergo several processes of post synthesis 



Chapter | 4 

157 | P a g e  
 

modification and maturation, which cannot be predicted at the genomic level. 

Variation in the modular synthesis and iterative processes can also occur, and 

these increase the number of products derived from one cluster (Moss et al., 2004). 

Therefore, it could be hypothesized that all these mechanisms, involved in the 

formation of a functional compound, could be responsible for the formation in 

FO-BEG1 of a final product which is substantially different from the colibactin of 

enterobacteria. Indeed, in the FO-BEG1 genome another PKS cluster 

(PSEp_0217-0220; not identified in the Enterobacteriacea) and a protein containing 

a polyketide cyclase domain (PSE_3283) are present. Additionally, different 

beta-lactamases and peptidases, potentially involved in maturation of the NRP, 

were identified in proximity to the NRPS-PKS region.  

It is important to mention that the cell-free supernatant of the –Pi 

cultures gave negative results when tested for the presence of colibactin, using 

eukaryotic cells as a bio-indicator (Bondarev et al., 2012). This would suggest that 

either the whole NRPS-PKS island is not expressed under phosphate limitation, 

and, therefore, is not involved in the synthesis of the chelating molecule, or that 

it can produce a molecule structurally different from colibactin. Recently, it was 

shown that a mutation in the clbA gene (homologous of PSE_3317) inhibited 

colibactin synthesis in the probiotic E. coli str. Nissle 1917. However, this also 

reduced the probiotic effect of the strain. Both were restored when the clbA 

mutant was complemented (Olier et al., 2012). These data showed that the 

colibactin NRPS-PKS island is required for toxicity, but also for probiotic activity. 

For this reason the authors suggested that colibactin may consist of more than 
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one molecule, supporting our hypothesis of structural variability in 

colibactin-related compounds.  

Genes for siderophore production are regulated by the ferric-uptake 

regulator family protein (Fur), which binds to a specific sequence in the 

upstream region of the genes, regulating their transcription (Hantke, 2001). 

Therefore, genes having a Fur-box are likely to be controlled by extracellular iron 

concentrations. If the NRPS-PKS cluster produces a chelator that is used by 

Pseudovibrio sp. FO-BEG1 as siderophore it is likely to be part of this regulon, 

therefore, Fur-boxes should be present in the upstream regions of its genes. With 

the approach applied we did not identify any Fur-boxes in the upstream regions 

of the NRPS-PKS genes, indicating that they are not members of the FO-BEG1 

Fur-regulon. Even though these results have to be cautiously interpreted, due to 

the variability of the Fur-proteins in the Alphaproteobacteria (Cornelis et al., 2011), 

they suggest that either the cluster is not involved in the synthesis of a chelating 

molecule, or that the produced chelating molecule has not the primary function 

of scavenging iron in response to iron limitation. 

 

Chelating molecules are produced by bacteria of the Roseobacter 

clade not only as a response to phosphate limitation 

In order to clarify whether the production of chelating molecules in 

response to phosphate limitation can also be observed in other heterotrophic 

marine bacteria, and could be, therefore, of broader environmental relevance, we 

investigated this phenomenon in strains of the Roseobacter clade. These and 

bacteria belonging to the Pseudovibrio genus are phylogenetically related 
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(Figure 1.1; Chapter 1) and have several physiological traits in common. 

Members of this clade make up 15 to 20% of the coastal and oceanic 

bacterioplankton, having, therefore, a significant influence on marine element 

cycles (Buchan et al., 2005; Moran et al., 2007). The different responses observed in 

the Roseobacter strains tested in this study (Fig. 4.4) suggest that although the 

production of chelating molecules can occur under phosphate-limited condition, 

this phenomenon is species-specific and can be triggered by different 

mechanisms as apart from the response to phosphate limitation.  

As reported previously (Thole et al., 2012), a gene cluster involved in 

siderophore production was identified in the plasmid of P. gallaeciensis, which 

could potentially be responsible for the production of the putative chelating 

molecule detected in this study. Besides this, there is no further available 

evidence concerning the ability of the other tested Roseobacter strains to produce 

siderophores. Additionally, the hybrid NRPS-PKS gene cluster detected in 

FO-BEG1 could not be identified in the Roseobacter genomes. This weakens the 

hypothesis that this cluster is responsible for the synthesis of the chelating 

molecule. However, it cannot be excluded that different type of chelators are 

produced. 

 

Tropodithietic acid (TDA) is not responsible for the solubilization of 

precipitated iron 

Even more puzzling was the correlation between the increase in 

soluble iron and the production of TDA, which was detected in all crude extracts 

of the yellow cultures characterized by iron increase. TDA can have mild 
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chelating properties especially in its tautomeric form thiotropocin (Kintaka et al., 

1984; Greer et al., 2008). However, when we tested the chelating properties of 

pure TDA with the CAS assay it reacted only when incubated for at least 2 h and 

only in concentrations higher than normally produced (data not shown). In 

addition, the fraction containing TDA, obtained from the preparative HPLC, was 

CAS negative and a mild reaction occurred only after 2 h of incubation. 

A positive reaction of TDA in the CAS assay was also observed by D´Alvise 

(2013). However, this was detected only after 16-24 h of incubation and only with 

a surplus of TDA (≈ 0.2 g L−1). Both observations are not consistent with the rapid 

reaction of fraction 1 in the CAS assay. TDA has a molecular mass of 211.96 Da. 

Assuming that one molecule of TDA can form a bidentate ligand with Fe(III) 

using the oxygen in the carboxylic and carbonyl group, three molecules would be 

required to form a stable exadentate complex. This generates a Fe-complex of 

691.73 Da, which is not consistent with our dialysis and SEC experiments.  

Eventually, the MS analysis of the active fraction revealed the 

presence of molecules able to chelate Ga(III) in the mass range 600 to 900 m/z. 

These are in the same range of the hypothesized TDA-Fe complex. However, the 

MS/MS analysis did not show a fragmentation pattern ascribable to a TDA 

derivate. D´Alvise proposed that a “pre-TDA” molecule could be responsible for 

the interaction with iron, which would then catalyze the formation of a 

functional TDA. However, in our experiments the only fraction which 

immediately reacted in the CAS assay (fraction 1) did not show the TDA mass in 

the MS analysis, even after Fe(III) or Ga(III) addition. Instead, this mass was 

identified as sodium adduct ([M+Na] +; 234.9 m/z) in the fraction that, according 
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to the chromatographic properties, was thought to contain TDA. Therefore, at 

this stage our data do not support the hypothesis that TDA is responsible for the 

iron chelation in FO-BEG1 phosphate-limited cultures, strengthening the idea 

that novel and undescribed molecules with chelating properties were produced.  

Many hypotheses could be proposed to explain this phenomenon. 

For example, chelating molecules could help to dissolve iron oxyhydroxide 

minerals, allowing the desorption of phosphate anchored to their surface. In this 

way, an extra source of bio-available phosphate could be generated and used to 

support growth under phosphate-limited conditions. Although at this stage all 

hypotheses remain highly speculative, our results could open new perspectives 

on the understanding of the regulation of iron and phosphorus metabolisms and 

on the biogeochemical cycle of these two nutrients. 
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Supplementary materials and methods 

 

Characterization, extraction, and isolation of the chelating 

compounds, and detection of TDA 

Cells from 10 L culture were harvested in stationary phase, after about 

120 h of incubation. Cells were removed by means of centrifugation at 11,000 x g 

and 5 oC for 20 min, the supernatant was filtered with a 0.22 µm filter (Sartorius 

AG, Göttingen, Germany), and the activity was tested using the CAS assay. The 

cell-free supernatant was then acidified to pH 2.6 using 5 mol L─1 HCl. This 

facilitates the release of the iron from the chelator-Fe complex, due to the 

protonation of the hydroxyl and carboxyl groups, which are generally interacting 

with iron. Subsequently, the acidified supernatant was mixed in the dark with an 

equal volume of ethyl acetate for 1 h.  The solvent phase was collected and the 

solvent was evaporated in the rotary evaporation system Laborota 4,000 

(Heidolph, Schwabach, Germany) at 45 oC. Evaporation was completed in a 

speed-vacuum centrifuge (Eppendorf Concentrator 5301, Eppendorf, Hamburg, 

Germany) at 45 oC. Before performing the isolation via high performance liquid 

chromatography (HPLC), the activity of the crude extract was tested using the 

CAS assay.  

In order to verify the complexity of the crude extract we performed a 

first analytical reverse phase (RP)-HPLC run using a C18 column 

(Nucleodur 100-5 C18ec, 250 mm x 3mm). The eluents were A: 100% MQ and B: 

70% MQ and 30% acetonitrile (ACN) both containing 0.1% trifluoroacetic aicd 

(TFA). The program for the separation was: 0-20 min from 20% B to 100% B, 



Solubilization of precipitated iron by Pseudovibrio sp. FO-BEG1 

170 | P a g e  
 

20-30 min 100% B, and 30-35 min from 100% B to 20% B, using a flow rate of 2.5 

mL min–1. The same conditions were then applied for the isolation of the 

metabolites using a preparative column C18 (Kromasil 100-7 C18, 250mm x 

20 mm), a flow rate of 18 mL min–1, and recording the absorption at 300 nm. 

Fractions were manually collected every time an increase in absorption was 

observed. Eluent was evaporated and the fractions were re-dissolved in 

70% acetonitrile to test their activity using the CAS assay. For the active fraction 

we performed two more analytical runs, in order to verify its composition. We 

used two C18 analytical columns (Nucleodur 100-5 C18ec, 250 mm x 3mm; 

Phenomenex aqua C18, 250 x 2.0 mm) using the running condition described 

above. 

In order to verify the production of tropodithietic acid (TDA) by the 

strains of the Roseobacter  clade, metabolites were extracted as described above 

from 300 mL of cell-free supernatant of the cultures that developed a yellow 

coloration and showed the higher iron increase under phosphate limitation. TDA 

was detected via RP-HPLC using a Nucleodur Isis C18 column (100-5 C18ec, 250 

mm x 3mm). The eluents were: 100% acetonitrile (A) and 100% MQ (B), both 

containing 0.1% acetic acid. The program was: 0-5 min 1% B, 5-10 min from 1% B 

to 42% B, 10-35 min from 42% B to 57% B, 35-40 min from 57% B to 1% B, using a 

flow rate of 1 mL min–1. Identification of TDA was based on the known retention 

time and absorption spectra obtained analyzing a TDA standard with purity ≥ 98% 

(BioViotica GmbH, Gottingen, Germany) under the same condition as applied for 

the crude extracts. 
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In-silico analysis for the detection of genes potentially involved in 

siderophore production 

The genomic region containing the non-ribosomal peptide polyketide 

synthase system (NRPS-PKS) identified by the antiSMASH analysis, and 

potentially involved in the production of a chelating compound in Pseudovibrio 

sp. FO-BEG1, was used to perform a multigene BLAST using the MultiGeneBlast 

platform (Medema et al., 2013). At first the region of interest (PSE_3310-50) was 

blasted against all available entries in GenBank (October 2013). Subsequently, to 

avoid redundancy in the dataset, a specific database containing the genomes in 

which genes belonging to the query cluster were identified was created. In this 

second database, genomes representing the main phylogenetic groups present in 

the result of the first analysis were included.   

The affiliation of the proteins, identified by antiSMASH to be 

potentially involved in synthesis and transport of the non-ribosomal peptide, 

was investigated performing a phylogenetic analysis considering in the first 

instance their full length sequences. They were singularly used to perform a WU-

BLAST search against the Uniprot Knowledge database. To further identify 

proteins distantly related to the query, PSI-BLAST was used (Altschul et al., 1997), 

reiterating the search until no further sequences affiliated to new taxa could be 

obtained. Sequences were retrieved and aligned using the program MUSCLE 

(Edgar, 2004). All alignments were then imported in the software MEGA 5.2 

(Tamura et al., 2011) and were manually checked. Phylogenetic trees were 

calculated using the Maximum likelihood method based on the JTT matrix-based 

model (Jones et al., 1992). Bootstrapping was performed allowing 100 reiterations 
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and the tree with the highest log likelihood was chosen. Positions with less than 

100% amino acid coverage were not considered.  

Phylogenetic analysis of the A, C, AT, and KS domains were 

performed after arbitrarily selecting homologous domains involved in the 

synthesis of siderophores and antibiotic in other bacteria. Sequences were 

retrieved from the databases CluterMine360 (Conway and Boddy, 2013) and 

SBSPKS (Anand et al., 2010), or after direct submission of bacterial full genomes 

to antiSMASH 2.0 (Blin et al., 2013). Sequences were aligned using the program 

PROMALS3D (Pei et al., 2008) and phylogenetic trees were calculated using the 

Maximum likelihood method based on the JTT matrix-based model with 500 

bootstrap re-iterations. Sequences of the FadD and FadH domains of the fatty 

acid synthetase (FAS) were used to root the trees. All sequences used for the 

phylogenetic analyses are available upon request from the authors 
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Figure S4.5 (displayed on the next page) | Phylogentic trees obtained using Maximum 
Likelihood method for the A domain of the NRPS system and AT domain of the PKS 
system. The trees with the highest log likelihood are shown. The trees are drawn to scale, with 
branch lengths measured in the number of substitutions per site. Bootstrap values are shown at 
the root of each branch. Only values equal or higher than 50% are shown. For each sequence the 
relative species and the name of the respective protein are indicated. For the domains involved in 
siderophore production the name of the compound is reported in red. The names of the proteins 
of Pseudovibrio sp. FO-BEG1 in bold and the names of the colibactin proteins are shown in bold 
and bold green, respectively. 
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Figure S4.6 (displayed on the next page) | Phylogentic trees obtained using Maximum 
Likelihood method for the C domain of the NRPS system and KS domain of the PKS 
system. The trees with the highest log likelihood are shown. The trees are drawn to scale, with 
branch lengths measured in the number of substitutions per site. Bootstrap values are shown at 
the root of each branch. Only values equal or higher than 50% are shown. For each sequence the 
relative species and the name of the respective protein are indicated. For the domains involved in 
siderophore production the name of the compound is reported in red. The names of the proteins 
of Pseudovibrio sp. FO-BEG1 and the names of the colibactin proteins are shown in bold and bold 
green, respectively.  
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5 
 
 
 

General  
Discussion 

 
 

"nothing in biology makes sense if not in the light of evolution"  

(Dobzhansky, 1973)  

 

 

Phosphate (Pi) has essential metabolic, structural and regulatory roles 

in living organisms. It represents the preferential phosphorus (P) source of 

bacteria, but its concentration is often in the nanomolar range in surface 

seawaters. Many studies have investigated the effects of different nutrient 

regimes on bacterial communities in marine systems and it was often shown that 

phosphate limitation occurs in several areas of the ocean and it affects 
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productivity, structure of phytoplankton communities, as well as density and 

composition of heterotrophic bacterioplankton (Rivkin and Anderson, 1997; Wu 

et al., 2000; Sala et al., 2002; Pinhassi et al., 2006). Despite this growing evidence, 

which suggests that phosphate depletion is common in marine environments 

(reviewed in Dyhrman et al., 2007) the physiological response of heterotrophic 

marine bacteria to this condition has been poorly investigated. The general 

assumption is that they exhibit similar adaptations to Escherichia coli.  

In the present thesis, the response to phosphate limitation of the 

heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1 was investigated 

considering multiple aspects of its physiology. In Chapter 2 it was reported that 

this condition affects not only the phosphorus metabolism but also other 

important physiological traits such as cell morphology, carbon metabolism, and 

cellular lipid composition. In addition, a drastic effect of phosphate limitation on 

the secreted metabolites was reported in Chapter 3. This represents the first 

systematic study conducted on the exo-metabolome of a marine bacterium. 

Surprisingly, the iron (Fe) metabolism of Pseudovibrio sp. FO-BEG1 was also 

greatly affected by phosphate limitation, and in Chapter 4 a description of the 

possible mechanisms responsible for the observed iron solubilization was 

reported. In the following, I will discuss the obtained data in a broader picture, 

framing the results in a more ecological context. Additionally, I will depict 

hypothetical scenarios that could explain the observed production of chelating 

molecules under phosphate limitation. 
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5.1 Ecological adaptation of marine bacteria to phosphate limitation  

5.1.1 Effect of phosphate limitation on bacterial survival 

  strategies 

 

In Chapter 2 it was shown that under phosphate limitation 

Pseudovibrio cells almost double their length during growth, reaching an average 

cell-length of around 6.5 µm by the end of the investigated period. Bacteria 

strictly control cell dimensions, and they have evolved complex genetic and 

biochemical programs to control cell shape (Young, 2006). Although morphology 

is mainly constant in all microorganisms, changes in environmental conditions 

can greatly affect cell shape, and there is growing evidence that filamentous 

phenotypes provide survival advantages (Young, 2006; Justice et al., 2008). This 

phenomenon has been well studied in several pathogenic bacteria, and the 

strategy of cell elongation, which can vary from 2 to almost 50 times the normal 

length, was often associated with increased resistance to phagocytosis and to 

antimicrobial agents (reviewed in Justice et al., 2008). 

In natural environments the grazing activity of phagotrophic protists, 

which contributes significantly to the microbial mortality in the water column, is 

greatly affected by bacterial cell length and morphology. Heterotrophic 

nanoflagelates and bacteriovorous ciliates preferentially consume microbial cells 

that range in length from 1 to 3 µm, whereas smaller or larger cells are less 

affected (reviewed in Pernthaler, 2005) and filamentous bacteria longer than 

7 µm are generally inedible for marine protists (Jürgens and Matz, 2002). At the 

end of the growth period under phosphate-limited conditions Pseudovibrio cells 
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with a length equal or higher than 7 µm made up 37% of the total cells. Such 

considerable lengths were never measured under phosphate-surplus conditions, 

under which the average cell length was 2.5 ± 0,45µm. Cell elongation has 

previously been observed in different bacteria growing under nutrient limitation 

(Pine and Boone, 1967; Gonin et al., 2000; Steinberger et al., 2002; Løvdal et al., 

2008; Rifat et al., 2009; Goclaw-Binder et al., 2012). It might represent a good 

adaptation to confer a selective advantage under conditions of reduced growth, 

and, therefore, potentially lower fitness, by reducing predator pressure. In 

addition, cell elongation increases the cellular uptake surface without changing 

the surface-to-volume ratio (Young, 2006). In both phosphate regimes the cellular 

surface-to-volume ratio of Pseudovibrio sp. FO-BEG1 was 0.17 ± 0,01 µm−1 

throughout the entire growth period. Therefore, cellular elongation under 

phosphate limitation can increase the surface available for phosphate uptake. 

This process has been shown for Caulobacter crescentus, in which this 

morphological reaction to phosphate starvation was deeply investigated 

(Wagner et al., 2006).  

It was often reported that especially in conditions of inorganic nutrient 

limitation microorganisms accumulate storage compounds such as glycogen or 

polyhydroxyalkanoates (PHA) if a source of organic carbon is available (Lillie 

and Pringle, 1980; Malmcrona-Friberg et al., 1986; Løvdal et al., 2008). The 

physiological and proteomic data presented in Chapter 2 showed that 

Pseudovibrio sp. FO-BEG1 accumulates PHA under phosphate limitation. 

According to Thingstad et al. (2005), this strategy can be seen as a way to use the 

non-limiting substrate (glucose in our experiments) to increase cell size without 
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increasing the cellular quota of the limiting factor (phosphate in our experiments). 

In environments where such nutrient combination occurs this adaptation would 

lead to a decreased predation pressure, to an accumulation of compounds 

advantageous to overcame future conditions of carbon limitation, and to a higher 

uptake capabilities for the limiting factor due to the increased surface. Under 

conditions of phosphate limitation cell elongation would require synthesis of 

new membrane phospholipids, which will increase the cellular phosphorus 

demand. However, we showed that under these conditions Pseudovibrio sp. 

FO-BEG1 changed its lipid composition in favor of phosphorus-free lipids. 

Therefore, accumulation of carbon storage compounds and cell elongation can be 

seen as strategies that can greatly increase the survival of Pseudovibrio when 

thriving as free-living organism in environments depleted in phosphate and 

characterized by fluctuating nutrient regimes.  

 

5.1.2 Evolutionary adaptation of marine bacteria to 

         different phosphate regimes 

  

In Chapter 2, we showed that Pseudovibrio exhibited a complex 

reorganization of the phosphorus metabolism under phosphate limitation. 

Up-regulation of proteins involved in scavenging phosphate from the 

environment, degradation of stored poly-Pi, and phospholipid exchange suggest 

that FO-BEG1 has the potential to adapt to variable environmental phosphate 

concentrations, exploiting alternative nutrient sources and initiating a starvation 

response.  
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In the open ocean, a characteristic of bacteria adapted to thrive under 

phosphate-limiting conditions is the presence of high relative number of genes 

involved in phosphorus metabolism (Giovannoni et al., 2005; Martiny et al., 

2009a). Comparison of the available genomes of different Prochlorococcus isolates 

revealed that the amount of genes present in the phoB gene cluster, which 

encodes several proteins involved in phosphate limitation response and 

phosphorus metabolism, was not consistent with the rRNA-based phylogenetic 

relationship of the isolates (Martiny et al., 2006). A negative correlation was 

observed between the abundance and variety of genes and the phosphate 

concentration in the environments from which the strains were isolated. 

Therefore, it was proposed that phosphate regimes were one of the driving forces 

in the genomic divergence among the isolates (Martiny et al. 2006, Martiny et al., 

2009b). In addition, the heterogeneity in gene content within and between 

populations of Prochlorococcus and Pelagibacter from the Atlantic Ocean 

(phosphate-limited) and the Pacific Ocean (not phosphate-limited) was reflected 

mainly in the amount of genes related to phosphorus metabolism (Coleman and 

Chisholm, 2010). These data suggest that the environmental phosphate 

concentrations can represent a key selective pressure in the distribution and 

evolution of marine bacteria. In support of these observations, there are recent 

studies on bacterial metagenomes and metaproteomes that showed a significant 

enrichment in genes involved in phosphorus metabolism in environments that 

are characterized by low phosphate concentrations, such as the Sargasso Sea or 

the Mediterranean Sea (Sowell et al., 2010; Temperton et al., 2011; Kelly et al., 2013; 

Thompson et al., 2013).  
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In order to verify whether the genome of Pseudovibrio sp. FO-BEG1 

presents a similar enrichment in genes involved in phosphorus metabolism as 

the bacteria highly adapted to thrive in marine environments depleted in 

phosphate, I compared it with 58 available bacterial genomes considering the 

total and the relative amount of genes involved in phosphorus metabolism 

(Fig. 5.1). I retrieved the data from the “phosphorus metabolism” subsystem 

reported in the SEED database (Overbeek et al., 2005), and I calculated the 

relative amount of genes belonging to this subsystem, dividing their absolute 

number by the total number of coding sequences in the respective bacterial 

genome. The genome of Pseudovibrio sp. FO-BEG1 is not significantly enriched in 

genes belonging to this category (1.02%), and shows a relative value just below 

the average percentage (1.06%, dashed blue line in Fig. 5.1). However, if the 

absolute number of genes involved in phosphorus metabolism is considered, 

Pseudovibrio sp. FO-BEG1 is the third strain among the 58 considered.  

The included genomes of Prochlorococcus sp. and Pelagibacter sp. have 

1.4 and 1.6% of genes devoted to phosphorus metabolism, respectively. However, 

these values are mainly due to the very small number of coding sequences 

present in their genomes. These bacteria are highly abundant in the open ocean, 

where nutrients are often limited. Therefore, among other adaptations, they 

show a drastic genome reduction that allows them to minimize replication costs, 

nitrogen, and phosphorus demand (Dufresne et al., 2005; Giovannoni et al., 2005). 

In contrast, the genome of Pseudovibrio sp. FO-BEG1 is one of the largest among 

the considered, and it shows several phosphorus related genes, e.g. genes for 

three different alkaline phosphatases, not annotated in the considered genome of 
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Pelagibacter sp. strain HTCC1062. In recent metagenome comparisons some of 

these genes (e.g. for phosphonate usage) were found in bacteria of the SAR11 

clade thriving in waters with severe phosphorus depletion (Thompson et al., 

2013). This finding suggests that Pseudovibrio possesses good genetic potentials to 

retrieve phosphorus from the environment, similarly to bacteria ubiquitous and 

abundant in phosphorus-limited waters. 

These data together with the response described in Chapter 2 

underline that FO-BEG1 may have evolved a multifaceted ensemble of strategies 

to cope with variations in phosphorus concentration. This metabolic versatility 

confirms the overall physiological plasticity previously described in this 

bacterium (Bondarev et al., 2013; Contributed works) and it is consistent with the 

description of "opportuni-trophs". This expression is used for bacteria able to 

exploit temporally and spatially variable resources owing to their flexible 

genome features (Polz et al., 2006). Well known examples of this ecological group 

of bacteria can be found among members of the Roseobacter clade and the genus 

Marinobacter, which are ubiquitous in oceanic environments and play important 

roles in almost all biogeochemical cycles (Moran et al., 2004; Moran et al., 2007; 

Kaye et al., 2011; Singer et al., 2011). The metabolic versatility of Pseudovibrio 

FO-BEG1 is also underlined by the impressive number (363 encoded in the 

chromosome and 38 encoded in the plasmid) of transcription regulators 

annotated in its genome (data obtained from the P2tf database; Ortet et al., 2012), 

which makes FO-BEG1 the leading marine strain regarding the number of 

transcription regulators among all Alphaproteobacteria. 
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The ability to thrive in environments characterized by low phosphate 

concentrations also requires physiological adaptations not directly related to 

phosphorus metabolism. In regions where phosphate is scarce it was shown that 

phytoplankton can reduce its cellular phosphorus requirement by substituting 

phospholipids with non-P containing lipids (Van Mooy et al., 2009). In this 

process, the sulphoquinovosyl diacylglycerols (SQDG) and other glycolipids 

have been described to be of crucial importance. In marine environments 

exchange in lipid composition has been considered a strategy adopted by 

phytoplankton to compete with phospholipid rich heterotrophic bacteria in 

phosphorus-limited environments (Van Mooy et al., 2006; Van Mooy et al., 2009). 

In addition, several studies suggested that SQDG lipids detected in the North 

Atlantic, South Pacific, Sargasso Sea and Mediterranean Sea mainly originate 

from photoautotrophic organisms (Van Mooy et al., 2006; Van Mooy and 

Fredricks, 2010; Popendorf et al., 2011a; Popendorf et al., 2011b). Even though 

recent data pointed out that heterotrophic marine bacteria have the genetic 

potential for SQDG synthesis, the conditions in which these lipids are 

synthesized have so far never been investigated (Villanueva et al., 2013). In this 

respect, the data reported in Chapter 2 represent a clear novelty, since we could 

show that Pseudovibrio sp. FO-BEG1 responded to phosphate limitation by 

exchanging its phospholipids with glycolipids, amino lipids, and SQDG. In 

addition, the proteomic experiments and the identification of a Pho-box in the 

upstream region of genes involved in SQDG synthesis strongly suggest that this 

class of lipids is synthesized by FO-BEG1 as a direct response to phosphate 

limitation.  
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The ability to modify the cellular lipid composition under phosphate 

limitation seems to be a prerogative of specific groups of Proteobacteria. For 

example, unlike Pseudovibrio members of the SAR11 clade were shown to be 

unable to synthesize SQDG and to exchange their membrane lipids composition 

in response to phosphate limitation (Van Mooy et al., 2009; Villanueva et al., 2013). 

Altogether, these data underline the different adaptation strategies observed in 

those bacteria highly specialized to thrive in the oligotrophic open ocean, such as 

the SAR11 related strains, and other metabolically versatile bacteria like 

Pseudovibrio, which are able to explore numerous resources and adopt different 

strategies to cope with variable nutrient regimes. 

 

5.2 From dissolved organic matter (DOM) to system biology 

5.2.1 Is there a possible effect of environmental phosphate 

 concentrations on DOM composition in the ocean? 

 

In Chapter 3, the drastic effect of phosphate limitation on the amount 

and composition of dissolved organic carbon (DOC) secreted by Pseudovibrio sp. 

FO-BEG1 was demonstrated. This underlines the importance of nutrient regimes 

in bacterial DOM production. There are many studies showing how the amount 

and composition of DOM can affect bacterial communities structure. Moreover, 

the ability of bacteria to release variable amounts of DOM characterized by 

different grades of bio-reactivity has also been investigated (Carlson, 2002; Jiao et 

al., 2010; Gómez-Consarnau et al., 2012). However, as pointed out by Kujawinski 

(2011), the chemical composition of DOM produced by heterotrophic marine 
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bacteria is mostly unknown. In this respect the data reported in Chapter 3 

represent the first detailed analysis concerning the metabolites secreted by a 

heterotrophic marine bacterium, considering in addition the effect of one 

environmentally important limiting nutrient.  

As reported in Chapter 3, a surprising discovery was made by Brauer 

et al. (2006) who showed similar nutrient-specific starvation responses in the 

metabolome of two distantly related microorganisms. Consequently, it is 

reasonable to ask whether the drastic effect of phosphate limitation on the 

exo-metabolome of Pseudovibrio sp. FO-BEG1 could also be observed in other 

bacteria. If this were the case, it could be hypothesized that environments with 

similar nutrient regimes (e.g. phosphate limitation) can induce comparable 

metabolic responses in different members of the bacterial communities, affecting 

the secreted metabolites and, therefore, the composition of marine DOM. For 

example, Pseudovibrio released a higher number of phenolic and polyphenolic 

compounds into the medium during growth under phosphate limitation. If such 

response can also be observed in other heterotrophic marine bacteria, it would be 

interesting to compare the DOM composition in the surface water of oceanic 

regions characterized by low and high phosphate concentrations, and to clarify 

whether these classes of compounds are indeed more abundant in systems 

depleted in phosphate. This approach, which could be considered as a 

"geographical-metabolomic" analysis, could reveal the presence of geographic 

regions with shared DOM features, which resulted from specific metabolic 

adaptations of bacteria induced by similar environmental nutrient regimes. 
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One interesting aspect of the data obtained in Chapter 3 was the 

identification of a high number of molecules with an AImod higher or equal to 

0.66, which were included in the category of phenols and polyphenols. These 

compounds were more abundant under phosphate-limited conditions and 

increased during bacterial growth from 7.4% to 16.8% of the total assigned 

molecular formulae. Molecules with high AImod are described to be part of the 

refractory fraction of DOM, and are mainly regarded as thermally altered 

biomass composed of condensed polyaromatic moieties (Masiello, 2004; Koch 

and Dittmar, 2006; Dittmar, 2008). For the sake of clarity, to date the DOM and 

DOC are mainly classified according to their lifetime, which vary from hours to 

millennia in the labile and refractory (or recalcitrant) fractions, respectively (for 

more details refer to Jiao et al., 2010 and Hansell, 2013). Remarkably, several 

studies showed that bacteria in marine and freshwater systems can release 

refractory DOM, which can resist microbial degradation for years (Brophy and 

Carlson, 1989; Tranvik, 1993; Ogawa et al., 2001; Gruber et al., 2006). Interestingly, 

there is growing evidence suggesting that bacteria, and their food web 

interactions, can play an important role in the production of recalcitrant DOC in 

the ocean (Jiao et al. 2011b; Hansell 2013). Recent estimations suggest that they 

could generate around 25% of the global DOC inventory and around 50% of the 

refractory DOC, building up the huge carbon reservoir in the ocean (reviewed in 

Hansell 2013). On the basis of these data, the theoretical framework of the 

“microbial carbon pump” (MCP) was recently proposed. In the MCP the 

heterotrophic activity of bacteria has an important role in converting labile and 

semi-labile DOM into refractory DOM, building up the big oceanic carbon pool 
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and influencing in this way the global carbon cycle (Jiao et al., 2011b; Hansell, 

2013). 

If we assume that molecules characterized by high aromaticity (high 

AImod) are indeed less bio-reactive, then the data reported in Chapter 3 indicate 

that their production could be enhanced under nutrient (in our case phosphate) 

limitation. These data stimulate the debate on the nature of the refractory DOM 

produced by marine bacteria and underline, as previously suggested (Jiao et al., 

2011b), the importance of classifying the different fractions of DOM according to 

chemical criteria and not only on the base of their lifetime. This would allow 

reliable comparisons between environmental DOM and bacterial 

exo-metabolome, and at the same time, it could permit a better estimation of the 

contribution of heterotrophic bacteria to the refractory DOM in the ocean. 

Recently, the DOC compositions of the Sargasso Sea and the Ross Sea 

were compared (Hansell, 2013). A higher concentration of semi-refractory DOC 

could be found in the former one, whereas the Ross Sea was enriched in the 

semi-labile fraction. The main reasons for these differences can be found in the 

presence of a permanent pycnocline in the Sargasso Sea that prevents a constant 

mixing of the water masses, and in the differences in productivity (Hansell, 2013). 

Intriguingly, the Sargasso Sea is an oligotrophic environment, where phosphate 

limitation was often shown (e.g. Rivkin and Anderson 1997; Wu et al. 2000). 

Therefore, considering the data reported in Chapter 3 and the assumption 

reported above, it is tempting to speculate that also the distinct phosphate 

regimes of the two areas could influence the metabolites released into the 

environment by the local bacterial community. Altogether these data point to the 
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existence of an additional variable to consider when explaining the differences in 

DOC composition between different regions, and suggest that phosphate 

limitation (or other nutrient limitations, as also proposed by Jiao et al., 2011a) can 

have a direct effect on the MCP and, therefore, on the global carbon cycle. 

 

5.2.2 Integration of metabolomic and proteomic data can  

provide a closer look into cell physiology  

 

The ultra-high resolution of the FT-ICR-MS allows to identify several 

hundreds of metabolite masses with ppm or sub-ppm error. This information, or 

information derived from more focused MS/MS analyses, can be integrated with 

other “omics” data by sophisticated bio-informatic pipelines. This could help to 

obtain a more detailed picture of bacterial metabolism and understand specific 

metabolic pathways and regulatory circuits. Nowadays, the exponential increase 

of "omics" data opens the possibility to apply holistic approaches for the study of 

bacterial physiology via combining new with existing knowledge (Borodina and 

Nielsen, 2005; De Keersmaecker et al., 2006; Joyce and Palsson, 2006). For 

example, transcriptomic, proteomic, and metabolomic data can be mapped onto 

the metabolic network of the studied strain inferred from its genome (McCloskey 

et al., 2013). Those metabolic networks can be reconstructed from genome 

interpretation using tools like the ones provided by the KEGG and the MetaCyc 

databases (Kanehisa and Goto, 2000; Thiele and Palsson, 2010; Caspi et al., 2012). 

The results of the mapping are, for example, protein and metabolite networks, 
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where the nodes represent the single molecule or protein and the edges represent 

metabolic reactions that occur between the nodes (A and B in Fig. 5.2).  

Contrastively from the conservative approach applied in Chapter 3, 

where all molecules identified in the KEGG database were further filtered 

according to the MI-Pack strategy (Weber and Viant, 2010), in a network 

approach metabolites or proteins not directly detected in the experiments but 

belonging to, or potentially belonging to, the same detected pathway can be 

included. For example, proteins with a predicted general function comparable to 

what is required in a specific reaction in the pathway can be included in the 

networks. In the same way, molecules that have chemical characteristics 

consistent with a specific product or substrate in a certain reaction in the 

pathway could be included. Today protein networks, e.g. protein-protein 

interaction networks, and regulatory networks are becoming more and more 

common in system biology studies. They can rely on several tools that allow to 

identify known and/or predicted physical and functional interactions between 

proteins and DNA or among proteins (e.g. STRING, Franceschini et al., 2013). 

These approaches would allow us to have a comprehensive view of the cellular 

processes active under the experimental conditions. In fact, "omics" data are often 

noisy and not complete, and do not always allow the identification of all 

molecules or proteins involved in a pathway. Therefore, analyzing 

high-throughput data in the framework of the metabolic network can facilitate 

the identification of the regulated pathways, allowing to understand the cellular 

behavior as a whole (Borodina and Nielsen, 2005; David et al., 2006). For instance, 

visualizing the data in the context of pathways might show how the 
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function of the pathway in which they are involved (Hartwell et al., 1999). 

Therefore, the model resulting from the integration could allow to visualize and 

identify potential regulative and metabolic circuits active under the tested 

conditions. This identification can occur because the integration of multiple 

biological data creates information not visible when considering the single 

datasets separately. Indeed, no single “omics” analysis can unravel the 

complexity of bacterial physiology and only the integration of multiple layers of 

information (multi-“omics” data) can allow to acquire a more detailed picture of 

microorganisms (Patil and Nielsen, 2005; Zhang et al., 2010). 

In the cell many levels of regulation occur (Gygi et al., 1999), therefore, 

system biology approaches, such as the one proposed above, represent a 

powerful tool to gain an integrated view into cellular physiology (Joyce and 

Palsson, 2006). These have been successfully used for many eukaryotes (Ihmels et 

al., 2004; Zhu et al., 2012) and could help to better understand bacterial 

physiology and metabolic regulation in function of different environmental 

factors. For example, we can encounter a situation where, during a specific 

growth condition, the studied strain produces a specific known compound. 

However, the complete synthetic and secretory pathways, and the regulation 

network behind its production are not completely known. Previously, proteomic 

and metabolomic studies (as the one performed in Chapter 2 and Chapter 3) 

have been conducted and now both these datasets could be independently 

mapped and then integrated into a network containing metabolites and proteins 

as proposed above (Fig. 5.2). From this integration we can now infer possible 

metabolic and regulatory “routes”, which can explain the production (light blue 
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area in panel C of Fig. 5.2). Using these approaches new hypotheses can be 

proposed, and focused experiments can be performed to elucidate the process of 

interest.  

 

5.3 Why does phosphate limitation induce the secretion of 

molecules with chelating properties? 

 

5.3.1 Cross-regulation of phosphorus and iron metabolism  

 

One of the most striking observations of the present thesis was the 

ability of Pseudovibrio sp. FO-BEG1 to release molecules able to solubilize 

precipitated iron when growing under phosphate limitation. This, together with 

the higher iron uptake, points to a combined regulation of these two metabolisms 

in Pseudovibrio sp. FO-BEG1. Interestingly, a potential PhoB binding site was 

identified in the upstream region of a fur gene (which encodes for the ferric 

uptake transcription regulator, Fur; PSE_0323; Table S2.1; Chapter 2). In 

addition, preliminary data recently obtained suggest that some proteins involved 

in iron uptake were regulated under –Pi conditions (Romano et al., unpublished 

data). This cross-regulation hypothesis is corroborated by studies reporting the 

presence of Fur-boxes in the upstream region of phoB genes in isolates of the 

genus Acidithiobacillus (Quatrini et al., 2007; Osorio et al., 2008). Moreover, there is 

evidence suggesting that the alteration of phosphorus metabolism in 

Saccharomyces cerevisiae induces an iron starvation response (Rosenfeld et al., 

2010). 
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Another fascinating, although highly speculative, scenario that 

involves quorum-sensing (QS) could explain the observed interconnection 

between phosphorus and iron metabolism. QS is a term used to describe 

cell-to-cell communication mechanisms, which are cell-density dependent. These 

mechanisms rely on the synthesis by bacteria of small diffusible molecules. With 

the increase of the cell density the synthesis increases and consequently the 

concentration of the signaling molecules rises. Once a critical threshold 

concentration has been reached, target regulatory proteins are activated and gene 

regulation can be achieved (Williams et al., 2007). Phosphate limitation was 

shown to trigger QS in Pseudomonas and Serratia strains (Slater et al., 2003; Jensen 

et al., 2006; Zaborin et al., 2009) and astonishingly it was also shown that QS 

signaling molecules or their natural formed degradation products can chelate 

iron (Kaufmann et al., 2005; Bredenbruch et al., 2006; Diggle et al., 2007). So far the 

biological meaning of this phenomenon has not yet been clarified, but some 

authors suggest that the Fe-chelating ability of QS signaling molecules can be a 

widespread feature so far overlooked (Schertzer et al., 2009). In the genome of 

Pseudovibrio sp. FO-BEG1 no genes involved in the production of known QS 

signaling molecules were found (Bondarev et al., 2013; Contributed works) and, 

differently from bacteria of the Roseobacter clade (Wagner-Döbler et al., 2005), QS 

processes were never described for Pseudovibrio strains. However, in the recent 

years the great diversity of QS signaling molecules is emerging, therefore, as 

Decho et al. (2011) states, “there are likely to be many as yet uncharacterized cues and 

perhaps novel cue classes”. These considerations bring to speculate that in the 

investigated strains phosphate limitation can trigger QS-like processes, which 
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can regulate, for example, secondary metabolite production (e.g. TDA) and 

virulence related genes (e.g. toxin). In addition, the signaling molecules could 

chelate iron and be responsible for the iron increase we observed during the 

experiments. 

Chapter 4 focused on the different approaches used for the 

identification of the molecules secreted by Pseudovibrio sp. FO-BEG1, and 

involved in solubilization of precipitated iron. It is important to mention that the 

experiments presented there do not show that the chelating molecules are 

produced as a consequence of the activation of the iron starvation response, as 

implied in the definition of siderophores (Andrews et al., 2003). Therefore, when 

possible, I prefer to refer to the produced compounds just as chelating molecules. 

In the following section, I will report some hypotheses that could explain such a 

physiological response, discussing possible scenarios that can support the 

interconnection between phosphate limitation response and iron metabolism. 

 

5.3.2 Hypothesis 1: scavenging phosphate bound to iron 

oxyhydroxide 

 

Iron is introduced into the open ocean mainly by rivers, hydrothermal 

systems, and aeolian dusts. However, the majority of iron from the first two 

sources precipitates and is trapped in sediments (Raiswell and Canfield, 2012). 

Therefore, aeolian dusts together with iron brought to the surface by upwelling  

phenomena have been considered as the major iron sources in the off-shore 

regions (Poulton et al., 2002; Raiswell and Canfield, 2012). As described before 
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(Chapter 1, 4), phosphate can adsorb to the surface of iron oxyhydroxides and 

other Fe-oxide minerals, and these processes can remove up to 40% of the 

bio-available phosphate (Berner, 1973; Lijklema, 1980; Mclaughlin et al., 1981; 

Parfitt, 1989; Feely et al., 1998). As described in Chapter 4, siderophores have an 

extremely high affinity for Fe(III), and there are several reports describing their 

ability to dissolve different Fe-oxide minerals (Yoshida et al., 2002; Kraemer, 2004; 

Kraemer et al., 2005). Obviously, in environments where phosphate is primarily 

trapped by Fe-oxide minerals, it is reasonable to assume that more phosphate 

will be released and become bio-available when the Fe-oxides will be dissolved. 

Therefore, it is tempting to speculate that, in conditions of phosphate limitation, 

bacteria thriving in environments rich in particulate iron could produce 

siderophores in order to dissolve the iron minerals and consequently trigger 

phosphate desorption.  

Bacterial phosphate mobilization is a process well described for soil 

microorganisms. In all cases the solubilization was mainly due to the production 

of acids, which enhanced the dissolution of phosphate minerals via decreasing 

the pH of the surrounding environment (e.g. Rodrı ́guez and Fraga, 1999). This 

process was also described in bacteria isolated from marine environments and 

from corals (Kannapiran and Ravindran, 2012). Interestingly, there is evidence 

suggesting that the fungus Trichoderma harzianum is able to solubilize iron, 

phosphate, and manganese minerals via secreting unknown molecules with 

chelating properties (Altomare et al., 1999).  

To date the interconnection between environmental phosphate 

concentration and siderophore production seems to be complex and largely 
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unexplained. For example, the siderophore production of some Streptomyces 

species was significantly reduced when the bacteria were grown under very high 

or very low phosphate concentrations (Bendale et al., 2009). In addition, it was 

reported that in Sinorhizobium meliloti and in Corynebacterium glutamicum 

phosphate limitation leads to a down-regulation of proteins involved in 

siderophore production and iron uptake (Ishige et al., 2003; Krol and Becker, 

2004). In the experiments reported in Chapter 4, only P. gallaeciensis, similarly to 

Pseudovibrio, released chelating molecules exclusively under phosphate limitation. 

In the rest of the Roseobacter strains this correspondence was not observed. 

Altogether these data indicate that, although the dissolution of iron minerals 

mediated by siderophores is a process well described, the direct connection 

between phosphate limitation and siderophore production needs to be further 

investigated.  

If we assume that the production of chelating molecules is a strategy 

adopted to access an extra phosphate-pool in conditions of phosphate starvation, 

it is reasonable to suggest that genes involved in the synthesis of these molecules 

will be part of the Pho-regulon, or at least their transcription will be up-regulated 

under phosphate limitation. However, the data available for other bacteria 

suggest a different scenario, where most of these genes, together with other 

genes involved in iron uptake, are down-regulated under phosphate limitation 

(Ishige et al., 2003; Krol and Becker, 2004). It is important to mention that there 

are data suggesting that in Edwardsiella tarda, PhoB negatively regulates the fur 

gene (Chakraborty et al., 2011). This means that, in theory, under conditions of 

phosphate limitation the Fur transcription regulator is down-regulated by PhoB, 
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and consequently it does not repress anymore genes involved in the synthesis of 

siderophores. This regulation cascade could explain the hypothesis proposed 

above.  

 

5.3.3 Hypothesis 2: role of chelating molecules in the 

protection against oxidative stress  

 

In Chapter 2 we observed the up-regulation of several proteins 

involved in protecting the Pseudovibrio cells against reactive oxygen species 

(ROS). Several studies reported that cells thriving under phosphate limitation 

experience an increased oxidative stress (Gérard et al., 1999; Moreau et al., 2001; 

Moreau, 2004; Yuan et al., 2005). Interestingly, there is evidence suggesting that 

siderophores can decrease the toxic effect of ROS. In a recent article Adler et al. 

(2012) proposed that catechol containing siderophores can protect bacteria 

against ROS. It was shown that the catechol siderophore enterobactin decreased 

the toxicity of pyochelin in Escherichia coli by reducing the formation of ROS that 

this molecule generates. Mutation in the enterobactin bio-synthetic pathway 

rendered E. coli sensitive to pyochelin (Adler et al. 2012). The authors suggested 

that catechol siderophores could function as hydrogen donors, terminating, in 

this way, the radical chain reactions. The protective function of catechol 

siderophores against oxidative stress was confirmed in a recent study, which 

showed that the production of enterobactin and salmochelin defends 

Salmonella sp. against ROS (Achard et al., 2013). In this case, however, the 

catechols had to be situated intracellularly to exploit their anti-oxidant function. 
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In addition, in Azotobacter vinelandii catechol biosynthesis was under control of 

the transcription activator of the superoxide dismutase (SoxS) and was 

significantly increased when iron starved cultures experienced increased 

oxidative stress (Cornish and Page, 1998; Tindale et al., 2000). Consistently, 

catechol siderophores were described to be highly susceptible to oxidation 

(Hider, 1984). 

Besides scavenging radicals, siderophores could also be involved in 

oxidative stress protection via regulating the free iron concentration in the cells. 

Fe(II) can react with hydrogen peroxide generating hydroxyl radicals in the 

Fenton reaction (Winterbourn, 1995). Hydroxyl radicals are extremely reactive 

and are able to oxidize any organic molecule, generating lethal damage to the cell. 

Usually, Fe(II) is not freely present in the cell; however, superoxide can interact 

with Fe-S clusters or with Fe(III), generating the reduced iron form during the so 

called Haber-Weiss reaction (Haber and Weiss, 1934). In A. vinelandii, it was 

shown that Fe(III) chelated by azotochelin or protochelin does not react with 

superoxide, and, therefore, Fe(II) ions are not generated (Cornish and Page 1998). 

There is additional evidence suggesting that oxidative stress could play an 

important role in regulating siderophore synthesis. For example, Lee et al. (2011) 

reported that the production of the siderophore petrobactin under iron starvation 

in Bacillus anthracis increased under elevated aeration condition and under 

mildly induced oxidative stress. A similar effect was observed for an intracellular 

siderophore in the fungus Aspergillus nidulans (Eisendle et al., 2006). There is also 

evidence indicating that in Anabaena sp. genes involved in siderophore 

production were activated under oxidative stress (Jeanjean et al., 2008). In 
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contrast, production of the siderophore pyoverdin in Pseudomonas aeruginosa 

decreased when iron-limited cells were exposed to mild artificial oxidative stress 

(Dao et al., 1999). 

Altogether, these data clearly show the strong interconnection 

between iron metabolism, siderophore production, and oxidative stress. It seems 

likely, that siderophores can be used to tightly regulate the amount of free iron 

available for the Haber-Weiss/Fenton reaction, reducing the risk of hydroxyl 

radical formation. On the other hand, the presence of catechol sub-units makes 

this class of siderophores able to act directly as radical scavengers, representing 

an additional protection against oxidative damage. These data generate another 

line of argument to explain the production of chelating molecules under 

phosphate limitation. This strategy would protect Pseudovibrio, according to the 

mechanisms described above, from the increased oxidative stress that the cells 

likely experience during phosphate limitation. However, the picture becomes 

more complicated when the data concerning the Roseobacter strains are 

considered (Chapter 4), indicating that this response, although widespread, is 

regulated in a species-specific way.  

Intuitively, the protective mechanisms will be beneficial when situated 

inside the cell, as described for Salmonella sp. (Achard et al. 2013), since the 

amount of oxidative stress that a cell experiences depends upon the rate at which 

radicals are produced intracellularly (Imlay, 2003). In all our experiments we 

detected chelating activity in the cell-free supernatant of the cultures grown 

under phosphate limitation, suggesting an extracellular mechanism of action, 

which is more difficult to explain. However, it is important to point out, that 
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recently it was shown that ecologically and taxonomically diverse bacteria 

produce extracellular superoxide, representing a vast source of this compound, 

and likely other ROS, in the environment (Diaz et al., 2013). Consequently, the 

production of extracellular scavenging molecules would represent an advantage 

for the producing strains and for the entire bacterial population associated with it. 

 

5.3.4 Hypothesis 3: the "Trojan-horse" strategy 

  

Bacteria can produce a large variety of antibacterial compounds and 

among them a special group is represented by bacteriocins. They are loosely 

defined as ribosomal synthesized peptides with a narrow toxicity on strains of 

the same species, or specific isolates of a closely related species (Riley and Wertz, 

2002; Gillor et al., 2008). According to Klaenhammer (1988), 99% of bacteria may 

produce at least one bacteriocin. However, to date only around 200 bacteriocins 

have been characterized, and most of them were described in enterobacetria, 

lactic acid bacteria, and Gram-positive bacteria, even though they were detected 

in all lineages of prokaryotes (Riley and Wertz, 2002; Gillor et al., 2008; Desriac et 

al., 2010). Enterobacteria produce two types of bacteriocins, which can be mainly 

differentiated according to their molecular size in microcins and colicins. 

Microcins are the smallest class and are characterized by peptides generally 

smaller than 10 KDa. They are extremely stable to heat, pH, and proteases and 

are generally produced under conditions of stress, such as nutrient limitation 

(Duquesne et al., 2007). These peptides can undergo significant post-translational 

modification and some microcins can carry a siderophore-like molecule as, for 
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example, in the microcin MccE49 produced by Klebsiella pneumoniae, which is 

tailored with a linear and monoglycosylated derivate of enterobactin (Duquesne 

et al., 2007; Nolan et al., 2007). 

Siderophores are in general always synthesized via NRPS systems and 

are subsequently modified and added to the antibacterial peptide. Therefore, 

these molecules are considered as a “bridge” between the ribosomal and 

non-ribosomal synthetic machinery (McIntosh et al., 2009). In addition to 

siderophore-conjugate microcins, other smaller siderophore-conjugate antibiotics 

were described. However, only few have been isolated so far (Braun et al., 2009; Ji 

et al., 2012). Both these groups of compounds are referred to as sideromycin. 

They act as a "Trojan-horse", entering the competing cells via the corresponding 

siderophore uptake systems. This is an active and highly specialized process, and 

it allows to reduce the minimal inhibitory concentration of these antibiotics by 

several orders of magnitude (Braun et al. 2009). The ecological role of bacteriocins 

is not yet completely clear. It was suggested that they serve as anti-competitors, 

enabling the producing strains to invade an established microbial community. 

On the other hand, they could also play a defensive role and avoid the invasion 

of other strains into an already occupied niche (Riley and Wertz, 2002). Overall, 

bacteriocins would preferentially be efficient when bacteria live in close contact. 

Interestingly, as reported in Chapter 2, phosphate limitation can 

enhance bacterial virulence and also biofilm formation. In the proteomic analysis, 

we identified several proteins that might indeed help Pseudovibrio to establish 

and maintain a symbiotic relationship with marine invertebrates. In this respect, 

the production of the wide-spectrum antibiotic TDA can represent a great 
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advantage, allowing Pseudovibrio sp. FO-BEG1 to outcompete a major part of the 

established bacterial community, as well as the concurrent bacteria for the host 

colonization. However, this antibiotic will most likely not be effective against 

other bacteria able to produce TDA as other Pseudovibrio and Roseobacter strains, 

which have often been isolated from sponges as well (Buchan et al., 2005). 

Therefore, a narrower spectrum of strain/species-specific antibacterial 

compounds would give Pseudovibrio sp. FO-BEG1 an additional advantage 

allowing it to outcompete other strains in the race for the colonization of the host.  

Microcins are generally smaller than 10 kDa and can be as small as 1 

kDa (Duquesne et al. 2007). These sizes correlate well with the SEC experiments 

performed in Chapter 4. However, the MS analysis of the active fraction isolated 

during the HPLC experiment did not show the presence of molecules in the high 

mass range 500- 3500 m/z (data not shown). Even though, the analytical data do 

not provide direct proof that the active compounds were in the mass range of the 

known microcins, an interesting observation was obtained in Chapter 2. Under 

phosphate-limited conditions we detected a 2.6 fold up-regulated protein 

homologous to PmbA, which is a protein that was characterized in E. coli, and 

which was proposed to play a role in the export of microcins (Rodríguez-Sáinz et 

al., 1990). This suggests that a microcin-like compound could have been 

produced by Pseudovibrio sp. FO-BEG1 under phosphate limitation. 

Usually, the fundamental genes necessary for microcin production are 

organized in gene clusters. I considered the more common gene clusters found in 

enterobacteria reported in the review of Duquesne et al. (2007), and I screened the 

genome and the plasmid of Pseudovibrio sp. FO-BEG1 for the presence of 
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homologous regions (analysis performed using MultiGeneBlast). However, none 

of the synthetic genes were identified apart from genes encoding for components 

of ABC transport systems. Surprisingly, the antiSMASH analysis, performed 

using the genomes of all strains used in the experiments reported in Chapter 4, 

revealed the presence of genomic regions that have homologies with bacteriocin 

synthetic clusters mainly related to Burkholderia sp. and Bradyrhizobium sp. 

Consistently, genes potentially involved in bacteriocin synthesis were also 

recently found in the genome of Phaeobacter articus (Freese et al., 2013). Overall, 

these data give way to a new interpretation of the data reported in Chapter 4. 

Phosphate limitation, or the general stress response induced by phosphate 

limitation, could trigger the production of siderophore-tailed microcins-like 

molecules, or other sideromycins, in Pseudovibrio sp. FO-BEG1 and to a certain 

extent in strains of the Roseobacter clade. These compounds would enhance the 

strain’s competitiveness, especially against closely related bacteria, and would 

explain the increase in soluble iron we observed during the bacterial growth. 

 

5.3.5 Hypothesis 4: phosphate limitation enhances bacterial 

virulence, and iron is the key to success 

 

The process of withholding iron from infecting bacteria has long been 

known to be of fundamental importance in the host defense mechanisms. 

Ferritins and transferrins are proteins used by vertebrates and many 

invertebrates to store iron and control its concentration within the cells and the 

extracellular space (Harrison and Arosio, 1996; Krasko et al., 2002; Gaffney and 
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Valentine, 2012). However, bacteria can proliferate in the host, implying that they 

are able to recover iron from the available sources. One of the strategies they 

adopted is the secretion of siderophores, which help to recover iron. Almost all 

pathogenic bacteria are able to produce siderophores, and according to Ratledge 

and Dover (2000) "the absence of siderophore formation by a pathogen may mean only 

that no one has investigated this phenomenon thoroughly enough". These molecules are 

able to subtract iron from ferritins and transferrins, allowing bacteria to 

proliferate under iron-limited conditions. Moreover, bacteria also evolved 

ingenious strategies to overcome the presence of other defense proteins in the 

hosts, called siderocalin, which are able to catch the Fe-siderophore complex 

making it unavailable for bacteria. In enterobacteria, salmochelin is a siderophore 

immune to this defense process and derives mainly from glycosylation of 

enterobactin, the most common siderophore in this group of bacteria, which 

could otherwise be easily scavenged by siderocalin (Ratledge and Dover, 2000; 

Fischbach et al., 2006). 

To further combat undesired bacteria, eukaryotes have evolved 

numerous articulate immune responses, which can be differentiated into the 

innate and adaptive systems. Until now, only the former has been identified in 

invertebrates. The first common line of defense observed in the innate immune 

response is phagocytosis (Mydlarz et al., 2006). The phagocytic cells first 

surround and engulf the bacteria, and then carry out a microbicidal action via 

different mechanisms that can also require ROS formation. This is realized via 

the expression of specific enzymes responsible for the radical formation, and 

happens concomitant with the activation of protective systems for the host cells 
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(Nappi and Ottaviani, 2000). ROS represent one of the more conserved immune 

effectors among multicellular eukaryotes being produced inside the phagocytic 

cells or released into the extracellular space (Nyholm and Graf, 2012). Due to its 

interaction with ROS, Fe also plays an important role in these processes. For 

example, it was shown that in mammalian macrophages the cytoplasmatic Fe 

concentration greatly increases in the case of bacterial infection. It was suggested 

that this increase is the trigger for the formation of ROS (Schaible and Kaufmann, 

2004).  

In Chapter 2 proteins potentially involved in the interaction with the 

host cells were detected (e.g. RTX-like protein). As discussed, phosphate 

limitation can have a drastic effect on bacterial virulence, inducing in some cases 

the formation of virulent phenotypes (Lamarche et al., 2008; Zaborin et al., 2009; 

Zaborin et al., 2012). These data together suggest that the phosphate limitation 

response, or the general stress response induced by phosphate limitation can 

drive Pseudovibrio sp. FO-BEG1 to activate mechanisms for establishing a 

successful colonization of the host. This action will provide a constant supply of 

nutrients to the bacterium while the host will be supplied with vitamins, 

protection against other pathogens, and possibly additional cofactors.  

In this symbiotic perspective, the production of chelating compounds 

can be seen as a strategy adopted by Pseudovibrio to successfully colonize its host 

when under certain stress such as nutrient-limiting conditions. These molecules 

could act both as weapons to scavenge iron and as control systems for iron 

concentrations, avoiding its participation in the Haber-Weiss/Fenton reaction 

during the immune response of the hosts. In support of the important role that 
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siderophores play during the colonization processes, there are several studies 

that repeatedly showed how strains not able to produce siderophores have a 

highly reduced virulent phenotype (Litwin et al., 1996; Ratledge and Dover, 2000; 

Cendrowski et al., 2004; Schrettl et al., 2004). This “symbiotic hypothesis” can also 

be easily extended to the Roseobacter strains studied. These bacteria have often 

been described to be associated with marine phytoplankton, marine vertebrates, 

and invertebrates. In addition, they have also been reported as pathogenic, being 

responsible, for example, of juvenile oyster disease or black band disease in 

scleractinian corals (Buchan et al., 2005). Considering these life styles, the 

strategies reported above will confer them additional colonization tools to 

successfully override the defense systems of their hosts. 

 

5.4 Conclusions and perspectives 

 

The physiological study conducted on the response of Pseudovibrio sp. 

FO-BEG1 to phosphate limitation reported in this thesis represents one of the few 

comprehensive studies conducted on the response to this nutrient condition by a 

heterotrophic marine bacterium. We confirmed that many regulatory processes 

that occur in Pseudovibrio are similar to the well studied cases described in E. coli. 

However, we also showed that other specific adaptations occur as the 

phospholipids exchange. As discussed above, these responses could represent 

important and widespread strategies adopted by marine heterotrophic bacteria 

to thrive in environments depleted in phosphate. These findings underline the 

importance of further investigations into the physiological adaptation of marine 
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heterotrophic bacteria to fluctuating phosphate nutrient regimes. This would 

help to gain a clearer picture of the adaptations evolved by different bacteria 

under these conditions and of the potential effects of this nutrient regime on the 

trophic relationships in the ecosystem. In this thesis it was shown how phosphate 

limitation had a significant influence also on the carbon, sulfur, and iron 

metabolism of Pseudovibrio sp. FO-BEG1. Therefore, systematic studies on a 

larger number of bacteria together with direct measurements in nature could 

help to understand to what extent these interconnections affect the natural 

biogeochemical cycles in the environment. 

The novel approach applied in Chapter 3 for the study of the 

exo-metabolome of FO-BEG1 revealed an astonishing diversity of metabolites 

secreted by this bacterium. Phosphate limitation proved to be a condition that 

greatly affected these processes. Therefore, as a start, more focused studies on 

exo-metabolomes of single strains and comparative studies between 

exo-metabolomes and natural DOM are inevitably required to identify which 

effects different nutrient regimes have on the secreted metabolites, and to 

understand to what extent heterotrophic marine bacteria influence the oceanic 

DOM. In addition, it was shown how high resolution mass spectrometry 

techniques are ideal tools to unravel the metabolomic diversity of bacteria. A 

promising challenge would be the bioinformatic integration of these data, or of 

more focused MS/MS analyses, with other “omic” approaches, which could 

greatly improve our understanding of metabolic processes. The mapping 

procedure discussed above is a simple example of a useful method for an 

integrated data analysis. Other approaches can be used as well, for example, the 
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construction of ab-initio networks based on protein co-expression or chemical 

interconnection among metabolites. These studies could produce new 

information and models uncolored by previous knowledge.  

One intriguing aspect of the data presented in this work is the effect of 

phosphate limitation on secondary metabolite production and expression of 

virulence genes in Pseudovibrio sp. FO-BEG1 (Chapter 2,3,4). As discussed 

previously (Chapter 1), it has long been known that this condition has a great 

effect on these two physiological traits in other bacteria. The results of this thesis 

(e.g. production of TDA and chelating molecules; Chapter 2,3,4) strongly suggest 

that phosphate limitation represents a promising condition for the discovery of 

new compounds of biotechnological interest produced by Pseudovibrio. The 

drastic effect that this condition had on the secreted metabolites underlines also 

the necessity of more focused molecular analyses to understand the regulatory 

processes controlling the production of these compounds. 

The detection of virulence related proteins under the tested condition 

showed that Pseudovibrio is indeed able to express these virulence factors. This 

also opens up several new perspectives for the study of symbiotic relationships. 

Pseudovibrio sp. FO-BEG1 could become a model organism for these kinds of 

studies as it is a versatile and easily culturable bacterium. It could help to better 

understand the molecular processes responsible for the interaction between 

bacteria and marine invertebrates. In addition, new hypotheses could be tested 

regarding the relatedness of nutrient limitation and symbiosis. As observed in 

other pathogenic bacteria, we can ask if these are common conditions that trigger 

the development of more virulent phenotypes also among marine bacteria. It 
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remains to be clarified whether the symbiotic relationship is driven, in the first 

place, by nutrient limitation and by the necessity of the bacteria to colonize a 

more hospitable environment. 

Finally, the effect of phosphate limitation, or the general stress 

response induced by this condition, on the iron metabolism opens a new and 

broad field of research. The complete isolation and description of the chelating 

molecules together with mutagenesis experiments will be required to understand 

the function and the synthetic and regulatory processes behind this puzzling 

phenomenon. The production of chelating molecules as a response to phosphate 

limitation and the putative interconnection between iron and phosphate 

metabolisms need to be better investigated in other marine bacteria in order to 

draw comprehensive conclusions on the ecological importance that the 

phenomena described in this work might have in natural environments. 
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Summary 

Bacteria belonging to the Pseudovibrio genus have been isolated 

worldwide, especially from coastal waters and from marine invertebrates. 

Nevertheless, little is known about their genomic features and their overall 

physiology. In the present study, we sequenced and analyzed the genome of 

Pseudovibrio sp. FO-BEG1 and we compared it with the available draft genome of 

Pseudovibrio sp. JE062. The first strain was isolated from an enrichment culture of 

Beggiatoa sp. 35Flor and the second was isolated off the coast of Florida from the 

sponge Mycale laxissima. In addition to the genome comparison, most of the 

physiological features identified at the genomic level were experimentally 

verified. The presented data show that both strains are generalistic bacteria 

capable of importing and oxidizing a wide range of organic and inorganic 

compounds to meet their carbon, nitrogen, phosphorous, and energy 

requirements under both, oxic and anoxic conditions. The high metabolic 

versatility was also reflected in the high number of genes for TRAP and ABC 

transporters and in the ability of both strains to synthesize a big variety of 

vitamins. Besides the versatile metabolic abilities, our study reveals the presence 

in both Pseudovibrio genomes of a large number of open reading frames and gene 

clusters potentially involved in the synthesis of bioactive secondary metabolites 

and in  the production of factors important for the interaction with the host. Both 

Pseudovibrio strains have the genomic potential to attach to host cells, interact 

with the eukaryotic cell machinery, produce secondary metabolites, and supply 

the host with cofactors. 
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Summary 

Marine planktonic bacteria often thrive in habitats characterized by 

extremely low concentrations of dissolved organic matter (DOM). The 

composition of DOM in the ocean can vary greatly and bacteria are able to use 

only a portion of its molecules according to their metabolic features. In order to 

investigate the substrate usage under ultraoligotrophic conditions of the 

heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1, we analyzed the DOM 

composition before and after bacterial growth in artificial and natural seawater. 

The compositional comparison of both setups was performed investigating (i) the 

dissolved organic carbon (DOC) and the total dissolved nitrogen (TDN), (ii) the 

composition of DOM by electrospray ionization Fourier transform ion cyclotron 

resonance mass spectrometry, and (iii) the amino acid content by high 

performance liquid chromatography. Despite special precautions during the 

preparation of the artificial seawater medium, a DOC concentration of 

0.06 mg C L1 (5 µmol C L1) was measured, which was an order or magnitude 

below natural seawater, which has 0.9 mg C L1 (75 µmol C L1). Under both 

conditions, DOC concentrations did not decrease measurably during growth, yet, 

cell numbers increased from about 20 cells mL1 to 2  104 cells mL1 in artificial 

and to 8  105 cells mL1 in natural seawater. No nitrogen fixation was detectable 

and only 1% of cellular carbon derived from CO2 fixation, even though no fixed 

nitrogen or carbon source was added. The ultra-high resolution analysis of the 

DOM composition revealed that Pseudovibrio sp. FO-BEG1 was able to proliferate 

under nutrient-poor conditions mainly using traces of sugars, amino acids, and 

detergents present in the cultivation media. This catabolic flexibility observed 
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under oligotrophic conditions was also confirmed during the incubation of 

oligotrophically pre-grown cells in BiologTM plates. In these experiments cells 

showed a completely different catabolic pattern than cells pre-grown under 

nutrient rich conditions. This study suggests that heterotrophic bacteria are able 

to thrive under extremely low DOC concentrations, even lower than natural 

oligotrophic seawater, via the diversification of the spectra of metabolized 

molecules.  
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Summary 

The dissolved organic carbon (DOC) in the open ocean is several 

orders of magnitude lower than in other environments and apparently bacteria 

are able to use only a fraction of its molecules. Therefore, in many marine 

systems bacteria thrive under oligotrophic conditions. Due to this particular low 

availability of nutrients the isolation and cultivation of heterotrophic marine 

bacteria using common cultivation media and techniques is challenging. In the 

present study, we developed the CANgrow-method (changing availability of 

nutrients - growth method) as a strategy to isolate facultatively oligotrophic 

bacteria from different marine habitats. In this method, the three initial transfer 

steps of cultures grown in pure artificial seawater preselected for bacteria 

multiplying under oligotrophic conditions. Pure cultures were obtained by three 

subsequent transfers of single colonies on organic rich solid medium. Finally, at 

least seven transfers in pure artificial seawater were performed to confirm the 

ability of the isolates to grow under these conditions. All obtained isolates were 

able to grow in pure artificial seawater with a residual organic carbon content 

ranging from 15  5 to µmol C L-1 to 38  5 to µmol C L-1. These concentrations 

were more the two times lower than what observed in natural seawater. Most of 

the isolates, which were able to grow under these oligotrophic conditions, were 

affiliated to common and ubiquitous marine heterotrophic bacteria belonging to 

the Actinobacteria, Alpha- and Gammaproteobacteria. These data suggest that the 

ability to proliferate under extreme nutrient limitation, which is a condition 

commonly encountered in the open ocean, is a shared feature among 
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heterotrophic bacteria, and it is likely to be more widespread than previously 

thought. 
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