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SUMMARY 
 

This thesis represents the first investigation to understand the bacterial community associated 

with jellyfish, with special emphasis on ctenophores and scyphomedusae, at Helgoland Roads in 

the German Bight (North Sea, Germany).  

Bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis 

leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus were investigated. Species-

specific differences regarding the different ctenophores were revealed in the present study. The 

bacterial communities of all ctenophore species were dominated by Proteobacteria as revealed by 

pyrosequencing. M. leidyi and P. pileus mainly harbored Gammaproteobacteria, with 

Marinomonas being the dominant phylotype of M. leidyi. These results do confirm other studies 

obtained from the Tampa Bay of Florida and the Gullmar fjord at the west coast of Sweden, 

suggesting ctenophores from geographically distinct regions shared high similarity in their 

dominant bacterial communities. P. pileus presented a different assemblage with 

Pseudoalteromonas and Psychrobacter as the dominating phylotypes of Gammaproteobacteria. 

Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus 

Thalassospira. For B. infundibulum, the bacterial community comprised of Alphaproteobacteria 

and Gammaproteobacteria in equal amounts consisting in particular of the genera Thalassospira 

and Marinomonas. Although Marinomonas was always predominant, seasonal variation of 

bacterial community was observed in M. leidyi on a small scale. 

Regarding the typical metagenetic life cycle of scyphomedusae, the bacterial communities 

associated with two scyphomedusae species (Cyanea lamarckii and Chrysaora hysoscella) were 

firstly investigated at Helgoland Roads. Two aspects were studied: different body parts and 

different life stages. Concerning the analysis of different body parts (umbrella, gonad, tentacle 

and mouth arm), significant differences were revealed between umbrella and other body parts 

(gonad and tentacle) in terms of the associated bacterial community in both species. With regard 

to the different life stages, bacterial community structure varied from the early stage planula 

larvae to polyps even to adult medusae with significant differences in both species with 

completely distinct patterns. Statistical analyses (PCO analyses) revealed that these surfaces 

obviously represent a passive substrate colonized by a diverse bacterial community as presented 

by a dispersive structure among three life stages in C. lamarckii. In contrast a strong selected 



 

processed of bacterial colonization in each life stage represents a highly separated community 

structure in Ch. hysoscella. Furthermore, the impact of the food source on the associated 

bacterial community was investigated with respect to polyps. Bacterial communities associated 

with polyps were significantly distinct from the food in both species. Interestingly, the diversity 

of bacterial community composition (BCC) associated with polyps was highly correlated with 

different food sources. However, for the bacterial community composition, significant 

differences were presented in response to different food source. Polyps might react differently 

during metabolic processing in response to different food source (A. salina and plankton) 

resulting in a significantly different bacterial community structure. In general, the bacterial 

communities associated with two scyphomedusae species are species-specific as confirmed in 

each life stage. 

The utilization of DOM released by live jellyfish was firstly investigated in the third part of this 

thesis. We focused on the compositional succession of bacterioplankton community in response 

to the DOM released by live scyphomedusae (Cyanea lamarckii and Chrysaora hysoscella). 

Bacterial community structure was determined via Automated Ribosomal Intergenic Spacer 

Analysis (ARISA) fingerprints at the end of the experiments. Catalyzed reporter deposition 

fluorescence in situ hybridization (CARD-FISH) analysis was applied to reveal the bacterial 

community composition at different time points. Bacterial communities were significantly 

different regarding to different DOM source including jellyfish treatment (DOM released by live 

jellyfish), “Kabeltonne” seawater (natural DOM from seawater) and artificial seawater (DOC-

free) based on ARISA fingerprints. The bacterial community was significantly stimulated by the 

DOM released by live jellyfish with different dominant phylotypes regarding to different 

scyphomedusae species. According to CARD-FISH analysis, Gammaproteobacteria and 

Bacteroidetes were consistently present in the experiment conducted with Ch. hysoscella, while 

Bacteroidetes decreased at the beginning and recovered at the end of the experiment conducted 

with C. lamarckii. Alphaproteobacteria played a minor role in the present experiments. The 

significant differences in the bacterial community composition and succession indicate that the 

DOM released by jellyfish might consist of different compounds which are species specific. Last 

but not the least, DOM released by live jellyfish strongly impacted the natural bacterioplankton 

community not only on the bacterial abundance, but also on the community composition.  

 



 

ZUSAMMENFASSUNG 
 

Die vorliegende Arbeit beschäftigt sich mit marinen Bakteriengemeinschaften assoziiert mit 

Quallen. Besonderes Augenmerk liegt dabei auf den Bakterien von Ctenophoren und 

Scyphomedusen, die häufig in der Deutschen Bucht vor Helgoland vorkommen.  

Häufig vorkommenden Ctenophoren Arten in der Deutschen Bucht sind Mnemiopsis leidyi, 

Beroe sp., Bolinopsis infundibulum und Pleurobrachia pileus. Zur Analyse ihrer 

Bakteriengemeinschaften wurden Fingerprints der mit ihnen assoziierten 

Bakteriengemeinschaften erstellt sowie 454 Pyrosequenzierungen der ribosomalen Gene 

durchgeführt. In allen untersuchten Ctenophoren Arten wurden die Bakteriengemeinschaften von 

den Proteobakterien dominiert. Spezifische Unterschiede bezüglich der vorkommenden 

Bakteriengemeinschaften in diesen Ctenophoren wurden im Detail deutlich. M. leidyi und P. 

pileus wiesen überwiegend Gammaproteobakterien auf, wobei die Gattung Marinomonas der 

dominierende Phylotyp in M. leidyi war. Dieses Ergebnis bestätigt Untersuchungen der 

Bakterienzusammensetzung in Mnemiopsis, die sowohl in Tampa Bay (Florida) sowie im 

Gullmar Fjord (Schweden) durchgeführt wurden. Mnemiopsis scheint somit in sehr 

unterschiedlichen geographischen Regionen sehr ähnlich hinsichtlich der dominanten Bakterien 

zu sein. Obwohl Marinomonas die dominierende Bakteriengattung war, konnten kleine saisonale 

Unterschiede in Bezug auf die vorkommenden Bakteriengruppen in M. leidyi beobachtet werden, 

die allerdings aktuell nicht weiter untersucht werden konnten. P. pileus, die ebenfalls 

Gammaproteobakterien als dominierende Gruppe beinhalten, wies auf einer niedrigeren 

taxonomischen Ebene eine andere Bakterienzusammensetzung auf. Pseudoalteromonas und 

Psychrobacter waren hier die dominierenden Phylotypen. Die Bakteriengemeinschaft in Beroe 

sp. wurde von den Alphaproteobacteria der Gattung Thalassospira dominiert. Die 

Bakteriengemeinschaft in B. infundibulum setzte sich gleichermaßen aus Alphaproteobacteria 

und Gammaproteobacteria zusammen. Sowohl die Gattung Thalassospira als auch Marinomonas 

spielen hier eine deutliche Rolle.  

Bakteriengemeinschaften der Scyphomedusen wurden erstmalig im Zusammenhang mit deren 

verschiedenen Lebenscyclen untersucht. Zwei Arten, Cyanea lamarckii und Chrysaora 

hysoscella aus Helgoländer Gewässer wurde hinsichtlich verschiedenen Kompartimente der 



 

adulten Tiere (Schirm, Gonaden, Tentakel und Mundregion) sowie hinsichtlich unterschiedlicher 

Stadien (Planula Larven, Polypen und adulte Tiere) untersucht. Der Vergleich der 

Bakteriengemeinschaften assoziiert mit unterschiedlichen Gewebekompartimenten beider 

Scyphomedusen Arten zeigte deutliche Unterschiede insbesondere zwischen dem Schirm und 

anderen Teilen, wie Gonaden oder Tentakel. Auch die Bakteriengemeinschaften der drei 

untersuchten Stadien beider Schirmquallen Arten wiesen signifikante Unterschiede auf. 

Zusätzlich waren die Gemeinschaften beider Arten deutlich unterschiedlich. Interessant dabei ist, 

dass die Bakteriengemeinschaften offenbar alle drei Stadien von C. lamarckii als Oberfläche 

eher passive bzw. zufällig besiedeln, wohingegen die signifikanten Unterschiede der Besiedlung 

in Ch. hysoscella.auf einen Selektionsdruck hinsichtlich spezifischer Bakterien hindeuten. Auch 

der Einfluss unterschiedlicher Futterangebote (Artemia salina und natürliches 

Planktonkonzentrat) auf die Diversität und die Zusammensetzung der Bakteriengemeinschaften 

wurde an den Polypen Stadien beider Quallen Arten untersucht. Interessant ist, dass die 

bakterielle Diversität in den Polypen, die mit natürlichem Plankton gefüttert wurden höher war, 

als die Diversität der mit Artemien gefütterten Polypen. Dies spiegelte sich ebenfalls in dem 

Futter selber wider. Und auch bezüglich der Bakteriengemeinschaften in den Polypen gab es bei 

beiden Quallen Arten signifikante Unterschiede bei unterschiedlicher Futtergabe. Wie zu 

erwarten, waren neben der unterschiedlichen Diverstiät die Bakteriengemeinschaften der 

jeweiligen Futterarten ebenfalls deutlich unterschiedlich. Die Polypen der beiden Quallen Arten 

scheinen das angebotene Futter unterschiedlich zu verwerten, was wiederum zu einem 

unterschiedlichen Nahrungsangebot für die Bakterien führen könnte und somit andere Bakterien 

selektiert werden. Zusammenfassend konnten jedoch eine artspezifisch assoziierte 

Bakteriengemeinschaften für die verschiedenen Lebens Stadien der Schirmquallen nachgewiesen 

werden. 

Mit dem gelösten organischen Material (DOM), dass von Quallen in das Umgebungswasser 

ausgeschieden wird, und mit deren Verwertung als Nährstoffquelle von marinen Bakterien 

beschäftigt sich der dritte Teil dieser Arbeit. Dabei wurde mittels Card-FISH speziell auf die 

Sukzession sowie die Zusammensetzung des Bakterioplanktons als Antwort auf die Zugabe von 

“Quallen-DOM” geschaut. Dieses DOM wurde von lebenden Scyphomedusen an das 

Umgebungswasser abgegeben, zwei Arten wurden untersucht (Cyanea lamarckii und Chrysaora 

hysoscella). Als Kontrollen diente einerseits DOM-freies künstliches Seewasser sowie das DOM 



 

in natürlichem Seewasser der Probennahmestation „Kabentonne“ Helgoland Reede. Die 

Fingerprints der Bakteriengemeinschaften machten deutlich, dass die Bakterien signifikant 

unterschiedlich auf das DOM verschiedenen Ursprungs reagieren. Im Detail zeigte sich, dass die 

Bakteriengemeinschaften der drei Treatments signifikant unterschiedlich stimuliert wurde, 

sowohl über den Versuchszeitraum als auch hinsichtlich der beiden unterschiedlichen Quallen 

Arten. Gammaproteobacteria und Bacteroidetes waren durchgängig in allen Ansätzen mit Ch. 

hysoscella-DOM deutlich present. Im Gegensatz dazu nahmen im Experiment mit C. lamarckii-

DOM die Bacteroidetes am Anfang kontinuierlich ab und nahmen erst am Ende der Versuchszeit 

wieder zu. Diese signifikanten Unterschiede in der Zusammensetzung der Gemeinschaft und 

deren unterschiedlicher Sukzession macht deutlich, dass das DOM dieser beiden Quallen Arten 

offenbar spezifisch ist und unterschiedliche chemische Substanzen enthält, die von 

verschiedenen Bakterien verwertet werden können. Letztendlich hat diese Untersuchung gezeigt, 

dass das Quallen-DOM tatsächlich einen Einfluss sowohl auf die Anzahl als auch auf die 

Zusammensetzung der Bakteriengemeinschaften hat. 
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GENERAL INTRODUCTION 

Jellyfish 
 

The term “jellyfish” is used in reference to free-floating gelatinous animals belonging to the 

phyla Ctenophora and Cnidaria (Richardson et al., 2009). The phylum Ctenophora, also called 

comb jellies, propel themselves through the sequential beating of rows of cilia (comb rows). 

Ctenophores are armed with colloblast cells which discharge glue to ensnare prey. Ctenophores 

are holoplanktonic, remaining in the plankton for their entire life. The phylum Cnidaria contains 

animals such as anemones and corals but also a range of jellyfish, including four main classes: 

Scyphozoa, Cubozoa, Hydrozoa and Staurozoa. Jellyfish of phylum Cnidaria range in size from a 

few millimeters (Aglaura and Obelia spp.) to 2 m (Nemopilema nomurai) in diameter. Generally, 

they have two alternating generations (swimming medusa and sessile polyp) in their metagenetic 

life cycles. Cnidarians have stinging cells or cnidocysts (nematocysts) concentrated in the 

tentacles and mouth appendages. Although both of these two phyla are not closely related, these 

organisms share many characteristics, including gelatinous and symmetry structure, generally 

transparent or translucent (composed of > 95% water), no specialized digestive, central nervous, 

respiratory or circulatory systems (Scolardi et al., 2006). 

The ctenophore Mnemiopsis leidyi, which originally occurred in South America (GESAMP, 

1997), has invaded the Black Sea (Vinogradov et al., 1989), the Mediterranean (Uysal & Mutlu, 

1993) and the Caspian Sea (Ivanov et al., 2000) during the last two decades (Purcell et al., 2001). 

It was first recorded in the North Sea almost at the same time (Faasse & Bayha, 2006; Boersma 

et al., 2007; Tendal et al., 2007) and was identified as an invasive species at Helgoland Roads 

(Boersma et al., 2007; Hamer et al., 2011). Other ctenophore species, Beroe sp., Bolinopsis 

infundibulum and Pleurobrachia pileus are indigenous at Helgoland Roads (Greve, 1970). For 

scyphozoan, Aurelia aurita (Linnaeus, 1758), Cyanea capillata (Linnaeus, 1758), Cyanea 

lamarckii (Péron & Lesueur, 1809), Chrysaora hysoscella (Linnaeus, 1767) and Rhizostoma 

octopus (Linnaeus, 1788) are common medusa species in the German Bight and usually occur 

periodically during summer (Möller, 1980; Hay et al., 1990; Barz & Hirche, 2007).  
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Jellyfish bloom and its impact on the ecosystem 
 

Dramatic spatial increases and temporal shifts of jellyfish (ctenophores and medusae) occurred in 

many estuarine, coastal, and open-ocean ecosystems worldwide over the past decades (Graham 

et al., 2001; Brodeur et al., 2002; Brodeur et al., 2008; Hamner & Dawson, 2009; Brotz et al., 

2012). The increasing populations of jellyfish have stimulated speculation regarding possible 

causes including over-fishing, eutrophication, climate change, and invasions (Arai, 1996; Mills, 

2001; Hay, 2006; Purcell et al., 2007). Many fish compete for the same zooplankton prey as 

jellyfish. Some fish are also predators of jellyfish, with benthic and reef fish species ingesting 

polyps and pelagic fish species feeding on ephyrae and small individuals (Purcell & Arai, 2001). 

Therefore, over-fishing opens up the ecological space for jellyfish. Coastal eutrophication 

encourages phytoplankton blooms that can ultimately lead to jellyfish outbreaks (Purcell et al., 

2001).  In the coastal eutrophic zone, nutrients are rich in nitrogen and phosphorus but poor in 

silica. Under such conditions, non-siliceous phytoplankton and flagellates (include harmful red-

tide species) proliferate and replace diatoms resulting in a reduction in the size of primary and 

secondary producers (Cushing, 1989; Harashima et al., 2006). It has been hypothesized that such 

altered food web is more favorable for jellyfish (Parsons & Lalli, 2002). On the other hand, 

jellyfish and polyps have greater tolerance than fish to low oxygen conditions. This ensures 

jellyfish can survive and even reproduce under hypoxic conditions (Purcell & Arai, 2001). 

Global warming might also favor jellyfish. Warmer temperature accelerates jellyfish growth and 

ephyrae production (Purcell et al., 2007; Holst, 2012 a). Gibbons & Richardson (2009) showed 

that jellyfish abundance is temperature dependent over 50 years in the North Atlantic, with more 

jellyfish occurring in warmer years. In addition, the human-assisted movement of species to new 

marine areas is most commonly caused by the exchange of ballast water between regions and the 

transport of fouling biota (e.g. polyps) on ship hulls (Graham & Bayha, 2007). As parts of the 

oceans become increasingly disturbed and overfished, it has been evidenced that energy 

previously went into production of fishes may be switched over to the production of pelagic 

Cnidaria or Ctenophora (Mills, 2001).  

As the major component of the pelagic system, jellyfish represent a conspicuous element of the 

zooplankton (Brodeur et al., 2002). The accidental introduction and subsequent expansion of 

jellyfish have significantly altered food web structure and heavily impacted commercial fisheries 
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because they are voracious predators on copepods and ichthyoplankton (Parsons & Lalli, 2002; 

Richardson et al., 2009). Scyphomedusae consume significant quantities of microphytoplankton 

and microzooplankton including phototrophic and heterotrophic dinoflagellates, ciliates and 

flagellates, as well as copepods, small ctenophores and fish larvae (Schneider & Behrends, 1998; 

Purcell & Arai, 2001; Brodeur et al., 2002; Sommer et al., 2002; Purcell, 2003; Hansson et al., 

2005) and have a strong impact on zooplankton standing stocks in all parts of the world. It has 

been shown that Aurelia aurita exerts direct predatory pressure on mesozooplankton and 

microzooplankton populations (Stoecker et al., 1987). Similar impacts have been observed in 

native habitats, where temporal shifts in M. leidyi blooms have occurred and consequently driven 

copepod populations to summer extinction (Sullivan et al., 2001). Despite obvious predatory 

impacts on food web structure during their life span, jellyfish are known to release nutrients and 

bio-available dissolved organic matter (DOM) (Hansson & Norrman, 1995) to the microbial loop 

via several possible pathways, such as sloppy feeding, excretion of fecal material mucus 

production (Riemann et al., 2006; Condon et al., 2011) and decaying biomass (Titelman et al., 

2006; Tinta et al., 2010). Jellyfish acquire C, N and P by assimilating organic compounds from 

ingested prey. Inorganic nutrients excreted by jellyfish populations provide a small but 

significant proportion of the N and P, which are required by phytoplankton for primary 

production. Organic forms of C and N are recycled to the environment as mucus production and 

decomposition and it may support microbial production. It is suggested that A. aurita is the 

second most important source for regenerated nutrients in Kiel Bight (Schneider, 1989). In 

addition, large live medusae accumulatively damage and gradually break down in the water 

column throughout the season during decomposition (Mills, 2001). The abundant carcasses of 

jellyfish at the termination of the bloom can represent an important source of labile organic 

substrates and inorganic nutrients for bacteria due to their rapid turnover rates (Riemann et al., 

2006). Hence, decomposition processes of jellyfish bloom may not only influence carbon and 

nutrient cycling through excretion of DOM, inorganic nitrogen and phosphorus (Schneider, 1989; 

Nemazie et al., 1993; Billett et al., 2006; West et al., 2009), but also potentially impact the 

microbial community composition for stimulating the bacterial growth (Martinez, 1996; 

Titelman et al., 2006; Tinta et al., 2010).  
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Bacterial community in the pelagic system   
 

It has become obvious that marine prokaryotic microbes are a fundamental part in the marine 

ecosystems (Decho, 1990; Jensen & Fenical, 1994) and an integral part of the microbial loop 

(Fenchel, 2008). Generally, bacteria have been recognized primarily as responsible for 

remineralization of inorganic nutrients and decomposition of organic material (Fuhrman, 1992). 

The microorganisms affect most biogeochemical processes in the oceans and their activities 

influence the element cycling on a global scale (Davey & O'toole, 2000). As significant 

component, planktonic bacteria play a critical role in determining the fate of organic energy and 

the cycling of carbon, nitrogen, phosphorus, sulfur (Azam et al., 1983; Mary, 2006; Jiao et al., 

2010). Bacteria manage to populate all parts of the ocean by capturing nutrients and energy from 

diverse sources. Photosynthetic bacteria derive energy from the primary production of organic 

matter through photosynthesis and chemolithotrophy. Heterotrophic bacteria capture dissolved 

organic molecules from seawater as well as organic particles that they can digest with enzymes. 

Some bacteria, such as chemoautotrophic, oxidize inorganic chemicals for energy, and the 

carbon they fix into organic matter serves as basis for food webs in diverse ecosystems.  

Alpha- and Gammaproteobacteria and Bacteroidetes generally dominate the bacterioplankton 

communities (Glöckner et al., 1999; Mary, 2006). Interestingly, the major prokaryotic groups 

appear to have cosmopolitan distributions. Members of the Alphaproteobacteria are comprised of 

the Roseobacter clade. They are chemoorganotroph and occur exclusively in the marine 

environment. Some of these species are able to synthesize bacteriochlorophyll a (Allgaier et al., 

2003). Another important group within the Alphaproteobacteria, apart from the Roseobacter 

clade species belonging to Sphingomonadales, is SAR 11 and SAR 116 which can be highly 

specialized (Rappé et al., 2000). Members of Gammaproteobacteria are the most cultivable 

group of the bacterioplankton. These chemoorganotrophic bacteria are often associated with 

surface of the organisms. Species like Alteromonas sp. and Pseudoalteromonas sp. belong to this 

group as well as species like Oceanospirillum sp. or Marinobacter sp. which form a separate 

clade. Members of the phylum Bacteroidetes display the ability for gliding motility as well as the 

ability to degrade biomacromolecules like chitin, agar, cellulose or DNA. They are widespread 

distributed in the marine environment. Typically, the Bacteroidetes are associated with surfaces 
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such as algal cells or marine snow but they can also be found free-living (Pinhassi et al., 2004; 

Hahnke & Harder, 2013; Mann et al., 2013). 

Significant seasonal changes in abundance and composition of bacterial communities were 

observed in several studies (Eilers et al., 2001; Gerdts et al., 2004; Fuhrman, 2006). Especially, 

phytoplankton dynamics and seasonal cycles in the source of DOM regulated the free-living 

bacterial communities (Crump et al., 2003). And direct relationship between temperature and 

bacterial production (Pinhassi & Hagstrom, 2000) as well as seasonal succession of the 

community structure (Gerdts et al., 2004) was shown for marine bacterioplankton. Sapp et al. 

(2007 b) has shown that the increase in temperature contributed to shifts in the bacterial 

community which was strongly correlated with the phytoplankton bloom. The massive increase 

of bacterial abundance during the collapse of phytoplankton blooms consist of the group 

Bacteroidetes, Alpha- and Gammaproteobacteria suggesting their involvement in the degradation 

of mucopolysaccharides produced by the phytoplankton (Teeling et al., 2012). On the one hand, 

these bacteria consume low molecular weight organic compounds such as amino acids, acetate or 

sugars which can be transported directly across the cell membrane. On the other hand, 

extracellular hydrolysis or cleavage is needed for the consumption of polysaccharides or proteins.                                                  

In marine environment, bacteria have a strong affinity to locate and attach on a variety of 

surfaces. Since marine invertebrates exhibit the greatest phyletic diversity in the biosphere, it is 

likely that the greatest variety of animal-bacterial interactions occurs within this group (Brusca & 

Brusca, 1990). Studies characterizing the bacterial communities associated with marine 

organisms have largely focused on corals (Sunagawa et al., 2009), Hydra (Bosch, 2012), sponges 

(Wichels et al., 2006; Webster & Taylor, 2012), hydrothermal vent worms (Campbell et al., 

2003) and copepod (Carman & Dobbs, 1997; Gerdts et al., 2013). The relationship of bacteria 

with marine organisms ranges from mutualism through commensalisms and competition, to 

antagonism (Nair, 2004). Although it is difficult to identify general principles of bacterial 

adhesion because of the diversity of attachment mechanisms and the ability of microorganisms 

depending on environmental conditions (Fletcher, 1994), these bacterial associations play a vital 

role in marine ecosystem.  

The interactions between bacteria and host could be neutral, where one does not influence the 

other by any ways like the epiphytic bacteria. In this kind of relationship, neither of the 

interacting organisms are affected by the association. Certain marine bacteria attach themselves 
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to the surfaces of organisms and differentiate to form a complex, multicellular structure called 

biofilm. Though the formation and interaction in biofilms involve neutral processes, they play 

active roles in the multicellular biofilm development and subsequent dispersal of surviving cells 

within the marine environment (Nair, 2004). Mai-Prochnow et al. (2004) observed that the 

biofilm formed by newly described green pigmented bacterium Pseudoalteromonas tunicate (D2) 

produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate 

larvae and is frequently found in association with living surfaces in the marine environment. 

Hence, it can be understood that these relationships are not stable but are constantly changing 

and adapting to their environment. 

Nevertheless depending on the effect of interaction on the host, the relationship can be positive 

or negative. The profitable cooperation by different organisms can either be symbiotic or 

commensal. Symbiosis occurs when two organisms form a relationship, which provides an 

advantage for both partners at least temporarily. Symbiosis may be divided into two distinct 

categories, ectosymbiosis and endosymbiosis.  

In ectosymbiosis, the symbiont lives on the body surface of the host including internal surfaces 

such as lining of the digestive tube and ducts of glands (Nair, 2004). Bivalve mollusc has 

established symbiosis with chemosynthetic bacteria that use inorganic reduced compounds as an 

electron source, in regions where sulfide and oxygen are present in the water perfusing the 

sediments (Dubilier et al., 2008; Vrijenhoek, 2010). The sulfur-oxidizing epibacteria found on 

nematodes living in marine sands, at the oxic-anoxic interface; the nematodes appear to meet 

their carbon requirements directly by feeding on their symbionts (Polz et al., 1994; Nussbaumer 

et al., 2004). 

In endosymbiosis, the symbiont lives within the cells or intracellular space of the host. Such a 

symbiont is called an endosymbiont. Occurrence of endosymbiosis is well documented in the 

hydrothermal vent systems (Cary & Giovannoni, 1993; Moyer et al., 1995; Hurtado et al., 2003). 

The deep-sea hydrothermal vent sites are characterized by high concentration of reduced sulfur 

compounds. There life is supported by the growth of chemolithoautotrophic bacteria, capable of 

oxidizing hydrogen sulfide to generate energy that is used to fuel carbon dioxide fixation into 

macromolecules (Compère et al., 2002; López-García et al., 2003). An extraordinary animal in 

these ecosystems is the giant tubeworm Riftia pachyptila. The adult worms do not have mouth, 

gut, or anus, and obtain all their energy and food from endosymbiotic chemolithoautotrophic 
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bacteria which are harbored in a specialized organ called trophosome. These worms have unique 

hemoglobin in their blood that binds oxygen and sulfide thereby transporting both from the 

surrounding seawater to the bacteria (Cavanaugh, 1994; Grzymski et al., 2008; Robidart et al., 

2008). In addition, many of the luminous animals show monospecific associations with 

bioluminescent bacteria and these are associated in specialized light organs. The selecting 

process of the single bacterial species, Vibrio fischeri, by the bobtail squid (Euprymna scolopes) 

is an example of environmental harvesting to take advantage of this bacteria’s bioluminescent 

capability for predator avoidance (Nyholm & McFall-Ngai, 2004).  

In addition, these associated bacteria also produce certain bioactive secondary metabolites. 

Rinehart (2008) reported the occurrence of such metabolites in sponges, molluscs, bryozoans and 

ascidians. Waddell & Pawlik (2000) showed the anti-fouling or anti-infective nature of these 

secondary metabolites which conferred anti-predatory protection (Pisut & Pawlik, 2002). In 

return, the host supplies adequate nutrition for proliferation of its endosymbionts. Graf & Ruby 

(1998) reported that Euprymna scolopes produce free amino acids as well as peptides to support 

the growth of its endosymbiont, Vibrio fischeri. 

In commensalism, one-organism benefits and the other is neither harmed nor helped. 

Commensalism represents a simple type of positive interaction and perhaps is the first step 

towards the development of beneficial relations (Reinheimer, 1986). Bacteria occur as ecto and 

endocommensals. In this relationship the bacteria do not extract nutrients from the host, but they 

do utilize the habitat provided by the host.  

 

Bacteria communities associated with coelenterate 
 

Coelenterates contain two phyla, the Ctenophora (comb jellies) and the Cnidaria, e.g. including 

corals, true jellyfish and sea anemones. Here, the associated bacterial community will be 

specifically addressed with corals, hydra and jellyfish (ctenophores and scyphozoan). 
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Bacteria communities associated with coral 
 

Coral reefs are the most diverse biological marine ecosystems and harbor an enormous diversity 

of marine organisms (Frias-Lopez et al., 2004; Rosenberg et al., 2007). Bacteria are known to be 

abundant and active around corals (Rohwer et al., 2002; Ritchie, 2006; Raina et al., 2009). Coral 

provides three habitats for bacterial community, including the coral surface mucus layer 

(Lampert et al., 2006; Ritchie, 2006), the coral tissue (the gastrodermal cavity) (Frias-Lopez et 

al., 2002) and the calcium carbonate skeleton within coral tissue itself (Kushmaro et al., 1996; 

Banin et al., 2000). The associations between bacteria and corals are suspected to play important 

roles, including nitrogen fixers (Williams et al., 1987; Shashar et al., 1994), sulfur compound 

metabolization (Raina et al., 2009), chitin decomposers (Ducklow & Mitchel, 1979) and provide 

organic compounds to the coral tissue (via photosynthesis produced by Cyanobacteria in the 

skeleton) (Fine & Loya, 2002). 

The abundance of bacteria associated with coral tissue is similar to those found in the mucus 

layer and both of them are 100-1000 fold higher than that in the surrounding seawater (Ducklow 

& Mitchel, 1979; Koren & Rosenberg, 2006). Moreover, these abundant bacterial groups seem to 

be specialized since the dominant bacterial communities associated with coral tissue are different 

from that colonized the surface mucus layer (Bourne & Munn, 2005; Koren & Rosenberg, 2006). 

In addition, the composition of the coral bacterial community differs from that of the 

surrounding seawater suggesting the association between the coral and its microbiota is specific 

(Frias-Lopez et al., 2002; Bourne & Munn, 2005; Sunagawa et al., 2009). Similar bacterial 

communities, in terms of composition, are associated with the same coral species (even if 

geographically separated), whereas different communities are found on different coral species 

indicating the species-specific associations with coral (Frias-Lopez et al., 2002; Bourne & Munn, 

2005; Lampert et al., 2006; Wegley et al., 2007). 

The most common bacterial communities of coral associations are Gammaproteobacteria, 

Alphaproteobacteria, Firmicutes, Bacillus/Clostridium (BC), Cytophaga-

Flavobacter/Flexibacter-Bacterioides (CFB) and Cyanobacteria (Ducklow & Mitchel, 1979; 

Rohwer et al., 2002; Frias-Lopez et al., 2004; Bourne & Munn, 2005; Rosenberg et al., 2007). 

None of the coral-associated bacterial 16S rDNAs belonged to the ubiquitous pelagic marine 

groups SAR11 and SAR116 (Rohwer et al., 2002). The most abundant bacterial groups 
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identified by culture-independent sequencing are Cyanobacteria and Alphaproteobacteria. In 

contrast, the cultured bacteria from the same sample are closely related to Gammaproteobacteria 

(Rohwer et al., 2001). 

 

Bacteria communities and Hydra 
 

The hydrozoan species “Hydra” is a model system in developmental biology since the 1980s 

(Fraune & Bosch, 2010). Epithelia of all organisms are colonized by complex and dynamic 

communities of microbes (Dale & Moran, 2006). The Hydra body represents a simplified 

structure. It consists of only two cell layers and few number of cell types. All cell types in Hydra 

are derived from only three distinct stem cell lineages, the ectodermal and endodermal epithelial 

stem cells and the interstitial stem cell lineage (Bosch, 2009).  

Bacteria have profound effects on tissue proliferation in Hydra (Rahat & Dimentman, 1982). The 

sterilized Hydra cannot proliferate asexually by budding (Rahat & Dimentman, 1982). 

Interestingly, this effect could be rescued by inoculating the bacteria from standard culture of 

Hydra (Rahat & Dimentman, 1982). Therefore, resident microbiota strongly affects development 

in Hydra. While this probiotic effect in Hydra remains mostly unexplained, in several 

invertebrates and vertebrates there is accumulating evidence that beneficial microbes have a 

crucial role in metabolism, immunity and development (Fraune et al., 2010). Bosch and his 

colleagues (Fraune et al., 2010) investigated the bacterial community associated with the 

different stages of Hydra from embryo to polyp. They found fewer and different bacterial 

community associated with early embryos than with later developmental stages. They further 

demonstrated that early embryonic stages of Hydra are capable of developing specific 

antimicrobial activity against certain bacterial to control bacterial colonization by using maternal 

antimicrobial peptides (Fraune et al., 2010).  

Similarly, a complex and dynamic community of bacterial colonizers in Hydra epithelium 

greatly differed from different species (Fraune & Bosch, 2007). They even found that individuals 

living in the wild were colonized by a similar bacterial community as compared with polyps 

grown in the lab over long period of time (Fraune & Bosch, 2007). These findings strongly 

indicate that distinct selective pressures are imposed on and within the Hydra epithelium.  The 

active selection of the specific bacterial community associated with Hydra is genetically encoded 



GENERAL INTRODUCTION 

10 

 

in the epithelium (Fraune & Bosch, 2007). Furthermore, bacterial community was significantly 

modulated in response to changes of the epithelia cell composition (Fraune et al., 2009). In 

particular, the dominant bacterial phylotype belonging to the Betaproteobacteria was decreased 

in polyps lacking the interstitial stem cell lineage (Fraune et al., 2009). These changes in the 

bacterial composition depending on the loss of the interstitial cell imply a direct interaction 

between cellular tissue composition and microbiota (Fraune et al., 2009). 

 

Bacteria and Jellyfish  
 

Bacterial communities associated with the lobate ctenophore Mnemiopsis leidyi and its natural 

predator Beroe ovata were firstly investigated in Tampa Bay, Florida, USA (Daniels & Breitbart, 

2012). They found that both ctenophore species contained fewer bacterial operational taxonomic 

units (OTUs) by terminal restriction fragment length polymorphism (T-RFLP) and lower 

diversity communities by 16S rRNA gene sequencing than the surrounding water column. Each 

ctenophore genus contained a unique microbiota (Daniels & Breitbart, 2012). Overall, 

Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes were the most abundant groups 

detected in ctenophores (Daniels & Breitbart, 2012). The B. ovata sample was dominated by an 

uncultured Alphaproteobacteria from the family Rhodospirillaceae. An uncultured Marinomonas 

sp. (Gammaproteobacteria belonging to the order Oceanospirillales) dominated the M. leidyi 

community, but was not detected in the water column or the B. ovata specimen. In addition, a 

bacterium of the genus Tenacibaculum accounted for the second highest number of clones in the 

B. ovata sample and was exclusive to this ctenophore (Daniels & Breitbart, 2012). Interestingly, 

Dinasquet et al. (2012) also reported that the dominant community associated with the empty gut 

of M. leidyi was related to Flavobacteriaceae (Bacteroidetes). In addition, temporal variation of 

bacterial community associated with ctenophore was revealed by Daniels & Breitbart (2012). 

In Cnidarian, pelagic larvae need undergo metamorphosis to develop into sessile polyp 

(Woollacott & Hadfield, 1996; Leitz, 1997; Holst & Jarms, 2010). Generally, an external cue is 

necessary for metamorphosis process. In marine environments almost all substrates are covered 

by biofilms. Within the biofilm certain bacteria are suggested to deliver the metamorphosis-

inducing stimulus (Clare et al., 1998). Bacteria and/or their products are also involved in the 

induction of settlement and metamorphosis in some scyphozoan (Müller & Leitz, 2002). Under 



GENERAL INTRODUCTION 

11 

 

aseptic conditions, no settlement of planulae of the jellyfish Aurelia aurita (Schmahl, 1985), 

Cassiopea andromeda (Hofmann & Brand, 1987) and the hydrozoan Hydractinia echinata (Leitz 

& Wagner, 1993) occurred. They were induced by incubation with Vibrio sp. isolated from 

aquarium material found to induce metamorphosis of Cassiopea (Hofmann et al., 1978). The 

density of microorganisms on artificial substrata positively correlated with settlement responses 

in Cyanea capillata (Brewer, 1976). The pedal stolons of Aurelia aurita were induced to settle 

by a bacterial species of the Family Micrococcaceae (Schmahl, 1985). 

Bacteria thrive in the dissolved organic carbon (DOC) released by live jellyfish which have been 

described both in the laboratory (Hansson & Norrman, 1995) and the field (Riemann et al., 2006). 

Titelman et al.(2006) confirmed that jellyfish could be a suitable substrate for specific bacteria 

community. Tinta and colleagues (Tinta et al., 2010; Tinta et al., 2012) investigated the 

decomposition process of jellyfish. The addition of jellyfish homogenate resulted in increased 

bacterial abundance and production, coupled with NH4
+ 

accumulation and oxygen consumption 

and dramatic changes in bacterial community composition. They observed a rapid shift in 

community composition from unculturable Alphaproteobacteria to culturable species of 

Gammaproteobacteria and Flavobacteria (Tinta et al., 2012). Jelly-DOM favored the rapid 

growth and dominance of specific bacterial phylogenetic groups (primarily 

Gammaproteobacteria) that were rare in ambient waters, implying that jelly-DOM was channeled 

through a small component of the in situ microbial assemblage and thus induced large changes in 

bacterial community composition (Condon et al., 2011). Condon et al. (2011) demonstrated that 

the effect of gelatinous organisms could alter food web dynamics by promoting microbial 

respiration, further fueling the microbial loop rather than being incorporated into biomass. 
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RESEARCH AIMS 

The aim of this thesis is to investigate the bacterial communities associated with jellyfish at 

Helgoland Roads (North Sea, Germany) from a wide range of angles. In contrast to the well-

described coral and Hydra microbiota, few previous studies have looked at the bacterial 

communities associates with jellyfish. Therefore, many questions regarding bacterial community 

associated with jellyfish, their abundance, composition, diversity and response to changing 

environmental parameters are unresolved. The current study aimed to answer some of the 

questions with special emphasis on the ctenophore and scyphomedusae. 

Bacterial communities associated with Ctenophore 

Although several studies on the bacterial community composition (BCC) of coelenterata were 

published in the past, it must be stated that the majority of these studies focused on corals. 

Compared to other marine invertebrates (e.g. sponges), the knowledge on ctenophore is still 

scarce here. The current study investigated the bacterial communities associated with the 

frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum 

and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). The aim was to 

find out whether different ctenophore species harbor distinct bacterial community. The bacterial 

community structure was determined via automated ribosomal intergenic spacer analysis 

(ARISA) fingerprinting and community composition was analyzed by ribosomal amplicon 

pyrosequencing. Small temporal scale comparison was carried out in Mnemiopsis leidyi. The 

experiment is presented in Chapter I. 

Bacterial communities associated with Scyphomedusa 

The metagenetic life cycle of scyphozoans consist of the sexual reproductive medusa generation 

and the asexual reproductive polyp generation. Although numerous studies have focused upon 

the general life history distribution, reproductive behavior, factors leading to strobilation, growth 

rates and impact of predation rate of medusae, bacteria associated with different life stages of 

Scyphozoa have received little attention. Therefore, in the current study, bacterial communities 

associated with different body parts and different life stages of two scyphomedusae Cyanea 
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lamarckii and Chrysaora hysoscella, which are common species in the German Bight, North Sea, 

were analyzed. This study aimed at investigating the following questions: (1) Are different body 

parts of scyphomedusae associated with different bacterial communities? (2) Does the bacterial 

community composition (BCC) vary in different life cycle stages of scyphomedusae? (3) Does 

the food source influence the bacterial community associated with polyps? The experiment is 

presented in Chapter II. 

The influence of DOM on bacterial community 

Previous studies focused on the impact of decomposition of jellyfish biomass on the microbial 

community. Their biomass is highly bio-available to “jellyfish – associated” and/or “free – 

living” heterotrophic bacteria. Jellyfish are also known to release large amounts of organic 

matter through excretion, feeding and mucus production. However, it remains unclear if jellyfish 

release specific carbon compounds during their metabolize processing and whether particular 

bacteria preferentially utilize such compounds. The aim was to identify how the planktonic 

bacterial communities respond to the dissolved organic matter released by live jellyfish. This was 

determined by a combination of ARISA fingerprinting and catalyzed reporter deposition 

fluorescence in situ hybridization (CARD-FISH) analysis. The impacts on bacterial abundance 

were investigated by flow cytometry. The study is presented in Chapter III.  
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OUTLINE 

The present thesis consists of a general introduction, three chapters and a general discussion. 

 

Chapter I (submitted to FEMS Microbial Ecology) 

Hao WJ, Gerdts G, Peplies J and Wichels A. 

Bacterial community associated with Ctenophore at Helgoland Roads, German Bight 

The laboratory investigations were carried out by Wenjin Hao. The planning, evaluation and 

manuscript writing was carried out by Wenjin Hao under the guidance of Antje Wichels and 

Gunnar Gerdts. Jörg Peplies was in charge of the analysis of 16S ribosomal amplicon 

pyrosequencing. 

 

Chapter II  

Hao WJ, Wichels A, Holst S and Gerdts G.  

Bacterial community associated with Scyphomedusae at Helgoland Roads, German Bight 

The planning, evaluation and manuscript writing was carried out by Wenjin Hao under the 

guidance of Antje Wichels and Gunnar Gerdts. Sabine Holst provided the technology for polyp 

culturing and fruitful discussions. 

 

Chapter III  

Hao WJ, Wichels A , Fuchs B and Gerdts G.  

Bacterial communities respond to the excretion of DOM released by live jellyfish 

The planning, evaluation and manuscript writing was carried out by Wenjin Hao under the 

guidance of Antje Wichels and Gunnar Gerdts. Jutta Niggemann assisted with the preparation of 

artificial seawater and will provide the data analysis of DOC and DOM. Bernhard Fuchs 

provided access to CARD-FISH methodology and Jörg Wolf assisted with the analysis of 

CARD-FISH samples. 
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Abstract 

Intense research has been carried out on jellyfish and ctenophores in recent years because they 

are increasingly recognized as marine ecosystem key elements, critical indicators and drivers of 

ecosystem performance and change. Contrary, the bacterial community associated with 

ctenophores is still poorly investigated. Based on Automated Ribosomal Intergenic Spacer 

Analysis (ARISA) fingerprinting and ribosomal amplicon pyrosequencing, we investigated the 

bacterial community associated with the frequently occurring ctenophore species Mnemiopsis 

leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the 

German Bight (North Sea). We observed significant differences between the associated bacterial 

communities of the different ctenophore species based on ARISA patterns. The bacterial 

communities of all ctenophore species were dominated by Proteobacteria as revealed by 

pyrosequencing. M. leidyi and P. pileus mainly harbored Gammaproteobacteria, with 

Marinomonas being the dominant phylotype of M. leidyi. In contrast, in P. pileus, 

Pseudoalteromonas and Psychrobacter were the dominating phylotypes of 

Gammaproteobacteria. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by 

the genus Thalassospira. For B. infundibulum, the bacterial community is comprised of 

Alphaproteobacteria and Gammaproteobacteria in equal amounts consisting in particular of the 

genera Thalassospira and Marinomonas. Our results indicated that the bacterial community 

associated with ctenophores might be highly species-specific. 
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Introduction 

Ctenophores (comb jellies) represent a distinct phylum of gelatinous invertebrates that are 

ubiquitous in all marine environments. Blooms and invasions of ctenophore have been 

documented in many estuarine, coastal, and open-ocean ecosystems worldwide over the past a 

few decades (Purcell & Arai, 2001; Pitt et al., 2009; Richardson et al., 2009). It was 

hypothesized that ctenophores benefit from multiple changes in the ocean which are attribute to 

anthropogenic impacts, including eutrophication, overfishing and global warming. The numbers 

of blooms continue to increase globally and some predictions suggest that these gelatinous 

animals may be ultimately dominant in the oceans in the future, instead of fish-dominated 

systems (Purcell et al., 2007; Richardson et al., 2009). 

Ctenophores and scyphomedusae play an important role in the marine ecosystems by 

substantially affecting the structure of the planktonic food web structure (Schneider & Behrends 

1998; Brodeur et al., 2002; Sommer et al., 2002; Purcell, 2003). On the other hand, they release 

large amount of nutrients and dissolved organic matter (Nemazie et al., 1993; Schneider & 

Behrends, 1998) through their metabolic activities, presumably directly stimulating bacterial 

growth and potentially influencing bacterial community composition (Hansson & Norrman, 1995; 

Titelman et al., 2006). Condon et al. (2011) found that the microbial loop was promoted by the 

jelly-like DOM produced by ctenophores which was readily available for heterotrophic bacteria. 

Furthermore, the bacterial community of water column shifted from Alphaproteobacteria to 

Gammaproteobacteria in response to the addition of the jelly-DOM. All these findings directly 

indicate the ability of ctenophores to affect carbon cycling and the structure of free-living 

bacterial communities. 

Studies of bacterial communities associated with marine animals have largely focused on 

sponges, corals, bryozoans and crustaceans (Frias-Lopez et al., 2004; Wang et al., 2004; 

Kittelmann & Harder, 2005; Ritchie, 2006; Webster et al., 2010). It has been demonstrated that 

bacterial communities associated with marine invertebrates differ from those in the water column 

and display host-specificity (Rohwer et al., 2002; Thakur et al., 2004; Webster et al., 2010), 

while being sometimes variable for species, habitats or seasons (Friedrich et al., 2001; Wichels 

et al., 2006; Sharp et al., 2007). The outer surface of marine organisms represents the major 

physiological interface with the environment. Bacterial colonization of a “living” surface may be 
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influenced by several factors including the age of the colonized organism and the release of 

organic metabolites or extracellular polymers which has been exemplified for various marine 

invertebrates such as ascidians (Wahl et al., 1994), corals (Neulinger et al., 2008), sponges 

(Thakur et al., 2003) and bryozoans (Kittelmann & Harder, 2005). These epibiotic bacteria have 

been reported not only to pose direct positive or negative effects on the colonized organism, such 

as interferences with gas and nutrient exchange (Wahl et al., 2011) or a susceptibility to diseases 

(Ritchie, 2006), but also to involve in the development and evolution of the organism (McFall-

Ngai & Ruby, 1991; Nyholm & McFall-Ngai, 2004).  

Unfortunately, bacterial communities associated with ctenophores so far have not been fully 

characterized and the functions and mechanisms of associated bacterial communities have not 

been determined. Until now, only two studies have been published concerning this subject. 

Daniels and Breitbart (2012) found that specimens of two ctenophore species (Mnemiopsis leidyi 

and Beroe ovata) from Tampa Bay contained fewer bacterial OTUs by T-RFLP and a low 

diversity as revealed by 16S rRNA clone library analysis, when compared with the water column. 

Interestingly, Dinasquet (2012) who applied 454 pyrosequencing of 16S rRNA genes found a 

similar bacterial community composition (BCC) associated with M.leidyi in the Gullmar fjord at 

the west coast of Sweden.  

The aim of this study was to investigate the bacterial community associated with different 

ctenophore species in the German Bight (North Sea). Specimens were collected from the natural 

environment as they occurred in the water column. Mnemiopsis leidyi, which originally occurred 

in South America (GESAMP, 1997), has invaded the Black, Azov, Marmara and Aegean Seas 

during the last two decades (Purcell et al., 2001) and was recently identified as an invasive 

species at Helgoland Roads (Boersma et al., 2007; Hamer et al., 2011). Conversely, Beroe sp., 

Bolinopsis infundibulum and Pleurobrachia pileus are indigenous ctenophores at Helgoland 

Roads (Greve, 1970).  
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Materials and methods 

Sample collection and preparation  

Individual specimen of ctenophores Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and 

Pleurobrachia pileus were collected at Helgoland Roads in the Germany Bight (54˚11.3′N, 

7˚54.0′E) from Nov. 2009 to Oct. 2010 three times per week using a 500 µm mesh trawl towed 

by the research vessel ‘‘Aade’’. The samples were transferred to the laboratory within 2 h and 

observed under a dissecting microscope for morphological identification. The identification was 

determined based on Greve (1975), Faasse & Bayha (2006) and Byern et al. (2010). Maximum 

10 intact individuals of each species were collected at each sampling day. Each individual was 

carefully rinsed 5 times with sterile seawater to remove transient and loosely associated 

microorganisms from the surfaces of ctenophores. All specimens were checked to make sure no 

visible gut content and stored at -20˚C and freeze-dried prior to DNA extraction. 

DNA extraction 

Total genomic DNA was extracted from freeze-dried tissue using CTAB (cetyl-trimethyl-

ammonium bromide) according to the modified protocol of Gawel (1991). Ctenophore samples 

were homogenized by using a sterile mortar and pestle. Aliquots from ground samples (1 mg) 

were transferred to 2 mL pre-heated (60°C) CTAB buffer (3% CTAB, 1.4M NaCl, 20mM EDTA, 

100mM Tris-HCl, 0.2% mercaptoethanol) and incubated at 65°C for 30 min. 1 mL STE buffer 

(6.7% saccharose, 50mM Tris, 1mM EDTA, pH 8), lysozyme (10mg/mL) and proteinase K 

(10mg/mL) were added to samples and incubated at 50°C for further 30min. DNA extraction was 

performed twice using phenol–chloroform–isoamylalcohol (25 : 24 : 1) , followed by DNA 

precipitation with isopropanol overnight at -20°C. DNA was washed with 75% ethanol and 

finally dried in sterile bench. All DNA extracts were dissolved 30-50µl sterile water and served 

as template DNA for the PCR. The quantity and quality of extracted DNA were determined by 

microphotometry using Tecan Infinite 200 NanoQuant. 
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Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

For the PCR reaction, the internal transcribed spacer region was amplified with the forward 

primers L-D-Bact-132-a A-18 (5’-CCG GGT TTC CCC ATT CGG-3’) and the fluorescently 

labeled reverse primer S-D-Bact-1522-b-S-20 (5’-TGC GGC TGG ATC CCC TCC TT-3’) 

(Ranjard et al., 2000). PCR reaction and cycling conditions were performed as described 

previously (Krause et al., 2012). In particular, 50 ng of genomic DNA template was applied in 

each reaction. Based on the intensities of PCR products on agarose gels, original or diluted PCR 

products were mixed with equal volume of stop mix and separated on 5.5% polyacrylamide gels 

prepared according to the manufacturer’s protocol (LI-COR Biosciences, Lincoln, NE, USA), as 

well as the sample preparation and running condition. We used a 50-1500bp standard as a size 

reference (all materials: LI-COR Biosciences, Lincoln, NE, USA). 

16S ribosomal amplicon pyrosequencing 

Based on significant differences in bacterial community structure as revealed by ARISA 

fingerprints, 96 samples from M. leidyi, 44 from Beroe sp. 44 from B. infundibulum and 18 

samples from P. pileus were chosen and pooled for each ctenophore species. The sequencing 

approach was performed with these 4 pooled samples by LGC Genomics (Berlin, Germany). The 

V1-V6 region of the 16S RNA gene was amplified using the following primer set: forward GM3 

5'-AGAGTTTGATCMTGGC-3' and reverse 907R 5'-CCGTCAATTCMTTTGAGTTT-3'. 

Sequencing was performed on a 454 Roche Genome Sequencer FLX + Titanium.  

Statistical analysis 

Analysis of ARISA data  

ARISA gel images were analyzed by using BioNumerics 6.6 software (Applied Maths, Sint-

Martens-Latem, Belgium). Normalization of band patterns was conducted automatically 

referencing by the size standard and the presence or absence of each band was determined based 

on the normalized minimum threshold density (5%). Binning to band classes was performed 

according to Kovacs et al. (2010) and Brown (2005). Bands smaller than 300bp were neglected 

for multivariate analyses.  



 CHAPTER I 

23 

 

Multivariate analyses 

The permutational multivariate ANOVA (PERMANOVA) with fixed factor was applied to 

investigate the differences of four species regarding their associated bacterial community 

structure (BCS) based on Jaccard coefficient. Principal co-ordinate analysis (PCO) was 

performed to visualize patterns of the bacterial community influence by species. For all 

multivariate analyses, we used Primer 6 with the add-on package PERMANOVA+ (PRIMER-E 

Ltd, Plymouth, UK). 

Processing of pyrosequencing data  

Sequence reads from PCR amplicon pyrosequencing were processed by bioinformatics pipeline 

of the SILVA rRNA gene database project (Pruesse, 2007) which has been described by Teeling 

et al. (2012) and Ionescu et al. (2012). Dereplication (identification of identical reads ignoring 

overhangs), clustering (OTU definition based on a non-redundant subset of reads) and 

classification were independently performed with sufficient quality sequences. Finally, the 

quantitative information of individual reads representing a taxonomic path was obtained. The 

relative abundances of the identified taxonomic groups were calculated as percentages. However 

it should be mentioned here, that the numbers of the sequence reads do only reflect the rDNA 

abundances in the amplicon pool and are therefore an approximation of the natural abundance. 
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Results 

BCC of different ctenophores species  

Four ctenophore species, including Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and 

Pleurobrachia pileus, were occurred at Helgoland Roads from Nov. 2009 to Oct. 2010. From 

January to March in 2010 no animals could be observed. Furthermore, the freeze-dried biomass 

of juvenile (diameter small than 10mm) Pleurobrachia pileus collected in April 2010 was not 

sufficient for BCC analyses. Hence, no data of ctenophores were obtained from January to April 

in 2010. In total, 496 ctenophore specimens were collected and analyzed (Tab.1). M. leidyi was 

present and abundant throughout the whole sampling period except for May 2010 and 354 

individuals were collected. In contrast, Beroe sp. and P. pileus occurred generally in low 

numbers. 44 individuals of Beroe sp. were collected except in August 2010 and 42 individuals of 

P. pileus were collected in May, June and July 2010. B. infundibulum only appeared in June 

2010 where 56 individuals were collected. For all samples DNA was successfully extracted and 

amplified by the modified protocols of Gawel (1991) and Ranjard (2000). 

Based on ARISA fingerprints, the PCO plot depicted the BCC of all specimens of the four 

ctenophore species (M. leidyi, Beroe sp., B. infundibulum and P. pileus) (Fig.1). The bacterial 

communities of different ctenophore species were well separated in PCO ordination which was 

confirmed by PERMANOVA main test (Tab. 2). Pair-wise comparisons further illustrated that 

the four ctenophore genera contained distinct different bacterial community (P=0.001) (Tab. 3). 

The highest amount of variation occurred between M.leidyi and all other three species (t statistic).  

The bacterial richness (alpha diversity) (supplementary Fig.1), as estimated by ARISA-OTUs 

(operational taxonomic units) numbers, was variable among all four species. The highest OTU 

richness was recorded in Beroe sp. (S = 36), followed by B. infundibulum (S = 22) and M.leidyi 

(S = 21), while the lowest richness was observed in P.pileus (S = 5).  

Temporal variation of BCC in M. leidyi 

Mnemiopsis leidyi was the only species which was collected almost throughout the whole 

sampling period except for May (no occurrence) and June 2010 (one specimen). Hence, the 

seasonal trend in the BCC was only analyzed for this species. In the PCO plot (Fig. 2), BCCs of 
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summer samples (July and August) clearly clustered together and were separated from those of 

autumn and winter (Sep., Oct., Nov. and Dec.). Consistent with the PCO ordination, 

PERMANOVA main test and pair-wise comparisons of BCCs revealed significant differences 

regarding factor “month” (P=0.001) (Tab. 4 and Tab. 5). This indicated a significant seasonal 

variation in the bacterial community of M. leidyi.  

Classification of DNA sequence reads 

Based on the findings of the ARISA analyses, randomly chosen samples from each ctenophore 

species were pooled and subjected to 16S ribosomal amplicon pyrosequencing. Concerning this 

subset of samples, PCO ordination and PERMANOVA analyses again displayed significant 

difference between the BCCs of the ctenophore species (Fig. 3, Tab.6 and Tab.7). Similar 

variation of both selected (Tab. 6) and total samples (Tab. 2) explained by Sq.root indicated that 

the sample subsets represented the bacterial community associated with each ctenophore species. 

In total 244885 raw pyrosequencing reads of the 16S rDNA spanning the hypervariable regions 

V1-V6 were obtained from the four ctenophore species M. leidyi, Beroe sp., B. infundibulum and 

P. pileus. After removing insufficient quality sequences and sequences that could not be 

adequately sub-classified, 128244 reads were used for subsequent analysis including 21721 of 

Beroe sp., 21118 of B. infundibulum, 28318 of M. leidyi and 57087 of P. pileus. Taxonomic 

classification of bacterial reads from the four ctenophore species at different levels were 

determined by SILVA classifier based on 98% similarity. Singletons (n=1) and rare reads (<1%) 

were omitted in the results presented in Figure 4. The percentages of the different phylogenetic 

groups were taken to describe the relative abundances of these groups within the samples. 

However it should be mentioned here, that the numbers of the sequence reads are only an 

approximation of the natural abundance and do only reflect the rDNA abundances in the 

amplicon pool. 

Altogether four bacterial phyla were recovered from the four ctenophore species (Fig. 4A). 

Proteobacteria was the dominating phylum in all four ctenophore species, with the highest ratio 

in P.pileus (98%), followed by Beroe sp. (93%), B. infundibulum (89%) and M. leidyi (88%). 

Actinobacteria were present in four ctenophores species with different ratio, the highest in B. 

infundibulum (9%), followed by M. leidyi (6%), Beroe sp. (2%) and P. pileus (1%). Reads 
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matching to Tenericutes (1-5%) and Firmicutes (0-1%) were found to be the minor groups 

(Fig.4A). Tenericutes were mainly present in Beroe sp. and M.leidyi with similar ratios (~ 5%).  

Within Proteobacteria (Fig.4B), Gammaproteobacteria were dominant both in M. leidyi (99%) 

and P.pileus (98%). In contrast in Beroe sp., Alphaproteobacteria (94%) were the major group of 

Proteobacteria, followed by Gammaproteobacteria (4%) and Betaproteobacteria (2%). For 

B.infundibulum, Proteobacteria consisted of 47% Alphaproteobacteria and 53% 

Gammaproteobacteria.    

Within the Gammaproteobacteria at the family level (Fig.4C), particularly Oceanospirillaceae 

were the dominant bacterial group in M. leidyi (94%) and B. infundibulum (62%), and 

interestingly also in Beroe sp. (59%) with only a small proportion of Gammaproteobacteria (4%). 

Contrary, Pseudoalteromonadaceae (55%) and Moraxellaceae (43%) constituted a significant 

portion of reads from P. pileus. In addition, the bacterial community of Beroe sp. and M. leidyi 

consisted of 19% and 4% Vibrionaceae, respectively. At the genus level of 

Gammaproteobacteria (Fig. 4D), Marinomonas dominated the bacterial community in M. leidyi 

(94%), B. infundibulum (63%) and Beroe sp. (60%). For P. pileus, there were two dominant 

genera: Psychrobacter (43%) and Pseudoalteromonas (56%). Additionally, reads affiliated to 

Pseudoalteromonas (20%) were also detected in B. infundibulum. 

Within Alphaproteobacteria at the family level (Fig.4E), Rhodospirillaceae were the dominant 

bacterial family in Beroe sp. (100%), B. infundibulum (93%) and P. pileus (87%). In contrast 

regarding M. leidyi, the Alphaproteobacteria representing only 1% at class level were dominated 

by Rhodobacteraceae family (56%). At the genus level (Fig.4F), Thalassospira dominated the 

bacterial community of Beroe sp. (100%), B. infundibulum (94%) and P. pileus (89%). The 

Alphaproteobactria in M. leidyi consisted of 18 different genera, each with very low numbers and 

uncultured Rhodobacteraceae (20%) as the main group.  
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Figure 1. Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with four ctenophore species based on Jaccard coefficient from ARISA profiles. 
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Figure 2. Principal coordinate (PCO) analysis presenting the differences of bacterial 

communities associated with Mnemiopsis leidyi based on Jaccard coefficient from ARISA 

profiles 
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Figure 3. Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with four ctenophores species which applied for 16s ribosomal amplicon pyrosequencing based 

on Jaccard coefficient. (Number of month are shown beside the species symbols) 
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Figure 4. Taxonomic classification of bacterial reads from different ctenophore species at 

different levels using SILVA classifier based on 98% similarity omitting singletons (n=1) and 

rare reads (<1%). (A. Phylum, B. Classes of Proteobacteria, C. Family of Gammaproteobacteria, 

D. Genera of Gammaproteobacteria, E. Family of Alphaproteobacteria, F. Genera of 

Alphaproteobacteria.) 
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Figure 5. Phylogenetic tree based of partial 16S ribosomal gene of the genus Marinomonas spp. 

illustrating the occurrence of closely related members of this genus in the ctenophore species 

Mnemiopsis leidyi from different geographical origin (green: this study, orange: Dinasquet et al., 

2012, blue: Daniels & Breitbart, 2012) 
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Table 1. Amount of ctenophores collected at Helgoland Roads during the sampling period from 

November 2009 to October 2010. (The numbers shown here are summed up by weeks of each 

month) 

     Month. Year         

Species 11.09 12.09 05.10 06.10 07.10 08.10 09.10 10.10 

Mnemiopsis leidyi 52 38 0 1 98 74 42 49 

Beroe sp. 2 5 0 3 6 0 9 19 

Bolinopsis infundibulum 0 0 10 28 3 0 0 0 

Pleurobrachia pileus 0 0 0 57 0 0 0 0 

 

Table 2. PERMANOVA main tests of bacterial community composition associated with four 

ctenophore species based on Jaccard dissimilarities of ARISA profiles.  

Significant results (p (perm)<0.05) are highlighted in bold. Displayed are tests for the factor 

‘species’ and the partitioning of multivariate variation. p-values were obtained using type III 

sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation 

attributable to that factor in the model, in units of Jaccard dissimilarities. 

Source of variation d.f. SS pseudo F p (perm) Perms Sq. root 

Species 3 223000 21.718 0.001 994 30.739 

Residuals 489 1680000    58.551 

Total 492 1900000     
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Table 3. PERMANOVA pair-wise comparisons of bacterial community composition associated 

with four ctenophore specie based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm)<0.05) are highlighted in bold. Displayed are pair-wise a posteriori 

comparisons of the factor “species”. 

Comparison t (perm) p (perm) Perms 

Beroe sp. vs. B.infundibulum 3.4608 0.001 998 

Beroe sp. vs. M. leidyi 4.0271 0.001 999 

Beroe sp. vs. P. pileus 3.1212 0.001 997 

B. infundibulum vs. M. leidyi 5.7974 0.001 999 

B. infundibulum vs. P. pileus 3.6843 0.001 998 

M. leidyi  vs. P.pileus 4.7464 0.001 996 

 

Table 4. PERMANOVA main tests of bacterial community composition associated with 

Mnemiopsis leidyi based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor 

‘Month’ and the partitioning of multivariate variation. p-values were obtained using type III 

sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation 

attributable to that factor in the model, in units of Jaccard dissimilarities. 

Source of variation d.f. SS pseudo F p (perm) Perms Sq. root 

Month 6 211000 12.424 0.001 997 25.98 

Residuals 347 984000    53.246 

Total 353 120000     
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Table 5. PERMANOVA pair-wise comparisons of bacterial community composition associated 

with Mnemiopsis leidyi based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise a posteriori 

comparisons of the factor “Month”. 

Comparison t (perm) p (perm) Perms 

7, 8 3.3283 0.001 997 

7, 12 4.0879 0.001 998 

7, 11 4.7004 0.001 998 

7, 9 3.976 0.001 998 

7, 10 4.6726 0.001 999 

8, 12 3.1392 0.001 999 

8, 11 3.7009 0.001 997 

8, 9 2.6566 0.001 998 

8, 10 3.3845 0.001 999 

12, 11 2.5652 0.001 999 

12, 9 3.4674 0.001 998 

12, 10 4.3174 0.001 999 

11, 9 3.7679 0.001 997 

11, 10 4.5288 0.001 997 

9, 10 3.8645 0.001 999 

 

 

 

 

 

 

 

 



 CHAPTER I 

35 

 

Table 6. PERMANOVA main tests of bacterial community composition associated with four 

ctenophores species which applied for 16s ribosomal amplicon pyrosequencing based on Jaccard 

dissimilarities of ARISA profiles. 

Significant results (p (perm)<0.05) are highlighted in bold. Displayed are tests for the factor 

‘species’ and the partitioning of multivariate variation. p-values were obtained using type III 

sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation 

attributable to that factor in the model, in units of Jaccard dissimilarities. 

Source of variation d.f. SS pseudo F p (perm) Perms Sq. root 

Species 3 115000 11.092 0.001 995 28.24 

Residuals 195 674000    58.804 

Total 198 789000     

 

Table 7. PERMANOVA pair-wise comparisons of bacterial community composition associated 

with four ctenophores species which applied for 16s ribosomal amplicon pyrosequencing based 

on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm)<0.05) are highlighted in bold. Displayed are pair-wise a posteriori 

comparisons of the factor “species”. 

Comparison t (perm) p (perm) Perms 

Beroe sp. vs. B.infundibulum 3.1676 0.001 997 

Beroe sp. vs. M. leidyi 3.2441 0.001 999 

Beroe sp. vs. P. pileus 2.3305 0.001 996 

B. infundibulum vs. M. leidyi 4.4218 0.001 998 

B. infundibulum vs. P. pileus 2.4871 0.001 996 

M. leidyi  vs. P.pileus 2.8418 0.001 999 
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Discussion 

Although several studies on the bacterial community composition (BCC) of coelenterata were 

published in the past, it must be stated that the majority of these studies focused on corals. 

Compared to other marine invertebrates (e.g. sponges), the knowledge on ctenophore is still 

scarce here (studies from below). This is even more the fact concerning ctenophora with only 

two currently published studies (Daniels & Breitbart, 2012; Dinasquet et al., 2012). In this 

context, present study is the first investigation on the BCC of frequently occurring ctenophore 

species at Helgoland Roads: Mnemiopsis leidyi, Beroe sp., Pleurobrachia pileus and Bolinopsis 

infundibulum. 

Gammaproteobacteria were highly dominant in the bacterial community associated with M. 

leidyi and P. pileus. However, the composition of the Gammaproteobacteria was completely 

different in M. leidyi and P. pileus. In the present study, three major groups Oceanospirillaceae, 

Pseudoalteromonadaceae and Moraxellaceae were detected in these ctenophore species, in 

particular, Marinomonas, Pseudoalteromonas and Psychrobacter. Marinomonas highly 

dominated the community of M. leidyi, Beroe sp. and B. infundibulum in our study. Bacteria of 

the genus Marinomonas have been previously reported in bacterial communities of corals, 

sponges and bryozoans (Li et al., 2007; Heindl et al., 2010; Chimetto et al., 2011). Interestingly 

in two recent studies on the BCC of ctenophore (Daniels & Breitbart, 2012; Dinasquet et al., 

2012) performed in the Tampa Bay, Gulf of Mexico and the Gulmar Fjord, Marinomonas was 

also identified as the prominent genus. Figure 5 exemplarily shows a phylogenetic tree of 

Marinomonas spp. related DNA sequences retrieved from those two studies as well as from our 

study. This occurrence of closely related Marinomonas species from different geographical 

origins gives probably evidence to suggest that Marinomonas is a common member of the 

bacterial community associated with ctenophora on a more global scale, but this need to be 

proven in further studies. If this is the case, the functional role of this genus in this consortium 

has to be elucidated (symbiosis, commensalism and pathogen). It is known, that Marinomonas 

contain multifunctional polyphenol oxidases which are able to oxidize a wide range of substrates 

(Solano & Sanchez-Amat, 1999) and are involved in a series of secondary metabolism and 

biodegradative processes (Sanchez-Amat et al., 2001). Lucas-Elio (2005) found that M. 

mediterranea synthesizes an antibacterial protein with activity against both gram-positive and 
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gram-negative bacteria. Hence, it may be speculated that these bacteria have the metabolic 

capacity to colonize the surface of ctenophore species as well as to degrade gelatinous tissue.  

Bacteria of the genus Pseudoalteromonas usually do not account for more than 1% of the total 

counts in the free-living bacterial community in North Sea. Interestingly, they are frequently 

detected in the attached fraction of the marine bacterial community (Eilers et al., 2000). 

Moreover, they were also frequently found in association with living surface of eukaryotes such 

as sponges, mussels, pufferfish and a range of algae (Holmström et al., 2002). Our 

pyrosequencing results showed that Pseudoalteromonas occurred in B. infundibulum and P. 

pileus. Bacteria of this genus are known to produce a variety of highly bioactive compounds, 

including extracellular enzymes, exopolysaccharides and a range of different molecular weight 

compounds with antimicrobial, anti-fouling, algicidal and various pharmaceutically relevant 

activities (Holmström & Kjelleberg, 1999; Bowman, 2007). These capabilities successfully 

enable them to compete for nutrients and colonize surfaces (Holmström et al., 2002). It is 

possible that such antibacterial activities might prevent the colonization of other bacterial groups 

resulting in the lower diversity in the community of B. infundibulum and P. pileus compared 

with other ctenophores (M. leidyi and Beroe sp.) (Fig. 4 and Supplemental Fig.1). Tinta et al. 

(2012) observed a rapid shift in the community composition from Alphaproteobacteria to 

Gammaproteobacteria, which was highly dominated by Pseudoalteromonas, in response to the 

addition of jellyfish substrate. The majority of Pseudoalteromonas species are characterized by 

specifically hydrolytic activities (Ivanova et al., 1998). Hence, it is not surprising that jellyfish 

biomass is faster decomposed compared to non-gelatinous zooplankton (West et al., 2009; Frost 

et al., 2012) whose biochemical composition is comprised of protein rich organic matter (Hoeger, 

1983; Clarke et al., 1992; Finenko, 2001). This indicates that jellyfish represent high quality 

particulate organic matter (POM) for bacteria (Titelman et al., 2006; Pitt et al., 2009; Tinta et al., 

2010).  

Bacteria of the genus Psychrobacter, which comprise of strictly aerobic chemo-organotrophic, 

mainly psychro-tolerant and halo-tolerant, nonmotile gram-negative cocci (Shcherbakova et al., 

2009), were observed only in P. pileus. These bacteria have previously been isolated from a 

variety of low temperature marine environments (Romanenko et al., 2004), Antarctic sea ice 

(Heuchert et al., 2004; Shivaji et al., 2005), deep seawater (Maruyama et al., 2000) and the 

stomach contents of the Antarctic krill (Denner et al., 2001). So far little is known specifically 



CHAPTER I 

38 

 

concerning their role and function in marine ecosystems. Recent investigations indicate that the 

distribution of this genus is even more cosmopolitan than originally anticipated (Pukall et al., 

2001). 

Alphaproteobacteria, another important group in the associated bacterial community of 

ctenophores, dominated the communities of Beroe sp. (~94%) and B. infundibulum (~47%). 

Most prominent group is the genus Thalassospira (Rhodospirillaceae) which is known to be 

chemotactic toward inorganic phosphate (Hütz et al., 2011). Thalassospira can utilize 

hydrocarbons, carbohydrates, organic acids or amino acids as sole carbon sources for growth and 

degrade polycyclic aromatic hydrocarbons (PAHs) in oil-contaminated seawater (Kodama et al., 

2008). Interestingly the bacterial community of B. ovate from Tampa Bay was also dominated by 

members of this genus which is in accordance with our findings. In their study, the bacterial 

clones affiliate to Thalassospira in both M. leidyi and B. ovate (Daniels & Breitbart, 2012). In 

contrast, Dinasquet et al. (2012) found Thalassospira neither in tissue nor in gut samples. 

Bacteria of the Rhodobacteraceae dominated the Alphaproteobacteria associated with M. leidyi 

in the Gullmar fjord (Dinasquet et al., 2012) which is in agreement with our findings that 

Rhodobacteraceae was the major group in Alphaproteobacteria associated with M. leidyi at 

Helgoland Roads even though they only account for 1% of the whole community (Fig. 4B and 

4E).  

Except for the predominant Proteobacteria, other phyla, such as Actinobacteria, Tenericutes and 

Firmicutes, were detected in small numbers in our study. Additionally the taxonomic 

composition of these phyla in each ctenophore species was different among the four ctenophores 

species with no common trend. Actinobacteria mainly occurred in the community of B. 

infundibulum and M. leidyi. Notably Dinasquet et al. (2012) found Actinobacteria especially in 

the gut community of M. leidyi. Probably the presence of Actionbacteria, although we checked 

the animals for empty guts, is the remnants of the gut community which were still present in 

some of our samples. Mycoplasma and Spiroplasma, from the phylum Tenericutes, occurred 

occasionally in four ctenophores (data not shown). Mycoplasma occurred in M.leidyi and B. 

infundibulum with varying ratios of 4% and 1%, respectively. Spiroplasma was present in 

M.leidyi and Beroe sp. with 1% and 5%, respectively. Both bacterial groups were reported in B. 

ovate and M.leidyi from the Gulf of Mexico also in low numbers (Daniels & Breitbart, 2012). 
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The presence of Tenericutes in ctenophores from geographically disparate regions might again 

hint to a specialization of certain bacterial groups associated with ctenophores. 

Bacteria of the Bacteroidetes phylum usually occur in coastal and marine environments 

throughout the year, partly dominating the bacterioplankton in the North Sea especially during or 

after phytoplankton blooms (Teeling et al., 2012). Interestingly, the Bacteroidetes seem to play a 

minor role with < 1% occurrence in all ctenophore species in present study. However, members 

of this phylum were present in M. leidyi (10%) and B. ovata (25%) at Tampa Bay (Daniels & 

Breitbart, 2012). Investigation of different body parts of M. leidyi, Dinasquet et al. (2012) 

reported that specifically the gut community of starved M. leidyi was dominated by the genus 

Tenacibaculum, a Flavobacterium related to the fish pathogen Tenacibaculum maritimum with 

strong proteolytic activity (Bernardet & Nakagawa, 2006; Ferguson et al., 2010; Delannoy et al., 

2011; Mitchell et al., 2013). Recent research showed that the physical damage in the gill disease 

of Salmo salar (farmed salmon) was caused by nematocysts which was accompanied by the 

introduction of pathogen bacteria, such as Tenacibaculum maritimum (Ferguson et al., 2010). T. 

maritimum was isolated from various species of jellyfish, including the hydromedusae Solmaris 

corona (Baxter et al., 2011), the scyphomedusae Pelagia noctiluca (Doyle et al., 2008) and 

Aurelia aurita (Mitchell et al., 2013). It has recently been implicated that certain jellyfish species 

may act as vectors of bacterial disease for fishes (Mitchell & Rodger, 2011). However, according 

to our findings, the absence of Bacteroidetes in our study can be taken as evidence for successful 

defecation and cleaning of the ctenophores before further processing ctenophore biomass since 

Bacteroidetes are commonly found to be associated with small plankton organisms, potential 

food of ctenophores at Helgoland Roads.  

In the present study, the bacterial communities associated with ctenophores are clearly 

dominated by Proteobacteria of the Alpha- and Gamma class and some minor phyla with 

variable composition in respect to the different ctenophore species. Comparison between the 

BCC associated with ctenophore and the bacterioplankton community at Helgoland Roads 

reveals strong differences both in diversity and composition. Teeling et al. (2012) stated that 

distinct populations of Bacteroidetes (Flavobacteria 89-98%), Gammaproteobacteria (Reinekea 

spp. and SAR92) and Alphaproteobacteria (2/3 SAR11 and 1/3 Rosebacter) were predominant in 

the bacterioplankton at Helgoland Roads. These phyla also dominated the community of various 

planktonic organisms such as diatoms and dinoflagellates (Kan et al., 2007; Sapp et al., 2007 a; 
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Sapp et al., 2007 b; Sapp et al., 2007 c; Gilbert et al., 2012). The dominant groups of 

ctenophores within Gammaproteobacteria, such as Pseudoalteromonas, and Psychrobacter are 

detected frequently in seawater but with relative low percentages. In contrast Marinomonas so 

far was identified only occasionally in seawater (Eilers et al., 2000). Another prominent class in 

ctenophores, the Alphaproteobacteria was composed of clearly different members as compared 

with planktonic bacteria. Thalassospira, as the most abundant group associated with Beroe sp., B. 

infundibulum and P. pileus, has not been found in the waters of Helgoland Roads so far (Eilers et 

al., 2000; Eilers et al., 2000; Eilers et al., 2001; Gerdts et al., 2004; Teeling et al., 2012). 

Obviously, the ctenophores share similar bacterial groups on a large geographical scale in waters 

of the German Bight, the Gulmar Fjord and Tampa Bay (e.g. Marinomonas spp., Fig 5). In 

addition the BCC of the surrounding seawater is different in all cases. From these clear 

compositional differences in the bacterial communities of ctenophores and bacterioplankton, we 

assume that the observed bacterial community in ctenophores is specifically associated. 

Bacterial communities associated with other marine invertebrates have been investigated at 

Helgoland Roads in the past. Schuett et al. (2007) found that intra-tentacular bacteria of the sea 

anemone Metridium senile were affiliated to Gamma- and Betaproteobacteria, including the 

families Hahellaceae, Burkholderiaceae and Comamonadaceae (Specifically, Endozoicimonas 

elysicola, Pseudomonas saccharophilia and Ralstonia pickettii). These three genera were also 

detected with very low ratios (less than 1%) in the bacterial community associated with Beroe sp. 

and M.leidyi in our study. Both of R. pickettii and P. saccharophilia are common endobiotic 

bacteria and were already identified in the ascidian tunic matrix of Diplosoma migrans collected 

from Helgoland (Schuett et al., 2005). Pukall et al. (2001) investigated the culturable bacteria 

associated with the North Sea bryozoans Flustra foliacea. Gammaproteobacteria identified as 

Shewanella frigidimarina, Pseudoalteromonas sp. and Psychrobacter sp. were predominant in 

bryozoan samples from Helgoland Roads and the genus Pseudoalteromonas was also found in 

the tentacle of Cyanea capillata (Schuett & Doepke, 2010). Schuett & Doepke (2010) proposed 

this genus as a common partner of Cnidarian species.  

In conclusion, the associated bacterial communities of different ctenophores at Helgoland Roads 

illustrate on the one hand differences to the surrounding seawater both in diversity and 

composition and on the other hand species-specific difference regarding the different 

ctenophores. The genera Marinomonas, Thalassospira, Pseudoalteromonas and Psychrobacter 
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were identified as predominant groups associated with ctenophores. The results obtained from 

the Tampa Bay of Florida and the Gullmar fjord at the west coast of Sweden were confirmed by 

our study, suggesting ctenophores from geographically distinct regions shared high similarity in 

their dominant bacterial communities. For further studies it is worthwhile to localize the 

associated bacteria in or on the animals in order to reveal the possible origin (lateral transfer, 

epibiosis, gut or food related). Based on the observed seasonal influenced patterns of the 

bacterial community of M. leidyi, the seasonal variation of bacterial community composition 

needs to be analyzed in more details. The biogeographic distribution of these bacterial 

associations needs to be processed further which might be correlated with nutrients, 

phytoplankton bloom and so on. A comparative analysis of the bacterial community present at 

different life stages of ctenophores would give possible evidence for the mechanisms of 

acquisition and maintenance of these associates. Moreover, bacteria of the genus Tenacibaculum 

occurred in other ctenophore studies (Daniels & Breitbart, 2012; Dinasquet et al., 2012) serving 

as a vector for pathogenic bacteria (Ferguson et al., 2010; Delannoy et al., 2011; Daniels & 

Breitbart, 2012). Although Tenacibaculum were not identified in our study, bacteria of the genus 

Vibrio were found in Beroe sp. (19%) and M. leidyi (4%) and probably serve as potentially 

pathogenic bacteria in present study (Fig. 4D). Additional information concerning the interaction 

between pathogen and ctenophore need to be established in future.  
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Supplementary Figure 1.  Box plot of bacterial OTU number (alpha diversity) obtained by 

ARISA for four ctenophore species grouped by month. The box presents the 25%-75% variation. 

The middle line in each box depicts the median of the respective data set. Whiskers and outliers 

(black dots) indicate the distribution of remaining data points, representing the overall variation. 
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Abstract 

Different modes of asexual and sexual reproduction are typical for the life-history of metagenetic 

scyphozoa. Numerous studies have focused upon the general life history, reproductive behavior, 

factors leading to strobilation, growth rates and impact of predation rate of medusa. However, 

bacteria associated with different life stages of scyphozoa have received less attention. In the 

present study, bacterial communities associated with different body parts and different life stages 

of two common scyphomedusae species in the German Bight of the North Sea, Cyanea lamarckii 

and Chrysaora hysoscella, were analyzed by automated ribosomal intergenic spacer analysis 

(ARISA). Regarding the analysis of different body parts (umbrella, gonad, tentacle and mouth 

arm), significant differences were revealed between umbrella and other body parts (gonad and 

tentacle) in terms of the associated bacterial community in both species. With regard to the 

different life stages, bacterial community structure varied from the early stage larvae to polyps 

even to adult medusae with significant differences in both species. Furthermore, the bacterial 

communities associated with polyps were significantly distinct from that with food in both 

species. Polyps might react differently in response to different food source (A. salina and 

plankton) resulting in a significantly different bacterial community structure. In general, the 

bacterial communities associated with two scyphomedusae species were species-specific 

confirmed in each life stage. 
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Introduction 

As a major component of the pelagic ecosystem, jellyfish represent a conspicuous element of the 

zooplankton (Brodeur et al., 2002). Scyphomedusae utilize a wide spectrum of zooplankton prey, 

including fish larvae and eggs, copepods, small ctenophores, and can have a strong impact on 

zooplankton standing stocks in all parts of the world (Brodeur, 1998; Barz & Hirche, 2007; 

Decker et al., 2007). The composition of phyto- and zooplankton communities changes 

considerably accompanied by increasing frequency and intensity of scyphomedusae blooms 

around the world (Brodeur et al., 1999; Brodeur et al., 2002; Beaugrand et al., 2002; Beaugrand, 

2004; Hay, 2006; Barz & Hirche, 2007). The abundance of scyphomedusae showed interannual 

fluctuations and large variability between regions in the North Sea (Hay et al., 1990).  

The metagenetic life cycle of most scyphozoans consists of the sexual reproductive medusa 

generation and the asexual reproductive polyp generation. They go through five life stages: egg, 

planula, polyp, ephyra and medusa. Conspicuous mature medusae sexually reproduce eggs that 

develop into millions of ciliated larvae (planulae) after fertilization. Planulae settle on suitable 

substrates and metamorphose into inconspicuous polyps (scyphistomae). The scyphistomae are 

able to asexually produce offspring polyps by successive stolon formation, vegetative budding, 

longitudinal fission, or cyst formation (Lucas, 2001). Eventually the upper part of the 

scyphistoma undergoes a series of transverse constrictions and comes to resemble a stack of 

saucers. By a process called strobilation, the "saucers" develop to star-shaped bodies which 

successively detach. In this way a sequence of newly released free-swimming juvenile 

individuals (ephyrae) are produced asexually. The timing of the strobilation process is 

temperature dependant and species specific (Purcell et al., 2007; Holst, 2012 a). In the North Sea 

medusae typically are most abundant from late spring to autumn (Möller, 1980; Hay et al., 1990; 

Barz & Hirche, 2007), whereas medusa numbers reduce in late autumn, and they are nearly 

absent from the waters in winter. In contrast the benthic polyp stage (scyphistomae) can survive 

in the winter as a dormant cyst which excysts in the spring to strobilate again (Decker et al., 

2007). Strobilation can be monodisc (only one ephyra produced by each polyp at a certain time) 

or polydisc (more than one ephyra produced by each polyp at a certain time) (Arai, 1996). All 

scyphozoa from the German Bight undergo polydisc strobilation (Holst, 2012 b) which 
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contributes to the development of jellyfish blooms because one single polyp can produce many 

ephyrae (Boero et al., 2008). 

Epi-microbia communities have been found to be important in the larval settlement processes of 

most marine invertebrates (Wieczorek & Todd, 1998), such as sponges (Woollacott & Hadfield, 

1996), cnidarians (Bosch, 2013), ascidians (Wahl et al., 1994; Schuett et al., 2005) and 

bryozoans (Pukall et al., 2001; Kittelmann & Harder, 2005) . Under aseptic conditions, no 

settlement of planulae of the jellyfish Aurelia aurita (Schmahl, 1985), Cassiopea andromeda 

(Hofmann & Brand, 1987) and the hydrozoan Hydractinia echinata (Leitz & Wagner, 1993) 

occurred. Interestingly, bacteria and/or their products induced the settlement and metamorphosis 

of each of these organisms (Müller & Leitz, 2002). Intensive studies of scyphomedusae focused 

upon the general life history strategies, including the detailed morphology description of planula, 

scyphistoma and young ephyra, process of strobilation, development of ephyra to young medusa 

(Svane & Dolmer, 1995; Holst et al., 2007; Lucas et al., 2012), reproductive behavior, different 

changing factors leading to strobilation, growth rate and impact of predation rate of ephyrae 

(Hofmann et al., 1978; Båmstedt, 1990; Olesen et al., 1996; Barz & Hirche, 2007; Holst et al., 

2007; Holst, 2012 a and b). Whereas the presence and activity of bacteria associated with of 

different life stages of scyphomedusae have received less attention. A few studies characterizing 

the bacterial community associated with early life stages were carried out on fish larva (Bergh, 

1995; Hansen & Olafsen, 1999; Romero & Navarrete, 2006), scallop (Torkildsen et al., 2005) 

focusing on the colonization by pathogenic bacteria during early stage of commercial fish. 

Fraune et al.(2010) described the bacterial colonization in the early development of embryo in 

Hydra. However, little is known about the early step of bacterial colonization in scyphomedusae 

larvae, the establishment of microbiota and its stability, especially after strobilation. This 

knowledge is prerequisite for understanding the aspect of microbial ecology of jellyfish 

regarding to the controlling of reproduction mechanisms. The knowledge on the interrelations of 

bacteria communities and different life stages in scyphozoa could help to provide profound 

insights into understanding a microbe-dependent life style and its evolutionary consequences.  

Cyanea lamarckii and Chrysaora hysoscella (Russell, 1970), investigated in the present study, 

are common medusa species at Helgoland Roads in the German Bight and usually occur during 

summer (Möller, 1980; Hay et al., 1990; Barz & Hirche, 2007). Adult medusae were collected 

from the field and the larvae, which are released directly by medusae, were collected. In the 
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laboratory, the planulae of these two species were hatched. Polyps were grown from larvae until 

scyphistoma stage. The bacterial communities associated with planula, polyps and medusae were 

determined using automated ribosomal intergenic spacer analysis (ARISA). Specifically, we 

aimed to answer following questions: (1) Are different body parts of the scyphomedusae 

associated with different bacterial communities? (2) Do the (bacterial community composition) 

BCCs vary in different life stages scyphomedusae? (3) Does the food influence the bacterial 

community associated with polyps? (4) Do different scyphomedusae species harbor different 

bacterial communities? 

Materials and methods 

Sample collection and preparation  

Medusae of the scyphozoan species Cyanea lamarckii and Chrysaora hysoscella were collected 

in the vicinity of Helgoland Roads in the Germany Bight (54˚11.3′N, 7˚54.0′E) from May to July 

2011 two times per week using a 500 µm mesh trawl towed by the research vessel ‘‘Aade’’. 

Additional specimens were collected from land around the island of Helgoland with a bucket. 

The samples were transferred to the laboratory within 1 h after collection. Identification on the 

genus and species level was determined based on morphological traits according to Russell 

(1970) and Holst (2012 b). Five intact individuals of each species were collected at each 

sampling day to analyze the bacterial community of different body parts. Medusae were 

dissected under the stereomicroscope using sterile forceps and scissors. Separated body parts 

(umbrella, gonad, tentacle and mouth arm) were rinsed five times with sterile seawater to 

eliminate transient and loosely attached microorganisms from the surface. All samples were 

frozen at -20˚C and lyophilized prior to molecular analysis. In addition, at least one mature 

medusa carrying planula larvae was chosen at each sampling day and transferred to a 30L 

aquarium for planula collection. Released planulae were collected with a pipette from the bottom 

and rinsed five times with sterile seawater. Individual planula (one) was collected with sterile 

capillary pipette respectively for subsequent molecular analysis. Remaining rinsed planula was 

used for larval settlement experiments.  
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Planula settlement 

Larval settlement was achieved according to the modified protocol of Holst & Jarms (2010). 

Three replicates were set up for each specimen. 20 ml of concentrated planula suspension was 

pipetted into 100-ml plastic beaker, which was filled up with 15-20ml sterile seawater in advance. 

The lid of one polystyrene Petri dish (47 mm diameter) was add to each jar, placed on the water 

surface to provide a swimming settlement substrate which is preferred by planulae (Brewer, 1976; 

Brewer, 1984; Holst & Jarms, 2007). Settlement experiments were conducted under in situ 

temperature (15 ± 2°C). The water of each beaker was carefully replaced with fresh sterile 

seawater after 48h when planula settled on the underside of the floating Petri dish lids. The 

unsettled planulae were carefully removed by pipette. 

Feeding of polyps 

Polyps of each species were fed by two different food sources, brine shrimp (Artemia salina) 

nauplii reared in sterile seawater from eggs in the laboratory and natural plankton collected at 

Helgoland Roads by a plankton net (75µm mesh size) at the day of feeding.  Feeding with both 

food types was conducted at the same time and in the same manner for both scyphozoan species. 

The food organisms were mashed before feeding until the polyps developed four tentacles 

(usually after 5-6 d). In the eight tentacles stage, they were fed with intact living food organisms. 

Feeding was carried out twice a week for 1-2h. The jars were cleaned and the water was replaced 

with sterile seawater every time after feeding to keep a debris-free environment for polyps. 

During the strobilation stage, only half of the water was changed carefully, and remaining food 

was removed from the beaker with a pipette to avoid disturbing the strobilation process.  

Only well-developed polyps with extended tentacles were collected for the analyses of the 

associated bacterial community. Polyps were carefully removed from the underside of the Petri 

dish with a needle under the stereomicroscope. The collection of polyps was conducted one or 

two days after feeding and lasted for 5 months. Collected polyps were rinsed and frozen in the 

same manner as described for larvae.  

In order to estimate the impact of food resource on the bacterial community of polyps during 

feeding process, 1ml of seawater was collected from A. salina cultures and plankton samples, 

respectively, to analyze the community of free-living bacteria associated with each food sources. 
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In addition, 500ml of the hatching water of A. salina and plankton sample seawater was filtered 

through 0.2 μm membrane filters (GTTP, Millipore, Schwalbach, Germany) to analyze the 

community of attached bacteria with each food sources.  

DNA extraction 

Total genomic DNA of medusae (different body parts) was extracted from freeze-dried tissue 

using CTAB (cetyl-trimethyl-ammoniumbromide) according to the modified protocol of Gawel 

(1991) described in details in Chapter I. Briefly, Aliquots from ground samples (1 mg) were 

incubated in 2 mL pre-heated (60°C) CTAB buffer for 30 min at 65°C. Afterwards, 1 mL STE 

buffer, lysozyme (10mg/mL) and proteinase K (10mg/mL) were added to samples and incubated 

at 50°C for further 30min. DNA was extracted twice by phenol–chloroform–isoamylalcohol (25 : 

24 : 1) and DNA was precipitated with isopropanol overnight at -20°C.  

For larvae and polyps, DNA extraction was performed as previously described (Sapp et al., 2007 

b) with some modifications. Briefly, the tube containing larva or polyp was centrifuged for 1 min 

at 2504 g to remove supernatant water, Biomass of larva or polyp was resuspended in STE buffer 

(6.7% saccharose, 50mM Tris, 1mM EDTA, pH 8) and homogenized with sterile pestle 

formatted in 1.5ml microtube, then lysozyme (10mg/mL) and proteinase K (10mg/mL) were 

added for 30min at 37°C. Cell lyses was performed by adding Tris-EDTA (50mM Tris, 250mM 

EDTA, pH 8) and SDS-Tris-EDTA (20% sodium dodecyl sulfate, 50mM Tris, 20mM EDTA, pH 

8) for 60min at 50°C with slow agitation. DNA was extracted using 1/10 volume NaCl (5M) and 

1 volume phenol– chloroform–isoamylalcohol (25: 24: 1) and was precipitated with isopropanol.  

For the free-living bacterial community in A. salina and plankton, DNA was extracted with the 

same procedure as larva and polyp. For the bacterial community attached with A. salina and 

plankton, DNA was extracted from cut filters (0.2 μm) with the same procedure as larva and 

polyp without centrifugation. DNA of the all extracts were washed with 75% ethanol and finally 

dried in sterile bench. All DNA extracts were dissolved 30-50µl sterile water and served as 

template DNA for the PCR. The quantity and quality of extracted DNA were determined by 

microphotometry using Tecan Infinite 200 NanoQuant. 
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Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

Characterization of the bacterial communities associated with the different life stages and 

different body parts of two scyphomedusae species were performed by the ARISA fingerprinting 

method, as described previously in details in Chapter I. Briefly, the internal transcribed spacer 

region was amplified with the forward primers L-D-Bact-132-a A-18 and the fluorescently 

labeled reverse primer S-D-Bact-1522-b-S-20 (Ranjard et al., 2000) in the PCR reaction. PCR 

reaction and cycling conditions were performed as described previously (Krause et al., 2012). In 

particular, 50 ng of genomic DNA template was applied in each reaction. Based on the 

intensities of PCR products on agarose gels, original or diluted PCR products were mixed with 

equal volume of stop mix and separated on 5.5% polyacrylamide gels prepared according to the 

manufacturer’s protocol (LI-COR Biosciences, Lincoln, NE, USA), as well as the sample 

preparation and running condition. We used a 50-1500bp standard as a size reference (all 

materials: LI-COR Biosciences, Lincoln, NE, USA). 

Statistical analysis 

Analysis of ARISA data  

ARISA fingerprints were analyzed by using BioNumerics 6.6 software (Applied Maths, Sint-

Martens-Latem, Belgium). Normalization of band patterns was conducted automatically 

referencing by the size standard and the presence or absence of each band was determined based 

on the normalized minimum threshold density (5%). Depending on the length of the detected 

fragment, bins of 3bp were used for fragments up to 700 bp in length, bins of 5bp for fragments 

between 700 and 1000bp and bins of 10bp for fragments larger than 1000bp. Binning to band 

classes was performed according to Kovacs et al. (2010) and Brown (2005). Bands smaller than 

300bp were neglected for multivariate analyses. The alpha diversity (OTU richness) (operational 

taxonomic units) of each sample which obtained from ARISA fingerprints was estimated by 

summing up the total number of band classes present in the respective samples. ARISA-OTUs 

were analyzed based on a constructed binary table. Differences between the groups were tested 

by one-way analysis of variance (ANOVA) with the software package Statistica (Version 9). 
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Multivariate analyses 

For multivariate statistical analyses, the software package PRIMER v.6 and the add-on 

PERMANOVA+ (both PRIMER-E Ltd, Plymouth, UK) was used. The permutational 

multivariate analysis of variance (PERMANOVA) with fixed factor was applied to investigate 

the difference of associated bacterial community composition (BCC) of two scyphomedusae 

species regarding different life stages and different body parts. For the permutation tests, we 

performed resemblance measure and used 999 permutations on the basis of Jaccard coefficient 

(S7). Principal co-ordinate analysis (PCO) was performed to visualize patterns of the bacterial 

community influenced by different life stage and body compartment.  

Results 

General features of larvae and primary polyps 

The planulae of both scyphomedusae species are oval to pear-shaped in yellow-white color, more 

dominantly milk-white (Fig. 1A). Planulae are completely covered by cilia and highly motile by 

rotating. Planulae swam for about 1 to 2 days before they settled on the substrate. Planulae of C. 

lamarckii and Ch. hysoscella directly developed into young polyps within 2-3 days after 

settlement (Fig. 1B), and a few of the planulae of C. lamarckii encysted (Fig. 1D, arrow). Polyps 

developed into the four-tentacle stage around 5-6 day and developed a thin stalk with a rounded 

basal attachment disk (Fig. 1B, arrow). The four tentacles were highly extensile. At the four 

tentacles stage (Fig. 1C), polyps started to eat the mashed food. Until eight tentacles stage (Fig. 

1E), they were easily capable of catching and eating intact brine shrimp (Artemia salina) nauplii. 

After feeding, most polyps were contracted and distinctly orange-colored, while the polyps fed 

with plankton food were in white-brown color. For the analysis of the bacterial community 

composition associated with polyps, white-colored and empty gut polyps were collected 1 or 2 

days after feeding. In addition, the polyps fed with plankton, didn’t grow very well compared 

with those fed with A. salina. Examined under stereomicroscope even after feeding, polyps of 

both scyphozoan species fed with plankton were inanimate and died off earlier than the one fed 

with A. salina. For all samples DNA was successfully extracted and amplified by the modified 

protocols of Gawel (1991) and Ranjard (2000).  
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BCCs associated with body parts of Scyphomedusae  

To investigate the bacterial community associated with scyphomedusae, the BCC associated with 

four different body parts, including umbrella, gonad, mouth arm and tentacle, were analyzed 

separately. In total, 44 specimen of Cyanea lamarckii and 17 specimen of Chrysaora hysoscella 

were applied in the bacterial community analysis. Based on the ARISA fingerprints, the PCO 

plots (Fig. 2A and B) depict the bacterial communities associated with different body parts 

(umbrella, gonads, mouth arm and tentacle) of two scyphomedusae species. The first two axes of 

the PCO of BCC associated with two scyphomedusae species capture 25.4 % and 23.1% of the 

total variation, respectively. No distinct patterns are present in the BCCs of different body parts 

in two species (Fig. 2A and B). The PERMANOVA main test indicates significantly different 

bacterial communities regarding to the body parts in C. lamarckii (p=0.001, Tab. 1). Contrary, in 

Ch. hysoscella, the bacterial community displays no differences regarding to different body parts 

(p=0.119, Tab. 3). According to the PERMANOVA pair-wise comparisons, the bacterial 

community associated with umbrella is significantly different from the community associated 

with gonad, mouth arm and tentacle in C. lamarckii (p=0.001, Tab. 2). For Ch. hysoscella, the 

community associated with umbrella only differed from the community of gonad and tentacle 

(p=0.017 and 0.015, respectively, Tab. 4).  

Bacterial OTU number (alpha diversity) for different body parts of two scyphomedusae species 

varied from each other. However, the pattern of richness was the same for both scyphomedusae 

species investigated here (Fig. 3). The highest OTU richness was observed in the community of 

umbrella in both scyphomedusae species (C. lamarckii and Ch. hysoscella) with similar numbers 

23 and 25, respectively, followed by the community of mouth arm (S=20 and 18, respectively) 

and tentacle (S=15), the lowest richness was observed in the community of gonad with the same 

number for both species (S=14). Based on the ANOVA, there is no difference between the 

different body parts in C. lamarckii in respect to the diversity of bacterial community (OTU 

number) (F3, 116=2.4184, p=0.06978). However, the diversity of bacterial community associated 

with different body parts were significantly different in Ch. hysoscella (F3, 64=7.2818, 

p=0.00028). Specifically, the diversity of bacterial community associated with umbrella 

significantly differed from that of gonad and tentacle (p<0.001). 
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Impact of food on the BCCs of polyps 

To investigate the influence of food on the bacterial communities associated with polyps, the 

individual polyps fed with two kinds of food sources (A. salina and plankton) under lab 

condition were compared. Additionally, 29 samples of A. salina and 18 samples of plankton 

from the attached BCCs with each food source were analyzed respectively. Accordingly, water 

samples of both A. salina hatching water and plankton water were analysed as free-living BCCs. 

The PCO plots (Fig. 4) represent the BCCs associated with polyps (fed with A. salina and 

plankton) in two scyphozoan species, as well as the BCCs extracted from food including the 

attached community and free living community from water environment. 

For both scyphozoan species, C. lamarckii and Ch. hysoscella, the first PCO axes explain the 

majority of the variation among these communities (nearly 26%) and are strongly associated 

with the separation of assemblages in the polyps (on the left) from those in food  (on the right) 

(Fig. 4 A and B). The bacterial communities associated with polyps of C. lamarckii fed with 

different food are clearly distinguishable from each other (Fig. 4 A). For Ch. hysoscella, on this 

two dimension plot, the communities of polyps fed with A. salina are well mixed and not easily 

distinguishable from the bacterial communities associated with polyps fed with plankton (Fig. 4 

B). However, the PERMANOVA main tests of the BCCs of polyps and food sources show 

significant difference (P=0.001) for both scyphozoan species (Tab. 5 and 7). Consistent with the 

PERMANOVA pairwise comparison, there is fairly strong evidence to suggest that all of the 

groups differ from one another (P=0.001 for most comparisons, Tab. 6 and 8) in both species. 

Overall, the BCCs of polyps fed either with plankton or A. salina are significantly different from 

the BCCs of food including the attached and the free-living community based on the 

PERMANOVA. Therefore, the bacterial community of food source has no influence on the 

selection of BCC of polyps, whereas the BCCs of polyps are significantly distinct between the 

different food sources (A. salina and plankton). 

The alpha diversity of bacterial community associated with polyps fed with different food of two 

scyphomedusae, as well as the attached and free-living communities of two kinds of food 

sources, is depicted as bar plot of median values with 95% confidence of ARISA OTU numbers 

(Fig. 5). Generally, among the food sources, the highest ARISA OTU number is detected in free-

living community of plankton water (S=50), following by the attached community of plankton 
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(S=31). The attached community of A. salina (S=26) has a higher diversity compared with free-

living community of A. salina (S=20). Among the polyps, the one fed with plankton apparently 

presents a higher diversity compared with the one fed with A. salina in both scyphomedusae 

species. The highest OTU number is observed in the polyps fed with plankton in C. lamarckii 

(S=36), followed by the one in Ch. hysoscella (S=30). The polyps fed with A. salina display a 

similar diversity concerning the BCC in both scyphomedusae species. The ARISA OTU number 

in polyps fed with A. salina is 20 and 23, respectively in C. lamarckii and Ch. hysoscella. Based 

on the ANOVA, significant differences are revealed among all groups in respect to the diversity 

of bacterial community (OTU number) (F7, 558=37.749, p=0.0000). 

BCCs associated with different life stages of Scyphozoan 

Because of the metagenetic nature of scyphozoan, another aspect of the bacterial community 

associated with scyphozoan in respect to the different life stages were analyzed in the present 

study. Larvae were collected from medusae adult and polyps were hatched from the larvae stage 

with two different kinds of food under lab condition. In this part, the four parts of each 

scyphomedusae species were considered as an integral part presenting the medusae adult. 

Therefore, the BCCs associated with different body fractions were combined together for the 

BCC associated with medusa adult for each specimen.  

The Principal coordinate analysis (PCO) was applied to visualize the variation of different stages 

including larvae, polyps (fed with A. salina and plankton) and medusae adult in terms of their 

bacterial community. It is apparent that the bacterial communities associated with all stages of C. 

lamarckii are separated from each other at different degrees as represented by the ARISA 

fingerprints pattern (Fig. 6 A). In this two-dimensional plot, 22.8% of the total variation is 

explained by the first two axes. The analysis of PERMANOVA main test and pair-wise 

comparisons (Tab. 9 and 10) regarding different life stages reveal that BCCs are significantly 

different (p=0.001). Regarding the bacterial community structure of Ch. hysoscella, the PCO plot 

displays a clear separation among each life stages (Fig. 6 B). The BCCs corresponding to larvae, 

medusae and polyps form a very tight cluster. The first two axes of the PCO capture 27% of the 

total variation with an overlapped community of polyps fed with A. salina and plankton. The 

analyses of PERMANOVA main test and pair-wise comparisons reveal significant difference 

between each stage in Ch. hysoscella (P=0.001) (Tab. 11 and 12). The bacterial communities 
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associated with polyps fed with two kinds of food sources overlap together in the PCO plot (Fig. 

6 B). However, a significant difference is observed in these two communities based on 

PERMANOVA pair-wise comparisons (P=0.001) (Tab. 12).  

The alpha diversity of each life stage of the two scyphomedusae species is depicted as bar plot of 

median values with 95% confidence of ARISA OTU numbers (Fig. 7). Generally, lowest 

richness in C. lamarckii and Chr. hysoscella is observed in the polyp stage (S=20). Significantly 

highest richness is detected in the medusa stage of both scyphomedusae species (S=69). In 

general, the bacterial community diversity displays a similar pattern in both scyphomedusae 

species, where the highest richness occurred in medusae and lowest richness occurred in polyps 

fed with A. salina. Based on the ANOVA, bacteria associated with different life stages display 

significant differences regarding to the diversity of bacterial community (OTU number) in both 

scyphozoan species (F3, 317=119.86, p=0.0000 in C. lamarckii, F3, 294=77.911, p=0.0000 in Ch. 

hysoscella) 

Comparison between Cyanea lamarckii and Chrysaora hysoscella 

Bacterial communities associated with different life stages are compared between two 

scyphomedusae species. For the community of larvae (Fig. 8 A), clear separation between C. 

lamarckii and Ch. hysoscella is observed in the PCO plot. Regarding to polyps, BCCs of polyps 

compared between two scyphomedusae species are specified by different food source in Fig. 8 B. 

The BCCs of polyps not only form a tight cluster on the factor of “species” on the first axis 

(PCO1), but the communities also clearly separate on the second axis (PCO2) by the factor of 

“food source” (Fig. 8 B). The community of polyps fed with plankton from Ch. hysoscella is 

slightly dispersed. The first two axes of the PCO capture 45.7% and 33.5 % of the total variation 

of larvae and polyps, respectively. In accordance with PERMANOVA analysis (Tab. 13), factor 

“species” significantly influenced the bacterial community structure associated with larvae 

(p=0.001). For polyps, both experimental factors (species and food source) and their interactions 

significantly influenced the bacterial community structure (PERMANOVA Tab. 14). The highest 

amount of variation is explained by “species” (Sq. root, Tab. 14).  Furthermore, the community 

of larvae and polyps display similar variation which is also influenced by species (Sq. root, Tab. 

13 and 14). For the community of adult medusae, no distinct difference is observed in the PCO 

two-dimension plot. The adult medusa stages form a homogeneous structure in both scyphozoan 
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species (Fig. 8 C). However, the PERMANOVA analysis reveals that regarding two species, the 

communities of medusae in C. lamarckii and Ch. hysoscella are different from each other with 

p=0.001 (Tab.15). Compared with the community of larvae and polyps, medusae display less 

variation regarding to the bacterial community (Sq. root=10.03, Tab. 15). Overall, the BCCs of 

all three life stages (larvae, polyps and medusae) significantly differ between C. lamarckii and 

Ch. hysoscella indicating a species-specific bacterial association in scyphozoan.  
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Figure 1. Different development stages of Cyanea lamarckii. A, Planula larvae; B, Initial stage of 

polyp; C and D, Four tentacle stage polyp; E, Eight tentacle stage polyp; F, Full developed polyp. 

(Scale bar: A. 1 millimeter, B. D. 100 micrometer, C. E. 200 micrometer, F. 500 micrometer. 

Arrow: B. the rounded basal attachment disk, D. Polyp encystment)  
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Figure 2.  Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with different body parts of scyphomedusae (A: Cyanea lamarckii and B: Chrysaora hysoscella) 

based on Jaccard coefficient from ARISA profiles.  
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Table 1. PERMANOVA main tests of bacterial community structure of different body parts of C. 

lamarckii based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source 

of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. 

root 

Sam 3 19091 2.1109 0.001 998 9.2795 

Res 152 4.5822E5    54.906 

Total 155 4.7731E5     

 

Table 2. PERMANOVA pair-wise comparisons of bacterial community structure of different 

body parts of C. lamarckii based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor 

“sample type”. 

Comparison t (perm) p (perm) Perms 

Tentacle vs. Umbrella 1.7168 0.001 999 

Tentacle vs. Mouth arm 1.0246 0.372 996 

Tentacle vs. Gonad 1.0434 0.305 999 

Umbrella vs. Mouth arm 1.4854 0.005 998 

Umbrella vs. Gonad 2.013 0.001 999 

Mouth arm vs. Gonad 1.1372 0.156 997 
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Table 3. PERMANOVA main tests of bacterial community structure of different body parts of 

Ch. hysoscella based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

Sam 3 11280 1.2061 0.119 993 6.1956 

Res 63 1.964E5    55.835 

Total 66 2.0768E5     

 

Table 4. PERMANOVA pair-wise comparisons of bacterial community structure of different 

body parts of Ch. hysoscella based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor 

“sample type”. 

Comparison t (perm) p (perm) Perms 

Umbrella vs. Mouth arm 1.1088 0.195 998 

Umbrella vs. Gonad 1.3221 0.017 999 

Umbrella vs. Tentacle 1.3015 0.015 997 

Mouth arm vs. Gonad 0.9675 0.537 995 

Mouth arm vs. Tentacle 1.0171 0.392 998 

Gonad vs. Tentacle 0.8578 0.886 998 
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Figure 3.  Bar chart of means of bacterial OTU number (alpha diversity) for different body parts 

of two scyphomedusae species obtained by ARISA fingerprint (A: Cyanea lamarckii and B: 

Chrysaora hysoscella). Whiskers indicate 95% confidence intervals. 
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Figure 4.  Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with polyps of two scyphozoan species (A: Cyanea lamarckii and B: Chrysaora hysoscella) 

(including fed with A. salina plankton) and food resource (including attached community of food 

itself: A. salina and plankton, and free-living community of food: A. salina water and plankton 

water) based on Jaccard coefficient from ARISA profiles.  
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Table 5. PERMANOVA main tests of bacterial community structure of polyps of C. lamarckii 

and food source based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘food type’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

food type 5 3.5405E5 35.232 0.001 999 40.065 

Res 311 6.2506E6    44.831 

Total 316 9.7911E5     
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Table 6. PERMANOVA pair-wise comparisons of bacterial community structure of polyps of C. 

lamarckii and food source based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor “food 

type”. 

Comparison t (perm) p (perm) Perms 

Art water vs. Art 1.7823 0.001 998 

Art water vs. Plank water 3.502 0.001 996 

Art water vs. Plank 2.3867 0.001 995 

Art water vs. Art. fed polyp 7.0902 0.001 999 

Art water vs. Plank. fed polyp 7.3864 0.001 998 

Art vs. Plank water 3.1951 0.001 998 

Art vs. Plank 2.2315 0.001 996 

Art vs. Art.fed polyp 7.031 0.001 998 

Art vs. Plank. fed polyp 7.2344 0.001 999 

Plank water vs. Plank 1.9237 0.003 997 

Plank water vs. Art. fed polyp 6.3406 0.001 998 

Plank water vs. Plank. fed polyp 6.3436 0.001 999 

Plank vs. Art. fed polyp 5.0099 0.001 999 

Plank vs. Plank. fed polyp 5.1833 0.001 999 

Art. fed polyp vs. Plank. fed polyp 5.9727 0.001 998 
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Table 7. PERMANOVA main tests of bacterial community structure of polyps of Ch. hysoscella 

and food source based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘food type’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

food type 5 3.1079E5 28.798 0.001 998 40.541 

Res 332 7.1661E5    46.459 

Total 337 1.0274E6     
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Table 8. PERMANOVA pair-wise comparisons of bacterial community structure of polyps of Ch. 

hysoscella and food source based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor “food 

type”. 

Comparison t (perm) p (perm) Perms 

Art water vs. Art 1.7823 0.001 996 

Art water vs. Plank water 3.502 0.001 999 

Art water vs. Plank 2.3867 0.001 999 

Art water vs. Art. fed polyp 6.7487 0.001 997 

Art water vs. Plank. fed polyp 6.084 0.001 999 

Art vs. Plank water 3.1951 0.001 998 

Art vs. Plank 2.2315 0.001 998 

Art vs. Art.fed polyp 6.8831 0.001 999 

Art vs. Plank. fed polyp 6.3082 0.001 998 

Plank water vs. Plank 1.9237 0.003 999 

Plank water vs. Art. fed polyp 6.0758 0.001 996 

Plank water vs. Plank. fed polyp 6.5636 0.001 998 

Plank vs. Art. fed polyp 4.8174 0.001 999 

Plank vs. Plank. fed polyp 4.9443 0.001 999 

Art. fed polyp vs. Plank. fed polyp 2.7681 0.001 999 
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Figure 5.  Bar chart of means of bacterial OTU number (alpha diversity) for polyps fed with 

different foods of two scyphomedusae species and food itself obtained by ARISA fingerprint. 

Whiskers indicate 95% confidence intervals. 
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Figure 6.  Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with different life stages of scyphomedusae (A: Cyanea lamarckii and B: Chrysaora hysoscella) 

based on Jaccard coefficient from ARISA profiles.  
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Table 9. PERMANOVA main tests of bacterial community structure of different life stages of C. 

lamarckii based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

Sample 3 1.8504E5 26.29 0.001 998 23.937 

Res 439 1.03E6    48.438 

Total 442 1.215E6     

 

Table 10. PERMANOVA pair-wise comparisons of bacterial community structure of different 

life stages of C. lamarckii based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor 

“sample”. 

Comparison t (perm) p (perm) Perms 

Larva vs. Polyp fed with Art. 4.6219 0.001 999 

Larva vs. Polyp fed with Plank. 5.4448 0.001 997 

Larva vs. Medusa 4.0088 0.001 997 

Polyp fed with Art. vs. Polyp fed with Plank. 5.8659 0.001 998 

Polyp fed with Art. vs. Medusa 5.6428 0.001 996 

Polyp fed with Plank. vs. Medusa 4.9969 0.001 998 
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Table 11. PERMANOVA main tests of bacterial community structure of different life stages of 

Ch. hysoscella based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

Sample 3 2.7552E5 40.386 0.001 999 38.36 

Res 339 7.709E5    47.687 

Total 342 1.0464E6     

 

Table 12. PERMANOVA pair-wise comparisons of bacterial community structure of different 

life stages of Ch. hysoscella based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor 

“sample”. 

Comparison t (perm) p (perm) Perms 

Larva vs. Polyp fed with Art. 7.1071 0.001 999 

Larva vs. Polyp fed with Plank. 6.8027 0.001 998 

Larva vs. Medusa 5.7475 0.001 999 

Polyp fed with Art. vs. Polyp fed with Plank. 2.7725 0.001 999 

Polyp fed with Art. vs. Medusa 7.9804 0.001 999 

Polyp fed with Plank. vs. Medusa 5.3087 0.001 999 

 



 

CHAPTER II 

74 

 

O
T

U
 n

u
m

b
e

r

0

20

40

60

80

Larvae
Polyps fed

 with Artemia
Polyps fed

with plankton
Medusae

A

 

O
T

U
 n

u
m

b
e

r

0

20

40

60

80

Larvae
Polyps fed

 with Artemia
Polyps fed

with plankton
Medusae

B

 

Figure 7.  Bar chart of means of bacterial OTU number (alpha diversity) for different life stages 

of two scyphomedusae species obtained by ARISA fingerprint (A: Cyanea lamarckii and B: 

Chrysaora hysoscella). Whiskers indicate 95% confidence intervals. 

 



  

CHAPTER II 

75 

 

A

-60 -40 -20 0 20 40

PCO1 (31.1% of total variation)

-60

-40

-20

0

20

40

P
C

O
2
 (

1
4
.6

%
 o

f 
to

ta
l 
va

ri
a
ti
o
n
)

Resemblance: S7 Jaccard

Species
C. lamarckii

Ch. hysoscella

 



 

CHAPTER II 

76 

 

B

-40 -20 0 20 40 60

PCO1 (24.1% of total variation)

-40

-20

0

20

40

60

P
C

O
2
 (

9
.4

%
 o

f 
to

ta
l 
va

ri
a
ti
o
n
)

Resemblance: S7 Jaccard

Species
C. lamarckii (Art.)

C. lamarckii (Plank.)

Ch. hysoscella (Art.)

Ch. hysoscella (Plank.)

 



  

CHAPTER II 

77 

 

C

-40 -20 0 20 40 60

PCO1 (14.2% of total variation)

-40

-20

0

20

40

60

P
C

O
2
 (

8
%

 o
f 

to
ta

l 
va

ri
a
ti
o
n
)

Resemblance: S7 Jaccard

Species
C. lamarckii

Ch. hysoscella

 

Figure 8. Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with different life stages (A: Larvae, B: Polyps, C: Medusae) between two scyphomedusae 

species (C. lamarckii and Ch. hysoscella) based on Jaccard coefficient from ARISA profiles.  
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Table 13. PERMANOVA main tests of bacterial community structure of larvae based on Jaccard 

dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘species’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

Spe 1 1.4141E5 77.928 0.001 999 39.404 

Res 188 3.4114E5    42.598 

Total 189 4.8254E5     

 

Table 14. PERMANOVA main tests of bacterial community structure of polyps based on Jaccard 

dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘species’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

Species 1 1.8153E5 86.654 0.001 998 37.912 

Food 1 37302 17.807 0.001 999 16.793 

Sp×Fo 1 32021 15.286 0.001 998 21.896 

Res 473 9.9085E5    45.769 

Total 476 1.3853E6     
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Table 15. PERMANOVA main tests of bacterial community structure of medusae based on 

Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘species’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo 

F 

p (perm) Perms Sq. root 

Spe 1 12589 4.0264 0.001 998 10.028 

Res 223 6.9724E5    55.916 

Total 224 7.0983E5     
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Discussion 

Bacterial communities associated with scyphozoan regarding to different body parts were firstly 

analyzed in the present study. According to the ARISA fingerprints, bacterial community 

associated with umbrella was significantly different from those with tentacle and gonad with 

constant diversity in both species based on multivariate analysis (PERMANOVA) (Tab. 1-4). 

Scyphomedusae have a muscular saucer-shaped or hemispherical umbrella which propels the 

medusae through the water by contracting and expelling water behind. The umbrella of 

scyphozoan species is relative thick mesoglea containing epidermis and gastrodermis (Larson, 

1976.). Gonads occur on fold of the gastrodermis. The four long oral arms surround the mouth 

end. They are ribbon-like or curtain-like and their ciliated epithelia transport the prey to the 

mouth. Long threadlike tentacles covered by stinging cells (nematocysts) arise from the umbrella 

and are used to capture prey (Arai, 1996). We analyzed the whole mesoglea of umbrella fraction 

including the surface and aboral surface. The mesoglea of scyphomedusae seems to be the main 

metabolically active tissues (Thuesen et al., 2005). There is clear decline on the oxygen 

concentrations from the outer umbrella surface to the gonad (Thuesen et al., 2005). The different 

characteristics of oxygen concentrations within different body parts might influence the 

colonization of the associated bacterial community.  

Interestingly, from the studies in Hydra, the bacterial communities were significantly modulated 

in response to the changes in the epithelia cell composition by removing the interstitial stem cell 

(Fraune et al., 2009). These results indicate a direct interaction between cellular tissue 

composition and microbiota (Fraune et al., 2009). In jellyfish, different types of cells are 

described in different body parts (Lesh-Laurie & Suchy, 1991). For example, the epidermal 

gland cells are surrounding the nematocyst clusters in the tentacle of C. lamarckii with an 

antibody activity (Elofsson & Carlberg, 1989). The tentacle of scyphomedusae contains 

numerous nematocyst toxins which are generally cytolytic, hemolytic and neurotoxic (Bailey et 

al., 2003; Helmholz et al., 2010; Lassen et al., 2010). Schuett & Doepke (2010) found species-

specific endobiotic bacteria in the tentacle of scyphomeduesa. Titelman et al.(2006) reported the 

inhibition of bacterial growth depending on the different body fractions of jellyfish Periphylla 

periphylla. The umbrella had the strongest inhibitory effect on bacterial community while the 

weakest in the tentacle (Titelman et al., 2006). All this makes it obvious, it’s necessary to take 
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the different body parts into account in future study regarding to bacterial community associated 

with scyphozoan.  

To the best of our knowledge, bacterial communities associated with different life stages of the 

two scyphozoan species Cyanea lamarckii and Chrysaora hysoscella were first investigated in 

the present study. We mainly focused on three representative life stages: planula larva, polyp and 

adult medusa. The bacterial communities structures associated with three life stages were 

significantly different among each other in both scyphozoan species (Fig. 6, Tab. 9-12). The 

BCCs associated with three life stages of C. lamarckii significantly separated (Tab. 9 and 10) 

from different stages indicating a kind of transition from larvae to polyps until medusae (Fig. 6 

A). Fraune et al. (2010) investigated the bacterial colonization during early embryogenesis in 

Hydra and they found significantly different bacterial communities associated with early 

embryos from that with later developmental stages. Furthermore, different bacterial communities 

between embryo and polyp were observed in their study. Bacterial community of early cleavage 

embryo in Hydra has lower richness than the later stages. In contrast for scyphozoan, the 

bacterial communities associated with the early stage larvae (S=31 and 37, respectively in C. 

lamarckii and Ch. hysoscella) present higher diversity than that in the later stage polyp (S=21 

and 24, fed with A. salina respectively in C. lamarckii and Ch. hysoscella in both species (Fig. 7), 

whereas the diversity of the bacterial community associated with the adult stage 

medusa”dramatically increased in C. lamarckii (S=69) and Ch. hysoscella (S=71). Apparently, 

the early planula stages are colonized by a limited number of bacterial colonizers compared with 

medusa. During later life cycle stages (polyp and medusa), the structure and richness of bacterial 

community changed. For both scyphozoan species, the bacterial associations displayed more 

diverse community in the medusa adult stage. It might indicate that different life stages offer 

different resources and may display different niches. Although the richness of bacterial 

community associated with three life stages display similar patterns (Fig. 7), the bacterial 

community structures are interestingly strong distinct (Fig. 6). For C. lamarckii, each stage 

appears to be a passive substrate colonized by a different and more diverse bacterial community 

presenting a dispersive community among three stages (Fig. 6 A). For Ch. hysoscella, the 

bacterial communities of each stage show a strong selective processes of bacterial colonization 

with a highly assembled and separated community structure (Fig. 6 B).  
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Widersten (1965) and Holst (2012 b) described the histology and morphology of the gonads and 

the development of planulae in different scyphozoan species. In C. lamarckii, ciliary activity 

transports the embryos from ovary to the folds of the mouth arms and embryos develop in the 

mouth arms of female medusae, whereas in Ch. hysoscella the embryos remain in the 

hermaphrodite gonads and develop into planulae (Widersten, 1965; Holst et al., 2007). However, 

the bacterial communities associated with planula larvae were significantly different from the 

communities of mouth arm in C. lamarckii as well as to the gonad in Ch. hysoscella (data not 

shown). It might indicate that there is no transformation between the larvae and the body parts 

either from mouth arm in C. lamarckii or from the gonads in Ch. hysoscella regarding their 

associated bacterial community. 

The early planula stage might be capable of controlling their bacterial colonizer. Fraune et al. 

(2010) demonstrated that Hydra embryos are protected by a maternally produced antimicrobial 

peptide (AMP) of the periculin peptide family, which controls the establishment of the 

microbiota during embryogenesis. Antimicrobial peptides (Chapman et al. 2010) represent the 

major defense system against microbial infection in marine invertebrates (Otero-González et al., 

2010). They are known as prominent effecter of the innate immune system that often get secreted 

in response to external stimulation (Bosch, 2013). With over expressed periculin in polyps, it 

caused not only decreases in the number of associated bacteria but also changes in the 

composition of community (Fraune et al., 2010). The novel antimicrobial peptide Aurelin is 

another examples of such genes has been found in other scyphozoa species Aurelia aurita 

(Ovchinnikova et al., 2006). This Aurelin peptide exhibited activity against gram-positive and 

gram-negative bacteria (Ovchinnikova et al., 2006). Franzenburg et al. (2013) stated that 

species-specific antimicrobial peptides shape species-specific bacterial associations. Although 

there is no available data regarding to the antimicrobial peptides in C. lamarckii and Ch. 

hysoscella, we speculate that the colonized bacterial community may adapt to different AMP 

repertoires of scyphomedusae species resulting in specific associations. This need to be 

investigated in the future. 

The associated bacterial communities of polyps of two scyphozoan species were investigated 

under lab condition and the impact of food on the BCCs was first investigated in the present 

study. In Cnidarians, pelagic larvae undergo metamorphosis to a sessile polyp (Woollacott & 

Hadfield, 1996; Leitz, 1997; Holst & Jarms, 2010). It is becoming increasingly clear that specific 
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cues inducing settlement and/or metamorphosis emanate  from  the  substrates (Fletcher, 1994) 

which is comprised by biofilms in marine environments. Within the biofilms certain bacteria are 

suggested to deliver the metamorphosis-inducing stimulus (Clare et al., 1998; Müller & Leitz, 

2002). It was shown that axenic cultures of buds and larvae of Cassiopea andromeda do not 

undergo metamorphosis. Interestingly the metamorphosis was induced by incubation with Vibrio 

sp. isolated from aquarium material found to induce metamorphosis of Cassiopea (Hofmann et 

al., 1978). However, the larvae spontaneously settled and have undergone the metamorphosis to 

polyps in the current study, supplied only with sterile seawater, without adding additional 

inducers. This also happened in the experiment carried out by Holst & Jarms (2006; 2010; Holst, 

2012 a and b)  Taken together, larvae and polyps perhaps harbor their own bacteria which they 

need for growth and development in later stages. These innate set of bacteria are particular 

species-specific by using gene-encoded mechanism to protect and survive independent of the 

body parts in which they develop (Fraune et al., 2010). The only chance of polyps to interact 

with external environment is the different kinds of food sources during feeding process. Based 

on the ARISA fingerprints, the bacterial communities of food sources clearly separated from the 

communities associated with polyps. However, the bacterial communities associated with polyps 

fed with A. salina were significantly different from the one fed with plankton in two scyphozoan 

species (Fig. 4 and Fig. 8B). Regarding to richness of the bacterial community, we found that 

bacterial community associated with polyps fed with plankton were more diverse than the one 

fed with A. salina. This might indicate that the bacterial community of the food, either the free-

living or the attached community do have an impact on the bacterial community associated with 

polyps, but not in the process of the selecting and shaping the bacterial communities associated 

with polyps in both scyphozoan species. Polyps might react differently in response to different 

food source, for example, with distinct metabolic activity, which may play a pivotal role for the 

selection and formation of the bacterial community associated with polyps.  
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Conclusion 

In the present study, the bacterial communities associated with two scyphomedusae species were 

firstly investigated at Helgoland Roads (North Sea, Germany). Significant differences show in 

both scyphomedusae species not only in respect to different body parts but also in different life 

stages. With the significant differences between umbrella and tentacle in different parts, at this 

point, bacterial community associated with scyphomedusae should analyzed with different parts 

to better understanding these bacterial associations’ ecological role and functions. For the 

different life stages, completely different patterns present in both scyphomedusae species. A 

passive substrate colonized by diverse bacterial community presenting a dispersive community 

among three stages in C. lamarckii, while a strong selected processed of bacterial colonization in 

each life stage presenting a highly separated community structure in Ch. hysoscella. To interpret 

the variability of bacterial community associated with different life stages, additional stages such 

as strobilation and ephyra need to be taking into account. Moreover, significantly different 

bacterial community associated with three life stages was revealed compared between two 

scyphomedusae species. This might indicate that the BCCs of different life stages of 

scyphomedusae are species-specific. Interestingly the diversity of BCC associated with polyps is 

influenced by different sources of food, but also in the bacterial community composition, where 

bacterial community associated with polyps presented significant differences in response to 

different food source. To provide a comprehensive picture of the selection of bacterial 

community in each life stage of scyphomedusae, hatching process of polyp in the field 

experiment, cellular tissue composition, functional genes and links between innate immune 

system need to be analyzed in later study. 
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Abstract 

Jellyfish blooms have increased around the world and these outbreaks of jellyfish population not 

only impact the food web structures by voracious predation, but also play an important role in 

the dynamics of nutrients and oxygen in planktonic food webs. So far, the impacts of dead 

jellyfish biomass on bacterial growth and microbial community composition were quantified. 

However, it remains unclear if the colloidal and dissolved organic matter released by live 

jellyfish is specific carbon compounds and whether such compounds have the potential to shape 

bacterial community composition. In this study, we focused on the compositional succession of 

bacterioplankton community in response to the DOM released by live scyphomedusae (Cyanea 

lamarckii and Chrysaora hysoscella) at Helgoland Roads in the German Bight of the North Sea. 

The bacterial communities were significantly stimulated by the DOM released by live jellyfish 

with different dominant phylotypes regarding to different scyphomedusae species. Bacterial 

community structure determined via automated ribosomal intergenic spacer analysis (ARISA) 

significantly differed regarding to different DOM sources including jellyfish treatment, 

“Kabeltonne” seawater and artificial seawater (DOC-free). Based on catalyzed reporter 

deposition fluorescence in situ hybridization (CARD-FISH) analysis, we observed a rapid shift 

in community composition for the jellyfish treatment with distinct differences in respect to the 

two scyphozoan species. Gammaproteobacteria dominated the community conducted with C. 

lamarckii, while Gammaproteobacteria and Bacteroidetes dominated the community within Ch. 

hysoscella in equal amounts. These significant differences in the bacterial community 

composition and succession indicate that the DOM released by different jellyfish genera might 

consist of different compounds which are species specific.  
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Introduction 

The ocean contains one of earth’s largest bioactive dissolved organic carbon (DOC) pools 

(Hedges, 1992). This large reservoir of carbon and nutrients largely derives from phytoplankton 

biomass, zooplankton grazing activities and viral lysis (Nagata, 2000). Bacterioplankton play a 

key role in assimilating and transforming this source of reduced carbon (Kujawinski, 2011), 

whereby energy and nutrients are channeled to higher trophic levels (Azam et al., 1983). A great 

diversity of uptake mechanisms and metabolic pathways for different carbon compounds have 

evolved among phylogenetic diverse bacteria to utilize DOC (Hopkinson & Barbeau, 2012). 

Gómez-Consarnau (2012) reported that different low-molecular-weight organic compounds (e.g. 

amino acids, glucose, dimethylsulphoniopropionate, acetate or pyruvate) differentially stimulated 

bacterial growth in most cases and triggered the development of unique combinations of 

dominant phylotype. These results emphasize that bacteria substantially differ in their abilities to 

utilize specific carbon compounds, with some bacteria being specialists and others having a more 

generalist strategy (Martinez et al., 1996; Cottrell & Kirchman, 2000; Riemann & Azam, 2002). 

Studies on the variability of bacterial populations in time and space also indicate the role of 

resources in determining population dynamics. The appearance of Roseobacter clade bacteria 

and Flavobacteria has been linked to the organic matter released during phytoplankton blooms 

(González et al., 2000; Pinhassi et al., 2004; Teeling et al., 2012). Additional characteristics, 

such as the substrate affinity or efficiency of carbon processing, may also vary substantially 

among bacterial taxa, suggesting that the quality of available compounds could be a strong 

selective force on bacterioplankton community composition (Riemann et al., 2000; Condon et al., 

2011; Kujawinski, 2011). 

Jellyfish blooms have occurred in many estuarine, coastal and open sea ecosystems worldwide 

during the past decades (Brodeur et al., 2002; Parsons & Lalli, 2002; Billett et al., 2006; Doyle et 

al., 2008). Jellyfish acquire C, N and P by assimilating organic compounds from ingested prey 

and take up small amounts of dissolved organic material (Pitt et al., 2009). Jellyfish are also 

known to release organic matter (Hansson & Norrman, 1995) by several mechanisms such as 

sloppy feeding or excretion of fecal material or mucus (Pitt et al., 2009). Large live medusae 

accumulatively damaged and gradually broken down in the water column throughout the season 

(Mills, 2001). This process of decomposition may support microbial production. Meanwhile, 
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inorganic N and P regenerated by excretion may support algal production. Therefore, jellyfish 

play an important role in the dynamic of nutrients in planktonic food webs via their excretion of 

inorganic nutrients, primarily as ammonium (NH4
+
) and phosphate (PO4

3-
), and by release of 

dissolved organic matter (DOM) (Condon et al., 2010). 

Bacteria thrive in the dissolved organic carbon released by jellyfish which has been described 

both in the laboratory (Hansson & Norrman, 1995) and in the field (Riemann, et al., 2006). Tinta 

et al.(2010; 2012) observed an increase in bacterial abundance and production and a rapid shift 

in community composition from unculturable Alphaproteobacteria to culturable species of 

Gammaproteobacteria and Flavobacteria coupled with NH4
+ 

accumulation and oxygen 

consumption (Tinta et al., 2012). Condon et al. (2011) reported that jellyfish released substantial 

quantities of extremely labile C-rich DOM, which was quickly metabolized by bacterioplankton. 

Jelly-DOM not only support the rapid growth and dominance of specific bacterial phylogenetic 

groups (primarily Gammaproteobacteria) (Titelman et al., 2006; Condon et al., 2011) that were 

rare in ambient waters, but also detour the pathway of C towards bacterial CO2 production and 

away from higher trophic levels (Condon et al., 2011). Previous studies quantified the impacts of 

the dead jellyfish biomass on bacterial growth and microbial community composition by 

modifying carbon and nutrient conditions (Martinez, 1996) through release of nutrients and bio-

available dissolved organic matter (Hansson & Norrman, 1995; Titelman et al., 2006). However, 

it remains unclear if particular bacteria preferentially utilize specific carbon compounds released 

by jellyfish during metabolism and whether such compounds have the potential to shape the 

bacterial community composition. 

In this study, we focused on the compositional succession of bacterioplankton community in 

response to the DOM released by scyphomedusae at Helgoland Roads in the Germany Bight. We 

conducted incubation experiments to evaluate the influence of native bacterial communities in 

response to DOM released by live scyphomedusae Cyanea lamarckii and Chrysaora hysoscella. 

C. lamarckii and Ch. hysoscella (Russell, 1970) are common medusa species at Helgoland Roads 

in the German Bight and usually occur during summer (Möller, 1980; Hay et al., 1990; Barz & 

Hirche, 2007). These scyphomedusae occur worldwide in numerous coastal and shelf sea 

environments (Lucas, 2001) frequently forming large blooms (Hamner & Dawson, 2009). 
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Materials and methods 

Sample collection and preparation  

Sampling of jellyfish Cyanea lamarckii and Chrysaora hysoscella was performed separately in 

July and August 2012 at Helgoland Roads station in the Germany Bight (54˚11.3′N, 7˚54.0′E). 

Jellyfish used in the experiment were collected by handling bucket from surface water and 

immediately transported to the laboratory. Damaged animals were omitted from the analysis. 

Prior to the experiment, jellyfish were gently transferred into a sterile DOC free NaCl solution 

(PSU 30) (20L) for 15 min. This was repeated for three times to rinse the specimen and provided 

them time to clear their gut content. Potential confounding effects of sloppy feeding and leaching 

of DOM from fecal material during the experiment was reduced. In general, most animals 

appeared healthy and undamaged after washing. 

Collection of DOM released by live medusae 

15 individuals of each jellyfish species were incubated separately in 3 L beakers filled with 2.5 L 

DOC-free sterile artificial seawater (ASW) under in situ temperature in dark for 24h. Every 

beaker was covered with combusted aluminum foil. The DOC-free sterile ASW was prepared 

according to Kisand et al. (2008) (1L ASW, main elements: FeCl3 × 6H2O, 0.11g; NaCl, 19.45g; 

MgCl2 × 6H2O, 12.6g; MgSO4 × 7H2O,6.63g; CaCl2 × 2H2O, 2.38g; KCl, 0.55g; NaHCO3, 0.16g; 

Na2HPO4 × 2H2O, 0.01g; trace elements: KBr, 0.08 g; SrCl2 × 6H2O, 0.06 g; H3BO3, 0.02g; 

Na4O4Si, 0.007g; NaF, 0.002 g; H4N2O3, 0.002g). During the incubation, jellyfish were not fed in 

order to avoid organic matter release due to sloppy feeding. After 24h, the jellyfish were gently 

removed from the ASW using laboratory gloves and a bent spoon. Each spoon was prepared with 

following steps: soaked with acidified Milli-Q water (pH 2) and rinsed twice with Milli-Q water 

then combusted at 400°C for 4h. Following jellyfish removal, the incubated ASW of all beakers 

was instantly processed. Five of the jelly-incubated media were collected for later experiment 

setup see below.  
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Experiment setup and sampling 

The schematic overview of the experiment setup is present in Figure 1. The setup consisted of 

three treatments: jellyfish treatment, “Kabeltonne” seawater and artificial seawater. Each of the 

treatment included five replicates. Jellyfish incubated medium as described above, is artificial 

seawater containing dissolved organic matter released by live jellyfish. “Kabeltonne” seawater 

treatment served as control containing natural DOM. Artificial seawater treatment is DOC-free 

and served as blank. These three different media were filtered through GF/F filter (Whatman) 

and subsequently through 0.2μm filter (GTTP polycarbonate filters, Millipore) to get 2 L (final 

volume) of sterile medium containing different dissolved organic matter both in concentration 

and in composition. The entire experiment was carried out twice with two different 

scyphomedusae species in July and Aug. 2012, respectively (Tab. 1). Therefore, both treatments 

of the control (Kabeltonne seawater) and blank (artificial seawater) were performed twice in 

corresponding with different scyphomedusae species.  

Experimental treatments were inoculated with 2 ml fresh seawater from station Helgoland Roads 

in the Germany Bight (54˚11.3′N, 7˚54.0′E). Seawater was filtered through 3μm filter before 

inoculation to remove larger organisms. After set up of the experiments, all treatments were 

incubated under in situ temperature in the dark. Samples were collected at the following time 

points: 6h, 12h, 24h and every 24h (48h, 72h, 96h, 120h, and 144h) until the final sampling point 

168h, to analyse the bacteria abundance and composition. Each water sample from the different 

treatments was collected with a sterile syringe in a rubber tube. Before sampling the incubated 

water was fully stirred. Flow cytometry was applied to measure the bacteria abundance. CARD-

FISH was applied to investigate the bacterial composition. At the end of each experiment (at 

168h), except for collecting the abundance and composition samples, DNA samples were 

collected for the analyses of bacterial community structure by ARISA fingerprint.  

To avoid DOM contamination all the containers and material (sterile syringe and rubber tube) 

were first washed and soaked overnight with acidified (pH 2) Milli-Q water and rinsed twice 

with Milli-Q water then sealed with combusted aluminum foil.  
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Bacterial enumeration by flow cytometry 

For flow cytometry analyses, 500 µl of a sample was stained directly after sampling with 10 µl 

of a freshly prepared 400× SYBR Green (invitrogen™, Life Technologies, Paisley, UK) solution 

in sterile filtered dimethyl sulfoxide (DMSO) for 10 min at room temperature and in the dark. 10 

µl of a diluted solution of Fluoresbrite® Polychromatic Red Microspheres 1.0 µm (Polysciences 

Europe, Eppelheim, Germany) as an internal counting standard (final concentration of about 10% 

of the expected number of cells) was directly added to the sample prior to staining. Samples were 

analyzed samples with an Accuri C6 flow cytometer (BD Accuri Cytometers, Ann Arbor, MI, 

USA) with the fluidics setting “slow” for 1.5 min. To reduce noise, a threshold on FL1-H of 550 

for all treatment was applied. The actual flow through was calibrated with BD Trucount™ 

Controls (BD Biosciences, San Jose, CA, USA). 

DNA extraction 

Bacterial biomass was collected on 0.2 µm Isopore™ Membrane Filters (GTTP-type, 47 mm 

diameter, Millipore) and DNA extraction was performed as previously described (Sapp et al., 

2007 b). All DNA extracts were dissolved in 30-50µl sterile water and served as template DNA 

to analyse the Bacterial community structure via ARISA fingerprinting. The quantity and quality 

of extracted DNA was determined microphotometrically using a Tecan Infinite 200 NanoQuant. 

Bacterial community structure 

To characterize the differences of bacterial community structure in response to different DOM 

sources, ARISA fingerprint were performed at the end of the experiments according to Krause et 

al. (2012) as described previously (described in details in Chapter I). 

Fixation and CARD-FISH 

For the composition of bacterial community, catalyzed reporter deposition fluorescence in situ 

hybridization (CARD-FISH) was performed according to Pernthaler et al. (2004) with 

modifications. Samples for CARD-FISH were fixed with 37% formaldehyde solution (final 

concentration 1% v/v) at 4°C overnight. Water samples of 10 ml were filtered onto 
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polycarbonate filters (type GTTP, 0.2 µm pore size, 47 mm diameter, Millipore) and were stored 

at -20°C until further analyses.  

According to the growth curves of each treatment (flow cytometry), the inoculation and four 

representing time points of the treatments including the initial point (24h) and the exponential 

growth phase (48h), the beginning of stationary phase (96h) and the ending of experiment (168h) 

were chosen for the bacterial community composition analyses.  

For the jellyfish treatment, permeabilization was conducted with 10 mg/ml Lysozyme in 50mM 

EDTA, 100 mM Tris/HCl for 35 min at 37°C, while the samples from “Kabeltonne” seawater 

and artificial seawater treatments were permeated for 1h at the same temperature. The 

hybridization was carried out for 2.5 h in three treatments with horseradish peroxidase (HRP)-

labeled oligonucleotide probes at varying formamide concentrations depending on the probes 

(Table 2). The fluorescein-labeled tyramide was used for signal amplification (Pernthaler et al., 

2004) which was carried out for 30 min in all three treatments. The filter sections were washed 

twice in 96% ethanol, dried and embedded on microscope slides with 4:1 (v/v) Citifluor 

(Citifluor Ltd., London, UK) and VectaShield (Vector Laboratories Inc., Burlingame, CA, USA) 

antifading reagents.  

For the quantification of total microbial cell numbers, the cells were stained with DAPI (1µg/mL) 

and were partly quantified manually on an Axioplan II Imaging epifluorescence microscope 

(Carl Zeiss MicroImaging GmbH, Göttingen, Germany) and partly enumerated automatically 

with the Zeiss Axio Imager.Z2 (Carl Zeiss MicroImaging GmbH). For automated cell 

quantification, the software package AxioVision 7.6 (Carl Zeiss MicroImaging GmbH) was used 

in conjunction with the macro MPISYS and the ACMEtool 0.75 software (Zeder et al., 2011). 

Based on the basic knowledge of the composition of free-living bacterial community and the 

associated bacterial community of jellyfish, three general probes, including Gam42 and CF319a 

and Ros537 were applied on all three treatments at four time points (mentioned above) with five 

replicates. According to the results obtained by applying general probes, no difference among the 

five replicates was observed in respect to the bacterial community composition, therefore another 

four more specific probes including Alt1413, Psa184, Pol1740 and Ulv995 were applied to one 

replicate for each treatment. Alt1413, Psa184, Pol1740 and Ulv995 were applied for the time 

point of inoculation (0h) and jellyfish treatment at both 24h and 168h. Two specific probes 
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Alt1413 and Psa184 were applied on “Kabeltonne” seawater and artificial seawater treatments at 

both 24h and 168h. All probes are list in the Table 2. 

Statistical analysis 

Analysis of ARISA data  

ARISA fingerprints were analyzed by using BioNumerics 6.6 software (Applied Maths, Sint-

Martens-Latem, Belgium). Normalization of band patterns and binning to band classes was 

performed according to Kovacs et al. (2010) and Brown (2005) as described previously 

(described in details in Chapter I). 

The alpha diversity (OTU richness) (operational taxonomic units) of each sample obtained from 

ARISA fingerprints was calculated by summing the total number of remaining bands. ARISA-

OTUs were analyzed based on a constructed binary table. Differences between the groups were 

tested by one-way analysis of variance (ANOVA) in the software package Statistica 9. 

Growth kinetics of bacterial community in response to different DOM source 

Growth kinetics of bacterial community in jellyfish medium, “Kabeltonne” seawater and 

artificial seawater were compared by the construction of growth curves. The growth kinetics 

parameters including lag time (LT) and specific growth rate (SGR) were determined by the 

modified Gompertz equation using GraphPad Prism 4.0 (GraphPad Software, San Diego, CA, 

USA) (Kim et al., 2012). The equation used was as follows: 

Y = N0 + C × exp (−exp ((2.718 × SGR/C) × (Lag – t) + 1)) 

In this equation, Y represents the viable cell count (log cell/ml), N0 is the initial log number of 

cells, C is the difference between the initial and final cell numbers, SGR is the maximum specific 

growth rate (log N/ml), LT is the lag time before growth and t is the sampling time. The 

goodness-of-fit of the data was evaluated based on the coefficient of determination (R
2
), which 

was provided by GraphPad Prism. 

Multivariate analyses 

For multivariate statistical analyses the software package PRIMER v.6 and the add-on 

PERMANOVA+ (both PRIMER-E Ltd, Plymouth, UK) was used. The permutational 
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multivariate analysis of variance (PERMANOVA) with fixed factor was applied to investigate 

the difference of bacterial community composition (BCC) in two scyphomedusae species 

regarding different DOM treatments based on Jaccard coefficient. Principal co-ordinate analysis 

(PCO) was performed to visualize patterns of the bacterial community in response to different 

DOM treatments. 
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Figure 1. The flow diagram of the experiment setup is indicated with the thick blue line. The 

sampling schedules are indicated with the thin red line. Each of the treatment contains five 

replicates. The same setup was performed twice each on different dates (July and Aug. 2012, 

respectively) with two scyphomedusae species (Cyanea lamarckii and Chrysaora hysoscella). 

(For details on preparation and sampling see the material and methods part.) 

 

Table 1. Bacterial abundances of inoculation and incubation temperature for each sampling date, 

and jellyfish species 

Jellyfish species Jellyfish 

sampling day 

Inoculation’s 

sampling day 

Bacterial 

abundance of 

inoculation 

(N/ml) 

Incubation 

temperature 

(°C) 

C. lamarckii 18.07.2012 19.07.2012 1.1×10
6
 15 

Ch. hysoscella 30.08.2012 31.08.2012 1.9×10
6
 17 
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Table 2. List of applied probes including target groups, probe sequences, required formamide 

concentrations (FA%) and references (The specific probes marked with different symbols belong 

to the general probes marked with the same symbol) 

Probe Target group Probe sequence (5’ to 3’) FA% Reference 

Eub338  Bacteria GCTGCCTCCCGTAGGAGT 35 (Amann et al., 1990) 

Gam42a  γ-Proteobacteria * GCCTTCCCACATCGTTT 35 (Manz et al., 1992) 

CF319a  Bacteroidetes # TGGTCCGTGTCTCAGTAC 35 (Manz et al., 1996) 

Ros537  Roseobacter clade CAACGCTAACCCCCTCC 35 (Eilers et al., 2001) 

Alt1413   Alteromonas/ 

Colwellia * 

TTTGCATCCCACTCCCAT 40 (Eilers et al., 2000) 

Psa184  Pseudoalteromonas 

spp.  * 

CCCCTTTGGTCCGTAGAC 30 (Eilers et al., 2000) 

Pol740  Polaribacter spp. # CCCTCAGCGTCAGTACAT

ACGT 

35 (Malmstrom et al., 

2007) 

Ulv995 Ulvibacter spp. # TCCACGCCTGTCAGACTA

CA 

35 (Teeling et al., 2012) 

Ulv995Comp1 Competitor 1 to 

Ulv995 

TCCACTCCTGTCAGACTAC

A 

 (Bennke et al., 2013) 

Ulv995Comp2 Competitor 2 to 

Ulv995 

TCCACCCCTGTCAGACTAC

A 

 (Bennke et al., 2013) 
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Results  

Growth kinetics of bacterial community  

In the present study, we investigated the response of the planktonic bacterial community to 

different DOM sources including a jellyfish treatment with jelly-DOM released by live jellyfish, 

a “Kabeltonne” seawater containing natural DOM source and a DOC-free artificial seawater 

treatment. This study was conducted twice with two different scyphomedusae species (Cyanea 

lamarckii and Chrysaora hysoscella). The wet weight and dry weight of two scyphomedusae 

specimens were shown in Table 3. Wet weight and dry weight does not correspond with each 

other and the specimen with the highest wet weight does not show highest dry weigh. One of the 

first views, dry weight varied depending on the water content in different specimen. Interestingly, 

macroscopic visible aggregates were also observed to correlate with the highest dry weight 

individual (C. lamarckii: replicate B and Ch. hysoscella: replicate A). 

The growth curves of the first set of treatments conducted with C. lamarckii well fitted to the 

Gompertz equation (R
2 

= 0.972 to 0.983). Lag time (LT), specific growth rate (SGR) and 

maximum population density (MPD) were compared among the treatments, jellyfish treatment C. 

lamarckii, “Kabeltonne” seawater and artificial seawater (Tab. 4). Concerning the jellyfish 

treatment and “Kabeltonne” seawater treatment, the bacterial communities had no lag time, they 

started to grow immediately after inoculation and showed similar growth rates (Fig. 2), In 

contrast, the bacteria showed a long lag phase in the artificial seawater treatment and started to 

grow only after 48h. The highest growth rate of bacterial community was observed in the 

artificial seawater treatment (Tab. 4). This might be due to fast growth of bacteria in exponential 

growth phase (from 48h to 72h) of the artificial seawater treatment (Fig. 2). Therefore, the value 

of growth rate (Tab. 4 SGR) might not be able to fully represent the real situation of bacterial 

growth in all treatments. Bacterial community within C. lamarckii and “Kabeltonne” seawater 

treatments entered into the beginning of stationary phase at the same time around 48h~72h but 

with different abundance. The maximum bacterial population densities (MPD) varied among the 

three treatments. The highest MPD was detected in the C. lamarckii treatment (4.4×10
6 

N/ml), 

followed by the “Kabeltonne” seawater treatment (1.2×10
6
 N/ml). Although bacteria rapidly 

grew in the artificial seawater treatment after 48h, they went into stationary phase within one day 



 

CHAPTER III 

98 

 

(72h). The bacteria reached the stationary phase with lowest abundance (8×10
5 

N/ml). 

Significant differences (F 8, 138 = 92.73, p<0.0001) of the bacterial growth kinetics in global test 

were observed regarding to different treatments conducted with C. lamarckii.  

The growth curves of the second set of treatments conducted with Ch. hysoscella also well fitted 

to the Gompertz equation (R
2 

= 0.928 to 0.979). The values of LT, SGR and MPD were 

compared among three treatments (Tab. 5). In this experiment, for the Ch. hysoscella DOM 

treatment, bacterial community had a short lag phase and entered into exponential growth phase 

after 12h (Fig. 3), whereas bacteria of “Kabeltonne” seawater treatment started to grow without 

lag time. Compared with the treatment in artificial seawater, bacteria had a long lag time (20h). 

Among these three treatments, bacterial community within jellyfish treatment displayed lower 

growth rate than that in “Kabeltonne” seawater and entered the stationary phase after 72h with 

highest cell abundance (1.0×10
7 

N/ml). Bacteria in the “Kabeltonne” seawater treatment showed 

the fastest growth rate but they reached the stationary phase earlier (at 48h) than in the other two 

treatments. The maximum abundance at the end was low (3.7×10
5 

N/ml). The bacteria in 

artificial seawater grew slowly and reached the maximum density at 72h with the lowest amount 

(3.6×10
5 

N/ml). Significant differences (F 8, 138 = 88.52, p<0.0001) of the bacterial growth 

kinetics in global test were observed regarding to different treatment conducted with Ch. 

hysoscella. 

Bacterial community structure 

Automated ribosomal intergenic spacer analysis (ARISA) was performed at the end of both 

experiments to characterize the differences of the bacterial community structure in response to 

different DOM sources. Based on the ARISA fingerprints, the PCO plot (Fig. 4) depicted the 

bacterial communities of different DOM treatments with the first set performed with C. 

lamarckii. The first two axes of the PCO captured 48% of the total variation. The bacterial 

communities in C. lamarckii treatment dispersed, as well as in the artificial seawater treatment. 

Compared with the communities from “Kabeltonne” seawater, they all assembled together. 

However, the communities in respect to different treatments all separated from each other 

presenting a clear separation between the jellyfish treatment and the “Kabeltonne” and artificial 

seawater, respectively, regarding to the bacterial community structure. The PERMANOVA main 

test revealed significant differences among all samples regarding to different treatments (p=0.001, 
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Tab. 6). For the posteriori PERMANOVA pair-wise comparisons, the Monte Carlo test was 

applied due to the small size of unique permutation (<999) shown in Table 7. The bacterial 

community of C. lamarckii treatment presented a different structure from that in both 

“Kabeltonne” and artificial seawater treatments (p=0.021 and 0.026). The bacterial community 

structure of “Kabeltonne” seawater treatment significantly differed from the community of 

artificial seawater (p=0.002).  

For the second set of experiment conducted with Ch. hysoscella, according to the ARISA 

fingerprints, the PCO plot (Fig. 5) revealed the bacterial community structure in response to 

different DOM treatments. The first two axes of the PCO captured 48% of the total variation. 

There was apparent separation among the assemblages regarding to different DOM treatments 

and each treatment clustered tightly (Fig. 5). Consistent with the PERMANOVA main test, 

bacterial communities significantly differed in respect to each DOM treatments (p=0.001, Tab. 

8). For the PERMANOVA pair-wise comparisons based on the Monte Carlo test, bacterial 

community of Ch. hysoscella treatment was different from both “Kabeltonne” seawater and 

artificial seawater treatments (p=0.011, 0.013, respectively, Tab. 9). The community structure of 

“Kabeltonne” seawater significantly differed from that in the artificial seawater (p=0.001).  

In addition, the bacterial community was significantly different (p=0.001, Tab. 10) regarding to 

DOM treatments comparing between two set of experiments (Fig. 6). Concerning the richness, 

we observed similar diversity in the initial seawater (inoculations) with 49 different ARISA band 

classes in both experiments (with C. lamarckii and Ch. hysoscella). For the first set of 

experiment with C. lamarckii (Fig. 7 A), the highest richness was observed in the “Kabeltonne” 

seawater (S=54), followed with the C. lamarckii treatment (S=46). The artificial seawater 

treatment showed the lowest richness with 37 band classes. According to the ANOVA, bacterial 

communities of all three different DOM sources displayed significant differences regarding the 

richness (F2, 12=7.1632, p=0.009). Specifically, significant differences were observed between 

the “Kabeltonne” seawater and artificial seawater (p=0.007). For the second set of experiment 

with Ch. hysoscella (Fig. 7 B), there is no difference in richness regarding to different DOM 

treatments (F 2, 12=2.934, p=0.918). The highest richness was also observed in the “Kabeltonne” 

seawater treatment (S=48). 
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Bacterial community composition 

We applied CARD-FISH to analyse the succession of specific bacterial groups in response to 

different DOM treatments. For the first set of experiment conducted with C. lamarckii, the 

bacterial community of initial inoculation of seawater mainly consisted of Bacteroidetes (55%), 

followed by Roseobacter clade (19%). Gammaproteobacteria were only present in minor ratio 

(9%) (Fig. 8 (A-C) 0h).   

Bacterial community composition as revealed by different taxonomic groups significantly 

changed in all treatments after the inoculation (Fig. 8 (A-C)). In the treatment with jellyfish C. 

lamarckii DOM (Fig. 8 A), Gammaproteobacteria dominated the bacterial community after 24h 

(87%). In the “Kabeltonne” seawater treatment (Fig. 8 B), Gammaproteobacteria significantly 

increased and dominated the community after 24h (71%). For the treatment of artificial seawater 

(Fig. 8 C), Gammaproteobacteria also increased but with low ratio 43%. Regarding the 

Bacteroidetes, this group significantly decreased in all treatment after 24h. The relative 

abundance of Bacteroidetes was 5% in jellyfish (C. lamarckii) treatment and 11% and 21%, 

respectively in “Kabeltonne” seawater and artificial seawater treatments. The community of 

Roseobacter clade decreased compared with the initial inoculation, but the relative abundance 

was similar among the three treatments (8%-13%) after 24h.  

For the C. lamarckii treatment (Fig. 8 A), the bacterial community composition has no difference 

between 24h and 48h, whereas the bacterial composition changed after 96h. The Bacteroidetes 

bacteria increased after 96h (31%). The Gammaproteobacteria decreased from 67% (after 48h) to 

38% (after 96h). The community of Roseobacter clade increased from 4% (after 48h) to 11% 

(after 96h). Comparing the bacterial community in C. lamarckii treatment after 96h and 168h, 

the bacterial community composition with respect to these major groups showed the same 

abundance. 

Regarding the “Kabeltonne” seawater treatment (Fig. 8 B), Gammaproteobacteria firstly reached 

their maximum (82%) after 48h and decreased (59%) after 96h. For the community of 

Bacteroidetes, they decreased (3%) after 48h and then increased (9%) after 96h. The community 

of Roseobacter clade increased from 6% (after 48h) to 12% (after 96h). At the end of the 

experiment, the community composition of “Kabeltonne” seawater treatment presented no 

difference compared with the community after 96h, Gammaproteobacteria dominated the whole 
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community (50%), and the community of Bacteroidetes and Roseobacter clade are presented 

with similar abundance 13% and 12%, respectively. 

Regarding to the artificial seawater treatment (Fig. 8 C), the community of Gammaproteobacteria 

increased (66%) after 48h and then decreased (44%) after 96h. The community of Bacteroidetes 

and Roseobacter clade significantly decreased from 2% and 11% (after 48h) to 0.4% and 1.3% 

(after 96h), respectively. After 168h, Gammaproteobacteria remained the dominant group with 

40%. Bacteria of the Roseobacter clade were only present in minor ratio 4% and Bacteroidetes 

disappeared at the end. 

In general, the bacterial community composition significantly changed from the initial 

inoculation in response to different DOM treatments. Although Gammaproteobacteria dominated 

the whole community in all treatments, the relative abundance varied from each other (40%-

50%). To get more information within the major groups, we investigated the composition of 

these dominant communities with specific probes (Fig. 9 (A-C)). For the initial inoculation (Fig. 

9 A 0h), Gammaproteobacteria were composed of Alteromonas (4%) and a minor ratio of the 

Pseudoalteromonas (0.7%). The dominating Bacteroidetes were composed of Polaribacter (21%) 

and a minor content of Ulvibacter (1%).  For the jellyfish C. lamarckii DOM treatment (Fig. 9 

A), the community was highly dominated by Alteromonas (97%) after 24h. However, at the end 

(168h), the detectable group of Gammaproteobacteria was dominated by Alteromonas which 

decreased to 27% and Pseudoalteromonas which increased after 168h (1.7%). For the 

community of Bacteroidetes, Polaribacter were present with low ratio (4%). No Ulvibacter were 

detected at the end. For the “Kabeltonne” treatment (Fig. 9 B), Alteromonas dominated the 

community both at the beginning (24h) (69%) and the end (168h) (45%). Pseudoalteromonas 

was detected in minor ratio (1%) after 24h and nearly disappeared (0.6%) after 168h. For the 

artificial seawater treatments (Fig. 9 C), for the Gammaproteobacteria community, Alteromonas 

were only present (42%) after 24h, whereas, both Alteromonas (52%) and Pseudoalteromonas 

(44%) were present after 168h. 

For the second set of experiment conducted with Ch. hysoscella, only 51% of the microbial 

community was detectable as bacteria in the initial inoculation. These bacteria mainly consisted 

of Bacteroidetes (18%), followed by Roseobacter clade (5%) and Gammaproteobacteria (4%) 

(Fig. 8 (D-F) 0h). For the jellyfish Ch. hysoscella DOM treatment (Fig. 8 D), Bacteroidetes 

dominated the bacterial community with 53% relative abundance. Compared with the initial 
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inoculation, the Bacteroidetes significantly increased after 24h and the community of 

Gammaproteobacteria also increased (25%). The abundance of Roseobacter clade bacteria did 

not change after inoculation and contributed 6% to the whole community. However, regarding 

the community of “Kabeltonne” seawater treatment (Fig. 8 E), Gammaproteobacteria 

significantly increased after 24h and contributed 64% to the whole community. The 

Bacteroidetes and Roseobacter clade decreased to 9% and 0.8%, respectively, compared with the 

initial inoculation. For the artificial seawater treatment (Fig. 8 F), Gammaproteobacteria and 

Roseobacter clade all increased with different ratio (27% and 10%, respectively). As compared 

with the initial inoculation, the community of Bacteroidetes still kept the original relative 

abundance (16%) after 24h. 

For the treatment of Ch. hysoscella DOM treatment (Fig. 8 D), no difference between 48h and 

24h in respect to the bacterial composition was observed. Bacteroidetes still dominated (39%) 

the community after 48h, whereas, Gammaproteobacteria increased from 23% (48h) to 33% after 

96h, but there was no difference regarding to the relative abundance between community of 

Gammaproteobacteria and Bacteroidetes after 96h. The community of Roseobacter clade 

increased from 0.7% (48h) to 4% after 96h. At the end of the experiment (168h), 

Gammaproteobacteria and Bacteroidetes were present with equal amounts (22% and 25%, 

respectively). The relative abundance of Roseobacter clade surprisingly stayed the same after 

168h (5%) as compared with the initial inoculation. 

For the “Kabeltonne” seawater treatment (Fig. 8 E), Gammaproteobacteria were predominant 

with 74% after 48h. However, Bacteroidetes and Roseobacter clade recovered after 96h (17% 

and 4%, respectively) compared with the abundance after 48h (0.3% and 0.5%, respectively). At 

the end after 168h, Gammaproteobacteria significantly decreased from 56% (after 96h) to 14%. 

The abundance of Bacteroidetes and Roseobacter clade (12% and 6%, respectively) did not 

change even after 96h. In addition, the proportion of detectable bacteria decreased and was much 

lower (47%) after 168h than other time points.  

For the treatment of artificial seawater (Fig. 8 F), the Gammaproteobacteria increased (57%) 

after 48h compared with the community after 24h. Bacteria of the Roseobacter clade decreased 

(0.3%) after 48h. The bacterial community composition significantly changed after 96h. 

Gammaproteobacteria highly dominated the whole community (77%). Bacteroidetes nearly 

disappeared (0.4%) and Roseobacter clade only contributed to a minor ratio (2%) after 96h. The 
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bacterial community composition after 168h was almost similar as compared with that after 96h. 

Gammaproteobacteria were still the dominant group with lower abundance (61%) as compared 

with that after 96h. Regarding to the abundance of Bacteroidetes and Roseobacter clade after 

168h, they only contributed to 0.3% and 4%, respectively, of the whole community. 

Furthermore, with more specific probes of the major bacterial groups, significant differences of 

the bacterial composition were shown in response to different DOM treatments (Fig. 9 (D-F)). 

As mentioned before, a low coverage of the total bacteria was revealed in the initial inoculation. 

Therefore, the ratio of specific probes was even lower. A large proportion remained unidentified. 

Polaribacter were present with a ratio of 4%. For the Ch. hysoscella DOM treatment (Fig. 9 D), 

the community of Gammaproteobacteria consisted of 17% Alteromonas and 3% 

Pseudoalteromonas. The dominant Bacteroidetes after 24h mainly consisted of 47% 

Polaribacter. At the end (168h), the Gammaproteobacteria consisted of 10% Alteromonas and 

11% Pseudoalteromonas. The Bacteroidetes consisted of 39% Polaribacter. However, in the 

“Kabeltonne” seawater treatment (Fig. 9 E), the dominant Gammaproteobacteria consisted of 

Alteromonas both after 24h and 168h with varied abundance. 62% Alteromonas was detected at 

the beginning (24h) and they significantly decreased after 168h with 8%. For the artificial 

seawater treatment (Fig. 9 F), the dominant Gammaproteobacteria also consisted of Alteromonas 

both after 24h (25%) and 168h (6%) with different abundance. Pseudoalteromonas which could 

not be detected at the beginning of the experiment were found with 2% at the end (168h). 
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Table 3. Wet and dry weight of two different scyphomedusae species with five replicates in the  

incubation experiment. 

 C. lamarckii Ch. hysoscella 

 Wet weight (g) Dry weight (g) Wet weight (g) Dry weight (g) 

A 41.56 1.38 51.33 1.71 

B 28.53 1.54 35.41 0.97 

C 28.53 0.87 45.63 1.27 

D 16.46 1.01 23.7 1.26 

E 28.03 0.84 25.37 0.9 
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Figure 2. Growth curve of bacterial community under different DOM treatments shown as 

different symbols with Cyanea lamarckii. (R
2
=0.972-0.983, F 8, 138 = 92.73, p<0.0001. Equation 

for C. lamarckii treatment: Y = 2.379 + 4.247 × exp (−exp (0.05× (-8.663 – t) + 1)). Equation for 

Kabeltonne seawater: Y = 2.622 + 3.569 × exp (−exp (0.05 × (-6.054 – t) + 1)). Equation for 

Artificial seawater: Y = 3.383 + 2.411 × exp (−exp (0.14× (42.64 – t) + 1)). ) 

Table 4. Lag time (LT), specific growth rate (SGR) and maximum population density (MPD) of 

three treatments in C. lamarckii. 

 C. lamarckii Kabeltonne seawater Artificial seawater 

LT (h) -8.663±8.309 -6.054±4.862  42.64±1.379 

SGR (log/h) 0.078±0.006 0.077±0.004  0.123±0.027 

MPD (log) 6.625±0.058 6.192±0.034  5.794±0.036 
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Figure 3. Growth curve of bacterial community under different DOM treatments shown as 

different symbols with Chrysaora hysoscella. (R
2
=0.928-0.979, F 8, 138 = 88.52, p<0.0001. 

Equation for Ch. hysoscella treatment: Y = 3.453 + 3.532 × exp (−exp (0.05 × (7.702 – t) + 1)). 

Equation for Kabeltonne seawater: Y = 2.859 + 3.363 × exp (−exp (0.08 × (-5.156 – t) + 1)). 

Equation for Artificial seawater: Y = 3.487 + 1.92 × exp (−exp (0.08 × (20.37 – t) + 1)). ) 

Table 5. Lag time (LT), specific growth rate (SGR) and maximum population density (MPD) of 

three treatments in Ch. hysoscella. 

 Ch. hysoscella Kabeltonne seawater Artificial seawater 

LT (h) 7.702±3.074 -5.156±8.679  20.37±1.628 

SGR (log/h) 0.085±0.008 0.093±0.011  0.065±0.006 

MPD (log) 6.985±0.061 6.222±0.062  5.407±0.029 
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Figure 4. Principal coordinate (PCO) analysis presenting the bacterial communities of different 

DOM treatments including the initial inoculation (original seawater) with Cyanea lamarckii 

based on Jaccard coefficient from ARISA profiles. 
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Table 6. PERMANOVA main tests of bacterial community structure of different DOM 

treatments with C. lamarckii based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo F p (perm) Perms 

Sam 3 7762.7 3.3594 0.001 998 

Res 12 9242.9    

Total 15 17006    

 

Table 7. PERMANOVA pair-wise tests of bacterial community structure of different DOM 

treatments with C. lamarckii based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor 

“sample”. 

Comparison t (perm) p (MC) 

Original Seawater vs. Artificial Seawater 1.4709 0.122 

Original Seawater vs.  Kabeltonne Seawater 3.8076 0.004 

Original Seawater vs.  C. lamarckii 1.0064 0.413 

Artificial Seawater vs.  Kabeltonne Seawater 2.7885 0.002 

Artificial Seawater vs.  C. lamarckii 1.6605 0.026 

Kabeltonne Seawater vs.  C. lamarckii 1.9384 0.021 
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Figure 5. Principal coordinate (PCO) analysis presenting the bacterial communities of different 

DOM treatments including the initial inoculation (original seawater) with Chrysaora hysoscella 

based on Jaccard coefficient from ARISA profiles. 
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Table 8. PERMANOVA main tests of bacterial community structure of different DOM 

treatments with Ch. hysoscella based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo F p (perm) Perms 

Sam 3 9275.3 4.182 0.001 996 

Res 12 8871.5    

Total 15 18147    

 

Table 9. PERMANOVA pair-wise tests of bacterial community structure of different DOM 

treatments with Ch. hysoscella based on Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are pair-wise comparisons of the factor 

“sample”. 

Comparison t (perm) p (MC) 

Original Seawater vs. Artificial Seawater 2.0415 0.051 

Original Seawater vs.  Kabeltonne Seawater 1.7756 0.061 

Original Seawater vs.  Ch. hysoscella 1.1375 0.313 

Artificial Seawater vs.  Kabeltonne Seawater 3.236 0.001 

Artificial Seawater vs.  Ch. hysoscella 1.9648 0.013 

Kabeltonne Seawater vs.  Ch. hysoscella 1.9613 0.011 
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Figure 6. Principal coordinate (PCO) analysis presenting the bacterial communities of different 

DOM treatments including the initial inoculation (original seawater) with both scyphomedusae 

species (Cyanea lamarckii and Chrysaora hysoscella) based on Jaccard coefficient from ARISA 

profiles. (Original seawater I and II referred to the experiments conducted with C. lamarckii and 

Ch. hysoscella, respectively, as well as artificial and Kabeltonne seawater treatment.) 
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Table 10. PERMANOVA main tests of bacterial community structure of different DOM 

treatments between two scyphomedusae species (C. lamarckii and Ch. hysoscella) based on 

Jaccard dissimilarities of ARISA profiles. 

Significant results (p (perm) <0.05) are highlighted in bold. Displayed are tests for the factor ‘sample’ and the 

partitioning of multivariate variation. p-values were obtained using type III sums of squares.   

d.f.: degrees of freedom, SS: sums of squares, Sq. root: square root of the component of variation attributable to that 

factor in the model, in units of Jaccard dissimilarities. 

Source of 

variation 

d.f. SS pseudo F p (perm) Perms Sq. 

root 

Spe 7 20850 3.9463 0.001 999 23.901 

Res 24 18114    27.473 

Total 31 38964     
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Figure 7. Bar chart of means of bacterial OTU number (richness) for different DOM treatments 

of two Scyphomedusae species (A: Cyanea lamarckii and B: Chrysaora hysoscella) obtained by 

ARISA fingerprint. Whiskers indicate 95% confidence intervals. 
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Figure 8. Relative abundance of bacterial community in response to different DOM treatments 

with general probes shown in the legend. (DOM treatments: DOM released by living jellyfish: A, 

C. lamarckii and D, Ch. hysoscella; “Kabeltonne” seawater: B and E; Artificial seawater (DOC 

free): C and F) (Error bars present the 95% confidence) (EUB: most bacteria, GAM: 

Gammaproteobacteria, CF: Bacteroidetes, ROS: Roseobacter clade) 
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Figure 9. Relative abundance of bacterial community in response to different DOM treatments 

with specific probes shown in the legend. (DOM treatments: DOM released by living jellyfish: A, 

C. lamarckii and D, Ch. hysoscella; “Kabeltonne” seawater: B and E; Artificial seawater (DOC 

free): C and F) (Alt: Alteromonas, Pseu: Pseudoalteromonas spp., Pol: Polaribacter spp., Ulv: 

Ulvibacter spp.) 
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Discussion 

We present the first study which assayed the DOM utilization released by live jellyfish. 

According to our results, the bacterial community showed significant activity which was 

displayed by the highest bacterial abundance in the jellyfish treatment compared with two other 

treatments (“Kabeltonne” seawater and artificial seawater) (Fig. 2 and 3). The “Kabeltonne” 

seawater treatment contains the natural DOM source available in the pelagic marine environment 

and the artificial seawater treatment is DOC-free. To our knowledge few studies have been 

performed showing the degree of changes in bacterial diversity depending on dead jellyfish 

biomass (Titelman et al., 2006; Tinta et al., 2010; Condon et al., 2011; Tinta et al., 2012). The 

DOC released during decomposition of jellyfish supports bacterioplankton production (Titelman 

et al., 2006). Increases in bacterial abundances resulted in growth of specific bacterial phylotypes 

indicate that jellyfish tissues stimulated the growth of specific bacteria (Titelman et al., 2006). In 

our study, the bacterial community was significantly different regarding to different DOM 

treatments based on the ARISA fingerprint (Fig. 4 and 5, Tab. 6-9). Apparently, the composition 

of the different DOM sources is the main factor which modulate the bacterial community in 

present study. Based on the CARD-FISH analysis, the succession of the bacterial community 

composition was revealed with certain bacterial groups (Fig. 8 and 9), it might be speculate that 

DOM as the main controlling factor for the bacterial community in current study.  

The initial inoculum was dominated by the Cytophaga-Flavobacteria which belongs to 

Bacteroidetes based on CARD-FISH in both experiments conducted with C. lamarckii and Ch. 

hysoscella in July and August 2012, respectively. The Cytophaga-Flavobacteria cluster is the 

most abundant group of all bacterial communities in many oceanic habitats (Llobet-Brossa et al., 

1998; Glöckner et al., 1999; Simon et al., 1999; Cottrell & Kirchman, 2000; Eilers et al., 2000) 

accounting for as much as half of all bacteria potentially identified by FISH. However, due to 

many gaps occurred in the bacterial community composition of the initial inoculums, to 

determine the detailed composition of the whole community, more probe need to be analyzed in 

later study.  

In the jellyfish treatment, the bacterial community composition was dominant by 

Gammaproteobacteria and Bacteroidetes in the Cyanea lamarckii treatment coupling with a clear 

succession (Fig. 8 A). Gammaproteobacteria (particular represented by Alteromonas) was 
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consistently dominant throughout the whole experiment with an obvious decreasing abundance 

at the end (from 97% to 27%), whereas Bacteroidetes decreased at the beginning and recovered 

at the end of the experiment. However, in the jellyfish treatment conducted with Chrysaora 

hysoscella, Bacteroidetes were consistently abundant throughout the whole experiment and 

Gammaproteobacteria were equally abundant with Bacteroidetes at the end of that experiment 

(Fig. 8 D). Gammaproteobacteria are frequently observed in high abundances not only in 

incubation experiments (Eilers et al., 2000; Pinhassi & Berman, 2003), but also in previous 

studies addressed the specific utilization of DOM in the bacterial communities (Eiler et al., 2003; 

Alonso-Sáez & Gasol, 2007; Landa et al., 2013). Bacteroidetes, in particular, representatives of 

the class Flavobacteria are presumed to play an important role in the degradation of complex 

organic matter (OM) (Kirchman, 2002). This was identified in present study in the jellyfish 

treatment by Polaribacter specifically. As a member of Flavobacteria, Polaribacter was 

abundant both at the beginning and the end of the experiments conducted with Ch. hysoscella, 

while it composed of a minor portion at the end of the experiment conducted with C. lamarckii. 

Gómez-Consarnau, et al. (2012) revealed that some bacterial phylotypes were highly abundant 

specific to enrichment with specific carbon compounds (eg. Acinetobacter sp. B1-A3 with 

acetate and Psychromonas sp. B3-U1 with glucose). The clear difference of bacterial community 

composition in response to the DOM released by different jellyfish species might indicate that 

the DOM released by jellyfish might be consisted of different compounds which are species 

specific.  

A rapid shift (after 24h) in community composition from Bacteroidetes dominated to culturable 

species of Gammaproteobacteria and Bacteroidetes were revealed in response to the DOM 

released by jellyfish in the current study (Fig. 8A and 8D). Particularly, Alteromonas and 

Polaribacter are favored in response to DOM released by live jellyfish (Fig. 9A and 9D). 

Alteromonas macleodii exhibits hydrolytic ectoenzyme activities e.g., amylases, gelatinases, and 

lipases (Baumann et al., 1972). Thus, it should be well equipped to degrade major components of 

mucus released by jellyfish. Investigation of the bacterial taxa in response to the addition of 

mucus from the coral Fungia sp. (Allers et al., 2008), the author found that the bacterial 

communities were stimulated showing a steep increases of numbers of Gammaproteobacteria 

during short term incubations (50h), particularly, Alteromonas was the dominant phylotype. 

Alteromonas spp., in particular can utilize the monomers, such as hexoses, disaccharides, sugar 
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acids, amino acids, and ethanol (Baumann et al., 1972). In addition, another dominant group, the 

Polaribacter is able to form microcolonies within aggregates indicating active growth and 

production of extracellular polysaccharides (Gómez-Pereira et al., 2012). The versatile 

metabolism of these microorganisms may help them exploit rapid changes in the supply of a 

complex substrate source, such as bioavailable DOM released by live jellyfish. 

Tina et al. (2010; 2012) also confirmed a shift in community composition from unculturable 

Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria in response 

to the addition of dead jellyfish biomass (Tinta et al., 2012). Dinasquet et al. (2013) examined 

the bacterial utilization and community responses to bioavailable DOC obtained from different 

time points during a mesocosm experiment manipulated with the ctenophore species Mnemiopsis 

leidyi, they identified bacteria of the order Alteromonadales belonging to the  

Gammaproteobacteria to be the predominant at the beginning in the treatment with M. leidyi, 

whereas it was less prevalent at the end and was replaced by Oceanospirillales (Dinasquet et al., 

2013). Alteromonadales seem to be adapted to utilize freshly available DOC (Allers et al., 2008), 

specialized in utilizing carbohydrates (Dinasquet et al., 2013). Based on the analysis of 

ectoenzymes activities from their study, authors hypothesize that there might be preferential 

degradation of protein-rich compounds by bacteria which switch to carbohydrate-rich DOC 

when proteins are depleted (Dinasquet, et al., 2013). Taken these studies (Titelman et al., 2006; 

Tinta et al., 2010; Condon et al., 2011; Tinta et al., 2012) and the present study together, the 

bacterioplankton community is not only influenced by dead jellyfish biomass, but also presented 

a strong succession in response to the metabolic process of live jellyfish. 

In the treatment of the “Kabeltonne” seawater, bacterial community was dominated by 

Gammaproteobacteria after the inoculation in both experiments (Fig. 8B and 8E). 

Gammaproteobacteria play a role in amino acid and glucose assimilation, consistent with the 

view of them as opportunistic organisms (Alonso & Pernthaler, 2006; Alonso-Sáez & Gasol, 

2007). They are also capable of degrading high molecular weight organic compounds (McBride 

et al., 2009), due to their genes encoding hydrolytic enzymes having a preference for polymeric 

carbon sources and a distinct capability for surface adhesion (Bauer et al., 2006). Specifically, in 

the current study, Alteromonas was predominant both at the beginning and the end of the first 

experiment (Fig. 9 B), while this phylotype steeply decreased in the second experiment (Fig. 9 E). 

Rapid growth of Alteromonadaceae has been observed for incubation of marine waters from 
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various habitats from the North Sea, the Mediterranean Sea, and the Red Sea (Eilers et al., 2000; 

Pinhassi & Berman, 2003; Allers et al., 2007). The proliferation of different assemblages of 

Gammaproteobacteria in the different sets of “Kabeltonne” seawater treatments probably due to 

the different compositional inoculum were added from different time period. It suggests that 

DOM availability significantly affected the community succession. 

The composition of DOM released by live jellyfish might be different from that in the 

“Kabeltonne” seawater treatment. Unfortunately, no DOM and DOC data released by jellyfish 

can be presented here currently. Jellyfish are renowned for producing large quantities of mucus 

(Heeger & Möller, 1987; Arai, 1997; Graham et al., 2001). Copious amounts of mucus released 

by jellyfish are colloidal in nature (Wells, 2002). Colloidal material is defined as particles with a 

linear dimension between the size range from 0.001 to 1 μm (Hiemenz & Rajagopalan, 1997). A 

large fraction of dissolved colloids (0.001–0.2 μm) was included in our jellyfish treatments. 

Niggl et al. (2010) quantified organic matter released by jellyfish Cassiopea sp. from the 

Northern Red Sea. The collection of the DOM released by jellyfish was performed with the 

similar method as our study except that the jellyfish was incubated for 12h in our study while it 

was 6h in their study. The mean mucoid particulate organic matter release in that study was 

21.2±9.4 mg POC and 2.3±1.1 PN m
−2

 jellyfish surface area h
−1

 (Niggl et al., 2010). The fraction 

(0.001–0.2 μm) of colloids as we performed in our experiments was measured by the DOC 

quantification in Niggl et al. (2010). Release rates of DOC by Cassiopea sp. determined in study 

of Niggl et al. (2010) were highly variable with 44% of all investigated specimens exhibiting net 

DOC uptake. According to the observation in our study, particulate aggregates are macroscopic 

in the jellyfish treatment of both species which conducted with the higher dry weight individuals 

(C. lamarckii: replicate B and Ch. hysoscella: replicate A) (Tab. 3). Consistent with this 

observation, highest bacterial abundance was detected in these replicates derived from the 

highest dry weight jellyfish individuals (data not shown). This indicates that the amount of DOM 

released by live jellyfish might correlate with the dry weight of jellyfish specimen. In other 

studies by Hansson & Norrman (1995) and Condon et al. (2011), dry weight were used to 

caculate the cabon weights of jellyfish and normalize the rate of DOM released by jellyfish, 

respectively. Unfortunately, no DOM and DOC data released by jellyfish can present here 

currently, these points need to be addressed in further studies to demonstrate this speculation. In 

addition, as proteins constitute the greatest proportion of organic biomass of pelagic 
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coelenterates, products of protein metabolism are likely to constitute the bulk of DON excreted 

by jellyfish (Pitt et al., 2009). Dissolved primary amines (DPA) compose 21% and 46%, 

respectively, of the total N and DON excreted by M. leidyi (Kremer, 1977). Likewise, dissolved 

free amino acids (DFAA) are also excreted in large amounts by jellyfish, with glycine and 

alanine being the most abundant DFAA components (Webb & Johannes, 1967). Release of 

glycoproteins, which are also produced by scyphomedusae and ctenophores, would either 

directly or indirectly contribute to DOC and DON pools (Condon et al., 2010). Other sources of 

DOM released from jellyfish include the leaking of digestive enzymes to DOC and DON pools. 

Possible enzyme compositions include trypsin and amylase have high activities in A. aurita 

medusae (Båmstedt, 1988). 

In marine environments, primary production by phytoplankton is the ultimate source of marine 

organic matter (Ogawa & Tanoue, 2003). The fraction and composition of photosynthetic 

production released as DOM are highly variable among species and growth conditions (Carlson 

et al., 2000). In addition, microbes may also release compounds during nutrient acquisition, such 

as predation by protozoa or bacteria, and chemical defense (Nagata, 2008; Kujawinski, 2011). 

The DOM applied in the “Kabeltonne” treatment of present study was directly collected from 

fresh natural surface seawater. It was found that the high molecular weight (HMW) fraction was 

abundant in the surface compared with the deep water (Ogawa & Tanoue, 2003). Although 

HMW DOM is the minor fraction of DOM (~30%), HMW DOM was more available for 

bacterial utilization than low molecular weight (LMW) DOM (Amon & Benner, 1994) which is 

the major size fraction of DOM throughout the whole water column in the ocean (Ogawa & 

Tanoue, 2003), but requires enzymatic digestion prior to uptake (Hoppe, 1991). In the surface 

ocean the labile organic matter is composed mainly of polysaccharides (Benner et al., 1992), 

proteins, lipids (Ogawa & Tanoue, 2003), and bacterial cell wall components such as 

peptidoglycan (McCarthy et al., 1998). Although we do not have the data concerning the 

composition of DOM in our study currently, the bacterial community of “Kabeltonne” seawater 

treatment in response to the HMW DOM was highly dominated by Gammaproteobacteria based 

on CARD-FISH, particularly by the genus Alteromonas.   

For the artificial seawater treatment, it was served as a blank without any DOC in present study. 

But this treatment was inoculated with 2 ml of bacterial community of 3 µm filtrated seawater. 

The distinct differences between other two treatments (jellyfish and “Kabeltonne”) and the 
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artificial seawater treatment are the relative long lag phase and the lowest maximum population 

density performed with both scyphozoan species (Fig. 2 and 3). The long lag phase perhaps 

caused by no available DOM in the artificial seawater for the initial inoculated bacteria to utilize 

at the beginning of the experiment. The low abundance could be linked to the low DOC 

concentration due to no DOM addition in this treatment. In addition, bacterial community 

structure significantly differed in the artificial seawater treatment from that in the jellyfish and 

“Kabeltonne” seawater treatments (Fig. 4 and 5, Tab. 6-9) according to ARISA fingerprints. 

Consistent with the ARISA results, clear different bacterial community composition was 

revealed by CARD-FISH in both experiments conducted with two scyphozoan species (C. 

lamarckii and Ch. hysoscella). Gammaproteobacteria were the dominant community, particularly 

by the Alteromonas at the beginning and Pseudoalteronomas occurred at the end of the 

experiment. Bacteroidetes was decreased and could not be detected at all at the end of both 

experiments. Alteromonas and Pseudoalteromonas as the cultivable genera were frequently 

isolated from coastal and pelagic regions of the Pacific Ocean as well as from the North Sea 

using low nutrient media (Eilers et al., 2000; Cho et al., 2007). The presence of 

Gammaproteobacteria in the artificial seawater treatment likely reflects their capability to rapidly 

adapt to the culture condition rather than to the DOM input. 
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Conclusion 

Our observations, based on the CARD-FISH of the bacterial community composition, show that 

significant shifts in bacterial community composition and increases in bacterial activities were 

observed regarding to different DOM treatments in current study. In both experiments (Cyanea 

lamarckii and Chrysaora hysoscella), bacterial communities were more active in the jellyfish 

and “Kabeltonne” seawater treatments than that in the blank (artificial seawater treatment). 

Bacterial abundance was significantly stimulated by the DOM released by live jellyfish. 

According to the ARISA fingerprints, the bacterial communities were significantly different 

regarding to different DOM treatments. This was confirmed by CARD-FISH with some specific 

groups that Gammaproteobacteria and Bacteroidetes were consistent present in the experiment 

conducted with Ch. hysoscella, while Bacteroidetes decreased at the beginning and recovered at 

the end of the experiment conducted with C. lamarckii, indicating the different capacity of 

bacterial phyla to utilize specific carbon compounds (Cottrell & Kirchman, 2000; Gómez-

Consarnau et al., 2012). Species-specific DOM released by jellyfish was revealed in the current 

study which was utilized by significant different bacterial communities. Last but not the least, 

this study clearly showed that the bacterioplankton community is not only influenced by dead 

jellyfish biomass, but also strongly impacted by DOM released from the excretion processes of 

live jellyfish. Although being an appealing idea, a confident linkage between certain taxa and 

specific carbon compounds cannot be established here because of the lacking of both chemical 

characterization of the DOM pools and a complete analysis of bacterial groups in different 

treatments. Therefore, composition of DOM as well as the bacterial functional, such as 

ectoenzymatic activities and growth efficiency need to be investigated in further studies. In 

addition, as many gaps presented in the bacterial communities in current study, a further study 

needs to be conducted to reveal the complete and detailed bacterial community composition in 

each treatment for understanding the detailed successions of the bacterial community in response 

to different DOM compounds. 
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GENERAL DISCUSSION 

Jellyfish blooms are increasing in many coastal areas around the world. As the key elements in 

marine ecosystem, the expansions of jellyfish have significantly impacted not only on the 

zooplankton standing stocks but also on the commercial fisheries. But the consequences for the 

marine bacterial community remain poorly understood. The first prerequisite of this study was to 

determine the bacterial community associated with jellyfish. Therefore, we investigated the 

bacterial community associated with ctenophores and scyphomedusae respectively in this thesis 

addressing several different aspects. Firstly, the natural bacterial communities associated with 

four ctenophore species were revealed. Secondly, the bacterial communities associated with 

scyphomedusae were determined regarding to i) different body parts, ii) different life stages and 

iii) the specific impact of the food on the polyps. Thirdly, the response of the bacterial 

community to the DOM released by live jellyfish was investigated.  

Bacterial communities associated with jellyfish 

This is the first time to characterize the bacterial communities associated with jellyfish including 

four ctenophore species (Chapter I) and two scyphomedusae species (Chapter II) respectively at 

Helgoland Roads in the German Bight. Although jellyfish are composed of 95% water, 

ctenophore and scyphomedusae contain significantly distinct bacterial communities (p=0.001) 

(Fig. 1). Significant differences among the associated bacterial communities of four ctenophore 

species (Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus) were 

observed based on ARISA fingerprints. Daniels & Breitbart (2012) also demonstrated that each 

ctenophore genus (Mnemiopsis leidyi and Beroe ovata) contained a unique and low diversity 

microbiota by T-RFLP which were distinct from the surrounding water in the Tampa Bay of 

Florida. Additionally, a clear separation of the BCC between summer and the winter mouth were 

observed in the species M. leidyi confirmed by the PCO plot and PERMANOVA test (main and 

pair-wise comparisons) in the present study. This indicated a significant seasonal variation in the 

bacterial community of M. leidyi. Consistent with our results, Daniels & Breitbart (2012) also 

observed temporal variation in the bacterial community associated with M. leidyi in the Tampa 

Bay.  
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The temporal variation observed in the M. leidyi communities might indicate that, on the one 

hand, the microbial associates of ctenophores change over time probably to adapt to 

environmental conditions. The variable bacterial community may be in the best interest of this 

pelagic animal. Further multivariate statistical analyses are necessary to evaluate the biotic and 

abiotic factors which drive the associated bacterial community of ctenophore. Bacterioplankton 

dynamics are governed by seasonal changes in abiotic and biotic factors (Pinhassi & Hagstrom, 

2000; Gerdts et al., 2004). Sapp et al. (2007 b) reported that several factors contributed to the 

winter-spring succession in the bacterial community especially by temperature and 

phytoplankton, as well as nutrients (nitrite). Oberbeckmann et al. (2012) found that high water 

temperature and low salinity best explained the proliferation of Vibrio spp. at Helgoland Roads. 

However, little is known about factors driving the bacterial community associated with jellyfish. 

Hence, the quantification of these associated bacterial community and their response to biotic 

and abiotic parameters need to be assessed in further studies. On the other hand, it might be 

possible that different populations were sampled. Beside our study, Daniels & Breitbart did not 

distinguish the ctenophore population between adult and larval specimen but showed a variation 

of the associated bacterial community from the whole-body extracts over the sampling period. 

Daniels & Breitbart (2012) observed that the ctenophore-associated bacterial communities varied 

significantly over time. This type of community flux has been described by Littman et al. (2009) 

in juvenile acroporid corals, however, adult corals and most sponges ultimately contain 

conserved bacterial communities (Hentschel et al., 2006; Taylor et al., 2007; Littman et al., 

2009).  

To confirm the differences of these associated bacterial communities between the adult and 

larval specimen, different life stages of scyphomedusae were investigated in current study 

(Chapter II). We found that the structures of the bacterial communities associated with three life 

stages (planula larva, polyp and adult medusa) were significantly different among each other. 

This is true for both scyphozoan species (Cyanea lamarckii and Chrysaora hysoscella) based on 

the multivariate analysis of ARISA fingerprints. For C. lamarckii, with a transition from larvae 

to polyps until medusae, all stages appeared to be a passive substrate colonized by a diverse 

bacterial community presenting a dispersive community structure. For Ch. hysoscella, the 

bacterial communities of each stage showed a strong selective processes of bacterial colonization 

with a highly separated community structure. Unlike other sessile invertebrates (corals and 
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sponges), scyphozoan display a metagenetic life cycle, therefore, the changing bacterial 

community of each stage may represent a life cycle strategy to take advantage of the available 

bacteria from the environment, rather than spending resources for maintenance and protection of 

a conserved consortia (Daniels & Breitbart, 2012). Although the OTU richness varied over time, 

it is possible that the different bacterial communities contain members fulfilling set of metabolic 

functions for the ctenophore. Therefore, the analysis of the bacterial community present at 

different life stages of jellyfish need to be take into account in further studies.  

Dinasquet et al. (2012) found that the gut community was different from the community present 

on the surface of M. leidyi. Titelman et al.(2006) reported the inhibition of bacterial growth 

depending on the different body fractions of jellyfish Periphylla periphylla. This point was also 

addressed in the present study and the bacterial communities associated with two scyphomedusae 

(C. lamarckii and Ch. hysoscella) were individually analyzed regarding to different body parts. 

According to the ARISA fingerprints, bacterial community associated with umbrella was 

significantly different from those with tentacle and gonad with constant diversity in both species 

based on multivariate analysis (PERMANOVA). It might indicate that the associated bacterial 

communities are related to the biological functions regarding to different body parts. The 

umbrella represents a larger colonization surface than other parts and highly contact with the 

surrounding seawater. This might result in the highest OTU richness among four parts (Chapter 

II Fig. 3 A and B). Due to the more contact between mouth arms and the tentacles with prey, 

bacterial communities associated with these two body parts might be more influenced by the 

prey items. However, Schuett & Doepke (2010) observed a species-specific endobiotic bacteria 

in the tentacle of scyphomeduesa. Although tentacle of scyphomedusae contains numerous 

nematocyst toxins which are generally cytolytic, hemolytic and neurotoxic (Bailey et al., 2003; 

Helmholz et al., 2010; Lassen et al., 2010), Titelman et al.(2006) found the umbrella had the 

strongest inhibitory effect on bacterial community while the weakest in the tentacle (Titelman et 

al., 2006). In addition, Fraune et al. (2009) reported that direct interaction between cellular tissue 

composition and bacterial community composition. In jellyfish, different types of cells are 

described in different body parts (Lesh-Laurie & Suchy, 1991). For example, the epidermal 

gland cells are surrounding the nematocyst clusters in the tentacle of Cyanea lamarckii with an 

antibody activity (Elofsson & Carlberg, 1989). Therefore, the different cellular composition 

might be another factor resulting in the different bacterial communities associated with different 
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body parts. Taken together, all make it obvious that the different body parts need to be taken into 

account in future study regarding to the bacterial community especially associated with 

scyphozoan.  

The distribution of M. leidyi populations is linked to temperature and food availability, and their 

life span is on the order of months (Ghabooli et al., 2011). Cydippid larvae of M. leidyi primarily 

feed on protists prey, however, the morphological transition of M. leidyi from cydippid to lobate 

involves a shift from a microplanktonic diet to a metazoan-based diet including copepods, 

cladocera, and larvae of fish and mollusks (Rapoza et al., 2005). Therefore, Daniels & Breitbart 

(2012) speculated that the composition of the surrounding bacterial community in the water 

column or total food availability as well as dietary composition may influence the ctenophores' 

bacterial community. However, Dinasquet et al. (2012) reported that specifically the gut 

community of starved M.leidyi was dominated by the genus Tenacibaculum, a Flavobacterium 

related to the fish pathogen Tenacibaculum maritimum with strong proteolytic activity 

(Bernardet & Nakagawa, 2006; Ferguson et al., 2010; Delannoy et al., 2011; Mitchell et al., 

2013). And they stated that these communities originate from the gut rather than from prey items 

per se (Dinasquet et al., 2012). In addition, members of Bacteroidetes phylum were also present 

in M.leidyi (10%) and B.ovata (25%) at Tampa Bay (Daniels & Breitbart, 2012). Bacteria of the 

Bacteroidetes phylum usually occur in coastal and marine environments throughout the year, 

partly dominating the bacterioplankton in the North Sea especially during or after phytoplankton 

blooms (Teeling et al., 2012). Interestingly, the Bacteroidetes seem to play a minor role with < 

1% occurrence in all ctenophore species in present study. Based on the approach applied in both 

two studies (Daniels & Breitbart 2013; Dinasquet et al., 2013), as well as ours, unfortunately, it 

is not possible to determine to what extent the detected community originate from bacteria 

associated with prey, colonizing free-living bacteria, or from a more permanent symbiotic gut 

microflora. However, according to our findings, the absence of Bacteroidetes in our study can be 

taken as evidence for successful defecation and cleaning of the ctenophores before further 

processing ctenophore biomass since Bacteroidetes are commonly found to be associated with 

small plankton organisms, potential food of ctenophores at Helgoland Roads. 

To reveal the influence of food on the bacterial community associated with jellyfish, one stage of 

scyphomedusae “polyp” was individually hatched from larvae and fed with two kinds of food 

sources (A. salina and plankton) under lab condition (Chapter II). The bacterial communities 
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associated with polyps of two scyphozoan species, as well as prey were analyzed to determine 

whether diet is driving the BCCs of polyps. For both scyphomedusae (C. lamarckii and Ch. 

hysoscella), the bacterial communities associated with two kinds of food (including attached and 

free-living community) were clearly separated from the communities associated with polyps 

(Chapter II, Fig. 4 A and B). However, the bacterial communities associated with polyps do react 

differently to different food source. The bacterial communities associated with polyps of C. 

lamarckii fed with different food were clearly distinguishable from each other (Fig. 4 A). For Ch. 

hysoscella, the communities of polyps fed with A. salina were overlapped and not easily 

distinguished from the bacterial communities associated with polyps fed with plankton (Fig. 4 B). 

This might indicate that the bacterial community of the food, either the free-living or the attached 

community do have an impact on the bacterial community associated with polyps, but not in the 

process of the selecting and shaping the bacterial communities associated with polyps in both 

scyphozoan species. Polyps might react differently in response to different food source, for 

example, with different metabolic activity, which may play a pivotal role for the selection and 

formation of the bacterial community associated with polyps.  

Fraune et al. (2010) demonstrated that Hydra embryos are protected by a maternally produced 

antimicrobial peptide (AMP) of the periculin peptide family, which controls the establishment of 

the microbiota during embryogenesis. Antimicrobial peptides (Chapman et al. 2010) represent 

the major defense system against microbial infection in marine invertebrates (Otero-González et 

al., 2010). They are known as prominent effector of the innate immune system that often get 

secreted in response to external stimulation (Bosch, 2013). With over expressed periculin in 

polyps, it caused not only decreases in the number of associated bacteria but also changes in the 

composition of community (Fraune et al., 2010). The novel antimicrobial peptide Aurelin is 

another examples of such substance that have been found in scyphozoa species Aurelia aurita 

(Ovchinnikova et al., 2006). This Aurelin peptide exhibits activity against gram-positive and 

gram-negative bacteria (Ovchinnikova et al., 2006). Franzenburg et al. (2013) stated that 

species-specific antimicrobial peptides shape species-specific bacterial associations. Although 

there is no available data regarding to the antimicrobial peptides in C. lamarckii and Ch. 

hysoscella, we speculate that the colonized bacterial community may adapt to different AMP 

repertoires of scyphomedusae species resulting in specific associations. This need to be 

investigated in the future. 
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Furthermore, a clear species-specific character was revealed in the present study regarding to the 

bacterial community associated with jellyfish. For ctenophore, it was demonstrated both based 

on automated ribosomal intergenic spacer analysis (ARISA) fingerprinting (Chapter I Fig.1) and 

ribosomal amplicon pyrosequencing (Chapter I Fig.4). This was in agreement with other two 

recent studies on the BCC of ctenophore (Daniels & Breitbart, 2012; Dinasquet et al., 2012) 

performed in the Tampa Bay, Gulf of Mexico and the Gulmar Fjord. For example, the 

occurrence of closely related Marinomonas species (Chapter I Fig.5) from different geographical 

origins gives probably evidence to suggest that Marinomonas is a common member of the 

bacterial community in ctenophora on a more global scale, but this need to be proven in further 

studies. If this is the case, the functional role of this genus in this consortium has to be elucidated 

(symbiosis, commensalism and pathogen). For scyphomedusae, distinct species-specific patterns 

were revealed in both aspects, different body parts (data not shown) and different life stages 

(Chapter II Fig. 8) based on ARISA fingerprints. Regarding to different body parts, according to 

PERMANOVA main test, bacterial communities associated with mouth arm and tentacle were 

different between two scyphomedusae species (p=0.023 and 0.016, respectively), except for the 

gonad, while bacterial community associated with umbrella was significantly different between 

two scyphomedusae species (p=0.009). Regarding to different life stages, the BCCs associated 

with three life stages (larvae, polyps and medusae) were all significantly differed between C. 

lamarckii and Ch. hysoscella. In general, current study first described the bacterial community 

associated with jellyfish including ctenophore and scyphomedusae at Helgoland Roads in 

German Bight which is species-specific. With numerous studies focused on marine invertebrates, 

such as corals (Sunagawa et al., 2009) and Hydra (Bosch, 2012) reported that bacterial 

community were different in respect to different species among each organism (Friedrich et al., 

2001; Hentschel et al., 2001; Rohwer et al., 2002; Ritchie, 2006; Fraune & Bosch, 2007; Bosch, 

2012). Summarizing these results, it appears that associated microbial communities are indeed 

unique and at least partially organism specific.  

In the present study, we applied ribosomal amplicon pyrosequencing to reveal the bacterial 

community composition among four ctenophore species. The bacterial communities of all 

ctenophore species were dominated by Proteobacteria (Chapter I). Although Alphaproteobacteria 

and Gammaproteobacteria are dominant bacterial classes in ctenophore’s community, these 

groups contain various bacteria with high phenotypic and metabolic diversity. In the present 
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study, three major groups Oceanospirillaceae, Pseudoalteromonadaceae and Moraxellaceae were 

detected in these four ctenophore species, in particular, Marinomonas, Pseudoalteromonas and 

Psychrobacter. Marinomonas highly dominated the community of M. leidyi, Beroe sp. and B. 

infundibulum in our study. Interestingly, in two recent studies on the BCC of ctenophore 

(Daniels & Breitbart, 2012; Dinasquet et al., 2012) performed in the Tampa Bay, Gulf of Mexico 

and the Gulmar Fjord, Marinomonas was also identified as the prominent genus. Our 

pyrosequencing results showed that Pseudoalteromonas occurred in B. infundibulum and P. 

pileus. Bacteria of the genus Psychrobacter were observed only in P. pileus. Alphaproteobacteria, 

another important group in the associated bacterial community of ctenophores, dominated the 

communities of Beroe sp. (~94%) and B. infundibulum (~47%). The genus Thalassospira is the 

most prominent group. The bacterial community of B. ovate from Tampa Bay was also 

dominated by members of this genus which is in accordance with our findings (Daniels & 

Breitbart, 2012). In contrast, Dinasquet et al. (2012) found Thalassospira neither in tissue nor in 

gut samples. Bacteria of the Rhodobacteraceae dominated the Alphaproteobacteria associated 

with M. leidyi in the Gullmar fjord (Dinasquet et al., 2012) which is in agreement with our 

findings that Rhodobacteraceae was the major group in Alphaproteobacteria associated with M. 

leidyi at Helgoland Roads even though they only account for 1% of the whole community. In 

general, Marinomonas, Thalassospira, Pseudoalteromonas and Psychrobacter were identified as 

predominant genera associated with ctenophores. Our results indicate that the bacterial 

community associated with ctenophores is highly species-specific. This suggests that either 

specific bacteria are selected by a particular ctenophore genus, or that certain bacteria selectively 

colonize the ctenophore.  

Marinomonas contain multifunctional polyphenol oxidases which are able to oxidize a wide 

range of substrates (Solano & Sanchez-Amat, 1999) and are involved in a series of secondary 

metabolism and biodegradative processes (Sanchez-Amat et al., 2001). M. mediterranea 

synthesizes an antibacterial protein with activity against both gram-positive and gram-negative 

bacteria (Lucas-Elio et al., 2005). Bacteria of genus Pseudoalteromonas are known to produce a 

variety of highly bioactive compounds, including extracellular enzymes, exopolysaccharides and 

a range of different molecular weight compounds with antimicrobial, anti-fouling, algicidal and 

various pharmaceutically relevant activities (Holmström & Kjelleberg, 1999; Bowman, 2007). 

Thalassospira can utilize hydrocarbons, carbohydrates, organic acids or amino acids as sole 
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carbon sources for growth and degrade polycyclic aromatic hydrocarbons (PAHs) in oil-

contaminated seawater (Kodama et al., 2008). Hence, these capabilities might successfully 

enable them to compete for nutrients and colonize surfaces (Holmström et al., 2002). It is 

possible that such antibacterial activities might prevent the colonization of other bacterial groups 

resulting in the lower diversity in the community of ctenophore compared with other organisms.  

Additionally, the detection of genus Tenacibaculum, a Flavobacterium related to the fish 

pathogen Tenacibaculum maritimum with strong proteolytic activity (Bernardet & Nakagawa, 

2006; Ferguson et al., 2010; Delannoy et al., 2011; Mitchell et al., 2013), were both reported in 

Beroe ovata tissues (Daniels & Breitbart, 2012) and the gut community of starved M.leidyi 

(Dinasquet et al., 2012). It might indicate that this particular ctenophore may be a vector for 

pathogens. However, the Bacteroidetes seem to play a minor role with < 1% occurrence in all 

ctenophore species in the present study. But bacteria of the genus Vibrio were found in Beroe sp. 

(19%) and M.leidyi (4%) in the present study and probably serve as potentially pathogenic 

bacteria. The community of Vibrio spp. were quantified associated with free-living, plankton-

attached and shellfish at Helgoland Roads and V. alginolyticus was revealed as the dominant 

Vibrio species at the current study location (Oberbeckmann et al., 2011). Therefore, additional 

information on metabolic functions or activities by transcription proteome analysis concerning 

the interaction between pathogen and ctenophore need to be established in future.  

Impact of Jelly-DOM on food webs 

Concerning the accidental introductions and subsequent expansions of jellyfish have become 

more frequent over the past few decades (Mills, 2001; Brodeur et al., 2002; Billett et al., 2006; 

Brotz et al., 2012), it has significantly altered food web structure and heavily impacted 

commercial fisheries because jellyfish are voracious predators (Purcell & Decker, 2005). 

Voracious jellyfish predation impacts food webs by converting large quantities of carbon (C), 

fixed by primary producers and consumed by secondary producers, into gelatinous biomass, 

which restrict C transfer to higher trophic levels because jellyfish have few natural predators 

(Condon et al., 2011). Therefore their carcasses at the termination of a bloom represent an 

organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the 

surrounding environment. Recently, a few studies explored whether jellyfish biomass have an 

impact on bacterial community phylotype selection (Hansson & Norrman, 1995; Riemann et al., 
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2006; Titelman et al., 2006; Tinta et al., 2010; Condon et al., 2011; Tinta et al., 2012; Dinasquet 

et al., 2013). But little is known about the impact of the dissolved organic matter released by live 

jellyfish on the microbial community. 

The results presented in this thesis were the first study assayed the impact of jelly-DOM released 

by live jellyfish on the selection of bacterial community (Chapter III). The focus of present study 

was to explore whether particular bacteria preferentially utilize specific carbon compounds 

released by live jellyfish during excretion and if such compounds have the potential to shape 

bacterial community composition. Bacterial community was significantly stimulated by the 

DOM released by jellyfish which was obviously present with the highest abundance in the 

treatments conducted with C. lamarckii and Ch. hysoscella (Chapter III Fig. 2 and 3). Tinta et al. 

(2010; 2012) observed an increase in bacterial abundance and production in response to dead 

jellyfish biomass coupled with NH4
+ 

accumulation and oxygen consumption. According to 

ARISA fingerprints, bacterial community structure in the jellyfish treatment was significantly 

different from that in the “Kabeltonne” seawater and artificial seawater (DOC-free) treatments 

based on PERMANOVA test in both sets of experiments (Chapter III Fig. 4 and 5). According to 

catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) analysis, a rapid 

and different shift from Bacteroidetes dominated to culturable species of Gammaproteobacteria 

and Bacteroidetes were revealed in the current study in response to the DOM released by 

different jellyfish species (Fig. 8A and 8D). Gammaproteobacteria dominated the community 

instead of the Bacteroidetes group conducted with C. lamarckii, while Gammaproteobacteria and 

Bacteroidetes dominated the community within Ch. hysoscella. Tina et al. (2012) reported a shift 

in community composition from unculturable Alphaproteobacteria to culturable species of 

Gammaproteobacteria and Flavobacteria due to the addition of the jelly-biomass. Jelly-DOM 

also favored the rapid growth and dominance of specific bacterial phylogenetic groups (primarily 

γ-proteobacteria) that were rare in ambient waters (Condon et al., 2011). The significant 

differences in the bacterial community composition and succession found in the present study 

indicate that the DOM released by jellyfish might consist of different compounds which are 

species specific reflecting the utilization by significant different bacterial communities in respect 

to two scyphomedusae species. Unfortunately, because of the lacking of chemical 

characterization of the DOM pools for all different treatments, a confirmed linkage between 

certain taxa and specific carbon compounds cannot be established here, detailed data of chemical 
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composition of DOM and DOC need to be analyzed later. Taken together, the present study 

clearly shows that the bacterioplankton community is not only influenced by the degradation of 

jellyfish biomass, but also strongly affected by DOM released during the metabolic process of 

live jellyfish.  

Condon et al. (2011) report that jellyfish released substantial quantities of extremely labile C-

rich DOM, relative to nitrogen (25.6 ± 31.6 C:1N), which was quickly metabolized by 

bacterioplankton. It was shunted toward bacterial respiration instead of production, bacterial 

growth efficiencies were significantly reduced by 10% to 15% when jelly-DOM was consumed 

(Condon et al., 2011). Condon et al. (2011) suggest major shifts in microbial structure and 

function associated with jellyfish blooms accompanying a channel of C toward bacterial CO2 

production and away from higher trophic levels. These results further suggest fundamental 

transformations in the biogeochemical functioning and biological structure of food webs 

associated with jellyfish blooms (Condon et al., 2011). Niggl et al. (2010) investigated the 

impact of organic matter release by jellyfish Cassiopea from on planktonic microbes and 

zooplankton. They demonstrated the uptake of Cassiopea-derived organic matter by the 

zooplanktonic mysids Idiomysis tsurnamali. DOC and dissolved free amino acids released by 

jellyfish have been described as easily accessible C and N sources for bacteria and other marine 

sapotrophs (Webb & Johannes, 1967; Hansson & Norrman, 1995). These findings suggest that 

jellyfish-derived organic matter may function as a newly discovered trophic pathway for organic 

matter from the benthic environment to pelagic food chains in marine ecosystems. 
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Figure 1.  Principal coordinate (PCO) analysis presenting the bacterial communities associated 

with ctenophores and scyphomedusae based on Jaccard coefficient from ARISA profiles. 
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