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Abstract
Metagenomics has become an indispensable tool for studying the diversity and metabolic potential of environmental
microbes, whose bulk is as yet non-cultivable. Continual progress in next-generation sequencing allows for generat-
ing increasingly large metagenomes and studying multiple metagenomes over time or space. Recently, a new type
of holistic ecosystem study has emerged that seeks to combine metagenomics with biodiversity, meta-expression
and contextual data. Such ‘ecosystems biology’ approaches bear the potential to not only advance our understanding
of environmental microbes to a new level but also impose challenges due to increasing data complexities, in particu-
lar with respect to bioinformatic post-processing.This mini review aims to address selected opportunities and chal-
lenges of modern metagenomics from a bioinformatics perspective and hopefully will serve as a useful resource
for microbial ecologists and bioinformaticians alike.
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INTRODUCTION
The development of techniques for sequencing de-

oxyribonucleic acid (DNA) from environmental

samples was a crucial factor for the discovery of the

exceptional degree of diversity among prokaryotes.

In particular, techniques to obtain 16S ribosomal

ribonucleic acid (rRNA) sequences from the envir-

onment, such as the early reverse transcriptase-based

approaches [1] and the later polymerase chain reac-

tion-based methods have been cornerstones toward

current large-scale studies of microbial biodiversity.

More than 3 million 16S rRNA sequences of Bacteria
and Archaea in the release 111 of the SILVA database

[2] constitute an impressive hallmark of microbial

versatility. This number is already in the order of

magnitude of the estimated few million microbial

species for the entire ocean [3], whereas on the

other hand, it represents just a fraction of the diver-

sity of soils where just a single ton is believed to

potentially harbor millions of species [3, 4]. The

extent of 16S rRNA gene variation recently dis-

covered among lowly abundant species in the deep

sea (‘rare biosphere’) [5–7] indicates that with respect

to microbial diversity we so far have seen just the

proverbial tip of the iceberg.

For a long time, microbial ecologists were mostly

restricted to pure cultures of cultivable isolates to shed

light on the diversity and functions of environmental

microbes. Pure cultures allow the study of an isolate’s

metabolism and of its gene repertoire by genome

Hanno Teeling followed independent educations as a chemist and biologist before specializing on bioinformatics for microbial

genomics. He has worked for 12 years in this field and is currently a scientist at the Max Planck Institute for Marine Microbiology

in Bremen.

Frank Oliver Glo« ckner entered the field of bioinformatics more than 15 years ago. He specialized on tools and databases for

microbial biodiversity analysis and microbial genomics. He is the head of the Microbial Genomics and Bioinformatics Research

Group at the Max Planck Institute for Marine Microbiology and Professor of Bioinformatics at the Jacobs University Bremen.
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sequencing. Both provide valuable information for

extrapolating on the isolate’s ecophysiological role.

Cultivability of environmental microbes often

ranges below 1% of the total bacteria [8], but depend-

ing on cultivation technique and habitat, much

higher cultivation rates have been reported, for

example up to 10% for a freshwater lake [9] and

23% for a marine tidal sediment [10]. Such successes

notwithstanding, in almost all cases, a major fraction

of Bacteria and Archaea evades current cultivation

approaches and thus conventional whole genome

shotgun sequencing.

Solutions are to sequence either single microbial

cells [11] or entire microbial communities—the latter

is termed metagenomics [12, 13]. The classical meta-

genome approach involves cloning of environmental

DNA into vectors with the help of ultra-competent

bioengineered host strains. The resulting clone

libraries are subsequently screened either for dedi-

cated marker genes (sequence-driven approach) or

metabolic functions (function-driven approach)

[14]. The function-driven approach is still para-

mount for screening enzymes with prospects in bio-

technology (see [15] for a recent mini review),

whereas in microbial ecology, increasing throughput

(i.e. base pairs per run) and diminishing costs for

DNA sequencing have rendered the sequence-

driven approach largely obsolete. Nowadays, direct

sequencing of environmental DNA (aka shotgun

metagenomics) is commonly used to study the

gene inventories of microbial communities. By com-

bining the resulting metagenomic data with bio-

diversity data (e.g. from 16S rRNA gene amplicon

sequencing (A. Klindworth et al. submitted for pub-

lication), in situ expression data (metatranscriptomics

and metaproteomics) and environmental parameters,

a new type of holistic ecosystem studies has become

feasible [16] (Figure 1). Similarly, metagenome data

can be integrated with metabolome data [17]. Such

integrative ‘ecosystems biology’ studies (e.g. [18, 19])

introduce a plethora of challenges with respect to

experimental design and bioinformatic downstream

processing. These involve considerations about the

habitat, sampling strategy, sequencing technology,

assembly, gene prediction, taxonomic classification

and binning, biodiversity estimation, function pre-

dictions and analyses, data integration and subse-

quent interpretation and data deposition. This mini

review aims to address some of these aspects and

complement more elaborate full reviews of the

matter (e.g. [20]).

HABITAT
The biodiversity composition (richness and evenness)

of a habitat has a profound impact on the quality of a

metagenome. For metagenome analyses involving

assembly (to generate longer genome fragments

with multiple genes), habitats with few microbial

species or an uneven population with few dominat-

ing species are more promising targets than habitats

with many species of even abundance. However,

more important than the absolute number of species

is their level of genomic coherence. Even seemingly

ideal habitats with a stable composition of few dom-

inant species, for example microbial mats [21] or in-

vertebrate bacterial symbioses [22], can be difficult to

assemble when evolutionary micro-niche adaptations

have led to large pan-genomes and thus to a low

level of population clonality (see e.g. [23] for a dis-

cussion on sub-species fine-scale evolution and pan-

genomes). In contrast, seemingly unsuitable habitats

that harbor a multitude of species with dynamically

changing compositions can yield long assemblies,

when the species that thrive and dominate are largely

clonal. This effect is observed when a second round

of sequencing and reassembly of an environmental

sample breaks rather than elongates assemblies from

the previous round. The reason is that in habitats

with little clonality, more sequencing covers more

genomic heterogeneity. This increases incongruities

in putative assemblies, which causes assemblers to

generate smaller but congruent assemblies rather

than long assemblies with high levels of positional

variability.

These common issues in metagenomics might be

overcome by switching either to a longer read

sequencing technology or by more sequencing to

increase coverage (i.e. the number of calls of a base

in a given DNA sequence, typically attained by

sequencing multiple molecules containing the re-

spective sequence), but in any case they mean

increasing costs, data volumes and complexity.

Preceding biodiversity analysis can help to properly

assess the required amount of sequencing, e.g. in

form of full-length 16S rRNA clone libraries analysis

(for fine-scale resolution) in conjunction with 16S

rRNA gene tag analysis (for abundance estimations).

SAMPLING
When the study target is a specific uncultivable mi-

crobial species of low abundance, it is worthwhile to

try to enrich the species after sampling. Sometimes
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favorable culture conditions can be found that result

into co-cultures with substantially enriched target

species or the species can be physically enriched,

for example by methods such as fluorescence-

activated cell sorting (e.g. [24, 25]) or by density

gradient centrifugation (e.g. [26]). Subsequent

multiple-displacement amplification and single cell

sequencing might be a viable solution to obtain a

draft genome. However, when the target is a habi-

tat’s overall function, a representative sample must be

studied, and data from single cells, enrichments or

isolates—though valuable—are complementary.

Sampling of microbes from environments usually in-

volves a size selection (e.g. fractionating filtration) to

minimize contaminations by viruses or eukaryotes.

Such reduction of a sample’s complexity introduces

a bias in the community composition, for example

by under-sampling particle-associated, filamentous,

aggregate-forming or very small microbes. This is

the reason why even deeply covered metagenomes

mostly represent only a select fraction of a habitat’s

microbial gene inventory. It can be reasonable to

reduce the complexity of an environmental sample

by enrichment or size selection, in particular when

multiple different enrichments or samples with dif-

ferent size fractions are taken and their results are

combined, but such effects need to be taken into

account in experiment design and interpretation of

the final data.

REPLICATION
It is good scientific practice to analyze true replicates

of a sample and to assess whether observed differ-

ences within one sample are statistically meaningful.

However, this is rarely done in microbial ecology

[27]. One reason is that in many habitats it is

almost impossible to take true replicates. For ex-

ample, sediment cores that have been taken only

centimeters away from each other might host

slightly different microbial communities due to

environmental patchiness. Similarly, water samples

that were taken within few minutes might differ be-

cause the sampled water was moving and not per-

fectly homogeneous. Hence, comparing such alleged

replicates reveal little information on methodological

reproducibility. Our own comparisons of true

454/Roche pyrosequencing replicates have shown

that library preparation and sequencing are highly

reproducible, which is corroborated by a recent

comparison of 454/Roche pyrosequencing and

Illumina sequencing [28]. Thus it is understandable

Figure 1: Scheme of the major stages of an integrative metagenomic ecosystems study on microbial ecology.
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that environmental biologists prefer to analyze more

samples rather than to invest in replication, in

particular in expensive large-scale projects. This,

however, does not release scientists from assessing

the reproducibility of their methods. Part of this

can be addressed by pseudo-replication [29], such

as sub-sample analysis and comparison of samples

within time series [30], and by independent assess-

ments of methodological reproducibility using rep-

resentative test data sets.

SEQUENCING
Next-generation sequencing (NGS) has been noth-

ing less than a paradigm shift for metagenomics. Not

long ago, the classical clone-based metagenome

approach in combination with Sanger sequencing

usually allowed for obtaining only few selected

inserts, as sequencing was the limiting factor. NGS

has obliterated the cloning step and its inherent

problems and enabled to sequence environmental

DNA directly. Initially, 454/Roche pyrosequencing

was most widely used, because it generated substan-

tially longer reads than competing platforms.

Meanwhile, in particular large-scale metagenome

projects make increasing use of the Illumina and,

to a lesser extent, SOLiD platforms. Although the

latter two still provide shorter reads than pyrose-

quencing, they offer a much higher throughput

and hence coverage for the same price. The read

length of 2� 150 bp provided by the current

Illumina GA IIx line of instruments basically matches

that of the first generation 454 Life Sciences GS20

instrument and high coverage in conjunction with

mate-pair libraries facilitate assembly and can com-

pensate for the lack of read length. A recent com-

parative study on a freshwater lake planktonic

community has shown that Illumina and 454 pyro-

sequencing lead to similar results with respect to

assemblies and the covered taxonomic and functional

repertoires [28]. In addition, protocols have been

proposed that allow for obtaining longer ‘composite

reads’ from short read platforms [31].

It remains to be seen what impact newer sequen-

cing platforms will have on the metagenomic field.

The lately announced Ion Torrent Proton fits in be-

tween the 454/Roche and Illumina platforms in

terms of read length and throughput at a seemingly

competitive price. At the same time, single-molecule

detection methods such as Pacific Bioscience’s

PacBio RS and the recently announced Oxford

Nanopore Technologies (ONT) GridION and

MinION systems offer much longer read lengths,

albeit at the expense of higher sequencing errors

(PacBio RS: �10–15% and ONT GridION:

�4%). However, in contrast to the inherent system-

atic errors of other platforms, these errors are mostly

random, and once these platforms improve, they

could be reduced in an almost linear fashion by

increased multifold sequencing of the exact same

DNA molecule and increased coverage. The specific

value of PacBio and ONT sequencing is that they

provide read lengths that are long enough to span

multiple prokaryote genes and thus are able to

provide reliable genetic contexts. Currently, a com-

bination of long- and short-read technologies con-

stitutes a particularly promising approach in future

metagenomics that bears the potential to significantly

advance the field.

Read length, error rate and throughput/coverage

of NGS technologies determine the resolution at

which we can investigate gene inventories of natural

microbial communities in a very similar way as the

magnification and aberrations of optical microscopes

determine the resolution at which microbes can be

directly seen with the human eye. In this respect,

advances in sequencing technologies will continue

to shape the field of metagenomics and extend our

possibilities to address habitats of increasing

complexity.

ASSEMBLY
It is a non-trivial question, whether to assemble a

metagenome. An assembly yields larger genomic

fragments that allow for the study of gene arrange-

ments. Valuable functional knowledge can be

deduced from gene neighborhoods, e.g. when a

gene of unknown function always appears together

with a gene whose function is well known [32, 33].

Large-scale systematic investigations of such gene

syntenies across metagenomes have the potential to

uncover as yet unknown functional couplings.

Assembly of sequences from metagenomic

libraries can result in good draft or even complete

genomes when the target species shows little intras-

pecies variation, but this usually requires a substantial

amount of sequencing. For example, massive

sequencing allowed Pelletier et al. [34] to obtain a

good draft genome of ‘Candidatus Cloacamonas acid-

aminovorans’ from a wastewater anaerobic digester.

Similarly, Hess et al. [35] were able to reconstruct
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15 draft genomes by direct assembly of a cow rumen

metagenome. Erkel et al. [36] could even obtain a

complete genome of a methanogenic archaeon

from the Rice Cluster I clade by direct assembly of

rice soil-derived metagenome, albeit not from a

sample with natural diversity but from an enrich-

ment. Similarly, Iverson et al. [37] succeeded in

retrieving a complete genome of a marine group II

euryarchaeon from an extensive sea surface water

metagenome, despite the genome was represented

by less than 2% of the reads. Spiking experiments

of metagenomes with a pure culture isolate have

suggested that a genome with little intraspecies vari-

ation can be retrieved from a metagenome when it is

covered at least 20-fold [38].

Although assembly does yield longer sequences, it

also bears the risk of creating chimeric contigs, in

particular in habitats with closely related species or

highly conserved sequences that occur across species

(for example as a result from high transposase, phage

and lateral gene transfer activities). Furthermore,

assembly distorts abundance information, as overlap-

ping sequences from an abundant species will be

identified as belonging to the same genome and con-

sequently joined. This leads to a relative underrepre-

sentation of sequences of abundant species. Hence,

gene frequencies are better compared based on read

representation rather than on the basis of assem-

blages. An alternative is to back-trace all reads that

constitute a given contig (or gene), either by direct

mapping of the reads on the assemblies (Figure 1) or

by extracting the respective information from the

assembly ACE file.

Assemblers yield similar results when the coverage

is high, but our own experience indicates that at low

coverage, the assembler and its settings can have a

notable effect. Furthermore, assemblers are mainly

built for assembling all reads into a single sequence,

which is exactly the opposite of the separation of

sequences of different organisms, which metage-

nomics strives for. Furthermore, metagenome assem-

blers need to be more fault tolerant than genome

assemblers to account for strain-level genomic het-

erogeneity, which on the other hand elevates the risk

for chimeric assemblies. Dedicated metagenome

assemblers that try to address these problems are

Genovo [39], Meta-IDBA [40], MetaVelvet [41]

and MAP [42]. The first three of these are intended

for short-read data, whereas MAP also handles longer

reads as they are produced by current 454 FLXþ

pyrosequencers. All four assemblers are claimed to

yield longer assemblies and more representative taxo-

nomic representations than conventional assemblers.

A dedicated stand-alone metagenome scaffolder that

can be used to post-process the unitig graphs of other

assemblers is BAMBUS2 [43].

One particular problem is that the increasing

throughput of NGS platforms imposes challenges

on assembly, in particular with respect to memory

requirements. A current Illumina HiSeq2000 se-

quencer can generate 600 Gb in a single run, and

higher throughput technologies are almost given in

the nearer future. As a result, metagenomics is cur-

rently experiencing a split between smaller, more

targeted projects with assemblies and large-scale pro-

jects without assemblies. The trend in metagenomics

for tremendous data scales has been anticipated even

before second- and third-generation NGS platforms

became available and has been termed ‘megage-

nomics’ [44]. Such megagenome projects, as for ex-

ample the Human Microbiome [45] and Earth

Microbiome [46, 47] Projects, require dedicated bio-

informatic post-processing and data integration pipe-

lines, some of which have yet to be developed.

GENE PREDICTION
Many conventional gene finders require longer

stretches of sequence to discriminate coding from

non-coding sequences. Furthermore, many gene fin-

ders require training sequences from a single species

that is subsequently used to build a species-specific

gene prediction model. This is unsuitable for meta-

genomes that are constituted as a mixture of se-

quences from different organisms and often

comprise only a limited number of long contigs

but mainly short assemblies and unassembled reads.

Furthermore, partial genes must be predicted missing

proper gene starts, stops or even both. In addition,

metagenomes (in particular at low coverage) are

often riddled with frame shifts. This makes gene pre-

diction for metagenomes a non-trivial task [48].

Dedicated gene prediction programs have been

developed for metagenomes, such as MetaGene

[49], MetaGeneAnnotator [50], Orphelia [51, 52]

and FragGeneScan [53]. All these programs have

been built for short reads, but they follow different

approaches (such as machine learning techniques and

Markov models), differ in the precision of ribosomal

binding site and thus correct start prediction and in

their tolerance for sequencing errors.
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No matter how you look at it, the quality of gene

predictions in microbial metagenome data sets is in-

ferior to those of sequenced genomes. Combining

multiple gene finders, screening intergenic regions

for overlooked genes and using dedicated frameshift

detectors [54, 55] are common strategies to over-

come at least some of these limitations.

TAXONOMIC CLASSIFICATION
ANDBINNING
One of the key problems of current metagenomics is

to assign the obtained sequences and their gene func-

tions to dedicated taxa in the habitat. Phylogenetic

marker genes are sparse and thus allow only taxo-

nomic assignment of a minor portion of sequences.

Hence, other approaches are needed that can parti-

tion metagenomes into taxonomically distinct bins

(taxobins) that provide taxon-specific gene inven-

tories with ecologically indicative functions.

A number of such approaches have been de-

veloped that can be categorized into classification

and binning approaches. Classification approaches

assign taxonomies based on similarities between

metagenomic sequences and sequences of known

taxonomy. Binning approaches work intrinsically

(i.e. without reference sequences) and cluster se-

quences based on compositional characteristics. In

general, one can discriminate methods that operate

on the level of protein sequences (gene-based classi-

fication), on the level of intrinsic DNA characteristics

(signature-based binning/classification) and those

that map DNA reads to reference sequences

(mapping-based classification).

Gene-based classification
Gene-based classification requires all the metage-

nomic sequences’ potentially full and partial

protein-coding regions to be translated into their

corresponding protein sequences. There are two

main approaches.

The first is to use conventional basic local align-

ment search tool (BLAST) searches [56] against

protein databases such as the non-redundant NCBI

database or UniProt [57] and to derive taxonomic

information from the resulting hits. This can be done

either by constructing a multiple sequence alignment

from the best matching hits with subsequent phylo-

genetic reconstruction, as implemented in Phylogena

[58], or it can be done directly based on the BLAST

results. Of course, as BLAST is a heuristic for fast

sequence database searches and not a phylogenetic

algorithm per se, the top BLAST hit does not neces-

sarily agree with the taxonomic affiliation of the gene

in question [59]. However, it has been shown that

post-processing a larger number of BLAST hits can

reveal useful taxonomic assignments, for example by

using consensus information as implemented in the

lowest common ancestor algorithm of MEGAN

[60, 61] or the Darkhorse [62] and Kirsten [19]

algorithms.

A second possibility is to infer taxonomic infor-

mation from HMMer searches against Pfam models

[63] as implemented in CARMA [64, 65] or Tree-

phyler [66]. The principle of CARMA is to align a

sequence hitting a Pfam model with the model’s

curated seed alignment, construct a neighbor-joining

tree from the alignment and use this tree to infer the

sequence’s taxonomy. Treephyler follows a similar

approach but uses speed-optimized Pfam domain

prediction and treeing methods. Both approaches

provide more accurate classifications than those

based on BLAST, but they work for fewer se-

quences, as Pfam hits are less frequent than BLAST

hits (typically �20% of the genes).

Signature-based binning/classification
DNA base compositional asymmetries carry a weak

but detectable phylogenetic signal [67] that is most

pronounced within the patterns of statistical over-

and underrepresentation of tetra- to hexanucleotides

[68]. Various algorithms have been used to discrim-

inate this signal from the DNA-compositional back-

ground noise and to use it for taxonomic inference,

e.g. simple [67, 69–71] and advanced Markov

models such as interpolated context models (ICMs)

[72], Bayesian classifiers [73] and machine-learning

algorithms such as support vector machines (SVMs)

[68], kernelized nearest-neighbor approaches [74]

and self-organizing maps (SOMs) [75–81]. Also,

weighted PCA-based [82], Spearman distance-based

[83, 84] and Markov Chain Monte Carlo-based [85]

assessments of oligomer counts have been used. As

the information that DNA composition-based meth-

ods rely on is a function of sequence lengths, most of

these methods deteriorate below 3–5 kb and perform

poorly on sequences shorter than 1 kb. Nonetheless,

methods have been developed for successful binning

of short reads as they are produced by Illumina

machines, e.g. AbundanceBin, which is an unsuper-

vised l-tuple-abundance-based clustering method

[86]. Recently, a signature-based method has been
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developed for fast taxonomic profiling of metagen-

omes that is independent of length and can be used

with very short reads [87].

Mapping-based classification
Sequenced genomes have been used as references

with known taxonomies for read recruitment in

metagenome studies [18]. This approach is particu-

larly useful for habitats with species that have closely

related sequenced relatives. A variant of this

approach is to use habitat-specific sets of reference

genomes for a competitive metagenome read map-

ping [19, 88]. Such sets can be compiled using the

EnvO-lite environmental ontology [89]. Low-qual-

ity repetitive reads should be excluded from the

mapping using tools such as mreps [90], and

phages should be masked to minimize misclassifica-

tions. The mapping itself can be done with tools such

as SSAHA2 [91] or its successor SMALT (http://

www.sanger.ac.uk/resources/software/smalt). Com-

bined mapping information of the reads constituting

a contig can be subsequently combined into a tax-

onomy consensus.

Combinatory classification
All aforementioned methods have specific advantages

and disadvantages, and all are limited by the amount

of information that can be retrieved from a sequence

at all. Although protein-based methods tend to be

more accurate than DNA-based methods, especially

on shorter sequences or even reads, they can only

classify sequences with existing homologues in public

databases. Unfortunately, this is not the case for a

large fraction of the genes within environmental

microorganisms that are typically the focus of meta-

genomic studies. At least half of the genes of novel

sequenced environmental microbes lack dedicated

known functions, and a large proportion of these

genes are hypothetical or conserved hypothetical

genes that have either no or insufficient homologues

with known taxonomic affiliation. This limitation

does not apply to DNA-based methods, which, for

their part, have other limitations. For example,

methods such as ICMs, SVMs or SOMs need to be

pre-trained, which is computationally expensive and

must be continually done to keep pace with the

fast-growing amount of new sequences. On the

other hand, pre-training might lead to better predic-

tion accuracy, especially when there is prior know-

ledge about a habitat’s biodiversity that allows

restriction to a dedicated set of training sequences.

In general, DNA-based methods suffer much

more from a decrease in prediction accuracy when

sequences get shorter than protein-based methods,

even though good classification accuracies have

been reported for sequences �100 bp [72, 86].

One must, however, critically reflect that these

results have been obtained either with simulated

metagenomes or with real metagenomes of rather

low complexity that are not representative for

many environmental settings. Signature-based classi-

fications hence work best with sequences from low-

to medium diverse habitats where ideally longer

assemblies can be obtained or with habitats that fea-

ture species with a pronounced DNA composition

bias.

Mapping-based classification is the most precise

but is often hampered by the availability of suitable

reference sequences to map to. As of this writing,

3171 genomes have been completed and 10 536

are ongoing according to the Genomes OnLine

Database [92, 93]. Although this number seems

impressive, entire clades of the microbial tree are

not represented and others only poorly. However,

this issue is becoming less and less limiting, as tar-

geted sequencing of as yet unsequenced taxa like in

the GEBA project [94] and large-scale metagenome

projects like the Earth Microbiome Project [46, 47]

start to deliver large quantities of microbial genomes

at an increasing pace. Hence, read mapping to closely

related reference genomes might become the main

method for metagenome taxonomic classifications in

the not too distant future.

As of today, there is no standard for the taxonomic

classification of metagenome sequences. Also, taxo-

nomic sequence classification can be error prone, in

particular for habitats with a complex diversity or

high proportions of as yet barely characterized taxa

(e.g. [88]). Rather than using a single method, a

combination of individual methods is currently the

most reasonable approach to partition metagenomes

into taxobins. Such combinations have for example

been implemented in PhymmBL that combines

ICMs and BLAST [72] and in CARMA3 [95] that

combines the original CARMA-approach with

BLAST. In both cases the combination has already

been shown to lead to increased classification accur-

acy. A combination of BLAST-, CARMA-, SOM-

and 16S rRNA gene fragment-based classification

termed ‘Taxometer’ was used in recent metagenome

studies [19, 88]. Also, different binning methods

have been successfully combined to improve
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accuracy [96]. Besides combining different methods,

it has recently been shown that combining multiple

related metagenomes in a joint analysis is a way to

improve binning accuracy [97].

One interesting aspect of taxonomic sequence

classification is that it allows extrapolations onto rela-

tive taxon abundances. Although abundance infor-

mation is lost in the assembly process due to the

merger of similar sequences, abundance information

can be obtained either from taxonomically classified

reads or by back mapping of reads onto taxonomic-

ally classified assemblies (Figure 1). It has been shown

that relative abundances obtained this way can be

close to quantitative cell-based abundances assess-

ments by CARD-FISH [19].

Pre-assembly taxonomic classification
and binning
Binning and taxonomic classification methods are

typically applied after the assembly. However, these

methods can also be used prior to assembly to parti-

tion reads into taxonomic bins, which has the

potential to substantially reduce the complexity of

metagenome assemblies. This strategy might be par-

ticularly useful, when sequences from the habitat are

already available (e.g. fosmids) that can serve as seeds

in an iterative binning-assembly procedure.

BIODIVERSITY ESTIMATION BY16S
RRNAGENE ANALYSIS
About one in every few thousand genes in a meta-

genome data set is a 16S rRNA gene. With 454

pyrosequencing, this typically translates to �1000

reads per picotiter plate (�1 million reads) that

harbor partial 16S rRNA genes with sufficient

lengths and quality for phylogenetic analysis.

Depending on the length and region of the retrieved

partial 16S rRNA gene sequence, phylogenetic ana-

lysis can result into varying taxonomic depths.

However, since the introduction of 454þ a substan-

tial fraction of the respective reads allows for a genus

level assignment, and this situation is expected to

even improve with future increases in pyrosequen-

cing read length. A limitation with pyrosequencing is

that the number of obtained high-quality 16S rRNA

genes might not be sufficient for a representative

biodiversity estimation, particular not for lowly

abundant taxa. Illumina does not have this problem

due to its much higher throughput but on the other

hand is plagued by its comparatively short reads that

can compromise the depth and quality of the taxo-

nomic assignments.

Dedicated analysis frameworks [98] have been

proposed for clustering such data into operational

taxonomic units (OTUs). Representative sequences

for OTUs can subsequently be mapped against a 16S

rRNA reference tree for classification [2, 99]. The

advantage of this method over 16S rRNA gene

clone libraries is that no primers are involved and

hence no primer bias exists (A. Klindworth et al. sub-

mitted for publication). The disadvantage, besides

not obtaining full-length high-quality 16S rRNA

gene sequences, is that different taxa harbor differ-

ent numbers of rRNA operons, which can distort

metagenomic 16S rRNA gene abundances. For ex-

ample, some Planctomycetes feature large genomes but

only a single disjoint rRNA operon [100], which

would lead to an underestimation of their abundance

in relation to average-sized genomes with more

rRNA operons. These limitations notwithstanding,

analysis of metagenomic partial 16S rRNA genes

provides a direct way to assess a habitat’s biodiversity

that in the case of 454þ often provides a resolution

down to the genus level. The resulting information is

essential for identifying misclassifications in the taxo-

nomic classification of other sequences (as outlined

earlier) and identifying taxa that were missed in the

taxonomic classification process.

FUNCTIONALANALYSIS
Analysis of metagenomes involves functional anno-

tation of the predicted genes by database comparison

searches. This typically includes protein BLAST

searches against databases such as SWISSPROT,

NCBI nr or KEGG [101], HMMer searches against

the Pfam [102] and TIGRfam [103] databases, as

well as predictions of tRNA [104] and rRNA

[104] genes, signal peptides [105], transmembrane

regions [106, 107], CRISPR repeats [108] and

sub-cellular localization (e.g. using CoBaltDB

[109], GNBSL [110], PSLpred [111], CELLO [112]

or PSORT-B [113]). Also, dedicated databases are

available for special functions, for example the

CAZY [111, 114] and dbCAN (http://csbl.bmb

.uga.edu/dbCAN/) databases for carbohydrate-active

enzymes, the TSdb [115] and TCDB [116, 117]

databases for transporters and the MetaBioMe [115]

database for enzymes with biotechnological pro-

spects. The resulting annotations are then used as a

basis for functional data mining including metabolic
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reconstruction. Dedicated metagenome annotation

systems have been developed to aid these tasks,

e.g. WebMGA [118], IMG/M [119–121] and

MG-RAST [61, 122, 123]. All three have expanded

beyond mere annotation systems and continue to add

useful features such as biodiversity analysis, taxo-

nomic classification and metagenome comparisons.

For the latter, a number of dedicated comparison

tools have been developed as well, including

METAREP [124], STAMP [125], CoMet [126]

and RAMMCAP [127]. METAREP and STAMP

do not take sequence but already pre-processed

data as inputs—tabulated annotations (such as gene

ontology (GO) terms, enzyme commission numbers,

Pfam hits and BLAST hits) in the case of METAREP

and a contingency table of properties (for example

exports from Metagenomics Rapid Annotation using

Subsystems Technology (MG-RAST), Integrated

Microbial Genomes (IMG)/M or CoMet) in the

case of STAMP. Both tools feature various statistical

tests and visualizations. METAREP is a web service

developed by the J. Craig Venter Institute that can

compare up to 20 or more metagenomes, whereas

STAMP is a stand-alone software. The CoMet and

RAMNCAP web servers in contrast do not require

pre-computed data. CoMet takes sequence files as an

input, does an Orphelia gene prediction, subse-

quently runs HMMer against the Pfam database fol-

lowed by multi-dimensional scaling and hierarchical

clustering analysis on the Pfam hits and associated

GO terms plus visualization of the data.

RAMMCAP takes raw reads as an input, does a

six-reading frame open reading frame (ORF) predic-

tion, clusters reads and ORFs, does a HMMer and

BLAST-based annotation and allows comparison of

the data, e.g. by similarity matrices. RAMMCAP is

part of the CAMERA data portal [128, 129], which

currently comes closest to an integrative processing

pipeline for metagenomes with various tools for data

retrieval, upload, querying and analysis.

Although automatic in silico annotation is essential

for metagenome analysis, one should not forget that

a substantial proportion of such annotations are er-

roneous or even incorrect. Aside from well-studied

pathways of the core metabolism, automatic annota-

tions are also often unspecific, i.e. restricted to as-

signing general functions (e.g. lipase, oxidoreductase,

alcohol dehydrogenase) without resolving the

involved specific substrates and products. This

reflects a fundamental lack of knowledge rather

than a limitation of bioinformatic methods per se

and can only be addressed by future high-throughput

functional screening pipelines.

One of the intriguing aspects of metagenomics is

that typically about half of the genes in a metagenome

have as yet unknown functions. Hence, restricting

metagenome analyses to genes with functional anno-

tations equals to ignoring large proportions of the

genes. As a solution, it has been proposed to cluster

and analyze metagenomic ORFs in a similar way as

OTUs in biodiversity analyses. Such clusters have

been termed operational protein families and can be

analyzed, for example with MG-DOTUR [130].

AUTOMATIZATION,
STANDARDIZATIONAND
CONTEXTUALDATA
Until recently, the capacity to sequence has been the

limiting factor for metagenome analysis. However,

the continual increase in sequencing capacity and

decline of costs meanwhile have turned post-

metagenomic data analysis into the main bottleneck.

Although progress in sequencing technologies still

continues at an exponential pace, individuals who

analyze the data do not scale equally well. As a con-

sequence, the cost of sequencing drops continuously,

whereas the costs for bioinformatic data analysis go

up [131]. This is still not recognized widely enough,

as metagenome projects tend to suffer from insuffi-

cient resource allocation for data post-processing.

The latter stresses the needs for further development

of semi-automated metagenome analysis tools that

allow scientist to handle the wealth of data from

recent metagenomics. Steps in metagenome analyses

that can be automated should be automated to

ensure quality, but this requires the establishment

of commonly accepted data formats for metagenome

sequences and their associated contextual (meta)data,

as well as defined interfaces for data exchange and

integration—a task that is tackled by the Genomic

Standards Consortium (GSC, http://gensc.org)

[132]. Contextual data are among the key factors

for successful metagenomes analyses, in particular

when it comes to interpretation of time series or

biogeographic data. Contextual data are all the data

that are associated with a metagenome, such as habi-

tat description (including geographic location and

common physicochemical parameters) and sampling

procedure (including sampling time). The GSC has

published standards for the minimum information

about a metagenome sequence (MIMS) [133] as
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part of the minimum information about any se-

quence (MIxS) standards and checklist [134], which

are supported by the International Nucleotide

Sequence Databases Collaboration (INSDC).

Similarly, standards have been devised in terms of

data formats to ensure data inter-operability, such

as the genomic contextual data markup language

[135]. It is important that contextual data are col-

lected and integrated into databases, because in the

long run these data will allow to extract correlations

between geography, time, prevailing environmental

conditions and functions from metagenomic data

that otherwise never would be uncovered [136].

As of today, there is no comprehensive tool for

metagenome analysis that incorporates all types of

analysis (biodiversity analysis, taxobinning, functional

annotation, metabolic reconstruction and sophisti-

cated statistical comparisons). Consequently, scien-

tists/bioinformaticians in this field need to operate,

merge and interpret results from various tools, which

for larger data sets can be a daunting task. In terms of

pipelines, MetaAMOS [137] provides an integrated

solution for the initial post-processing of mated read

metagenome data that supports different assemblers,

the BAMBUS 2 scaffolder and various gene predic-

tion, annotation and taxonomic classification tools.

In terms of data integration, CAMERA has so far

developed the most comprehensive infrastructure

for holistic metagenome analyses, and further tools

and pipelines are currently developed in the GSC

and Micro B3 project (http://www.microb3.eu/)

frameworks.

DATA SUBMISSION
Progress in sequencing allows for metagenomes with

increasing sizes. A full run on an Illumina HiSeq2000

sequencer does not only produce 600 Gb of

sequences but also the FASTQ raw data files are

multiple times as large. Although sequencing facil-

ities send these data to their customers on

Terabyte-scale hard disc drives, such data volumes

are certainly not suitable anymore for upload to

data analysis servers or INSDC databases for submis-

sion, even not with fast user datagram protocoll

(UDP) protocols such as Aspera Connect [138].

This is a problem that is as yet unsolved. Also, the

INSDC databases are currently not prepared for

handling the quality of many metagenomes (perva-

siveness of frameshifts, automatically generated

non-standard annotations and large amounts of

partial genes) and their accessory data (such as lists

of metagenomic 16S rRNA gene fragments includ-

ing taxonomic classifications). It is clear that currently

sequencing technologies evolve faster than bioinfor-

matic infrastructures for post-genomic analysis are

built. As mentioned before, this has been recognized

and efforts such as those of the GSC, Micro B3,

CAMERA, MG-RAST and IMG/M are on the

way to define standards and develop pipelines for

future metagenome data handling. However, it is

the authors’ conviction that ultimately the INSDC

databases have the mandate and should maintain such

tools and the associated infrastructure in the long

run. The European Bioinformatics Institute has

recognized this and recently has made a submission

and analysis pipeline for 454/pyrosequencing meta-

genome data available (https://www.ebi.ac.uk/

metagenomics).

FUTURE PERSPECTIVES
The newest generation of sequencers, such as the

PacBio RS, the Ion Torrent Proton or the ONT

GRIDIon/MINIon, will continue to propel the

field of metagenomics, and who knows whether at

some point in the future technologies such as the

conceptual IBM/Roche DNA transistor [139] will

revolutionize the field again. On the one hand,

development of affordable bench-top devices

(454 Junior, Illumina MiSeq, Ion Torrent PGM

and Proton) has led to a democratization of sequen-

cing, and future devices such as the ONT MINIon

could even be used for metagenomic analyses

directly in the field. On the other hand, the

ever-growing throughput of NGS sequencers is

making data analysis increasingly complex.

Although smaller and medium-sized metagen-

omes can be analyzed with the resources described

so far, different infrastructures and bioinformatic

pipelines are necessary for future large-scale projects.

‘Megagenome’ projects reach the size of many

terabytes of sequences (and beyond), and instead of

moving these data around, it is reasonable that

they reside at the sequencing institution and that

these institutions provide pipelines for remote data

analyses. This implies that large-scale sequencing

and large-scale computing have become inseparable.

For example, the BGI (formerly Beijing Genomics

Institute, http://en.genomics.cn) has projected an

integrated national center for sample storage,

sequencing, data storage and analysis. Monolithic
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data centers are one way to address this, but also

cloud computing such as Amazon’s EC2/S3 can be

used as a viable and scalable alternative for large-scale

metagenome data analysis [140], provided that the

data can be transferred to the cloud, and appropriate

data security is guaranteed.

Metagenomics constitutes an invaluable tool

for investigating complete microbial communities

in situ, in particular when integrated with biodiver-

sity, expression and contextual data (metadata). Con-

tinuous advancements in sequencing technologies

not only allow for addressing more and more com-

plex habitats but also impose growing demands on

bioinformatic data post-processing. Not long ago,

sampling and associated logistics, clone library con-

struction and Sanger sequencing of a couple of

inserts were the time-consuming steps in metage-

nomics. Nowadays, analyzing the wealth of data

has become the bottleneck, in particular for larger

metagenome projects. This stresses the importance of

integrative bioinformatic software pipelines for

metagenomics/megagenomics, something that we

as scientists must support with all efforts to get the

most out of metagenome data.

Key Points

� Metagenomics has become an indispensable and widely afford-
able tool for studying as yet uncultivable microbes (Bacteria,
Archaea and viruses).

� Progress in NGS allows for larger metagenomes, for studying
series of metagenomes over time and space and for addressing
increasingly complex habitats.

� A new type of integrative ecosystems biology study seeks to
combine metagenomics with metatranscriptome, metapro-
teome, metabolome and biodiversity and contextual (meta)data
analyses.

� There are several bioinformatic tools and pipelines for different
aspects of metagenome analysis, but there is no standardized,
comprehensive pipeline covering all aspects. Large-scale ‘mega-
genome’ projects are particularly affected and hence face chal-
lenges with respect to data handling, data integration and data
analysis.

� Ongoing international efforts strive to establish standards and
tools for future large-scalemetagenome analysis that are neces-
sary to turn the proverbial metagenomic data deluge into
knowledge.
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