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Summary 

Deep-sea hydrothermal systems are unique habitats for microbial life with primary 

production based on chemosynthesis. They are considered to be windows to the subsurface 

biosphere. Their far more accessible shallow-sea counterparts are valuable targets to study the 

effects of hydrothermal activity on geology, seawater chemistry and microorganisms. Such an 

area of shallow-sea hydrothermal venting is observed approximately 2.5 km east off Panarea 

Island (Sicily, Italy). This system is characterized by fluid temperatures of up to 135°C, gas 

emissions dominated by CO2 and precipitation of elemental sulfur on the seafloor. It is quite 

well studied, yet, only very few studies exist on its microbial ecology. This thesis is therefore 

targeting the microbiology of sediment cores as part of an interdisciplinary project which 

combines geological, geochemical, biomarker and molecular biological investigations. It was 

intended to correlate the environmental parameters with the taxonomic composition and the 

metagenomes of the microbial community thereby gaining insights into the interaction of 

geosphere and biosphere.  

All samples were taken at Hot Lake, an oval-shaped (~10 by 6 meters) shallow (~2.5 m 

deep) depression at 18 m below sea level. The sediments in this depression are strongly affected 

by hydrothermal activity. In situ temperatures at 10 cm below sea floor of 36°C and 74°C were 

measured at two different sites within Hot Lake. Based on the physico-chemical parameters, a 

thermodynamic modeling was performed which revealed sulfur oxidation and sulfur reduction 

to be exergonic at Hot Lake.  

Microbial community structures of different sediment layers were first screened by 

automated rRNA intergenic spacer analysis (ARISA). Based on the ARISA fingerprints, a total 

of eight bacterial and archaeal 16S rRNA gene libraries were constructed from surface to 

bottom layers of sediments to gain more insights into microbial diversity. Comparative 

sequence analyses revealed a dominance of sequences affiliated with Epsilonproteobacteria, 

Deltaproteobacteria and Bacteroidetes. In the surface sediments, sequences close to 

anoxygenic phototrophic Chlorobi were also detected. In the bottom sediments, thermophilic 

bacteria such as Thermodesulfobacteria spp. were found. Hyperthermophilic Archaea 
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sequences related to Desulfurococcaceae and Korarchaeota were retrieved from 74°C hot 

sediment. Based on the most closely related cultured representatives, it could be deduced that 

the majority of microorganisms in Hot Lake sediments have a sulfur-dependent metabolism, 

including sulfide oxidation, sulfur reduction or sulfate reduction. 

Fluorescence in situ hybridization showed the dominance of Bacteria in all depths of 

sediments. With increasing depth and temperature, the abundance of Archaea increased 

relatively to that of Bacteria. Metagenomic analyses revealed that Epsilonproteobacteria were 

dominating surface sediments of Hot Lake where they gain energy from sulfur metabolism to 

fix CO2 by the reductive tricarboxylic acid (rTCA) cycle. This is consistent with findings 

reported from deep-sea hydrothermal vent systems.  

The results have led to the conclusion that mixing between hydrothermal fluids and 

seawater results in distinctly different temperature gradients and ecological niches in Hot Lake 

sediments. Overall, the correlation of geochemical profiles, IPL analyses, characterization of 

the microbiological community and metagenomic analyses provided strong evidence for a 

sulfur-dominated metabolism in the surface sediments of Hot Lake. 
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Zusammenfassung 

Tiefseehydrothermalquellen sind einzigartige Lebensräume für mikrobielle 

Lebensgemeinschaften, deren Primärproduktion auf Chemosynthese beruht. Sie sind Fenster in 

die Biosphäre des Untergrunds. Die leichter zugänglichere Flachwasserhydrothermalgebiete 

sind wertvolle Ziele, um die Auswirkungen hydrothermaler Aktivitäten auf die Geologie, die 

Meerwasserchemie und die Mikroorganismen zu untersuchen. Ein solches Gebiet befindet sich 

ungefähr 2,5 km östlich der Insel Panarea (Sizilien, Italien). Die Temperatur der 

Hydrothermalfluide steigt hier bis auf 135°C an. Die emittierte Gase enthalten überwiegend 

CO2. Auf dem Meeresboden kommt es zur Präzipitation von Elementarschwefel. Obwohl das 

Gebiet recht gut untersucht ist, gibt es bisher nur sehr wenige Untersuchungen zur mikrobiellen 

Ökologie der Hydrothermalquellen von Panarea. Diese Dissertation ist Teil eines 

interdisziplinären Projekts, das geologische, geochemische, Biomarker- und 

molekularbiologische Untersuchungen von Sedimentkernen kombiniert. Es war beabsichtigt, 

durch die Korrelation der Umweltparameter mit der taxonomischen Zusammensetzung und 

dem Metagenom der mikrobiellen Gemeinschaft Einblicke zu gewinnen, wie die Geosphäre mit 

der Biosphäre wechselwirkt. 

Alle hier untersuchten Proben stammen vom „Hot Lake“, einer ovalen, flachen 

Vertiefung, die in 18 m Wassertiefe liegt. Die Sedimente im Becken werden stark von 

hydrothermaler Aktivität beeinflusst. In 10 cm Tiefe herrschen hier an zwei Messpunkten 

Temperaturen von 36°C und 74°C. Basiert auf den gemessenen physikochemischen Parametern 

zeigten thermodynamische Berechnungen, dass sowohl die Schwefeloxidation als auch die 

Schwefelreduktion exergonisch sind. 

Die Zusammensetzung der mikrobiellen Gemeinschaften wurde zuerst mittels ARISA 

verglichen, wobei in unterschiedlichen Sedimenttiefen deutliche Unterschiede vorhanden waren. 

Vergleichende 16S rRNA-Genanalysen zeigten eine Dominanz von Sequenzen der 

Epsilonproteobacteria, Deltaproteobacteria und Bacteroidetes. In der Oberflächenschicht 

wurden auch Sequenzen von anoxygenen phototrophen Chlorobien entdeckt. In tieferen 
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Sedimentschichten wurden Sequenzen von thermophilien Bakterien (z.B. 

Thermodesulfobacteria) gefunden. Sequenzen von hyperthermophilien Archaea (z.B. 

Desulfurococcaceae und Korarchaeota) wurden nur in 74°C heißem Sediment gefunden. Von 

den nächsten kultivierten Verwandten ist bekannt, dass sie die Energie meist durch Schwefel-

basierte Stoffwechselwege gewinnen (z.B. Sulfidoxidation, Schwefelreduktion oder 

Sulfatreduktion). 

Die Fluoreszenz in situ Hybridisierung zeigte, dass Bacteria in allen Tiefen dominierten. 

Mit zunehmender Tiefe und Temperatur stieg der Anteil von Archaea im Verhältnis zu 

Bacteria an. Eine metagenomische Analyse zeigte, dass Epsilonproteobacteria in der 

Oberflächenschicht dominierten, wo sie Energie aus dem Schwefelstoffwechsel für die CO2-

Fixierung durch den reversen Tricarbonsäurezyklus (rTCA) nutzten. Dies bestätigte Befunde 

von Tiefseehydrothermalquellen. 

Die Ergebnisse zeigen, dass durch die Mischung von Hydrothermalfluiden und 

Meerwasser bei verschiedenen Temperaturen verschiedene ökologische Nischen im Sediment 

von Hot Lake entstehen. Zusammenfassend wurden durch die Korrelation von geochemischen 

Profilen und IPL-Analysen mit der Charakterisierung der mikrobiologischen 

Lebensgemeinschaften einschließlich der metagenomischen Analysen starke Hinweise für eine 

dominierende Rolle des Schwefelstoffwechsels in den Oberflächensedimenten von Hot Lake 

gefunden. 
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I  Introduction 

1. Hydrothermal vents 

Hydrothermal vents appear commonly at tectonically active sites where plates are moving 

apart or at volcanic hotspots both in shallow regions close to the water surface and in deeper 

waters (Figure 1) (Martin et al., 2008). They are characterized by the emission of thermal fluids 

from the subsurface, often accompanied by the formation of hydrothermal mineral deposits in 

the form of chimney structures surrounding advecting vent fluids and/or the deposition of 

mineral particles following mixing of vent fluids with seawater (Jannasch and Mottl, 1985). 

Through water-rock interaction these hydrothermal fluids are highly reduced compared to sea 

water (Tivey, 2007). Hydrothermal vents are often considered “oases” for endemic species that 

depend on chemosynthesis-based food webs (Beaulieu et al., 2011). Because the vents are so 

discrete and may be ephemeral on both short (ecological) and long (evolutionary) time scales, it 

is an intriguing question for biologists how the populations were established and maintained at 

these specific environments.  

 
Figure 1. Global distribution of known hydrothermal vents (Martin et al., 2008)  
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1.1  Deep-sea hydrothermal vents 

The first deep-sea hydrothermal vent was discovered in 1977 at the Galápagos Rift, a part 

of sea floor spreading axes (Corliss et al., 1979). This finding initiated a new era of scientific 

investigations on deep-sea hydrothermal vents. Starting from the East Pacific Rise, warm (5°C-

23°C) and hot vent fields (270°C-380°C) were found (Jannasch and Mottl, 1985). It was shown 

that chemosynthesis instead of photosynthesis is at the basis of the food chain (Jannasch and 

Mottl, 1985). Chemosynthesis was proposed in 1890 by Sergey Nikolayevich Winogradsky in 

contrast to photosynthesis. The process involves biosynthesis of organic carbon compounds 

from CO2 based on the energy gained by the oxidation of reduced inorganic compounds. A 

variety of different deep sea hydrothermal niches have been investigated (Figure 2) (Orcutt et 

al., 2011). Free-living microbial communities and symbioses using different strategies to adapt 

to the environments have been broadly studied (Baker et al., 2010).  
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Figure 2. Photographs of several ocean crusts and hydrothermal vents in the dark ocean (Orcutt 

et al., 2011). (A) Sulfide chimney. (B) Active and inactive hydrothermal chimneys. (C) Riftia 

pachyptila tube worms at East Pacific Rise. (D) Piece of altered basaltic oceanic crust. (E) 

Young basalt flows. (F) White smoker hydrothermal chimney. (G) Black smoker hydrothermal 

chimney. (H) Sixty-meter-tall carbonate chimney. 
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1.2 Shallow-sea hydrothermal vents 

The cut-off between “shallow” and “deep” hydrothermal vent fields was defined by 

Tarasov and colleagues (Tarasov et al., 2005) at a depth of approximately 200 m, based on 

faunal differences. Shallow hydrothermal vents are present all over the world and usually occur 

near active coastal or submarine volcanoes (Figure 3) (Gamo and Glasby, 2003). Deep-sea 

hydrothermal fluids are mainly derived from the circulation of seawater beneath the seafloor 

while coastal hydrothermal fluids may consist of a more complex mixture of seawater, meteoric 

water (groundwater) and magmatic fluids. Tidal forcing, sea level change and earthquake 

activity may as well affect the rates of fluid venting and dispersion of hydrothermal plumes. 

The chemical composition of coastal hydrothermal fluids is variable because it depends not 

only on water-rock interaction at high temperatures but also on the rate of subduction of the 

slab material at the convergent plate margin and the decomposition of organic matter within the 

coastal sediments. The penetration of light might allow for photosynthesis at shallow vent 

systems. At shallower depths the sedimentation of organic matter formed by photosynthesis is 

more pronounced and must be considered as an additional source of nutrition.  
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Figure 3. Areas of shallow-water (< 200 m) hydrothermal venting. (1) Kolbeinsey. (2) 

Tyrrhenian Sea (Capes Palinuro and Messino, Bahia Pozzuoli and Panarea Island). (3) Aegean 

Sea (Islands Santorini and Milos). (4) Azores. (5) Kraterbright. (6) Kunashir Island. (7) 

Kagoshima Bay. (8) Tokora and Iwo Islands. (9) Ogasawara Islands. (10) Kueishan Ialand. (11) 

Mariana Islands. (12) Papua New Guinea. (13) New Zealand. (14) California. (15) Baja 

California. Modified from Tarasov et al. (Tarasov et al., 2005). 
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1.2.1 Physical and chemical characteristics of shallow-sea hydrothermal vents 

The existence of venting in shallow waters is often observed by the presence of streams 

of gas bubbles. This is caused by the  reduced solubility of gases at lower pressures and leads to 

bubble formation as gas-saturated water rises through the sediments (Fitzsimons et al., 1997; 

Duan et al., 1992; Dando et al., 2000). Phase separation can occur in shallow-sea hydrothermal 

vents and lead to the discharge of both low and high salinity fluids (Dando et al., 2000). When 

the fluids boil in the subsurface, it results in phase separation and leaves residual hydrothermal 

brine. In the subduction zone off Milos, Greece, for example (Figure 3 (3)), anoxic brine was 

observed which resulted in the growth of bacterial mats dominated by sulfur bacteria 

(Fitzsimons et al., 1997). The temperature of fluids at shallow depths is normally between 10°C 

to 119°C (Figure 4) (Dando et al., 1995; Tarasov et al., 1999; Tarasov et al., 2005). Main gas 

compositions observed at shallow hydrothermal vents are usually dominated by CO2 with 

different concentration of CH4, H2S and H2 (Dando et al., 1995; Hoaki et al., 1995; Tarasov et 

al., 1999; Dando et al., 2000; Ishibashi et al., 2008). 
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Figure 4. Major biological and geochemical processes in coastal shallow-sea hydrothermal 

vent systems (Tarasov et al., 2005). 
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As seawater percolates through the seafloor, currents are generated by high heat flow. 

The chemical composition is altered and the dissolved sulfate is depleted. At the same time, 

there is a loading of fluids with reduced metals (Bischoff and Dickson, 1975). The leaching of 

the crust and the subsequent mixing of the generated fluids with seawater results in mineral 

precipitates (Edmond et al., 1979). Vent fluids at shallow-sea hydrothermal vents are usually 

enriched in H2S, H2, CH4, Fe (II) and different trace elements and depleted in Mg2+ and SO4
2- 

compared to standard sea water concentration (Table 1). 

Table 1. Chemical composition of shallow-water vent fluids compared to seawater. Modified 

from Tarasov et al. (Tarasov et al., 2005). 
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1.2.2 Hydrothermal systems around the Aeolian Islands 

The hydrothermalism in the Mediterranean Sea originates from the collision of the 

African and the European plate, with the subduction of the oceanic African plate beneath the 

European plate. This subduction gives rise to active volcanic arcs in the Tyrrhenian and Aegean 

Seas. 

Well known examples of volcanism are Etna, Vulcano, Stromboli and Vesuvius in Italy 

and Santorini and Nisiros in Greece (Dando et al., 2000). Bubble plumes have been detected 

and bacterial mats with high content of minerals are often observed (Dando et al., 1995). 

Sulfide deposits of hydrothermal origin, consisting of pyrite, hematite, sphalerite, galena and 

barite have been found at the Aeolian Island Arc off Panarea (Marani et al., 1997) and at the 

Palinuro seamount (Eckhardt et al., 1997). Fumarolic activity as well as sulfide deposits have 

been observed on the submerged beach sand on Baia di Levante on the Vulcano Island 

(Honnorez, 1969).  

The Aeolian Islands are composed of seven major islands - Alicudi, Flicudi, Salina, 

Vulcano, Lipari, Panarea and Stromboli and several associated seamounts (Figure 5). They 

belong to the Aeolian archipelago, representing a ring-shaped volcanic arc in the south-eastern 

Tyrrhenian Sea. The arc has a diameter of approximately 200 km. It extends to the 

Preloritanian-Calabrian orogenic belt and the abyssal Marsili basin (Gabbianelli et al., 1990; 

Esposito et al., 2006; Gugliandolo et al., 2006; Capaccioni et al., 2007). The volcanic activity 

lasted during the entire Quaternary, starting about 400 kya and is still existent (Calanchi et al., 

2002; Gugliandolo et al., 2006). The Aeolian volcanic arc can be divided into three sections. 

Panarea and Stromboli constitute the eastern sector. Both Islands are arranged along NE – SW 

trending extensional faults (Esposito et al., 2006). The Panarea volcanic complex consists of the 

main island Panarea as well as several small islets to its east (Basiluzzo, Bottaro, Lisca Bianca, 

Lisca Nera, Panarelli, Formiche and Dattilo). Underwater gas discharges have been observed 

off Panarea among these small islets. The emissions are usually adjacent to white sulfur 

deposits associated with hydrothermal fluids (Italiano and Nuccio, 1991).  
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Figure 5. Map of Panarea Island and surrounded islets. Sampling site of this thesis: Hot Lake 

(Esposito et al., 2006; Capaccioni et al., 2007).  
 

The venting gases at Panarea are dominated by CO2 with more than 95% of the total 

emitted gases. Variable concentrations of reactive gases, such as H2S, O2, CH4, CO and H2 as 

well as inert gases (N2, Ar, He) have been observed. Thermal fluids samples have been as well 

collected and analyzed. The enrichment of salts in the thermal fluids indicates high-temperature 

water-rock interaction (Italiano and Nuccio, 1991; Caracausi et al., 2005; Tassi et al., 2009). 

The temperature detected at the emission points were in the range of 30°C to 130°C (Maugeri et 

al., 2011). The thermal fluids escape from fractures in the rocks or diffuse through the sandy 

sediments. At the venting areas, Fe-mineralization and sulfide deposits have been often 

observed (Gabbianelli et al., 1990; Gamberi et al., 1997).  

Hot Lake 
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2. Microbial diversity and community structure at shallow-sea hydrothermal 
vents  

Shallow-sea hydrothermal vents as well as their deep-sea counterparts supply energy at 

niches for diversified microorganisms (Figure 4). Bacterial mats are common features. They 

reach a thickness of up to 30 cm. Those at shallow sites often have a more complex nature than 

those at deep sea sites (Tarasov et al., 2005). Some mats also contain algae like diatoms 

(Ryabushko and Tarasov, 1989; Starynin et al., 1989; Hoaki et al., 1995). The bacterial mats are 

generally composed of sulfur bacteria of the genera Thiobacillus, Thiomicrospira and 

Thiosphaera. Also filamentous sulfur bacteria such as Thiothrix or Beggiatoa can be found. 

Important biogeochemical processes in these mats are the oxidation of reduced sulfur 

compounds and autotrophy (Tarasov et al., 2005). Cyanobacteria have been extensively studied 

at terrestrial sites in Greece and around vent outlets at Vulcano Island (Giaccone, 1969; 

Anagnostidis and Pantazidou, 1988). 

Many volcanic areas serve as habitats for a wide variety of high temperature 

(thermophilic) microorganisms. They thrive in subsurface parts of hydrothermal systems and in 

the sediment near thermal emissions. To date, more than 200 species of thermophiles are 

known and over 35 species of thermophiles and hyperthermophiles have been isolated from 

west Pacific and Mediterranean vents (Table 2) (Dando et al., 1999; Kostyukova et al., 1999; 

Amend et al., 2003). Among these groups of thermophiles and hyperthermophiles, most of the 

isolates from the Tyrrhenian Sea have been isolated from Vulcano Island. Of the more than two 

dozen known hyperthermophilic genera from continental and marine systems worldwide, at 

least ten of them are present at Vulcano Island. 
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Table 2. Thermophilic and hyperthermophilic Archaea and Bacteria isolated from 

Mediterranean  Sea (Dando et al., 1999). 
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The microbial diversity in hydrothermal vents off Panarea has also been studied. 

Mesophilic chemolithotrophic sulfur oxidizing bacteria resembling Thiobacillus spp. have been 

isolated from vent fluids (Gugliandolo et al., 1999). Moreover, several thermophilic microbial 

strains (Thermococcus stetteri, T. peptonophilus, T. celer, Paleococcus profundus and P. 

barossii) have been isolated off Panarea.  These organisms were isolated from a Panarea vent 

system at 20 m bsl with fluid temperature of 80°C.  

Submarine hydrothermal vents are known for extremes in geochemical conditions and 

sharp physical and chemical gradients. They offer a variety of habitats or microniches to 

metabolically diverse microorganisms (Jannasch and Mottl, 1985; Baross and Deming, 1995; 

Karl, 1995). In order to comprehend the spatial distribution and changes in community structure 

along these gradients, cultivation independent methods were applied for the study of microbial 

diversity. The microbial abundance in thermal fluids has been investigated by direct cell 

staining of 4’,6-diamidino-2-phenylindole (DAPI) at several vent sites off Lipari, Vulcano and 

Panarea in the Aeolian arc (Gugliandolo et al., 1999). Picophytoplankton as well as 

picoplankton has been quantified indicating the importance of photosynthesis in these 

ecosystems (Gugliandolo et al., 1999). Besides enumeration of general microbial abundances, 

fluorescence in situ hybridization (FISH) has been applied to samples from Vulcano. It has 

been shown that Archaea were more abundant than Bacteria in the hot sediments at Vulcano 

Island. New probes for hyperthermophiles have been designed to investigate the community 

structure (Rusch and Amend, 2004; Rusch et al., 2005; Rusch and Amend, 2008). 

The biodiversity of both Bacteria and Archaea thriving at vent systems off Panarea has 

been studied with the fingerprinting method, denaturing gradient gel electrophoresis (DGGE). 

Microorganisms will be detected only if their proportion is greater than 1% of the community 

(Muyzer et al., 1993). Samples including hydrothermal fluid, thermal water and sediment 

samples were taken at three different vent sites. These sites have been characterized by different 

physico-chemical parameters. The biggest difference was in temperatures and pH values. 

DGGE results revealed the dominance of different groups of Bacteria and Archaea. Bacterial 

16S rRNA sequences affiliated mostly with thermophilic Firmicutes, Gammaproteobacteria, 
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Epsilonproteobacteria, Alphaproteobacteria and Chlorobi whereas archaeal sequences were 

mostly related to clusters of sequences originating from other hydrothermal vents and without  

any cultivated representative (Maugeri et al., 2009; Maugeri et al., 2010; Maugeri et al., 2011). 
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3. Microbial metabolism at shallow-sea hydrothermal vents 

3.1 Metabolic diversity 

Geochemistry of shallow hydrothermal vents is not only strongly influenced by the 

temperature and chemical composition of the hydrothermal fluids but also by the activity of 

microorganisms. The presence of gas phase and enrichment of O2 compared to deep sea vents is 

as well a profound feature of shallow hydrothermal systems. In addition, the entrainment of 

meteoric water mixing with thermal fluids and the input of organic material results in multiple 

ecological niches (Rusch et al., 2005; Pichler, 2005; Tarasov et al., 2005). Many of the isolated 

thermophilic and hyperthermophilic Archaea and Bacteria are able to obtain their energy 

through the oxidation of reduced sulfur compounds. Halothiobacillus kellyi isolated from the 

vent systems at the Aegean Sea has been shown to be a sulfur oxidizer (Sievert et al., 2000b). 

Archaeoglobus fulgidus isolated from Vulcano Island is known as thermophilic sulfate-

reducing archaeon which can oxidize H2 (Stetter, 1988). Methanogens such as Methanococcus 

thermolithotrophicus grow on H2 and CO2 (Huber et al., 1982). With the input of enriched 

metal species from the thermal fluids, additional redox pairs can serve as energy sources for 

microorganisms. An anaerobic, Fe2+-oxidizing archaeon was isolated from a shallow submarine 

hydrothermal system at Vulcano Island. In addition to ferrous iron this species can also use H2 

and sulfide as electron donors while NO3
– can serve as electron acceptor. In the presence of H2, 

also S2O3
2– can serve as electron acceptor for this archaeon (Hafenbradl et al., 1996).  

Photoautotrophs utilize solar energy and dissolved inorganic carbon as their carbon 

source. In the water column of shallow submarine systems, photosynthesis has been described 

and contributes to carbon assimilation (Sorokin et al., 1998). Direct counting of autofluorescent 

picophytoplankton and the presence of 16S rRNA sequences affiliated to Chlorobi off Panarea 

supported the importance of photosynthesis (Maugeri et al., 2009). Chlorobi are also known as 

green sulfur bacteria. They obtain energy through anoxygenic photosynthesis. Reduced sulfur 

compounds serve as electron donors. CO2 is assimilated and fixed by the reductive tricarboxylic 

acid cycle (Evans et al., 1966; Fuchs et al., 1980). Sulfide is oxidized to sulfate with the 
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intermediate accumulation of elemental sulfur globules outside of the cells. Some strains also 

use thiosulfate and H2 as photosynthetic electron donors. 

In addition of autotrophy, a vast majority of known thermophiles and hyperthermophiles 

are facultative or obligate heterotrophs.  They catalyze a tremendous array of varying metabolic 

processes. Electron donors in redox reactions include H2, Fe2+, H2S, S0, S2O3
2-, S4O6

2-, sulfide 

minerals, CH4, various mono-, di-, and hydroxy-carboxylic acids, alcohols, amino acids, and 

complex organic substrates. Electron acceptors include O2, Fe3+, CO2, CO, NO3
-, NO2

-, NO, 

N2O, SO4
2-, SO3

2-, S2O3
2- and S0 (Amend and Shock, 2001). Members of Thermococcales, 

Archaeoglobus, Thermosphaera and Thermotoga are known to gain energy by oxidizing or 

fermenting aldoses (Stetter, 1988).  
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3.2 Biological thermodynamics 

Cultivation independent methods applied to study the microbial diversity at shallow-sea 

hydrothermal vent systems revealed a similarity of community structures between deep- and 

shallow-sea vent systems (Sievert et al., 1999; Maugeri et al., 2009; Sievert et al., 2000a). To 

understand the microbiology and ecology of microbial habitats, it is important to consider how 

microorganisms utilize substrates and gain energy. Beyond the metabolisms observed from 

isolated Bacteria and Archaea, potential energetic reactions are not fully discovered or 

understood at shallow-sea hydrothermal vents.  

Mixing of reduced hydrothermal fluids and oxidized seawater yields a variety of redox 

couples. Through geochemical modeling of the mixing of hydrothermal fluids and seawater, 

without direct observation, available metabolic energy can be calculated (McCollom and Shock, 

1997; McCollom, 2000). The amount of potential energy for biosynthesis depends on the 

availability and speciation of electron donors and acceptors. The potential for primary biomass 

production could be estimated by considering the amount of chemical energy available from 

redox disequilibria. The familiar equation being used is 

                                                     �G = �G° + RT ln Q 

Where �G is the free energy of the reaction, �G° is the standard free energy, R is the 

universal gas constant, T the temperature, and Q the activity quotient of the compounds 

involved in the reaction. Common redox reactions have been described and characterized for 

deep sea hydrothermal vent systems (Table 3). 
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Table 3. Common redox reactions and associated standard free energies of reactions that occur 

at deep sea hydrothermal vents (Orcutt et al., 2011). 

 

Thermodynamic modeling has been used to evaluate possible metabolisms in submarine 

vents, sediment seeps and geothermal wells in the hydrothermal system of Vulcano Island 

(Amend et al., 2003; Rogers and Amend, 2006). Several possible metabolisms such as  

aceticlastic methanogenesis (Jones et al., 1983), sulfate, sulfite and S0 reduction (Stetter, 1988; 

Huber et al., 1997), aerobic and anaerobic sulfide oxidation (Brannan and Caldwell, 1980; 

Hirayama et al., 2005), nitrate reduction (Huber et al., 2002), Fe(III) reduction and Fe(II) 

oxidation (Johnson et al., 2009) as well as aerobic H2 oxidation (Arai et al., 2010) have been 

calculated and detected in Vulcano Island. Combining the methods applied to deep sea research 

and well documented gas and fluid investigation at shallow sea hydrothermal systems, 

thermodynamic modeling can be a direct and quantitative approach to determine which of a 

plethora of possible catabolic strategies are exergonic or endergonic.  
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4. Genomic and metagenomic studies of hydrothermal vents 

Genomic and metagenomic studies have provided useful insights in the function of 

microbial groups at extreme environments. Through the decoding of genomic information, links 

between biosphere and lithosphere could be elucidated (Figure 6) (Reysenbach and Shock, 

2002). 

 

Figure 6. Biological processes and geochemistry interact with each other. Genome sequences 

provide genetic information pertaining to their geochemical and ecological history and their 

metabolic potential (Reysenbach and Shock, 2002). 

Microbial diversity studies for example have shown the prevalence and versatility of 

Epsilonproteobacteria at the deep sea hydrothermal vents (Campbell et al., 2006). These groups 

of Bacteria are known to be phylogenetically related to important pathogens, like Helicobacter 
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pylori. Genomes of two deep sea vent Epsilonproteobacteria strains have been analyzed 

(Nakagawa et al., 2007). Both genomes lacked certain orthologs of virulence genes of 

pathogenic Epsilonproteobacteria, such as type IV secretion pathway and cag pathogenicity 

island genes. However, some common virulence genes do exist such as the N-linked 

glycosylation (NLG) gene cluster. It leads to the speculation that bacterial NLG might have a 

role in deep-sea Epsilonproteobacteria for maintaining a symbiotic relationship with 

hydrothermal vent invertebrates (Hooper and Gordon, 2001; Nakagawa et al., 2007). 

Comparative phylogenetic analyses based on the small subunit ribosomal RNA gene of 

environmental microbial communities have indicated that the microbial diversity is much 

greater than those assessed by standard cultivation and isolation techniques (Amann et al., 1995; 

Takai and Horikoshi, 1999; Tringe and Rubin, 2005). Direct sequencing of environmental DNA 

– referred to as metagenomics, has brought the research in microbial ecology to a higher and 

broader level.  Random shotgun sequencing of DNA from a natural acidophilic biofilm has 

initiated the first large scale environmental shotgun sequencing project (Tyson et al., 2004). To 

address the physiology of the uncultivated microorganisms and decipher how they thrive under 

these seemly hostile conditions, short-insert plasmid libraries were constructed, sequenced and 

the obtained sequence information was assembled. Almost complete genomes of Leptospirillum 

group II and Ferroplasma type II could be reconstructed as wall as three partial genomes. 

Analysis of the gene complement for each organism revealed the pathways for carbon and 

nitrogen fixation and energy generation, and provided insights into survival strategies in an 

extreme environment (Tyson et al., 2004). Another study of whole genome shotgun sequencing 

method has been applied to study the microbial community of the Sargasso Sea. This technique 

circumvents the PCR bias because not all rRNA genes can be amplified by the universal 

primers. Abundant previously unknown phylotypes were discovered and archaeal-associated 

genes coding for nitrification were detected (Venter et al., 2004). 

 Through the invention and development of new technologies, the so called next 

generation sequencing techniques, the associated timelines and costs of genome and 

metagenome sequencing have changed and widened the scope of biological research (Mardis, 
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2008). One of the platforms is Roche/454 FLX which uses pyrosequencing technology 

(Margulies et al., 2005). This approach has already been applied to comparative metagenomic 

studies. An example was shown in the study of a hydrothermal vent field at the Juan de Fuca 

Ridge. A fosmid library was constructed and genes for mismatch repair and homologous 

recombination were found and clustered closely with those from Lost City vent site. It suggests 

that the microorganisms have evolved extensive DNA repair systems to cope with the potential 

deleterious effects on the genomes. Reconstruction of the metabolic pathways revealed the 

presence of sulfur oxidation putatively coupled to nitrate reduction (Xie et al., 2011).  
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II  Aims of this study 

The deep-sea biosphere has been considered to be one of the most barren habitats on 

Earth and yet it has been shown to host dense microbial communities (Corre et al., 2001; Takai 

et al., 2003; Crépeau et al., 2011). Studies of deep-sea hydrothermal systems have yielded 

important information on the evolution as well as the chemical and physical limits to life. Their 

counterparts – shallow-sea hydrothermal systems are much easier to access and exhibit similar 

geochemical characteristics. Nevertheless, they are still poorly investigated. The shallow-sea 

hydrothermal vent systems located off Panarea has been discribed at 1890 (Italiano and Nuccio, 

1991). Geological investigation has been going on for decades and the sites were revisited 

annually. However, micro-biological studies at this 4 km2 hydrothermal vent systems are still 

limited to cultured thermophilic sulfur oxidizers and relatively simple diversity studies of 

surface sediments and hydrothermal fluids (Gugliandolo et al., 1999; Gugliandolo et al., 2006; 

Maugeri et al., 2011). In this thesis, the microbial community was investigated in sediments of 

Hot Lake, a hydrothermal site off Panarea. It is a depression located at 18 m below sea level. 

The area is covered with white mats of elemental sulfur and microorganisms. This study was 

part of an interdisciplinary study and paralleled by the investigation of physico-chemical 

characteristics of pore waters, geological analyses of sediments and the analysis of intact polar 

lipids (IPLs), aiming to resolve the key metabolisms driving this ecosystem.  

Mixing of reduced hydrothermal fluids from the subsurface with oxidized seawater 

generates chemical disequilibria. Chemolithotrophs can take the advantage using these 

disequilibria to obtain energy through the coupling of redox reactions. The first objective was to 

understand the chemical composition and the temperature profiles in the depression of Hot 

Lake. Based on the information of physical and chemical parameters, thermodynamic modeling 

of redox pairs could be assessed. It supplied us with a hypothesis on potential metabolisms 

fueling this ecosystem. The second goal was to investigate the microbial diversity and 

community structure applying the full cycle rRNA approach. From the 16S rRNA clone library, 

phylogenic information on members of microbial communities was gained. Subsequently, 

oligonucleotide probes targeted 16S rRNA were applied to quantify main clusters of Bacteria 

and Archaea using the method fluorescence in situ hybridization (FISH). The third objective 
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was to gain insights into relevant chemosynthetic pathways. Metagenomic analysis was applied 

to analyze key genes in total environmental DNA and to reveal more information on the genetic 

capabilities of the key microbial groups. The focus was on genes indicative of carbon fixation, 

sulfur transformations and cycles.  
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III Materials and methods 

1.  Site description 

Hot lake (also called Lago Caldo), is an oval-shaped (~10 by 6 meters) shallow (~2.5 m 

deep) depression in the seafloor at ~18 m water depth, located approximately 2 km east of the 

main island of Panarea (38°38.432’N, 15°6.602’E). During the time of sampling, the bottom of 

the depression contained sediments and detritus of sea grass. Microbial mats embedded in 

elemental sulfur precipitates (Figure 7) covered rocks and were hanging from the underside of 

the walls of the depression (Figure 8). When the depression has not been disturbed, there was 

an obvious halocline (Steinbrückner, 2009). Temperatures in the sediments of this brine pool 

were typically in the range of ~35 to 45ºC, but could reach as high as 94ºC (Sieland, 2009). 

 

Figure 7. Sulfur morphology from white mat at Hot Lake (Viola Krukenberg and Wolfgang 

Bach, unpublished data). 

S-globules 

S-filaments 
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Figure 8. (A) Overview of Hot Lake. (B) Inside of the depression containing sediments, 

detritus of sea grass and ubiquitous mats containing elemental sulfur and microbes. (C) 

Sediment cores taken from 2009 at two locations (Hot Lake I and Hot Lake II) inside of Hot 

Lake. (D) Mats hanging from the walls of the depression. 
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2.  Sample collection 

Pore fluids, sediment cores and sulfur/microbial mats were collected at Hot Lake by 

SCUBA diving during field expeditions in July 2008, May 2009, and June 2010. For further 

molecular analyses, samples of 2009 were characterized thoroughly whereas samples from 

2008 and 2010 were investigated with automated rRNA intergenic spacer analysis for diversity 

study.  

Prior to sampling the sediment cores, the in situ temperature was determined 

approximately every square meter with a temperature probe. In 2009, a set of sediment cores of 

about 20 cm length was collected at a medium temperature  (Hot Lake I,  36°C at 10 cm) and a 

high temperature (Hot Lake II, 74°C at 10 cm) site, respectively, within the depression. 

Samples were stored at room temperature and processed within 2 hours. Pore fluid retrieval 

with rhizones and the subsequent analyses were carried out by Roy Price (University of South 

California, USA) following methods outlined in Kölling et al. (Kölling et al., 2005). As pore 

water was generally lost during core slicing, cores for pore water analyses were subsequently 

also used for sample preparation for molecular and intact polar lipid analyses. Sediment cores 

were sliced in 1~2 cm intervals from top to bottom. Samples for DNA extraction were frozen at 

-20°C. 
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3. Thermodynamic modeling of potential reactions 

To evaluate the amount of energy available at a given temperature, pressure, and 

chemical compositions at Hot Lake, thermodynamic modeling was preformed. The Gibbs 

energy �G can be calculated with the equation 

�G = �G0 + RT ln Q  

where �G0 represents the standard Gibbs energy of reaction, R is the universal gas 

constant, T is the temperature in Kelvin, and ln Q denotes the reaction activity quotient. Values 

of �G were calculated at the temperatures and pressures of interest with the computer software 

package SUPCRT92 (Johnson et al., 1992).Values of Q can be calculated from the equation 

Q = �ai vi 

where ai is the activity  and were calculated from the measured pore water compositions 

from the sediment core of Hot Lake II (22 cm, by Roy price, USC, USA. unpublished data) and 

the venting gas concentrations from the venting sites (Francesco Italiano, INGV, Palermo. 

unpublished data). Activities were calculated using the REACT speciation module in THE 

GEOCHEMIST’S WORKBENCH software package (v.7.0, Rockware, University of Illinois, 

Bethke & Yeakel, 2008). Values of �G for all redox reactions were normalized per mole of 

electrons transferred and all reactions were written in the direction in which they are exergonic. 
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4. DNA extraction 

Genomic DNA was extracted from 10 g of homogenized sediment. Sediment samples 

from 2008 and  those of layer 0-1 cm, 1-2 cm, 5-7 cm, and 17-20 cm sampled in 2009 at Hot 

Lake II were extracted with the SDS based DNA extraction method published by Zhou et al. 

(Zhou et al., 1996) including three times freeze (liquid nitrogen) and thaw (42°C water bath) 

cycles. The DNA was dissolved in 200 �l 1x TE buffer (10 mM Tris-Cl, pH 7.5, 1 mM EDTA). 

DNA from Hot Lake 2010, Hot Lake I (2009) sediment layers 0-1 cm, 1-2 cm, 7-9 cm, 

13-15 cm, and 15-17 cm as well as from Hot Lake II (2009) sediment layers 7-9 cm, 14-17 cm 

and 17-20 cm was extracted using the UltraClean® Mega Soil DNA Isolation Kit (MO BIO 

Laboratories, Inc., Carlsbad, CA, USA) according to the manufacturer's instructions. The DNA 

was precipitated with 5 M NaCl and 96% ice cold ethanol and centrifuged at 2500g for 30 

minutes. The DNA was then dissolved in 1x TE buffer and quantified using a NanoDrop ND-

1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 
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5.  Automated rRNA intergenic spacer analysis (ARISA) 

DNA quantities were standardized to 10 ng per 25 �l master mix for the PCR 

amplification. Primers used for the amplification of the intergenic spacer (ITS) region were 

previously described by (Cardinale et al., 2004): ITSF (5´-GTCGTAACAAGGTAGCCGTA-3´) 

and ITSReub (5´-GCCAAGGCATCCACC-3´) labeled with the phosphoramidite dye HEX (6-

carboxy-1, 4 dichloro-20, 40, 50, 70-tetra-chlorofluorescein). The primers were complementary 

to position 1423–1443 of the 16S rRNA gene (ITSF) and position 38–23 of the 23S rRNA gene 

(ITSReub) of Escherichia coli. PCR products were visualized on a 1.5% agarose gel prior to 

purification by gel filtration on a Sephadex G-50 Superfine column (Sigma Aldrich, Munich, 

Germany). The separation of fragments by capillary electrophoresis, evaluation of 

electrophoretic signals and subsequent binning into operational taxonomic units (OTUs) was 

done as reported elsewhere (Ramette, 2009). An OTU was considered to be present if it 

appeared in at least two of the three PCR replicates, and fingerprint profiles were standardized 

by dividing each individual peak area by the total area of peaks in a given profile using Gen 

Mapper. The consensus ARISA table sampled by operational taxonomic unit (OTUs) was used 

to calculate pair wise similarities among samples based on the Bray–Curtis similarity index. 

The resulting matrix was examined for patterns in bacterial community structure by using non-

metric multidimensional scaling as implemented in the data analysis package – PAST. Analysis 

of similarity (ANOSIM) was further carried out to test for significant differences among sample 

groupings.  



 39

6. 16S rRNA gene clone library construction 

Oligonucleotide primers GM3F (5�-AGA GTT TGA TCM TGG C-3�) (Muyzer et al., 

1995) and GM4R (5�-TAC CTT GTT ACG ACT T-3�) (Muyzer et al., 1995) were used to 

amplify almost complete 16S rRNA genes from Bacteria. Archaeal 16S rRNA genes were 

amplified with the universal archaeal primers ARCH20F (5´-TTC CGG TTG ATC CYG CCR 

G-3´) (DeLong, 1992) and Uni1392R (5�-ACG GGC GGT GTG TRC-3�) (Stahl et al., 1988). 

The 20 �l reaction contained 10-100 ng DNA as template, 0.5 �M of each primer (Biomers.net 

GmbH), 10 mM of dNTPs (Roche Deutschland Holding GmbH), 1 x amplification buffer and 5 

U of Eppendorf-Taq DNA Polymerase (Eppendorf, Hamburg, Germany). 

PCRs were performed in ten replicates with 26-28 cycles (Bacteria) and 35 cycles 

(Archaea) to minimize PCR bias. After 5 min at 94°C each cycle consisted of 1 min at 94°C, 1 

min at 48°C (Bacteria) or 58°C (Archaea), and 3 min at 72°C. The amplicons were pooled, 

purified using a PCR purification kit (QIAGEN, Hilden, Germany). Afterwards the purified 

PCR products were ligated using the pGEM®-T Easy Vector Systems (Promega, Madison, WI) 

according to the manufacturers recommendations and transformed into chemically competent E. 

coli TOP 10 cells (Invitrogen). Clones with a correct insert size of ~1500 bp were sequenced 

using ABI BigDye Terminator chemistry and an ABI377 sequencer (Applied Biosystems).  

Sequencing was conducted using the vector primers M13F (5�-GGA AAC AGC TAT 

GAC CAT G-3�) and M13R (5�-GTT GTA AAA CGA CGG CCA GT-3�) for full length 

sequences. Sequencing for the bacterial partial sequences was conducted using internal 

bacterial primer GM1F (5´-CCA GCA GCC GCG GTA AT-3´) (Muyzer et al., 1993). As for 

the archaeal partial sequences the internal archaeal primer ARCH958R (5´-TCC GGC GTT 

GAM TCC AAT T- 3´) (DeLong, 1992) was utilized.   
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7. Phylogenetic analysis and probe design 

The phylogenetic affiliation of 16S rRNA gene sequences was inferred with the ARB 

software package (Ludwig et al., 2004) based on release SILVA 104 of the SILVA database 

(Pruesse et al., 2007). OTUs were generated based on a minimal alignment of 500 bp using the 

Mothur software package (Schloss and Handelsman, 2006; Schloss et al., 2009). For a single 

representative of each OTU, the complete 16S rRNA gene sequence was determined. 

Phylogenetic trees were calculated by parsimony, neighbor-joining, and maximum-likelihood 

(RAxML and PhyML) algorithms applying different base frequency filters of 30%, 50% and 

60%. For tree calculation, only almost full length sequences (> 1400 bp) were considered and 

partial sequences were added to the reconstructed tree by maximum parsimony criteria without 

allowing changes in the overall tree topology. Relevant long and short sequences available in 

public databases were included in all phylogenetic analyses.   
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8. Cell staining and catalyzed-reporter deposition fluorescence in situ 
hybridization (CARD-FISH) 

The cell fixation for total cell counts and FISH was carried out directly after sampling. 

0.5 ml sediment was fixed with 4% formaldehyde in 1x phosphate buffered saline (PBS; 

10 mM sodium phosphate, 130 mM sodium chloride, pH 8.0) for 2-4 hours at 4°C. Afterward, 

samples were centrifuged for 5 min at 10000 rpm, washed twice with 1x PBS and finally stored 

in 1.5 ml 50% 1x PBS/ethanol at �20°C until further processing. To dislodge cells from 

sediment grains fixed samples were treated by mild sonication for 7x 30 s with a MS73 probe 

(Sonopuls HD70, Bandelin, Germany) (cycle 20, 30% power). One ml supernatant was 

exchanged for 1 ml fresh 50% 1xPBS/ethanol, followed by an additional sonication step. This 

procedure was repeated seven times and supernatants were combined.  

Catalyzed-reporter deposition FISH (CARD-FISH) was performed following the protocol 

by Pernthaler et al. (Pernthaler et al., 2002). The sediment samples were filtered on GTTP 

filters with 0.2 �m pore size (Millipore, Germany). For permeabilization of rigid archaeal cell 

walls, cells were treated with Proteinase K solution (15 �g/ml) for 3 min at room temperature. 

Oligonucleotides were purchased from Biomers (Ulm, Germany). Oligonucleotide probes used 

in this study are listed in Table 4. For reference cell visualization, samples were stained with 

4’6’-diamidino-2-phenlyindole (DAPI) for 10 min (1 �g/ml) and washed with sterile filtered 

water and 80% ethanol for seconds. Air-dried filters were embedded in Citifluor (Citifluor Ltd., 

Leicester, UK). The given CARD-FISH counts are means calculated from 100 randomly 

chosen microscopic fields with at least two separate CARD-FISH procedures. Cells were 

counted using an epifluorescence microscope (Axioplan, Zeiss, Germany). Parallel to every 

hybridization, total cell counts were enumerated separately from the rest parts of filters stained 

by SybrGreen I (Invitrogen). The staining procedure included mounting and fixing the sample 

by a solution of polyvinylalcohol (moviol) (Lunau et al., 2005). 
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9.  Probe design and optimization of hybridization conditions 

Oligonucleotide probes were designed using the probe tool in the ARB software package 

(Ludwig et al., 2004). The probes were tested for coverage (target group hits) and specificity 

(outgroup hits) in silico with the ARB probe match tool (Ludwig et al., 2004). For evaluation of 

probe coverage, only sequences that possessed sequence information at the probe binding site 

were considered. Probe specificity was based on 512037 prokaryotic sequences of the SILVA 

SSU Ref dataset Release 104 (Pruesse et al., 2007). At least up to two mismatches per sequence 

were reviewed manually. Specific hybridization conditions were determined by applying 

different formamide concentrations (0%, 10%, 20%, 30%, 40% and 50%) directly on the 

environmental samples. The consistent morphology was taken as the primary criteria for 

verification of the probes.  
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10.  Pyrosequencing of genomic DNA 

Genomic DNA was extracted from the surface sediment layer (0-2 cm) of Hot Lake I and 

II with the SDS based DNA extraction method published by Zhou et al. (Zhou et al., 1996) 

including three times freeze (liquid nitrogen) and thaw (42°C water bath) cycles. The DNA was 

dissolved in 200 �l 0.5x TE buffer (10 mM Tris-Cl, pH 7.5, 1 mM EDTA). A total of ~ 0.2 mg 

DNA was used for direct sequencing using the GS DNA Library Preparation Kit, following the 

instructions of the GS FLX Shotgun DNA Library Preparation Manual (Roche Diagnostics). 

Pyrosequencing resulted in 515,111 reads for Hot Lake I and 476,604 reads for Hot Lake II. 

The reads were assembled using the Newbler Assembly software (version 2.5.3, Roche 

Diagnostics). Moreover, the unassembled reads were de-replicated with a CD-Hit-based 454 

replicate filter (Gomez-Alvarez et al., 2009), allowing 1% mismatches in the overlapping 

regions and up to three base pairs difference in the start position. 
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11. ORF prediction, annotation, phylogenetic and metabolic analyses of  
pyrosequencing derived data 

Gene prediction was carried out by using a combination of the Metagene  

(Noguchi et al., 2006) and  Glimmer3 (Delcher et al., 2007) softwares.  

Ribosomal RNA genes were detected by using the rRNA prediction algorithm  

by Huang et al. (Huang et al., 2009) and transfer RNAs by tRNAscan-SE (Lowe and Eddy, 

1997). The annotation of the metagenome sequence was performed with a modified GenDB 

v2.2.1 system (Meyer et al., 2003), supplemented by the tool JCoast, version 1.6 (Richter et al., 

2008). The predicted ORFs were compared against public sequence databases (nr, 

SWISSPROT, KEGG) and protein family databases (Pfam, InterPro, and COG). Signal 

peptides were predicted with SignalP v3.0 (Nielsen et al., 1999; Emanuelsson et al., 2007) and 

transmembrane helices with TMHMM v2.0 (Krogh et al., 2001). Predicted protein coding 

sequences were automatically annotated by MicHanThi (Quast, 2006). The MicHanThi  

software predicts gene functions based on similarity searches using the  

NCBI-nr (including Swiss-Prot) and InterPro database. Metabolic analyses were performed 

using JCoast against KEGG database and Pfam database (E-value of 10-5). 

 

 



 46

12. Taxonomic classification of metagenome sequences 

Taxonomic classification was performed through MG-RAST, a pipeline for 16S rRNA 

tags (Peplies, J. in prep.) and the so-called Taxometer pipeline (Waldmann, J. in prep.). 

Assembled sequence reads were annotated automatically to assign to a putative gene function. 

Every sequence submitted to MG-RAST by running BLAT (Kent, 2002) was then compared to 

the GenBank database for taxonomic classification.  

Unassembled sequence reads from metagenome sequencing were preprocessed (quality 

control and alignment) through the bioinformatics pipeline of the SILVA project (Pruesse et al., 

2007). Pyrosequencing reads shorter than 200 nt and more than 2% of ambiguities or 2% of 

homopolymers were removed. The remaining reads were aligned against the SSU rRNA seed 

of the SILVA database release 106 (Pruesse et al., 2007) and used for downstream analysis. 

Through this method, putative partial SSU rRNA gene reads within the data set could be 

extracted. Subsequently, remaining reads wer dereplicated, clustered and classified on a sample 

by sample basis. Dereplication (identification of identical reads ignoring overhangs) was 

carried out by cd-hit-est of the cd-hit package 3.1.2 (http://www.bioinformatics.org/cd-hit) 

using an identity criterion of 1.00 and a wordsize of 8. Remaining sequences were clustered 

again with cd-hit-est using an identity criterion of 0.98 (same wordsize). The longest read of 

each cluster was used as a reference for taxonomic classification with a local BLAST search 

against the SILVA SSURef 106 NR dataset (http://www.arb-silva.de/projects/ssu-ref-nr/) using 

blast-2.2.22+ (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with standard settings. The full SILVA 

taxonomic path of the best blast hit has been assigned to the reads of the value for [(% sequence 

identity + % alignment coverage)/2] at least 93.0. In the final step, the taxonomic path of each 

cluster reference read was mapped to the additional reads within the corresponding cluster plus 

the corresponding replicates, identified in the previous analysis step, to finally obtain (semi-) 

quantitative information (number of individual reads representing a taxonomic path). 

Through the Taxometer pipeline, a consensus from four individual taxonomic prediction 

tools was used to infer the taxonomic affiliation of the metagenome sequences: (a) CARMA 
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(Krause et al., 2008) infers taxonomy of sequences by post-processing genes with HMMER hits 

to the Pfam database. (b) KIRSTEN (Kinship Relationship Reestablishment, unpublished) 

infers taxonomy of sequences by post-processing BLAST hits by means of rank-based 

statistical evaluations on all 27 levels of the NCBI taxonomy with an increasing stringency 

from the superkingdom down to the species level. (c) SU tag analysis (Waldmann et al., in 

preparation) extracts all full and partial 16S ribosomal RNA genes from the de-replicated reads, 

maps them to a well-curated reference tree provided by the SILVA rRNA database project 

(Pruesse et al., 2007) and then uses this information to infer the taxonomy of the contigs into 

which the reads were assembled. (d) SSAHA2 (Ning et al., 2001) was used to map the de-

replicated pyrosequencing reads on a well-chosen set of marine reference genomes taken from 

EnvO-lite environmental ontology. For each sequence, the combined mapping information was 

used to infer its taxonomic affiliation.  
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IV Results 

1.  Prediction of possible energy gaining processes at Hot Lake from 
thermodynamic modeling 

Through premilinary mineralogy investigation of the sediments of Hot Lake, metal 

sulfide, such as FeS2 or Fe-monosulfide were found. These compounds could be formed during 

microbially mediated sulfate reduction or iron reduction (Rioux, 2004). In this thesis, fourteen 

reactions which can be exploited for primary production by chemolithoautotrophic 

microorganisms have been evaluated using geochemical models. The energetic evaluations 

performed in this study were calculated with a vent fluid-to-seawater mixing ratio of 50:1. 

From the thermodynamic models, all chemolithoautotrophic reactions were shown to be 

exergonic under microaerophilic condition (Figure 9). Among the reactions, it appeared that 

hydrogen oxidation (knallgas reaction), sulfide oxidation, Manganese (IV) oxide reduction and 

Fe (II) oxidation bear the most negative �G, and are therefore the favorable redox pairs for 

microorganisms at Hot Lake. However, the concentration of common electron acceptors such 

as O2 and nitrate was below the detection limit (Frank Wenzhöfer, MPI Bremen/AWI, Roy 

Price, USC, USA, personal communication) showing these acceptors would be utilized 

immediately by the microbes. 
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Figure 9. Free energy yields of reactions (in kJ/mol e-) calculated from a thermal fluids- 

seawater reaction model at temperatures ranging from 20-90°C. 
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2. Community structure analysis by automated rRNA intergenic spacer 
analysis 

A molecular fingerprinting technique such as automated rRNA intergenic spacer analysis 

(ARISA) is an alternative culture independent method to study the microbial diversity. This 

method has been shown to be highly reproducible, robust and time-efficient in previous 

comparative analyses of microbial community structures (Ramette, 2009).  Sediment samples 

from different layers in three subsequent years at Hot Lake (Table 5) were compared. 

Table 5. List of samples of automated rRNA intergenic spacer analysis 

n.a.,not available  
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DNA was extracted from different sediment layers for automated rRNA intergenic spacer 

analysis (ARISA). Different patterns among each sample were visualized in a nonmetric 

multidimensional scaling (NMDS) plot (Figure 10) after statistic analysis. To test for significant 

differences among different years and the two sites from 2009, analysis of similarities 

(ANOSIM) was applied. According to the classification from Clarke and Gorley (Clarke and 

Gorley, 2006), a value R = 1 indicates that the groups are separated and R = 0 denotes no 

separation between groups. To define the differences more adequately, R > 0.75 is commonly 

interpreted as well separated, R > 0.5 as separated but overlapping and R < 0.25 as barely 

separable. Table 6 shows the relationship among groups. The bacterial community structure in 

2008 was well separated from those in 2009 and 2010. Diversity at Hot Lake I in 2009 showed 

significant difference compared to Hot Lake II in 2009 and the samples in 2010. By the 

ordination of NMDS, four groupings could be visualized: the samples from 2008, the samples 

from Hot Lake I, the upper layers of Hot Lake II (2009) and samples from 2010, and the deeper 

layers of Hot Lake II (2009). In order to test whether different DNA extraction method result in 

different ordination, samples from 17-20 cm of Hot Lake II were tested and they appeared 

closely on the plot (data not shown).  
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Figure 10.  Nonmetric multidimentional scaling (NMDS) plot presenting the differences seen 

in the automated ribosomal intergenic spacer analysis (ARISA) profiles of samples from 

different layers of Hot Lake from 2008 to 2010 in a reduced two-dimensional space (stress 

value= 0.1254). Black: Hot Lake 2008. Blue: Hot Lake I 2009. Red: Hot Lake II 2009. Green: 

Hot Lake 2010. 

 

 

Table 6. One way-ANOSIM significance testing; Distance measure: Bray-curtis 
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3. Diversity of bacterial 16S ribosomal RNA genes 

Molecular fingerprinting methods gave us insights into changes of the microbial 

community structure. To assess diversity of Bacteria and Archaea in more detail, 16S rRNA 

clone libraries were constructed from the same sediment samples used for ARISA. The focus 

was on the samples from 2009. Pore water analysis and correlated intact polar lipids (IPLs) 

analysis were as well carried out from this year and will be discussed together later on with the 

community compositions.  

From these two sites of Hot Lake, four clone libraries were constructed. At Hot Lake I, 

the ordination of the NMDS from the results of ARISA showed high similarity. Therefore 

DNAs from different layers of sediments (0-11cm) were pooled to gain an overview of 

microbial community structure. At Hot Lake II, the ordination was scattered and widely 

distributed. The temperature profile and chemical parameters from pore water analysis of Hot 

Lake II revealed a stronger influence of hydrothermal fluids (Figure 28, Figure 29). To gain 

better insight into how microorganisms adapt to and survive at the harsh environment, three 

different layers – 0-1 cm, 5-7 cm and 14-17 cm of Hot Lake II sediments were chosen for the 

16S rRNA gene analyses. The bacterial 16S rRNA gene diversity for each sample is shown in 

Figure 11. A total of 133 bacterial SSU rRNA gene clones were sequenced from the pooled Hot 

Lake I sample (Figure 11). From each of the Hot Lake II depth samples, nearly 170 bacterial 

SSU rRNA gene clones were sequenced (Figure 11). Overall, the dominant groups in the four 

clone libraries belonged to Epsilonproteobacteria, Deltaproteobacteria and Bacteroidetes 

(Figure 11).  

Sequences related to Sulfurospirillum within the class Epsilonproteobacteria were found 

to be most abundant at Hot Lake I as well as in 0-1 cm and 5-7 cm at Hot Lake II. Other 

epsilonproteobacterial sequences were closely related to Sulfurimonas, Campylobacter, 

Nitratiruptor, Sulfurovum and Arcobacter. Sequences related to Desulfobacteraceae and cluster 

SVA0485 were the dominant groups within the class Deltaproteobacteria at Hot Lake I and 

Hot Lake II. Uncultured bacteria of the VC2.1 Bac22 group, belonging to the class 
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Bacteroidetes, first discovered at a deep Mid-Atlantic Ridge hydrothermal vent (Reysenbach et 

al., 2000) was found to be dominant at Hot Lake I and Hot Lake II. 

 

Hot Lake I
0-11 cm (133)

Hot Lake II
0-1 cm (171)

Hot Lake II
5-7 cm (164)

Hot Lake II
14-17 cm (172)

 

Figure 11. Clone affiliations and frequencies in bacterial 16S rRNA libraries from sediment at 

Hot Lake I and Hot Lake II. The number of sequenced clones in each clone library is shown in 

parentheses. 

 

Sequences affiliated to Gammaproteobacteria and Alphaproteobacteria were detected 

both at Hot Lake I and Hot Lake II (Figure 11). Betaproteobacterial sequences were detected 

only at 0-1 cm and 5-7 cm at Hot Lake II. Sequences affiliated to Fusobacteria were detected at 

Hot Lake I and in the 0-1 cm and 5-7 cm layers at Hot Lake II. Sequences related to 

Spirochaetes only appeared at Hot Lake II. Verrucomicrobial sequences were detected at Hot 

Lake I and at 5-7 cm depth at Hot Lake II. Sequences affiliated to Chlorobium, known as green 

sulfur bacteria, were found at Hot Lake I and at Hot Lake II at 0-1 cm. Sequences affiliated to 
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Lentisphaerae were detected at Hot Lake I and in the 0-1 cm and 5-7 cm layer at Hot Lake II. 

Sequences affiliated to several candidate divisions such as OP3, OD1, OPS8 and sequences 

related to Caldithrix were found exclusively at Hot Lake II. Sequences related to Halophagae 

were detected at Hot Lake I and at 0-1 cm, 14-17 cm at Hot Lake II. Acidimicrobineal and 

Cyanobacterial sequences were detected in 0-1 cm at Hot Lake II. Sequences affiliated to 

Thermodesulfobacteria were detected only in 14-17 cm at Hot Lake II. Sequences affiliated to 

Thermotogae were found at 5-7 cm at Hot Lake II. The two groups are known as 

hyperthermophiles (Huber et al., 1991). 

Maximum Likelihood phylogenetic trees of Epsilonproteobacteria, Deltaproteobacteria 

and Bacteroidetes were built for a better understanding the evolutionary relationship of the 

microorganisms dwelling at Hot Lake (Figure 12, Figure 13, and Figure 14). 

Epsilonproteobacterial clones were affiliated to the genus Sulfurovum, Sulfurimonas, 

Arcobacter, Sulfurospirillum, Campylobacter and Nitratiruptor (Figure 12). Most of the 

sequences were closely related to clones from uncultured bacteria detected at other 

hydrothermal vents.  Within the the genus Sulfurovum, sequences from Hot Lake I were found 

to be closely related to the SUP01 group from the hydrothermal plume inside the Suiyo 

Seamount caldera (Sunamura et al., 2004). Other sequences within Sulfurovum were affiliated 

with clones from uncultured bacteria at basaltic flanks of the East Pacific Rise and Riftia 

pachyptila associated symbionts.  

In the genus Sulfurimonas, sequences were closely related to those from shallow 

submarine hydrothermal system off Taketomi Island, Japan (Hirayama et al., 2007) and from 

iron oxidizing Bacteria at the seafloor of volcanoes on the South Tonga Arc (Forget et al., 

2010). Abundant Sulfurimonas sequences were shown to be related to sequences of gill 

symbionts and hydrothermal vent microbial mat clones from Loihi Seamount, Hawaii (Moyer 

et al., 1995). Within the genus Arcobacter, sequences were found close to cold seep clones and 

Osedax symbionts. As for Sulfurospirillum, sequences were found to be close to the bacterial 

clones from the Lost City Hydrothermal Field. Furthermore, sequences of Campylobacter from 

Hot Lake affiliated with  those from Dudley site in the Main Endeavour vent Field of Juan de 
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Fuca Ridge (Zhou et al., 2009). Only sequences from Hot Lake II were found affiliated with the 

genus Nitratiruptor. The closest relative was a sequence form the Iheya North field in the Mid-

Okinawa Trough (Nakagawa et al., 2005). 
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Figure 12. Phylogenetic tree showing the affiliation of 16S rRNA gene sequences from 

Epsilonproteobacteria. The tree was calculated by maximum-likelihood analyses applying a 

50% sequence conservation filter. Bootstrap values based on 100 replicates are given at the 

nodes (only that > 70%). The number of sequences with 97% identity is shown in brackets. The 

bar represents 10% estimated sequence changes. Sequences obtained in this study from Hot 

Lake I are indicated in blue and  Hot Lake II in red.  
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Sequences affiliated with Deltaproteobacteria were found to be related to 

Desulfobacteraceae, Desulfobulbaceae, Desulfovibrio, SVA0485, Desulfurellaceae and 

Desulfuromusa. Within the cluster Desulfobacteraceae, sequences from Hot Lake affiliated 

with those from hypersaline sediments (Lloyd et al., 2006; López-López et al., 2010). 

Sequences related to Desulfobulbaceae were found to be closely related to those from Rainbow 

vent field. Abundant sequences were affiliated with cluster SVA0485. They share close 

relationship with sequences detected at many other hydrothermal vents such as the Brothers 

volcano at the Kermadec arc (New Zealand) (Stott et al., 2008) and the Guaymas Basin (Teske 

et al., 2002). Cultured relatives of the genus Desulfuromusa to which some of the sequences 

from Hot Lake affiliated have been describe to gain energy from sulfur reduction (Liesack and 

Finster, 1994).  
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Figure 13. Phylogenetic tree showing the affiliation of 16S rRNA gene sequences from 

Deltaproteobacteria. The tree was calculated by maximum-likelihood analyses applying a 50% 

sequence conservation filter. Bootstrap values based on 100 replicates are given at the nodes 

(only that > 70%). The number of sequences with 97% identity is shown in brackets. The bar 

represents 10% estimated sequence changes. Sequences obtained in this study from Hot Lake I 

are indicated in blue and Hot Lake II in red.  
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Sequences related to Bacteroidetes affiliated with sequences from cave microbial mats, 

seamounts and deep sea hydrothermal vents (Figure 14). Most of sequences belonged to the 

group VC2.1 Bac22. This cluster had been detected before at other volcanic areas such as 

Vailulu'u Seamount (Sudek et al., 2009), East Pacific Rise (Alain et al., 2004) and Mid Atlantic 

Ridge (Reysenbach et al., 2000).  
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Figure 14. Phylogenetic tree showing the affiliation of 16S rRNA gene sequences from 

Bacteroidetes. The tree was calculated by maximum-likelihood analyses applying a 50% 

sequence conservation filter. Bootstrap values based on 100 replicates are given at the nodes 

(only that > 70%). The number of sequences with 97% identity is shown in brackets. The bar 

represents 10% estimated sequence changes. Sequences obtained in this study from Hot Lake I 

are indicated in blue and Hot Lake II in red.  
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Statistical approaches were used to evaluate species richness. An operational taxonomic 

unit (OTU) at 98% sequence similarity (Stackebrandt and Goebel, 1994) and rarefaction was 

applied to investigate the bacterial richness of the sediments (Figure 15). Rarefaction analysis at 

the 98% OTU level indicated that 16S rRNA gene sequences in the first 11 cm of Hot Lake I 

were not sampled to saturation. This was also the case for the three different depth layers at Hot 

Lake II indicating more species were still not detected yet. 

 

Figure 15. Relative bacterial richness from Hot Lake I and Hot Lake II shown through 

rarefaction analyses. The expected numbers of OTUs was calculated using cut-off values of 

sequence identity of 98%. 
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4. Diversity of archaeal 16S ribosomal RNA genes 

For the pooled sample of Hot Lake I (0-11 cm) and the three layers of Hot Lake II: 0-1 

cm, 5-7 cm and 14-17 cm, the archaeal diversity was as well assessed. The archaeal 16S rRNA 

gene composition for each sample is shown in Figure 16. At Hot Lake I and 0-1 cm, 5-7 cm 

from Hot Lake II, sequences affiliated to Thermoplasmatales and Marine Benthic Group D- 

Deep-Sea Hydrothermal Vent Group I (DHVE 1) were detected. Within the Thermoplasmatales, 

abundant sequences from Hot Lake I as well as from all three layers at Hot Lake II were 

retrieved. They were affiliated with uncultured archaea from other hydrothermal vent systems, 

e.g., those associated with the archaeal community of the polychaete Alvinella pompejana 

living on the walls of active hydrothermal chimneys along the East Pacific Rise (Moussard et 

al., 2006; Omoregie et al., 2008).  

Terrestrial euryarchaeotal group (TMEG) sequences were found only at Hot Lake I 

sediment and 0-1 cm from Hot Lake II. Members of this group had been found in sediment 

overlying a natural CO2 lake at the Yonaguni Knoll IV hydrothermal field, southern Okinawa 

Trough (Inagaki et al., 2006). Sequences affiliated to the Deep Sea Euryarchaeotic Group 

(DSEG) belonging to the Class Halobacteria appeared predominantly at Hot Lake I and in the 

upper layers at Hot Lake II (0-1 cm, 5-7 cm). This group was as well detected in deep sea 

hydrothermal vent areas (Takai and Horikoshi, 1999; Omoregie et al., 2008). Sequences related 

to the genus Palaeococcus were found at Hot Lake I and Hot Lake II.  

Sequences belonging to Crenarchaeota and Korachaeota were detected at 14-17 cm from 

Hot Lake II exclusively. Sequences of these two phyla retrieved from this study are close to the 

hyperthermophilic relatives. All crenarchaeotal sequences found in this study affiliated with the 

family Desulfurococcaceae. Overall, the frequency of sequences shifted from Halobacteria 

towards Thermococcaceae and Desulfurococcaceae with depth at Hot Lake II. The community 

compositions of these four clone libraries showed different structures (Figure 16). 
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Hot Lake I
0-11 cm (77)

Hot Lake II
0-1 cm (159)

Hot Lake II
14-17 cm (84)

Hot Lake II
5-7 cm (154)

 
Figure 16. Clone affiliations and frequencies in archeal 16S rRNA libraries from sediment at 

Hot Lake I and Hot Lake II. The number of sequenced clones in each clone library is shown in 

parentheses. 
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5. Microbial community composition 

The comparative analysis of 16S rRNA clone libraries of Bacteria and Archaea yielded 

an overview of the microbial diversity at Hot Lake. Subsequently, the abundance of certain 

groups of microorganisms was assessed and total cell counts were determined by SybrGreen I 

staining (Figure 17, Table 7). DAPI staining was applied initially and showed high background. 

SybrGreen I diluted in moviol solution revealed the best signals and reliable cell counts.   

In the upper layers of Hot Lake I and Hot Lake II, total cell counts were in the range of 

107-109 cells/ml. At 0-1 cm of Hot Lake I and Hot Lake II, 6 x 108 cells/ml were present. At 

Hot Lake I, total cells counts were still as high as in the upper layer of 108 cells/ml at 13 cm. It 

showed an increase of total cell counts within the first 3 cm at Hot Lake I. In contrast, at Hot 

Lake II, cell counts constantly decreased with depth to cell numbers of 107 cells/ml.  

Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was 

applied to three different sediment layers of Hot Lake I and Hot Lake II. Distinct groups of 

Bacteria were enumerated with established and newly designed probes (Table 4). The results 

showed that Bacteria (probe: EUBI-III) were dominant in all sediment layers (Table 7). At Hot 

Lake I, the proportion of Archaea (probe: Arch915) increased from 6% to 24% with depth 

(Table 7). At Hot Lake II, Archaea accounted for ~20% relative to the total cell counts at all 

three layers. In the 5-7 cm layer of Hot Lake I and the 0-1 cm, and 5-7 cm layers from Hot Lake 

II, the detection rate of Bacteria and Archaea was together only ~60% of total cell counts 

indicating that many Bacteria and Archaea have not been covered or detected by the general 

probes.  

Group specific probes (Table 4) were applied to quantify certain groups of bacteria based 

on the results of the comparative 16S rRNA gene analysis. At Hot Lake I, Deltaproteobacteria 

as detected by probes Delta495abc and competitors (Loy et al., 2002) increased with depth. In 

contrast, at Hot Lake II, the abundance of Deltaproteobacteria decreased with depth (Figure 18, 

Table 8). At Hot Lake I and Hot Lake II, Epsilonproteobacteria (probe: EPSY914) (Grote et al., 

2007) increased in relative abundance from 0-1 cm to 5-7 cm whereas in the bottom layers, cell 
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frequencies decreased to ~5%. Arcobacter spp. have frequently been reported to be present the 

hydrothermal vents (Wirsen et al., 2002; Sievert et al., 2007). At Hot Lake II, Arcobacter 

counts were as high as the counts of Epsilonproteobacteria.  

A general probe for Bacteroidetes (probe: CF319a) was initially used for in situ 

hybridization. However, an in silico analysis using ProbeCheck of the ARB package (Ludwig et 

al., 2004) revealed that this probe also targets many epsilonproteobacterial sequences retrieved 

from this study. As most of the 16S rRNA sequences grouping with the Bacteroidetes affiliated 

to the group VC2.1 Bac22, probes were designed for this group and utilized in this study. Two 

probes were required to target all sequences within the VC2.1 Bac22 group. At Hot Lake I, the 

frequency of cells detected with these probes increased with depth. At Hot Lake II, the trend 

was the same; nevertheless the detection rate was low.  

Anoxygenic phototrophic bacteria were assumed to play an important role at shallow 

hydrothermal vents since light penetrates to this water depth. By comparative 16S rRNA gene 

analysis, two clusters of Chlorobi BSV 26 and OPB 56 were detected and probes were designed 

for further quantification (probe BSV 26 and OPB 56). At Hot Lake I, BSV 26 abundance 

reached up to ~13% of total bacterial counts at 15-17 cm. At Hot Lake II, 1-2% of BSV 26 

were detected. The abundance of OPB 56 showed a similar trend as those of BSV26 (Figure 18, 

Table 8). Figure 19 shows the morphology of Bacteria, Epsilonproteobacteria and Chlorobium 

at Hot Lake.  
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Figure 17.  Total cell counts determined for the sediment cores from Hot Lake I and Hot Lake 

II.  
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Table 7.  Total cell counts quantified by SybrGreen I staining at Hot Lake I and Hot Lake II. 

Absolute abundance of Bacteria (probe: EUB I-III). Percentage of Bacteria in total cell counts. 

Absolute abundance of Archaea (probe: Arch 915). Percentage of Archaea in total cell counts.  
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Table 8. Absolute cell counts after CARD-FISH with specific probes for different bacterial and 

archaeal groups. Fraction of cell numbers detected with group specific probes. 
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Figure 18. Abundance of bacterial and archael groups at Hot Lake. Relative abundance of 

bacterial groups in relation to total Bacteria counts at (A) Hot Lake I and (B) Hot Lake II. 

Relative abundance of archaeal groups in relation to total Archaea counts at (C) Hot Lake I and 

(D) Hot Lake II. Three bars correspond to 0-1 cm, 5-7 cm, 15-17 cm sediment depth at Hot 

Lake I and 0-1 cm, 5-7 cm, 14-17 cm at Hot Lake II (from left to right). 
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Figure 19. Epifluorescence micrographs of Bacteria from Hot Lake sampled in 2009. (A) 

Probe EUBI-III targeting most of the Bacteria. (B) Probe EPSY914 targeting >90% of 

epsilonproteobacterial sequences obtained from this study. (C) Probe OPB56 targeting cluster 

OPB56 sequences obtained from this study. (D) Probe BSV26 targeting cluster BSV26 

sequences obtained from this study. Blue: DAPI signals of DNA containing cells. Green: 

positive signals after CARD-FISH using the probes. 
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6.  Comparative analyses of microbial diversity and abundance retrieved by 
454-pyrosequencing 

Pyrosequencing of the metagenome of the surface sediment layers (0-2cm) from Hot 

Lake I and Hot Lake II produced about 186 and 203 Mbp, respectively, with an average read 

length of ~390 bp (Table 9). Of these, 5.87% and 9.62%, respectively, were identified as 

technical replicates (Gomez-Alvarez et al., 2009). These replicates occurred independently of 

sequence lengths, as indicated by similar sequence length distribution profiles before and after 

replicate removal (Figure 20).  

Table 9. Characterization of raw data and after assembly pyrosequencing dataset from the Hot 

Lake I and Hot Lake II. 
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Hot Lake I Hot Lake II

Hot Lake IIHot Lake I

 
Figure 20. Overview of the read length distribution of raw and de-replicated metagenomic 

dataset from the surface sediment layer at Hot Lake I and Hot Lake II. Read length distribution 

of the raw reads (A) and the corresponding distribution of the de-replicated dataset (B). 
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For functional analysis, the datasets were assembled using the Newbler assembly 

software (Roche). The assembled dataset of Hot Lake I and Hot Lake II is shown in Table 9. 

The assembled contigs are from a minimum of 100 bp to a maximum of 31809 bp at Hot Lake I 

and a minimum of 100 bp to a maximum 41613 bp at Hot Lake II. All together 27276 open 

reading frames (ORFs) were predicted for Hot Lake I and 10308 ORFs for Hot Lake II. A 

BlastP search against the KEGG database was performed for the function analysis. The KEGG 

category distribution within the “energy metabolism category” is given in Figure 21. Generally, 

the KEGG category distribution was similar between Hot Lake I and Hot Lake II. In this study, 

it was focused on sulfur metabolism and reductive tricarboxylic acid cycle for further analyses. 

 

 
Figure 21.  KEGG energy metabolism category distribution at Hot Lake I and II. Shown is the 

relative KEGG category distribution for the assembled metagenome of (A) Hot Lake I and (B) 

Hot Lake II. 
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6.1Taxonomic profiles based on MG-RAST 

The taxonomic diversity of the metagenomic data was assessed through the MG-RAST 

metagenome annotation and analysis pipeline (Kent, 2002). MG-RAST uses BLAT (The Blast-

like alignment tool) to find sequences in the metagenomic dataset which are homologous to 

sequences in large number of databases. For the taxonomic and function analyses, the dataset 

was assigned and annotated against the GenBank database (Benson et al., 2011) and the 

subsystems.  

 The MG-RAST pipeline revealed 99.6% bacterial and 0.2% archaeal reads hits for Hot 

Lake I after comparing the reads with GenBank using a maximum e-value of 1e-5, a minimum 

identity of 30%, and a minimum alignment length of 100. Same criteria were applied as well to 

the Hot Lake II dataset, resulting in 98.8% bacterial and 1.1% archaeal hits. At Hot Lake I, 

these bacterial gene sequences were found to be mainly affiliated to Proteobacteria (91.6%), 

Bacteroidetes (3.6%), Firmicutes (1.4%), Chlorobi (0.87%) and Aquificae (0.6%). Within the 

Proteobacteria, the sequences were assigned to Epsilonproteobacteria (88.6%), 

Gammaproteobacteria (8.30%) and Deltaproteobacteria (0.58%). At Hot Lake II, the 

affiliation of the bacterial gene sequences was quite similar to the one determined for Hot Lake 

I with 93.9% Proteobacteria, 1.6% Firmicutes, 1.6% Bacteroidetes, 0.4% Chlorobi and  0.3% 

Aquificae. Similar distribution was shown at Hot Lake II for the taxonomic classification of the 

proteobacerial reads with 92.1% Epsilonproteobacteria, 5.5% Gammaproteobacteria and 0.8% 

Deltaproteobacteria. However during CARD-FISH, little Gammaproteobacteria (Probe: 

Gam42a) and no Aquificae (Probe: Aqui338) were detected in the first one cm of sediment.  
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6.2 Taxonomic profiles based on 16S rRNA gene sequences 

The taxonomic diversity of the metagenomic data was assessed in parallel by the analysis 

of 16S rRNA gene sequences within the pyrosequencing datasets (unpublished analysis pipeline 

designed by Jörg Peplies, Ribocon GmbH, Bremen, Germany). Multifasta files were imported 

into the ARB package for further taxonomic analyses. The results showed similar tendancy 

with MG-RAST analyses. Bacteria have the portion of 77-80% and Archaea have the portion 

of 0.5% of all the sequences at Hot Lake I and II, respectively. 

At Hot Lake I and Hot Lake II, most of the bacterial sequences obtained belonged to 

Epsilonproteobacteria (Figure 22). At Hot Lake I, sequences affiliated to 

Gammaproteobacteria, Deltaproteobacteria and Bacteroidetes reached frequencies of 3-5%. At 

Hot Lake II, the same clusters account for less than 1%. Chlorobial sequences were detected at 

both sites. Sequences affiliated to Thermodesulfobacteria were found at Hot Lake II exclusively. 

However, the rarefaction curves of these two sites (Figure 23) showed that more sequences 

need to be gained in order to cover the microbial diversity. 

Hot Lake I
0-2cm

Hot Lake II
0-2 cm

 

Figure 22. Taxonomic classification of 16S rRNA containing reads (> 200bp) detected in the 

metagenome of Hot Lake I and II.  
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Figure 23. Relative bacterial richness based on the analysis of 16S rRNA reads contained in the  

metagenomic datasets. Rarefaction analysis for (A) Hot Lake I and (B) Hot Lake II. The 

expected number of OTUs was calculated based on 98% sequence identity.  
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6.3 Taxonomic profiles based on Taxometer 

The taxonomic diversity of the metagenomic data was assessed in parallel with 

Taxometer pipeline. Both at Hot Lake I and Hot Lake II, more than 95% of the sequences were 

affiliated to Bacteria and less than 1% to Archaea. At Hot Lake I and Hot Lake II, most of the 

bacterial sequences obtained belonged to Epsilonproteobacteria (Figure 24). At genus level of 

phylogenetic classification, 83.5% sequences were assigned to this class at Hot Lake I and 

50.7% at Hot Lake II. Nearly 40% of the sequences could not be categorized into a specific 

genus at Hot Lake II (Figure 25). 

Hot Lake I

Hot Lake II

Figure 24. Phylogenetic comparison of Bacteria based on class level of the pyrosequencing-

based dataset of 16S rRNA through the pipeline of Taxometer.  
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(B)

 

Figure 25. Phylogenetic comparison to genus level of the pyrosequencing-based dataset of 16S 

rRNA through the pipeline of Taxometer. (A) Hot Lake I. (B) Hot Lake II. 
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6.4 Functional profiles of Hot Lake I and Hot Lake II 

6.4.1 Sulfur metabolism 

Possible energy source at shallow-sea hydrothermal vents are either sunlight or reduced 

chemical compounds. The analyses of 16S rRNA clone libraries identified many sequences 

whose closest relatives could utilize sulfur to obtain their energy. Already in the previous study, 

it has been shown that a bacterium isolated from the hydrothermal fluids off Panarea is a 

mesophilic chemoautotrophic sulfur-oxidizing bacterium, resembling Thiobacillus sp. 

(Gugliandolo et al., 1999). A white mat composed of elemental sulfur and microbes has been 

reported for this area (Italiano and Nuccio, 1991; Gugliandolo et al., 2006). In order to identify 

energy generating pathways relevant for microbial life at Hot Lake, this study focused on the 

inorganic sulfur metabolism.  

Genes related to sulfur metabolism were searched against the KEGG database, GenBank 

and subsystem from MG-RAST. Key genes for the Sox pathway were found both at Hot Lake I 

and Hot Lake II, including soxA, soxB and soxY. The Sox multienzyme complex catalyzes the 

oxidation of hydrogen sulfide, elemental sulfur, sulfite and thiosulfate (Friedrich et al., 2000).  

Sqr coding for sulfide:quinone oxidoreductase involved in sulfide oxidation appeared 

both at Hot Lake I and Hot Lake II. This enzyme has been detected in green sulfur bacteria 

(Frigaard et al., 2008) and deep sea Epsilonproteobacteria of the genus Sulfurovum (Yamamoto 

and Takai, 2011). It catalyzes the oxidation of sulfide with an isoprenoid quinone as the 

electron acceptor.  

The key gene for sulfite oxidation sorB coding for sulfite oxidase was detected both at 

Hot Lake I and Hot Lake II. This enzyme catalyzes the direct oxidation of sulfite to sulfate 

(Kappler and Dahl, 2001). Sulfite could be alternatively oxidized to adenosine 5'-

phosphosulfate (APS) and then to sulfate which is catalyzed by sulfate adenylyltransferase (Sat). 

Genes coding for the enzyme were detected both at Hot Lake I and Hot Lake II (Figure 26).   
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Genes coding for polysulfide reductase (Psr) involving sulfur respiration were detected at 

Hot Lake I and Hot Lake II. Elemental sulfur in the environment has little solubility. It converts 

to polysulfide in aqueous solutions containing sulfide. Polysulfide with electron acceptor such 

as hydrogen could then be catalyzed into hydrogen sulfide (Frigaard et al., 2008). Genes coding 

for thiosulfate sulfurtransferase involved in thiosulfate disproportionation were found both at 

Hot Lake I and Hot Lake II.  
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Figure 26. KEGG distribution for genes of the sulfur metabolism in the metagenome of Hot 

Lake I and Hot Lake II. 
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6.4.2 Autotrophic carbon fixation 

Autotrophic bacteria catalyze inorganic redox reactions to obtain energy and reducing 

equivalents for the formation of organic molecules from CO2. There are six pathways known 

for carbon fixation – Calvin-Benson-Bassham (CBB) cycle (Raven, 2009), the reductive 

tricarboxylic acid (rTCA) cycle (Ljungdahl, 1986), the 3-hydroxypropionate (3-HP) cycle 

(Berg et al., 2007),  the reductive acetyl coenzyme A pathway (Buchanan and Arnon, 1990), the 

3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle (Huber et al., 2008), and the 

dicarboxylate/4-hydroxybutyrate (DC/4-HB) cycle (Zarzycki et al., 2009).  

In this study, ~20% of the ORFs in the KEGG category “energy metabolism” were 

assigned to rTCA cycle specific enzymes both at Hot Lake I and Hot Lake II (Figure 21). The 

reductive TCA cycle is mainly the reverse cycle of the catabolic TCA cycle. Rather than 

breaking down acetyl-CoA with the release of 2 CO2 and the generation of energy, acetyl-CoA 

is synthesized by the incorporation of 2 CO2 and the input of 8 H (in the form of NADH and/or 

FADH) and 2 ATP. Most of the enzymes of the TCA cycle function reversibly and could 

catalyze both directions. Genes coding for these enzymes were detected both at Hot Lake I and 

Hot Lake II (Figure 27). 

There are three critical steps which differentiate these two pathways that are non 

reversible. These three steps include the conversion of citrate to oxaloacetate and acetyl-CoA, 

the conversion of fumarate to succinate, and the conversion of succinyl-CoA to 2-oxoglutarate. 

Genes coding for these enzymes were found both at Hot Lake I and Hot Lake II. Based on the 

best BlastP hits, the ORFs originated mostly from Epsilonproteobacteria. Only a minor fraction 

gave hits to Chlorobium. Due to the oxygen sensitivity of the enzyme 2-oxoglutarate and 

pyruvate synthase, the rTCA cycle appears to be restricted to anaerobic or microaerophilic 

bacteria which corresponds to the physico-chemical profiles at Hot Lake. 
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Figure 27. KEGG distribution for genes of the reductive tricarboxylic acid cycle in the Hot 

Lake I and Hot Lake II metagenome. 
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V Discussion 

1. General physico-chemical parameters and potential metabolic pathways  

The Panarea hydrothermal system is characterized by a high rate of water circulating at 

several geothermal bodies (Italiano and Nuccio, 1991). Mineral analysis revealed large amounts 

of mineral precipitates, such as pyrite, sphalerite and barites at Hot Lake indicating water rock 

interaction. The abundant elemental sulfur (Figure 7) is formed either by abiotic oxidation of 

H2S present in the vent fluids or by biological reactions (Gugliandolo et al., 1999). While 

heated water ascends towards the seafloor due to lower buoyancy, it may reach boiling point 

due to reduced hydrostatic pressure. On boiling, gases including water vapor and other volatile 

species partition into the vapor phase and the remaining water phase increases in concentration 

of dissolved constituents (Nicholson, 1993). This process the so called phase separation results 

in a residual high-saline liquid phase which could be observed and confirmed by the pore water 

analysis at Hot Lake (Figure 28 (B)) (Roy Price, USC, USA, unpublished data). At Hot Lake 

the chloride concentration was two times higher than that of normal sea water. The temperature 

at Hot Lake I and Hot Lake II showed distinct differences and increased slightly with sediment 

depth (Figure 29). However, at the sediment surface the temperature should be similar with the 

surrounded sea water. From the chemical profiles of pore water analysis and temperature 

measurements at Hot Lake I and Hot Lake II, two distinct mixing patterns of thermal fluids and 

sea water can be deduced. At Hot Lake I the flux is less intense than that at Hot Lake II.  

The flux of the reduced hydrothermal fluids into oxidized zones creates redox pairs which 

supply energy to the microbial community. An increase of sulfide concentration and a decrease 

of sulfate concentration with depth had been observed by Steinbrückner in the thermal fluids of 

Hot Lake (Steinbrückner, 2009). The measured �34S in H2S indicated that most of the H2S is 

derived from leaching of rocks (Ono et al., 2007). Trace elements such as Fe and Mn were 

enriched in the pore water and thermal water samples (Sieland, 2009). Based on the 

thermodynamic modeling conducted in the present study, all fourteen investigated 

chemolithotrophic reactions were suggested to be thermodynamically favorable for the 

microorganisms.  
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Hydrogen oxidation with oxygen (knallgas reaction) was observed to be the most 

favorable reaction. This suggests that oxygen will be immediately utilized by the 

microorganisms at Hot Lake. Sulfide oxidation and sulfur reduction are also exergonic. In a 

previous study, sulfide oxidizing bacteria have been detected at or were cultivated from the 

hydrothermal vent systems off Panarea (Maugeri et al., 2009).  

In addition to sulfur metabolism, metal compounds can also be used as electron donors or 

electron sinks. Several microorganisms have been identified to be capable of exploiting energy 

through Fe(III) reduction, such as the genera Desulfuromusa (Fredrickson and Gorby, 1996) 

and Desulfovibrio (Lovley et al., 2006). Sequences of these genera have also been detected 

during comparative 16S rRNA analysis in the present study. Mn (IV) is also known as 

favorable electron acceptor under anaerobic conditions when nitrate and oxygen are limited 

(Nealson and Saffarini, 1994). At Hot Lake, the discovery of pyrite suggested that the reaction 

of Fe (III) oxides with sulfur or H2S could provide metabolic energy for the microorganisms 

(Edwards, 2004; Schoonen, 2004).  

Sulfate reduction and methanogenesis seem to be less favorable under the condition at 

Hot Lake. Nitrate is known to be an efficient electron acceptor, yet nitrate concentration in the 

pore water was below the detection limit. A similar phenomenon has been observed in a Black 

Sea study (Schubotz et al., 2009). This suggested that nitrate is used up by the microorganisms. 
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Figure 28. Pore water analysis of different sediment layers. (A) pH values. (B) Chloride 

concentration. (C) Sulfate concentration. (D) H2S concentration. (E) Iron concentration. (F) 

Manganese concentration. Hot Lake I (circles), Hot Lake II (diamonds). 
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Figure 29. Depth profiles of temperature (in situ) of different sediment layers. Hot Lake I 

(circles), Hot Lake II (diamonds) and Hot Lake 2010 (cross). 
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2.  Microbial diversity and community structures 

Through thermodynamic modeling, fourteen chemolithotrophic reactions were 

characterized. This yielded hypotheses of exploitable metabolic energy sources for the 

microorganisms. Hydrothermal fluids originate from thermal body in the deep subsurface and 

mix with entrained sea water. When the fluids arise, mixing occurs and is reflected in the 

different depth profiles of physico-chemical parameters. 

The difference intensity of fluid fluxes at Hot Lake I and II resulted in different microbial 

community structures which are shown on the ordination plot of ARISA results. Especially, the 

bottom layers of Hot Lake I and II appeared distant from each other. Samples taken at Hot Lake 

in 2010 at a medium temperature site (50ºC at 10 cm) revealed a distribution in between Hot 

Lake I and Hot Lake II on the ordination plot. It confirms that different physico-chemical 

characteristics likely result in a variation of the microbial diversity.  

2.1 Deeper layers (11-17 cm bsf) 

Whereas the cell counts at the surface and 14-17 cm below seafloor (bsf) were almost the 

same at Hot Lake I and II, the profiles indicated a constant decrease of the total cell counts with 

more extreme conditions for Hot Lake II. At Hot Lake I, characterized by a less steep 

temperature gradient, drop of cell counts was more discontinuous (Figure 17).  

In the lower sediment layer at 14-17 cm bsf in situ temperature differed by 37°C between 

Hot Lake I and Hot Lake II, with significantly higher sulfide concentrations at Hot Lake II. The 

total cell counts determined for both layers were similar with 107 cells/ml and the bacterial 

abundance was equally high. CARD-FISH revealed a clear dominance of Bacteria (74-83%) 

over Archaea (14-24%) at both sites with detection rates around 96%. The analysis of intact 

polar lipids (IPLs) provides complementary information on the in situ community as only living 

prokaryotes still have the polar head groups of the membrane lipids. This IPL analysis did not 

detect known archaeal lipids at Hot Lake I, but revealed predominantly archaeal lipids at Hot 

Lake II. Although IPL analysis cannot be considered to be a quantitative method, this 

difference is striking and may reflect the importance and viability of certain Archaea at Hot 
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Lake II (unpublished data, Florence Schubotz, MIT, USA) (Sturt et al., 2004) (Figure 30) with 

characteristically higher in situ temperatures at depth.  

Comparative archaeal 16S rRNA gene analysis of sequences obtained from 14-17 cm at 

Hot Lake II identified crenarchaeotal and koracheaeotal sequences exclusively in this sediment 

layer. These were related to those of known hyperthermophiles, which had already been 

described from hydrothermal fluids off Panarea (Maugeri et al., 2009). Within the phylum 

Crenarchaeota, all the sequences retrieved in this study belonged to Desulfurococcaceae. 

Members of this family have been shown to be thermophilic autotrophic or heterotrophic 

sulfate reducers and fermenters (Huber and Stetter, 1998; Kormas et al., 2006; Zhou et al., 

2009). The candidate division Korarchaeota comprises a group of uncultivated microorganisms. 

They may have diverged early from Crenarchaeota and Euryarchaeota according to their small 

subunit rRNA phylogeny. Genomic study of a close relative has shown gene functions of 

peptide fermentation for carbon and energy (Elkins et al., 2008).  

Euryarchaeal sequences detected in this layer were related to known hyperthermophilic 

archaea, such as Thermococacceae. This group is common at several hydrothermal vent 

systems (Pagé et al., 2008; Zhou et al., 2009). Cultured relatives are anaerobic and the presence 

of sulfur enhances greatly their growth (Godfroy et al., 1997). The corresponding layer at Hot 

Lake I was not investigated by comparative 16S rRNA analysis. Nevertheless, from the IPLs 

analysis it may be deduced that the archaeal groups present at Hot Lake II either were absent at 

Hot Lake I or they exhibited IPLs which have not yet been described or they are not viable. 

Generally, CARD-FISH counts with group specific probes were difficult to determine for the 

deeper sediment layers due to low cell counts and high background fluorescence. 

Bacterial 16S rRNA gene diversity at the deepest investigated layer at Hot Lake II 

showed the presence of hyperthermophilic Thermodesulfobacteria. This group is known to 

comprise obligate anaerobic sulfate reducing bacteria. Moreover, sequences related to 

Nitratiruptor belonging to Epsilonproteobacteria were found exclusively in the deeper layer at 

Hot Lake II. This genus belongs to the deeply branching order Nautiliales. Cultured 

representatives of Nitratiruptor are thermophiles isolated from Mid-Okinawa Trough and are 
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able to grow by respiratory nitrate reduction with H2 (Nakagawa et al., 2005). Altogether, 

Epsilonproteobacteria accounted for nearly 15% of the 16S rRNA sequences in the layer 14-17 

cm at Hot Lake II. Members of related orders and families affiliate predominantly with genera 

of known sulfur metabolizing microorganisms. They made up ~5% of the microbial community 

at Hot Lake I and II.  

Deltaproteobacteria constituted another significant fraction of the bacterial community at 

14-17 cm of Hot Lake II reflected by approx. 6% of the bacterial fraction in CARD-FISH and 

20% of sequences in the 16S rRNA gene clone library. Most of the deltaproteobacterial 

sequences detected affiliated with Desulfosalina spp. and Desulfocella spp. within the 

Desulfobacteraceae. Cultivated relatives are halophilic sulfate reducers (Kjeldsen et al., 2010) 

which corresponded well with the higher salinity at Hot Lake II at this depth. Moreover, 

sequences related to Desulfurella spp. were found. They are known to grow by sulfur reduction 

(Rainey et al., 2005). Deltaproteobacteria were also detected by means of CARD-FISH in the 

deeper layer of Hot Lake I (50%). This suggests the presence of microorganisms capable of 

sulfate reduction or sulfur reduction at lower temperatures.   

Concurrent with 16S rRNA analysis, the IPL analysis revealed the dominance of betaine 

and ornithine lipids in the deeper layer of Hot Lake I (Figure 30). These IPLs had been detected 

in other sulfur rich environments (Schubotz et al., 2009). Betaine lipids are common 

constituents in marine algae and have been found as well in purple non sulfur bacteria (Benning 

et al., 1995; Dembitsky, 1996; Brett and Mueller-Navarra, 1997). Ornithine lipids have been 

detected in sulfate reducing bacteria (Desulfovibrio) and sulfur oxidizing bacteria (Shively and 

Knoche, 1969; Makula and Finnerty, 1975). At Hot Lake, these lipids might derive from sulfate 

reducers or from algae detritus. In the layer of 11-14 cm of Hot Lake II, only PE lipids were 

found. A great amount of PE has been detected in sulfate reducing bacteria thriving at suboxic 

and anoxic zones (Schubotz et al., 2009). Taken together, the physiologies of cultivated 

relatives of species detected in the lower sediment layers are indicating a relevant role of sulfur 

cycling in energy generation.  



 95

2.2 Middle layers (5-11 cm bsf) 

At the middle layers (5-11 cm), the ordination of Hot Lake I and Hot Lake II suggested 

the presence of different microbial communities. The chloride and sulfide concentrations were 

enriched at 5-7 cm compared to sea water. Nevertheless, at Hot Lake II, mixing of sea water 

and hydrothermal fluids is stronger and faster compared to that at Hot Lake I (Figure 28). At 

Hot Lake I, cell numbers increased to 108 cells/ml. At Hot Lake II, total cell numbers were still 

low and at the same range of that at deeper layers. The abundance might be strongly influenced 

by the temperature. At Hot Lake I, the fraction of Archaea decreased to 10% and no archaeal 

lipids were detected. 

 The archaeal 16S rRNA clone library at 5-7 cm at Hot Lake II showed a dominance of 

Thermococcaceae related sequences. Members of this euryarchaeotal order have been detected 

in the vent fluids at southern Okinawa Trough (Nunoura et al., 2010). Cultivated relatives are 

known as anaerobic organotrophs (Antoine et al., 1995). Some species are known to reduce 

elemental sulfur to hydrogen sulfide while oxidizing organic carbon at high temperature. Only 

few sequences of this order were retrieved at Hot Lake I. CARD-FISH counts showed as well 

the increase of Euryarchaeota over Crenarchaeota.   

Sequences affiliated to the thermophilic Thermotogae were found exclusively in bacterial 

16S rRNA clone library at Hot Lake II. Cultivated relatives carry out sulfate reduction or iron 

reduction or heterotrophic reaction to gain energy (Huber et al., 1991; Reysenbach and Shock, 

2002). The alphaproteobacterial 16S rRNA sequences found at this layer at Hot Lake II were 

closely related to those of pelagic SAR11 clade. These quite abundant sequences (10%) 

therefore indicate the mixing of marine surface water into this depth of sediments.  

Sequences affiliated to Sulfurovum were the most abundant within Epsilonproteobacteria. 

Cultured relatives are known to reduce elemental sulfur or oxidize reduced sulfur compounds 

(Campbell et al., 2006). CARD-FISH counts revealed 13% and 20% of Epsilonproteobacteria 

at Hot Lake I and Hot Lake II respectively. At this mixing zone, Epsilonproteobacteria might 

adapt to the changing environment based on their versatile metabolisms (Campbell et al., 2006). 
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The high abundance of ornithine lipids in the surface layers of Hot Lake II might be contributed 

by Epsilonproteobacteria. 2Gly-DAG and SQ-DAG lipids are main constituents of 

photosynthetic membranes suggesting the presence of viable green sulfur bacteria (Siegenthaler 

and Norio, 2004).  

2.3 Upper layers (0-5 cm bsf) 

The upper layers of Hot Lake are stongly influenced by sea water, input of elemental 

sulfur and sea grass detritus (organic matter). The ordination plot of ARISA results showed that 

upper layers of Hot Lake I and II group closely with each other. Bacteria are dominant in the 

upper layer which was also consistent with the metagenomic and IPLs analyses. The 

composition of detected IPLs was similar between Hot Lake I and II. The presence of DPG 

indicated the presence of viable green sulfur bacteria (Imhoff et al., 2004). 

 At Hot Lake II, the detection rate of Bacteria and Archaea were only 36% and 17% by 

means of CARD-FISH. The low detection rates of general bacterial and archaeal probes have 

been observed in a previous study at hydrothermal sediments at Vulcano (Rusch et al., 2005). 

The sequences of the probes are based on known sequences in the database and thus new 

populations that may not contain the target signature sites are not detected. Environments such 

as hydrothermal vents are suspected to bear many unknown or new populations (Barns et al., 

1996; Hugenholtz et al., 1998; Takai and Sako, 1999; Dando and Kiel, 2010; Kubo et al., 2011). 

Total cell counts were enumerated with SYBR green staining. RNA might be already degraded 

in the dead cells which could not be detected by CARD-FISH.  

Sequences affiliated to Marine Benthic group D-Deep sea hydrothermal vent group 

(DHVEG I) were detected both at Hot Lake I and Hot Lake II. This group was suggested to be 

endemic to hydrothermal chimneys, however, the physiological characterization was still barely 

studied (Teske et al., 2002; Kormas et al., 2006). Sequences affiliated to the Deep Sea 

Euryarcheotic Group (DSEG) belonging to the class Halobacteria accounted for 70% of the 

clones in the 0-1 cm at Hot Lake II. Closest relatives have been found in deep sea hydrothermal 
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vents close to group DHVE3 (Takai and Horikoshi, 1999). Members of this order could thrive 

at high saline environments and obtain energy from sunlight (Oren et al., 2006).  

Via bacterial 16S rRNA clone libraries and metagenomic analyses, sequences affiliated to 

Chlorobi were detected. Cultivated Chlorobi are known as green sulfur bacteria which combine 

phototrophy with oxidation of reduced sulfur species or ferrous iron (Heising et al., 1999). 

Probes designed in this study for the Chlorobi of Hot Lake were applied to the environmental 

samples. The counts of Chlorobi were less than 1% which is consistent with the results of 

metagenomic analyses. However, rarefaction curves showed insufficient sequencing, and more 

probes for this cluster should be designed in order to elucidate the abundance. 

Several Deltaproteobacteria have been identified to be capable of conserving energy 

through Fe (III) reduction, such as members of the genus Desulfuromusa (Fredrickson and 

Gorby, 1996) and Desulfovibrio (Park et al., 2008). Sequences related to these genera were 

detected at the upper layers of Hot Lake I and Hot Lake II. Members of the genus 

Desulfuromusa are known to comprise mesophilic, obligate anaerobic bacteria which are able 

to grow by sulfur reduction with H2 (Liesack and Finster, 1994). Cultivated relatives of 

Desulfovibrio have been shown to grow heterotrophically with sulfate reduction (Hirayama et 

al., 2007). CARD-FISH counts of Deltaproteobacteria revealed 30% of total bacteria at Hot 

Lake II indicating the importance of sulfate reduction as well as sulfur reduction.  

At the upper layers of Hot Lake I and Hot Lake II, metagenomic analyses revealed 80% 

of pyrosequencing reads belonging to Epsilonproteobacteria. Sequences affiliated to 

Sulfurovum dominated at both sites. Close relatives had been found at deep sea hydrothermal 

vents. They are able to gain energy from oxidation of reduced sulfur compounds or reduction of 

elemental sulfur (Yamamoto et al., 2010). Sequences related to Sulfurimonas were found at 

both Hot Lake I and Hot Lake II. Cultivated Sulfurimonas sp. could also oxidize hydrogen or 

reduced sulfur compounds lithotrophically (Takai et al., 2006). The abundance of 

Epsilonproteobacteria detected by CARD-FISH was between 5-20% at 0-1 cm of Hot Lake I 

and Hot Lake II. The inconsistency between metagenomic analyses and CARD-FISH was 

probably due to methodical limitation such as permeabilization issues or incomplete cell lysis.  
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Sequences related to Bacteroidetes were found both at Hot Lake I and Hot Lake II within 

all layers. More than 90% of the Bacteroidetes sequences detected belonged to uncultured clade 

VC2.1 Bac22. Probes were designed for this group and detected 1-3% of the cells. This agreed 

with metagenomic analyses which suggested fractions of 3.6% and 1.6% Bacteroidetes at Hot 

Lake I and Hot Lake II, respectively. Bacteroidetes are known to be heterotrophic and many 

members can degrade polymers (Reichenbach and Dworkin, 1992). Sequences of the clade 

VC2.1 Bac22 had been detected as well in Milos. Members of this group likely have a 

heterotophic life style utilizing allochthonous organic matter (Sievert et al., 2000a). Sequences 

related to Thermococcus were detected also in the upper layers. It is not likely that they are 

active there.  
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Figure 30.  Intact polar lipids analysis of Hot Lake I and Hot Lake II.  

GlyA-DAG: Monoglycosydiacylglecerols. 2Gly-DAG: Diglycosyldiacylglycerols. SQ-DAG: 

sulfoquinovosyldiacylglycerols. BL: Betanine. OL: Ornithine. PE: Phosphatidylethanolamines. 

PME: methylated derivatives of Phosphatidylethanolamines. PC: Phosphatidylcholine. PG: 

Phosphatidylglycerols. DPG: diphosphatidylglycerols. 2Gly-GDGT: Archaeal glycosidic 

Glyceroldibiphytanyltetraethers. 
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3. Metagenomic analyses provide insights into carbon fixation and sulfur 
metabolism in the upper layers of Hot Lake 

Our thermodynamic modeling had revealed that the oxidation of hydrogen sulfide or 

sulfide could be exploited by the microorganisms as energy source at Hot Lake. In addition, 

partially reduced inorganic sulfur compounds such as polysulfide and thiosulfate could serve as 

both electron donor and acceptor in a variety of energy metabolism (McCollom and Shock, 

1997; Nakagawa and Takai, 2008). 

Our diversity analyses provided further evidence of sulfur related metabolism. 

Epsilonproteobacteria have been identified before to be important primary producers in sulfur 

enriched habitats. They were also found to be the most abundant group in the upper layers of 

Hot Lake I and II through metagenomic analysis.  

Past studies have shown that Epsilonproteobacteria could sustain by utilization of 

reduced inorganic sulfur compounds (Takai et al., 2003; Inagaki et al., 2003; Inagaki et al., 

2004; Takai et al., 2005) or by bacterial sulfur-oxidation pathways and sulfur reduction 

pathways. The detection of sor within this study indicated the presence of direct sulfite 

oxidation which was observed previously in the genome of Sulfurovum sp. NBC37-1 and 

Sulfurimonas autotrophica (Inagaki et al., 2003; Yamamoto et al., 2010). Cultivated 

Sulfurovum sp. showed the constitutive expression of Sox enzyme systems whereas the 

expression of sulfur reduction enzymes varied under different cultivation conditions. Deep-sea 

Epsilonproteobacteria are versatile. They change their energy metabolism in response to 

variable physical and chemical conditions in mixing zones between hydrothermal fluids and sea 

water (Yamamoto et al., 2010). The dominant CO2 fixation mechanism of 

Epsilonproteobacteria is the rTCA cycle that was also dominant in the metagenome from Hot 

Lake. 

The rTCA cycle was originally discovered in green sulfur phototrophs (i.e. Chlorobium)  

(Evans et al., 1966). It has been also discovered in many chemoautotrophs including a sulfate-

reducing deltaproteobacterium (i.e. Desulfobacter hydrogenophilus), thermophilic Aquificales 

(e.g. Hydrogenobacter and Aquifex) and Thermoproteales (e.g. Thermoproteus) (Hügler et al., 
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2007). Most important, it has been shown that deep sea Epsilonproteobacteria can utilize rTCA 

cycle as carbon fixation pathway (Takai et al., 2005; Hügler et al., 2007; Nakagawa et al., 

2007). 

Genes coding for the rTCA cycle-specific enzymes were detected both at Hot Lake I and 

Hot Lake II. The ORFs obtained at both sites showed almost full length proteins. After 

comparing against NCBI-nr database, the most close relatives were found to be Nitratifractor, 

Sulfurovum and Sulfurimonas with >90% similarity at Hot Lake II. Cultivated Nitratifractor 

spp. grows at opitimum temperature of 55°C (Nakagawa et al., 2005). At Hot Lake I, most 

close relatives were found to be mesophilic Epsilonproteobacteria, such as Sulfurimonas, 

Sulfuricurvum and Sulfurovum. It suggested at Hot Lake surface, autotrophs (mostly 

Epsilonproteobacteria) are able to assimilate inorganic carbon using the energy from oxidation 

of inorganic sulfur compounds.  

ORFs related to other carbon fixation pathway were as well detected, such as genes 

coding for succinate dehydrogenase. This enzyme catalyzes the oxidation of succinate into 

fumarate in the 3-hydroxypropionate bicycle. So far it has been only found in Chloroflexaceae 

(Zarzycki et al., 2009). Other enzyme such as pyruvate kinase involves in carbon fixation in 

photosynthetic organisms were observed at both Hot Lake I and II.  
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VI Conclusion and Perspectives 

Hot Lake is an oval-shaped (~10 by 6 meters) shallow (~2.5 m deep) depression in the 

seafloor at ~18 m water depth. It showed spatial differences in the mixing patterns of 

hydrothermal fluids and sea water within the depression. ARISA showed diversified microbial 

community structure depending on physico-chemical parameters. Bacteria were dominant at all 

layers of sediments both at 35°C and 74°C sites. Archaea abundance increased with depth and 

temperature. The pore water analyses, IPLs analysis and molecular analyses concluded that 

sulfur cycling prevailed in the microbial metabolisms. The correspondent metagenomic 

analyses of the surface sediments showed more than 80% sequences originated from 

Epsilonproteobacteria. Several key genes of inorganic sulfur metabolism and rTCA cycle were 

abundant. This indicated that at Hot Lake, primary production was contributed mainly by 

chemolithotrophs that generate their energy by oxidation of reduced sulfur and to a less degree 

by phototrophic Chlorobi.  

Still, in order to decipher the link between geosphere and biosphere, more analyses need 

to be conducted. Metagenomic analyses of nitrogen metabolisms, photosynthesis or genes 

coding enzymes catalyzing for e.g. Fe (III) reduction, Fe (II) oxidation and Mn (IV) reduction 

need to be carried out. Nitrate is a favorable electron acceptor in the absence of oxygen. 

However, nitrate and also ammonium concentration were below detection limit at Hot Lake. 

Nitrogen related metabolism at this ecosystem remains ambiguous.  

Another question addressed in this study is how the geofuels nourish the microbial 

community. For that, also colonization experiments were conducted at Hot Lake. In previous 

mineral analyses, sulfur and iron compounds were found abundant at Hot Lake. Pyrite, 

orthoglas, olivine and elemental sulfur were cut into 1 cm x 1 cm chips, polished and mounted 

onto plastic stripes. Subsequently, the mineral chips were put on the sediment surface of Hot 

Lake at a site with 80°C at 10 cm bsf. Two sets of experiments with or without sunlight 

respectively were conducted with the time periods of 10 days and 2 months. After the retrieval, 

samples were treated and fixed for the following CARD-FISH experiment and directly frozen 
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for DNA extraction. Further analyses will identify the microorganisms that colonize on mineral 

surfaces and reveal the influence of light. 

Incubation experiments with different substrates are essential to understand the 

ecophysiology of the microbial community. Together with F. Schubotz, sediment samples were 

taken from Hot Lake and divided into two parts. The surface sediments (0-4 cm) were 

incubated with H13CO3 (1 mM) and D2O (1%) with light and without light. This experiment 

was targeting the enrichment of anoxygenic phototrophs. Samples were harvested T=0, after 24 

hours, 72 hours and 1 week, followed by processing for lipid biomarker, CARD-FISH and 

nano-SIMS analysis. The same procedure was carried out for the deeper layers of sediments. 

The deeper layers of sediments were incubated in addition with H2 and acetate, respectively. 

These experiments target the microorganisms which could use H2 as electron donor or those 

that are heterotrophs. Such samples could be analyzed by nano-SIMS, a method that enables to 

quantify metabolic activities of single microbial cells in the environment. The uptake rates of 

different substrates can then be measured. At the same time, FISH will identify the targeting 

microorganisms phylogenetically. Also these experiments are currently ongoing. 

In addition, samples were taken from Hot Lake in 2009 for further RNA extraction and 

analyses. Transcriptome analyses facilitate the investigation of biological processes underlying 

physiological adaptations to the environments. Characterization of transcriptomics at Hot Lake 

will give us more insights into the expression of certain genes and usage of certain metabolic 

pathways. There is no doubt that still much can be learnt from this unique shallow-sea 

hydrothermal vent off Panarea Island. 
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