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Abstract
 

Oceans cover ~70% of the Earths surface and are the second largest global carbon reservoir. 

Major processes in marine carbon cycling are summarized in the biological carbon pump. Within 

the biological carbon pump, pivotal stages are the microbial loop and aggregate related processes. 

Within the surface layer and on aggregates, carbon is channelled within a complex food web 

based on microbial processes. These processes counteract the biological carbon pump, showing 

the importance of the microbial loop for carbon sequestration. 

During the iron fertilization experiment LOHAFEX, a phytoplankton bloom of nano- and 

picoplankton was induced in the South Atlantic. We used catalyzed reporter deposition 

fluorescence in situ hybridization (CARD FISH) and 454 tag pyrosequencing to investigate the 

bacterial and archaeal community response to this bloom. The bacterial and archaeal community 

was stable over the course of the experiment and only members of the SAR11 and SAR86 clades 

showed elevated cell numbers. This led to the hypothesis of a top-down control exerted by a 

community of nano- and picoplankton grazers. Consequently, we used the same techniques to 

investigate the nano- and picoplankton community during the LOHAFEX experiment. We 

discovered a stable community with high but constant abundance of Phaeocystis, the major 

bloom forming organism, and a short peak of Micromonas and Pelagophyceae after the second 

iron fertilization. This again led to the hypothesis of a strong top-down control and a tight 

coupling of the microbial loop.  

We investigated the bacterial community on aggregates at different depth from the Canary 

Current Upwelling system. A free drifting sediment trap was used to sample aggregates in situ at 

100 m and 400 m depth. We used a three dimensional FISH approach to quantify the bacterial 

community. Synechococcus dominated the bacterial community on marine snow at both depths, 

while Bacteroidetes and Alteromonas abundance significantly decreased with depth. We 

hypothesize a change in the bacterial community due to a combined effect of changes in nutrient 

quality due to degradation processes, grazing, decreasing temperature and increasing pressure. 

In summary, a strong top-down control was exerted on the bacterial and archaeal, and the nano- 

and picoplankton community, indicating a tight coupling of the microbial loop during the iron 

fertilizing experiment LOHAFEX. Marine snow investigations off Cape Blanc showed that 

Bacteroidetes and Alteromonas dominated the bacterial community but decreased with depth, 

indicating a nutrient quality, grazer, pressure and temperature dependent community composition. 
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Zusammenfassung 

 

Ozeane bedecken ~70% der Erdoberfläche und sind das weltweit zweitgrößte 

Kohlenstoffreservoir. Grundlegende Prozesse im marinen Kohlenstoffzyklus sind 

zusammengefasst als „Biologische Kohlenstoffpumpe“. Die zentralen Abschnitte innerhalb 

dieses Systems sind der „Mikrobielle Kreislauf“ und Prozesse in Verbindung mit Aggregaten. Im 

Oberflächenwasser wird Kohlenstoff, in einem auf mikrobiologischen Prozessen beruhenden 

Nahrungsnetz zirkuliert. Diese Prozesse wirken antagonistisch zu der Biologischen 

Kohlenstoffpumpe und deuten auf die Wichtigkeit des Mikrobiellen Kreislaufs bei der 

Kohlenstoffsequestrierung hin.  

Während des Eisendüngungsexperiments LOHAFEX wurde im Südatlantik eine 

Phytoplanktonblüte, bestehend aus Nano- und Picoplankton, erzeugt. Wir verwendeten 

Fluoreszenz in situ Hybridisierung mit enzymatisch markierten Oligonukleotiden und 

Tyramidsignalverstärkung  (CARD FISH) und 454 Pyrosequenzierung um das Verhalten der 

bakteriellen und archaeellen Gemeinschaft auf die Phytoplanktonblüte zu untersuchen. 

 Die Gemeinschaft war konstant während der gesamten Dauer des Experiments und nur 

Angehörige der SAR11 und SAR86 Gruppen zeigten erhöhte Zellzahlen. Das führte zu der 

Hypothese einer übergeordneten Kontrolle durch eine Gemeinschaft von Nano- und Picoplankton 

Prädatoren. In der Folge benutzten wir die gleichen Techniken, um die Nano- und Picoplankton 

Gemeinschaft während des LOHAFEX Experiments zu untersuchen. Wir entdeckten eine 

konstante Gemeischaft mit hoher, aber gleichförmiger Abundanz des Hauptblütenbildners 

Phaeocystis und ein kurzes Maximum von Micromonas und Pelagophyceae nach der zweiten 

Eisendüngung. Dies führte wiederum zu der Hypothese einer starken übergeordneten Kontrolle 

und einer engen Koppelung des Mikrobiellen Kreislaufs.  

Wir untersuchten die bakterielle Gemeinschaft auf marinem Schnee in verschiedenen Tiefen im 

Kanarischen Auftriebssystem. Eine frei treibende Sedimentfalle wurde benutzt um die Aggregate 

in situ auf 100 m und 400 m Tiefe zu sammeln. Wir benutzten eine dreidimensionale FISH 

Methode um die bakterielle Gemeinschaft auf den Aggregaten zu quantifizieren. Synechococcus 

dominierte die bakterielle Gemeinschaft auf marinem Schnee in beiden Tiefen, während die 

Abundanz von Bacteroidetes und Alteromonas signifikant mit der Tiefe abnahmen. Wir vermuten, 

dass die Veränderung der bakteriellen Gemeinschaft durch die Veränderung der Nährstoffqualität 

durch Abbauprozesse, Predation, steigendem Druck und sinkenden Temperaturen ausgelöst wird. 

II

Zusammenfassung



 

Zusammenfassend wurde eine starke übergeordnete Kontrolle sowohl auf die bakterielle und 

archaeelle Gemeinschaft, als auch auf die Nano- und Picoplankton Gemeinschaft ausgeübt, 

welche auf eine starke Kupplung des Mikrobiellen Kreislaufs während des Eisendüngungs-

experiments LOHAFEX hinweist. Untersuchungen des marinen Schnees vor Cape Blanc zeigten 

das Bacteroidetes und Alteromonas die bakterielle Gemeinschaft dominierten, aber in der Tiefe 

abnahnen, was eine Veränderung der Gemeinschaft abhängig von der Nährstoffqualität, 

Prädation, Druck und Temperatur andeutet. 
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Abbreviations 
 

ACMEtool Automated cell measuring and enumeration tool 

ANME  Anaerobic methanotroph 
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1. Introduction 
 

1.1. The carbon-cycle 

 

The major reservoir of carbon is the Earth’s interior, where >75,000,000 Gt of carbon are stored 

(FIG 1; Falkowski et al. 2000). By geological activities annually about 0.13 to 0.44 Gt carbon 

dioxide (CO2) are released into the atmosphere (Gerlach 1991, 2011; Marty and Tolstikhin 1998). 

The atmosphere is a relatively small reservoir for carbon, holding about 750 Gt (FIG 1; 

Falkowski et al. 2000). Here, carbon is present mainly in the form of CO2 and methane (CH4) and 

methane is converted into CO2 by hydroxyl radicals (Bekki et al. 1994). The atmospheric CO2 

can solve in water, such as rain drops but also the oceans (Sarmiento and Quéré 1996; Broecker 

1997), or can be converted into biomass by photosynthesis.  

Within the terrestrial biosphere between 600 – 1000 Gt carbon are in the living biomass and 

about 1200 Gt in dead biomass (FIG 1; Falkowski et al. 2000). Most of the biomass can be found 

in the soil, such as soil fauna and flora, but also fossil fuels. Carbon is released into the 

atmosphere mainly by respiration processes. This release is in near equilibrium with the uptake 

and storage of carbon. Since the beginning of the industrial age anthropogenic activities, like 

fossil fuel combustion, cement production, deforestation, and the burning of biomass led to an 

additional release of CO2 into the atmosphere (Andreae and Merlet 2001; Houghton 2003; van 

der Werf et al. 2004; Forster et al. 2007). This additional release was estimated to 7.8 Gt CO2 per 

year in 2005 (Forster et al. 2007). This anthropogenic CO2 release influences the carbon cycle by 

increasing the atmospheric CO2 concentration from 220 ppm in the pre industrial age (Sage 1995) 

to 395.1 ppm in January 2013 (NOAA, Mauna Loa recent global CO2 data, 10th April 2013). The 

resulting disequilibrium will increase the global greenhouse effect and lead to an acceleration of 

global warming (Cox et al. 2000).  

Due to the size of the oceans and their carbon storage capacity, the marine carbon cycle is of 

pivotal importance in global warming discussions. An estimated of 38,400 Gt of carbon are 

stored in the ocean (FIG 1; Falkowski et al. 2000), a major part of it (~97%) in an inorganic state, 

as dissolved inorganic carbon (DIC). A smaller fraction of the oceanic carbon is assimilated via 

photosynthesis into biomass and can form dissolved organic carbon (DOC). 
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FIG 1: The global carbon cycle, including carbon fluxes in Gt carbon year-1 (numbers in arrows) 
and reservoirs in Gt carbon (modified by Rekacewicz after Schimel et al. 1995). Values are 
estimations by Schimel et al (Schimel et al. 1995) and may differ from more recent estimations. 

1.2. The marine carbon cycle 

 

1.2.1. Methane 

Methane, an important green house gas, is produced and consumed mainly in anoxic sediments in 

the marine realm. Methane production occurs only under anoxic conditions and methanogenesis 

is solely performed by Archaea belonging to a phylogenetically diverse group of the 

Euryarchaea. The annual methane production is estimated at 0.085 - 0.3 Gt (Reeburgh 2007). 
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About 90% of the produced methane is consumed directly in the sediment by Archaea, enforcing 

anaerobic oxidation of methane (Reeburgh 2007). The main archaeal group involved in methane 

consumption is the ANME-group, the anaerobic methanotrophic Archaea. Habitats of the 

bacterial-archaeal communities, in which ANME Archaea mainly occur, are cold seeps, 

hydrothermal vents, and the sulfate-methane-transition zones in sediments (Knittel and Boetius 

2009). Due to the high consumption rates in the sediments, only minor amounts are released into 

the ocean. See reviews by Thauer, Reeburgh, and Knittel and Boetius (Reeburgh 2007; Thauer et 

al. 2008; Knittel and Boetius 2009). 

1.2.2. Carbon dioxide 

In contrast to methane, CO2 plays a major role in ocean carbon cycling. Due to 50-fold higher 

CO2 concentrations in the ocean, the atmospheric CO2 concentrations are controlled by the ocean 

and not vice versa. The oceanic uptake of CO2 is about 92 Gt C year-1, while 90 Gt C year-1 are 

emitted from the ocean into the atmosphere (FIG 1; Schimel et al. 1995). An annual net 

conversion of 1-2 Gt carbon from the atmosphere to the oceans was measured at high latitudes 

due to the lower water temperature and the subsequently higher solubility of CO2. A net emission 

of 0.5 Gt carbon from the ocean into the atmosphere was measured at lower latitudes (Raven and 

Falkowski 1999; Takahashi et al. 2002). This results in a net uptake of ~1 Gt carbon year-1 by the 

ocean. Within the ocean solved CO2 is converted into several compounds in equilibrium (e.g. 

HCO3
- and CO3

2-), which are summarized as dissolved inorganic carbon (DIC). These processes 

are summarized in the “solubility pump” and are dependent on several factors such as 

temperature, alkalinity and salinity of the surface water (Sarmiento and Quéré 1996; Broecker 

1997).

The main factor driving the solubility pump is the biological uptake of DIC during 

photosynthesis. This process leads to a depletion of DIC in the surface waters and can 

subsequently lead to an export of carbon into deeper water layers. Here, microbial respiration 

again increases the DIC concentration. DIC is converged within the ocean and thus the 

concentration is higher in the deeper layers, where DIC can be hold for centuries (DeVries et al. 

in press). This convergence process, called the biological carbon pump (Volk and Hoffert 1985), 

produces a DIC gradient from low concentrations at the surface to high concentrations at depth 

and thus promotes the uptake of atmospheric CO2 at the surface. 
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FIG 2: Schematic view of the biological carbon pump with major processes in grey boxes. 
Arrows mark carbon fluxes. The viral shunt and interaction from zooplankton and bacteria are 
omitted for simplicity (modified after Ducklow 2001).
 

 

1.3. The biological carbon pump 

 

The biological carbon pump summarizes many processes of carbon cycling in the pelagic realm 

of the ocean (FIG 2; Volk and Hoffert 1985). About 50 Gt carbon are annually transferred into 

the ocean and converted into biomass by photosynthesis (Field et al. 1998). The biomass is 

subsequently cycled in the surface layer. These cycling processes are diverse and reach from 

grazing by zooplankton, to phytoplankton cell death by viral lysis, and bacterial respiration 

within the microbial loop. Respiration causes an estimated emission of 41-77 Gt of carbon per 

year (Del Giorgio and Duarte 2002). The remaining biomass is transformed into dissolved 

organic carbon (DOC) and particulate organic carbon (POC; FIG 2), such as phytoplankton 

detritus, transparent exopolymeric particles (TEP) structures, or fecal pellets (Simon et al. 2002; 
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Turner 2002). In this study I refer to living “POC” as biomass, while I use POC for dead organic 

matter. These aggregates export carbon from the surface and sink to the sea floor, where carbon 

might be residual for millennia (FIG 2; Middelburg and Meysman 2007). During the sinking 

process, degradation by bacteria, feeding by zooplankton and higher animals, and physical 

degradation may counteract the export process. Therefore, the biological carbon pump has an 

estimated export efficiency from the surface to the sea floor as low as 1% to 3%, which equals 

about 0.5 – 1.5 Gt carbon (Ducklow et al. 2001). Despite the low export efficiency, the transport 

of surface bound DIC into deeper layers (as POC) and the subsequent repletion of the DIC pool 

from the atmosphere is the major driving force of the biological carbon pump. 

  

1.4. Surface layer processes 

 

The initial step in the biological carbon pump is the conversion of CO2 into biomass by 

photosynthesis. The surface waters possess low CO2 concentrations which are determined by 

fluctuations in surface water temperature, mixing with deeper water layers, and photosynthesis 

rates. They vary between 5-25 μM (Burkhardt et al. 2001). 

A variety of marine organisms are capable of photosynthesis, ranging from Cyanobacteria, to 

small Eukarya, dinoflagellates, diatoms up to macroalgae, which together constitute for about 

half of the global primary production (Falkowski et al. 1998; Field et al. 1998). Unicellular 

Cyanobacteria, like Synechococcus and Prochlorococcus, are ubiquitous and responsible for 

80% of the oceans photosynthesis (Field et al. 1998; Scanlan 2003). Other photosynthetic 

organisms, like diatoms, dinoflagellates and sometimes even nanoplankton form local 

phytoplankton blooms. Within these blooms, primary production rates are high and 

phytoplankton biomass accumulates. This biomass then enters the pool of organic carbon in the 

surface layers.  

Ultimately the phytoplankton biomass is converted into DOC or POC, by excretion of 

exopolymeric substances (EPS), viral lysis, bacterial interactions or sloppy feeding of 

zooplankton cells. POC can commence the sinking process and transport carbon into deeper 

water layers, as depicted in chapter 1.9., or is released into the DOC pool and DIC pool by 

bacterial degradation. The DIC pool is again available for primary producers. DOC can also be 

incorporated by various organisms and transformed into biomass. These cycling processes of 
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carbon in the surface layer, known as the microbial loop, are mainly mediated by microorganisms 

including all domains of life.  

1.5. The microbial loop 

 

1.5.1. Microbial loop vs. classical food chain 

 

In 1983, Azam and co-workers found evidence for a tight coupling of the marine food web on the 

scale of microorganisms and coined the term “microbial loop” (FIG 3; Azam et al. 1983). This 

loop includes the cycling of carbon within the microbial food web and the channelling of carbon 

into the classical marine food chain. Even though, POC is important for the initiation of the 

microbial loop, the microbial loop dominates rather oligotrophic water bodies with low POC 

concentrations, due to the advantages small organisms have in competition for dissolved nutrients. 

In nutrient rich waters, such as upwelling systems, vast phytoplankton blooms form and thus the 

classical marine food chain is dominant (Kiørboe 1993). Both, the microbial loop and the classic 

food chain, are dependent on carbon fixation and biomass formation by photosynthetic organisms. 

In the classic food chain, these organisms are consumed by primary predators, such as 

dinoflagellates, ciliates or copepods. These predators are again consumed by higher level 

predators like copepods, amphipods and ultimately fish. In that way, the carbon is channelled 

towards the top predator of the system. Thus, the classic food chain can be referred to as a 

“carbon link”, channelling carbon to the highest trophic level.  

In contrast, the microbial loop is a “carbon sink”, because most of the carbon is lost due to 

respiration processes during carbon channelling between the different trophic levels (reviewed in 

Fenchel 2008). Within the first version of the microbial loop, DOC formation by phototrophic 

eukaryotes, as well as the abundance of POC in the water, are the initial step, igniting a complex 

food web (FIG 3; Azam et al. 1983). Both, POC and DOC, are remineralised by heterotrophic 

bacteria. The DOC pool is of particular importance, since it is almost exclusively available for 

bacteria (FIG 3; Azam et al. 1983; Ducklow and Carlson 1992). The CO2 emitted due to 

respiration is transferred into the DIC pool, while the bacterial biomass is consumed by predatory 

nanoflagellates, which again are preyed upon by higher predators. Thereby, the carbon is 

channelled into the classical food chain (FIG 3). These predators may also prey upon the primary 

producer, inserting a short cut into the microbial loop.  
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1.5.2. Additional phototrophic bacteria 

 

During the three decades since the proposal of the microbial loop, many additional ways of 

carbon channelling have been added, supporting the role as a carbon sink (FIG 3; Fenchel 2008). 

One major discovery was the finding of autotrophic bacteria in the ocean, which add to the 

primary production and thus to the DOC pool. Synechococcus and Prochlorococcus are major 

primary producer in marine systems, especially in areas with nutrient concentrations to low to 

support phytoplankton blooms (Waterbury et al. 1979; Chisholm et al. 1988). These bacteria 

contribute significantly to the biomass production and are readily consumed by protozoan 

predators (e.g. Christaki et al. 1999; Hirose et al. 2008).  

In addition to photoautotrophic bacteria, also photoheterotrophic bacteria, e.g. the members of the 

Roseobacter clade, were discovered. Photoheterotrophy is not based on CO2 as primary carbon 

sources, carbon compounds come mainly from the DOC pool. This carbon metabolism is 

supplemented by the use of light as energy source. The light driven proton pump 

bacteriorhodopsin enables the establishment of a proton gradient, which is used for transport and  

adenosine-5'-triphosphate (ATP) production (Béjà et al. 2000). In this way photoheterotrophs 

remineralise DOC, incorporate also limited amounts of DIC, and produce DIC by respiration 

(FIG 3). Another CO2 fixation pathway is the fixation CO2 by anaplerotic reactions to replenish 

the intermediates of the tricarboxylic acid cycle used by most aerobic organisms (Tang et al. 

2011 and references therein). 

 

1.5.3. Grazing and viral lysis – short cuts in the microbial loop 

 

One major control mechanism of the bacterioplankton is the grazing by heterotrophic 

nanoplankton, dinoflagellates and ciliates (Pernthaler 2005). Initially, grazing by heterotrophic 

protozoa was assumed to be the major mortality factor of microorganisms, including autotrophic 

eukaryotes, auto- and heterotrophic bacteria, and archaea. This paradigm was changed with the 

discovery of marine viruses. Viruses were found in abundances of about 15- to 100-fold the 

abundance of bacteria and archaea and it is assumed that most bacterial and archaeal species in 

the ocean have at least one specific viral adversary (Bergh et al. 1989; Proctor and Fuhrman 1990; 

Suttle et al. 1990; Suttle 2005). Hence, viral lysis is another major factor of microbial mortality, 
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exerting control on the bacterial and archaeal populations. Moreover, it represents another 

shortcut in the microbial loop, converting living biomass into DOC and detrital POC by cell lysis. 

This shortcut is known as viral shunt (Wilhelm and Suttle 1999).  

Another discovery, adding to the complexity of the microbial loop, was the finding of eukaryotic 

cells which use photosynthesis as energy source and supplement photosynthesis with nutrients 

from ingested microbial cells (e.g. Zubkov and Tarran 2008; Frias-Lopez et al. 2009). These 

mixotrophic eukaryotes add to the DOC and POC pool in two ways. On one hand, carbon is 

converted by photosynthesis; on the other hand microorganisms are digested, leading both to an 

increase of biomass (FIG 3).  

 

Classic food chain

Mixotrophic 
eukaryotes

Phototrophic eukaryotes

Phototrophic prokaryotes
DOC

POC
Viruses

Heterotrophic bacteria
Aerobic photoheterotrophs

Phagotrophic protozoa

Classic food chain

Mixotrophic 
eukaryotes

Phototrophic eukaryotes

Phototrophic prokaryotes
DOC

POC
Viruses

Heterotrophic bacteria
Aerobic photoheterotrophs

Phagotrophic protozoa

 
 
 
FIG 3: The microbial loop. Solid arrows mark the microbial loop as described by Azam and  
co-workers (Azam et al. 1983), dashed arrows are later additions (adapted from Fenchel 2008). 
Main groups of organisms addressed in this study are boxed. 
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1.6. Aggregation formation 

 

1.6.1. Aggregate size and abundance 

 

The second pivotal stage in the biological carbon pump is the formation of aggregates, which 

subsequently sink and transport carbon to deeper water layers, and may sediment on the sea floor. 

Upon sedimentation, carbon can be stored for centuries to millennia in the bathypelagic realm 

(Middelburg and Meysman 2007). These export processes are mainly due to macroscopic 

aggregates which often occur in high numbers during and at the end of phytoplankton blooms. 

After the transformation of DIC into biomass by primary production, this biomass can be 

transformed into aggregates by various processes at different levels of the food web (FIG 2). 

Aggregates occur in many aquatic systems, including lakes, estuaries, coastal systems, open 

ocean, and rivers. The size of these aggregates ranges from <1 μm to >10 cm, covering more than 

6 orders of magnitude (Simon et al. 2002) . In rare occasions even larger aggregates were found, 

e.g. aggregates >1 m in the Northern Adriatic Sea (Herndl et al. 1999) or the very recent 

discovery of aggregates of sizes up to 50 cm in diameter on the Arctic sea floor (Boetius et al. 

2013). The abundance of aggregates is dependent on environmental factors, like aeolian dust 

import, and the productivity of the ecosystem. The abundance of aggregates ranges from <1 l-1 to 

>108 l-1 and abundance is inversely related to aggregate size (Simon et al. 2002).  

 

1.6.2. Physical factors mediate particle collision 

 

The term marine, lake or river snow aggregates summarizes a vast variety of different aggregate 

types >500 μm and often aggregates are combinations of different aggregate types. The formation 

of these marine snow and smaller aggregates is complex and depends on several controlling 

factors. The concentration, density, shape and size distribution of the source material must be 

sufficient to allow aggregate formation (Simon et al. 2002). Shear forces have to be low enough 

to avoid aggregate disruption, but also high enough to allow collision of source material and 

aggregates (Alldredge et al. 1990; Jackson 1990; Riebesell 1991, 1992; Macintyre et al. 1995). 

The settling velocities of larger aggregates must be high enough to allow the scavenging of 

source material from the water column during vertical transport (Jackson 1990). Another 

important factor of aggregate formation is the probability of particles sticking together after 
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collision. This stickiness is often mediated by TEP structures, which were found to increase the 

sticking coefficient of diatoms and organic particles (Alldredge et al. 1993).  

A vast variety of mechanisms leads to the collision of source particles and might consequently 

lead to aggregate formation. A brief description of the mechanisms will be given, along the lines 

of Simon and co-workers (Simon et al. 2002). For small particles below 8 μm, Brownian motion 

has been characterized as a major factor for aggregate formation. These particles are largely 

controlled by their laminar flow and diffusion processes (Eisma 1993). Particles larger than 8 μm 

can be dependent on shear forces, as mentioned above. These mechanisms play a major role at 

discontinuity layers, bottom nepheloid layers, tidal currents, shallow seas, and also in pelagic 

systems (Alldredge et al. 1990; Jackson 1990; Riebesell 1991, 1992; Macintyre et al. 1995). 

Furthermore, settling particles can scavenge smaller particles during the sinking process (Jackson 

1990). This mechanism is important in pelagic realms, shallow waters and estuaries and is 

dependent on the size of the scavenging aggregate. A special case of scavenging might be the 

filtration of small particles, and also dissolved nutrients, from the water column by highly porous 

aggregates (Jackson 1990; Kepkay 1994; Jannasch et al. 1996). Furthermore, filtration of 

particles from the water column or active feeding by zooplankton may result in particle collision 

and aggregate formation.  

 

1.6.3. Chemical factors of aggregate formation 

 

The success of the initial particle collision for the formation of aggregates is then influenced by 

several factors. A major factor in aggregate formation is the chemical surface property of the 

aggregate. Particles can be charged negatively by carboxylic and hydroxylic compounds (Gibbs 

1983) or have positively charged residuals which act as bridging agents (Eisma 1993). DOC, 

consisting of humic acids, may attach to particles and form a negative coating, which might not 

only support aggregate formation with positive particles, but in high concentrations have a 

negative effect on aggregation due to the repulsion of negatively charged particles (Gerritsen and 

Bradley 1987; Eisma 1993). On the other hand, low DOC concentrations can enhance the 

aggregation of inorganic particles (Gibbs 1983). High concentrations of DOC, such as EPS, 

produced by diatoms, can enhance aggregate formation, due to the enhancement of particle 

stickiness (Simon et al. 2002). These DOC compounds may also attach to the surface of gas 

bubbles and form aggregate subsequent to the collapse of the bubbles (e.g. Eisma 1993; Zhou et 
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al. 1998; Mari 1999). In addition to the bubble aided formation of DOC aggregates, spontaneous 

coagulation may result in aggregates, such as TEP (Passow 2000).  

 

1.6.4. Biological mediated aggregate formation 

 The discarding of houses from Larvacea, solitary marine tunicates, directly form aggregates 

(Alldredge and Silver 1988; Silver et al. 1998). Net feeding pteropods may also discard their nets 

when these become clogged, and thus create aggregates (Simon et al. 2002). The most obvious 

biological aggregate formation is the excretion of fecal pellets from zooplankton. These pellets 

are densely packed aggregates enclosed by a peritrophic membrane (Lampitt et al. 1990; 

Bochdansky and Herndl 1992; Turner 2002). Fecal pellets have high sinking velocities and thus 

contribute largely to carbon sequestration (Yoon et al. 2001 and references therein).  

Aggregate attached bacteria may play a pivotal role during aggregate formation (Smith et al. 

1995; Grossart et al. 2006; Alderkamp et al. 2007; Gärdes et al. 2011). Besides increased TEP 

production, bacteria can utilize low molecular weight DOC to produce fibrils, which lead to 

aggregate stabilization (Heissenberger et al. 1996). EPS are excreted from a vast variety of 

eukaryotic cells, such as diatoms or Phaeocystis, which leads to TEP production (e.g. Chin et al. 

2004; Tsuyoshi Fukao 2012). TEP production was also found in bacteria, which can directly form 

TEP structures or indirectly assist aggregate formation by increasing of particle stickiness 

(Cambon-Bonavita et al. 2002; Klochko et al. 2012). In fact, TEP might be the major biological 

factor mediating aggregate formation (Simon et al. 2002).  

 

1.6.5. Aggregate composition 

 

The resulting aggregates are compositions of a vast variety of components, such as living, 

senescent and dead macro algae, diatoms, coccolithophorids, dinoflagellates, nano- and 

picoplankton, cysts of thecate dinoflagellates, cyanobacteria,  phytoplankton detritus, diatom 

frustules, bacteria and archaea, zooplankton molts and carcasses, abandoned larvacaean houses, 

pteropod feeding webs, fecal pellets, TEP structures and colloids, clay and silt minerals, calcite, 

and other particles abundant in the water column (Simon et al. 2002 and references therein). This 

might even include nano scale plastic particles, which are found frequently in the ocean (Law et 

al. 2010). For simplification, I will categorize all these described aggregate types in three groups  
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i) fecal pellets excreted from zooplankton, ii) transparent exopolymeric particles (TEP) formed 

from excreted EPS, and iii) detritus aggregates, that include all forms of planktonic detritus and 

will be referred to as marine snow aggregates. This shows the complexity of aggregate formation, 

in particular when considered that several processes can appear simultaneously and are mutually 

dependent on each other.  

 

1.7. Aggregate colonization  

 

1.7.1. Factors of colonization 

 

Bacteria have been identified to be the main colonizing group on almost all types of aggregates, 

while Archaea play only a minor role in the microbial communities. Although, I focus here on 

the heterotrophic bacteria, members of the Cyanobacteria were found in marine snow aggregates 

in abundance (Alldredge et al. 1986, 1990; Ploug et al. 1999). However, the abundance of 

phototrophic organisms on particles sinking into the dark ocean is counterintuitive. The higher 

nutrient (especially nitrate and ammonia) concentrations within aggregates may attract the 

phototrophic bacteria (Willey and Waterbury 1989; Vanucci et al. 2001) which are then trapped 

by the aggregate and transported into the deeper layers. 

The colonization of aggregates is complex and occurs in several steps. Fast swimming bacteria 

will encounter an aggregate in about <1 day (Kiørboe et al. 2002), but also non-motile bacteria 

collide with aggregates in lower frequency. In an initial phase, bacteria will attach loosely to the 

aggregate from where they still can detach again (Kiørboe et al. 2002). After short time the 

bacteria attachment gradually increases until cells are permanently attached and growth rates 

dominate over attachment (Grossart et al. 2003). Subsequently the total cell numbers on the 

aggregate increase and the bacterial community becomes established.  

During the colonization process, bacteria were found to excrete antagonistic molecules to inhibit 

the colonization by other bacteria. Alteromonas, Vibrionales, and Actinobacteria produced large 

amounts of inhibiting molecules, while Bacteroidetes showed the strongest response and the least 

production (Long and Azam 2001; Grossart et al. 2004). This leads to the hypothesis of two 

colonization strategies. Alteromonas, Vibrionales, and Actinobacteria may initially attach to the 

aggregate and prevents further colonization of bacteria from other groups by antagonist excretion, 

before increasing growth rates lead to the formation of a stable biofilm. Bacteroidetes on the 
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contrary will outcompete other attaching bacteria by high growth rates and fast colonization 

(Grossart et al. 2004). 

 

1.7.2. Bacterial abundance and community structure 

The bacterial cell numbers are correlated to the size of the aggregate and range from <100 cells 

per aggregate on small microaggregates, to 108 or 109 cells ml-1 on large aggregates. Small 

aggregates and aggregates formed from minerals can also be uncolonized (Alldredge et al. 1986; 

Simon et al. 2002 and references therein). The cell abundance correlates positively with 

aggregate size, but not with the volume of the aggregate (Ploug et al. 1999; Ploug and Grossart 

2000). As compared to the free living community, cell numbers of attached living bacteria  are 

usually enriched (Alldredge et al. 1986; Ploug and Grossart 2000; Ploug et al. 2002). The 

distribution of bacteria on aggregates is often uneven, due to microcolonies and filamentous 

structures (Grossart and Simon 1998; Grossart and Ploug 2000).  

Organisms belonging to the Betaproteobacteria and Bacteroidetes are dominating lake and river 

snow aggregates (Grossart and Simon 1998; Böckelmann et al. 2000; Schweitzer et al. 2001). 

This changes towards the rivers estuary in correlation with increasing salinity, where a shift in the 

community structure from Beta- to Gammaproteobacteria was found (Böckelmann et al. 2000; 

Simon et al. 2002). This is congruent with the finding of higher Betaproteobacteria abundances 

in lakes, compared to higher Gammaproteobacteria abundances in marine systems, in the free 

living fraction (Glöckner et al. 1999).  

In marine systems, Gammaproteobacteria and Bacteroidetes are the dominating clades on 

aggregates (DeLong et al. 1993; Rath et al. 1998; Moeseneder et al. 2001). Both clades are highly 

diverse and many different species may colonize aggregates, even though in Western 

Mediterranean waters the diversity within the Gammaproteobacteria community on marine snow 

aggregates was low (Acinas et al. 1999). High Gammaproteobacteria abundances are in 

accordance with recent findings of Gammaproteobacteria involved in of DOC degradation 

(Puddu et al. 2003). Metagenomic analyses showed increased transcription of genes encoding for 

enzymes which enable the degradation of DOM, such as TonB-associated transporters, nitrogen 

assimilation genes, and fatty acid catabolism genes (McCarren et al. 2010). It is assumed that 

Bacteroidetes are also capable for the degradation of various DOC and POC compounds. Recent 

studies found genes for hydrolytic enzymes, polysaccharide, N-acetylglucosamine and protein 
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consumption, chitin and peptidoglycan degradation and cell attachment, indicating the utilization 

DOC and POC in Bacteroidetes (Cottrell and Kirchman 2000; Bauer et al. 2006; Gómez-Pereira 

et al. 2012). Alphaproteobacteria are not known to be major DOC or POC degraders, beside 

members of the Roseobacter clade which may live attached to phytoplankton cells and are 

capable of Dimethylsulfoniopropionate (DMSP) utilization (Kiene et al. 2000 and references 

therein). Consequently, Alphaproteobacteria from the Roseobacter clade were also found on 

aggregates (Zubkov et al. 2001; Gram et al. 2002; Rooney-Varga et al. 2005). Planctomycetes 

were attached to aggregates, though only in low abundance (DeLong et al. 1993; Rath et al. 1998; 

Crump et al. 1999; Pizzetti et al. 2011). 

 

1.7.2. Eukaryotic communities on aggregates 

Besides bacterial colonization, also small eukaryotes were abundant on marine snow and 

occurring in higher numbers than in the free living fraction (Simon et al. 2002 and references 

therein). The community of protist on aggregates is diverse and differs from the free living 

fraction. Heterotrophic flagellates, ciliates, sarcodines and amoebae live attached to aggregates, 

implying a strong grazing on the attached living bacterial community (e.g. Rogerson and 

Laybourn-Parry 1992; Artolozaga et al. 1997; Zimmermann-Timm et al. 1998). While protists 

graze upon the bacterial community, predators grazing on protist might also be found in the 

vicinity of marine snow aggregates. Metazoans, such as copepods, are abundant on marine snow 

aggregates (e.g. Bochdansky and Herndl 1992; Zimmermann-Timm et al. 1998; Kiorboe 2000) 

and may also play a role in aggregate degradation (Iversen and Poulsen 2007).  

 

1.8. Aggregate degradation

 

As stated above, marine snow aggregates can be destroyed or degraded by higher organisms, 

such as copepods, by several mechanisms. Direct feeding on fecal pellets (coprophagy), fecal 

pellets disruption by sloppy feeding, disruption of refused fecal pellets in the feeding current 

(coprohexy) or loosening of the fecal pellets (coprochaly) are major processes in zooplankton 

aided fecal pellets degradation (Iversen and Poulsen 2007). These processes were investigated for 

fecal pellets, but it can be assumed that similar mechanisms also apply for marine snow 

aggregates of similar size. For aggregates, zooplankton swimming is an important factor of  
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FIG 4: The microbial loop on sinking aggregates (adapted from Azam and Malfatti 2007). 

 

fragmentation (Dilling and Alldredge 2000; Goldthwait et al. 2004). However, these processes 

affect the degradation rather indirectly, by disruption of the aggregate and release of the smaller 

aggregate fragments into the water. The reduced sinking velocity might then favour other 

degradation processes, such as bacterial aggregate degradation. 

In fact, bacterial biomass production and respiration, bacterial substrate release, POC 

solubilisation, bacterial substrate hydrolysis and subsequent uptake or release into the 

environment, are the major microbial processes of aggregate modification and degradation. The 

production of biomass on aggregates is relatively low with <14% in oligotrophic and around 30% 

at eutrophic systems. The growth rates and thymidine and leucine incorporation rates were rarely 

found higher in attached living bacterial communities as compared to the free living fraction 

(Simon et al. 2002 and references therein). Nevertheless, respiration leads to the release of CO2 

from the aggregates, which enters the DIC pool. The detection of higher ectoenzymatic activities, 

of aminopeptidase, phosphatase, protease, lipase, nuclease, chitinase and glucosidase, compared 

to the surrounding water, indicate high POC degradation rates (Azam and Malfatti 2007 and 

references therein). The compounds resulting from ectoenzyme activity, e.g. amino acids, organic 

carbon compounds and inorganic nutrients, are not used to the full extend by the attached living 
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bacterial cells. A part is released into the environment leading to the formation of a plume and a 

release of DOC into the water column, where it is available for the free living bacterial 

community (Simon et al. 2002; Azam and Malfatti 2007). This may be the source of nutrition for 

large fractions of the free living bacterial community (FIG 4; Kiørboe and Jackson 2001).  

In combination with the DOC release by the attached living bacterial community, these bacteria 

might function as food for the likewise attached living protist community (Kiørboe et al. 2003). 

This leads to a transfer of the bacterial biomass into higher trophic levels and carbon enters the 

microbial loop directly on the aggregate. Although the cycling inside the microbial loop would 

lead to retention of carbon at the aggregate, the overall respiration of bacteria and protozoa, in 

combination with the release of DOC into the water column, leads to the degradation of the 

aggregate.  

1.9. Sinking velocities and the efficiency of the biological carbon pump

 

The sinking velocity of aggregates is a key factor for the efficiency of the biological carbon pump. 

Sinking velocity of the aggregates determine the sinking rates of the POC. Low sinking velocities 

imply higher residence times in the surface layer and consequently enhanced degradation. 

Processes within the microbial loop are a key factor in the efficiency of the carbon pump, since 

these processes lead to remineralisation of carbon and the transfer into the non-sinking, dissolved 

carbon pool. These velocities range from non-sinking in the dissolved state to velocities > 700 m 

d-1 (Ploug et al. 2008a; Fischer and Karaka  2009; Fischer et al. 2009). A number of factors, such 

as aggregate size and density, interactions of the POC with ballast materials influence the sinking 

velocities (Ploug et al. 2008a; b; Iversen and Ploug 2010), and biological interaction with 

phytoplankton, zooplankton and bacteria (e.g. Simon et al. 2002; Iversen and Poulsen 2007) 

influence the sinking velocity. Large aggregate size, in combination with high porosity, usually 

leads to lower sinking velocities (Johnson et al. 1996; Kindler et al. 2010). The sinking velocity 

might increase when the pores are clogged with TEP structures, organic, or inorganic particles. 

Higher aggregate density increases sinking velocity, for example dense fecal pellets have high 

sinking velocities and are more likely to drive carbon export than slow sinking particles (Yoon et 

al. 2001). The density of the aggregates can be influenced by the incorporation of ballast 

materials, such as opal, calcium carbonate, aeolian dust particles and other inorganic materials 

with high density (Ploug et al. 2008a; b; Iversen and Ploug 2010). Besides the higher density, 
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which increases sinking velocity, these compounds may also lead to destabilisation of the 

aggregates and thus to decreased sinking velocities (Armstrong et al. 2001; Francois et al. 2002; 

Hamm 2002; Klaas and Archer 2002; Passow and De La Rocha 2006). Due to these processes, 

the aggregate can constantly shift between different conditions and different sinking velocities.  

These processes are mediating the efficiency of the biological carbon pump. However, the 

efficiency of the biological carbon pump is highly variable at different regions and thus exact 

measurements remain challenging. While many of the interacting physical and chemical factors 

are known and can be quantified, the biological factors, such as bacterial interactions with POC 

and DOC still need further investigation. Areas of high POC and DOC production, such as 

phytoplankton blooms, provide optimal conditions to investigate the role of microbial 

communities within the biological carbon pump. 

 

1.10. Phytoplankton blooms 

 

Vast areas of the ocean provide favourable conditions to establish phytoplankton blooms. These 

blooms might be reoccurring seasonal blooms in areas with high nutrient fluctuations, such as 

coastal areas or seasonal upwelling systems (Gattuso et al. 1998). Large scale upwelling systems, 

in contrast, can provide sufficient nutrients year round and thus harbour permanent phytoplankton 

blooms (Arístegui et al. 2009) as further depicted in chapter 1.12.. In addition to natural occurring 

blooms, iron limited areas of the ocean can be fertilized and phytoplankton blooms can be 

artificially established (Martin et al. 1994) as further depicted in chapter 1.11..  

 

1.10.1. Bloom forming organisms 

 

Most phytoplankton blooms follow a succession pattern of organisms (reviewed in Cloern 1996). 

Due to the bottom up control of phytoplankton by nutrient availability, the initial step for the 

formation of a bloom is the increase of nutrients. The behaviour of rapid growth triggered by 

increasing nutrient concentrations is also known as “boom (or bloom) and bust” response. 

Diatoms are one of the major organisms that are promoted under such conditions, due to their fast 

growth rates, and display a “boom and bust” response (Furnas 1990). This response is often 

supported by increasing water temperatures, light intensities and other physicochemical factors 

that provide favourable conditions. In eutrophic oceanic regions the blooms are dominated by 
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organisms, such as diatoms, coccolithophorids, dinoflagellates, while in oligotrophic waters 

blooms are often dominated by eukaryotic nano- and picoplankton or Cyanobacteria (Olson et al. 

1988, 1990; Campbell and Vaulot 1993). Major bloom forming diatoms are Thalassiosira, 

Chaetoceros, and Pseudo-nitzschia species (e.g. Rines and Theriot 2003; Armbrust et al. 2004; 

Trainer et al. 2012), while Emiliania huxleyi is the worldwide most dominant member of the 

coccolithophorids and forms extensive blooms (> 100.000 km2) in oligotrophic waters (e.g. 

Okada and Honjo 1973; Okada and McIntyre 1979; Flores et al. 2010). Many dinoflagellates 

species are known to form blooms (Taylor et al. 2008). Some dinoflagellates, but also diatom 

species are intensely studied due to their toxin production and the formation of harmful algae 

blooms (Hallegraeff 1993; Anderson et al. 2012). However, these organisms are not the scope of 

this study and will only be discussed briefly.  

 

1.10.2. Nano- and picoplankton communities during phytoplankton blooms 

 

Nano- and picoplankton species are so far not as deeply studied and thus their role in the 

formation of blooms is rather unknown, except of Phaeocystis, which are well studied and form 

blooms worldwide (Schoemann et al. 2005). The smallest bloom forming picoplankton species 

are Micromonas (Not et al. 2004) and Ostreococcus (O’Kelly et al. 2003). However, only few 

studies have been conducted aiming on the response of these organisms on phytoplankton blooms 

and possible succession patterns of these small eukaryotes (Coale et al. 2004; Peloquin et al. 

2011a), possibly as a reason of the difficulties in identification of these organisms. 

Due to the similar round or pear-shaped body morphology, microscopic identification of nano- 

and picoplankton cells is challenging and often organisms are only classified due to their cell size. 

Picoplankton is in the range of 0.2-2.0 μm and nanoplankton in the range of 2.0-20 μm. The 

phylogeny of these organisms is far more diverse and they appear in various groups of aquatic 

organisms. Major clades are e.g. Prasinophyceae, Stramenopila, Alveolata, and Haptophyta (FIG 

5). Classical light microscopic determination of the different species provides only a very low 

resolution in diversity and community composition. Scanning electron microscopy (SEM) has 

great potential to provide more morphological information, but processing environmental 

samples is not trivial and most of the cells are identified on a low taxonomic level or remain 

unidentified (Vørs et al. 1995; Zingone et al. 1999). Another method frequently used to determine 
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nano- and picoplankton communities is the usage of pigments as markers for chemical taxonomy 

(Jeffrey and Wright 2006 and references therein).  

Only recently molecular tools, based on the 18S rRNA gene sequence, were introduced into the 

field of nano- and picoplankton research. Finger printing techniques like denaturing gradient gel 

electrophoresis (DGGE), automated ribosomal intergenic spacer analyses (ARISA) or next 

generation sequencing were used to investigate the diversity. In addition, fluorescence in situ 

hybridization (FISH) techniques have been applied to quantify certain groups of nano- and 

picoplankton (Wolf et al. in press, in prep.; Not et al. 2004; Berglund et al. 2005; Massana et al. 

2006; Stoeck et al. 2010; Cheung et al. 2010).  
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FIG 5: Phylogenetic consensus tree of the Eukarya (modified after Baldauf 2008). Groups with  
major clades of marine nano- or picoeukaryotes are indicated by asterisks. Small stages in life  
cycles are not considered. Dotted lines in the Stramenopiles indicate possible new clades  
according to Massana and co-workers (Massana et al. 2006) and the MAST clades were placed  
arbitrarily since a clear taxonomic positioning is not yet available. The two current proposed  
roots are also indicated as dotted lines. 
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1.10.3. The bacterial and archaeal community response during phytoplankton blooms 

 

The most important bacterial phytoplankton group are Cyanobacteria. Unicellular Synechococcus 

and Prochlorococcus are the most important species and are well studied (e.g. Waterbury et al. 

1979; Glover et al. 1988; Chisholm et al. 1988; Partensky et al. 1999). However, we focus on the 

response of heterotrophic bacteria to phytoplankton blooms. After the initial increase of 

phytoplankton biomass and the subsequent DOC and POC release, heterotrophic bacterial and 

archaeal clades respond to the nutrient input by an increase of growth rates. Bloom ecosystems 

are often dominated by fast growing bacterial clades such as Gammaproteobacteria, 

Bacteroidetes and Roseobacter (e.g. Fandino et al. 2001; Pinhassi et al. 2004; West et al. 2008), 

while non bloom situations are often dominated by persistent clades such as the SAR11 clade or 

the SAR86 clade (Pernthaler et al. 2002; Morris et al. 2002; Mary et al. 2006). These preferences 

reflect the different niches of the different groups. A strong bacterial clade succession occurs over 

the course and the decay of phytoplankton blooms, due to changes in substrate availability 

(Teeling et al. 2012).  

Many studies used micro- and mesocosms to simulate blooms or addressed the bacterial with 

limited taxonomic or temporal resolution (Pinhassi et al. 1999, 2004; Riemann et al. 2000; 

Fandino et al. 2001; Lau et al. 2007). Only one study intensively investigated the succession 

patterns of the bacterial and archaeal community during a spring bloom in the North Sea. It was 

shown, that a series of ecological niches occurred most likely due to the successive availability of 

algal polysaccharides bacterial succession patterns were bottom up controlled by substrates 

(Teeling et al. 2012).  

The study revealed a dominance of Alphaproteobacteria, mainly the SAR11 clade, in the pre-

bloom phase, followed by a succession of defined Bacteroidetes clades from the Flavobacteria 

class. Ulvibacter was followed by Formosa-related and Polaribacter species. A later response to 

the bloom situation was found for Gammaproteobacteria, where Reinekea species and members 

of the SAR92 clade increased in abundance. Within the Roseobacter, a shift from the NAC11-7 

clade towards the RCA clade (now DC5-80-3 clade) occurred from the early to the late bloom 

phase. The study was able to link the different stages of the succession to different expression 

levels of genes related to the uptake or utilization of different carbon compounds. Bacteroidetes 

are dependent on higher molecular weight compounds, while Gammaproteobacteria utilize lower 

molecular weight compounds. This implies that niche partitioning is realized by the availability 

20

Introduction



of different carbon compounds during the bloom phase. In the later bloom phase, Polaribacter 

and Formosa were found in higher abundances in the particle attached fraction, indicating that 

spatial niche partitioning may also play a role in the succession pattern (Teeling et al. 2012).  

 

1.11. Iron fertilization experiments 

1.11.1. Iron – limiting factor in the open ocean 

About 25% of the world’s oceans are low in chlorophyll a concentrations despite their high 

nutrient concentrations. These areas, so called High Nutrient – Low Chlorophyll (HNLC) areas, 

can be found in the Equatorial Pacific off the Galapagos Islands (Ecuador), in the subarctic North 

East Pacific off the coast of Alaska, and in the Southern Ocean (Chavez and Barber 1987; Martin 

et al. 1994; Chavez et al. 1996; Boyd et al. 1998, 2000). These areas are characterized by nutrient 

concentrations high enough to sustain extensive phytoplankton blooms, but are iron limited. This 

finding lead to the formulation of the “iron hypothesis”, which postulates that iron is the limiting 

nutrient for phytoplankton growth and consequently iron fertilization would lead to 

phytoplankton bloom formation (Martin 1990).  

Four sources of iron are proposed to naturally fertilize the oceans. The major iron source is 

aeolian dust transported into the ocean by storms. Enhanced primary production has been found 

in the southern North Atlantic due to influx of Sahara dessert dust (Duce and Tindale 1991; 

Jickells et al. 2005). Upwelling of iron rich sediment particles can be a source for iron in coastal 

areas and upwelling systems (Bruland et al. 2001). Another source of iron are riverine iron 

compounds purged into the ocean (Figuères et al. 1978). In the Southern Ocean, ice bergs have 

been proposed to be a source of bioavailable iron (Smith et al. 2007; Raiswell et al. 2008).  From 

the melting ice bergs, bioavailable iron could be release into the ocean directly, as dissolved iron, 

as iron containing sediment or dust trapped in the ice berg, and as nanoparticulate iron (Raiswell 

et al. 2008). These iron influxes support the formation of blooms in areas with sufficient nutrients. 

 

1.11.2. Iron fertilization experiments 

 

After the verification of the iron hypothesis in Equatorial Pacific waters (Martin et al. 1994), 

twelve iron fertilization experiments have been conducted in different HNLC areas (FIG 6). All 
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experiments successfully established a phytoplankton bloom, as shown by increased chlorophyll 

a values (deBaar et al. 2005; Peloquin et al. 2011a; Smetacek et al. 2012). These blooms 

consisted of different phytoplankton communities, depending on the nutrient composition of the 

fertilized waters and the predominant organisms in the area. Most of the induced blooms were 

dominated by diatoms, often Pseudo-nitzschia species and Fragilariopsis kerguelensis, and those 

blooms were also found highest in chlorophyll a values (deBaar et al. 2005). Due to the increased 

photosynthesis rates, the DIC in the surface layer was transferred into biomass, measurable by a 

decrease of DIC in most experiments (deBaar et al. 2005). Convergence of atmospheric CO2 into 

the surface water was measured in most experiments and is as small as ~ 8% of the DIC removal 

rate, but further convergence can be expected after the experiments (deBaar et al. 2005). 

However, POC formation was found during the first 8 experiments and is about 25% of the 

primary production, while the remaining 75% are assumed to be cycled in the surface layer 

(deBaar et al. 2005). POC export rates have been achieved for some of the experiments, using 

sulfur hexafluoride (SF6) tracer (SEEDS, EisenEx, and LOHAFEX), sediment traps (SOIREE, 

SERIES and LOHAFEX), or 234Thorium export rates (SOFeX South and LOHAFEX). However, 

the export rates were rather low for SEEDS, SOIREE, SOFeX South, and SERIES (Nodder and 

Waite 2001; Tsuda et al. 2003; Boyd et al. 2004; Buesseler et al. 2004). Elevated export rates of 

POC into deeper water layers, of 50% of the bloom biomass were found only during EisenEx 

(Smetacek et al. 2012).  

 

1.11.3. The role of silicate 

 

Like iron also silicate is of importance for the formation of phytoplankton blooms. Depending on 

silica concentrations in the fertilized waters, the induced blooms can consist of diatoms (Gall et al. 

2001; Tsuda et al. 2005; Marchetti et al. 2006; Assmy et al. 2007; Suzuki et al. 2009) or are 

formed by autotrophic and mixotrophic nano- and picoplankton (Peloquin et al. 2011a). Most 

iron fertilization experiments were conducted in silicate-rich HNLC areas (HNLC-HSi) and the 

iron-induced blooms were dominated by diatoms. Although, SOFeX-North was conducted in low 

silicate waters (3 μM) still 50% of bloom biomass was contributed by diatoms (Coale et al. 

2004). The only iron fertilization experiment performed in silicate limited (<2 μM) areas (HNLC-

LSi), the SAGE experiment, showed a muted increase in bloom biomass and the bloom was 

dominated by pico- and nanoflagellates (Peloquin et al. 2011b). Blooms formed by nano- and 
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picoplankton lead to an accelerated cycling of carbon in the surface layer, due to the short cut in 

the microbial loop. This process played a major role during the SAGE experiment and led to 

carbon retention in the surface layer (Harvey et al. 2011). It shows the importance of the 

microbial loop in iron induced blooms and the effect on the biological carbon pump. However, 

not much is known about the response of bacterial and nano-and picoplankton community onto 

iron fertilization.  

 

 
FIG 6: Map of the worldwide distribution of Chlorophyll a in marine and limnic systems. The  
spheres indicate locations of iron fertilization experiments. Numbers in the spheres mark the  
chronological order of the experiments, while sphere colour indicates the predominant plankton  
group (orange = diatoms, green = nano- and picophytoplankton, pink = zooplankton and nano-  
and picophytoplankton). 1 – IronEx-I, 1993; 2 – IronEx-II, 1995; 3 – SOIREE, 1999; 4 – EisenEx,  
2000; 5 – SEEDS-I, 2001; 6 – SERIES, 2002; 7 – SOFeX North, 2002; 8 – SOFeX South, 2002;  
9 – SEEDS-II, 2004; 10 – EIFEX, 2004; 11 – SAGE, 2004; 12 – PAPA-SEEDS, 2006; 13 –  
LOHAFEX, 2009 (Adapted from Morrissey and Bowler 2012). 
 

 

1.11.4. Bacterial and archaeal response to iron fertilization 

 

Besides the finding of increased bacterial activity in several former iron fertilization experiments 

(Hall and Safi 2001; Cochlan 2001; Oliver et al. 2004; Suzuki et al. 2005), the bacterial and 

archaeal community composition and succession was only accessed during EisenEx and during 

the KEOPS experiment, an investigation of a natural fertilized bloom off Kerguelen Island in the 
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Southern Ocean (Arrieta et al. 2004; West et al. 2008). During the EisenEx experiment no 

significant change within the heterotrophic bacterial community, using terminal restriction 

fragment length polymorphisms (T-RFLP), were detected (Arrieta et al. 2004). In contrast, West 

and co-workers found significant differences in the bacterial community inside the naturally 

fertilized area as compared to outside, using clone libraries. Roseobacter species of the NAC11-7 

clade, members of the gammaproteobacterial SAR92 clade, and Bacteroidetes of the AGG58 

Branch1 clade were found abundant inside the bloom. The bacterial community outside of the 

bloom was dominated by members of the SAR11 clade, belonging to the surface group I 

(including Cand. Pelagibacter ubique), and Bacteroidetes from the genus Polaribacter (West et 

al. 2008).  

 

1.11.5. Thesis project I – Investigation of the bacterial and archaeal community response to iron 

fertilization during LOHAFEX 

 

We investigated the response of the bacterial and archaeal community towards iron fertilization 

during the LOHAFEX experiment, using molecular techniques like catalyzed reporter deposition 

FISH (CARD FISH) and 454 tag pyrosequencing. Next generation sequencing provides high 

sequence read numbers and a higher resolution of the community diversity than sequencing from 

clone libraries, and provides taxonomic information in contrast to T-RFLP community 

fingerprinting. FISH techniques enable quantitative analyses and are thus favorable compared to 

fingerprinting techniques. Furthermore, FISH offers the opportunity of spatial resolution and thus 

enables fine scale investigations without possible amplification biases during PCR reactions 

(Farris and Olson 2007). 

Manuscript I reports the result of the investigations of the community composition and diversity 

over the course of the induced bloom. This study showed that the bacterial and archaeal 

community change only minute during the experiment and showed no significant succession 

pattern in the expected bacterial clades. Members of the SAR11 and SAR86 clades were high in 

numbers, probably due to the small cell size. This small cell size might enable these cells to 

escape grazing pressure of bacteriovorous grazers (Pernthaler 2005), which might have kept the 

system in top-down control and hindered a bacterial succession pattern.  
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1.11.6. Thesis project II – Investigation of the nano- and picoplankton community response to 

iron fertilization during LOHAFEX 

 

Similar to the bacterial and archaeal community, the response of the nano- and picoplankton 

community onto iron fertilization was not sufficiently addressed so far. Using flow cytometry 

increasing total cell numbers of nano- and picoplankton were found over the course of the 

SOIREE experiment (Hall and Safi 2001). During the SAGE experiment the picoplankton 

community increased, as investigated by flow cytometry. An increase in nanoflagellate biomass 

was determined by microscopic counting after primulin staining. Identification of the organisms 

was done during the SAGE experiment using pigments as chemotaxonomic markers. This 

suggested the dominance of prasinophytes, pelagophytes and haptophytes type 8 within the 

bloom (Peloquin et al. 2011b). However, molecular techniques have rarely been applied to the 

nano- and picoplankton community, and also not to investigate succession patterns during bloom 

situations.  

Chapter 1.10.2. discusses the difficulties of nano- and picoplankton investigations by classical 

methods, such as light microscopy, SEM and chemotaxonomy. We used CARD FISH and 454 

tag sequencing to investigate the nano- and picoplankton community during the LOHAFEX 

experiment. We successfully applied these methods to monitor the nano- and picoplankton 

diversity and community composition, and were able to design two new probes targeting groups 

of the Syndiniales clade. The results are presented in Manuscript II and show a similar stable 

community structure and diversity pattern than it was found for the bacterial and archaeal 

community. Only Micromonas and Pelagophyceae increased shortly after the second iron 

fertilization, but decreased immediately again. As stated for the bacterial and archaeal community, 

this implies strong top down control by dinoflagellates and ciliates, and a tight coupling of the 

microbial loop inside the induced bloom.  

1.12. The bacterial community of sinking aggregates 

Besides iron fertilized phytoplankton blooms, upwelling systems provide favourable conditions 

to investigate microbial mediated processes in the biological carbon pump. In some upwelling 

systems nutrients are year round transported to the surface layer and result in perennial, highly 

productive phytoplankton blooms. The most productive upwelling systems are the eastern 
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boundary upwelling systems (EBUS) found at the eastern margins of South America, North 

America and Africa (Carr and Kearns 2003).

 

1.12.1. The Eastern Boundary Upwelling Systems (EBUS) 

 

The four major EBUS are the Humboldt Current Upwelling off the coast of Peru, the Canary 

Current Upwelling off Morocco and Mauretania, The Benguela Upwelling off Namibia and the 

Californian Upwelling off the coast of California (USA). In these systems, winds along the Pacific 

or Atlantic coasts, oriented towards the equator, create offshore Ekman transport systems. This 

transport creates an upwelling of nutrient rich waters into the surface layer and thereby favours 

sustainable phytoplankton blooms in these areas (Carr and Kearns 2003). These systems are 

highly productive and show not only vertical carbon export, but also horizontal carbon transport 

towards the open ocean (Arístegui et al. 2004).  

Although, the Humboldt Current Upwelling system was thought to be the most productive in the 

world (Behrenfeld and Falkowski 1997; Chavez and Messié 2009), the African EBUSs display 

higher net primary production (Lachkar and Gruber 2011). The Canary Current Upwelling is the 

second most productive upwelling system of the EBUS with an estimated annually production of 

0.33 Gt carbon (Carr 2001; Lachkar and Gruber 2011). This system can be divided into a 

northern and a southern part, due to the presence of the Canary Islands. The more productive 

southern part, off the area of Cape Blanc (Mauretania), sustains phytoplankton blooms year round 

(Arístegui et al. 2009). This results in high POC production and consequently increased 

efficiency of the biological carbon pump. This highly productive system provides optimal 

conditions for the investigation of aggregates and the attached living bacterial and archaeal 

communities. 

 

1.12.2. Changes of the aggregate attached bacterial community with increasing depth 

 

As stated in chapter 1.7.2., the bacterial community on aggregates is often dominated by 

Gammaproteobacteria and Bacteroidetes. However, not much is known about the response of the 

microbial community to the sinking of the aggregate. During the sinking process, pressure 

increases constantly, while temperature decreases at the thermocline until a stable temperature of 

about 4°C is reached. In laboratory studies, changes in the bacterial community with increasing 
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depth were found. It was indicated that on fecal pellets and in artificially bacterial communities 

Gammaproteobacteria are favoured against other bacteria at increasing depth (Tamburini et al. 

2009; Grossart and Gust 2009). This is congruent with changing bacterial and archaeal 

communities on aggregates (>3 μm filter fraction) with increasing depth in the Aegean Sea 

(Moeseneder et al. 2001). However, the bacterial activity did not change with increasing pressure 

(Tamburini et al. 2002). This stands in contrast to a 3.5 fold higher carbon specific respiration 

rate found at 15°C compared to 4°C, found in a laboratory experiment (Iversen and Ploug 2013).  

 

1.12.3. Thesis project III – Investigation of the bacterial community on marine snow aggregates 

and TEP structures at two different depths from the Canary Current Upwelling 

 

We used a drifting sediment trap to collect marine snow aggregates in situ at 100 m and 400 m 

depth and collected TEP structures formed in roller tanks from 65 m and 400 m depth. These 

aggregates were analyzed using a novel three dimensional FISH approach to investigate the 

bacterial community structure and the possible changes with depth (Manuscript III). 

Marine snow aggregates were dominated by Synechococcus, Bacteroidetes and Alteromonas, 

while the TEP structures were highly dominated by Alteromonas. All groups were enriched 

compared to the free living community. The community on the aggregates differed significantly 

at both depths, due to a decrease of Bacteroidetes and Alteromonas towards greater depth. This 

does not hold true for the TEP structures, where no significant difference of both communities 

were found. From these results we hypothesize a change in the bacterial community during 

sinking due to a combined effect of changes in nutrient quality due to degradation processes, 

grazing, decreasing temperature and increasing pressure. 
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2. Methods 
 

The full-cycle rRNA approach was developed as a phylogeny-based toolbox for cultivation-

independent studies of microbial diversity and ecology (Amann et al. 1995). Due to the 

importance of this approach, a review was written focussing on FISH techniques (Appendix I). A 

brief overview of methods used in this study will be given here, while detailed information are 

provided in the manuscripts. 

 

Manuscript I 

 CARD FISH according to the review by Thiele (Appendix I) 

 Manual and semi-automated cell enumeration using counting machine in the semi-

automatic mode (Pernthaler et al. 2003).  

 Next generation sequencing using Roche/454 GS FLX Titanium technology (Ronaghi et 

al. 1996) 

 

Manuscript II 

 CARD FISH according to the review by Thiele (Appendix I) modified to suit nano- and 

picoplankton. 

 Manual and automated cell enumeration using an automated counting machine using the 

macro MPISYS (Zeder unpublished) and the analyzes program ACMEtool 0.76 (Zeder 

unpublished) 

 

Manuscript III 

 Formation of aggregates using roller tanks (Shanks and Edmondson 1989) and in situ 

sampling of aggregates using a drifting sediment trap. 

 Standard FISH and CARD FISH according to the review by Thiele (Appendix I) 

 Manual and automated cell enumeration using an automated counting machine using the 

macro MPISYS (Zeder unpublished) and the analyzes program ACMEtool 0.76 (Zeder 

unpublished) 

 Confocal laser scanning microscopy and three dimensional biovolume calculations using 

the program PHLIP (Mueller et al. 2006) 
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Some additional methods were used by co-authors of the three manuscripts. A brief overview will 

also be given here, while for details I refer to the manuscripts. 

 

Manuscript I 

 N. Ramaiah used thymidine (Fuhrman and Azam 1980) and leucine (Kirchman et al. 1985) 

uptake rates to determine bacterial activity 

 

Manuscript II 

 C. Wolf used Roche/454 GS FLX Titanium technology (Ronaghi et al. 1996) 

 B. Fuchs used a FACScalibur flow cytometer to determine total cell numbers 
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3. Aims 
 

3.1. General objective 

The aim of this PhD thesis was to identify and investigate specific microbial communities, which 

are of importance for processes within the biological carbon pump.  

 

3.2. Specific objectives 

 

I)  During the iron fertilization experiment LOHAFEX, a response of the bacterial and 

archaeal community was predicted, following certain succession patterns based on 

differential niche preference and availability during the course of the bloom. The aim was 

to detect major bacterial and archaeal clades within the bloom and follow the succession 

during the 38 days from the bloom initiation to its decay, using molecular tools. 

Manuscript I

 

II) During the investigation of the bacterial and archaeal community during the LOHAFEX 

experiment, the hypothesis of a top-down control of nano- and picoplankton grazers on 

the bacterial and archaeal community was formulated. Consequently, the nano- and 

picoplankton community was investigated in order to identify the major groups in of these 

small eukaryotes and follow their succession over the course of the experiment. 

 Manuscript II 

 

III)  Traditional methods for phytoplankton investigations, such as light microscopy, scanning 

electron microscopy, or marker pigment analyses, cannot provide sufficient taxonomical 

information to identify most nano- and picoplankton groups. Therefore, molecular 

methods were used for the investigation of these groups and the procedures had to be 

optimized for the samples prepared for classical analyses. 

 Manuscript II 

 

IV) Aggregate degradation is a major process within the biological carbon pump and bacteria 

were identified to be the major POC degrader. Still, not much is known about the identity 
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of these bacteria and the change of the aggregate attached community at different depths. 

The aim of the study was to identify the dominant bacterial groups on marine snow 

aggregates and TEP structures at different depths.  

 Manuscript III 

 

V) In order to investigate the bacterial community on sinking aggregates and TEP structures, 

a drifting sediment trap for in situ sampling and a novel three dimensional FISH approach 

had to be developed. 

Manuscript III 
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Iron fertilization experiments are known to induce phytoplankton blooms in ocean areas 

with low chlorophyll concentrations despite high nutrient concentrations. In silicate 

limited waters iron fertilization experiments often induce phytoplankton blooms, which 

consist mainly of nano- and picoplankton. We used flow cytometry, tag pyrosequencing 

and catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH) to 

investigate the diversity and community structure of the nano- and picoplankton during 

the iron fertilization experiment LOHAFEX. As previously shown for the bacterial 

community, the diversity and community structure of the nano- and picoplankton 

remained remarkably stable during the course of the experiment. Besides Phaeocystis, the 

main bloom forming organism, Syndiniales and Micromonas phylotypes made up the 

main part of the tag sequences within the fertilized patch. By CARD-FISH only 

Micromonas and Pelagophyceae showed a peak in numbers at day 22 of the experiment, 

while numbers of Phaeocystis and clades I and II of Syndiniales were almost constant 

throughout the experiment inside the fertilized patch. The stable numbers within all 

investigated groups are most likely indicative for a strong top down control by larger 

grazers. With the combination of tag pyrosequencing and fluorescence in situ 

hybridization with automated cell counting we were able to shed light into the “black 

box” of the nano- and picoplankton during the LOHAFEX experiment. 
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Phytoplankton blooms thrive seasonally or continuously in large parts of the oceans, 

where nutrients are found in plenty. However, large areas of the oceans exhibit low 

chlorophyll a concentrations despite high nutrient levels, a paradox known as the high 

nutrient-low chlorophyll areas (HNLCs). For example, large parts of the Southern Ocean 

are iron limited and thus do not support extensive phytoplankton blooms (1). In several 

experiments it could be shown, that an artificial fertilization with iron induced 

phytoplankton blooms. Although, these blooms were often dominated by diatoms (2–4), 

nano- and picoplankton can make up a substantial fraction of the induced phytoplankton 

blooms (5, 6). In areas with both iron and silicate limitations, nano- and picoplankton can 

even dominate the blooms as found for example during the SAGE iron fertilization 

experiment (7).  

The iron fertilization experiment LOHAFEX (‘loha’ is Hindi for ‘iron’; FEX for 

Fertilization EXperiment) was conducted in a cold core eddy in the Southern Atlantic to 

induce a phytoplankton bloom and investigate the effects on the biological carbon pump. 

A phytoplankton bloom, dominated by nano- and picoplankton, was induced and 

monitored over the course of the experiment (8). However, these small Eukarya, ranging 

from 2 – 20 μm (nanoplankton) and 0.2 – 2 μm (picoplankton), are rarely explored in 

detail and remain a “black box” in most studies.  

In previous studies the identification of eukyarotic nano- and picoplankton was done by 

direct microscopic counting of Lugol-fixed samples by the Utermöhl method (9), 

scanning electron microscopy (SEM) (e.g. 61), and marker pigment analyzes (reviewed 

in 23). More recently molecular biological tools, like catalyzed reporter deposition 
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111 

fluorescence in situ hybridization (CARD FISH) and 454 tag pyrosequencing were 

established for the identification and quantification of nano- and picoplankton (12–16). 

Using the molecular techniques it was found that Haptophyta is one of the most abundant 

marine groups which includes a high diversity of picoeukaryotes (17, 18) The most 

prominent members of this group comprise the genus Phaeocystis, which forms large 

blooms worldwide (19), and members of the class Coccolithophyceae. Recently a high 

diversity especially for Phaeocystis was found using a set of molecular biological tools 

(20). Within the Chlorophyta, the Prasinophyceae are highly diverse (18, 21, 22) and 

paraphyletic and thus need to be newly classified based on molecular data  (23, 24). 

Investigations of this group were so far focused mainly on few subgroups. For example, 

Micromonas, a genus within the Mamiellophyceae including the single species M. pusilla, 

was found in high numbers in the British Channel (15), in clone libraries of pacific 

coastal waters, in the Sargasso Sea (22), and in Arctic waters (25). Ribosomal RNA 

studies showed, that members of the class Pelagophyceae (Heterokonta) are major 

contributors to marine nano- and picoplankton communities (25, 26). Different clades of 

the Marine Stramenopiles (MAST) were abundant worldwide (14).  

In our earlier study, we could observe only little changes in the community composition 

and abundance of Bacteria and Archaea in response to the iron fertilization experiment 

LOHAFEX. We postulated a high grazing pressure onto this community exerted by nano- 

and picoplankton grazers (27). In this study we used cutting edge molecular methods, 

including flow cytometry, tag pyrosequencing (28) and CARD FISH (29) to investigate 

the diversity and community structure of the nano- and picoplankton community during 

LOHAFEX.  
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Material & Methods 112 

113 
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Sampling 

The iron fertilization experiment LOHAFEX was conducted during the RV “Polarstern” 

cruise ANT XXV/3 (12th January till 6th March, 2009) as described previously (27). 

Briefly, a cold core eddy in the South Atlantic was fertilized twice with 10 t Fe(II)SO4 

(on days 0 and 18) and monitored for 38 days. Samples for CARD-FISH analyses were 

taken on day -1, prior to the start of the experiment, on days  5, 9, 14, 18, 22, 24, 33, 36 

inside the fertilized patch (“IN” stations) and days 4, 16, 29, 35 (only 20 m), and 38 

outside the fertilized patch (“OUT” stations, FIG. 1). Both IN and OUT stations were 

situated within the eddy. On each day, 190 ml of water from 20 m and 40 m depth were 

fixed with 10 ml acidic Lugol solution (5% final conc. v/v) and stored in brown glass 

bottles at 4°C in the dark for 3 years until CARD FISH analysis. For DNA extraction for 

tag pyrosequencing 90 l (day -1) , 85 l (day 9) , 75 l (day 16/ OUT), 67 l (day 18) were 

sampled from 20 m depth on 0.2 μm pore size cellulose acetate filters (Sartorius, 

Göttingen, Germany) after a prefiltration step over 5 μm. These samples were stored at -

80°C. 

 

129 

130 

131 

132 

133 

134 

Flow cytometric cell counting 

Total nano- and picoplankton was counted after fixation of fresh samples with particle-

free formaldehyde solution (final conc. 1% v/v) and staining with SYBR Green I 

(1:10,000 dilution of stock) using a FACScalibur flow cytometer (BD Biosciences, 

Heidelberg, Germany) as described previously (30, 31). 
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136 

137 
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139 
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Tag-pyrosequencing 

DNA extraction was done using the E.Z.N.A.TM SP Plant DNA Kit (Omega Bio-Tek, 

Norcross, USA). Initially, the filters were incubated in lysis buffer at 65°C for 10 min 

before performing all further steps as described in the manufacturer’s instructions. The 

eluted DNA was stored at -20°C until further analysis. 

We amplified ~670 bp fragments of the 18S rRNA gene, containing the highly variable 

V4-region, using the primer-set 528F (5’-GCGGTAATTCCAGCTCCAA-3’) and 1055R 

(5’-ACGGCCATGCACCACCACCCAT-3’) modified after H.J. Elwood (32) as 

described by Wolf (33). Pyrosequencing was performed on a Genome Sequencer FLX 

system (Roche, Penzberg, Germany) by GATC Biotech AG (Konstanz, Germany). 

Raw sequence reads were processed to obtain high quality reads. Reads with a length 

below 300 bp, reads longer than >670 bp and reads with more than one uncertain base (N) 

were excluded from further analysis. Chimera sequences were excluded using the 

software UCHIME 4.2 (Edgar et al. 2011). The high quality reads of all samples were 

clustered into operational taxonomic units (OTUs) at the 97% similarity level using the 

software Lasergene 10 (DNASTAR, Madison, USA). Subsequently, reads not starting 

with the forward primer were manually removed. Consensus sequences of each OTU 

were generated and used for further analyses. The 97% similarity level was found 

suitable to reproduce original eukaryotic diversity (34) and brace the sequencing errors 

(35). Furthermore, it excludes intragenomic SSU polymorphisms, that can be as high as 

2.9% of the sequence in dinoflagellate species (36). OTUs comprised of only one 

sequence (singletons) were removed. The consensus sequences were aligned using the 

software HMMER 2.3.2 (37) and implemented into a reference tree, containing about 
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1,200 high quality sequences of Eukarya from the SILVA reference database (SSU Ref 

108), using the software pplacer 1.0 (Matsen et al. 2010). OTUs assigned to fungi and 

metazoans were excluded from further analysis. Rarefaction curves were computed using 

the freeware program Analytic Rarefaction 1.3. The data set generated in this study has 

been deposited at GenBank’s Short Read Archive (SRA) under Accession No 

SRA064723. 
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CARD FISH  

Nano- and picoplankton abundances were quantified for all stations in samples from 20 m 

and 40 m depth by CARD FISH. In preliminary tests, the Lugol-fixed samples could not 

be used directly for CARD FISH. Bright signals and stable cell counts could be achieved 

only after an additional fixation step with formaldehyde. Hundred milliliter of the Lugol-

fixed sample was fixed for 1 h with formaldehyde (1% final concentration), destained 

with 1 M sodium thiosulfate and filtered onto polycarbonate filters with 0.8 μm pore size 

(Millipore, Tullagreen, Ireland). Due to limited sample amount, only 25 ml and 70 ml 

were filtered for samples of day -1 and day 38 (both 20 m depth). CARD FISH was done 

as described previously (29) modified after Thiele (38). Briefly, a permeabilization step 

was done with Proteinase K (5 g/ ml) for 15 minutes for Phaeocystis samples, due to the 

enhanced length (34 bp) of probe PHAEO03. Hybridization and amplification was done 

on glass slides using 50 ml tubes or in Petri dishes using 700 ml glass chambers as 

moisture chambers at 46°C. We used 14 horseradish peroxidase (HRP) labeled 

oligonucleotide probes (TAB. 1) including the probe NON338 (39) as a control. All other 

probes were chosen according to 454 tag sequencing results. For signal amplification, 
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Alexa488 labeled tyramides (40) were used for all probes and samples were stained with DAPI 

after the CARD procedure.  

Fluorescence signals were counted manually on an Eclipse 50i microscope (Nikon, Amstelveen, 

Netherland), at 1000x magnification in 50 fields of view (FOV) per sample of duplicates. Since 

the wind mixed layer (WML) was 60 – 80 m deep during the experiment, results from 20 m and 

40 m depth were treated as replicates. Quantification of cell numbers after CARD FISH was done 

with a Zeiss Axio Imager.Z2 microscope (Zeiss, Jena, Germany) with an automated stage. Image 

acquisition was done using the software package AxioVision Release 7.6 (Zeiss, Jena, Germany) 

and the macro MPISYS (Zeder unpublished) based on an automated focusing routine, sample 

area definition and image quality assessment (41–43). Only samples with a minimum of 15 

picture pairs were taken into account and evaluated using the software ACMEtool 0.76 (Zeder 

unpublished) with an algorithm for nanoflagellate quantification. We used a combination of 

natural fluorescence of the cells, autofluorescence of cell pigments and probe signals which 

appeared to be clearly visible on pictures. DAPI signals were sometimes covered by strong 

autofluorescence, making a counting of the signals difficult. In addition, not all cells are 

autofluorescent or stained by the probe EUK516, thus making both signals insufficient for total 

cell counting. Therefore, we used the combination of all three signals to determine cells for total 

cell counts. Results from both depths were pooled and total cell numbers were calculated as a 

mean value of a minimum of 13 samples. 

Probe design and re-evaluation

We designed two new probes for the subclades I and II of the Syndiniales clade (TAB. 1) using 

the ARB SILVA ref 108 database (44). We used 20% formamide for hybridization with both 
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probes. SYNI 1161 targets 71% of the Syndiniales group I sequences, with 151 outgroup hits 

within the dinoflagellates and 220 outgroup hits in other Eukarya. SYNII 675 targets 58% of the 

Syndiniales group II with 28 outgroup hits within the dinoflagellates and 347 in other Eukarya

(SUP. 2) 

The probe PRAS04 (15) was designed for Prasinophyceae. Since the clade was recently found to 

be paraphyletic and thus phylogenetically reviewed, we evaluated the probe PRAS04 and found a 

coverage of 95% for the class Mamiellophyceae (45) with only one outgroup hit in the 

Dinophyceae and one in the Chrysophyceae. Thus, we propose to use the probe only for 

Mamiellophyceae.

Statistics

The total cell numbers achieved by flow cytometry and automated counting of CARD FISH cells 

were compared using linear regressions. CARD FISH data were tested on normal distribution of 

the data using the Kolmogorov-Smirnov test and analyses of variance (ANOVA) were done 

accordingly. Normal distributed data were tested using one way ANOVAs including Holm-Sidak 

comparison and not-normal distributed data were tested using ANOVA on ranks. Differences 

between the IN and OUT stations were verified using t-tests. All analyses were done using 

SigmaStat 3.5 (Statcon, Witzenhausen, Germany).  
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Results225 
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Nano- and picoplankton cell numbers 

During LOHAFEX, the nano- and picoplankton cells were enumerated on freshly fixed 

samples inside and outside the fertilized patch by flow cytometry on board. Inside the 

patch nano- and picoplankton abundances increased significantly (p<0.001) from 7.5 x 

103 cells ml-1 on day 5 to 1.9 x 104 cells ml-1 on day 22 (FIG. 2 A). Outside the fertilized 

patch cell numbers were rather stable (1.0 x 104 ± 1.2 x 103 cells ml-1) but showed two 

maxima on day 29 (1.8 x 104 cells ml-1) and day 38 (1.7 x 104 cells ml-1) (FIG. 2 A).  

Cell counts obtained with automated cell counting after CARD FISH of Lugol- and 

formaldehyde fixed samples were by a factor of ~2 (1.2- 3.1) lower compared to the flow 

cytometric direct counts. Similar to the flow cytometric counts, abundances peaked on 

day 22 with 9.3 x 103 cells ml-1 (p<0.001), but otherwise cell numbers remained rather 

constant at 6.1 ± 1.3 x 103 cells ml-1 (FIG. 2 B).  
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Community composition 

The eukaryotic diversity in the 0.2 to 5 μm fraction was assessed in the eddy one day 

before the start of the experiment, during the experiment on days 9 and 18 inside the 

fertilized patch, and at day 16 outside the fertilized patch using tag pyrosequencing (FIG 

3). The Shannon diversity index increased from 3.49 at day -1 to 3.93 at day 18 inside the 

patch and to 3.86 outside the patch (TAB 2). The chao1 index showed an increase from 

633 (day -1) to 879 (day 9) and 803 (day 18), but showed numbers as high as 899 at the 

OUT station on day 16 (TAB 2). 
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Although, the diversity increased over the course of the experiment, all four samples were 

similar in the major group composition (FIG 3). The most frequent tags in all samples 

originated from Syndiniales (~26-33%), followed by Chlorophyta (24-29%) and 

Haptophyceae (~21-28%). Some of the 21 abundant phylotypes (>1% of all sequences) 

showed some fluctuations in sequence abundance over the course of the experiment (FIG 

3). The most abundant genus was Phaeocystis (Haptophyta) accounting for ~14% (day 18) 

to ~23% (day -1) of all sequences (FIG 3). This phylotype showed a slight decrease 

inside the fertilized patch. Among the Mamiellophyceae, a class within the Chlorophyta, 

two different phylotypes affiliated to the genus Micromonas were most dominant (17.3-

18.5%) inside the patch. Within this genus we observed a shift from Micromonas 

phylotype A to Micromonas phylotype B inside the patch, while both phylotypes 

decreased in the OUT station (FIG 3). A phylotype of the Monomastix genus (8.5%) was 

dominating the Mamiellophyceae outside the fertilized patch. Only the Pelagophyceae 

showed a distinct decrease in sequence abundance from 5.8% at day -1 to 2.0% at day 18 

inside the patch. The two abundant phylotypes within the Pelagophyceae were found in 

highest abundance at the OUT station on day 16, with ~5% (Pelagomonas sp.) and ~3% 

(uncultured Pelagophyceae) of total sequences (FIG 3). Inside the fertilized patch both 

were found only in low sequence abundances (~1-2% of total sequences). Only two 

abundant phylotypes belonging to MAST (Stramenopila) were found, each with the 

highest sequence abundance of ~1.2% at day 18 (FIG 3). Syndiniales were present with 

seven different abundant unclassified phylotypes which were labeled arbitrarily with 

letters from A to G (SUP 2). The phylotype Syndiniales A (Dino-group II) was by far the 

most abundant one in all samples with a sequence abundance of ~11-15%, while other 
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Syndiniales phylotypes showed sequence abundances of ~1-3.5% or were absent in some 

samples (FIG 3).  
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Quantification of specific nano- and picoplankton clades 

For eight of the dominant clades in tag pyrosequencing, specific probes were used to 

quantify their in situ abundance by CARD FISH. The EUK516 probe, specific for most 

Eukarya (39), showed abundances which were about 1.8-fold lower than the total cell 

numbers (FIG. 4). The numbers of EUK516 stained cells were highest at day -1 with 5.8 

x 103 cells ml-1, decreasing to 1.9 x 103 cells ml-1 on day 9, before a second peak of 4.7 x 

103 cells ml-1and 4.8 x 103 cells ml-1 on days 22 and 24 inside the fertilized patch (FIG. 4 

A). EUK-positive cell numbers were relatively constant outside the patch, but were as 

high as 7.0 x 103 cells ml-1 on day 38, which was significantly different from the 

comparable IN station on day 36 (p=0.045)  (FIG. 4 B).  

In order to investigate the nano- and picoplankton community, we used CARD FISH 

probes with a nested specificity with different taxonomic depths. The sum of the counts 

with these nested probes covered the counts of the EUK516 probe in most of the samples 

analyzed (FIG. 4A, 4B). Within the nano- and picoplankton community inside the 

fertilized patch, Haptophyta, mainly from the genus Phaeocystis were contributors to the 

nano- and picoplankton community. However, abundances of both clades did not change 

significantly within the fertilized patch over the course of the experiment (FIG. 5 A + B). 

Values were constant at about 1.0 x 103 cells ml-1 for Haptophyta and 5.0 x 102 cells ml-1 

for Phaeocystis, thus Phaeocystis accounted for about 50% of the Haptophyta. At the 

OUT station on day 16, higher numbers of Phaeocystis were found with 1.1 x 103 cells 
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ml-1 , resulting also in significantly higher numbers of Haptophyta (1.5 x 103 cells ml-1) 

(p=0.01). Mamiellophyceae, a second dominant clade in the tag sequences, showed a 

higher variation in cell numbers inside the fertilized patch, while cell numbers in the 

OUT stations remained rather constant. After a rather dramatic initial decrease from 3.2 x 

103 cells ml-1 to 5.9 x 102 cells ml-1 on day 9 inside the patch, cells increased again to 1.8 

x 103 cells ml-1 on day 22. This abundance of Mamiellophyceae was significantly (p=0.03) 

higher compared to the OUT station on day 29 (FIG. 5 C). The dominant subgroup of 

Mamiellophyceae, namely Micromonas, mimicked these patterns, showing a decrease in 

cell numbers from 1.3 x 103 cells ml-1 on day -1 to numbers around 4.4 x 102 cells ml-1 on 

day 9. Again elevated numbers were found on day 22, which were as high as 1.2 x 103 

cells ml-1 and thus significantly (p=0.028) higher than the following OUT station at day 

29. On average Micromonas accounted for ~72% of the Mamiellophyceae (FIG. 5 D). 

Pelagophyceae were also found rather stable in- and outside of the patch with a pattern 

similar to the Mamiellophyceae (FIG 5 E). Elevated numbers as high as 7.2 x 102 cells 

ml-1 and 7.6 x 102 cells ml-1 were found on days -1 and 22, respectively. No significant 

differences to the OUT stations were found for this clade. Abundances of Marine 

Stramenopiles (MAST) were low and never exceeded 1.7 x 102 cells ml-1 during the 

course of the experiment (FIG 5 F). Also the numbers of both Syndiniales clades were 

low and oscillated around 7.7 x 101 cells ml-1  (Syndiniales clade I) and  around 1.8 x 102 

cells ml-1 (Syndiniales clade II) within and outside of the fertilized patch (FIG. 5 G + H). 

For both Syndiniales clades no cells could be detected on day 29. 
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During the 38 days of the LOHAFEX experiment a phytoplankton bloom was induced 

and the chlorophyll a concentration inside the fertilized patch more than doubled (27). On 

board analyses already indicated that diatoms were limited by silicate (<2 μM) and thus 

showed only a moderate response to iron addition. The major biomass of the bloom was 

constituted by the pico- and nanoflagellate community (8). The high abundance of nano- 

and picoplankton was postulated to exert grazing pressure on the bacterial and archaeal 

community (27). Consequently, we investigated the nano- and picoplankton community 

using a combination of flow cytometry, tag pyrosequencing, CARD FISH and automated 

cell counting. It turned out that the methods used had some technical challenges.  

Shipboard flow cytometry revealed consistently higher cell numbers compared to 

automated microscopic cell counting. An overestimation of cell counts by flow cytometry 

was previously reported (46) and might originate from autofluorescent detritus as well as 

from the detection of large bacterial cells such as Roseobacter or Gammaproteobacteria. 

Both bacterial groups were abundant during the LOHAFEX experiment (27). In turn, 

fixation could lead to an underestimation of total cell counts due to cell shrinkage and cell 

disruption caused by the fixative (47). Formaldehyde fixation was used for flow 

cytometric analyses, while for automated cell counting and CARD FISH cell were first 

fixed with Lugol solution and subsequently with formaldehyde. Possibly the long-term 

storage the samples of >3 years might have caused cell loss which led to approximately 

50% lower microscopic cell counts compared to flow cytometric counts. Another source 

of cell loss might be the filtration and washing steps necessary for CARD FISH. Small 
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picoplankton cells might have passed the polycarbonate filter pores (48, 49) or might 

have been lost in washing steps during CARD FISH.  However, we were able to 

successfully apply CARD FISH and automated cell counting on Lugol fixed samples 

even after the prolonged storage time.  

With the probe EUK516, targeting Eukarya, about 50-70% of all nano- and pico 

eukaryotic cells showed a signal in our samples after CARD FISH. The sum of cells 

detected by all clade-specific probes was almost as high as the counts of the EUK516 

probe (~90%) and resembled largely the representation of dominant clades found with tag 

pyrosequencing. 

The high representation of Phaeocystis sequences in the tag libraries somehow conflicted 

with low CARD FISH numbers. This is surprising, because observations by microscopy 

identified Phaeocystis responsible for the main increase in chlorophyll a values (8). Most 

likely fluorescence in situ hybridization signals have been quenched by the strong 

autofluorescence of the Phaeocystis chloroplasts resulting in false-negative cells (50). 

Alternatively organic scales, found in Scanning Electron Microscopy (SEM) pictures of 

solitary Phaeocystis cells from the LOHAFEX experiment (8), might have hindered the 

penetration of the probe into the cell. Thus, cell counts might be underestimated for 

Phaeocystis. Also for Syndiniales the fraction of tag sequences largely deviate from the 

relative abundance of cells detected as Syndiniales by CARD FISH. A possible 

explanation might be that members of the Syndiniales group have been described as 

parasites (51, 52). Cells residing inside dinoflagellates might be inaccessible for large 

HRP-labeled oligonucleotide probes. Furthermore, the detection of the newly designed 

probes SYNI 1161 and SYNII 675 might remain insufficient for the detection of all cells 
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of this group, since no Syndiniales culture was available and probe testing had to be done 

directly on the samples. Besides technical challenges,  Syndiniales might have multiple 

chromosome copies, as it is known for the neighboring group of Dinoflagellata (53). 

Thus, the number of 18S rRNA gene copies might be elevated, resulting in high 

abundances in the tag sequences.  
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For the different MAST clades we used specific oligonucleotide probes and found a 

rather stable community structure. However, all clades were found in rather low numbers 

compared to the reported >1.0 x 102 MAST 1 cells ml-1 in the Southern Ocean (14).  

In several clades an initial decrease in abundance was followed by a peak on day 22 

inside the fertilized patch. This pattern was especially pronounced for the 

Mamiellophyceae in general and for the clades Micromonas and Pelagophyceae in 

particular. A possible explanation for the initial massive decrease in cell numbers might 

be an active grazer community, which developed during a bloom prior to the experiment 

and which immediately counteracted the response of the nano- and picoplankton 

community to the iron fertilization. The subsequent increase of these clades towards day 

22 might be caused by the second iron fertilization on day 18. Ultimately nano- and  

picoplankton could benefit from elevated iron concentrations and started to out-compete 

their grazers and to increase in cell numbers (54). Another reason might be a release of 

grazing pressure on the nano- and picoplankton community by increased copepod 

numbers, which kept the dinoflagellate and ciliate grazer community under control. 

Interestingly, highest numbers in the bacterial and archaeal community were found on 

day 18 and thus could support growth of the hetero- and mixotroph nano- and 

picoplankton (27). heterotrophic pico-eukaryotes like MAST (14) or mixotrophic 
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Micromonas are known to feed on bacteria (55) and might profit from higher prey 

numbers.  The second cell decline after the maximum on day 22 could be the result of a 

reinforced grazing pressure on nano- and picoplankton by predators, which grew on the 

increased nano- and picoplankton numbers. 
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Our results show that tag pyrosequencing and CARD FISH are suitable tools to open the 

“black box” of the small marine Eukarya. While tag pyrosequencing provides valuable 

information about the diversity and community structure, it also provides guidance for the 

selection of oligonucleotide probes for CARD FISH quantifications. These enumerations 

have a profound taxonomic resolution compared to light microscopy and pigment 

analyses, and allow for faster sample analyses than electron microscopy. In addition, we 

were able to show that samples fixed with Lugol solution for light microscopy can be 

used for CARD FISH analyses even after long storage times. Still not all nano- and 

picoplankton clades can be covered, showing the urgent need of further sequencing and 

probe design, in order to fully investigate these important mediators between the world of 

Bacteria and Archaea and the world of the microzooplankton. 
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TAB 1: List of oligonucleotides used in this study. a Formamide concentration in the 

CARD FISH hybridization buffer. 

 

TAB 2: List of diversity indices calculated from the tag sequences. 

 

Figures 

FIG 1: Map of the fertilized area. The chlorophyll a picture shows the LOHAFEX bloom 

(encircled). Stations and experiment days of both the IN (black) and OUT stations (white) 

are shown in the small map. The X marks day -1 before the experiment. The globe and 

the inset map were generated with the M_Map package for Matlab (version 7.12.0.635; 

MathWorks, Natick, MA). The chlorophyll a data were downloaded from the NASA 

website http://oceancolor.gsfc.nasa.gov/. 609 

610 
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613 

614 

615 

616 

617 

618 

 

FIG 2: Total cell counts of all stations inside the fertilized patch achieved by using flow 

cytometric (FCM) counting and automated microscopic counting after CARD FISH 

staining. Black spheres with straight lines represent stations inside while white spheres 

with dashed lines represent stations outside the fertilized patch. 

 

FIG 3: Relative 18S rRNA gene amplicon frequency revealed by tag pyrosequencing at 

20 m depth. 
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621 
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623 

624 

625 

FIG 4: Total cell numbers of cells stained with the EUK516 probe of the IN (black, A) 

and OUT (white, B) stations. Bar charts represent the coverage of the EUK516 probe by 

all other probes used in this study. 

 

FIG 5: Total cell numbers of different groups counted using CARD FISH for the IN 

(black spheres, straight lines) and OUT (white spheres, dashed lines) stations. Please note 

different scales.  
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Abstract

Within marine carbon cycling, the biological carbon pump plays a pivotal role in the 

sequestration of carbon into the deep sea. The vehicle of carbon transport are aggregates, 

which are colonized and degraded by bacteria, thus counteracting carbon sequestration. 

Here we report data obtained with novel techniques for the investigation of the bacterial 

community on marine snow aggregates and transparent exopolymeric particle (TEP) 

structures. Free drifting sediment traps were used for the in situ sampling of aggregates 

and roller tank incubations for the sampling of TEP structures in the Canary Current 

Upwelling System off Cape Blanc (Mauretania). Three dimensional fluorescence in situ 

hybridization was used to compare the different bacterial communities associated with 

the in situ collected marine snow and roller tank derived TEP structures. The microbial 

communities within these aggregates were dominated by cyanobacteria of the genus 

Synechococcus at both depths. A significant decrease in abundance with increasing depth 

was found for likewise dominating Bacteroidetes and Alteromonas spp.. Roller tank 

derived TEP structures were dominated by Alteromonas, both from incubation with 

water collected at 65 and 400 m. Our study suggests that the bacterial communities within 

aggregates are determined during their formation in the surface ocean. Therefore, we 

hypothesize, that changes in the bacterial community associated with marine snow as 

they sink are due to changes mainly in the nutrient composition of the aggregate and the 

resulting succession of ecological niches, but also grazing pressure on the bacterial 

community, in combination with sinking temperature and increasing pressure. 

Key words : Alteromonas/ Bacteroidetes/ 3D FISH/ TEP/ microbial loop
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The Eastern Boundary Upwelling Systems (EBUS) account for ~10% of the global 

primary production and are characterized by high organic carbon export (Chavez & 

Messié 2009). The Canary Current System and the area off Cape Blanc (NW Africa) is 

the second most productive of the EBUS (Behrenfeld & Falkowski 1997; Chavez & 

Messié 2009). Here the upwelling of North and South Atlantic Central Water transports 

nutrients to the surface layer and thus supports the formation of large phytoplankton 

blooms throughout the year (Arístegui et al. 2009). During these blooms, carbon dioxide 

is fixed by phytoplankton via photosynthesis. Part of the resulting biomass from the 

bloom may eventually form sinking organic aggregates and be transported from the 

surface ocean to the deep ocean and the sea floor where it is sequestrated, a process called 

the biological carbon pump (Volk & Hoffert 1985; Ducklow et al. 2001). The majority of 

the material exported out of the photic zone is in the form of macro-aggregates > 500 μm 

in size, called marine snow, and zooplankton fecal pellets (e.g. Simon et al. 2002). 

Settling marine aggregates harbor diverse microbial communities which play an 

important role in the degradation of the organic compounds and release of dissolved 

nutrients into the water column (Urban-Rich 1999; Simon et al. 2002). This microbial 

aggregate degradation counteracts the biological carbon pump. Insights into the diversity 

and functioning of the bacterial and archaeal community within marine aggregates are 

therefore pivotal to our understanding of the carbon cycling in the ocean. Previous studies 

found a dominance of bacteria within aggregates of limnic, riverine and marine origin. 

Their abundance generally ranges from <1 x 102 to >1 x 109 cells per aggregate (Simon et 

al. 2002; Alldredge & Gotschalk 1990), often dominated by Gammaproteobacteria and 
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members of the Bacteroidetes phylum (DeLong et al. 1993; Moeseneder et al. 2001; Rath 

et al. 1998; Acinas et al. 1999).  
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Still, little is known about bacterial community composition and distribution within 

marine snow and how these communities might change as the aggregates descent through 

the water column. Previous investigations observed different clustering of free-living 

bacteria compared to those associated with sinking aggregates through the water column 

(Moeseneder et al. 2001), suggesting that attached bacteria create their own 

microenvironments independent from the trophic situation in the surrounding water. 

Further, the authors observed a decline in the diversity of the attached bacterial 

community within aggregates at depth, indicating that the metabolic activity of attached 

bacteria lead to more refractory particles. Using increasing pressure to simulate particle 

sinking to the deep ocean, Tamburini et al. (Tamburini et al. 2009)  and Grossart and 

Gust (Grossart & Gust 2009) observed different bacterial communities within aggregates 

exposed to high pressure, compared to incubation at atmospheric pressure. Further, the 

microbial activity of aggregate-associated bacteria has been shown to decrease when 

using either only pressure (Tamburini et al. 2006, 2009) or only temperature (Iversen & 

Ploug 2013) to simulate aggregate sinking to the deep ocean. However, due to difficulties 

of sampling of intact marine snow at depths below the reach of scuba divers, no studies 

have directly investigated the composition of bacterial communities within these 

aggregates. Without such investigations, it is not possible to conclude whether the 

decreasing decomposition of sinking aggregates with increasing depth is due to changes 

in the attached microbial community or lower metabolic activity of a non-changing 

community. 
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 Investigations of microbial communities on aggregates are challenging, due to the three 

dimensional structure of the aggregate. Overlapping signals, especially after CARD FISH 

staining, in a 3D object and interference of autofluorescent organic material may lead to 

underestimation of abundances when using manual cell counting. Therefore, we used 

catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) in a three 

dimensional approach and confocal laser scanning microscopy (CLSM) in combination 

with biovolume calculations, as frequently used for eukaryotic cell structures or 

symbiotic bacteria in host tissue (e.g. Solovei et al. 2002; Halary et al. 2008). Here we 

report the investigation of the bacterial community within in situ sampled marine snow 

aggregates and re-assembled TEP structures from two different depths. 
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Sampling

Samples were taken during two cruises in the area off Cape Blanc (Mauretania). 

Sampling for in situ investigation of bacterial communities within aggregates and free 

living were performed during the RV Maria S. Merian cruise 18-1 (MSM18-1). The free-

living communities were investigated in water samples collected at 150 m and 400 m 

depth on 1st of May 2011 at station GeoB15704 (20° 35 N; 18° 03 W) using a Rosette 

water sampler equipped with a Seabird CTD (FIG 1). At each depth, samples were fixed 

with formaldehyde (1% final concentration) for 1 to 3 h at room temperature. Thereafter, 

the samples were fractionated into three size classes; larger than 10 μm, between 10 and 3 

μm, and between 3 and 0.22 μm by filtering onto polycarbonate filters (Millipore, 

Billerica, USA) at low vacuum. This was done in triplicates for each size fraction at each 

depth and subsequently the samples were frozen at -20 °C until further analysis. 

The collection of in situ formed marine snow were performed with a single free-drifting 

sediment trap equipped with two trap cylinder containing a trap insert filled with ~200 

mL viscous gel (Tissue-Tek O.C.T. Compound Cryogel, Sakura Finetek, Alphen aan den 

Rijn, The Netherlands) (SUP 1). The viscous gel enabled preservation of the fragile 

aggregate structures after their collection in the trap cylinders, which were deployed in 

pairs at each collection depth; 100 and 400 m. The sediment trap was deployed on the 

30th of April 2011 at position (20°45 N; 18°44 W) and drifted southeast to position 

(20°38 N; 18°43 W), where it was recovered after 3 days (FIG 1). Before deployment, we 

filled the two trap cylinders at each depth with GF/F filtered sea water in a three layer 

density gradient created by addition of sea salt; a top layer with an ambient salinity of 34, 
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a middle layer with a salinity of 38, and a bottom layer with a salinity of 42. By adding 

formaldehyde to a 1% final concentration to the middle layer we were able to fix the 

bacterial communities within the aggregates while they settled through the trap cylinder 

and to wash the fixed aggregates in the bottom layer, before they were collected in the 

viscous gel in the trap insert (SUP 1). Upon trap recovery, the overlying water was 

siphoned out and the gel containing trap inserts carefully removed and frozen at -20 °C 

until further processing.  

During the RV Poseidon cruise 396 (POS396) samples were collected from 65 m and 400 

m to investigate bacterial communities within aggregates formed from roller tank 

incubations and to investigate the free-living bacterial communities. These samples were 

collected with a Rosette sampler equipped with a Seabird CTD on the 2nd of March, 2010, 

at station GeoB14204 (20° 60 N; 19° 10W) (FIG 1). The samples for investigations of the 

free-living bacterial and archaeal communities were processed as described above. To 

form aggregates, we incubated water from each depth in five 1.2 l roller tanks rotated at 2 

rpm for 18-24 hours. After incubation, we collected the formed aggregates from each 

roller tank. These aggregates mainly consisted of mucous structures with detritus and 

phytoplankton cells attached in rather low concentrations (not quantified, FIG 6). Since 

the aggregates were neither appendicularian houses nor typical phytoplankton-derived 

aggregates, we will refer to these aggregates as TEP structure, though we did not have 

Alcian Blue onboard to do staining for TEP. After collection, the TEP structures were 

fixed in formaldehyde (1% final concentration) for 2 h at room temperature. Before 

filtering the TEP structures onto 0.22 μm pore size polycarbonate filters (Millipore, 
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Billerica, USA), they were broken apart by vortexing. Each filter was washed with 

distilled water before the filters were stored at -20°C until further analysis. 

 

Aggregate isolation, filtration, and volume determination 

Preparation of the in situ aggregates for the investigation for CARD FISH analyses 

included the determination of the aggregate size. Thus, blocks of ~1.5 cm2 size were cut 

from the frozen gel and thawn in small petri dishes. Pictures of aggregates were taken 

using a Canon EOS 550D digital camera equipped with a Sigma 105mm marco zoom 

objective. The pixel area of each aggregate was determined using the software ImageJ 

and converted to mm2 using a stage micrometer to determine the length of 1 pixel. The 

equivalent circular diameter of each aggregate was calculated from the area. Calculations 

of the total aggregate volumes were done using the equivalent circular diameter 

determined from the pictures assuming a spherical shape of the aggregate. Aggregates 

were subsequently isolated washed in PBS overnight and filtered on 0.22 μm pore size 

polycarbonate filters (Millipore, Billerica, USA) and used for CARD FISH analyses. 

TCCs per aggregate were calculated using the TCC of EUB I-III and total aggregate 

volume. 

 

Fluorescence in situ hybridization (FISH) and catalyzed reporter deposition (CARD) 

FISH

Quantification of the initial free living bacterial and archaeal community and the changes 

in the bacterial and archaeal community during the roller tank incubations was done using 

CARD FISH specific for various clades on samples from all depths using specific 
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oligonucleotide probes according to Pernthaler et al. (Pernthaler et al. 2002), modified 

after Thiele et al. (Thiele et al. 2011) (TAB.1). The hybridization was done using a probe 

to hybridization buffer mix of 1:100 on glass slides for 2 h. Amplification was done, 

using a 5-(and 6-)-carboxyfluorescein or Alexa488 labelled tyramide to amplification 

buffer mix of 1:100, on glass slides for 45 minutes. All filters were DAPI stained and 

counted manually (POS396 cruise) with min. 1000 DAPI signals, using an 

epifluorescence microscope (Zeiss Axioplan II, Carl Zeiss AG, Jena, Germany). CARD 

FISH on samples from the MSM18-1 cruise were done as described above, but 

quantification of cell numbers after CARD FISH was done with a Zeiss Axio Imager.Z2 

microscope (Carl Zeiss AG, Jena, Germany) with an automated stage. Image acquisition 

was done using the software package AxioVision Release 7.6 (Carl Zeiss AG, Jena, 

Germany) and the macro MPISYS (Zeder unpublished). Only samples with a minimum 

of 15 picture pairs were taken into account and evaluated using the software ACMEtool 

0.76 (Zeder unpublished). 

Analyses of the bacterial communities within marine snow collected during the trap 

deployment were done using CARD FISH as described for the free-living bacteria. Filters 

containing individual aggregates were cut in half or quarters and used for CARD FISH. 

Half of each filter was used for hybridized with different specific probes, while one 

quarter of the remaining filter was hybridized with the EUB I-III probe mix (TAB. 1). 

Three different aggregates were used for every probe and compared to the corresponding 

EUB I-III count from a filter-quarter. 

Analyses of the bacterial community in association with the TEP structures were done on 

3 TEP structures from each depth. Duplicates from each filter were analyzed with FISH 
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(Amann et al. 1995) using mono labelled oligonucleotide probes (TAB 1). EUB I-III was 

combined with one specific probe for double hybridization. We used 4-times click 

labelled EUB I-III probes in a later phase of the experiment (TAB 1).  

 

Confocal Laser Scanning Microscopy (CLSM) 

Individual in situ collected marine snow was analysed using a confocal laser scanning 

microscope (Zeiss LSM 780, Carl Zeiss AG, Jena, Germany) including the software 

ZEN2011 (Carl Zeiss AG, Jena, Germany). Two aggregate pieces per triplicate of the 

probe and analysed filter piece were scanned using single scans of ~30-40 sec. per focal 

plane. This resulted in a total of 6 z-stacks which were used to determined biovolume of 

the specific bacterial clade hybridized with CARD FISH. In addition to the probe channel, 

one channel with a broad detection range was scanned for volume calculations of the 

aggregate fragment. 

Z-stacks of the TEP structures were made using a confocal laser scanning microscope 

(Zeiss LSM 510, Carl Zeiss AG, Jena, Germany) including the software Zeiss LSM 510 

version 3.2 SP2 (Carl Zeiss AG, Jena, Germany). We used summed analyzes of 4 scans 

and scanning times of ~10 sec. per focal plane. A minimum of two TEP structures were 

analyzed per filter. TEP structures including high concentrations of phytoplankton had to 

be avoided due to high autofluorescence signal which resulted in overestimations of the 

total bacterial biovolume calculations. 

 

Specific biovolume calculation 
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To achieve biovolumes from the z-stacks, we used ImageJ (Image processing and 

analysis in Java; National Institute of Health, Bethesda, USA) and PHLIP (Phobia laser 

scanning microscopy image processor v4.0.; (Mueller et al. 2006) in Matlab R2010b (The 

Mathworks Inc, Natick, USA). In ImageJ we used a mean filter with a radius of 2 pixels 

for the TEP structure images. For the in situ collected marine snow, no post processing of 

the confocal laser scanning microscope images were needed. These were analyzed in 

PHLIP using manual threshold settings according to sample we obtained bacterial 

biovolumes for each channel of the z-stacks. 

 

Biovolume measurements and total bacterial cell count calculation 

To calculate the total cell counts per sample for each probe of the marine snow, we 

measured the average biovolume of single CARD FISH stained bacteria cells using the 

YABBA software (Zeder et al. 2011). TCC were calculated by dividing the average 

bacterial biovolume with the total bacterial biovolume and normalized to analyzed 

aggregate volume for each sample. The TCC of EUB I-III was compared to the TCC of 

specific probes to estimate the relative abundance of each specific probe in relation to 

total EUB I-III counts. The normalization of cell numbers to relative abundance was 

necessary due to the high fluctuations in the total cell counts between the different 

aggregates. Comparisons between different depths were done using t-tests in SigmaStat 

3.5 (Statcon, Witzenhausen, Germany). 

In order to achieve the cell volume of single cells from the TEP structures, we measured 

the length and width of 10 randomly chosen cell per probe with the program Axiovision 

4.8.2. (Carl Zeiss AG, Jena, Germany) and calculated their volume using as V = 4 r²/3 + 
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r² (l-2r) for cylinders with hemispheric ends (Blackburn et al. 1998). The resulting 

average cell volume was used to calculate the number of bacterial cells per probe from 

the total bacterial volume of the probe. This was done, since the cells densities were too 

high  for reliable determinations of single bacterial cells using the YABBA software 

(Zeder et al. 2011).  

 

Statistics 

Data were tested for normal distribution with the Kolmogorov-Smirnov test. Normal 

distributed CARD FISH data for the free-living community was tested for significant 

differences using one-way ANOVA and non-normal distributed data were tested for 

significant differences using ANOVA on ranks. Significant differences in abundances at 

different depths were tested with Students t-tests. Student’s t-test was also used to test for 

significant differences between TCC at different depth. Significant differences in total 

bacterial cell numbers for different probes were tested with Students t-tests and in case of 

non-normal distribution with Spearman rank correlations. All statistical analyses were 

performed with SigmaStat 3.5 (Statcon, Witzenhausen, Germany). 
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Bacterial abundances on aggregates 

We observed a tendency for higher total bacterial abundance (median EUB I-III counts) 

within in situ collected marine snow at 400 m compared to those at 100 m, though not at 

significant levels; 7.5 x 107 ± 3.6 x 108 cells mm-3 (n=39) at 400 m depth and 5.0 x 107 ± 

1.5 x 108 cells mm-3 at 100 m (n=38) (Fig. 2A). The bacterial concentrations within 

marine snow were about five orders of magnitudes higher compared to those in the 

surrounding water at both depths (FIG 2 B). No differences were observed in the median 

bacterial abundance per aggregate:  8.1 x 106 ± 2.9 x 107 cells agg-1 (n=38) at 100 m and 

9.9 x 106 ± 8.5 x 107 cells agg-1 (n=39) at 400 m (FIG 2C). 

Synechococcus was dominant within in situ collected marine snow at both depths and 

showed no significant differences in relative abundance at the two depths; 40 % ± 12% at 

100 m and 49% ± 37% at 400 m (FIG 3 A; FIG 4 A+B). There were significantly lower 

relative abundances of Synechococcus in surrounding waters, where only 2% ± 1.3% and 

5% ± 1.3% were found at 100 m and 400 m, respectively (FIG 3 B). Bacteroidetes 

abundances were relatively constant with 3% ± 0.6% at 150 m and 4% ± 0.2% at 400 m 

in the free living fraction (FIG 3 B). In contrast, Bacteroidetes abundances on aggregates 

were significantly higher on the marine snow aggregates than in the free living fraction, 

still the relative abundance was lower at 400 m compared to 100 m, with 7% ± 3.3% at 

400 m and 42% ± 28% at 100 m. Bacteroidetes were by far the most abundant 

heterotrophic bacteria at 100 m (FIG 3 A; FIG 4 C+D). Within marine snow, 

Gammaproteobacteria showed slightly lower abundances at 400 m compared to 100 m 

(from 11% ± 4% and 14% ± 10%, respectively). These values were still significantly 
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higher than in the free living fraction with ~3% at both 100 m and 400 m, respectively 

(FIG 3 B). Within the Gammaproteobacteria, Alteromonas were found in relative 

abundances of ~2% in the free living fraction at both 100 m and 400 m (FIG 3 B), but 

were strongly enriched on aggregates. With a relative abundance of 18% ± 10% at 100 m 

depth they accounted for all Gammaproteobacteria, whereas at 400 m depth they 

accounted only for <1% of the aggregate attached bacteria, a significant decrease 

(p=0.022) (FIG 3 A+B; FIG 4 E+F). Pseudoalteromonas showed stable relative 

abundance at ~2% in the free living fraction and ~4% within marine snow at both depths 

(FIG 3 A). Roseobacter had relative abundances of ~1% both at 150 m and 400 m depth. 

Within marine snow they had relative abundances of 10% ± 12% at 100 m and 8% ± 10% 

at 400 m (FIG 3 A+B). Although, Planctomycetes were low in abundance, a significant 

(p=0.02) decrease from 2.5% to <1% was found with depth on the marine snow 

aggregates (FIG 3 A), while the free living fraction was relatively stable at ~1.5% (FIG 3 

B). Thaumarchaeota, Euryarchaea Marine Group II, Prochlorococcus and the SAR324 

clade did not account for significant fractions on the aggregates and were no investigated 

in the free living fraction (TAB 1). 

 

Bacterial abundances on TEP structures 

TEP structures formed in roller tanks from water sampled at 65 m and 400 m depth had 

total cell numbers that were not significantly different between both depths and ranged 

from 6.3 ± 3.5 x 107 cells ml-1 (n=10) at 65 m to 5.2 ± 6.2 x 107 cells ml-1 (n=20) at 400 

m depth (FIG 2 D). However, cell numbers were higher on TEP structures than in the 
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surrounding water, where 4.2 ± 3.2 x 105 cells ml-1 EUB I-III stained cells were found at 

65 m and 3.2 ± 1.7 x 105 cells ml-1 at 400 m depth (FIG 2 E).  

We chose 3 bacterial groups for investigations, Alteromonas, Bacteroidetes and 

Pseudoalteromonas, based on preceding tests on previously sampled TEP structures. 

These tests showed no occurrence of SAR11 and Archaea on the aggregates and only 

very low amounts of Roseobacter and Planctomycetes. The relative abundance of 

Alteromonas was 74% ±  at 65 m depth and increased significantly (p=0.007) to 90% ± 

9% on TEP structures formed in roller tanks from water sampled at 400 m depth (FIG 5 

A). This was significantly (p<0.001) higher than in the free living fraction (<2%; FIG 5 

B). The relative abundance of Pseudoalteromonas decreased with depth, though not 

significantly, from 9% ± 11% to 4% ± 6% (FIG 5 A), and was higher than in the 

surrounding water (<1%) (FIG 5 B). Bacteroidetes were found in relative abundances of 

about 8% ± 6% at both depths (FIG 5 A). In free living fraction 22% ± 12% were found 

at 65 m and 6% ± 3% at 400 m (FIG 5 B). The coverage of the bacterial community on 

roller tank formed TEP structures by these three clades was >90%. 
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To our knowledge, no previous studies have investigated bacterial communities within 

individual phytoplankton-based macroaggregates collected in situ from depths between 

100 and 500 m. Therefore, the usage of drifting sediment traps with viscous gel filled 

collector tubes is a promising new approach to investigate the bacterial communities at 

different depths. The only previous assessments of bacterial abundances on marine 

aggregates from those depths have been done on mucous aggregates produced by the 

larvacean Bathochordaeus collected using a remotely operated vehicle (Silver et al. 1998), 

while other previous studies investigated bacterial densities within in situ collected 

marine snow from depths between 7 and 15 m (Alldredge et al. 1986; Herndl 1988) and 

observed that the particle-associated bacterial numbers were up to several hundred-folds 

higher than those in the surrounding sea water. We observed bacterial abundances within 

in situ collected marine snow, from a single deployment of a drifting sediment trap, that 

were five orders of magnitude higher compared to the surrounding sea water, at both 100 

and 400 m depths, supporting the suggestions that aggregates harbor more favourable 

nutritive conditions than those in the surrounding water (reviewed in Simon et al. 2002).  

The aggregate-associated bacterial community at 100 m was dominated by 

Synechococcus, Bacteroidetes, and Alteromonas. The community was different at 100 m 

and 400 m depth, due to a decrease in Bacteroidetes and Alteromonas, whereby 

Synechococcus was the solely dominating organism at 400 m. Synechococcus displays 

positive chemotaxis behavior toward nitrogenous compounds (Willey & Waterbury 1989). 

Both ammonia and nitrate are highly enriched within aggregates compared to the 

surrounding water (Shanks & Trent 1979), suggesting that the general high relative 
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abundances of Synechococcus on aggregates (Vanucci et al. 2001) is a result of active 

chemotactic behavior. Despite evidence of mixotrophic growth of Synechococcus 

(Zubkov et al. 2003; Zubkov & Tarran 2005) and suggestions that they can survive in 

darkness (Cottrell & Kirchman 2009), we cannot provide evidence to whether 

Synechococcus is adapted to colonization or simply trapped within sinking aggregates. 

However, the dominance of photoautotrophy in Synechococcus indicates that they are 

trapped within the rapidly sinking marine snow.   
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Bacteroidetes and Gammaproteobacteria are known to colonize marine snow (DeLong et 

al. 1993; Rath et al. 1998; Moeseneder et al. 2001) and potentially utilize various DOM 

and POM compounds within the aggregate (Cottrell & Kirchman 2000; Puddu et al. 2003; 

Bauer et al. 2006; McCarren et al. 2010; Gómez-Pereira et al. 2012). Bacteroidetes have 

been suggested to colonize marine snow by first attaching to small particles (Kirchman 

2002; Alonso et al. 2007) which eventually form marine snow (Azam & Malfatti 2007). 

We observed high abundances of Bacteroidetes at marine snow collected at 100 m. Their 

non-motile behavior suggests that they remain permanently attached to aggregates, 

possibly due to embedding in the matrix within aggregates (Kiørboe et al. 2002). This 

and previous studies observed low, if any, bacterial exchange between settling aggregates 

and the surrounding water at depth (Moeseneder et al. 2001; Eloe et al. 2011), suggesting 

that bacteria colonized the aggregates during aggregate-formation in the surface ocean 

and remained attached while the aggregates settled to depths. 

We observed a significant decrease in the relative abundance of Bacteroidetes, 

Alteromonas, and Planctomycetes at 400 m compared to 100 m. However, the total 

bacterial cell numbers within the aggregates at the two depths were still similar. This 
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shows that the microbial community within marine snow changes during aging and 

sinking, as observed previously within lake snow (Grossart & Simon 1998). The species 

composition of the microbial community within aggregates is dependent on the initially 

colonizing group and the trapped organisms during sinking, but certain groups may 

decrease with depth and the aggregates might be re-colonized by groups abundant in the 

deeper water layers. However, no evidence for re-colonization was found on the marine 

snow aggregates at 400 m depth. This might be due to the colonization of a group which 

was not covered by the applied oligonucleotide probes. 

As aggregates settle through the water column, their attached microbial communities 

becomes exposed to increasing pressure, decreasing temperature, changing organic matter 

and nutrient conditions, and potentially interactions with other colonizers (grazers and 

competitors). No studies have investigated these combined effects on the activity and 

development of microbial communities within aggregates. Investigating pressure effects 

on bacterial species composition showed increasing abundances for Roseobacter, 

Gammaproteobacteria, and Bacteroidetes at 500 m compared to 250 m (Grossart & Gust 

2009). We observed no changes in the abundances of Roseobacter and a significant 

decrease for Bacteroidetes and Alteromonas at 400 m compared to 100 m, while 

Tamburini and co-worker (Tamburini et al. 2006) found that pressure had no influence on 

the attached microbial community, but that additions of fresh diatom detritus induced 

higher total bacterial cell counts and high abundances of Bacteroidetes. Both increasing 

hydrostatic pressure (Tamburini et al. 2006) and decreased temperature (Iversen & Ploug 

2013) have resulted in decreased microbial degradation activity within organic aggregates, 

suggesting that bacteria adapted to the surface ocean have lower metabolic activity when 
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settling to depths with higher pressure and lower temperature. For lower temperature, this 

is congruent with the assumption of a 2-4 fold decrease of enzymatic activity in relation 

with a temperature decrease of 10°C, following the Arrhenius equation. Thus, changes in 

the degradation rates over depth do not necessarily correlate with changes in the 

microbial community. 

A model study showed that aggregate-attached bacterial communities are controlled by 

flagellate grazing, and that flagellate and ciliate populations were determined by 

colonization and detachment (Kiørboe et al. 2002). Alteromonas, but also members of the 

Bacteroidetes, are prone to grazing due to their large cell size (Beardsley et al. 2003; 

Pernthaler 2005; Weinbauer et al. 2007) and thus the decrease of these groups with depth 

imply, that grazing might be the most pronounced factor determining the change of the 

bacterial community during sinking. However, Synechococcus are also prone to grazing  

but do not show decreased abundances with depth (Dolan & Simek 1999; Christaki et al. 

1999; Guillou et al. 2001). Although, grazing preferences or grazer deterrence cannot be 

excluded, the results imply a rather low effect of grazing on the community structure on 

the aggregates.  

Previous studies found that both initial composition of organic matter and its lability 

varies with aggregate sinking speed and that fast-sinking aggregates were dominated by 

phytoplankton biomarkers and slow-sinking aggregates by bacterial biomarkers (Goutx et 

al. 2007). This suggests that aging during sinking of aggregates might influence the 

bacterial community. Labile carbon compounds are degraded first (Goutx et al. 2007) and 

the refractory carbon compounds remain on the aggregate and sink towards deeper layers. 

Thus, the quality of the nutrient sources changes and therefore the ecological niche 
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provided by the aggregate changes. One of the few studies investigating the influence 

from rapidly changing environments on bacterial communities found that multiple 

ecological niches were provided for a diverse range of bacterial populations in the 

shallow southeastern North Sea during periods with abundant organic matter (Teeling et 

al. 2012). 

Therefore, we hypothesize that Alteromonas and Bacteroidetes actively or passively 

detach from the aggregates due to a change in the ecological niches provided by the 

aggregate. In the vicinity of aggregates, a huge number of ectoenzymes for carbon 

degradation were found (Arnosti 2011; Azam & Malfatti 2007; Simon et al. 2002). 

Members of the Bacteroidetes may produce these carbon active enzymes, which may be 

functionally related to the attachment of cells to organic materials (Bauer et al. 2006; 

Kataeva et al. 2002). Thus, Bacteroidetes might use polysaccharide residues as 

attachment “anchors” and degrade these residues. Therefore, Sus-like proteins might be 

used in combination with TonB-like membrane transporters, which are found in several 

members of the Bacteroidetes (Martens et al. 2009). After degradation, the cells might 

glide onwards to the next chemical anchor, ensuring attachment or may passively detach 

from the aggregate. This is supported by the findings of genes for polymere degradation 

in Bacteroidetes and the resulting substrate preferences (Cottrell & Kirchman 2000; 

Bauer et al. 2006; Gómez-Pereira et al. 2012). However, we were not able to investigate 

mechanisms of attachment and detachment and thus further verification of this hypothesis 

is necessary. 

The TEP structures were dominated by Alteromonas at both depths. Opposite to the in

situ collected marine snow, the TEP structures were not exposed to decreasing 
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temperature or increasing pressure during the roller tank incubations. The incubations 

were done with relatively small amounts of natural sea water (1.2 l) from either 65 m or 

400 m which most likely excluded grazers from higher trophic levels. We therefore 

assume that the roller tank incubations excluded influence from changing temperature 

and pressure and only allowed limited grazing pressure on the bacterial communities 

attached to the TEP structures. Generally, incubation experiments show a “bottle effect” 

with increasing abundances of Alteromonas. Grazing sensitive Gammaproteobacteria 

may benefit most from the truncated food webs in laboratory incubations (Eilers et al. 

2000; Schäfer et al. 2000; Fuchs et al. 2000). To test this, we investigated the free-living 

bacterial community within a roller tank after 19 h of incubation and found 46% of total 

bacteria to be Alteromonas within the roller tank compared to <1% of the free-living 

bacterial community in the sampled sea water (data not shown).  

Similarly, other studies have found strong indications of bottle effects on the free living 

bacterial community during incubation experiments (Fuchs et al. 2000; Schäfer et al. 

2000; Heike et al. 2000). Therefore, the use of drifting sediment traps equipped with 

viscous gel provides a unique method to investigate attach bacterial communities within 

in situ collected marine snow from depth below the reach of scuba diving, eliminating the 

need for laboratory incubations. Although aggregates presented in this study were 

strongly compressed by the filtration process necessary for the FISH investigations, the 

method provides the opportunity to achieve the full three dimensional structure of the 

aggregates and future work might include a 3D reconstruction of the bacterial community 

on marine snow aggregates. 
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In summary, we showed that Synechococcus, Bacteroidetes and Alteromonas are the 

dominant groups on marine snow aggregates off Cape Blanc. The abundances of 

Bacteroidetes and Alteromonas decreased at depth, indicating that changes in temperature, 

pressure, grazing pressure, and detachment possibly triggered by the decreasing 

nutritional value of the aggregates, may lead to changes in the bacterial communities 

within marine snow. Considering these effects through the whole water column, the 

composition of sinking aggregates will change due to degradation processes and might 

show a more pronounced effect on the community composition (Azam & Malfatti 2007). 

Since aggregate-associated microorganisms are the main degraders of marine snow at 

depths (Stemmann et al. 2004; Iversen et al. 2010) and their abundances determines the 

rate of degradation (Ploug & Grossart 2000; Grossart & Ploug 2001), understanding the 

processes determining the species composition and abundances on aggregates at depth is 

pivotal for predictions of marine biogeochemical cycles. 
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TAB 1: List of oligonucleotides used in this study. a Formamide concentration of the 

hybridization buffer, b used in mix with BET42a (Manz et al. 1992) unlabeled as 

competitor, c used in a mix and partly used as 4-times click labelled probes purchased 

from Biomers (Biomers, Ulm, Germany). 

 

Figures 

 

FIG 1: Map of the sample area off Cape Blanc (Mauretania) showing all stations of the 2 

cruises used for sampling. During POS396 a depth profile was done until 1000 m depth 

and TEP structures were formed in roller tanks at station GeoB14204. During MSM 18-1 

a depth profile was done at station GeoB15704 and a drifting trap to collect aggregates 

was deployed at station GeoB15703-5 and recovered after 65 h at station 15707-1.   

 

FIG 2: Box plots showing the total numbers of EUB I-III stained cells on (A) marine 

snow aggregates sampled at 100 m (n=38) and 400 m depth (n=39), (B) the 

corresponding free living bacteria at 150 m (n=3) and 400 m (n=3), (C) the total cell 

number normalized to aggregate size at 100 m (n=38) and 400 m (n=39) depth, (D) on 

TEP structures re-assembled from waters from 65 m (n=10) and 400 m (n=20) depth, and 

(E) the corresponding free living community (n=3).  
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FIG 3: Comparison of relative abundances of the attached living bacterial community on 

marine snow aggregates at 100 m (black) and 400 m (white) depth from the drifting 

sediment trap (A)  and relative abundances in the free living bacterial community at 150 

m and 400 m depth at station GeoB15704 (B). Abundances of Synechococcus (SYN405), 

Bacteroidetes (CF319a), Roseobacter (ROS537), Gammaproteobacteria (GAM42a), 

Alteromonas (ALT1413), Psudoalteromonas (PSA184), and Planctomycetes (PLA46) 

cells are shown.  

 

FIG 4 Pictures of aggregates from 100 m (A,C,E) and 400 m (B,D,F) depth of 

Synechococcus (A+B), Bacteroidetes (C+D) and Alteromonas (E+F). DAPI stained cells 

are shown in blue, while cells stained by specific probes are green. The autofluorescence 

with DAPI exaltation shows the total aggregate (red).  

 

FIG 5: Comparison of the of the attached living bacterial community on TEP structures 

(A) and relative abundances of the corresponding free living bacteria  (B) at 65 m (black) 

and 400 m (white) depth at station GeoB14204. Abundances of Alteromonas (ALT1413), 

Psudoalteromonas (PSA184) and Bacteroidetes (CF319a) cells are shown.  

 

 

Supplementary information 

 

SUP 1: Scheme of one of the four tubes of a drifting sediment trap. Dashed lines mark 

water levels. 
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SUP 2: Workflow of marine snow analyses. 
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5. General discussion
 

This doctoral study addresses the role of microorganisms in marine carbon cycling, in particular 

in the biological carbon pump. The biological carbon pump is highly active in phytoplankton 

blooms and thus bloom situations provide optimal conditions for the investigation of processes in 

the biological carbon pump. Naturally, phytoplankton blooms occur mainly in coastal and 

temporal upwelling  areas (Gattuso et al. 1998), as well as in perennial upwelling systems 

(Arístegui et al. 2004). Artificially, they can be induced by fertilization of HNLC areas with iron 

(Martin et al. 1994).  

 

5.1. The microbial loop during the LOHAFEX experiment 

 

During the iron fertilization experiment LOHAFEX, a cold core eddy in the South Atlantic was 

fertilized and a phytoplankton bloom of 300 km2 was induced. After five days, chlorophyll a 

values increased significantly, indicating the induction of a phytoplankton bloom (Manuscript I). 

This is congruent with increased chlorophyll a concentrations in all previous iron fertilization 

experiments (deBaar et al. 2005; Peloquin et al. 2011; Smetacek et al. 2012). However, the 

increase during the LOHAFEX experiment was rather low compared to other iron fertilization 

experiments (deBaar et al. 2005). During the SOFeX North and the SAGE experiment, similarly 

low values of below 2 μg l-1 were found (Coale et al. 2004; Peloquin et al. 2011b). All three 

experiments were conducted in waters with low silicate concentrations (<3 μM), which indicates 

that silicate is another limiting factor for growth of highly productive phytoplankton blooms 

(Coale et al. 2004; Peloquin et al. 2011a).  

Silicate is an important nutrient to support the growth of diatoms, which form stable and 

productive blooms, as shown in most iron fertilization experiments (deBaar et al. 2005). The low 

silicate concentrations during the LOHAFEX experiment are most likely due to a bloom event in 

the water body, prior to the experiment. The bloom forming diatom species incorporated silicate 

in their frustules and sequestered it to POM. The resulting depletion of dissolved silica caused 

unfavourable conditions for diatoms and results in a nano- and picoplankton bloom. Such blooms 

are formed in low silicate waters (Agawin et al. 2000). Hence, the LOHAFEX bloom consisted 

mainly from Phaeocystis spp. (Manuscript II, Schulz et al. Appendix II), which do not reach the 

chlorophyll a concentrations of diatom blooms. This also implies that less POC and DOC was 
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produced and consequently bacterial activities were not as high as they might have been in 

diatom blooms. However, bacterial activities increased after iron fertilization in association with 

the increase in chlorophyll a values during the LOHAFEX experiment (Manuscript I).  

Despite the increasing bacterial activities, the bacterial community was found rather constant. 

The SAR11 clade and the SAR86 clade dominated the Alphaproteobacteria and 

Gammaproteobacteria and constituted for about 70% of the total bacterial community. Both 

clades are rather small in size and can be found in oligotrophic regions (Pernthaler et al. 2002; 

Morris et al. 2002).  

Stable bacterial communities with elevated bacterial activities could occur when nano- and 

picoplankton grazers exert strong grazing pressure. During LOHAFEX the bacterial community 

was most likely controlled by nanoflagellate grazing. Fast growing bacteria, such as 

Gammaproteobacteria, Roseobacter and Bacteroidetes, are often found to be affected strongly by 

grazing (Pernthaler 2005). This supports the hypothesis of a pre-bloom prior to the LOHAFEX 

experiment. Assuming that the waters of the eddy were in the state of an ending bloom, the 

bloom activated bacterial community should have been instantly exposed to high grazing 

pressure by nano- and picoplankton, following the law of Lotka-Volterra (Cleven and Weisse 

2001; Berryman 2002). This grazer community was most likely at the maximum of the Lotka-

Volterra cycle, when iron fertilization induced algal bloom increased bacterial nutrition. 

Therefore, the increased bacterial activity did not result in a net growth since the bacteria were 

top down controlled by grazers. 

In a next step, we investigated the nano- and picoplankton community during the LOHAFEX 

experiment. We used samples taken for classical plankton investigations using light microscopy 

and applied molecular tools. The bloom was dominated by Phaeocystis cells (Manuscript II, 

Schulz et al Appendix II), but only Micromonas and Pelagophyceae showed an increase in 

numbers. The peak was of short duration and occurred shortly after the second iron fertilization at 

day 18. This implies that also on this trophic level, a strong top-down control was exerted by 

dinoflagellates or ciliate grazers. These grazers might again be top down controlled by copepods, 

which increased in abundance towards the end of the experiment (Assmy and Smetacek, pers. 

communication). A subsequent increase of amphipods (Assmy and Smetacek, pers. 

communication) indicated that grazing was also exerted on the copepod community.  
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The tight coupling of trophic levels including a pronounced microbial loop resulted in carbon 

cycling in the surface layer. Consequently, POC export rates measured during LOHAFEX did not 

significantly differ from those measured outside the fertilized patch (Martin et al. in prep.).  

 

5.1.1. Assessment of molecular tools for nano- and picoplankton analyses 

 

We used samples initially taken for light microscopic studies to assess the community structure 

and diversity during the iron fertilization experiment LOHAFEX. These samples were fixed with 

Lugol solution and stored for about 3 years before analyses. Still, we successfully applied CARD 

FISH to achieve a higher taxonomic resolution for the investigation of the community structure. 

As stated in Manuscript II, the traditional way to investigate these organisms is size depended 

classification based on morphology as assessed by light microscopy (Utermöhl 1958). This 

provides only a low taxonomic resolution, since shape and size are often similar for many 

organisms. SEM and marker pigment analyses, which were used for the identification of nano- 

and picoplankton cells, are also not sufficient for a fast and reliable investigation of these 

organisms. While SEM provides high resolution pictures and thus might enable a taxonomic 

classification according to morphological features, it also is solely dependent on these features to 

identify mostly featureless organisms. The risk of underestimating the diversity due to cryptic 

species is evident. In addition, SEM is very time consuming and has a relatively low throughput.  

Marker pigment analyses using HPLC in combination with identification based on the program 

CHEMTAX (Mackey et al. 1996) provide a high throughput, but again low taxonomic depth and 

reliability. Identical marker pigments are found in many phytoplankton clades, and levels of 

expression of marker pigments may differ. This reduces the accuracy of this method (Schlüter et 

al. 2000). Therefore, HPLC analyses should always be used in combination with microscopic 

methods (Irigoien et al. 2004). This shows that classical methods do not provide sufficient 

taxonomic resolution to investigate the nano- and picoplankton diversity and community 

structure on a higher taxonomic level.  

In contrast to these techniques, molecular methods are widely used for the taxonomic 

classification of Bacteria and Archaea and provide taxonomic information independent of the 

cell morphology. Ribosomal RNA (rRNA) sequences are exceptionally good molecular markers. 

They, provide a stable framework for taxonomic investigations, due to the features of being 

ubiquitous in all species and having the same function, providing high information content and 
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being not affected by horizontal gene transfer (Woese and Fox 1977). In addition, this molecular 

marker also enables the detection of cryptic species (e.g. Bickford et al. 2007), which cannot be 

distinguished using classical tools. Methods using rRNA as a molecular marker have been used 

for the classification of nano- and picoplankton and the investigation of their community 

structure (Not et al. 2004; Massana et al. 2006).  

Next generation sequencing techniques, like 454 tag pyrosequencing (Ronaghi et al. 1996), are 

now widely used in molecular studies to circumvent the predicament of lacking taxonomic 

information (Stoeck et al. 2010; Cheung et al. 2010). The resulting sequences allow for the 

analysis of the community composition, richness, and diversity with a higher resolution 

compared to other fingerprinting methods. Although 454 tag pyrosequencing provides an 

outstanding fingerprinting tool, it does not allow for quantitative analyses of community 

structures due to primer discrimination bias (Farris and Olson 2007) and possible multiple copy 

numbers of the SSU rRNA gene (Zhu et al. 2006). 

Fluorescence in situ hybridization (FISH) based on 16S rRNA sequences (Amann et al. 1995) is 

widely used for the investigation of microorganisms in complex environmental samples. 

Fluorescently labeled oligonucleotide probes targeting the SSU rRNA of specific taxonomic 

groups combined with epifluorescence microscopy are used to investigate nano- and 

picoplankton communities (Beardsley et al. 2005; Massana et al. 2006). FISH based methods 

allow for the in situ quantification of the target groups, localization of the cells in complex 

samples, and, in comparison to light microscopic quantification, provide in depth information 

about the community composition.  

All of the microscope based techniques are dependent on sample fixation. Thus, fixation is a 

crucial step for the preservation of cells, but could alter the total cell counts due to shrinkage and 

cell disruption caused by the fixative (Choi and Stoecker 1989). Since different fixation methods 

were used for different counting methods during the investigation of the LOHAFEX nano- and 

picoplankton community, an effect of the fixative on cell abundance could have resulted in 

differences in total cell counts.  

Another explanation for lower cell counts after CARD FISH in comparison to light microscopy 

and flow cytometric counts might be the inclusion of a filtration step in the CARD FISH 

procedure. Small picoplankton cells might slip through filter pores, especially of polycarbonate 

filters, and thus alter the total cell counts (Cynar et al. 1985; Gasol and Morn 1999). However, 

FISH techniques allow in situ quantifications of different taxonomic groups of these 
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morphologically uniform organisms and make it a valuable tool for the investigation of the nano- 

and picoplankton community. 

We were able to successfully apply molecular tools on these samples and could show that CARD 

FISH combined with 454 tag pyrosequencing is a valuable method to investigate the nano- and 

picoplankton community. Still, the “black box” of the nano- and picoplankton community is 

poorly understood and needs further investigation for the application, improvement and 

development of molecular tools. 

 

5.2. The bacterial community on marine snow aggregates at different depth 

 

Year round phytoplankton blooms with high primary production are known for the Canary 

Current Upwelling (Arístegui et al. 2009). Thus the area provides optimal conditions to 

investigate the bacterial community involved in aggregate degradation. As we could show, the 

dominant groups on marine snow aggregates are Synechococcus, Bacteroidetes, and Alteromonas, 

whereas Alteromonas was also found dominant on TEP structures (Manuscript III). This 

community was different to the community found in the free living fraction. 

The abundance of Bacteroidetes and Gammaproteobacteria on marine snow aggregates was 

shown as early as 1993 (DeLong et al. 1993) and confirmed by more detailed studies very 

recently (Bizic-Ionescu, pers. communication). We were able to show on in situ sampled marine 

snow aggregates, that the community changes with depth. Bacteroidetes and Alteromonas 

decreased significantly from 100 m to 400 m depth. This change is possibly due to the change in 

nutrient quality on the marine snow aggregate, in conjunction with temperature decrease, 

pressure increase, and possible interactions with bacterial colonizers from the deeper water layers 

and protozoan grazing. However, the community structure on the TEP did not change, possibly 

due to the stable carbon compound quality in the TEP structures.  

Since the major part of the aggregate degradation occurs in the upper few hundred meters of the 

water column, but varies across the global ocean (Martin et al. 1987; Buesseler et al. 2007; 

Iversen et al. 2010), our finding suggest a major role of Alteromonas and selected Bacteroidetes, 

like the members of the AGG 58 clade, found on marine snow by comparative rRNA sequence 

analysis (DeLong et al. 1993), for the degradation of POC. This would imply that these two 

bacterial groups are responsible for a major fraction of the release of DIC and DOC from the 

aggregates and hence counteract the biological carbon pump. Therefore, the role of these groups 
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in marine carbon cycling might have been underestimated and needs to be addressed in future 

research.  

 

5.2.1. A novel approach to investigate bacterial communities on aggregates 

 

Investigations of bacterial communities on aggregates are challenging due to the three 

dimensional structure of the aggregates, their fragility and the difficulties in sampling. In 

Manuscript III we provide a new approach to investigate the bacterial and archaeal community on 

aggregates. Using a drifting sediment trap with a viscous gel matrix in the collector cups, we 

were able to sample marine snow aggregates in situ without a need for “re-assemblage” in roller 

tanks due to fragmentation of the fragile aggregates during Niskin bottle sampling. Analyses 

using the still intact 3D structure of the aggregate were not yet possible, since FISH 

investigations require a filtration step that leads to the destruction of the aggregates true 3D 

structure.  

Marine snow aggregates on filters are still three dimensional and therefore difficult to assess. 

Bacterial cells or cell signals from the fluorescent staining in close vicinity may overlap, which 

proved to be a major challenge in bacterial cell number estimations on 3D objects, in particular 

marine snow aggregates. Furthermore, autofluorescence from the aggregate material may be 

strong and overshadow cells. So far, three approaches have been used to investigate marine snow 

aggregates directly, using (i) manual epifluorescence microscopy (Alldredge et al. 1986), (ii) 

automated z-stack acquisition using an epifluorescence microscope and subsequent 2D stack 

mapping in combination with automated cell counting (Bizic-Ionescu, pers. communication), and 

(iii) z-stack acquisition using confocal laser scanning microscopy (CLSM) and subsequent 

biovolume measurements (Manuscript III). Manual counting of bacterial cells is most prone to 

underestimations due to cell signal merging, due to the manually moved microscope stage, and 

due to the relatively weak discrimination possibilities between autofluorescence and cell signals. 

Automated image acquisition provides a good vertical resolution, but subsequent 2D image 

reconstruction only enhances signal overlapping and does not prevent autofluorescent masking of 

cells.  

We used CLSM, which provides 3D information by taking pictures of overlapping confocal 

planes and subsequent 3D reconstruction. Therefore, underestimations from overlapping bacterial 

cells can be circumvented. CLSM scanning provides spatial resolution and allows, though still 
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limited due to the necessary filtration, 3D reconstruction of the aggregate. Another advantage of 

this technique is the precision of the excitation of the fluorescent dyes used in FISH techniques 

and the precise detection of the emitted light. Photomultipliers can be tuned to detect the emitted 

light in a range as narrow as 3 nm and thus autofluorescence of the organic material of the 

aggregate does not interfere with the positive FISH signal of the cell. This can be a problem in 

manual cell counting, since the organic material can have high background signals throughout the 

whole visible light spectrum, which increases the difficulties in FISH signal detection of all 

fluorochrome labels. 

On the other hand, this CLSM technique inherits methodological problems. Due to the 

measurement of biovolumes and the subsequent calculations of cell numbers, the method 

provides no direct counts from the aggregates. Again, the close vicinity of the bacterial cells 

prevents direct counts, since suitable software to separate overlapping signals is not yet available. 

In addition, many steps of the calculation process introduce errors which add to the inaccuracy of 

the estimations. Autofluorescence of organic particles may be impossible to exclude and thus 

lead to overestimations of the cell numbers, as faced during the investigations of the TEP 

structure communities. However, the methods used in Manuscript III provide useful tools for the 

investigation of tree dimensional objects and are already widely applied in biological research 

other than marine snow aggregates (e.g. Solovei et al. 2002; Halary et al. 2008). 

Additional to the proposal of a new method to investigate the bacterial community on aggregates, 

we assessed the changes of the community composition during incubation experiments in roller 

tanks. Bottle effects due to different physical, chemical and biological factors are well known 

during incubation experiments (Eilers et al. 2000). We investigated the change in the community 

composition during roller tank incubations and found a significant shift of the free living bacterial 

community towards higher abundances of Alteromonas. The strength of the bottle effect in roller 

tanks and the consequences for the bacterial abundances e.g. on TEP structures remains yet 

unknown, since findings of very small, invisible TEP structures with attached Alteromonas cells 

were found and may lead to an overestimation of the free living Alteromonas population (Simon 

et al. 2002). Although we did not investigate the attached fraction, this shift indicates that results 

from incubation experiments should be treated carefully. 
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5.3. Implications for the carbon pump 

 

These findings imply that the microbial loop and consequently the carbon cycle in the surface 

layer are strong in nano- and picoplankton dominated blooms. A cascade of tight coupled trophic 

levels dominates these systems and carbon is transformed rapidly within this food web. 

Consequently, the carbon export rates and the efficiency of the biological carbon pump are low. 

Another factor counteracting the efficient sequestration of carbon to deeper water layers is the 

degradation of aggregates which mediate the carbon transfer.  

This shows the pivotal role of microbial communities in marine carbon cycling and emphasises 

the need for further investigation of the microbial processes in carbon cycling. Profound 

knowledge of processes mediated by microorganisms may enable better prediction about carbon 

fluxes and subsequently would aid budgeting attempts, which are urgently needed to understand 

fluxes in global carbon cycling. 
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6. Outlook 
 

6.1. Next generation iron fertilization 

 

In the last two decades since IronEx I, iron fertilization experiments have become valuable tools 

to investigate the response of an ecosystem without laboratory artefacts. Still, the response of 

ecosystems to iron fertilization is not fully understood and future iron fertilization experiments 

still offer opportunities. Here I propose a new iron fertilization experiment to investigate the role 

of the microbial loop within artificially induced blooms and the role of the microbial community 

in the biological carbon pump. 

The past experiments, especially LOHAFEX, have shown that careful experimental design is 

necessary to provide the environmental conditions needed to achieve the aims of the study. 

LOHAFEX aimed for a stable diatom bloom with high primary production and subsequent high 

POC export. Due to silicate limitation in the fertilized eddy, the bloom was dominated by nano- 

and picoplankton with lower net primary production and high carbon cycling in the surface layer. 

This shows that the choice of the right experimental area is of great importance. Optimally two 

water bodies, only differentiated by their different silicate concentrations, will be chosen, similar 

to the SOFEeX experiment (Coale et al. 2004). This would provide suitable conditions to answer 

a broad range of questions.  

The overall aim of such a new study would be to understand the ecosystem of induced 

phytoplankton blooms and elucidate the carbon fluxes within the bloom. The hypothesis that 

phytoplankton blooms can be induced by iron was verified and the type of induced bloom can be 

predicted based on nutrient concentrations. In case of diatom blooms, the bloom forming 

organism is relatively well studied. Nutrient, iron and chlorophyll a values have also been in the 

focus of investigations (deBaar et al. 2005; Peloquin et al. 2011b; Smetacek et al. 2012). 

Therefore, the major focus of a new study will be laid on processes within the biological carbon 

pump, in particular the microbial loop and POC formation, sinking and degradation. The main 

aims of the study are: 

 

 Inducing 2 different phytoplankton blooms, one diatom bloom in silicate rich waters, one 

nano- and picoplankton bloom in silicate poor waters and monitor the blooms prior to 

fertilization, during the bloom phase and beyond the decay of the bloom. 

124

Outlook



 Investigate the physicochemical setting of both blooms 

 Investigate the ecosystem response on various biological levels 

 Investigate the full microbial loop in a silicate limited bloom 

 Investigate the biological processes related to aggregate degradation in the silicate rich 

bloom 

 Investigate and compare the ecosystem response and carbon fluxes in both blooms  

 

6.2. Experimental setting 

 

From the three large HNLC areas, the Southern Ocean is the area of choice. Successful carbon 

export was shown for the North East Pacific (Tsuda et al. 2003) and the Southern Ocean 

(Smetacek et al. 2012). Along the Antarctic convergence, many eddies are formed in which 

suitable conditions can be found. Two eddies from water bodies of the Southern Ocean with 

similar physical, chemical (besides silicate concentrations) and biological parameters will be 

chosen for fertilization. One eddy contains sufficient silicate concentrations to support a stable 

diatom bloom, while the second eddy is silicate limited (<2 μM). Suitable stable eddies will be 

found using satellite based altimetry and monitored during the experiment using drifter buoys and 

salinity, temperature, depth, and acoustic current Doppler profiler measurements (Cisewski et al. 

2008). 

The fertilization experiment will be conducted in a long time frame. Since the initiation of a 

phytoplankton bloom was shown in every previous fertilization experiment (deBaar et al. 2005; 

Peloquin et al. 2011b; Smetacek et al. 2012), the ending of the bloom and the post bloom 

situation are the focus of this experiment. The monitoring of the fertilized areas during and after 

the decay of the bloom is important for the correct estimation of export rates. Particle sinking 

rates are dependent on sinking velocity and accurate measurements can only be done after the 

main export event of marine snow aggregates has stopped after the bloom. It was furthermore 

shown, that bacterial succession continues after the decay of a bloom (Teeling et al. 2012) and 

thus sampling needs to be done until a stable bacterial community is re-established. 

After initial sampling, patches of the same size will be fertilized with the same amount of iron 

sulfate (including the tracer sulfur hexafluoride (SF6)) in both eddies. The induced blooms will be 

monitored closely using Chlorophyll a concentrations, SF6 tracer concentrations and 

photosynthetic efficiency index (Fv /Fm) measurements of the surface water with fast repetition 
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rate uorometry (FRRF). Both fertilized patches will be followed and samplings will be done in 

short frequencies (ideally 2-3 days) including control stations outside the induced bloom but 

inside the eddy.  

Within both fertilizations, the physicochemical parameters (temperature, salinity, pH, turbidity, 

wind velocity, and light intensity) will be measured. Nutrient profiles of the major nutrients 

(nitrate, nitrite, ammonia, sulfate, DIC/ DOC, phosphate, and silicate) will be done at each station. 

In addition, the iron concentration will be measured in the photic zone and profiles of the 

chlorophyll a concentration will be done at each station.  

The pCO2 concentration will be measured at several depths within the surface layer over the 

course of the experiment. After the decay of the induced bloom, buoys will be deployed to 

continue these measurements. The pCO2 concentration is of interest, since the blooms would 

deplete the surface layer DIC pool, which is replenished by atmospheric CO2. The gradient of the 

pCO2 concentration in the surface layer will be used to calculate absorption of atmospheric CO2 

and gives a first estimation of the efficiency of the experiment in carbon uptake from the 

atmosphere. The long time frame of the measurements is necessary, since previous experiments 

have shown the slow replenishment of the pCO2 pool from the atmosphere (deBaar et al. 2005).  

 

6.2.1 The microbial loop in a nano- and picoplankton bloom 

 

Within the silicate limited eddy, the creation of a phytoplankton bloom based on nano- and 

picophytoplankton, such as Phaeocystis spp., is expected. Within the bloom, a strong microbial 

loop will lead to enhanced carbon cycling in the surface layer and carbon sequestration rates will 

be minute (Martin et al. in prep.; Peloquin et al. 2011b; Manuscript I, II). Therefore, the aim of 

this study is the investigation of processes within the microbial loop, including the carbon fluxes. 

Experimental procedures will be outlined below.  

 

 The main focus of this experiment is on the microbial loop. Within the loop, the nano- 

and picoplankton community is a key group for carbon fluxes. This group is still 

considered the “black box” in marine carbon cycling and therefore we lay the focus of the 

experiment on this group. We will monitor the nano- and picoplankton community closely 

over the course of the experiment, using flow cytometry, 454 tag pyrosequencing and 

FISH techniques for quantification, similar to investigations during the LOHAFEX 
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experiment (Manuscript II). Clone libraries will be done to support the tag sequencing 

results and can be used for further probe design for FISH investigations. We hypothesize 

a shift in the community towards one or few major autotrophic bloom formers and an 

increase of predatory species. 

 In combination with the identification of the nano- and picoplankton community, the 

carbon fluxes of the major groups will be estimated using stable isotope probing for the 

autotrophic community. Since these autotrophs are expected to be the main bloom 

forming organisms, most of the solved atmospheric CO2 will be incorporated in the 

biomass of this group. Measurements of respiration rates of the heterotrophic nano-and 

picoplankton community will be done to investigate the replenishment of the DIC pool by 

these organisms, while grazing rates will be estimated from ship board grazing 

experiments using stabile isotope labelled bacterial cells and with subsequent mass 

spectrometer analyses, such as  halogen in situ hybridization (HISH) in combination with 

nanoSIMS (Musat et al. 2008). 

 Mixotrophy of nano- and picoplankton was recently found to be a major factor for 

nutrient cycling in oligotrophic waters (Zubkov and Tarran 2008). Therefore, 

investigations of these organisms using cultivation approaches after cell sorting using 

autofluorescence as a marker will be done. Subsequent grazing experiments could be used 

to identify major mixotrophs and stable isotope probing using 13CO2, and bacterial prey 

labelled with either 13CO2 or 13C acetate will be used to give first estimates of the carbon 

fluxes within this group.  

 The bacterial and archaeal response to iron fertilization in low silicate water was rather 

sparse (Manuscript I). We hypothesize a similarly stable community structure and 

therefore, we use 454 tag pyrosequencing as an initial fingerprinting tool to follow the 

bacterial community over the course of the experiment. If a succession is indicated by the 

results of the tag sequencing, FISH techniques will be used for further quantification. 

Carbon uptake rates will be measured using stable isotope probing. Special focus will be 

laid on the photoheterotrophic bacteria, such as members of the Roseobacter clade, which 

may contribute significantly to DOC consumption and DIC production (Shiba 1991). 

 Viruses can play major roles in the succession of the bacterial community in response to 

increasing nutrient availabilities, by “killing the winner” (Thingstad and Lignell 1997). 

This behaviour can lead to a fast decrease of a particular bacterial species after reaching a 
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specific population size and thus lead to succession patterns of the bacterial community. 

Hence the abundance of total viruses will be investigated using flow cytometry for virus 

enumeration (Stoffel et al. 2005), and the specificity of the infection will be investigated 

using the novel phageFISH technique (Allers et al. in press).  

 Top predators within the microbial loop are dinoflagellates and ciliates. Due to the 

expected dominance of nano- and picoplankton, the community of autotrophic 

dinoflagellates can be expected minute (Peloquin et al. 2011b). In contrast, the 

community of dinoflagellates grazers and ciliates is expected to peak at the end of the 

bloom and it therefore interesting for the determination of carbon fluxes. These protozoa 

will be identified and quantified based on their morphology using light microscopy, 454 

tag pyrosequencing and FISH techniques. Furthermore, stabile isotope measurements will 

be applied as described above.  

 The major focus of the study is on the microbial loop and higher levels of the classical 

food chain will be addressed only briefly. Zooplankton species, such as copepods and 

amphipods will be counted and the main species will be determined by microscopic 

investigations. The biomass will be calculated and used for estimations of the carbon flux 

which is channelled into the classic food chain from the microbial loop. 

 The expected tight coupling of the microbial loop results in high carbon cycling and low 

export rates. Therefore, a quantification of the carbon fluxes from atmospheric CO2 

within the microbial loop would be of interest. To investigate this, cultures of the bloom 

forming autotroph are fed with 13CO2. After incorporation of the label into the biomass, 

the cultures are transferred in eukaryote free water and lysed in the presence of the 

bacterial and archaeal community. This bacterial and archaeal community incorporates 

the 13C labelled DOC and POC from the lysed phytoplankton cells, and is subsequently 

transferred into water containing the nano- and picoplankton community of the ambient 

water. The 13C enriched bacterial and archaeal cells are grazed and the stable isotope 

labelled biomass is transferred to the next higher trophic level. The nano- and 

picoplankton community is inoculated with the dinoflagellates and ciliate community and 

again grazing leads to a transfer of a fraction of the stable isotope to the next trophic level. 

Isotope uptake rates and isotope concentrations in the ambient DIC of the experiments are 

measured at all stages to estimate carbon fluxes through the microbial loop can be 

estimated.  
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6.2.2. Investigation of POC in a diatom bloom 

 

Within the silicate rich eddy, we expect iron fertilization to create a diatom bloom, e.g. Pseudo-

nitzschia spp. or Fragilariopsis kerguelensis (deBaar et al. 2005) and a weak carbon cycling with 

high POC export can be expected (Smetacek et al. 2012). However, former experiments not 

always showed high POC exports (deBaar et al. 2005), giving rise to the hypothesis of POC 

degradation during the sequestration process. Therefore, the aim of this study is the investigation 

of biological mineralization processes on aggregates, including the carbon fluxes during the 

sinking process. Experimental procedures will be outline below.  

 

 Diatoms, as the main bloom forming and POC producing group, will be investigated 

using light microscopy, SEM and 454 tag pyrosequencing for species identification and 

quantification. If a substantial amount of cryptic species occurs, FISH techniques will be 

applied for quantification accordingly. Furthermore, the chemical composition of cells of 

the bloom forming organism will be investigated to deduce the complex chemical 

composition of the aggregates formed from these organisms. DOM released from the cells 

by cell lysis will be investigated using Fourier-transform ion cyclotron resonance mass 

spectrometer (FT-ICR-MS), which allows the investigation of single molecules within the 

complex mixture of DOM with ultra high resolution (e.g. D’Andrilli et al. 2010). Raman 

microscopy could be used to investigate the larger POM structures. 

 Investigations of processes on aggregates need appropriate sampling techniques to 

achieve aggregates in the necessary conditions. Therefore we will use a broad array of 

sampling techniques. Drifting sediment traps with collector cups filled with viscous gel 

will be used for the examinations of the bacterial and nanoplankton community on the 

collected aggregates. This sampling technique enables the sampling of aggregates in their 

natural structure and can enable a 3D reconstruction of the aggregate and the spatial 

distribution of the attached living organisms. Unfortunately, no DNA extraction from 

these samples was possible so far, thus further method development is needed. Roller tank 

and flow chamber experiments will be used for the measurements of degradation rates, 

respiration rates, enzyme activity and bacterial colonization. Therefore, aggregates will be 

re-assembled from water sampled with standard Niskin bottle sampling. Although, a 
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bottle effect due to the incubation within the roller tanks might occur, re-assemblage of 

aggregates is one of the few methods available to achieve living marine snow aggregates. 

Another method to achieve living aggregates is in situ sampling using a remote operated 

vehicle (ROV) to catch sinking aggregates in small incubation chambers. Since pressure 

may play a major role for the bacterial activity on aggregates, sampling and incubation 

devices ensuring ambient pressure will be used for experiment with living aggregates 

(Tamburini et al. 2002; Grossart and Gust 2009).  

 The complex chemical composition of the achieved aggregates will be investigated as 

described for DOC/POC above. We hypothesise that due to the degradation during the 

sinking process, the composition of carbon compounds will change and the ratio of labile 

carbon to refractory carbon will decrease. 

 The major parts of the aggregates are degraded in the first few hundred meters of the 

water column (Martin et al. 1987; Buesseler et al. 2007; Iversen et al. 2010), therefore the 

samplings will concentrate on this zone with additional samplings over the water column 

to close to the sea floor. This sampling strategy, with additional 234Thorium measurements 

and O2:Ar based estimations of net community production as described by Martin and co-

worker (Martin et al. in prep.), will allow for a good estimation of carbon fluxes during 

the sinking process and the efficiency of the biological carbon pump.  

 Bacteria, most likely Bacteroidetes and Gammaproteobacteria, are the major POM 

degrader (reviewed in Simon et al. 2002). Therefore the changes of the bacterial 

community with increasing depth will be monitored using the methods described in 

Manuscript III. In addition, the major degrader will be identified by stabile isotope 

probing. Therefore, the bloom forming organism will be cultivated and the culture will be 

incubated with 13CO2. The resulting labelled biomass from the culture will be used to 

form aggregates in roller tanks with water including the ambient bacterial and archaeal 

community. After aggregate formation, aggregates and surrounding water will 

successively be sampled over several days. POM and DOM quality will be estimated as 

described above. Both, the attached and free living bacterial and archaeal community in 

the roller tanks will be monitored using CARD FISH and will be separated into labelled 

and unlabelled fraction using ultracentrifugation. The labelled fraction will be used for 

clone library construction to identify major carbon degrader. Although this experiment 

might be influenced by a bottle effect, still important information about main carbon 

130

Experimental settings



degrader could be achieved by combining the results with investigations of the 

community structure on in situ sampled aggregates. HISH and nanoSIMS analyses, as 

well as metagenomics, aiming for genes of carbon active enzymes, and proteomics for 

enzyme quantification, can further be used to determine uptake rates and potential carbon 

compounds used by the different organisms. In combination with active enzyme assays, 

the carbon recycling rate of the major POC degrader will be determined and linked to the 

identity of the organisms. 

 Several iron fertilization experiments successfully induced diatom blooms and 

investigations of the phytoplankton communities were done (deBaar et al. 2005). 

Therefore, viruses, nano- and picoplankton, dinoflagellates and ciliates, as well as 

zooplankton, will be investigated only briefly, using flow cytometry, 454 tag 

pyrosequencing as fingerprinting tool and light microscopic counting for larger organisms 

(as described above). The identity of major groups or species will be identified and the 

total biomass will be calculated and compared. 

 In contrast to the phytoplankton community, the bacterial and archaeal community was 

not investigated sufficiently and will be investigated following the approach described in 

Manuscript I. We hypothesize a succession similar to one found in coastal waters with 

major fluctuation within the Gammaproteobacteria and Bacteroidetes (Teeling et al. 

2012). Therefore, we use not only broad oligonucleotide probes but also species or genus 

specific probes for important clades, like Alteromonas or Polaribacter.  If a succession is 

found, additional investigation of the genetic potential will be done, to gain insights into 

the possible carbon cycling within the surface layer. This will be done using 

metagenomics and proteomics with a focus on the detection of genes for carbohydrate 

active enzymes.  

 

6.3. Future perspectives in iron fertilization 

 

The aim of the proposed study is to investigate processes in marine carbon cycling in a true 

Lagrangian experiment. Results from these experiments will shed light on the microbial loop in 

iron induced phytoplankton blooms, the main organisms responsible for carbon cycling in the 

loop, and their succession patterns during the bloom. This will lead to a better understanding of 

phytoplankton bloom dynamics and marine carbon cycling. Furthermore, investigations of the 
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main organisms involved in marine snow aggregate degradation will allow better predictions 

about carbon export rates into the deep sea. Both processes are important for the efficiency of the 

biological carbon pump. Thus, the results from the proposed study can be used for estimations of 

the efficiency of the biological carbon pump in iron fertilization experiments and their use in 

carbon sequestration. This is of particular interest, since iron fertilization is discussed as a mean 

of geoengineering to lower the atmospheric CO2 concentration and to attenuate the effects of 

global warming by carbon sequestration in the deep sea (e.g. Lenton and Vaughan 2009). A high 

efficiency of the biological carbon pump with high carbon export rates was so far only found in 

silicate rich waters during the SEEDS and EIFEX experiments (Tsuda et al. 2003; Smetacek et al. 

2012). Thus, only silicate rich waters which can support stable diatom blooms are suitable for 

carbon sequestration and measurements of silicate concentrations can not be done remotely. 

Therefore, industrial iron fertilization bears a high risk for companies due to possible low silicate 

concentrations and the resulting inefficiency of the biological carbon pump, like during the 

LOHAFEX experiment. Furthermore, the long term effects on the ecosystem are not investigated 

yet. Induction of vast phytoplankton blooms may favour certain species over other and lead to 

shifts in the ecosystem, e.g. towards toxic diatom species (Trick et al. 2010). This is particularly 

dangerous in HNLC areas close to coastal zones. Furthermore, the long term effect of the induced 

phytoplankton bloom on the underlying sea floor is uncertain. High carbon influx on the sediment 

might lead to high oxygen consumption and subsequently to anoxia with deleterious effects on 

the sea floor ecosystem. Therefore, iron fertilization provides a good opportunity to investigate 

phytoplankton blooms, and to achieve information to understand and model the global carbon 

cycle, but should not be used for industrial carbon sequestration to mitigate global warming. 
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Ocean iron fertilization (OIF) experiments carried out in the Southern Ocean (SO) have all 

induced phytoplankton blooms dominated by diatoms, because silicate required by diatoms 

was in sufficient supply. However, low silicate concentrations were measured in the northern 

half of the SO where a different response of non-diatom phytoplankton to OIF can be 

expected. The Indo-German OIF experiment LOHAFEX was carried out in the core of an 

oceanic eddy with extremely low silicic acid concentrations (<2 μM).  The effect of iron input 

on the composition and abundance of the various components of the pelagic ecosystem, from 

bacteria to macrozooplankton, was monitored at regular intervals over 39 days inside and 

outside the fertilized patch using standard methods and state of the art molecular techniques. 

The phytoplankton community, characterized by various species of mixotrophic (auto- and 

phagotrophic) prymnesiophytes and prasinophytes, responded rapidly to the iron addition. 

Chlorophyll concentrations in the 60 m layer doubled to 1.5 mg Chl a m-3 within two weeks 

but stabilized thereafter, although rates of primary production remained high (> 1.0 g C m-2 d-

1). The composition of the fertilized plankton did not differ from outside water implying that 

iron input stimulated the entire community. Biomass of bacteria but also phyto- and 

protozooplankton was apparently stabilized by their grazers, phagotrophic nanoflagellates and 

copepods respectively. Trophic cascading effects channeled primary production to higher 

trophic levels and to the dissolved organic carbon pool. Grazing pressure of the copepod 

populations was similar to that prevailing in other experiments, indicating that diatoms are 
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able to accumulate biomass over many weeks because they are better protected against 

grazing than other phylogenetic lineages in the plankton.  
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This study presents new findings of the relative vertical importance of microbes and flux 

feeders for POC flux attenuation. Using high resolution in situ imaging and deep-ocean 

sediment traps and free-drifting mesopelagic traps, carbon-specific degradation rates and in

situ size-specific sinking speed of organic aggregates were calculated in different depth layers 

off Cape Blanc, Mauritania. Three depths layers with distinct degradation mechanisms of 

settling aggregates were identified; i) dominance of flux feeding during night in the upper 

130 m, ii) dominance of microbial degradation between 130 and 250 m during night and in 

the upper 250 m during day, and iii) low microbial degradation at depths below 250 m. The 

low degradation rates below 250 m were comparable to previous measured degradation rates 

at 4 °C, suggesting temperature limitation on aggregate associated microbial activity in the 

deep ocean. The in situ carbon-specific degradation rates of settling aggregates within 

different depth layers presented here provide new quantitative support to the general 

observation that POC is efficiently removed in the upper mixed layer. Carbon preservation 

presumably prevails with depth since POC degradation decreases in the cold waters below 

the mixed layer, and it seems that flux feeders have little influence on carbon attenuation at 

these depths. Therefore, the magnitude of the flux attenuation depends on the residence time 

of aggregates within high degradation depth layers in the upper ocean, indicating aggregate 

sinking speed as a controlling factor for the efficiency of the biological pump. 
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