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So far, microbial physiology has dedicated itself mainly to pure cultures. In nature, cross
feeding and competition are important aspects of microbial physiology and these can only
be addressed by studying complete communities such as enrichment cultures. Metage-
nomic sequencing is a powerful tool to characterize such mixed cultures. In the analysis
of metagenomic data, well established algorithms exist for the assembly of short reads
into contigs and for the annotation of predicted genes. However, the binning of the assem-
bled contigs or unassembled reads is still a major bottleneck and required to understand
how the overall metabolism is partitioned over different community members. Binning
consists of the clustering of contigs or reads that apparently originate from the same
source population. In the present study eight metagenomic samples from the same habi-
tat, a laboratory enrichment culture, were sequenced. Each sample contained 13–23 Mb
of assembled contigs and up to eight abundant populations. Binning was attempted with
existing methods but they were found to produce poor results, were slow, dependent
on non-standard platforms or produced errors. A new binning procedure was developed
based on multivariate statistics of tetranucleotide frequencies combined with the use
of interpolated Markov models. Its performance was evaluated by comparison of the
results between samples with BLAST and in comparison to existing algorithms for four
publicly available metagenomes and one previously published artificial metagenome. The
accuracy of the new approach was comparable or higher than existing methods. Fur-
ther, it was up to a 100 times faster. It was implemented in Java Swing as a complete
open source graphical binning application available for download and further development
(http://sourceforge.net/projects/metawatt).

Keywords: metagenomics, binning, tetranucleotide frequencies, interpolated Markov models

INTRODUCTION
Prokaryotes (Bacteria and Archaea) comprise a significant por-
tion of the living biomass on earth and sustain the geochemical
element cycles, a vastly complicated, planetary-scale metabolic
network. Prokaryotes form complicated ecological communities
consisting of a multitude of species and only a small fraction of
these species has been cultivated in the laboratory, studied exper-
imentally and has a known genome sequence. More importantly,
these species have been studied in isolation, after a pure culture
was obtained. To further refine our understanding of geochemical
element cycling it is essential to study the physiology of microbes
in their natural context, i.e., the microbial community. Microbial
communities can be cultivated in the laboratory under meaning-
ful, near-natural conditions by continuous cultivation of microbial
enrichment cultures.

Given such a mixed microbial culture, metagenomics (sequenc-
ing and analysis of DNA obtained from complete microbial
communities) is a powerful approach to determine both the
community composition and the potential physiology of the
abundant community members. This way function-identity rela-
tionships (e.g., Walsh et al., 2009; Ettwig et al., 2010) can be
resolved in a simple and standard way. “Binning” is an essential

step in this analysis. Binning can be performed after assembly
of raw sequence reads into contigs and consists of the clus-
tering of those contigs that belong together, constitute a (par-
tial) genome of a single population (or of a group of closely
related populations). When the sequencing coverage is suffi-
ciently high and when the “microdiversity” is not too high,
the resulting bins can be considered provisional whole-genome-
sequences of the source populations. The ecological function
of those populations can then be investigated, first by genome
annotation and subsequently by experiments. Both for assem-
bly and annotation, well developed algorithms and pipelines are
available but the binning is still a bottleneck in metagenomic
analysis.

Several approaches have been investigated for the binning prob-
lem; they can roughly be divided into similarity-based methods,
such as BLAST (Huson et al., 2011) and hidden Markov mod-
els (Krause et al., 2008), and compositional approaches such as
tetranucleotide frequencies (Teeling et al., 2004a,b; McHardy et al.,
2006; Chatterji et al., 2007; Bohlin et al., 2008; Diaz et al., 2009;
Saeed et al., 2011), interpolated Markov models (IMM; Kelley and
Salzberg, 2010) and Markov chain Monte Carlo models (Kislyuk
et al., 2009). The advantage of compositional approaches is that
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they are able to bin contigs with genes that are not homolo-
gous to the reference species. This advantage is essential because
even closely related species share only a relatively small core
genome and the detection of non-homologous genes in related
species is the essence of unraveling new function-identity rela-
tionships. The advantage of similarity-based methods is that these
approaches are very robust – given a contig of sufficient length
they generally provide a clear indication about the (approximate)
taxonomic position of the source population. Therefore, without
a similarity-based method, it is impossible to evaluate the bin-
ning results obtained by a compositional algorithm, except with
artificial datasets (e.g., FAMeS; Mavromatis et al., 2007). In prac-
tice, a complete binning procedure should therefore consist of a
combination of similarity and composition based methods.

Compositional approaches can further be subdivided into
supervised (i.e., comparison of the metagenomic contigs to exist-
ing genome data) and unsupervised (comparison of the metage-
nomic contigs only to each other) methods. Given the facts that (a)
microbial diversity is vast and (b) relatively few reference genome
sequences are available, an unsupervised method is usually essen-
tial to prime the binning process; supervised methods do not
perform well when no closely related organism is available to train
the models. Once bins have been primed with an unsupervised
method, models of different types can be trained on the primed
bins and the binning can be completed. Such two-step procedures
were recently shown to be promising (Kelley and Salzberg, 2010;
Saeed et al., 2011).

In the present study we analyzed microbial communities grow-
ing in continuous culture in the laboratory. These communities
were of medium complexity (up to eight “binnable” popula-
tions). Our metagenomic samples contained 4–10 million 50–
150 basepairs reads (Illumina) and these were first assembled
into contigs. Assembly yielded contigs of reasonable size (longest
contigs between 30 and 200 kb). For the binning of these contigs,
we developed the new integrated binning procedure that is the
topic of this paper. It is similar to the two-step approach described
by Kelley and Salzberg (2010) and Saeed et al. (2011) but uses
a newly developed, ultrafast algorithm based on multivariate
statistics of tetranucleotide frequencies for the priming of the bins.

Compared to previous methods the new unsupervised prim-
ing algorithm is very fast (seconds) and does not require an

estimate for the number of binnable populations. Further, for
each of the produced bins, a taxonomic signature is calculated
with a similarity-based approach (BLAST). By inspection of this
signature in combination with sequencing coverage information,
promising bins can be identified and used to train IMM. These
models are then used for final binning.

With this procedure, eight populations from our community
could be binned with high apparent accuracy (>90% at the genus
level, >96% at the family level). The general performance of our
procedure was further evaluated by comparison to two existing
methods (Kelley and Salzberg, 2010; Saeed et al., 2011) for four
publicly available metagenomes and one previously published arti-
ficial metagenome (Table 1). Our evaluation showed that the new
approach is much faster and achieves better or comparable accu-
racy. It was implemented in a stand-alone graphical interactive
binning environment, the “Metawatt binner” that is available for
download, use, and further development.

MATERIALS AND METHODS
SAMPLES AND METAGENOMIC SEQUENCING
Eight samples were taken from a microbial enrichment in contin-
uous culture, inoculated with sediment from the Janssand tidal
flat in the German Wadden Sea (N 53.73518; E 07.69912). DNA
was extracted. Barcoded Illumina TruSeq libraries were gener-
ated and sequencing was performed (together with four further
libraries of a different study) on one flow cell lane of an Illu-
mina Genome Analyser GA IIx instrument, in a 2× 150 cycles
paired end run. Reads were submitted to the Short Read Archive
(SRA, accession number SRP012152) and assembled contigs (see
below) to the Whole Genome Shotgun repository (WGS, acces-
sion numbers SUB086333, SUB122313, SUB122314, SUB122316,
SUB122317, SUB122318, SUB122319. SUB122321).

ASSEMBLY
Assembly was performed with MetaVelvet-v0.31. After quality
trimming (sliding window approach: window length 15 basepairs,
within this window quality value of at least 99%, minimal
read length after trimming 25 basepairs) between 4,414,212 and
9,986,877 reads (392,800,534–901,487,996 bases) per sequenced

1http://metavelvet.dna.bio.keio.ac.jp/

Table 1 | Performance (time,T, minutes, recall, R, percentage, accuracy, A, percentage) of the presented binning approach (Metawatt) for five

publicly available metagenomes in comparison to two published two-step compositional binners: SCIMM (Kelley and Salzberg, 2010) and

2Tbinner (Saeed et al., 2011).

Metagenome Total (Mb) Contigs SCIMM 2Tbinner Metawatt*

T R A T R A T* R A

Acid mine drainage 11.2 1703 22 79.2 72.3 190 ** ** 1 80.4 82.8

Olavius symbionts 22.3 868 34 78.2 76.3 371 ** ** 1 77.0 88.4

EBPR 24.4 11188 30 83.8 74.5 36 39.3 98.4 3 93.3 81.3

Whalefall bone 28.9 26232 45 24 ** ** 4

SimBG 39 40000 53 77.6 75.6 33 4.5 90 7 91.6 92.6

*Time includes tetranucleotide and IMM training and binning, but not the evaluation by BLAST.

**The R script produced an error and/or no meaningful bins were generated.
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Table 2 | Assembly results of the eight sequenced metagenomes.

1 2 3 4 5 6 7 8

Number of reads (millions) 4.8 7.6 4.4 8.2 5.6 5.7 10 5.2

Total sequence data in reads (Mb) 474 687 424 751 550 537 901 393

Number of contigs (thousands) 16 6.3 40 7.6 8.9 52.6 5 19.3

Total sequence data in contigs (Mb) 15.3 13.7 20.4 15.7 13.4 23.3 13 13.3

Longest contig (kb) 182 182 77 167 145 37 177 93

N50 contig length (kb) 2.7 7.7 1 5.2 6.8 0.8 26.3 1.8

K-mer size for assembly 51 51 51 61 61 61 61 51

library were assembled. Assembled contigs were submitted to WGS
(see above). An overview of the assembly results is presented in
Table 2.

ULTRAFAST UNSUPERVISED BINNING BASED ON TETRANUCLEOTIDE
COMPOSITION
There exist 256 (44) different tetranucleotides. However, when we
assume that both DNA strands are sampled equally, the reverse
complements of every tetranucleotide become redundant and
136 non-redundant tetranucleotide pairs remain. (The number
of actual degrees of freedom is lower, 103, see Kislyuk et al., 2009).
Each of these remaining pairs consists of the tetranucleotide itself
and its reverse complement. The frequencies of the 136 differ-
ent non-redundant tetranucleotide pairs were calculated for each
contig, normalized to contig length, and the composition of each
contig was represented as a 136-dimensional vector. The normal-
ized frequency of tetranucleotide x in contig y was calculated as
follows:

frequency (x) =
occurrence

(
x in y

)
total number of tetranucleotides

matched in y∗ 136

After the multiplication by 136 and with a GC content of 50%,
average frequencies correspond to a value of 1.

One-hundred artificial contigs of distinct lengths (0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3,
4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60, 70, 80, 100 kb)
were sampled from each of the 794 prokaryotic whole-genome-
sequences representing the known biodiversity (one genome per
genus, Table S1 in Supplementary Material). Tetranucleotide vec-
tors were calculated for each reference genome as a whole (the
mean vector) and for each artificial contig (sample vectors). Next,
at each contig length l, the standard deviation of the tetranu-
cleotide frequencies observed in the population of sample contigs
(s) was plotted against the mean frequency observed in the source
genome (m). Figure 1A displays plots for four different values of l.

Figure 1 shows that independent of the nature of the tetranu-
cleotide and independent of the source genome, s can be predicted
when m and l are known.

We attempted to describe the observed empirical relationship
s= f (m, l) as a formal mathematical function, but no satisfying
function was found that accurately described the relationship for
all relevant values of m and l. Therefore, the observed empiri-
cal relationship s= f (m, l) was interpolated into a lookup table

to be able to estimate the standard deviation based on the mean
frequency and the contig length.

With this lookup table [s= f (m, l)] it was now possible to
estimate the multivariate probability (P) that a contig (length l)
of unknown origin belonged to any source organism, given the
observed tetranucleotide frequency vector v for the contig and a
known or estimated mean tetranucleotide vector m of the source
organism:

P =
∏

x=1.136

1
√

2πsx
e
−

1
2

(vx−mx )2

s2
x

During binning m, the mean vector of the “source organism” is
estimated as described below.

Next, the artificial contigs were used to determine empirical
threshold values for P that could be used by the algorithm to decide
whether the unknown contig belonged to the source organism or
not (Figure 1B). Three thresholds were defined, a high confidence
threshold that only accepted 90% of the artificial contigs belonging
to a given organism, a medium confidence threshold that accepted
95% of the artificial contigs and a low confidence threshold that
accepted 98% of the artificial contigs. It was found empirically
that the threshold value for P depended on the length l of the
unknown contig, as shown in Figure 1B. Again, this function was
interpolated into a lookup table with P threshold= f(90, 95, or
98%), l).

USING THE RELATIONSHIPS OF FIGURE 1, THE BINNING NOW
PROCEEDED AS FOLLOWS
First the contigs were sorted by length and tetranucleotide vectors
were calculated for all contigs. The longest contig was processed
first and a bin was created for this contig. Next, contigs were
processed one by one, from long to short, and for each existing
bin, the probability that the contig belonged to the bin was cal-
culated. Because the probability value P only decreases as more
dimensions are analyzed, the comparison was aborted once it fell
below the threshold. When no bin could be found for the new
contig (all P values below P threshold), it was used to seed a new
bin. Otherwise, the contig was joined with the most probable bin
(highest P) and a new mean tetranucleotide vector was calculated
for that bin (vectors were weighed by contig length).

In this comparison, it was necessary to assume that the tetranu-
cleotide vector of any existing bin approximated the mean vector of
its source genome. This approximation would be better for longer
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A B

FIGURE 1 | (A) When populations of DNA fragments of defined length
were sampled from a source genome, an empirical relationship was
observed between the mean frequency, the frequency of any
tetranucleotide in the source genome, and the standard deviation in
the frequency of that tetranucleotide observed in the sample
populations. The relationship is shown for four different lengths of DNA
fragments and at each mean frequency the average standard deviation

is shown. For an explanation on the calculation of the frequencies, see
main text. (B) Empirical relationship that defines the probability
threshold as a function of DNA fragment length at high (90% recall),
medium (95% recall) and low (98% recall) confidence. The relationships
were determined empirically by sampling 794 representative reference
genomes (n=100 for 37 different DNA fragment lengths between 0.3
and 100 kb).

contigs, and this was the reason why the contigs were first sorted.
For short contigs the approximation would not be valid and there-
fore, no new bins were seeded with contigs less than 1000 basepairs
long. The entire procedure was performed three times, once for
every confidence level (low, medium, and high, Figure 1B). Less
than 1 min was required to complete each of these calculations
with a i5 M430 processor (2.27 GHz) for all datasets (up to 39 Mb
of assembled contigs, see Table 1).

ANALYSIS OF BIN TAXONOMIC COMPOSITIONS WITH BLAST
First every contig was fragmented into 500 basepair pieces. BLAST
(Camacho et al., 2009) was used to compare these pieces to a
database with the 794 prokaryotic whole-genome-sequences rep-
resenting the known biodiversity (one genome per genus, Table S1
in Supplementary Material). Hits of >200 basepairs length and
with at least 25% nucleotide identity were used to create a tax-
onomic profile for each contig. The profile consisted of five tax-
onomic ranks (phylum, class, order, family, genus). At each rank
the taxon with the most hits was recorded together with the num-
ber of hits to this taxon and the median e-value of the hits. After
binning, the contig profiles were added and averaged to calculate a
taxonomic profile for the bin as a whole. This profile was displayed
as a pie diagram; see Figure 3 for examples.

CALCULATION OF SEQUENCING COVERAGE
Next to taxonomic composition, the sequencing coverage consti-
tutes a second, independent criterium to evaluate binning success.
Contigs that belong to the same source population should have
similar coverage, whereas different source populations can have
different coverages (dependent on the relative abundances, chro-
mosome copy number, and DNA extraction efficiency). Coverage
was parsed from the header line of the fasta output produced by the
assembler or estimated for each contig from the average read length
of the sequencing run and the number of source reads for the con-
tig parsed from the header line of the contig fasta file produced
by the assembler. The regular expressions used for the parsing of

coverage or number of reads were “cov[a–z]∗?[=_]([\\d\\.]+)”
and “numreads= (\\d+).”

INTERPOLATED MARKOV MODELING
After inspection of the unsupervised binning results for all sam-
ples, good bins were selected for the final binning step.“Good bins”
were bins with relatively long contigs, a consistent taxonomic pro-
file and a equally distributed sequencing coverage (decision made
by the scientist). IMM were created with the program “build-icm”
from the Glimmer package (Delcher et al., 2007). The models were
used to score all contigs of all samples with the program “simple-
score” from the Glimmer package, used with the −N option (no
negative model). For each contig, the scores were compared for
each model and the contig was binned to the model with the
highest score.

EVALUATION OF BINNING ACCURACY WITH PUBLICLY AVAILABLE
METAGENOMES
Four publicly available metagenomes were selected for evaluation:
a metagenome sampled from acid mine drainage (Tyson et al.,
2004, accession numbers AADL01000110.1-AADL01001068.1,
CH003545.1-CH004435.1,DS995259.1-DS995275.1),one obtained
from enhanced biological phospate removing (EBPR) sludge
(Martin et al., 2006, accession numbers AATN01000001.1-
AATN01011188.1), one from an Olavius algarvensis microbial
symbiont community (Woyke et al., 2006, accession numbers
AASZ00000000.1, DS021108.1-DS022223.1), and one from an
Antarctic whale fall bone (Tringe et al., 2005, accession num-
bers AAGA01000001.1-AAGA01026232.1). In addition, an arti-
ficial metagenome was used (SimBG, Saeed et al., 2011). All five
metagenomes were also used for evaluation by Saeed et al. (2011).
Additional information is provided in Table 1. For evaluation of
the real metagenomes, we assumed that the annotations provided
by the authors of the original studies were correct. In the EBPR case
no annotations were provided, so we used the published genome of
Candidatus “Accumulibacter phosphatis” as the reference. After bin-
ning, a bin was assigned to each population and the accuracy was
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calculated as the number of correctly binned nucleotides divided
by the total number of nucleotides in the bin (×100%). Recall was
calculated as the number of nucleotides of the source organism
assigned to the bin divided by the total number of nucleotides of
the source organism present in the metagenome (×100%). For
the Whale Fall metagenome, evaluation of accuracy and recall
was impossible, as binning was reported to be unsuccessful by the
authors. The results (accuracy, recall, and computation time) were
compared to two comparable previously published state of the art
de novo compositional binners (Kelley and Salzberg, 2010; Saeed
et al., 2011). For SCIMM (Kelley and Salzberg, 2010), bins were
seeded with a single trial of Likely Bin and the algorithm was run
multiple times with different estimates for the number of popula-
tions. In Table 1 only the results for the optimal choice are shown.
2T binner was run with the default options.

IMPLEMENTATION
The procedure was implemented in java as a Swing application
that has been tested on Linux (64 bit). A graphical user inter-
face was necessary because our method depends on an important
choice by scientist: which tetranucleotide bins should be used
to train IMM models? For this reason, visualization of the bin-
ning results is important. The application is freely (Academic
Free License) available for download and further development
at http://sourceforge.net/projects/metawatt. It depends on BLAST
(Camacho et al., 2009), glimmer (Delcher et al., 2007) and the
batik library2 for exporting structured vector graphics (SVG).
For evaluation of binning results a BLAST library of sequenced
genomes and a taxonomy of these genomes is necessary. Metawatt
can generate these files automatically when it is provided with
the genbank files of all reference organisms (downloadable from
http://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.gbk.tar.gz).

RESULTS
When we inspected multivariate distributions of tetranucleotide
frequencies of artificial DNA fragments sampled from reference
genomes we observed that for all organisms these distributions can
be approximated by a single Gaussian function characterized by a
generally valid empirical relationship between the mean frequency
of any tetranucleotide in a genome, the standard deviation of the
observed frequency in DNA fragments sampled from this genome
and the fragment length. See materials and methods and Figure 1A
for details. Given a DNA fragment of known length and tetranu-
cleotide composition, the relationship can be used to calculate a
probability that the fragment belongs to a source genome with
known or estimated mean tetranucleotide composition. Further
analysis of calculated probabilities for artificially sampled DNA
fragments enabled the definition of a threshold for the probability
value that could be used to determine whether a DNA fragment
most likely belongs to a source genome or not. Figure 1B shows
the empirical relationship between the DNA fragment length and
the threshold probability at 90, 95, and 98% recall. See section
“Materials and Methods” for details.

The two empirical relationships shown in Figures 1A,B enabled
us to rapidly calculate whether a metagenomic contig should

2http://xmlgraphics.apache.org/batik

be binned together with another contig. Apart from the contig
sequences themselves this calculation made use of only a sin-
gle parameter – the confidence value (90, 95, or 98% recall). It
depended on only a single assumption: that the average tetranu-
cleotide composition of the two contigs under consideration
approximated the composition of the source genome. The valid-
ity of this assumption obviously depended on contig length; the
longer the contigs, the better their tetranucleotide composition
would approximate that of their source genome. For this reason,
contigs were sorted by length before binning.

We first investigated the possibility to use the two empirical
relationships of Figure 1 to classify DNA fragments. The classifi-
cation accuracy was compared to the accuracy obtained with IMM
as follows: first artificial communities were created from reference
organisms randomly sampled from 794 available whole-genome-
sequences of different genera (Table S1 in Supplementary Material;
10, 25, 50, and 100 species per community). For each species three
artificial long DNA fragments were created (10, 50, or 1000 kb)
and also five groups of 100 artificial short DNA fragments (500,
1000, 2000, 4000, and 8000 basepairs length). Next, all short DNA
fragments were classified based on comparisons with one of the
long fragments: either the tetranucleotide frequencies were com-
pared as explained above or an IMM was trained with the long
fragment. The classification accuracies are shown in Figure 2. The
figure shows that when the DNA fragment used for training was
longer than 50 kb, IMMs outperformed our algorithm for clas-
sification. With shorter fragments, the tetranucleotide classifier
outperformed IMMs.

A metagenomic binner was now created that made use of the
tetranucleotide classifier. Binning started by seeding the first bin
with the longest contig. Next, the remaining contigs were processed
one by one in order of decreasing size. Each contig was binned to
the bin that yielded the highest probability value, or when no
probability was above the threshold, a new bin was created. When
a contig was joined into an existing bin, a new mean frequency
vector was calculated for the bin. And so on. With growing bin
sizes (and few misbinnings), the mean vectors of the bins would
approach those of the source genomes. The two arrows in Figure 2
provide an indication of the level of accuracy achieved during bin-
ning. In the initial stages with small bin sizes, the estimate for the
tetranucleotide composition of the source genome is poor, but the
binned contigs are long (blue arrow) and the accuracy is around
80%. Toward the end, the estimates for the tetranucleotide com-
position of the source genomes are much better (large bin sizes)
but the binned contigs are smaller (green arrow) and the accuracy
is also around 80%.

The procedure allowed us to bin a metagenome without an
a priori estimate for the number of populations that might be
binnable, as is necessary for some other algorithms (e.g., Kislyuk
et al., 2009). As expected, the binning algorithm was very fast (sec-
onds for all tested metagenomes, up to 39 Mb, see Table 1). We
found that no general rule existed as to what confidence (90, 95, or
98% recall) was best for the calculation of the threshold values. In
all cases, the application of a high confidence threshold (e.g., 90%)
led to a larger number of bins. In some cases, this was justified. In
other cases it was not and populations that were binned into a sin-
gle bin at lower confidence were distributed over multiple bins at
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FIGURE 2 | Classification accuracy with the empirical
relationships of Figure 1 (black line, closed symbols) and
Interpolated Markov models (gray lines and symbols). The
accuracy was calculated as function of community complexity (10, 25,
50, and 100 populations), length of the long DNA fragments used for

training (10, 50, and 1000 kb, one for each population), and length of
the short DNA fragment to be classified (100 fragments, 0.5–8 kb).
Each point is the average of three communities randomly sampled
from 794 reference genomes. For the explanation of the blue and
green arrow, see main text.

higher confidence. For this reason, binning was always performed
three times, once for each confidence value.

To evaluate the binning results, a taxonomic profile was cre-
ated for each bin and its sequencing coverage was calculated (as
explained in the Materials and Methods section). The taxonomic
profiles and coverage distribution of the bins produced at all three
levels of confidence were now inspected. Bins with a consistent
taxonomic profile and homogeneous sequencing coverage were
selected and used to train IMM, one for every selected bin. These
models were then used to rebin all contigs in a final binning step.
As shown above, IMMs outperformed our tetranucleotide-based
algorithm when much sequence information was available.

The performance of the binner was evaluated with four publicly
available metagenomes and one artificial metagenome (Table 1).

For comparison the binning was also performed with two other
state of the art two-step compositional binners (Kelley and
Salzberg, 2010; Saeed et al., 2011). It appeared that our binning
procedure was up to a 100 times faster and the accuracy was com-
parable or better. The overall binning procedure completed in
7 min for the largest metagenome tested (39 Mb). The binning
results presented quantitatively in Table 1 are briefly described
qualitatively below.

The SimBG artificial metagenome contains contigs belong-
ing to eight different bacteria and one artificial “fake” bacterium
(Saeed et al., 2011). The binner made very few errors, except in case
of B. halodurans. Its contigs were binned only at 70.2% accuracy
because of the misbinning of some P. marinus and D. hafniense
contigs.
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The EBPR metagenome (Martin et al., 2006) contains contigs
belonging to “Candidatus Accumulibacter phosphatis” and several
side populations. After IMM binning, the contigs belonging to
A. phosphatis were binned at excellent recall but at relatively low
accuracy. Tetranucleotide binning actually yielded some bins with
very high accuracy (97.4%) but in that case the recall was lower
(46.8%), values comparable with the Two-tiered binner of Saeed
et al. (see Table 1). Three side populations were recovered as taxo-
nomically consistent bins: the gamma proteobacterium related to
Thiotrichales (5.3 Mb), already recovered by Saeed et al. (2011), a
Flavobacterium (3.5 Mb), and a Xanthomonas (2.5 Mb).

The Olavius algarvensis symbiont metagenome (Woyke et al.,
2006) consists of contigs of unknown origin and contigs belonging
to three symbiotic bacteria: the Gamma-1, Gamma-3, and Delta-1
symbionts. The contigs of the Delta-1 and Gamma-3 symbionts
were binned without problems (accuracy 90.6 and 98.1% respec-
tively). The contigs of the Gamma-1 symbiont were difficult to
separate from some contigs of unknown origin leading to a lower
binning accuracy (76.5%) for this organism.

The contigs obtained from the Antarctic whale fall bone (Tringe
et al., 2005) were not binned in the original study, so evaluation
of the accuracy was impossible. However, as already reported by
Saeed et al. (2011), they are binnable with modern methods. After
tetranucleotide binning, two bins contained contigs of mainly
Flavobacterial origin (the first bin was 3.9 Mb at 31.7% GC, the
second 7.7 Mb at 39.7% GC). Four additional bins with a con-
sistent taxonomic signature were recovered: a Pseudomonad bin
(4.3 Mb, 45.5% GC), an Alteromonas bin (2.1 Mb at 40.5% GC), a
Rhodobacter bin (3.2 Mb at 55.8% GC) and a Sphingomonas bin
(3.8 Mb at 57.6% GC). The uncultured Actinomycete sequences
previously reported were split over three different bins but were
well separated from other organisms.

The acid mine drainage metagenome (Tyson et al., 2004)
consists of contigs from five different populations: “Ferro-
plasma acidarmanus Type I”, “Ferroplasma sp. Type II”, “Ther-
moplasmatales archaeon,” “Leptospirillum sp. Group III,” and
“Leptospirillum sp. Group II.” The contigs of the two Ferro-
plasma’s were binned together with some contamination of
contigs from the Thermoplasmatales archaeon. The remainder
of the Thermoplasmatales archaeon contigs were binned accu-
rately in a separate bin. One bin contained only Leptospirillum
Group III contigs and the final bin the Leptospirillum group II
contigs with some contamination of Leptospirillum Group III
contigs.

Once the benchmarking and testing was complete, the new bin-
ner was applied to eight metagenomes sampled from a microbial
enrichment in a continuous culture mesocosm. The eight sam-
ples were tagged and sequenced on a single lane of an Illumina
Genome Analyzer GA IIx instrument. Assembly yielded some rea-
sonably long contigs and many short ones (Table 2), as usual in
sequencing projects.

Tetranucleotide binning was performed as described above and
again a taxonomic profile was calculated for each bin (Figure 3).
The binner binned >99% of all contigs but the quality of the bins
produced varied between samples, populations, and the applied
threshold value. Figure 3A shows that the binning was apparently
successful for sample 7, at medium threshold. Each of the bins

had a distinct taxonomic signature as well as a distinct sequencing
coverage. For example, apparently two different Epsilonproteobac-
teria (green colors) were present in this sample, one with a GC
content of 26.8% and a sequencing coverage of 12 times and one
with a slightly higher GC content and a coverage of 40 times.
One of the bins may belong to an uncultured Rhodobacter, rela-
tively unrelated to reference Alphaproteobacteria with sequenced
genomes. This could be inferred from the relatively high BLAST e-
values, and the scattering of the BLAST hits over different families.
One may argue that this bin contains contigs of many differ-
ent Alphaproteobacteria but this could be ruled out by inspect-
ing other samples where this organism was more dominant and
yielded longer contigs. The distribution of BLAST hits for indi-
vidual contigs was very similar to the distribution of the bin as
a whole. In fact, this is a nice example of what happens when
supervised binning approaches (based on reference genomes) are
applied to organisms only distantly related to those reference
organisms – the contigs get scattered and are assigned to many
different reference taxa.

Figure 3B shows an example of unsuccessful binning in sample
1 with a low confidence threshold (98% recall). Here, contigs from
a Pseudomonas population appear to get mixed up with contigs
from a Vibrio population in bin 1. Bin 2 contains sequences from
Vibrio and a Clostridum populations. Note that these misbinnings
were not observed at the high confidence threshold, but in that
case the contigs of the Vibrio and the Clostridium were divided
over many bins.

Interpolated Markov models yielded better results than
tetranucleotide frequencies once sufficient training data was accu-
mulated. Therefore, we again selected the good bins (long contigs,
consistent taxonomic profile, as described above) from all sam-
ples to train IMM models. Eight distinct bins were identi-
fied that apparently defined the binnable part of the microbial
community in all samples. All samples were binned de novo
with these eight models and the resulting bins looked convinc-
ing in all cases, both with respect to coverage and taxonomic
profile.

To further validate the results, BLAST was used to compare
every sample with the eight reference bins (the bins used to con-
struct the models, arrows in Figure 4). Only BLAST hits that
were >98% identical to the reference sequence were considered.
The IMM binning and the BLAST results were totally consistent,
with two exceptions: (1) There was some cross binning of the two
Clostridia populations. (2) The model predicted an abundant Vib-
rio population in sample 1 whereas this population could not be
validated by BLAST. Apparently, the Vibrio population in sample 1
was different from the reference population in sample 3 (its contigs
less than 98% identical to the contigs that constituted the defined
Vibrio bins) and a different IMM model could be created for these
contigs.

The community enriched in the continuous culture was pro-
vided with a marine medium with organic carbon as the only
electron donor and nitrite as the electron acceptor. Organic carbon
was present in excess, whereas nitrite was the limiting substrate.
The binning results showed that the enriched community con-
sisted of denitrifiers (affiliated with Arcobacter, Pseudomonadales
or Rhodobacterales) and fermenters (affiliated with Vibrionales,
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A

B

FIGURE 3 | Contig size distribution, sequencing coverage and
taxonomic distribution of the four largest bins of sample 7 binned at
medium confidence (A) and sample 1 binned at low confidence (B).
The exploded pies show the taxonomic distribution of the bins. The

distance of each part from the center of the pie is a measure for the
median e-value of the associated hits (the larger the e-value the larger the
distance from the center). Coverage is shown for the bin as a whole and
separately for each pie part.
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FIGURE 4 | Validation of the IMM binning results for the eight
samples by BLAST. The black line shows the total amount of
assembled sequence information assigned to each of the eight
populations by the IMM binner. The green line shows how much of

that data was also recovered by BLAST (megaBLAST at 98% identity
cutoff). The red line shows how much data was recovered in other
bins (errors). Arrows indicate the origin of the reference bin used to
train the IMM.

Clostridiales and Fusobacterales). This is in agreement with text-
book knowledge: one would expect the denitrifiers to consume
most of the organic carbon while respiring nitrite, while the
fermenters would consume the remainder of the carbon. Some
dynamics appear to occur, but because of potential method-
ological biases between sequencing runs and assembly, this first
needs to be confirmed with other methods (FISH). The biol-
ogy of the experiment will be addressed in detail elsewhere
once these data are avialable. The aim of the present study
was to develop a method for metagenomic binning of these
and future metagenomes sampled from laboratory enrichment
cultures.

DISCUSSION
In this study we have shown that it is currently possible to bin
metagenomic data obtained from relatively simple microbial com-
munities with a modest sequencing effort. The eight samples
investigated were tagged and sequenced on a single lane of an
Illumina Genome analyzer GA IIx (consumable costs <5 kEuro).
Our results also show that it is very important to sequence multi-
ple samples from the same habitat: first, there appears to be quite
some dynamics, even though these samples were obtained from
the same bioreactor that was running at totally constant envi-
ronmental conditions. Second, the possibility to assemble and
bin a target population depends on the context of the overall
community. Third the quality of the sequencing and/or assem-
bly results differed between samples. This probably resulted from
(unintended) differences during the manual library preparation
and potentially a different degree of microdiversity among pop-
ulations in different samples. Last but not least, by comparing
results between samples with BLAST it was possible to validate the
binning results and not depend on a priori estimates of binning
accuracy.

The first step of the overall binning procedure makes use of a
novel algorithm based on an empirical relationship between the
mean and standard deviation of tetranucleotide frequencies. It
has some advantages compared to existing methods: it does not
depend on an estimate for the number of binnable populations, is
open source, portable to any platform (that supports BLAST and
Glimmer) and is extremely fast. The latter advantage also means
that it is more scalable: it will be able to cope with the large amounts
of data that will be produced by future sequencing technologies
and can be applied to more complicated communities. By always
running the binner at three different threshold values, all tested
metagenomes could be binned successfully without the need for
optimizing additional parameters.

This newly developed algorithm was combined with the use of
IMM, already applied previously as a final “polishing” step in bin-
ning. Our study confirmed that IMMs outperform tetranucleotide
frequencies when sufficient training data is available. However,
where Kelley and Salzberg (2010) use a fully automated iterative
method to refine the bins, we created the possibility for the scien-
tist to choose which seed bins should be used to build the IMM
models. This choice should be based on the characteristics of the
bins such as contig length, sequencing coverage, and a taxonomic
profile. We present evidence that this human intervention can
outperform the fully automated method. This may be caused by
difficulties in repairing totally failed bins (e.g., Figure 3B) by an
iterative approach. In our enrichment culture metagenomes, iter-
ations generally reallocated only a small amount of contigs (less
than 50).

To facilitate the necessary human decisions, we implemented
the complete procedure in Java Swing (the “Metawatt binner”)
where the binning results are presented to the scientist as a graph-
ical overview like the one displayed in Figure 3. This enables the
selection of promising bins for IMM modeling. We made use of the
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Batik library to enable the export of these graphics in SVG format
which can be directly used for publications. The produced bins
can be exported as fasta files for further annotation in standard
pipelines.

There is certainly room for improvement. Perhaps the biggest
step forward could be achieved by integrating the assembly and the
binning. Assembly speeds may increase when the assembler can
be provided with compositional information, to more efficiently
recruit promising reads for comparisons. “Associations” between
contigs (with paired end reads) that are too weak to allow assem-
bly directly may still be used for binning, as was recently shown
by Iverson et al. (2012). Unfortunately the latter study provided
no methodological details. Finally, next to sequencing coverage
information, the frequency of single nucleotide polymorphisms
may be used as an additional parameter to evaluate the binning
results.

CONCLUSION
We have developed and implemented a (partially) new approach
for the binning of metagenomic contigs. This approach was born
out of need, existing approaches did not produce satisfying results
for our metagenomes. Evaluation of the binning accuracy and
recall was done with artificial as well as real metagenomes and
showed that it was comparable to the best existing approach tested.
In addition several key improvements were realized. Most notably,
the seeding of the bins does not depend on an estimate of the
number of binnable populations and is very fast and scalable. The
approach has been implemented in Java SWING as an open source
application (the “Metawatt binner”) with an easy to use graphi-
cal user interface. Evaluation of the binning results by BLAST,
training of models and manual editing of bins is included in the
implementation.

Our results show that the metagenomic binning of rela-
tively simple microbial communities is currently feasible even
when the sequencing effort is moderate. We also show that it

is important to sequence and compare metagenomes for multi-
ple samples of the same habitat. Continuous culture of microbial
enrichment combined with metagenomic sequencing is a pow-
erful approach that can carry the study of microbial physiology
from pure cultures to simple communities. An accurate and
easy to use binning procedure is an essential aspect of this
change.
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