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Abstract

Background: Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the
extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed.
Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated
microbial respiration.

Methods/Findings: We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at
the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline
algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300–400 mM during the
day. At night, the interface was hypoxic (,70 mM) in coral-turf interactions and close to anoxic (,2 mM) in coral-CCA
interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was
about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A
numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net
photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at
night, respectively.

Conclusions/Significance: Our results showed that hypoxia was not a consistent feature in the microenvironment of the
coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to
the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local
metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and
protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of
microenvironmental conditions in studies on coral stress.
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Introduction

In the last three decades, coral reefs have been exposed to an

increasing intensity and frequency of human stressors. We are now

seeing an unprecedented decline of coral reefs worldwide, owing

primarily to the combined effects of overfishing, pollution, rising

sea surface temperatures, ocean acidification and emerging coral

diseases [1–4]. Degradation of coral reefs typically involves a shift

in community structure from a coral-dominated reef to an algal-

dominated reef, a process known as ‘coral-algal phase shift’ [5–7].

Despite being a well-documented phenomenon, the underlying

dynamics and mechanistic processes leading to algal dominance

are still unclear. It remains disputed whether algae acquire space

by colonizing open substrates after a coral has died, or by actively

overgrowing and out-competing neighboring corals [8]. Studies

addressing coral-algal competition have produced variable results,

leaving much to be learned about the properties and mechanisms

that determine the winners and losers of this battle [9–12].

Benthic algae can compete with corals through a number of

physical and chemical mechanisms. Negative effects of algae on

coral health have been attributed to direct physical effects such as

shading, abrasion or smothering [10,13,14]. Increasingly, the

importance of chemically- and microbially-mediated mechanisms

is being recognized. Algae can exude primary or secondary

metabolites that are toxic to corals and/or coral-associated

microorganisms [15–18], or they can act as a reservoir for

microbial pathogens [19]. In a small-scale laboratory experiment,

Smith et al. [20] showed that, when corals and algae were placed

in chambers together, but separated by a fine filter to prevent

exchange of particulate matter, the coral fragments suffered
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100% mortality. Microsensor measurements on the surface of the

coral tissue adjacent to algae revealed that these areas were

hypoxic. Addition of antibiotics to the water bath prevented both

the deleterious effects to the corals and the hypoxia. It was

concluded that algae exude primary metabolites (i.e. sugars and

carbohydrates), which enhanced microbial respiration and

subsequently led to localized hypoxia and coral mortality.

Building upon this, a recent laboratory-based study described

the occurrence of hypoxia at the boundaries between corals and

some turf or fleshy macroalgae. In contrast, supersaturated

oxygen levels were found at the contact zone with CCA [21]. It

was thought that hypoxia is a general phenomenon in

interactions with macroalgae, representing a constant source of

stress to corals. However, these laboratory observations have yet

to be confirmed in situ.

The oxygen microenvironment of healthy corals is a dynamic

microenvironment primarily regulated by diffusive exchange of

oxygen through the DBL [22] and light-dependent metabolic

activity of the coral [23,24]. During day-time, oxygen production

by the corals’ symbiotic zooxanthellae can lead to supersaturation

on the coral surface, while at night-time, coral community

respiration can induce hypoxia. The function of the DBL in

controlling the oxygen concentration at the coral surface is well

documented (e.g., [23,25]). For instance, oxygen values on coral

tissue of Favia sp. were reduced from about 60% air saturation at

a flow velocity of 5 cm s21 to anoxia under stagnant water [23].

Given these extreme diel and flow-dependent variations in

oxygen microhabitats on healthy corals, it is critical to ask

whether detrimental oxygen conditions at the coral-algal interface

prevail in situ under a natural regime of flow, water exchange and

light.

Here, we examined the spatial competition between corals and

two common algal groups, turf algae and CCA, from coral reefs in

Derawan Island, Indonesia. We focused on communities of turf

algae (mixed assemblages of filamentous algal and cyanobacterial

species with an average height ,10 mm) [26] and CCA that

interacted with the Indo-Pacific reef building massive coral Porites.

Turf algae have become one of the most abundant components on

modern day reefs worldwide and compete with corals on degraded

nutrient rich reefs [27]. CCA have positive roles for the

maintenance of coral-dominated reef communities as they

contribute to limestone formation and are important settlement

inducers of coral larvae [28]. They have also been found to

prevent the recruitment and growth of the macroalgae Ulva fasciata

[29]. The specific goals of this study were therefore to 1) quantify

the abundance of Porites-Turf and Porites-CCA interactions, 2)

follow interaction borders over time to assess the rates of coral

overgrowth by algae and how this rate varies between algal types

and, 3) characterize chemical microenvironments at the coral-algal

interface in situ with respect to oxygen concentration and

exchange.

Results

Abundance of Coral-algal Interactions
We found that massive Porites spp. colonies had a mean

interaction border of 39 cm (60.96 SE, n = 39 colonies). This

border was predominantly in contact with turfs (28.95 cm61.02

SE, ,74%), followed by CCA (7.38 cm60.57 SE, ,19%) and

‘other’ benthos including fleshy macroalgae (2.67 cm60.17 SE,

,7%). Time-series photomonitoring demonstrated that both turf

and CCA overgrew the coral tissue (Figure 1A–D). Turf algae and

CCA advanced at rates of 0.58 mm per month (60.12 SE, n = 5)

and 0.11 mm per month (60.07 SE, n = 4) respectively. This

suggested a greater rate of coral overgrowth by turf algae than by

CCA, but this difference was not significant (1-way ANOVA:

F1,7 = 1.82, p = 0.22).

Oxygen Profiles
During day-time (downwelling irradiance of ,660 mmol

photons m22 s21), hypoxia at the coral-algal interface was not

found in any of our 16 in situ microprofiles. In both interaction

types, oxygen surface concentrations differed among the three

sampling points (1-way ANOVA; coral-turf: F2,18 = 41.14,

p,0.001; coral-CCA: F2,24 = 17.93, p,0.001). Turf algae had

significantly higher oxygen values (1006 mM681 SE) than both

the coral (393 mM659 SE) and the interface (311 mM620 SE),

which did not differ from each other (Tukey’s HSD post hoc test;

Figure 2A). Similarly, surface oxygen concentrations at the CCA

averaged 583 mM (658 SE) and were significantly higher than

concentrations at the coral and the interface (332 mM620 SE and

309 mM610 SE, respectively; Figure 2B).

At night-time, all measured profiles showed values below air-

saturation, reflecting oxygen consumption. Oxygen values differed

significantly among the three sampling points in coral-turf

interactions (F2,6 = 6.48, p = 0.03). The coral (126 mM66 SE)

showed significantly higher oxygen values than the turf

(50 mM625 SE), but both did not differ from the interface which

had intermediate values (70 mM65 SE) (Figure 2C). In coral-CCA

interactions, oxygen levels at the algae and the interface were very

low (1.0 mM60.6 SE and 2.0 mM62.44 SE, respectively), while

average values at the coral (55 mM634 SE) were higher, but

differences among the three sampling points were not significant

(F2,6 = 2.46, p = 0.17; Figure 2D). The oxygen microenvironment

Figure 1. Changes in initial and final contact boundaries
between the massive coral Porites spp. and algae. A) Porites
spp. vs. turf algae at day zero and B) after 60 days, C) Porites spp. vs.
CCA at day zero and D) after 60 days. White lines represent initial coral-
algal boundaries and black lines represent final boundaries after 60
days.
doi:10.1371/journal.pone.0031192.g001
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at the coral-algal interface was thus highly dynamic, ranging from

supersaturated values during the day to hypoxic and anoxic values

at night.

The DBL differed significantly among the three sampling points

in both interaction types (coral-turf: F2,18 = 9.28, p = 0.002; coral-

CCA: F2,24 = 7.04, p = 0.004). The DBL thickness above the coral-

turf interface was significantly higher (,2.5 times) than above the

coral and above the turf algae. The DBL above the coral surface

and turf algae was equally thick. DBL values at the coral-CCA

interface were significantly higher (,3.1 times) than at the coral

itself and nearly two times higher than the values at the CCA

although this difference was not significant (Table 1).

The net photosynthesis rate at the turf surface was significantly

higher (,4 times) than the rate at the coral surface (F1,12 = 15.36,

p = 0.002), while dark respiration rates did not differ (F1,4 = 0.18,

p = 0.69). Differences between coral and CCA surfaces in both net

photosynthesis and dark respiration rates were not significant (PN:

F1,16 = 2.67, p = 0.12, RD: F1,4 = 0.43, p = 0.55).

Figure 2. In situ oxygen microprofiles in coral-algal interactions during the day and night. Data points are means 6 SE. Depth 0 mm refers
to the organism surface, and negative values indicate profiling upwards into the water column. Dotted lines show the oxygen distribution at the
interface based on the initial assumption of a constant algal and coral flux. Solid lines illustrate the best fit model at each measuring spot (‘Coral’,
‘Interface’ and ‘Alga’). A) Porites-turf interactions during the day (n = 7 profiles), B) Porites-CCA interactions during the day (n = 9), C) Porites-turf
interactions during the night (n = 3) and D) Porites-CCA interactions during the night (n = 3). Oxygen distribution could not be modeled for these
measurements as the flux at the interface was mass transfer-limited.
doi:10.1371/journal.pone.0031192.g002
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Two-Dimensional Oxygen Distribution at the Coral-Turf
Interface

The oxygen flux at the interface between coral and algae could

not be directly derived from the microprofiles because of

heterogeneous topography (Figure 3). The oxygen flux was

therefore modeled. We first assumed that net oxygen production

from the coral and turf was constant all the way to the interface.

Modeling the oxygen distribution using this assumption produced

much higher oxygen concentrations at the coral-algal interface

than measured in situ (Figures 2A, Figure S1A). To match the in situ

data, we reduced the oxygen production at the coral-algal

interface. Reducing the production rate to zero on either side of

the coral-algal interface alone was not sufficient to reproduce the

measured data (Figures S1B, S1C). The best fit was found by

simulating a 2 mm wide band of zero oxygen flux centered at the

competition margin (Figures 2A, 4A). An alternative scenario was

that the coral at the interface was net heterotrophic, potentially

due to enhanced respiration, while the turf was unaffected.

However, it was not possible to match the modeled and measured

data in this scenario.

Night-time measurements were modeled in a similar manner. In

the first run, we applied the respective night-time flux across the

entire coral and the entire turf. The model showed that this flux

could not be supported, as the interface would have turned anoxic,

which would be in contrast to the oxygen concentrations measured in

situ (average of 70 mM; Figure 2C). Thus, we conclude that the night-

time respiration rate at the interface must be lower than at the coral

and at the turf. We matched the model to the data by modifying the

flux in the same 2 mm wide band as in the day-light simulation. A

flux corresponding to 50% of the night-time coral flux and 33% of

the night-time turf flux produced a good match (Figures 2C, 4C).

Table 1. DBL thickness and oxygen flux in interactions
between the massive coral Porites spp. and algae.

Coral-turf (n = 7) Coral-CCA (n = 9)

DBL PN RD DBL PN RD

Coral 3536206 0.1560.06 0.1060.16 2486110 0.2060.08 0.1360.14

Interface 9616378 nd nd 7706349 nd nd

Alga 4246169 0.6160.28 0.0860.11 4026170 0.3460.18 0.1060.14

DBL thickness (mm), net photosynthesis rate (PN) and dark respiration rate (RD,
both in nmol O2 cm22 s21) at the three sampling points (‘Coral’, ‘Interface’ and
‘Alga’) for each coral-algal interaction type (coral-turf and coral-CCA). Data are
means 695% Confidence Intervals. Note that oxygen fluxes at the interface
between coral and algae were not calculated directly from the microprofiles
due to violated assumptions in the one-dimensional Fick’s first law of diffusion.
Therefore the flux at the interface was modeled.
doi:10.1371/journal.pone.0031192.t001

Figure 3. Microtopography of the contact border between the
massive coral Porites spp. and turf algae. Note the little depression
at the contact border, the healthy looking coral surface is slightly
elevated above the neighboring algae. The bubbles lining up at the
contact border are indicative of a combined effect of reduced diffusive
transport due to increased DBL thickness and oxygen supersaturation.
The picture was taken at ,4 m depth.
doi:10.1371/journal.pone.0031192.g003

Figure 4. Best match scenarios of oxygen exchange dynamics
between the massive coral Porites spp. and algae. The two-
dimensional oxygen distribution was modeled to best match the
measured in situ oxygen microprofiles at the three measuring spots
(‘Coral’, ‘Interface’ and ‘Turf/CCA’). Dotted black lines illustrate the
thickness of the DBL. Sun and moon symbols represent day and night
measurements, respectively. Note the different scales in oxygen
concentration for the day and night. A) Day-time scenario for coral-
turf, B) Day-time scenario for coral-CCA, C) Night-time scenario for coral-
turf.
doi:10.1371/journal.pone.0031192.g004
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Two-Dimensional Oxygen Distribution at the Coral-CCA
Interface

The oxygen distribution at the coral-CCA interface was

modeled in the same way as for the coral-turf interaction. Again,

the model predicted reduced photosynthesis at the interface but to

a lesser extent than in the coral-turf case. The best match to the

data was found by setting the production rate at the interface to

11% of the rate of healthy coral tissue (Figures 2B, 4B). At night,

both the interface and the CCA were anoxic at the surface

(Figure 2D). In this situation, the oxygen flux was controlled by the

thickness of the DBL. The oxygen demand in the model could

therefore be increased indefinitely without influencing the

predicted profiles, and it was thus not possible to deduce the

oxygen demand by this approach.

Discussion

Hypoxia was not a consistent feature at the zone of contact

between corals and algae in situ. In both Porites-turf and Porites-

CCA interactions, the interface was characterized by a dynamic

oxygen microenvironment with extreme diel fluctuations, ranging

from supersaturated values during the day to hypoxic and anoxic

values at night, and did not significantly differ from the coral. Our

results, however, cannot be generalized to other types of coral-

algal interactions. One species of fleshy macroalgae has been

found to transmit pathogens to a coral [19], which may have

obvious effects on the physiology near the coral-algal interface.

Similarly, corals may have different sensitivities to the presence of

algae and hypoxia. In laboratory conditions, the genus Porites

showed the least amount of mortality in contact with algae [20].

Here, however, coral mortality did occur, as demonstrated by

positive rates of overgrowth of massive Porites spp. by turf algae

and, to a lesser extent, by CCA. Together these results provide

limited support for hypoxia alone as the cause of coral mortality in

our study. If hypoxia is one of the steps leading to coral death, it

needs to be regarded as a fluctuating stressor that affects corals

during specific environmental conditions, which is likely at night

and/or during periods of reduced flow.

The in situ measurements and the numerical model showed

reduced net photosynthesis and an increased DBL thickness at

the interface between corals and algae. With the concept

documented in this study we cannot directly quantify the

individual oxygen contribution of each organism belonging to

the coral holobiont on its own (i.e. coral host, zooxanthellae and

microbes) but only the overall oxygen and mass-transfer

conditions of the coral microenvironment. Therefore it is unclear

whether the reduced oxygen flux is potentially indicative of

somewhat enhanced microbial respiration or rather represents

generally reduced metabolic activity (i.e. photosynthesis and

respiration) of the coral holobiont. The night-time model

suggested reduced dark respiration at the interface. Since a

microbial biofilm fed by dissolved organic matter from the algae

during day is likely to also have high rates of metabolism during

the night, the hypothesis of reduced metabolic activity appears

more plausible. Although care must be taken when extrapolating

results from the night-time model as it is based on one colony per

interaction, consistent results among colonies during day-time

suggest that the night-time oxygen data is likely representative of

the overall trend for Porites spp.-turf and Porites spp.-CCA

interactions. The reduced metabolic activity at the coral-algae

interface could result from the transfer and accumulation of

metabolites produced by the corals and algae and/or a greater

isolation from essential solutes of the ambient water mass, which

are both intensified for thicker DBL.

Benthic algae have been found to exude toxins, resulting in

strong negative effects on corals and coral-associated organisms

[15–18]. Similarly, corals produce a wide range of anti-bacterial

[30,31], anti-fouling [32], anti-fungal [33] and competitor

deterrent solutes (e.g., [34,35]), which are likely to harm

neighboring algae. The mutual nature of the competition between

corals and algae has been demonstrated previously [9,12,36], and

agrees well with our best fit model which simulated a 2 mm wide

band of reduced oxygen flux centered at the contact border.

The two-dimensional model used to interpret oxygen distribu-

tion can be used to estimate the distance across which corals and

algae can effectively exchange allelochemicals horizontally in the

turbulent reef environment. We assumed an even rate of

production of a low molecular weight substance across the surface

of the algae-covered substrate, and calculated a steady state

distribution that would be reached after a few minutes. The result

showed a ‘halo’ of the substance around the algae that was

restricted to the DBL and extended only 1 mm across the border

to the coral (Figure 5). This agreed well with the 1 mm wide zone

of reduced metabolic activity over the coral indicated by the

interpretation of the oxygen data and model (Figure 4A–C). This

simulation was also consistent with observations documenting the

occurrence of chemically mediated effects only at areas of direct

contact [17,37].

Reduced vertical growth at the edge of a coral colony

automatically forms a crevice between the coral and the

surrounding biogenic rock (Figure 3). The DBL does not follow

the surface into such small cracks, which leads to increased DBL

thickness at the interface, as indicated by our data. Once a crack is

formed, this can lead to a secondary negative effect on the coral

due to enhanced transport resistance of solutes and metabolites

between the coral and the water column. Previous studies showed

that the combination of locally reduced pH and oxygen can

rapidly kill coral tissue [38] and that a decrease in ambient pH

values facilitated coral overgrowth by benthic algae [39]. During

periods of net respiration, the thick DBL will facilitate the

development of reduced pH and low oxygen levels by accumu-

lating protons and limiting oxygen supply at the coral surface. It is

thus likely that stressful pH and oxygen levels develop temporarily

at night. However, future studies are needed to verify whether a

decrease in local pH occurs at the competition zone. The

Figure 5. Transport of algal allelochemicals at the coral-algal
interface. The figure shows the modeled steady state distribution of a
low molecular weight substance released by the algae. The lowermost
isoline illustrates 64% of the total concentration of the substance.
Subsequent isolines represent a halving of the effect. The dotted black
line illustrates the thickness of the DBL, based on measurements in
coral-turf interactions. The impact of the alga extends to ,1 mm over
the coral.
doi:10.1371/journal.pone.0031192.g005
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thickened DBL increases the exposure of coral margins to algal

generated metabolites, highlighting the importance of protecting

reefs against the proliferation of chemically damaging seaweeds.

The thickness of the DBL also controls coral uptake rates of

metabolically important nutrients such as phosphate and ammo-

nium, whereby a thickening of the DBL leads to a decrease in

nutrient uptake [40,41]. Thus, the reduced vitality of the coral

edge and the resulting crevice might be self-enhancing, raising the

possibility of a negative feedback mechanism in which reduced

metabolism of the coral edge promotes crevice formation, which in

turn leads to a more detrimental microenvironment and further

decrease in coral health.

Coral-CCA and coral-turf interactions did not show strong

differences in oxygen concentrations at the interface, although

results are not easily comparable since measurements were not

done simultaneously. Our model, however, showed a greater

reduction in photosynthesis at the interface in coral-turf

interactions compared to coral-CCA interactions. This suggested

that CCA have less detrimental effects on corals than turf algae

which agrees well with the general trend of coral overgrowth

observed in this study, as well as in previous investigations (e.g.,

[27]).

Conclusions
In search for in situ evidence of hypoxia in coral-algal

interactions, we found that hypoxia was not a general phenom-

enon at the interface between the massive coral Porites spp. and two

major groups of benthic algae (turf and CCA). Enhanced

respiration is thus unlikely to be the direct cause of coral tissue

mortality. We argue that the coral-algal interface is a zone of low

metabolic activity caused by the accumulation of metabolites

released by corals and algae. These impacts are facilitated by an

enhanced thickness of the DBL, which in turn is attributable to a

depression in the local topography. Our findings imply that mass

transfer phenomena play an important role in coral-algal

competition. Knowledge on the microenvironmental regulation

of coral stress will provide a detailed understanding of the

mechanisms that trigger coral reef degradation.

Materials and Methods

Ethics Statement
The research was approved by the Indonesian State Ministry of

Research and Technology (RISTEK) and was performed in strict

accordance with Indonesian regulations for field research (research

permit number CD4892037).

Study Site
Field-work was carried out on the reef flat in Derawan Island,

east Kalimantan, Indonesia (N 02u169570, E 118u149540) from

January to March 2010. The study area was 20 km offshore from

the mainland. It was directly affected by the discharge from the

nearby Berau River, which can transport significant sediment

loads [42]. Over the past ten years, the reefs of Derawan Island

have experienced a decrease in coral cover with subsequent

replacement by benthic algae as a result of heavy sedimentation,

disease and an outbreak of the corallivorous starfish Acanthaster

planci [43,44].

Coral-Algal Interaction Surveys and Monitoring
The abundance of contact boundaries between massive Porites

and benthic organisms was determined over eight randomly

placed belt transects (2 m width) at depths of 3 to 10 m and

orientated parallel to the shoreline. Massive Porites colonies were

not identified to species level, however it was ensured that all

colonies showed the same colony shape and polyp morphology (as

observed through a magnifying glass). For the first five colonies

encountered per transect, the length of the coral-benthos border(s)

was measured to the nearest centimeter on each colony. Benthic

organisms were categorized as turf algae, CCA and ‘other’. The

‘other’ category mainly included fleshy macroalgae, ascidians and

sponges.

Coral-algal interactions were monitored photographically to

follow the temporal changes in position of boundaries between

living massive Porites spp. tissue and algae. For each of the two

interaction types (coral-turf and coral-CCA), five colonies were

randomly selected at about 4–7 m depths. All colonies came from

a small area (,300 m2) within our study site to minimize

macroenvironmental variations (i.e. downwelling irradiance and

flow velocity). On each colony, a 10610 cm quadrat delimited by

four stainless-steel nails at each corner, was positioned along the

coral-algal boundary and photographed over a 60 day period

using a Sea & Sea DX-1G camera with a 24 mm lens and external

strobe. Changes in the position of the coral-algal boundary were

analyzed in Adobe Photoshop (CS2, Adobe Systems Inc.) using

distinctive polyp structures as lines of reference to redraw the final

boundary next to the initial boundary. The gain or loss in area of

algae was calculated by subtracting the surface area of algal retreat

from algal advance and dividing it by the initial length of

interaction. One colony with a coral-CCA interaction had to be

removed because of coral tissue loss unrelated to algal overgrowth

(sand burying).

Oxygen Microsensor Construction and Calibration
Amperometric Clark-type oxygen microsensors with a guard

cathode were constructed according to Revsbech [45]. To

minimize the potential of sensor breakage when approaching the

coral surface, sensors were built with a thin flexible upper part (ca.

10 cm in length) and a slightly thickened outer case of the sensor

tip. Sensors were painted white to increase visibility underwater.

Microsensors had a tip diameter of 10–50 mm and a stirring

sensitivity of ,1.5%. Sensors were linearly calibrated before and

after each dive at in situ temperature and salinity against air

saturated seawater and anoxic sediment. The percent air

saturation was transformed to mM oxygen as in Garcia and

Gordon [46].

In Situ Oxygen Microsensor Measurements
The characterization of the oxygen microenvironment in the

two types of coral-algal interactions was carried out in situ during

the day and the night using a diver-operated motorized

microsensor profiler for underwater field operations (DOMS)

[47]. Day-time measurements (9am to 4pm) were performed on

three randomly selected interactions from the five photomonitored

coral-algal interactions. Oxygen profiles were measured within the

monitored area at three points along an axis perpendicular to the

coral-algal interface: 1) apparently healthy tissue 461 cm away

from the interface (‘Coral’), 2) the coral-algal interface (‘Interface’)

and, 3) apparently healthy algae 461 cm away from the interface

(‘Turf’ or ‘CCA’). Oxygen profiles were measured at the three

points in a random sequence to reduce any bias related to light

and flow conditions, and the procedure was repeated three times

at randomly selected locations within the monitored area.

Measurements on coral tissue were exclusively conducted on the

coenosarc (tissue between polyps) in order to minimize the

influence of tissue movement [23] and the spatial heterogeneity

of coral photosynthesis [48,49].

Oxygen Dynamics in Coral-Algal Interactions
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For each oxygen profile, the microsensor was carefully

positioned at an angle of approximately 20u from the surface by

looking under a magnifying glass and manually moving the

micromanipulator of the DOMS until a minute bent of the sensor

was observed. The oxygen signal was allowed to stabilize before

profiles were measured upwards into the overlying water column

in 50–500 mm steps by the DOMS. The sensor was allowed

20 seconds resting time between each measurement, and each

measurement consisted of an average of 10 data-points collected

over 10 seconds.

Night-time measurements (7–10 pm) were conducted on one

randomly selected colony per interaction type using the same

measuring approach as for day-time measurements. Artificial

illumination is required to determine the surface position at night,

which leads to oxygen production by photosynthesis. The oxygen

reading was therefore allowed to reach a steady state at darkness

before profiling started. This occurred within 1 to 5 min after the

light source was switched off.

During all measurements, net current flow velocity in the

overlying water 1–2 m from the measured coral colony averaged

8.9 cm s21 (62.1 SD), as determined by tracing small particles in

the water column. Average downwelling irradiance during

daytime measurements was 663 mmol photons m22 s21 (6183

SD), measured next to the coral colony with a cosine corrected

quantum sensor (Li-192) connected to a data logger (Li 1400, Li-

Cor, USA).

Oxygen Data Analyses and Modeling
For all analyses, it was assumed that oxygen profiles were

measured in steady state. We aimed at taking measurements on

sunny days, with a calm sea and between tides to minimize

environmental variations. Three consecutive profiles from two

measuring days (total of 6 profiles) had to be discarded due to

cloudy weather. For the remaining profiles the effective DBL

thickness was calculated from the intercept between the linear

extrapolation of the oxygen profile at the coral surface and the

bulk concentration [22]. For ‘Coral’, ‘Turf’ and ‘CCA’ sampling

points, areal rates of net photosynthesis and dark respiration were

calculated from oxygen profiles in the light and dark, respectively,

using Fick’s first law of diffusion with a diffusion coefficient of

2.4861025 cm2 s21 (calculated for in situ temperatures of 29uC
and salinity of 35%) [50].

Calculation of diffusive fluxes from the simple Fick’s first law of

diffusion is only valid for a flat surface without substantial

heterogeneity, such as the coral or algal surfaces [23,51]. These

requirements are, however, not fulfilled at the coral-algal interface.

To approach this problem, we deduced the topography at the

interface based on the measured DBL thicknesses and the way the

DBL follows the local topography as a smoothed out blanket

[52,53]. A thick DBL measured at the interface was ascribed to a

depression in the local topography. This model assumption is

reasonable since dead coral skeleton is exposed to bioerosion [54]

and benthic algae can reduce coral growth (skeletal extension) and

tissue thickness in their vicinity [13,55], resulting in healthy coral

tissue being topographically elevated. This topography was

confirmed as a common phenomenon from images from the reef

(Figure 3).

The sketched topography was imported into the finite element

modeling software Comsol Multiphysics, which can calculate

diffusion fields in complex geometries. We modeled concentration

and transport from the surface and 3 mm into the water column. The

molecular diffusion coefficient (Dm) was set to 2.4861025 cm2 s21

(see above). Eddy diffusion (De) was modeled such that De is

proportional to the distance from the surface raised to the 4th power,

and such that De = Dm at the upper boundary of the effective DBL:

De = Dm x (z4/Zeff
4) where z is the distance above the surface and

Zeff is the thickness of the effective diffusive boundary layer. The left

and right boundaries were set to symmetry and the upper boundary

towards the water column to 200 mM oxygen. The oxygen flux to the

lower boundary (i.e., the coral or algal surface) was adjusted until the

modeled oxygen distribution matched the measured microprofiles.

Differences in oxygen surface concentrations and DBL among

the three sampling points (coral, interface and algae) were tested

using 1-way ANOVA followed by Tukey’s HSD post hoc test.

Differences in photosynthesis and respiration were only tested

between coral and algae since they could not be calculated directly

from the microprofiles at the interface. Data were log(x+1)

transformed if necessary.

Supporting Information

Figure S1 Simulated scenarios of oxygen exchange
dynamics between the massive coral Porites spp. and
turf algae. A) Scenario 1: The flux of coral and turf is constant

towards the interaction zone. B) Scenario 2: The flux of coral is

zero, but constant for turf. C) Scenario 3: The flux of turf is zero,

but constant for coral. None of these scenarios matched the in situ

data.

(TIF)
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