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Thesis Abstract

The identification and classification of microorganisms relies heavily on the
interpretation and manipulation of genetic material. In constrast to for ex-
ample plants or animals, microbes have few easily observed morphological or
phenetic traits by which they can be distinguished. Yet, microorganisms are
ubiquitous, having adapted to essentially every environment on earth. The
extreme diversity that can therefore be expected is observable on a genetic
level. In order to structure microbial life into taxonomic hierarchies and assess
both diversity and relative abundances, molecular and computational methods
make use of marker genes. In microbiology, the most frequently used marker
genes are the small and large subunit (SSU and LSU) ribosomal RNA (rRNA)
genes (16S/18S and 23S/28S, respectively). Their popularity in combination
with technological progress, especially relating to sequencing methods, has cre-
ated a vast pool of characterized SSU and LSU gene sequences. The breadth
of available and described sequences is of great benefit to diversity studies, as
it enhances the precision at which organisms can be identified. The wealth of
information inherent in this pool of data can also be harnessed in phylogenetic
studies. However, the work-flows employed were developed at a time when
sequence data was scarce and expensive, thus made no consideration of scal-
ability in their design. Yet today, sequence data has become both cheap and
abundant.

With the SILVA database project we have created a central resource that
provides a comprehensive collection of preprocessed, high quality sequence
data. The databases include both the small and the large subunit rRNA genes
(SSU and LSU) and cover all three domains. The sequences are quality con-
trolled, enriched with contextual data from diverse sources and mutually ali-
gned. A taxonomically labeled phylogenetical guide tree is included with
the databases. Standardized subsets of the databases are offered to address
the competing demands for comprehensiveness (Parc dataset), optimal quality
(Ref dataset) and manageable database size (RefNR dataset). The alignment
tool SINA was developed for use in the SILVA pipeline and made generally
available. SINA pursues an add-to-alignment approach using partial order ali-
gnment (POA) techniques and a modified dynamic programming recursion that
guarantees fixed alignment width. SINA is sufficiently reliable and robust to
allow unsupervised multiple sequence alignment (MSA) computation. As the
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sequences are aligned individually, it also scales very well to large sequence
numbers. Scalability limitations in the ARB software for sequence analysis
were resolved. This included porting ARB to 64 bit architecture, fixing data-
base schema limitations and improving performance and usability. Several
tools have been implemented as part of the SILVA web interface. These allow
extracting arbitrarily defined subsets through search and filtering mechanisms,
aligning user submitted sequence data and evaluating probes using entire re-
spective SILVA database. Three related studies aiming at improving the primary
data situation have been completed. A standardization effort was undertaken
to increase the availability of complete and consistent contextual data. A com-
parison between SSU and LSU resolution based on the Global Ocean Survey
(GOS) meta-genomes showed the potential of relying on LSU data instead of
or in addition to SSU data. Lastly, the large amount of high quality sequence
data in the SILVA database and the mechanisms developed to build these data-
bases were employed in an evaluation of commonly used primers.
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CHAPTER 1

Introduction

Life in its multitude of forms, in the complexity of detail and the beautiful
simplicity of recurring patterns it exhibits, has always been a source of fascina-
tion. For millennia, mankind has sought, through observation and deduction,
to understand its behavior and the source of its existence. The level of un-
derstanding of its inner functioning we take for granted today, however, has
been a relatively recent development. Only with the technologies developed
in the course of the 20th century has it become possible to observe life at a
subcellular level, to analyze these observations and to draw conclusions about
the mechanisms behind life. An example of such technology is X-ray crystal-
lography, developed in the wake of the discovery of X-rays by Roentgen shortly
before the turn of the century [135, 238, 260]. This method is used to de-
termine the atomic substructure of crystals, and, among many other discov-
eries, allowed Watson and Crick to discover the structure of deoxyribonucleic
acid (DNA) [302]. A host of other technologies, such as electron microscopy,
allowed slowly unraveling the sub-cellular mechanisms constituting what we
summarily call life [1, 133, 232, 240, 246]. The perhaps most consequential in-
sight gained was the recognition of mechanisms for information processing as
the core of the self maintenance and reproduction capabilities of life [46]. In-
teracting, information carrying macromolecules composed of chains of smaller
building blocks, amino acids and nucleic acids, define a cell’s behavior. The
genomic DNA contained within each cell can be considered to be its blueprint.
The genome contains, in surprisingly modular structure [106], instructions for
building each of the components comprising the cell. A segment of a genome
coding for a particular component is termed a gene. These genes often relate
directly to traits observable in the entire organism. Mapping genes to traits
and modeling the expression of genes and their recombination during sexual
reproduction has served well to explain hitherto mysterious behavior, such as
the laws of inheritance observed by Mendel [189, 242]. The concept of grad-
ual evolution from a common ancestor hypothesized by Darwin and Wallace
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[47, 296] can also be neatly explained on a genomic level [279], although the
complex mechanisms accelerating evolution beyond what a mere combination
of random point mutations and selection could achieve have yet to be fully
understood [147, 178]. The dichotomy of observable evolution in whole or-
ganisms and individual genes has led to the proposition of “the selfish gene” by
Dawkins [48], who suggested that the former is but an artifact of the latter.

Whether or not that is the case, evolution is observable in individual types
of macromolecules, which can therefore be used as a “molecular clock” to trace
the evolution of organisms [319]. The value of analyzing the evolutionary re-
lationships among organisms also goes beyond more philosophical interests,
such as the quest for the origins of life. Evolution is by definition a histori-
cal process, and just like it is necessary to understand the history of a society
to understand its culture, the history of life must be understood to explain its
current shape. Furthermore, lineage is a natural metric for a hierarchical classi-
fication structure. Biological taxonomy had already pursued such a structuring
of organisms prior to the development of molecular methods, relying solely on
phenotypic characters. While these methods remain in use where phenotypic
data is sufficiently informative or where no genetic data can be obtained, as
for example in the classification of organisms based on fossilized traces (ich-
notaxa) [187], microbial taxonomy is today usually informed by phylogenetic
analysis of marker genes. In addition to improved objectivity, molecular phy-
logeny has the benefit of being able to discriminate phenotypically similar or-
ganisms. This is especially important in microbiology, where morphological
simplicity is the rule, but also has zoological or botanical applications. The
latter, however, focus more on identification, especially of seeds and infants,
in which the identifying morphological traits are not yet expressed, than on
phylogenetic classification [108, 144, 196]. Depending on scale, scope and tar-
geted organisms, many different genes have been used as molecular markers.
Zuckerkandl and Pauling [319] analyzed homologous hemoglobin and myo-
globin chains; in “DNA barcoding”, popular with eukaryotic organisms, the
mitochondrial DNA (mtDNA) gene cytochrome oxidase I (COI) has been ex-
tensively sequenced [13, 141, 254]; in microbiology ribosomal RNA (rRNA),
in particular the 16S, has become the “gold standard” for identification and
classification of organisms [6, 215].

Raw sequence data, however, is hard to interpret directly. While it is possi-
ble to detect patterns visually, unaided interpretation requires extensive train-
ing and is necessarily subjective. Various methods originating from fields such
as applied mathematics, statistics, signal theory, theoretical computer science
or artificial intelligence research have therefore been applied in the analysis
of sequence data. The basic problems of sequence analysis can be grouped
into pairwise sequence alignment, homology search, multiple alignment and
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Figure 1.1 The number of available sequences grow exponentially with a doubling
rate of approximately once every 18 month. The sizes of three databases are shown in
a logarithmic plot over time. The two lines indicate doubling rates of once every 18
and 24 month, respectively. The EMBL Nucleotide Sequence Database hosts sequences
independent of gene type and is synchronized with the other two INSDC databases NCBI
and DDJC. The RDP database hosts only SSU sequences; for SILVA, only the size of the
SSU database is shown. A roughly proportional growth in the total number of available
sequences and SSU sequences can be observed. The data for this plot was drawn from the

database websites.

phylogenetic tree reconstruction [60]. However, many other topics have been
addressed, modeling interactions at spacial scopes ranging from the atomic
to the ecological level. As both sequencing and microchip technology have
progressed in exponential fashion (see Figs. 1.1 and 1.2), data oriented ap-
proaches to research questions that may be addressed by sequence character-
ization and analysis have become very cost effective and popular. This devel-
opment towards data-driven science is not unique to biology, but extends to
every science where measurements can be acquired digitally in large amounts,
such as for example particle physics or astronomy. Within biology, it is also
not limited to sequence data, but extents to all manners of observations that
can be made in an automated, high-throughput fashion, ranging from satellite
imagery to GPS motion profiles. The term “data deluge” refers to the phe-
nomenon of overwhelming amounts of available data [26, 115]. The data-
intensive approach to science that aims at harnessing these data volumes has
been called the fourth paradigm, the third being computer simulations and the
first two the time honored classification of science into theoretical and exper-
imental research [21]. In a sense, the third and fourth paradigm are merely



6 1. Introduction

the application of information technology to the original two paradigms. As
computer simulations enhance the power of modeling in theoretical sciences,
computational data analysis enhance observational and deductive capability of
experimental sciences. In biology, the two disciplines building on information
technology may be distinguished along the same lines. Bioinformatics focuses
on making the information inherent in the observed data accessible, whereas
computational biology focuses on modeling the biological systems underlying
the observed data [198]. A precise delineation of the two disciplines is impossi-
ble, as they share a large zone of interest. Considering that science commonly
progresses through the interaction and integration of theoretical and exper-
imental approaches, this situation is unsurprising and in fact necessary. In
Muerta et al. [198], bioinformatics is defined as follows:

Bioinformatics: Research, development, or application of com-
putational tools and approaches for expanding the use of biologi-
cal, medical, behavioral or health data, including those to acquire,
store, organize, archive, analyze, or visualize such data.

In its emphasis on tools for data management, analysis and visualization,
this definition clearly places bioinformatics at the interface between computer
science and the theoretical and experimental life sciences. It provides to the ex-
perimental life sciences the means to interpret data, drawing on computer sci-
ence for algorithmically automating data analysis and visualization and draw-
ing on the theoretical life sciences to provide the mathematical foundations.
Algorithmic, bioinformatic methods for sequence analysis are frequently pub-
lished accompanied by implementations facilitating their application. Depend-
ing on whether they target casual use, an expert audience or high-throughput
scenarios, the implementations take the form of web, desktop or command
line oriented applications. The consistent organization of data is facilitated
through bioinformatical databases, where data collection and dissemination
are centralized and standardized.

Central to this thesis is the development of a bioinformatical sequence data-
base for the marker genes small subunit rRNA gene (SSU) and large subunit
rRNA gene (LSU). This database is complemented by newly developed web
applications and an improved desktop application, enabling analyses based on
the data contained within the database. An algorithm for sequence alignment
geared towards the specific requirements in pre-existing rRNA analysis work-
flows is developed and implemented for use in database generation as well as
via the web and desktop applications. Furthermore, the methods developed
are applied to assess the taxonomic resolution offered by the LSU as compared
to the SSU and to asses the taxonomic bias introduced by primers commonly
used in SSU sequencing. The experiences made during the development of
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Figure 1.2 Development of microprocessor transistor counts between 1971 and 2011.
The diagonal line indicates a doubling rate of once every two years. This behavior was
already predicted in 1965 by Gordon Moore[194], one of the founders of Intel, and is
known as Moore’s law. The number of transistors per processor is shown, because it is
more easily quantifiable than computer performance or the total cost of solving a given
computational problem. However, all of these are governed by the miniaturization of
microprocessor structures. Increased transistor density leads to decreased production costs
and to increased compute performance [245, 284]. (Figure prepared by wikipedia author

“wgsimon”1)

database and applications are contributed to a standard aiming to improve
both consistency and abundance of contextual, environmental data associated
with sequence data obtained in empirical studies.

1.1 Taxonomy

Science depends at its very core on precise and accurate names. The scien-
tific process of forming and testing hypotheses until nature can be reliably

1http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore’s_
Law_-_2011.svg

http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore's_Law_-_2011.svg
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore's_Law_-_2011.svg
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predicted requires names to identify the objects under investigation. While
a field is still new, the terms used are ambiguous and in flux. Only once an
established system of names has been arrived at, can science truly move on.
Often, completing the terminology coincides with completing understanding
at the level of abstraction described by the new nomenclature. The periodic
table of elements may serve as an example for this. The table taught in chem-
istry classes today is nearly identical to the one created by Mendeleev in 1871.
From this table, or more precisely from a gap within it, he was able to predict
the existence of “eka-silicon” which is called germanium, today. Although he
himself believed atoms to be without constituents, his table of elements was
instrumental to the discoveries made by nuclear physics [137]. Eventually, the
classification structure he created became common knowledge and is now one
of the foundations of chemistry.

Completing the classification of the constituents of its objects of study has
been a major milestone for chemistry. In the domain of biology, however, the
situation is much more complex. Although a basic unit of life exists in the
cell and all living organisms are composed from cells, cells and atoms can-
not be further likened. Molecules are composed from atoms classified into a
small number of elements (118, Barber et al. [18]), whereas (multicellular)
organisms are composed from genetically identical cells, capable of forming a
multitude of different tissue types. The classification of life has therefore fo-
cused on grouping individuals into species. Although an individual organism
can host a multitude of smaller organisms from other species in parasitic or
symbiotic relationships (see for example the human microbiome project: Turn-
baugh et al. [289]), although there are exceptions to the assumption that an
individual is composed from genetically identical cells (for example, a case of
a phenotypically normal albeit chimeric woman is described in Tanaka et al.
[274]), and although a host of other issues surround the species concept, it
remains without alternatives [50, 114, 186, 228].

Historically, the concept of a “species” as the basic systematic unit of orga-
nizing life was defined as a group of individuals that through interbreeding are
capable of producing fertile offspring. In pre-darwinian times, these species
were thought of as completely distinct, their organization into larger groups
such as plants and animals based upon physical appearance and functional
capability. Darwin’s theory of evolution extended the concept of descent from
individuals to species and life as a whole (“gradualism”). Eventually, speciation
was recognized as a gradual process. This, the observation of cases in which
the above definition of species does not satisfy the criteria for mathematical
equivalence, and the inapplicability of interbreeding to asexually reproducing
organisms have perforce made “species” a term of only vague definition. Quot-
ing Darwin himself, “No one definition has satisfied all naturalists; yet every
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naturalist knows vaguely what he means when he speaks of a species.” Both
the difficulty of defining the term and the demand for doing so are outlined
by the multitude of publications discussing the topic until today (see e.g. Lee
[156] or Sites Jr and Marshall [257]).

While the recognition of evolution blurred the definition of a species it was
of immense value to the classification of life. Taxonomies outside of biology
are always troubled by the fact that there is no single, correct classification
hierarchy. Vehicles, for example, could be classified according to the engine
type, the number of wheels, the passenger capacity or even their color. All
taxonomies based on any combination of these criteria are equally valid. If,
however, every individual to be classified originates from a parent individual,
the topology of the correct taxonomy can be defined by demanding that all
individuals within a group share a common ancestor. Thus, current biological
taxonomies are always at least informed by phylogenetics, which is the study of
the evolutionary relationships between organisms. Named groups of organisms
are called taxa (singular: taxon). Taxa comprising only organisms which are
descendants from a shared ancestor are called monophyletic taxa. However,
groups that are not monophyletic remain in common usage for pragmatic as
well as historic reasons.

Modern biological taxonomy still reflects the work of Carl Linnæus, whose
Systema Naturæ [161] marks the founding of the discipline. His scheme for
naming species, the binomial nomenclature, remains in use until today. His
system of fixed ranks, kingdoms, classes, orders, genera and species, is still
recognizable in currently accepted taxonomies. Yet, his work predates Darwin,
and thus makes no consideration of evolutionary relationships, but focuses on
morphological and behavioral traits. After Darwin published his “On the origin
of species” [47], Ernst Haeckel published one of the first revised taxonomies
in “Generelle Morphologie der Organismen” [101], introducing the kingdom
Protista (Fig. 1.3). He was also the first to formally describe the amniotes,
the subgroups of which are a frequently used example for non-monophyletic
groups. Traditionally, the amniotes were separated into the classes Reptilia,
Aves and Mammalia (Fig. 1.3). Birds, however, have descended from reptiles,
making the traditional class Reptillia a paraphyletic group as it excludes the
sub-group Aves. Aves and Mammalia together form the polyphyletic group of
warm blooded animals (Fig. 1.4). The designation of Reptilia as the Amniota
that are not Aves or Mammalia can be argued for as these form a cohesive
group sharing a common mode of life [30]. Equally, the term “warm blooded”
is useful as it describes a group of organisms with a significant shared trait –
even though the similarity is a homoplasy, the trait having developed indepen-
dently in a case of convergent evolution.

Constructing a purely monophyletic taxonomy is very difficult to do, as
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Figure 1.3 Haeckel’s Monophyletic Tree of Life

it depends on reconstructing a correct phylogeny. Ultimately, the difficulty is
evident in the ongoing process of revising and discussing the structure of the
tree of life [36, 38, 153]. Archaeological evidence is limited to the fossilized
traces that have survived time – bones and imprints – and are costly to ac-
quire. Molecular evidence, on the other hand, can today be acquired cheaply
in large amounts, but it is, for the most part, limited to extant organisms. A fur-
ther challenge is finding characters that are comparable across the investigated
taxa. A character deriving from skull shape can only be used to compare taxa
actually having a head. Fox, Pechman and Woese therefore used the prokary-
otic small subunit ribosomal rRNA, the 16S, in their research [79]. Including
the eukaryotic variant 18S, the SSU is present in all known organisms, allow-
ing the the construction of a phylogeny encompassing any living organism.
This phylogeny led them to propose three urkingdoms [304], today known as
the three domains of life, the Archaea, Bacteria and Eukarya [305] (Fig. 1.5).
In addition to its ubiquity, the SSU is sufficiently conserved to allow reliable
separation into characters for phylogenetic analysis using multiple sequence
alignment techniques [79, 213]. However, even though lateral transfer of the
SSU is thought to be unlikely [79], a purely SSU based phylogeny can ulti-
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mately only show the history of that particular gene. Protein phylogenies also
contradict the results of rRNA phylogenies – as well as each other – especially
at the root of the tree of life [78]. Approaches incorporating multiple genes
have therefore been pursued [38]. In order to model gene transfer, Dagan
et al. [45] replaced the binary tree commonly assumed in phylogeny with a
split network computed from 562,321 proteins extracted from 191 completely
sequenced genomes. While other studies had come to the conclusion that the
root of prokaryotic life lies within the domain Bacteria [35, 149], their analysis
concluded that the greatest divide can indeed be found between the domains
Bacteria and Archaea [45].

Figure 1.4 Amniote phylogeny proposed by Laurin and Reisz. The tree was recon-
structed from 13 taxa and 124 morphological characters using PAUP 3.1 [271]. Synap-

sidia includes the Mammalia and Diapsida the Aves[153]

As illustrated by the example of the three domains proposed by Woese, tax-
onomy can be informed and refined by phylogenetic research. Yet, at its core,
taxonomy remains a hierarchy of labels used as a basis for communication. The
imposition of semantic meaning, such as monophyly, merely serves to moder-
ate what would otherwise be an arbitrary structure. As altering a taxonomy
is prone to cause confusion and inconsistencies with published literature, phy-
logenetic evidence is only incorporated slowly and after careful consideration.
Ultimately, the purpose of taxonomy is to serve as a framework for classifica-
tion and identification of organisms in a stable and reliable manner.
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Figure 1.5 The Phylogenetic Tree of Life as proposed in Woese et al. [305].
(Figure courtesy of NASA)

1.2 Identification and Classification of
Organisms in Microbiology

The study of microorganisms, microbiology, has from its very beginning fought
with the difficulty of observing its miniscule subjects. They are invisible to the
naked eye and even the use of a microscope only reveals a number of differ-
ent shapes, colors or formations that is insufficient to identify members of a
species. This issue is compounded by the fact that such directly visible fea-
tures are not stable throughout an individual’s life cycle (endospore formation
for example, as first described by Koch [140]). For many decades, the only
method available for identification was the preparation of cultures. By adding
the precise conditions, temperature and composition of the growth medium to
the list of features and by observing the growth patterns, enough information
can be gathered to identify a species or strain of microorganisms [285]. This
process is, however, not only tedious and time consuming, but also limited to
species for which a suitable environment can be created in the laboratory. Mi-
croorganisms depending on complex environments, such as for example a host
organism or on extreme environments, such as high pressure or temperature,
are difficult or nearly impossible to culture [6, 287]. Yet, these organisms are
both abundant and diverse in nature and are therefore critical to understand-
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ing microbial ecology as a whole [230]. Amann et al. [6] estimated that over
90%, possibly up to 99% of the microbial diversity yet resists cultivation.

While both visual observation through microscopes and the preparation
of cultures remain important methods used in microbiology, they are insuffi-
cient for studies in which the exact structure or composition of the microbial
community present in a sample is sought. Cultivation-independent methods
for identification and quantification of microorganisms have been developed
in answer to this challenge. In the full-cycle rRNA approach [6] (see Fig. 1.6),
the fluorescence in situ hybridization (FISH) method is used to highlight cells
belonging to a specific group of organisms. In this approach, short signature se-
quences specific to a target group of organisms are determined from sequenced
rDNA genes. Oligonucleotides complementary to these signatures are then
synthesized and labeled with fluorescent dye. These oligonucleotides, termed
probes, are introduced into the cells where they are hybridized to matching
rRNA molecules. Not hybridized probes are removed in a washing step. As
many rRNA instances of the rDNA gene exist in a cell [213], sufficient opti-
cal signal can be obtained to visually identify the labeled cells under a micro-
scope. The FISH method has the advantage of allowing whole, fixed cells to
be enumerated. It is therefore both fully quantitative and location preserv-
ing. These properties are especially important when investigating symbiotic or
parasitic relationships as co-occurrence or inhabited tissues can be visually in-
spected. An alternative method is dot blotting, where probes are hybridized to
extracted DNA or RNA. In this method, locality is lost but quantitative results
may be obtained [5]. Polymerase chain reaction (PCR) based methods, such
as quantitative PCR (qPCR), have also been used, but can only be considered
semi-quantitative due to PCR biases [5, 37]. Recently, purely sequencing based
approaches have become popular in diversity studies. Typically, primers target-
ing conserved regions of marker genes are used to generate large volumes of
short sequences (tag sequences). The identity of the organisms is then de-
termined by comparing the sequences to reference databases. Sequence data
obtained in meta-genome projects can also be analyzed and interpreted in this
manner. However, as PCR remains a necessary step in most sequencing tech-
niques, sequencing based approaches are subject to PCR biases as well. They
are employed in spite of this caveat mainly because the “next-generation” se-
quencing technology has made volume sequence acquisition a cost-effective
opportunity for insight into biodiversity.

For a long time, chain-termination sequencing, also known as Sanger se-
quencing after its developer Frederick Sanger [243], has been the most preva-
lent method for characterizing nucleotide sequences. In brief, a single stranded
DNA template is sequenced as follows: A mixture of DNA polymerase, normal
and dye-labeled chain-terminating nucleotides is used to produce all prefixes
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of the DNA template. The prefixes are then sorted according to their length
through capillary electrophoresis. As the fragments exit the capillary, the type
of dye-label affixed to the chain-terminator is determined. The resulting color
histogram shows the nucleotide at the end of each prefix and thereby the com-
position of the sequence. Read length is limited by the sorting mechanism. As
the prefix length increases, the relative length difference decreases until peaks
in the histogram become indistinguishable. Today, read lengths of up 1000
bases are possible with Sanger sequencing [255]. While the second generation
sequencing technologies cannot yet match such read lengths, these methods
allow sequencing much larger amounts of nucleotides at lower cost. This is
achieved through parallelism using cyclic array sequencing. In essence, second
generation sequencing methods characterize a large number of DNA templates
at once by iteratively applying enzymatic manipulations to generate an optical
signal indicating the type of appended nucleotide [255]. Yet, some form of bio-
chemical amplification is used by all methods to generate a signal of sufficient
strength. Third generation sequencing technologies expand on this by directly
observing the duplication of a single molecule in real-time [67, 98]. As single
molecule sequencing does not require amplification, these new technologies
hold the promise of quantitative sequence based identification. Collectively,
next-generation sequencing technologies progress at an extremely rapid pace.
A host of new methods has been devised and implemented in commercially
available instruments [190]. Projections of the technological developments
show that even basic sequence data analysis, rather than sequence data acqui-
sition, will very soon become the most limiting factor [268].

1.3 Sequence Analysis

1.3.1 Alignment

Sequence alignment is a frequently used method for comparative sequence
analysis. In this process, the residues comprising two sequences are arranged
such that equivalent parts of the two sequences are placed beneath each other
in shared columns. Empty columns are typically filled with gap characters (“-”).
Thus, the fractions of the respective sequences that are identical and those that
differ are made explicit and become simple to visually inspect. The ideal ali-
gnment of two sequences depends on the type of equivalence sought in its
construction and interpretation. Residues may be considered equivalent if they
derive from a single evolutionary event. This relation is termed homology and
sought for if the alignment is to be used for phylogenetic tree reconstruction.
Alternatively, residues can be considered equivalent if they serve the same func-
tion. The third general option focuses on the folded structure formed by the
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sequence due to hydrogen bonds between residues. In this case, equivalence is
assigned according to the role of each residue in structure formation. It is clear,
however, that it is impossible to exactly determine the ideal alignment of two
sequences as defined by any of these relations. Both the function and the struc-
tural position of a residue are not intrinsically defined by the sequence, but
depend on external factors. Homology is also not assertable, as even identical
sequence can be of distinct descent. On a smaller scale, an insertion of a spe-
cific base may have happened in distinct lineages at exactly the same position.
This constitutes two distinct evolutionary events, yet they are indiscernible in
the observed sequence. Computational sequence alignment can therefore only
approximate the correct alignment as defined by the purposes in downstream
analysis. The intent is modeled by objective functions and the alignment is
computed by optimizing the result of this function. Alignment methods striving
for primary structure homology typically minimize the number of evolutionary
events required to cross from one sequence to the other. Models of evolution
are applied to weight the events according to their observed frequency.

The most simple objective function used in sequence alignment computes
the number of substitutions, insertions and deletions (together termed “in-
dels”) indicated by the alignment by the number of gap characters and the
number of different residues placed in shared columns. The distance expressed
by an optimal alignment according to this objective function is called the Lev-
enshtein distance [159]. As insertions, deletions and the different substitution
possibilities are not equally likely or consequential, especially in the case of
aligning amino acid sequences (peptides), generalized edit distances are com-
monly employed which assign different weights to each edit operation. The
Needleman-Wunsch algorithm [206] was the first to allow computing an op-
timal alignment with respect to the edit distance. This algorithm is an appli-
cation of the optimization strategy dynamic programming (DP) formally de-
scribed by Richard Bellman [22].

DP can be used to efficiently find the optimal solution to problems with
optimal substructure and a high degree of overlap among the sub-problems. A
problem is said to have optimal substructure if it can be decomposed into sub-
problems such that the optimal solution of the entire problem is composed of
optimal solutions for the sub-problems. Finding the shortest path between two
locations is an example for a problem with an optimal substructure: each sec-
tion of a shortest path is itself a shortest path between its end-points. Consider-
ing that the optimal alignment of two sequences based on the edit distance can
be interpreted as a shortest path of edit operations translating one sequence
into the other, it becomes immediately apparent that this type of alignment has
an optimal substructure. In DP-type alignment such as Needleman-Wunsch, the
optimal alignment of two sequences of lengths M and N is decomposed into
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the M ∗ N optimal alignments of all prefixes2 of the two sequences. The op-
timal alignment of the prefixes of length m and n, the one with the lowest
edit distance, can be computed from the alignment of the prefixes of lengths
(m− 1, n− 1), (m− 1, n) and (m, n− 1) by extending them with a mutation,
insertion or deletion event, respectively, and choosing the alignment with the
lowest resulting total distance. By iteration, the alignment can be computed
in a total of M ∗ N steps. The distances and the edit operation for each pre-
fix combination are stored in a matrix as they are computed and subsequently
extracted by walking backwards from the prefix combination of length (M , N)
to the combination of length (0,0). Thus, the algorithm has a complexity of
O(MN) in both time and space.

The Needleman-Wunsch algorithm performs a “global alignment”. It as-
sumes that the two sequences as a whole are homologous and thus comparable
from the first to the last base of each sequence. The Smith-Waterman algorithm
[258] instead searches for the best scoring “local alignment”, comprising only
a pair of sub-sequences. Like Sellers [252], they use an inverted objective
function, maximizing sequence similarity rather than minimizing sequence dis-
tance. Smith et al. [259] showed that Needleman-Wunsch and Sellers are,
given suitable parameters, equivalent. By default, Smith-Waterman assigns a
score of 1 to matches and a score of −1

3
to mismatches. This results in an

average total score of 0 for long, random sequences composed from four base
types occurring with equal frequency. If the alignment of any pair of prefixes
would result in a score below zero, it is instead set to zero. The local alignment
is then extracted from the DP matrix by determining the cell containing the
highest alignment score and following the path of edits until a cell with a score
of 0 is encountered.

By using scoring functions that reflect evolutionary processes more accu-
rately, the results of the alignment process can be improved. Affine gap scoring
is used to reflect that consecutive insertions or deletions can be the result of
a single evolutionary event. A linear function determines the cost of the en-
tire gap. This was realized without impacting algorithm complexity by Gotoh
through the use of additional matrices [92]. Match and mismatch scoring can
be generalized by using a substitution matrix. The mechanistic specialization
of match/mismatch scores is then reflected by a matrix in which the diagonal is
set to the match score and the remaining cells to the mismatch score. For pro-
tein sequences, the Point Accepted Mutation (PAM) [49] matrix and the Block
Substituion Matrix (BLOSUM) [110] are commonly used. The methods used
to create these matrices differ, but both derive from observed data, with BLO-
SUM intended (and shown) to perform better at detecting remote homologies.

2Needleman and Wunsch actually used suffixes, but as the results are identical
irrespective of sequence direction the distinction is not relevant to sequence alignment.
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For nucleotide sequences, the mechanistic scoring performs well enough, but
substition models are used to reflect for example the different probabilities for
transisitions and transversions. A transition is a change among the purines Ade-
nine (A) and Guanine (G) or a change among the pyrimidines G and Thymine
(T) or Uracil (U), whereas a transition is a change between pyrimidines and
purines. Similarly, models of DNA evolution corresponding to these matrices
are used to estimate the evolutionary distance from a similarity score by ac-
counting for unobserved mutations. This is important for tree reconstruction
(see below). The Jukes-Cantor model [126] accounts only for matches and mis-
matches, the Kimura model [138] also distinguished between transitions and
transversions. The models devised by Felsenstein [71] and Hasegawa [107] ex-
tend these by allowing for different base frequencies. The most general usable
model is Generalized Time Reversible (GTR) [276].

1.3.2 Homology Search

The most important use case for local alignments is homology search. The in-
terest here is not to make residue-level homology among a pair of sequences
explicit, but to find sequences that share a common ancestor with the query
sequence in a large database. Searching for the most similar sequences alone
does not suffice to satisfy this intent. The database matches must also be statis-
tically assessed to determine whether they constitute significant evidence for
the homology hypothesis. Also, scalability becomes a critical issue. Space effi-
ciency is of particular importance as exceeding the amount of available physical
memory and having to resort to secondary storage (i.e. hard drives) results in
a performance decrease of several orders of magnitude. Based on Hirschberg
[116], Myers and Miller [203] showed a DP-alignment algorithm requiring
only O(N) space at typically twice the computation time. Their algorithm recur-
sively calculates the mid-point of the conversion path between the two sequen-
ces, removing the need to store the complete DP-matrix. A reduction in both
time and space complexity was achieved in the FAST-P algorithm [163] by sacri-
ficing optimality. FAST-P and the nucleotide version FAST-N, published together
along with the Smith-Waterman based search tool SSEARCH in the FASTA pack-
age [217], use word-based matching to confine the Smith-Waterman algorithm
to a diagonal band. The Basic Linear Alignment Search Tool (BLAST) software
[2] and its successors Gapped and PSI-BLAST [3] and BLAST+ [31] further
increased search speed. While FASTA searches only for shared words, BLAST
extends the word list derived from the query sequence to all words with suffi-
cient similarity (as determined by a parameter). This allowed increasing word
lengths (from two to three for protein sequences and from 6 to 11 for DNA se-
quences) and resulted in more significant word matches. The matched words
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are then extended on each side to form highest scoring segment pairs (HSPs).
Close HSPs are joined and the resulting set of HSPs evaluated for statistical
significance. In catering to the wide range of applications for which BLAST
is used today, it employs are large number of methods which are beyond the
scope of this short description. Important to note is only the E-value which
is reported for each match and indicates the number of times such a match
can be expected given the size of the database. While BLAST allows subjecting
the matching HSPs to Smith-Waterman alignment in some configurations, the
alignment reported by BLAST is usually heuristic and thus inferior to optimal
alignment techniques.

While BLAST remains the most commonly used tool for homology search,
an alternative approach exists in using probabilistic models such as hidden
Markov models (HMMs) to treat homology search as a problem of statistical
inference [60, 129]. Until recently, however, HMM-based tools have not been
able to match the speed achieved by BLAST. This has changed with HMMER3,
which promises to be as fast while showing improved detection of remote ho-
mologies [61, 77].

1.3.3 Multiple Sequence Alignment

Multiple sequence alignment is the natural extension of the approach to se-
quence comparison followed in pairwise alignment. Visually, the sequences
comprising a MSA are represented as the rows of a matrix with the residues
spread over the columns such that homologous or structurally equivalent re-
sidues align. The dynamic programming algorithm used to compute pairwise
alignments can also be generalized to multiple sequences by increasing the
number of matrix dimensions. This approach will find an optimal solution of
the alignment problem as defined by the sum-of-pairs score (SP-score) [34].
The SP-score is simply the sum of the pairwise scores of all sequence combina-
tions. However, the number of cells of the n-dimensional matrix grows expo-
nentially with the number of sequences. Space and time requirements there-
fore quickly become intractable. The problem of multiple alignment with SP-
score was thoroughly investigated and classified as “NP-hard” [68, 127, 299],
thus, no tractable algorithm exists. Multiple sequence alignment methods have
therefore focused on heuristics to approximate the optimal alignment. The
most commonly used method, termed progressive alignment, was devised by
Feng and Doolittle [73]. In this method, sequences are first clustered according
to their pairwise distance, creating a binary tree. Progressing from the leaves
of this tree to its root, pairs of sequences are aligned to form column vectors
which are in turn subjected to pairwise alignment until at the root all sequen-
ces have been mutually aligned. Commonly used alignment tools employing
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this method include CLUSTALW [280], MaFFT [130–132], MUSCLE [63, 64],
POA [93] and ProbCons [58]. One major drawback to the progressive align-
ment strategy is caused by what Feng and Doolittle termed the “once a gap
always a gap” rule. A gap that is introduced at lower levels of the guide tree
cannot be reverted later on in the alignment process, leading to an accumula-
tion of errors. The method therefore depends on the quality of the guide tree.
MaFFT and MUSCLE both include modes in which two rounds of progressive
alignment are executed. In the first round, the distance matrix used to cluster
the sequences is built using k-mer counting, that is determining the number of
shared words of length k. In the second round, the MSA computed in the first
round is used to determine pairwise distances. ProbCons instead minimizes
error in one round by incorporating probabilistic assessment of alignment ac-
curacy in guide tree construction and objective function. All three tools also
include iterative refinement stages to further improve the total SP-score. POA
includes neither refinement but uses directed acyclical graphs (DAGs) to rep-
resent MSAs internally instead of the column profiles employed by the other
methods. An alternative to heuristic SP-score optimization is followed by Sze
et al. [272] in PSalign by reformulating the objective function such that an
optimal alignment can be computed in polynomial time. PSalign uses a graph
theoretic alignment representation similar in concept to the partial order align-
ment used by POA but differing in its structure. Methods not relying on pro-
gressive alignment include Align-m [291] and diagonal alignment (DIALIGN)
[195, 270] which compose the final MSA from many, short local alignments,
and Sequence Alignment by Genetic Algorithm (SAGA) [210] which through
its use of evolution to optimize the alignment allows choosing arbitrary objec-
tive functions. Other multiple sequence alignment tools of note include Kalign
[152], T-Coffee [211] and M-Coffee [297].

All algorithms or tools listed above are de novo alignment methods that
build a complete MSA from unaligned sequences. Certain use cases, however,
require that sequences are incorporated into a pre-existing MSA. One example
is the construction of curated MSAs. Given an already curated MSA, the ability
to incorporate an unaligned sequence into the alignment without modifying
the existing alignment facilitates a cycle of sequence addition and alignment
review. Expert curated alignments are still considered to be superior in accu-
racy to computed alignments [66] and are therefore commonly used evaluate
the accuracy of alignment methods [14, 229, 282, 292]. In part, the human
superiority is due to the possibility of incorporating information from diverse
sources in manually curated alignments. For example, experimentally verified
3D-structures can be used corroborate or refute alignment decisions. Another
use case would be the addition of a sequence to an existing phylogenetic tree.
Here, it is desirable to maintain the structure of the columns used as charac-
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ters in previous calculations. The “fast-aligner” tool provided with the ARB
software suite [177] is an alignment method supporting an “add-to-alignment”
mode of operation. Similar to BLAST, this tool first searches for the longest
common sub-sequence between the new sequence (query) and any sequence
in the existing MSA (reference MSA). The corresponding part of the query is
then placed in the same columns as the matching sub-sequence. The match is
extended on both sides until a maximum number of mismatches is encountered.
The process is recursively repeated with the unaligned remainders of the query.
While this method is very fast, it can only be used to create a rough, preliminary
alignment. Especially the ends of the alignment of a query sequence exhibit un-
necessary outward scattering. Another method of aligning a sequence with a
given reference MSA was introduced with nearest alignment space termination
(NAST) [54]. NAST uses the BLAST software to obtain a pairwise alignment
between the query sequence and the best match in the reference MSA. This
alignment is then used to map the query sequence into the reference MSA via
a series of gap character reintroduction and removal operations. Improved im-
plementations using the same basic principle have been published as PyNAST
[33] and as part of mothur [247]. PyNAST uses UCLUST [65] instead of BLAST
whereas mothur relies on its own implementations of a k-mer search to select
the reference sequence and a Needleman-Wunsch type alignment algorithm
to perform the pairwise alignment. The three NAST-type alignment tools are
mainly aimed at high-throughput scenarios. As each sequence is aligned indi-
vidually and no mutual comparisons, such as needed to build the guide trees
for progressive alignment, are required, the reference MSA based approach to
MSA construction can scale linearly with the total number of sequences in the
resulting MSA.

1.3.4 Tree Reconstruction

The methods used for tree reconstruction group into those that consider only
the distance between taxa and those that consider multiple characters. The
simplest method is Unweighted Pair Group Method with Arithmetic Mean (UP-
GMA) [262], an agglomerative method for hierarchical clustering. That is,
UPGMA builds the tree “bottom-up”. At first, each taxon is assigned its own
cluster. These clusters are iteratively merged in order of the least average dis-
tance between clusters. UPGMA assumes a constant rate of evolution and does
not compute branch lengths. It is therefore not suited to true phylogenetic
tree reconstruction but is only used to build the guide trees for progressive ali-
gnment. neighbor joining (NJ) [241] works in essentially the same way, but
adjusts the distance to account for differences in divergence before each clus-
tering iteration. NJ also computes branch lengths. It is a popular method for
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reconstructing phylogenetic trees due to its very high speed and reasonable
accuracy. However, reducing all characters to a dingle distance value looses
information. Methods considering characters individually can therefore recon-
struct the true phylogeny more precisely.

The two most common optimality criteria used by such methods in phylo-
genetic tree construction are Maximum Parsimony (MP) and Maximum Likeli-
hood (ML). As the names suggest, MP methods search for the most parsimo-
nious and ML methods search for the tree with the highest likelihood. MP
grades a tree by the minimal number of mutations that must have occurred to
explain the observed data. The number may be weighted according to a cost
model associated with the types of mutations. In ML, a tree is graded by its
likelihood given the observed data, which is equal to the probability of observ-
ing the data given the tree. The probabilities are calculated using models of
evolution. As the search space spanned by all possible trees is too large to be
searched exhaustively, the implementations of either method use various tech-
niques to search for a good solution. In the most simple case, hill-climbing is
performed starting at a number of randomly selected trees. These are itera-
tively improved by modifying the branching order and evaluating the resulting
tree according to the objective function. As a number of equally good trees
may be found, MP and ML can yield multiple resulting trees. The statistical
method “bootstrapping” is often used to obtain confidence values for the in-
ferred branches. The characters are not used directly, but the calculations are
repeated multiple times using equal numbers of randomly selected characters
(characters may repeat). Examples of tools for phylogenetic tree reconstruction
are ARB [177], PAUP [271], RAxML [265–267] and PHYLIP [72], but many
more tools implementing one or more of the above methods exist.

1.4 Holistic Data Analysis

Although dominant in volume, sequence data is just one type among many
that are being accumulated in biology. Many types of image data are also
being generated in volume, ranging from optical or electron microscopy to
magnetic resonance tomography or even satellite imagery. All of this data is
acquired under diverse experimental conditions, creating a descriptive type of
data termed metadata or contextual data. The relevance of the latter becomes
immediately apparent when considering data of lesser intrinsic informational
content than for example biological sequences. A single temperature value
contains little intrinsic information. Yet, when associated with spatiotempo-
ral metadata, temperature measurements can be linked with measurements of
humidity, wind-speed, precipitation and other factors. The integrated body of
data may then be used to design and evaluate climate models and therefore
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serve to predict weather conditions. Including historical data, even questions
regarding long term antropomorphic influences on global climate development
can be addressed. In the same manner, integrative analysis of the large body of
data acquired in biological experiments can yield answers beyond the original
research questions.

Integrative data analysis in biology is, however, vastly more complex than
in other fields. Whereas the accuracy of e.g. Global Positioning System (GPS)
data is sufficient for spatiotemporal linking of measurements in the above, me-
teorological example, a global frame of reference is insufficient in biology. The
position of a population of microorganisms relative to the body of the inhab-
ited host may be more relevant, for example, than global position on even
millimeter scale (e.g. Costello et al. [43]). Environmental conditions also vary
widely within millimeter scales, as for instance above or below the seawater
or seafloor surface, or even within sediment or soil. This is not to say that a
global frame of spacial reference is entirely meaningless, merely that it is insuf-
ficient for many research questions. Similarly, the time relative to local events
may be relevant, examples being the beginning of an incubation experiment or
stages in an organism’s life cycle. Many other properties beyond spatiotempo-
ral description offer the opportunity of data integration in “meta studies”. To
name but a few, data could be linked according to the medical condition of
the subject under study, according to co-occurrence of organisms, according to
physical or chemical environmental parameters, or even according to method-
ological differences. The combination of both large volumes of data and large
numbers of complex descriptors make the field of integrative data analysis in
biology a challenging topic [112].

Several tasks need to be addressed to simplify integrative data analysis
and to enable holistic interpretation of diverse biological data in high volumes.
Optimally, comprehensive descriptive data should be recorded at the time of
data acquisition, including descriptors that are not directly relevant to the spe-
cific study. This data should be represented in syntactically and semantically
well-defined form to allow automated data processing and meaningful interpre-
tation. Furthermore, the data should be stored such that it can be uniformly
accessed and queried. Efforts to arrive at such a situation encompass the de-
velopment of standards, tools and databases. The development of generally
accepted standards is especially critical. In defining which descriptors con-
stitute a comprehensive description, these standards must walk the fine line
between the breadth of descriptors potentially desirable for future analyses
and the acceptable effort during data acquisition. They must also ensure that
the data can be recorded syntactically and semantically consistent. Examples
of recently developed standards are the Genomic Standards Consortium (GSC)
standards Minimum Information about a Genome Sequence (MIGS), Minimum
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Information about a Metagenome Sequence (MIMS) [74] and Minimum Infor-
mation about any Sequence (MIxS) as well as Minimum Information about a
Marker gene Sequence (MIMARKS) ([314], Chapter 9). Tools such as Han-
dlebar [27] and MetaBar [104] aim at simplifying the process of recording
data and ensuring standards compliance. Databases such as probeBase [168],
strainInfo.net [294] or Megx.net [143] collect, integrate and curate data and
provide interfaces for querying the data they hold. The three INSDC databases
European Nucleotide Archive (ENA) [158], DDJC [128] and GenBank [23]
maintain a synchronized archive of sequence data.



CHAPTER 2

Research Aims

The overarching aim of this thesis is to relieve scientists relying on small and
large subunit (LSU/SSU) rRNA gene data analysis from the need to individ-
ually prepare and maintain suitable reference databases. A common base of
reference data will also serve to improve the comparability of results from dif-
ferent studies. In order to achieve these primary aims, databases meeting the
following criteria are to be created:

1. up-to-date
The database content must be based on the most current available up-
stream data sources.

2. comprehensive
The databases must contain all relevant data.

3. high quality
The databases must be quality controlled. The data should be screened
to improve the signal to noise ratio.

4. easy to use
The databases must be easily accessible and the data prepared such that
the effort required in its application is minimized.

From item one, up-to-date, we can immediately derive that a system for
automated database preparation must be fashioned. Considering data volume
and data growth rates, manual maintenance of up-to-date databases is not
feasible. A certain amount of remaining manual effort will, however, be im-
possible to eliminate. The studies relying on the database cannot be expected
to update on a daily basis. This is also not desireable, as it conflicts with the
intention of improving comparability. A balance between highly current data
and a manageable effort in both preparation and application of the databases
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must therefore be found and the database release cycle must be adjusted ac-
cordingly.

Item two, comprehensiveness, encompasses more than merely including
all published sequences of the gene in question. Descriptive data, such as
taxonomic classifications, strain type, environmental parameters or referencing
publications are needed assert the context of the observed sequence data. Data
from multiple source databases must therefore be integrated. In combination
with item one, it is important that these databases are as up-to-date as possible
as well. The first task, however, will be the detection and extraction of all
instances of the respective gene. We expect that a combination of keyword
search to find annotated sequences and pattern-matching using the RNAmmer
hidden Markov models [148] with the tool HMMer [62] will be sufficient to
solve this task.

Item three, ensuring that the databases contain only high quality data, com-
petes with comprehensiveness. Firstly, a way must be found to determine from
the sequence data alone to which degree each sequence can be regarded a
trustworthy observation. Anomalies and chimera resulting from sequence am-
plification must be excluded from the database or, if no reliable method for the
identification of such sequences can be found, they need to be marked appro-
priately. Secondly, a way to balance quality criteria with comprehensiveness
that is acceptable for all potential applications must be found. Furthermore,
sequence detection, as outlined in the above paragraph, focuses on sensitivity
alone. We expect that specificity to the gene in question can be derived from
sequence alignment (see below).

The fourth and last item is expected to be the most challenging as it raises a
number of very broad questions. How can we make it possible for researchers
to work with comprehensive datasets in the face of rapidly growing data vol-
umes? How can we keep the bioinformatical knowledge neccessary to work
with the databases at a minimum? Which common tasks can be moved into
centralized database preparation? For which of the balances mentioned above
can we make a decision appropriate for all usage scenarios?

In answer to these questions we intend to focus primarily on a single ap-
plication for which our databases will provide the “fuel”. A new, stable release
of this application, the ARB software [177], must be developed. A way to re-
duce the entry-barrier for novice users of ARB must be found, as well ways to
improve its scalability. A web interface allowing easy cross platform access to
the complete databases, the means to browse and search them and a facility
to generate custom subsets of the database as required by particular research
questions should allow further reduction of the hardware requirements during
analyses relying on our databases.
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The targeted analysis scenario, as well as the quality assessment stage, also
require computing a high quality MSA from all sequences comprising the data-
bases. The accuracy of this alignment must be comparable to the accuracy
achieved by manual curation. The work-flows to which phylogenetic analyses
using ARB currently adhere must remain maintainable. In these work-flows,
novel sequences are semi-manually incorporated into an existing MSA. This
MSA is manually curated to accurately reflect the conserved secondary struc-
ture of the rRNA molecule. In previous work [225], I have shown a way of
automating the process of sequence addition to an existing MSA. In this the-
sis, the research questions relating to sequence alignment will be to determine
whether and how the accuracy can be further improved and whether the at-
tained level of accuracy is sufficient to forego manual curation. The existing
prototype and the method upon which it is based must therefore be refined
and rigorously evaluated.

In summary, the primary research aims this thesis aspires to adress can be
expressed as these three questions:

1. How can we automatically build sequence databases that can serve
as high quality reference for rRNA based analyses?

2. How can we build very large yet accurate MSAs compatible with
curated reference MSAs?

3. How can we make working with the new reference databases possi-
ble in spite of their expected size?





CHAPTER 3

Publication Overview

The results presented in the follwing chapters of this thesis are grouped into
two parts. The first part contains the core results covering the SILVA database
project (Chapters 4 and 5), the SINA sequence aligner (Chapter 6) and the
ARB software suite for sequence analysis (Chapter 7). The second part covers
flanking efforts in which the author has participated. Chapter 8 investigates
the usefullness and taxonomic resolution of the 23S rRNA gene as compared
to the 16S rRNA gene based on metagenomic samples from the GOS expedi-
tion. The MIMARKS standard and the MIxS checklist presented in Chapter 9
are a result of the efforts made by the GSC to resolve the current situtation
of inconsistent and sparse annotation of sequence data with environmental pa-
rameters. Chapter 10 evaluates 16S primers for taxonomic bias both in silico
and experimentally.

3.1 SILVA database project

SILVA is named after the latin word for forest, alluding to the sequence analysis
suite “ARB”, the name of which derives from arbor, the latin word for tree. The
name SILVA was not chosen to express that the project will contain many phylo-
genetic trees – that is already possible within ARB – but resulted from the idea
of building an encompassing infrastructure for ARB. SILVA is not limited to ARB
but provides databases to all applications requiring rRNA reference data. The
databases contain preprocessed sequence data that are enriched with contex-
tual data from multiple sources, screened for quality and complemented with
guide trees. Using these databases, rather than relying on unpreprocessed pri-
mary data, greatly simplifies the phylogenetic analysis of newly characterized
sequences. Such analysis is frequently required in the context of a broad range
of microbiological research projects, including global diversity surveys, the in-
vestigation of specific habitats or even the study of model organisms. Prior
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to the availability of the SILVA databases, it was necessary to extend existing,
smaller databases manually with rRNA sequences from related organisms. This
entailed BLAST searches and time consuming manual sequence alignment. Be-
yond pure phylogenetic work, rRNA databases are used to design group specific
probes for FISH as well as primers for sequencing. Both the design and the eval-
uation of specificity and sensitivity achieved by such oligonucleotides depends
on the use of diverse and dense reference data. SILVA addresses these needs
and in providing updates to its databases at regular intervals also improves
the comparability of results between studies. Previously, databases were often
handed from researcher to researcher and incrementally extended, resulting in
a diverse set of databases of unknown consistency.

The software behind the SILVA database project as it exists today can be
grouped into two parts: the pipeline that is used to build the databases them-
selves and the web site that provides services operating on these databases.
While originally only meant to disseminate databases in ARB format, it quickly
became apparent that there was broad interest in the SILVA databases beyond
the ARB user community. Tools for searching and visualizing database con-
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tent, extracting subsets of the database in a variety of formats for further pro-
cessing, sequence alignment compatible with the SILVA alignments and probe
evaluation have therefore been developed and added to the SILVA website. Fur-
thermore, the website has been used to host several related projects, drawing
mutual benefit from the extended reach accomplished via the website. One
such project is the Living Tree Project (LTP), which provides curated databases
and phylogenetic trees for type strain sequences [199, 311, 312]. A user survey
executed in 2010, mainly to prioritize further development of SILVA, yielded
results useful to the development of the MIMARKS standard (Chapter 9).

Contributions

The SILVA pipeline was initially conceived and realised in an intense, collabora-
tive effort by Frank Oliver Glöcker, Jörg Peplies, Christian Quast and the author
of this thesis. Assessing individual contributions on the level of ideas, design,
implementation and operation is extremely difficult, especially as responsibil-
ties changed according to work load during and after the initial development
phase. The author was primarily responsible for the design of the job execu-
tion system, the pipeline configuration system, the object relational mapping
layer, the ARB interface, the chimera checking, the sequence alignment, the
quality calculation and the web integration, whereas Christian Quast was re-
sponsible for the design of the SILVA database schema, primary data import,
secondary database integration, homopolymer and vector checking. As an on-
going project, however, SILVA has been continuously improved and had to be
continuously operated. The author has been responsible for pipeline opera-
tions for roughly one and a half years and was until recently in charge of web
site operation.

3.2 SINA aligner

SINA is an alignment tool targeted at scenarios in which an existing, high-
quality alignment needs to be extended with a large number of sequences in a
robust and accurate manner. Computing de novo MSAs from sequence volumes
as handled by the SILVA database project is not feasible as these alignment
would have to be reviewed extensively with each database release. The exist-
ing ARB reference databases also included a balanced primary and secondary
structure alignment. Aligning sequences according to this alignment, rather
than de novo, preserves the knowledge represented in this alignment. Further-
more, the established method of extending existing phylogenetic trees within
ARB requires that alignment columns remain stable.
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Contributions

SINA was developed solely by the author, however, parts of SINA derive di-
rectly from the galign software developed as part of the authors “Diplomarbeit”
[225]. SINA constitutes a complete rewrite of the framing components and has
a flexibly configurable and easily extensible pipeline structure. A search and
classification module has been added to this pipeline. The alignment module
has been extended with a bypass for direct matches to subsequences found in
the reference alignment. The alignment algorithm and its implementation have
been extended to allow more flexible weighting of reference graph nodes and
a more effective method for node weighting has been found. The issue of large
insertions that was largely ignored by galign is now treated by two alterna-
tive approaches, either during or after DP alignment. Furthermore, a thorough
evaluation was executed to empirically establish validity and to determine the
degree of achieved accuracy as well as optimal parameters.

3.3 ARB software project

ARB is a software suite for sequence analysis, mainly targeting phylogeny and
related areas, that has been under continued development for over 16 years.
It is designed as a work bench type application that allows handling large
amounts of homologous sequences, inspecting and curating MSAs, visualizing
secondary structure and phylogenetic trees and serves as a graphical shell for
command line based bioinformatics tools. With the sudden increase in data
volume caused by the SILVA project, the lack of scalability of this application
became an urgent problem. These were addressed in order to allow full ex-
ploitation of the databases provided by SILVA with the ARB release of 2007
and the release of version 5 of the ARB Software in 2009.

Contributions

The author has actively participated in ARB development and testing. This
included the contribution of bug fixes and new features to the ARB project.
It must be noted, however, that these contributions are only a fraction of the
work invested into ARB in the recent years, most importantly by its primary
developer Ralf Westram, but also by Yadhu Kumar and Kai Bader. A set of
patches initiating the port of ARB to AMD64 architecture, remedying the most
crucial scalability issue caused by limited address space was developed by the
author. The full port was completed by Kai Bader. A solution to the issue of
sequences not uniquely identifiable by their accession numbers, which is the
case in sequences from genomes, was provided in a patch to the ARB name
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server. A more generic solution has since been implemented by Ralf Westram.
The high entry barrier to ARB caused by the overwhelming amount of features
and options available within ARB was lowered by the introduction of an “expert
mode” to which the legacy, non-standard, potentially dangerous or rarely used
functions were delegated. The classification of interface elements was provided
by Frank Oliver Glöckner and the implementation harnessed the remainders of
a preexisting, although unusable, “novice mode”.

Minor patches include the preservation of color information during tree
export for printing, fixes for rendering issues in the sequence editor, disabling
the continuous mouse-over focus of interface elements, a standard compliant
web browser integration, a generalization of socket configuration to unix sock-
ets, typed import statements in input data format definitions and an interface
allowing user initiated type conversion database fields, increased search speed
and decreased start-up times in the PT server, improved estimation of available
system memory and accessing multiple servers from a single client via the ARB
RPC system.

3.4 GOS 23S Evaluation

Due to technical limitations of sequence acquisition the SSU has been preferred
over the longer LSU in phylogenetic and diversity studies. This chapter inves-
tigates the benefits and drawbacks of using either gene in a case study based
on the metagenomes obtained in the course of the GOS expedition. The to-
tal number of identifiable reads, the taxonomic rank up to which they can be
identified and the resulting abundances of major marine bacterial and archaeal
taxa are determined for both genes. These results are subsequently compared.
Based on the identifiable reads, 16 PCR and 2 FISH probes are also evaluated
in silico for sensitivity.

Contributions

The publication derived from a student project conceived and supervised by
Pelin Yilmaz and myself. This project aimed at comparing the performance of
best BLAST and incremental MP identification. One student used the LSU gene
and another student the SSU gene to identify the metagenome reads with both
methods.
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3.5 MIMARKS standard

The MIMARKS standard complements the previous GSC standards MIGS and
MIMS with a minimal set of descriptors for marker gene sequences. The also
presented MIxS unifies the three standards and allows their extension with
minimal descriptors depending on the sampling environment via the MIxS en-
vironmental packages.

Contributions

Experiences made during the development of the SILVA database pipeline were
contributed to the standardization process. These include the challenges in ex-
tracting contextual data at the current state of sequence reporting, data struc-
tures preferable to providers of derived databases, descriptors which are typ-
ically missing, incomplete or inconsistent in current databases, and observa-
tions regarding the interest in specific descriptors available or missing in the
SILVA databases.

3.6 Primer Evaluation

The investigation of biodiversity using high-throughput sequencing of PCR am-
plicons can be biased by a suboptimal choice of primer sequences. In Chap-
ter 10, a large number of commonly used primers is evaluated with regard to
their taxonomic coverage. An in silico analysis assesses taxon coverage for all
investigated primers and investigates a selected set of forward/reverse primer
combinations. This analysis relies on the SILVA SSU database and taxonomy.
The primers chosen are experimentally evaluated in a comparison of results
obtained through PCR amplicon sequencing with results obtained via meta-
genome sequencing and catalyzed reporter deposition FISH (CARD-FISH).

Contributions

A micro-pipeline was developed by the author for in silico assessment of probe
sensitivity and specificity for all taxa in any of the taxonomies included in
SILVA. The ARB PT server and a tool based on the SINA source code were used
for match detection. The nested-set taxonomy representation from the SILVA
website was used to calculate results for each taxon from the list of matches.
Special consideration was paid to the issues caused by missing sequence data
at the primer match position and the use of forward and reverse primers or
pairs of forward and reverse primers.
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ABSTRACT
Sequencing ribosomal RNA (rRNA) genes is currently the method of choice for
phylogenetic reconstruction, nucleic acid based detection and quantification of
microbial diversity. The ARB software suite with its corresponding rRNA data-
sets has been accepted by researchers worldwide as a standard tool for large
scale rRNA analysis. However, the rapid increase of publicly available rRNA
sequence data has recently hampered the maintenance of comprehensive and
curated rRNA knowledge databases. A new system, SILVA (from Latin silva, for-
est), was implemented to provide a central comprehensive web resource for up to
date, quality controlled databases of aligned rRNA sequences from the Bacteria,
Archaea and Eukarya domains. All sequences are checked for anomalies, carry a
rich set of sequence associated contextual information, have multiple taxonomic
classifications, and the latest validly described nomenclature. Furthermore, two
precompiled sequence datasets compatible with ARB are offered for download
on the SILVA website: (i) the reference (Ref) datasets, comprising only high
quality, nearly full length sequences suitable for in-depth phylogenetic analysis
and probe design and (ii) the comprehensive Parc datasets with all publicly
available rRNA sequences longer than 300 nucleotides suitable for biodiversity
analyses. The latest publicly available database release 91 (August 2007) hosts
547 521 sequences split into 461 823 small subunit and 85 689 large subunit
rRNAs.
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4.1 Introduction

Initiated by the pioneering studies of Fox and Woese [79] 30 years ago and
later on pursued by Pace, Olsen, Giovannoni, and Ward [88, 213, 216, 301],
the ribosomal RNA (rRNA) molecule has been established as the ‘gold-standard’
for the investigation of the phylogeny and ecology of microorganisms [6, 215].
Today the more than 500 000 publicly available small and large subunit (SSU
and LSU) rRNA sequences ask for specialized quality controlled databases and
appropriate software tools. In anticipation of this impending deluge of rRNA
data, the development of the ARB software suite and the curation of its as-
sociated databases began more than 12 years ago [177]. The software suite
offers a graphical user interface and a wide variety of interacting software
tools built around a common database. Furthermore, the ARB project provides
structured, integrative knowledge databases for small and large subunit rRNAs.
Based on regularly offered international workshops and the ARB mailing list
it is currently estimated that the ARB software suite and its databases are em-
ployed worldwide by several thousand users from academia and industry. In
addition to the ARB approach, there are currently three projects offering ac-
cess to a set of curated ribosomal RNA sequence and alignment databases: the
European rRNA databank at the University of Gent (http://www.psb.ugent.
be/rRNA/) [310] the Ribosomal Database Project II (http://rdp.cme.msu.
edu/) at Michigan State University in East Lansing, MI [40, 41], and the green-
genes project (http://greengenes.lbl.gov/) maintained by the Lawrence
Berkeley National Laboratory in Berkeley, CA [55]. All four projects offer at
least one 16S rRNA dataset, but vary in the amount of sequences, quality
checks, alignments, and update procedures. However, the ARB project is the
only platform that actively incorporates homologous small (SSU) as well as
large (LSU) subunit sequences from all three domains of life, the Bacteria, Ar-
chaea (16S/23S) and Eukarya (18S/28S). All projects provide web-based soft-
ware tools for the alignment and classification of sequences as well as probe
match functionalities. Downloading of sequences is provided in various for-
mats including the commonly used FASTA and GenBank file formats. Addi-
tionally, greengenes provides ARB compatible datasets, but only for nearly full
length sequences (>1250 bases) of Bacteria and Archaea.

An increasing awareness and motivation to catalogue and protect the bio-
diversity on Earth using molecular techniques demands comprehensive knowl-
edge databases spanning all three domains of life. Furthermore, a majority
of the sequences available is derived from cultivation independent biodiver-
sity surveys, which rely on rapid pattern- or clone-based approaches that often
generate partial rRNA sequences. To conserve this suboptimal information es-
pecially for diversity studies, state of the art databases need to retain partial

http://www.psb.ugent.be/rRNA/
http://www.psb.ugent.be/rRNA/
http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
http://greengenes.lbl.gov/
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sequences.
To compensate for the limited phylogenetic resolution of the SSU rRNA

[175, 221] the two fold larger LSU rRNA should now also be included in the
rRNA approach [6]. Especially for Eukaryotes the highly variable regions in
the LSU rRNA are already commonly used for species discrimination [309].
Triggered by a new capacity for cheap and rapid sequencing, there is a steady
flow of approximately 10 000 rRNA sequences per month into the public data-
bases of the International Nucleotide Sequence Database Collaboration (http:
//www.insdc.org). To make full use of these data for reliable phylogenetic
reconstructions and biodiversity analysis careful inspection of each sequence
and alignment is necessary. To support the users with this task, standardized
procedures to assign a defined set of contextual information to each sequence
must be established. Unified quality control mechanisms are urgently needed
to intuitively flag potential problems with each sequence. The recent introduc-
tion of accelerated and less expensive sequencing technologies, such as pyrose-
quencing [183], and their successful application for a census of marine micro-
bial diversity [261] further substantiates the need for comprehensive quality
controlled databases for comparisons. Such databases provide a stable frame-
work enabling biologists to transfer the copious data into reliable biological
knowledge. The SILVA database project is designed to satisfy the request for
comprehensive quality controlled and aligned rRNA datasets. It is intended to
provide a central knowledge resource to alleviate users of the time consuming
manual curation process.

4.2 Materials and Methods

4.2.1 Sequence data

The SILVA release cycle and numbering corresponds to that of the EMBL data-
base, a member of the International Nucleotide Sequence Database Collabora-
tion (http://www.insdc.org). Thus, the ribosomal RNA sequences used to
build version 91 of the SILVA databases, which is referred to in this paper, were
retrieved from release 91 (June 2007) of EMBL. A complex combination of key-
words including all permutations of 16S/18S, 23S/28S, SSU, LSU, ribosomal
and RNA was used to retrieve a comprehensive subset of all available small
and large subunit ribosomal RNA sequences. All candidate rRNA sequences
extracted from the EMBL database were stored locally in a relational database
system (MySQL). The specificity of the SILVA databases for rRNA is assured by
the subsequent processing of the primary sequence information.

The source database providing the seed alignment, required for the in-
cremental alignment process, included a representative set of 51 601 aligned

http://www.insdc.org
http://www.insdc.org
http://www.insdc.org
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rRNA sequences from Bacteria, Archaea and Eukarya with 46 000 alignment
positions. The SSU alignment positions are currently kept identical with the
ssu_jan04.arb database which has officially been released by the ARB project
(http://www.arb-home.de) in 2004. For the large subunit RNA databases,
an in-house, aligned database was used as the seed. It encompasses a repre-
sentative set of 2868 sequences from all three domains (150 000 alignment
positions). Since the quality of the final datasets critically depends on the
quality of the seed alignments both datasets were iteratively cross-checked by
expert curators during database build-up. Within this process, all sequences
that could not be unambiguously aligned were removed from the seed.

4.2.2 Quality checks

Every imported SSU and LSU sequence had to pass a multi-stage quality in-
spection. Sequences were rejected if they were shorter than 300 unaligned
nucleotides, if they were composed of more than 2% of ambiguities or more
than 2% homopolymeric stretches longer than four bases, which means only
bases exceeding homotetramers are counted, or if they had more than 5%
identity to vector sequences. The identity was checked by querying a data-
base of commonly used vector sequences, based on the EMVEC (http://www.
ebi.ac.uk/blastall/vectors.html) and UniVec (http://www.ncbi.nlm.
nih.gov/VecScreen/VecScreen.html) databases using the blastn tool. All
thresholds to reject sequences were defined based on statistical analysis of the
retrieved SSU and LSU sequences. Each sequence in the SILVA databases car-
ries the percentages of ambiguities, homopolymers, and vector contamination.
Additionally, a summary ‘sequence quality’ score is calculated according to the
following formula, where Sq = sequence quality, A = % ambiguities, H = %
homopolymers and V = % vector identity:

Sq = 1−
A

Amax
+ H

Hmax
+ V

Vmax

3
∗ 100 (4.1)

This score represents the mean of the three individual parameters, such
that 100 is the best possible value. All sequences that passed the quality
thresholds were automatically aligned against the seed alignment using the
new SILVA INcremental Aligner (SINA).

4.2.3 Aligner

To cope with the huge amount of sequence information and to minimize the
workload for manual curation, a new dynamic incremental profile sequence
aligner (SINA) was developed. In the first step the aligner uses the suffix tree

http://www.arb-home.de
http://www.ebi.ac.uk/blastall/vectors.html
http://www.ebi.ac.uk/blastall/vectors.html
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html
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concept of ARB [177] to search for up to 40 closely related sequences in the
seed alignment. The reference sequences from the seed are transferred into a
partial order graph as used in [155], while preserving the positional identity
from the reference alignment. The sequence under investigation is then ali-
gned to this graph using a variant of the Needleman-Wunsch algorithm [206]
with affine gap penalties and cost free overhang. The graph concept allows
‘jumping’ between the different references to find an optimal alignment for the
different sequence regions. This technique enables the algorithm to correctly
place bases that were e.g. deleted from the closest relative, but are present
in the candidate sequence and other relatives. It also eliminates the need for
synthetic full length sequences in the reference alignment as introduced for
the NAST aligner [54] To further improve the alignment quality a variability
statistic is used to give more weight to conserved positions. Results of each
step of the aligner are reported to the database and shown in the correspond-
ing fields of the exported ARB file (Tables 4.1 – 4.3). The ‘alignment quality’
score is a measure of the similarity with the seed sequences that are taken
into account for the alignment process. The score is derived from the dynamic
programming score by removing the effects of sequence length and positional
weighting. High values (>90) mean that nearly identical sequences have been
found within the seed alignment, resulting in a high likeliness for the alignment
to be accurate. Low values indicate a high distance as perceived by the aligner,
making the alignment task more difficult and lowering the average accuracy.
Due to the size of the seed alignment, low values are rather rare and ask for
manual inspection of the alignment. The ‘basepair’ score is calculated from the

Table 4.1 Description of database fields in ARB files exported from SILVA for ARB
specific fields and entries.

ARB Field
Name

Owned By Description

aligned User User-defined entry, e.g. name and date of the person
who aligned the sequence

ambig ARB Ambiguities calculated in ARB using ’count ambigui-
ties’

ARB_color ARB Stores the information about sequence colors
name ARB Internal ARB database ID, do not change!
nuc ARB Number of nucleotides; calculated by ARB using

’count nucleotides’
nuc_term ARB Number of nucleotides coding for the respective

rRNA gene; calculated by ’count nucleotides gene’
remark User Field for remarks
tmp ARB Used by several ARB modules
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number of bases involved in helix binding according to the secondary structure
model of Gutell et al. [99] as already implemented in the ARB package. Canon-
ical and non-canonical base pairings are evaluated, weighted according to the
cost model implemented in the Probe_Match (‘weighted mismatches’) tool in
ARB [177]. To fit our unified scoring scheme, the alignment quality and the
base pair score were normalized to values between 0 and 100, such that 100
represents the maximum score. After aligning, the number of successfully ali-
gned bases was again counted and sequences with less than 300 bases within
the boundaries of the respective SSU or LSU rRNA genes were discarded.

4.2.4 Anomaly check

To check for sequence anomalies, a custom version of the Pintail software [12]
was used. The software was specifically adapted for batch processing by the
RDP II team. By design, Pintail can only detect anomalies between two se-
quences. To circumvent this limitation, a pairwise comparison of all sequences
in the seed against a group of 20 sequences was performed. If a majority
of the comparisons was deemed anomalous, the sequences were iteratively
eliminated from the seed alignment until no such sequences remained. Sub-
sequently, all aligned sequences of the SSU database were tested against their
five closest relatives within this pruned seed. The number of ‘yes’, ‘likely’ and
‘no’ reported by Pintail was counted for each sequence and transferred into the
‘Pintail quality’ value. This score was normalized between 0 and 100, such that
100 indicates the best quality and a low probability that the sequence is anoma-
lous or chimeric. Only SSU sequences were checked for anomalies because the
Pintail software is currently not designed to handle LSU sequences.

4.2.5 Taxonomy

Every sequence in the SILVA databases carries the EMBL taxonomy assignment.
Where available, the greengenes and RDP taxonomies where added for com-
parison. The EMBL taxonomy was retrieved simultaneously with the sequence,
whereas the other taxonomies have been assigned to the sequences based on
accession numbers. The greengenes taxonomic outline was acquired in June
2007 from the greengenes website (http://greengenes.lbl.gov/) and the
RDP Nomenclatural Taxonomy was acquired from RDP II release 9.51. At the
moment, no other up to date databases containing aligned LSU sequences are
available. Therefore, the only taxonomy provided with the LSU database is the
taxonomy used by EMBL. Type strain information has been added to the field
‘strain’ and is indicated by [T]. Mapping was done based on the RDP II dataset
and is therefore only available for Bacteria.

http://greengenes.lbl.gov/
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ARB Field EMBL Field Description

acc AC Accession number
ali_xx/data sequence Sequence information
author RA Reference author(s)
clone FT/clone Clone from which the sequence was

obtained
collected by FT/collected_by Name of the person who collected

the specimen
collection_date FT/collection_date Date that the specimen was col-

lected
country FT/country Geographical origin of sequenced

sample
date DT Entry creation and update date sep-

arated by;
description DE Description
full_name OS Organism species
gene FT/gene Symbol of the gene corresponding to

a sequence region
insdc PR The International Nucleotide Se-

quence Database Collaboration
(INSDC) Project Identifier that has
been assigned to the entry

isolate FT/isolate Individual isolate from which the se-
quence was obtained

isolation_source FT/isolation_source Describes the physical, environmen-
tal and/or local geographical source
of the biological sample from which
the sequence was derived

journal RL Reference location
lat_lon FT/lat_lon Geographical coordinates of the lo-

cation where the specimen was col-
lected

nuc_region FT source Identifies the biological source of
the specified span of the sequence

nuc_rp RP Reference positions
product FT/product Name of the product associated with

the feature
publication_doi RX Cross-reference DOI number
pubmed_id RX Cross-reference Pubmed ID
specific_host FT/specific_host Natural host from which the se-

quence was obtained
specimen_voucher FT/specimen_voucher An identifier of the individual or col-

lection of the source organism and
the place where it is currently stored,
usually an institution

Table continued on next page
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ARB Field EMBL Field Description

start FT rRNA Start of the ribosomal RNA gene
stop FT rRNA Stop of the ribosomal RNA gene
strain FT/strain Strain from which the sequence was

obtained
submit_author RL Submission authors from reference

location
submit_date RL Submission date from reference lo-

cation
tax_embl OC Organism classification according to

EMBL
tax_embl_name OC Organism name taken from the clas-

sification field
tax_xref_embl FT/db_xref Database cross-reference: pointer to

related information in another data-
base

title RT Reference title
version ID SV Subversion from identification line

4.2.6 Nomenclature

All organism names have been synchronized with the ‘Nomenclature up to
date’ website of the “Deutsche Sammlung für Mikroorganismen und Zellkul-
turen” DSMZ (released June 20071) in order to stay consistent with the con-
stant renaming of validly described species according to the recommendations
published in the ‘International Journal of Systematic and Evolutionary Microbi-
ology’. All former names are stored in the database and are visible on the web
page, as well as in the corresponding field of the ARB databases (Tables 4.1 –
4.3).

4.2.7 SSU and LSU rRNA databases for ARB

Two types of precompiled databases for both small and large subunit ribosomal
RNA sequences are available in the ARB format: the high-quality Ref databases
and the comprehensive Parc databases. The Ref databases are subsets of Parc,
which are exclusively comprised of nearly full length 16S/18S and 23S/28S
rRNA sequences. A sequence is accepted if it is at least 1200 bases long. Ad-
ditionally, sequences as short as 900 bases are included if they belong to the
domain Archaea. Applying a strict cut-off at 1200 bases would result in the loss
of the majority of sequences of this domain. Sequences in the LSU Ref data-
base have to be at least 1900 bases long. For quality control, all sequences that

1http://www.dsmz.de/download/bactnom/names.txt

http://www.dsmz.de/download/bactnom/names.txt
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could not be unambiguously aligned (alignment quality score <50 and <30
for SSU and LSU, respectively) were removed from the Ref databases. Both
Ref databases are supplemented with a guide tree based on the full length se-
quence tree of the ARB Jan 04 SSU and the Ludwig LSU databases, respectively.
The trees were built using the ARB parsimony tool with filters to remove highly
variable positions. Common filters like the positional variability filters were re-
calculated for the Ref databases. Sequences with long branches in combination
with low alignment qualities (<80) were removed from the Ref databases.

The rRNA Parc databases are a collection of all quality checked and auto-
matically aligned rRNA sequences longer than 300 bases of the aligned rRNA
gene (field ‘nuc_gene_slv’, Tables 4.1 – 4.3). The name Parc has been chosen
according to the UniProt concept [10]where Parc stands for the comprehensive
protein sequence archive. All sequences in the SILVA databases are associated
with a rich set of sequence and process parameters. Included is information
from the initial quality checks to the alignment process, as well as informa-
tion taken directly from the EMBL entry (Tables 4.1 – 4.3). Together with the
search and query functionalities on the web site and in ARB, one can quickly
search for problematic sequences or generate individual high or low quality
sequence subsets for further processing or curation. The ARB package can be
used to export sequences in various formats like EMBL, GenBank, or aligned
and unaligned FASTA.

4.2.8 Availability / Webpage

The SILVA databases are available via a web-based interface at http://www.
arb-silva.de. The web interface is divided into six sections: the browser,
search, list, download, background, and FAQs pages. Download of the com-
plete Parc and Ref datasets in ARB format is available in the download section.
It is also possible to download files that gain additional sequences from new
releases. Subsets of aligned sequences from the Parc dataset can be retrieved
from the website. This is currently possible via two entry points: a taxonomic
browser and advanced search functions. After selecting a database and the de-
sired taxonomy in the browser, the user can navigate through the taxonomy by
clicking on the respective nodes. A cart system is used to easily select subsets
of single sequences, complete groups or even phyla. The cart system keeps
the selections for the SSU and LSU databases distinct. This allows the user to
select sequences from both databases simultaneously without mixing the two
sequence types. However, it must be noted that any misclassification or erro-
neous information provided by INSDC is currently propagated on the SILVA
webpage.

Additionally, the advanced search functions of the SILVA website can be

http://www.arb-silva.de
http://www.arb-silva.de
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Table 4.3 Description of database fields in ARB files exported from SILVA for SILVA
specific fields and entries.

ARB Field Name Description

align_bp_score_slv Calculates the number of bases in helices in the aligned
sequence taken into account canonical and non canon-
ical basepairing. The cost matrix is taken from ARB
Probe_Match [177].

align_cutoff_head_slv Unaligned bases at the beginning of the sequence
align_cutoff_tail_slv Unaligned bases at the end of the sequence
align_family_slv Names and scores of reference sequences in the alignment

process
align_log_slv Detailed aligner comments
align_quality_slv Maximal similarity to reference sequence in the seed
aligned_slv Data and time of alignment by Silva
ambig_slv Calculated percent ambiguities in the sequences, a maxi-

mum of 2% is allowed
homop_slv Calculated percentages repetitive bases with more than

four bases, a maximum of 2% is allowed
homop_events_slv Absolute number of repetitive elements with more than

four bases
nuc_gene_slv Aligned bases within gene boundaries
pintail_slv Information about potential sequence anomalies detected

by Pintail [12]; 100 means no anomalies found.
alternative_name_slv Synonyms or basonyms of the species according to the

DSMZ ‘nomenclature up to date’ catalogue
seq_quality_slv Summary sequence quality value calculated based on val-

ues from vector, ambiguities and homopolymers, 100
means very good

tax_gg Taxonomy mapped from greengenes
tax_gg_name Organism name in greengenes
tax_rdp Nomenclatural taxonomy mapped from RDP II
tax_rdp_name Organism name in RDP II
vector_slv Percent vector contamination, a maximum of 5% is al-

lowed
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used to build custom subsets of sequences. In addition to simple searches
e.g. for accession numbers, organism names, taxonomic entities, or publi-
cation DOI/PubMed IDs, complex queries over several database fields using
constraints such as sequence length or quality values are possible. The re-
sults can be sorted according to accession numbers, organism names, sequence
length, sequence and alignment quality and Pintail values. Before download,
the search results must be added to the ‘List’. This can be done by either man-
ually selecting the sequences by mouse click or by clicking on ‘Add complete
result to List’ to mark and transfer all results.

The coloured bars on the search page and in the short and detailed se-
quence views of the browser given a fast overview of the different quality as-
pects assigned to every sequence. The length of the bars is a graphical repre-
sentation of the respective quality value. The colours classify the information
into four categories: A green bar represents a value equal to or greater than
75. Yellow bars stand for values equal to or greater than 50 but less than 75.
Values less than 50 are expressed by an orange bar. Red bars are only used
for scores of 0. Since ‘problematic’ sequences, sequences of inadequate quality,
as well as insufficiently aligned sequences were discarded from the databases
only the Pintail scores can have 0.

In the ‘List’ section of the website, the entries can be inspected, items can
be deleted, and the download files can be created. By clicking on the ‘generate
download’ button the user will be asked whether he would like to download
the sequences as a multi-FASTA or ARB file from the download section of the
web page. All generated files will be available for download on the download
page for up to 24 h. The background section of the website provides additional
information about the current status of the databases, and the FAQ section
describes the main steps necessary to download subsets of sequences and how
to merge the retrieved ARB databases with the user’s personal ARB database.

4.2.9 Operating systems and programming languages

The SILVA core system was written in C++ and runs on an Ubuntu GNU/Linux
6.06 LTS based 64bit Dual Dual-Core Opteron cluster with at least 16 GB of
main memory on each node. The database server runs MySQL 5.0 and fea-
tures 32 GB of main memory. The Sun-grid engine (N1GE 6.0) is used to dis-
tribute jobs, such as importing, quality check, and aligning on the cluster. The
web server is a LAMP system running Ubuntu GNU/Linux 6.06 LTS, Apache 2,
MySQL 5.0, and PHP 5. It is connected to the internet via a synchronous 34 Mb
connection. The website was written in PHP and Ajax and it is managed using
the typo3 content management system in version 4.1. Due to the complexity
of the system and the high hardware requirements the system is currently not
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Table 4.4 Sequence retrieval and processing for SILVA 91

SSU Parc LSU Parc

Candidates 900 573 417 217
<300 Bases 320 327 297 218
>2% Ambiguities 8018 2193
>2% Homopolymers 19 240 4772
>5% Vector contamination 14 973 2573
Insufficient relatives 49 063 13 081
<300 Gene bases 25 961 7510
<30 Alignment quality or base pair score 6583 3390
Total sequences in Parcs 461 823 85 689

intended for local installation.

4.3 Results and Discussion

4.3.1 Data retrieval and processing

The total numbers of retrieved sequences and the number of and reasons for
rejected sequences are listed in Table 4.4. Cross checks with RDP II and green-
genes indicated a sensitivity of our search procedure of >99%. For ambiguities,
homopolymers and vector contamination the numbers are non-additive, since
some of the sequences may be affected by two or three parameters. Cut-off
values have been determined based on a statistical evaluation with relaxed
parameters (data not shown), and are intended to balance the quality of the
databases with any loss of information. Manual inspection of the sequences re-
jected by the aligner showed that most of these sequences were not ribosomal
RNA sequences.

A comparison of the length distribution immediately after importing the
SSU sequences with the length distribution of aligned sequences confirmed that
no unexpected loss of sequences in certain length classes occurred (Figure 4.1).
Partial sequences between 300 and 800 bases were more frequently rejected
than longer ones. A closer comparison of sequence quality versus sequence
length confirmed that sequences below 700 bases tend to be of low quality.
These ‘problematic’ sequences may be generated in diversity studies based on
single strand sequencing. The high number of rejected sequences with less than
300 bases is evidence for the increase in short length tag sequencing using e.g.
pyrosequencing machines. The LSU database shows a similar distribution for
rejected sequences as the SSU database (Figure 4.2).

As expected, the SSU sequence length distribution follows the prominent
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Figure 4.1 Sequence length distribution of rRNA genes in the SILVA 91 SSU database.
The dotted line represents the sequence distribution directly after importing, the solid line
after quality checks and alignment. The huge amount of sequences around 100 bases

reflect the first impact of tag sequencing approaches.

Figure 4.2 Sequence length distribution in the SILVA 91 LSU database. The dotted line
represents the sequence distribution directly after importing, the solid line after quality
checks and alignment. The huge amount of sequences around 100 bases reflect the first

impact of tag sequencing approaches.
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primer sets used for sequencing specific conserved regions on the 16S/18S
rRNA gene [181]. A distinct peak exists around 500 bases, a small one at 900
bases, and a peak between 1300 and 1500 bases. The large number of sequen-
ces with 300 and 600 bases is typical for diversity studies that use single reads
or fingerprint techniques like DGGE [201]. A text search for ‘DGGE’ across
all fields of the SSU Parc database using ARB showed that 8241 (93%) out of
8889 ‘DGGE’ sequences found belong to the 300 – 600 nucleotide length class.
A taxonomic breakdown for the 300 to 600, 600 to 1000, and 1300 to 1600
bases length classes revealed that 80 to 90% of all sequences per class were of
bacterial origin. Nevertheless, from the shortest to the longest length class, the
relative numbers for Eukarya decreases, whereas Archaea and Bacteria peaked
in the 600 – 1000 and 1300 – 1600 length classes, respectively. This again
reflects the application of the typical universal primers for Bacteria [181] and
Archaea [52].

A comparison of the number of sequences hosted by the SILVA, green-
genes, and RDP II projects revealed that the SILVA SSU Ref database contains
roughly the same amount of bacterial and archaeal sequences as greengenes
[55] [SILVA: 165 928, greengenes: 165 759 (July 2007)]. Furthermore, SILVA
contains 2423 more nearly full length sequences for Bacteria than RDP II (163
505, release 9.52) [41]. This is surprising considering SILVA’s less frequent
release cycle (currently synchronized with major EMBL releases); one would
thus anticipate SILVA to contain fewer sequences. This may have been due to
a higher sensitivity in SILVA’s search and alignment protocol. Different quality
control mechanisms should not have a significant influence, since only nearly
full length sequences have been taken into account for this comparison.

With this respect it has to be emphasised that the primary intention of the
SILVA project is not to offer the biggest database by size but more importantly
to provide reliable rRNA datasets with a robust set of processing and quality
values assigned to each sequence. Such quality values enable users to easily
evaluate sequences in order to create subsets of sequences for specific applica-
tions, or to extract the sequences that need further attention with respect to
sequence and/or alignment quality or anomalies. The alternative taxonomies
and type strain information, as well as the latest nomenclature, will facilitate
the daily work flow of diversity analysis using classical clone based and high
throughput sequencing approaches. Additionally, SILVA provides two LSU data-
bases to support the increasing use of molecular markers with a higher reso-
lution than the SSU rRNA [175]. A taxonomic breakdown of the LSU Parc
database contents showed that already 91% of the sequences are of eukaryotic
origin.
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4.3.2 Alignment and aligner

The current SILVA alignment is based on 46 000 and 150 000 alignment posi-
tions for the small and large subunit rRNA, respectively. The reasons for the
large amount of alignment positions are: (i) large insertions often present in
Eukarya and (ii) sequencing errors, such as additional artificial bases often
found in homopolymeric sequence stretches. Such errors are common and re-
quire placement to be filtered before phylogenetic tree reconstruction, without
corrupting the rest of the alignment.

In the ‘align-to-seed’ approach implemented in the SILVA system, well ali-
gned sequences from seed datasets are used as references for new, unaligned
sequences. Therefore, the quality of the final alignment strongly depends on
the accuracy of the seed alignment. To further improve the quality of the SSU
and LSU seed databases a manual curation process was performed on the latest
officially released ARB dataset from January 2004.

The SSU seed hosts currently over 1000 unpublished sequences that pri-
marily cover the domain Archaea. These sequences further improve the align-
ment in regions of the original SSU January 2004 dataset with sparse sequence
coverage. In summary, the quality and consistency of all of the seed alignments
is excellent. Only minor inconsistencies could not be resolved in the Eukarya.
Nevertheless, the Parc datasets exceed the corresponding SSU and LSU seeds
by a factor of 8 to 25. This probably indicates that not every phylum is equally
represented in the seed. Hence, before using the alignments for in-depth phy-
logenetic analysis, the alignment of the selected sequence should be carefully
checked. Problematic sequences can be easily filtered out by the quality values
followed by manual curation. The SILVA team highly appreciates the return of
manually inspected and corrected alignments of sequence subsets for inclusion
in the SILVA seed. This will allow us to further increase the quality of future
alignments.

To manage the deluge of data currently available in the public databases,
a new aligner (SINA) has been developed. Similar to existing aligners, such as
the Fast Aligner implemented in ARB [177] or the NAST aligner [53], the tool
uses related sequences from the reference alignment as a template. For bench-
marking the performance of SINA, standard tools, such as BAliBASE [281],
could not be used since they are restricted to protein sequences. Benchmark
results were obtained by removing and realigning each sequence from the seed.
The results were internally compared to the original alignment by counting
the number of matching and non-matching columns. Overall, SINA correctly
placed 99.8% of all bases in the alignment. Furthermore, 33% and 80% of all
sequences tested had no, or less than 1%, alignment errors, respectively. The
high accuracy was gained in extensive test runs by changing parameter sets
for gap insertions/extension parameters and family sizes combined with sub-
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sequent manual inspection of the results by expert curators. The design and
implementation of SINA as individually running processes allows distributed
aligning on cluster nodes. More than one sequence per second can be aligned
per CPU.

4.3.3 Future developments

To account for the growing awareness in ecology that sequence information
must be treated in the proper environmental context [75], emphasis was put
on the retrieval of contextual (meta)information from public databases. For
easy visualisation, the ‘Environment’ subsection is available in the detailed
view of the browser. Additionally, basic environmental parameters, such as ex-
act location and time of sampling as well as physical, chemical, and biological
information about the sampling site, will be added in collaboration with the
International Census of Marine Microbes (ICoMM), where similar efforts are
ongoing (http://icomm.mbl.edu/). In upcoming releases of the SILVA data-
bases a crosslink to the genomes mapserver at http://www.megx.net [166]
will allow the geographic visualization of the sequence information as long as
the location is provided. The direct addition of tag sequences below 300 nu-
cleotides as typically produced by pyrosequencing, is not currently planned for
SILVA, since it is already a main objective of the ICoMM agenda [261]. Se-
quence based search options and alignment of user provided sequences are
under development for the SILVA webpage. Finally, it must be stressed that an
appropriate and stable phylogenetic classification of all rRNA sequences is ur-
gently needed. Efforts in collaboration with Bergey’s trust are ongoing and the
information will be incorporated as soon as it becomes electronically available.

4.4 Conclusions

The new SILVA system provides comprehensive, quality controlled, richly anno-
tated and aligned, reference rRNA databases to support the molecular assess-
ment of biodiversity, as well as investigations of the evolution of organisms.
Applications of the databases range from basic research in microbiology and
molecular ecology to the detection of contaminants and pathogens in biotech-
nology and medicine. Molecular taxonomy and diagnostics have already revo-
lutionized our view on microbial diversity on Earth [117, 218, 261], and the
added value of molecular techniques for the determination of eukaryotic diver-
sity has recently been documented by Tautz et al. [275]. The SILVA databases
combined with the ARB software suite provide a stable and easy to use work-
bench for researchers worldwide to perform in depth sequence analysis and
phylogenetic reconstructions. It is designed as a knowledge database to assist

http://icomm.mbl.edu/
http://www.megx.net
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in the daily effort to keep pace with the increasing amount of data flooding our
general-purpose primary databases.
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CHAPTER 5

SILVA: updates

This chapter outlines the progress of the SILVA project since the original publi-
cation presented in the previous chapter.

Section 5.2.5 and the last paragraph of Section 5.3 were published as part
of an updated version of the original SILVA publication in “Pruesse, E., Quast,
C., Yilmaz, P., Ludwig, W., Peplies, J., and Glöckner, F. O. (2011). SILVA: com-
prehensive databases for quality checked and aligned ribosomal RNA sequence
data compatible with ARB. In de Bruijn, F. J., editor, Handbook of Molecu-
lar Microbial Ecology I: Metagenomics and Complementary Approaches, pages
393–398. John Wiley & Sons.” [227]

5.1 Introduction

Since its inception in 2007, the SILVA project has continuously provided regu-
lar releases of comprehensive, high quality rRNA databases covering all three
domains of life and both small and large subunit genes (SSU and LSU). The
demand for such reference databases has not lessened in the past four years.
On the contrary, the developments in next generation sequencing technologies,
such as pyrosequencing [183], have led to a focus on purely sequencing ori-
ented approaches by studies into microbial diversity [231, 286]. The methods
used in these studies for high throughput sequence classification depend on
large and diverse sets of accurate training data [303]. Studies such as Grice
et al. [95] and Grice et al. [96] have also caused large amounts of high quality,
full-length SSU sequences to become available. The sudden increase in data
volume and the unbalanced distribution of sequences caused by in-depth se-
quencing of very specific habitats mandate the development of representative,
non-redundant datasets.

In this chapter, we outline the improvements made to the SILVA databases
and to the services offered as part of the SILVA website.
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5.2 Materials and Methods

5.2.1 Release Schedule

The release schedule of the SILVA databases has been lowered from quarterly
to biannual beginning with release 98. The release numbering continues to
match that of the EMBL Nucleotide Sequence Database. However, releases of
SILVA are only produced for even numbered EMBL releases.

5.2.2 Sequence Data Retrieval and rRNA Extraction

Table 5.1 Description of database fields in ARB files exported from SILVA for Fields
and entries imported from EMBL. Only fields not already described in Table 4.2 are listed.

ARB Field EMBL Field Description

bio_material RA Identifier for the biological ma-
terial from which the nucleic
acid sequenced was obtained

clone_lib FT /clone_lib Clone library from which the se-
quence was obtained

culture_collection FT /culture_collection Institution code and identifier
for the culture from which the
nucleic acid sequenced was ob-
tained, with optional collection
code

embl_class EMBL files, relnotes.txt Describes the data class in
EMBL, e.g. CON: Constructed,
WGS: Whole Genome Shotgun

embl_division EMBL files, relnotes.txt Describes the taxonomic divi-
sion in EMBL, e.g. ENV: Environ-
mental Samples, PRO: Prokary-
otes

env_sample FT /environmental_sample Identifies sequences derived by
direct molecular isolation from
a bulk environmental DNA sam-
ple (by PCR with or without
subsequent cloning of the prod-
uct, DGGE, or other anonymous
methods) with no reliable iden-
tification of the source organism.
Indicated by ‘yes’ in the ARB
files

Table continued on next page
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Table 5.1 Description of database fields in ARB files exported from SILVA for Fields
and entries imported from EMBL. Only fields not already described in Table 4.2 are listed.

ARB Field EMBL Field Description

haplotype FT /haplotype Name for a specific set of alleles
that are linked together on the
same physical chromosome.

identified_by FT /identified_by Name of the taxonomist who
identified the specimen

lab_host FT /lab_host Scientific name of the labora-
tory host used to propagate
the source organism from which
the sequenced molecule was ob-
tained

pcr_primers FT /PCR_primers PCR primers that were used to
amplify the sequence.

plasmid FT /plasmid Name of naturally occurring
plasmid from which the se-
quence was obtained, where
plasmid is defined as an in-
dependently replicating genetic
unit that cannot be described by
/chromosome or /segment.

host FT /host Natural host from which the se-
quence was obtained.

specific_host FT /specific_host removed; now called host
sub_species FT /sub_species Name of sub-species of organ-

ism from which sequence was
obtained

Since SILVA release 93, the hidden Markov models supplied with the RNAm-
mer [148] package are used in addition to keyword based matching to find
unannotated rRNA gene candidates in the EMBL database. RNAmmer contains
twelve models, half of which target the LSU and half the SSU gene. For each
gene, a spotter model and a final model is provided for each domain. The spot-
ter model is used to quickly detect regions of interest, the final model is then
applied to pinpoint the position of the LSU or SSU gene. Rather than using the
Perl script provided with RNAmmer, a custom binary built for speed and a high
degree of parallelism is employed in the SILVA pipeline. This allows scanning
the whole EMBL sequence archive for gene candidates. An E-value threshold
of 10−5 is used for all models. Redundant or overlapping regions detected by
different models are merged. The sequence is later confined to the actual gene
during the alignment stage. Furthermore, all sequences contained in the RDP
II database [41] are white-listed as SSU candidate sequences. The annotation
sources are documented for each sequence in the field “ann_src_slv”.
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Table 5.1 shows the fields imported from EMBL as of SILVA release 108 in
addition to the fields that were imported as of release 91 (see Table 4.2

5.2.3 Sequence Alignment

Beginning with release 108, candidate sequences are aligned before passing
the quality assurance module. The candidate sequences are aligned in accor-
dance with the SILVA SSU and LSU seed alignments using SINA (Chapter 6).
Beginning with release 110, SILVA uses SINA in version 1.2.9. SSU sequences
are aligned with the default parameters, LSU sequences are aligned with a full-
length value of 2900. The SSU seed alignment has been extended and revised
and now contains 57,689 sequences at an alignment width of 50,000 columns.
The LSU seed remains unchanged, containing 2,868 sequences at an alignment
width of 150,000 columns.

Candidate sequences for which no reference sequence could be found in
the seed alignments are rejected by SINA. Reference sequences are searched
using a kmer search heuristic, a sequence must therefore share at least one 10-
mere with at least one of the sequences contained in the seed alignment. The
alignment score and the bp-score produced by SINA are used during sequence
quality assessment for further filtering. The alignment score reflects the sim-
ilarity between the candidate sequence and the seed alignment; a score of 1
indicates that the candidate sequence is equal to a reference sequence, part of
a reference sequence or can be composed from multiple reference sequences.
The bp-score reflects the degree to which the aligned sequence matches the
secondary structure of the respective molecule. Candidate sequences detected
solely by the RNAmmer models are shortened to contain only the part found
to be homologous with the seed sequences. Candidate sequences annotated as
SSU or LSU during submission to the INSDC databases are not modified. The
non homologous parts at the beginning and end of these sequences are placed
in consecutive columns outwards from the outermost aligned bases. The length
of the unaligned part is documented in the fields “cutoff_head_slv” and “cut-
off_tail_slv” (see Table 4.3).

5.2.4 Quality Checks

The SILVA vector checking was rewritten to account for cyclic vectors and now
only considers the part of the candidate sequences that was not found to be
part of the respective gene. The vector score is the number of bases, in the
unaligned remainder of the sequence annotated as SSU or LSU, found to be
part of a vector relative to the number of bases found to be homologous with
the reference sequences during alignment. This value is reported in the field
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Table 5.2 Description of database fields in ARB files exported from SILVA for SILVA
specific fields and entries. Only fields not already described or described differently in

Table 4.3 are listed.

ARB Field Name Description

align_family_slv Shows the accession numbers of the sequences used for ali-
gnment

alternative_name_slv Synonyms or basonyms of the species according to the
DSMZ ‘nomenclature up to date’ catalogue

ann_src_slv Additional sources of sequence information is indicated in
this field. Current identifiers: RNAmmer and RDP

clustered_slv Members of an OTU (not yet available)
depth_slv Depth
habitat_slv Habitat description according to EnvO-Lite
replicates_slv Replicates in on OTU (not yet available)
tax_slv SILVA taxonomy path
vector_slv Percent vector contamination, a maximum of 2% is allowed

“vector_slv”.
The calculation of ambiguous base and homopolymer content is confined

to the aligned part of the candidate sequences. Both values are computed as a
fraction of the length of the aligned part of the candidate sequence. Only ho-
mopolymers of at least five bases length are considered and the first four bases
of each such homopolymer are ignored. The percentages are reported in the
fields “ambig_slv” and “homop_slv”, respectively. The field “homop_events_slv”
contains the number of homopolymeric stretches (see Tables 4.3 and 5.2).

The SILVA overall sequence quality score Sq is calculated according to the
following formula (with A= ambig_slv, H = homop_slv and Amax = Hmax = 2).

Sq = 1−
A

Amax
+ H

Hmax

2
∗ 100 (5.1)

5.2.5 Taxonomy and Type Strain Information

The EMBL taxonomy is retrieved simultaneously with the sequences, whereas
the taxonomies from RDP and greengenes are assigned to the sequences based
on accession numbers. For LSU rRNA sequences no additional up to date data-
sets are available. A substantial revision of the classification of all sequences
in the Ref datasets was first published with SILVA release 100. Based on the
guide trees, all phylogenetic assignments are manually curated, taking into ac-
count taxonomic information provided by Bergey’s Taxonomic Outline of the
Prokaryotes [85], the taxonomic outlines for Volumes 3, 4 and 5 of Bergey’s
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Manual and the List of Prokaryotic names with Standing in Nomenclature Eu-
zéby [69]. Furthermore, extensive effort is spent to represent prominent un-
cultured, and not-validly published environmental clades, groups, and taxa,
respectively. The majority of these clades and groups are annotated in the
guide tree for the SSU Ref dataset based on literature surveys and personal
communications. Taxonomic groups consisting only of sequences from uncul-
tured organisms are named after the clone sequence submitted earliest. Due
to this exhaustive manual approach SILVA currently contains the most up to
date and detailed bacterial and archaeal taxonomic classification. Sequences
not classified in a taxonomy are assigned to the pseudo-domain “Unclassified”.

5.2.6 Nomenclature and rDNAs from genome projects

Manually curated information about the isolation environment (habitat) of the
rRNAs of genome sequences is added based on the EnvO-Lite annotations in
the megx.net database [143] (see Table 5.2).

Sequences are marked as originating from type strains, cultured organisms
or resulting from genome projects by EMBL using tags added to the “strain”
field. This information is retrieved from EMBL, Straininfo.net [294], RDP II
[42] and the “All-Species Living Tree” project [312]. Table 5.3 shows which
tags are currently in use.

Table 5.3 Strain Identifiers

Source Information Tag SSU total LSU total

EMBL Typestrains (t) 135 19
EMBL Genomes e[G] 6274 6350
Straininfo.net Cultured s[C] 16350 9863
Straininfo.net Typestrains s[T] 17492 7719
Living Tree Project Typestrains (curated) l[T] 8781 1889
RDP II Typestrains r[T] 7839 -

Sequence totals reported as of release 108.

5.2.7 Parc, Ref and RefNR Datasets

The candidate sequences are filtered in three stages to form three baseline data-
sets meeting the needs of different usage scenarios. The Parc dataset aims at
completeness; the Ref dataset includes only high quality full-length sequences
from the Parc suitable for tree reconstruction; the RefNR is a pared down sub-
set of the Ref for resource constrained environments. The following paragraphs
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describe the criteria used to elect sequences for inclusion with the respective
datasets.

Candidate sequences are only excluded from the Parc dataset if a) they
contain more than 2% ambiguous bases or more than 2% bases in long ho-
mopolymers; if b) the aligned part of the sequence is shorter than 300 bases;
or if c) any of the alignment score, bp-score or sequence quality score are be-
low 30%. A blacklist of known defective sequences (i.e. verified chimera) is
maintained and its members excluded as well.

In addition to the above criteria, sequences must have an alignment score
and a bp-score of at least 50 to be considered for inclusion with the SSU Ref
dataset. Furthermore, archaeal SSU sequences must have at least 900 aligned
bases, bacterial and eukariotic SSU sequences must have at least 1200 aligned
bases and LSU sequences must have at least 1900 aligned bases. The large
amounts of high quality full length SSU sequences produced in Grice et al.
[95] and Grice et al. [96] were separated from the Ref database and are pro-
vided separately as the HSM/MWM (human skin microbiome / mouse wound
microbiota) dataset.

Beginning with release 104, a dataset of reduced size is produced from
the Ref and HSM/MWM sequences, labeled RefNR. Sequences are selected
for inclusion in RefNR based on sequence clustering with UCLUST [65] at an
identity threshold of 99%. Sequences are also selected such that all sequences
from cultivated species are included in the RefNR.

ARB databases are prepared from the SILVA database contents as described
in Chapter 4. The Ref and RefNR ARB databases include a phylogenetic tree,
labeled according to the SILVA taxonomy.

5.2.8 Web Tools

The SILVA databases are accessible online at http://www.arb-silva.de). Be-
yond the databases themselves and extensive documentation, the website of-
fers a taxonomy browser, a search tool, an alignment service, a probe evalua-
tion tool and a facility for generating and downloading subsets of the databases.
A wealth of additional information about the current status of the databases, as
well as FAQs and tutorials are available in the background section of the web-
site. Furthermore, the SILVA website hosts a set of projects including “The All-
Species Living Tree” project [312] the “Standard Operating Procedure for Phy-
logenetic Inference (SOPPI)” [222] and is part of the international Genomic
Standards Consortium [74] currently developing the Minimum Information
about an MARKer gene Sequence checklist and standard (see Chapter 9).

The metaphor of a “sequence cart” is used to describe a selection of sequen-
ces of interest. Cart entries are identified by their accession number. The cart

http://www.arb-silva.de
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Figure 5.1 Browser view of the SILVA taxonomy with the taxon Alphaproteobacteria
opened and all sequences classified as Alphaproteobacteria by RDP selected. “Opened”
taxa are rendered in blue, taxa containing selected sequences in bold face. The percentages
show the coverage of the respective taxon. For example, 88% of all sequences classified
as Alphaproteobacteria by SILVA are currently in the cart, thus 88% of the sequences

classified as Alphaproteobacteria by SILVA are classified as such by RDP as well.

contents can be modified and inspected using the browser and the search. Cus-
tom files can be generated from the cart in ARB and FASTA format. Optionally,
gap columns or gap-only columns can be filtered from FASTA exports. The cart
is also used to identify the target group for probe evaluation (see below).

The taxonomy browser shows the sequences hierarchically according to
any of the taxonomies currently included in the respective database. If a taxon
contains selected sequence entries, the percentage of selected sequence entries
relative to the total number within that taxon is shown along with the absolute
counts. Changing the selected taxonomy allows quickly inspecting the level of
agreement between taxonomies (see Fig. 5.1). Taxa can be added to the cart
and removed from the cart.

The database search allows filtering the database contents according to a
number of criteria. Matching is currently offered based on organism name,
sets of accession numbers, strain data, publication ID (DOI and Pubmed ID),
publication description (title and authors), sequence length, the SILVA quality
values (alignment quality, sequence quality, pintail score), taxonomic classifi-
cation, sequence submission date and genome project ID. The search can be
optionally confined to the Ref dataset and/or the contents of the cart. The
search results can be added to the cart and removed from the cart. Searching
for sequence similar to user sequences is possible using the alignment service.

The SINA (Chapter 6) alignment service allows submitting sequence for ali-
gnment in accordance with the SILVA multiple sequence alignments as well as
for sequence similarity searches and sequence classification. File sizes are cur-
rently limited to 500 sequences of at most 6000 base pairs each. The aligned
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sequences can be downloaded in ARB or FASTA format. In the case of FASTA,
meta data generated during the alignment process can be exported as brace-
enclosed key-value pairs in the FASTA header, as key value-pairs on FASTA
comment lines, situated between header and sequence and beginning with a
semicolon, or via a separate file in CSV format. The SILVA SEED databases
are used as an alignment reference for SINA. The sequence search and classi-
fication stages of SINA are also accessible via the web interface. The search
result can be confined by a maximum number of best matching sequences as
well as a minimal identify with the respective submitted sequence. Sequence
comparison is executed based on the alignment. An identity of 1 is defined as
all base pairs in the submitted sequence occurring in the database sequence at
the same alignment position. The search results can be added to the cart.

The probe evaluation service TestProbe allows assessing probe sensitivity
and specificity based on the SILVA databases. TestProbe considers the contents
of the cart as the designated target group. It visualizes sensitivity and speci-
ficity as a pie charts showing the fractions of matched target sequences and
matched non-target sequences (see Table 5.2). Probe matching can be config-
ured to allow none to five mismatches and optionally use weighted mismatches
as implemented by the ARB PT server. If probe matching is not limited to the
Ref data set, sequences within the target group may not be matched because
the region targeted by the probe was not sequenced. TestProbe therefore de-
rives a canonical probe match position as the most frequently matched align-
ment column and displays the fraction of not matched target sequences having
insufficient length along with the sensitivity chart. If a number of allowable
mismatches different from none or weighted mismatches are configured, the
distribution of the number of mismatches is displayed along with the specificity
chart. The thirty most frequently occurring matched sub-sequences are summa-
rized in a table, allowing inspection of typical mismatches. A detailed overview
of all matched positions is also displayed as a table and can be downloaded in
CSV format. Matched sequences can be downloaded directly or added to the
cart.

5.2.9 Languages, Frameworks and Tools

The website uses the Typo3 content management system for static content and
secure user sessions, custom PHP scripts for access to the MySQL database host-
ing the sequence databases and ExtJS widgets and custom JavaScript compo-
nents to display dynamic content. TestProbe, SINA alignment and custom file
export rely on a message passing and job management software implemented
in Python. This software interfaces with an internal cluster managed by the Or-
acle Grid Engine (OGE) in a way similar to current cloud techniques. To ensure



64 5. SILVA: updates

Figure 5.2 Visualization of probe specificity and sensitivity by TestProbe. The cart con-
tained all sequences classified as Nevskia by RDP. The probe evaluated was Nev656 [90].

timely processing of user requests even under high cluster-load conditions, a
dynamically adjusted number or cluster nodes continuously runs the SILVA job
shepherd, which in turn schedules the execution of submitted jobs. TestProbe
uses SQLite instances of the SILVA databases to allow scalable computation of
probe evaluation results without relying on a central database server. The web
server uses NGINX to deliver static pages, php5-fpm to schedule PHP script ex-
ecution and apache2 with mod_phython to schedule Python script execution.

The pipeline modules are implemented in C++ and Python, the pipeline
itself is implemented in BASH using the OGE for job execution as well as to
maintain the pipeline state in a fashion resilient to failure of cluster nodes.

5.3 Results and Discussion

Assessment of candidate detection sensitivity is, to a degree, possible by com-
parison of annotation sources. At total SSU database size of 2,492,653 sequen-
ces, only 528 candidate sequences were detected solely by the RDP II white list.
Of these, only 141 made it past the quality filtering for the Parc dataset. Taking
into account that the white list was based on RDP 10.26 and the RDP release
10.27 current at the time of releasing SILVA r108 has grown by 308,116 sequen-
ces to include a total of 1,921,179 sequences, we can still conclude that only a
minor fraction of sequences is missed during candidate detection. It is interest-
ing to note that a total of 37,608 sequences contained within RDP 10.26 where
excluded from the Parc dataset due to quality filtering. Of these, 22,774 can
be explained by the lower minimum length requirement (250 instead of 300
bases) imposed by RDP. A further 8,481 were rejected due to high ambiguity
content. Candidate sequence detection using RNAmmer yielded a total of only
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Table 5.4 Sequence retrieval and processing, SILVA releases 91 and 108

release 108 release 91

SSU LSU SSU LSU

Total number of candidate sequences 4 301 517 779 857 900 573 417 217
Thereof, detected solely by RNAmmer profiles 42 631 8 191 - -

Number of sequences rejected from Parc1

<300 bases - - 320 327 297 218
not alignable (SINA) 177 668 41 694 49 063 13 081
<300 gene bases 1 291 577 436 016 25 961 7 510
>2% Ambiguities 14 868 4 086 8018 2 193
>2% Homopolymers 6 136 5 605 19 240 4 772
>2% / >5% Vector contamination 2 704 337 14 973 2 573
alignment quality or base pair score <30 21 926 10 739 6 583 3 390
blacklisted 1 651 15 - -

Total sequences in Parc 2 492 653 269 498 461 823 85 689
Number of sequences excluded from Ref

sequence or alignment quality
or base pair score <50 12 467 - - -

not “full-length” (900/1200/1900 bp) 1 459 723 245 898 264 933 78 787
HSM project 360 751 - - -
MWM project 41 270 - - -

Total sequences in Ref 618 442 23 600 196 890 6 902
1 Note that rejected sequence counts are not directly comparable between releases 91 and 108

due to changes in the quality assessment stage (see Section 5.2.4).

339,774 sequences. Of these, 292,334 overlapped with EMBL and/or RDP an-
notations and were removed. Of the remaining 47,440 candidate sequences,
42,631 passed the quality assurance and were included in the Ref. We there-
fore conclude that keyword based detection is working extremely well, but that
room for improvement exists in sequence based candidate detection.

The peaks of the SSU sequence length distribution follow the prominent
primer sets used to sequence specific conserved regions on the 16S/18S rRNA
gene [181] (Fig. 5.3). The large number of sequences with 300 and 500 bases
is typical for diversity studies that use single reads or fingerprinting techniques.
It is interesting to note that up to SILVA release 94, the 500 base peak clearly
dominated over the full length sequences. Recent releases show a trend to-
wards the submission of higher quality, nearly full length rRNA sequences.

It has to be emphasized that the primary intention of the SILVA project is
to provide reliable rRNA datasets with an informative set of processing and
quality values assigned to each sequence. Such quality values enable users to
easily evaluate sequences in order to create subsets of sequences for specific ap-
plications, or to identify sequences that need further attention with respect to
sequence and/or alignment quality or anomalies. The alternative taxonomies
and type strain information, as well as the latest nomenclature will facilitate
the daily workflow of diversity analysis using classical clone based and high
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Figure 5.3 Development of candidate sequence length distribution of rRNA genes in
the SILVA SSU databases from release 100 to release 108. Sequences were grouped into
buckets of 50bp width. Clearly visible are peaks attributable to the technologies used in

large scale sequencing projects.

throughput sequencing approaches. Additionally, SILVA provides two LSU data-
bases to support the increasing use of molecular markers with a higher reso-
lution than the SSU rRNA [175]. A taxonomic breakdown of the LSU Parc
database contents shows that 91% of the sequences are of eukaryotic origin. A
closer look indicates that the LSU rRNA is becoming more and more attractive
for the molecular identification of e.g. Fungi.

Contributions

The curation of the SILVA taxonomy was done by Pelin Yilmaz. Curated habitat
data was provided by Pier Luigi Buttigieg. The integration of typestrain infor-
mation from RDP II and StrainInfo.net was implemented by Christian Quast
and Karin Dietrich. The new download and task management system was
implemented by Timmy Schweer. The TestProbe service was implemented ini-
tially by Daniel Pletzer and further developed by Timmy Schweer. The revised
sequence quality management was developed by Timmy Schweer [251]. The
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RefNR datasets were prepared by Jörg Peplies. The first incarnation of the
HMM based candidate sequence detection tool was written by Felix Schlesinger
in Perl, the second by the author in Python and the third by Arne Böckmann in
C++. The cart system, browser and search were written by the author. The stu-
dents Arne Böckmann, Timmy Schweer and Felix Schlesinger acted under joint
supervision of Christian Quast, Frank Oliver Glöckner and the author. Con-
cepts and ideas were a product of joint discussions, making precise individual
attributions impossible.
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ABSTRACT
Motivation: In the analysis of homologous sequences, computation of multi-
ple sequence alignments (MSAs) has become a bottleneck. This is especially
troublesome for marker genes like the ribosomal RNA (rRNA) where already
millions of sequences are publicly available and individual studies can easily
produce hundreds of thousands of new sequences. Methods have been devel-
oped to cope with such numbers, but further improvements are needed to meet
accuracy requirements.
Results: Here we present the SILVA Incremental Aligner (SINA) used to align
the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA
employs a combination of k-mer searching and partial order alignment (POA)
to maintain very high alignment accuracy while satisfying high throughput per-
formance demands. SINA was evaluated in comparison with the commonly used
high throughput MSA programs PyNAST and mothur. The three BRAliBase III
benchmark MSAs could be reproduced with 99.3%, 97.6% and 96.1% accuracy.
A larger benchmark MSA comprising 38,772 sequences could be reproduced
with 98.9% and 99.3% accuracy using reference MSAs comprising 1000 and
5000 sequences. SINA was able to achieve higher accuracy than PyNAST and
mothur in all performed benchmarks.
Availability: Alignment of up to 500 sequences using the latest SILVA SSU/LSU
Ref data-sets as reference MSA is offered at http://www.arb-silva.de/aligner.
This page also links to Linux binaries, user manual and tutorial. SINA is made
available under a personal use license.

1Chapter updated to puduring proof

http://dx.doi.org/10.1093/bioinformatics/bts252
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6.1 Introduction

Multiple sequence alignment (MSA) is a core building block in the analysis
of biological sequence data. Phylogenetic tree reconstruction, structure pre-
diction or hidden Markov modeling require multiple sequence alignment to
infer residue-level homology or structural or functional identity. The ubiqui-
tous need for MSA computation has made this field an active research topic
with over 100 methods published in the past 30 years and numerous review
papers discussing their relative merits and deficiencies [134, 209, 220].

The dependency of the subsequent analysis methods on the results of the
MSA stage and the drastic effect differing MSAs can cause [169, 197] make
alignment accuracy the primary benchmark for novel and improved methods.
The task of computing the optimal alignment (as determined by the Sum-of
Pairs (SP) score) was shown to be non-deterministic polynomial (NP)-complete
[299], and is therefore only feasible for very few sequences. For sets of sequen-
ces comprising several thousand or more sequences heuristic algorithms are
used. The most prevalent algorithms are based on the progressive alignment
[73] technique, which builds the MSA via a series of pairwise alignments of
sequences and partial alignments along the branches of a guide tree.

Sequence data volumes are growing exponentially. This was already ob-
served almost twenty years ago [234] and the effect has not diminished since
[157]. Multiple sequence alignment has long been largely unaffected, because
the numbers in which homologous gene sequences were available remained
low. For many genes, however, this situation is changing. Especially frequently
sequenced marker genes, such as the ribosomal RNA, are rapidly becoming
available in volumes exceeding the scalability of traditional alignment tech-
niques. In 2007, the first release of the SILVA SSU database contained over
353,366 small subunit rRNA (SSU) gene sequences [226]. Until September
2011, that database grew more than sevenfold to contain 2,494,582 sequen-
ces. The two other large rRNA databases, greengenes [55] and RDP [42], are
of similar size [7]. The large subunit rRNA (LSU), provided only by SILVA,
grew only slightly slower: In 2007, the database contained 46,979 sequences.
Currently, it contains almost six times as many sequences (269,498).

While each of these databases uses a different tool to compute their align-
ments, the employed methods share one important characteristic: Rather than
computing an alignment de novo, the alignment of each individual sequence
is derived from a static reference MSA. The reference MSA implicitly defines
a fixed set of alignment columns into which the bases comprising the query
sequence are placed. By avoiding mutual comparisons between the sequen-
ces considered for inclusion in the final MSA (candidate sequences), the align-
ment process becomes inherently scalable. Furthermore, the MSA offered by
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the database provider can be easily extended by database users in the same
manner in which the MSA was originally constructed. This, in turn, allows
employing established alignment-based methods to analyze even large-volume
NGS data-sets.

The MSA provided by RDP II is computed using Infernal, which imple-
ments a model based approach using a special form of stochastic context free
grammar (SCFG) termed covariance models (CM). These are similar to Hidden
Markov Models (HMM) but are able to capture the co-variations caused by the
highly conserved secondary structure of rRNAs [204, 205]. The Infernal model
used by RDP II is computed from a set of several hundred carefully chosen
sequences which were manually aligned to match the well-known secondary
structure of the 16S rRNA. The nearest alignment space termination (NAST)
method DeSantis et al. [54] employed by greengenes uses BLAST [2] to obtain
a pairwise alignment between the candidate sequence and the best match in
the reference MSA. The alignment is then used to map the candidate sequence
into the reference MSA via a series of gap character reintroduction and removal
operations. Improved implementations of the same principle have been pub-
lished as PyNAST [33] and as part of mothur [249]. PyNAST uses UCLUST
[65] instead of BLAST whereas mothur relies on its own implementations of a
k-mer search to select the reference sequence and a Needleman-Wunsch type
alignment algorithm to perform the pairwise alignment.

Here we describe the SILVA Incremental Aligner (SINA) which is part of
the rRNA gene processing pipeline of the SILVA ribosomal databases project.

6.2 Algorithm

Our algorithm is based on the assumption that the the sequences contained
in the reference MSA are more likely to have a sibling relationship with the
candidate sequence than to be direct ancestors or descendants. Because each
sibling will have diverged differently from the common ancestor, some parts of
the candidate sequence may be resembled most closely by one of the siblings
while other parts are more similar to different siblings. Instead of seeking the
optimal alignment with a single, best reference sequence (as is done by NAST)
or optimizing the SP-score between the candidate and all of its siblings, we
attempt to align each part of the candidate with the most similar counterpart
found in any sibling. In order to prevent arbitrary alignment in hypervariable
regions, we further demand that consecutive “parts” must be joined by at least
one mutually aligned, identical base.

The optimal sequence of parts and the optimal alignment of the candidate
with these parts can be found at the same time using dynamic programming.
The algorithm employed by SINA for this purpose is essentially equivalent to
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Figure 6.1 The alignment of the selected reference sequences is converted from
RC-MSA representation (top) to PO-MSA representation (bottom).

partial order alignment (POA) as described in Lee et al. [155]. The reference
MSA is reduced to a directed acyclic graph (DAG) as shown in Figure 6.1.
Each node of the graph represents an evolutionarily unique base. That is, all
identical bases sharing a column in the reference MSA are coalesced into one
node. Gaps and the order of bases are represented by the graph topology:
Two nodes are connected exactly if there is a sequence in which the two bases
they represent occur consecutively. Thus, there is exactly one path through
the graph for each combination of “parts” as defined above. By applying a
Needleman-Wunsch [206] modified to allow a DAG along one axis we obtain
the least costly alignment of the candidate as well as the corresponding path.

The time and space complexity of the alignment stage is decoupled from
the size of the entire reference MSA by prefixing a sequence selection stage.
This stage chooses a small set of sequences from the results of a heuristic sim-
ilarity search. The DAG used as alignment template is constructed from these
sequences only.

The fixed-column constraint necessary to allow concatenation of the indi-
vidually aligned sequences into a joint MSA is maintained during DP alignment
using a further modification of the Needleman-Wunsch algorithm.

6.2.1 Reference Sequence Selection

The sequences to be used in building the alignment template are assembled
from the result of a k-mer sequence search on the reference MSA. SINA does
not implement this search itself but utilizes a component from the ARB soft-
ware package called the PT server [177]. The PT server offers several pa-
rameters to configure the k-mer search, all of which are exposed by the SINA
command line interface. These parameters are: 1) the value of k, 2) a number
of allowable mismatches at arbitrary positions within each k-mer, 3) a range of
alignment columns to which the search for shared k-mers is restricted, 4) a fast
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mode which searches only for k-mers beginning with “A”, 5) a “non-relative”
mode which computes the fractional k-mer count by dividing the number of
shared k-mers by the query length rather than by the minimum of the lengths
of query and matched sequence.

Based on the findings in Edgar [63], we apply a logarithmic transformation
to obtain a measure in approximately linear relationship with fractional iden-
tity. Here F is the fractional k-mer count, Lq the length of the query sequence
and Y the obtained measure.

Y = 1−
log F+1

Lq

log 1
Lq

(6.1)

After executing the search, SINA iterates through the matches in order of
descending identity and decides according to the following rules and param-
eters which sequences are to be kept and passed into the alignment template
construction stage. 1) The first fs-min sequences are always kept. 2) Up to
fs-max sequences are kept if their similarity to the candidate is at least fs-msc.
3) Further sequences of at least fs-full-len bases length are kept independent of
their match score until the set of selected sequences contains at least fs-req-full
such sequences. 4) Further sequences are kept if they cover the start and end
of the gene as determined by the alignment positions gene-start and gene-end
until at least fs-cover-gene such sequences have been found. The latter two
rules are designed to ensure that the outer edges of the alignment are covered
even if the reference alignment contains partial sequences.

As a performance optimization, the candidate sequence is compared to all
sequences in the reference set. If it is found to be contained in one of them,
the candidate sequence is aligned by simply copying the matching part of the
alignment of the reference sequence. An explaining remark is made in the log
and the remaining alignment stages are skipped.

6.2.2 Construction of Alignment Template

We use a directed acyclic graph (DAG) to represent the selected set of ali-
gned reference sequences. The nodes of this graph correspond to unique base-
column combinations in the reference sequences. The nodes are linked by
edges if the corresponding bases occur consecutively in any of the reference
sequences (see figure 6.1). Consider the aligned reference sequences as lists
of base-column pairs. Then, for each such sequence, there is a path in the
graph comprising an equivalent list of nodes. This type of graph is described
as “partial order MSA” (PO-MSA) by Lee et al. [155]. The term expresses that
the structure itself only imposes a partial order on the bases comprising the ali-
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gnment, whereas the traditional “row-column MSA” (RC-MSA) representation
imposes a total order. When storing a list of sequence identifiers with each
edge, exact conversion between the two representations is possible.

Our method of constructing a PO-MSA from a RC-MSA and the data stored
within the nodes differs slightly from the method described in Lee et al. [155].
We preserve the frequency of the represented base in its column to be used
as a weight during the alignment process. Also, we do not construct the PO-
MSA by iteratively adding sequences and merging those nodes that represent
homologous bases. Instead, we use a scan-line algorithm passing horizontally
through the input RC-MSA: For each sequence Si in the RC-MSA the last cre-
ated node Ni is remembered. We then pass through all alignment columns j.
In each column, one node is created for each non gap character encountered.
For each sequence Sk in which the character was encountered, an edge from
the last remembered node Nk is created to the new node and the new node is
remembered as Nk. After all columns have been processed, duplicate edges are
removed.

6.2.3 Dynamic Programming Alignment

In order to align a candidate sequence with an alignment template in PO-MSA
format, we extend the dynamic programming recursion from the Needleman-
Wunsch algorithm. Our extension is similar to that employed by POA. In
Needleman-Wunsch and its derivative algorithms, two sequences A and B are
aligned by computing a matrix H such that the value of Hi, j is the optimal score
for the alignment of the prefixes A1 . . . Ai and B1 . . . B j of lengths i and j of the
sequences A and B. The value of each cell Hi, j is defined as a function of the
scores of the three prefix pairs where either one or both of the prefixes is one
item shorter. Given a function S(i, j) defining the matching score for Ai and B j
and using g as the score for a gap, we have:

Hi, j =max







Hi−1, j−1+ S(i, j)
Hi, j−1+ g

Hi−1, j + g

(6.2)

This recursion is generalized to allow using a PO-MSA instead of one of
the sequences by replacing the notion of “prefix of length i” with “path leading
up to node Ai”. Leaving B as a sequence, Hi, j then becomes the optimal score
of the alignment of the prefix of B of length j with any path in A leading to Ai .
Using Ap→ Ai to denote that an edge from Ap to Ai exists, we arrive at:
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Hi, j = max
p:Ap→Ai







Hp, j−1+ S(i, j)
Hi, j−1+ g

Hp, j + g

(6.3)

Affine Gap Penalties

To support affine gap penalties of the form gk = gopen + (k − 1)gex tend , SINA
uses a further extension of this induction, modified in the same way as was
shown by Gotoh for the original induction [92]:

Pi, j = max
p:Ap→Ai

(

Hp, j + gopen

Pp, j + gex tend
(6.4)

Q i, j =max

(

Hi, j−1+ gopen

Q i, j−1+ gex tend
(6.5)

Hi, j = max
p:Ap→Ai







Hp, j−1+ S(i, j)
Pi, j

Q i, j

(6.6)

6.2.4 Scoring

Although SINA supports the use of arbitrary substitution matrices to define
S(i, j), the default is to use 2 as the score for matching bases and -1 for mis-
matching bases. IUPAC encoded ambiguities are treated as a match if a match
is conceivable (i.e. “N” matches anything).

SINA also implements two methods for weighting S(i, j) according to the
variability in the reference MSA: 1) The score is multiplied with the frequency
with which the base Ai occurs among the selected reference sequences in col-
umn i according to a configurable scaling factor. 2) The score is multiplied with
a per-column conservation indicator derived from a conservation profile com-
puted within ARB (“positional variability by parsimony (PVP)”, see supplemen-
tary materials). After POA sequence alignment, the total score is normalized
via division by the sum of the weighted rewards for a match in each template
column contributing to the alignment.
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6.2.5 Treatment of Sequence Ends

SINA uses what is sometimes referred to as “overlap” alignment. While global
alignment allows no unaligned sequence tails and local alignment allows both
sequences to have unaligned tails, overlap alignment allows only one unaligned
tail at either end. At both ends, either the candidate sequence or the template
is aligned until its last base. The cost-free terminal gap is achieved by initializ-
ing H0, j and Hi,0 with 0 and choosing the best scoring cell Hi, j where at least Ai
or B j has no successor to start the backtracking through the alignment matrix.

Three policies are provided for dealing with the unaligned sequence tails:
1) The unaligned bases may be omitted from the final alignment. 2) The un-
aligned bases may be placed consecutively following the outermost aligned
base. 3) The unaligned bases may be placed at the out-most columns of the
MSA.

6.2.6 Treatment of Insertions

The alignment of the candidate with the PO-MSA yields column positions only
for substitution events (matches and mismatches). While deletions in the can-
didate with respect to the reference sequences pose no problem, appropriate
column positions must be determined for inserted bases. If the number of ali-
gnment positions between the two bases enclosing an insertion, that is the size
of the gap in the reference alignment, is larger than the insertion, the insertion
is placed right-bound in this gap. SINA offers three choices for dealing with in-
sertions that cannot be accommodated by the reference MSA: 1) The insertion
may be shortened as required by erasing bases. 2) The bases surrounding the
insertion may be shifted outwards. 3) A modified DP algorithm may be used
that disallows insertions not mappable to the reference MSA.

Our base shifting algorithm is a greedy search for free alignment positions
to the left and right of the insertion which we believe to be equivalent to near-
est alignment space termination (NAST). If the gap closest to the insertion is
of insufficient size, the bases between this gap and the original insertion are
included in the insertion and the process repeated until the insertion can be
placed.

As an alternative option, we further extended the DP alignment to observe
constrained alignment space by only considering gap open and gap extension
events that can be accommodated by the reference MSA. For a node Ai in the
template DAG, the amount of free columns fi to the right of it is defined as
the difference between its alignment position and the lowest alignment posi-
tion of its immediate successor nodes minus one. Ignoring gap extension, the
induction defining H becomes:
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Hi, j = max
p:Ap→Ai







Hp, j−1+ S(i, j)
Hi, j−1+ g if fi > 0

Hp, j + g

(6.7)

Note that this is equivalent to using a cost function for gaps which assigns
an infinite penalty for inserting a gap into the reference alignment. However,
the Gotoh optimization for DP alignment with affine gap penalties requires the
cost for extending gaps to be monotonically decreasing [92]. Nonetheless, we
have implemented an analogous extension, aware that the induction we use
constitutes a loss of optimality where alignment space is insufficient. Fi, j is set
to fi when Q i, j is based on a gap open event and set to Fi, j−1−1 if Q i, j is based
on a gap extension.

Q i, j =max

(

Hi, j−1+ gopen if fi > 0

Q i, j−1+ gex tend if Fi, j > 0
(6.8)

Hi, j = max
p:Ap→Ai







Hp, j−1+ S(i, j)
Pi, j

Q i, j if fi > 0

(6.9)

6.3 Implementation

SINA has been implemented in C++ making heavy use of generic program-
ming techniques. External components employed include several BOOST li-
braries, the ARB database library and the ARB PT server. ARB and FASTA
formats are supported for sequence input and output. Per sequence meta data
can be exported via ARB database fields, FASTA headers, FASTA comments or
a separate CSV file. The reference MSA must be in ARB format. Conversion of
reference alignments from FASTA to ARB format is possible with SINA

6.3.1 Reverse Complement Detection

If instructed, SINA will execute the k-mer search multiple times using the re-
versed and/or complemented candidate sequence. If an orientation different
to the original yields a better best scoring match, the candidate is transformed
accordingly.
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6.3.2 Sequence Search and Classification

We also implemented a simple search and classify stage. The search uses the
alignment (as computed by SINA or by an external tool) to quickly determine
fractional identities. Both an exhaustive search and a quick search considering
only the best matches from a k-mer search can be performed.

Also, a least common ancestor (LCA) classification can be performed if the
searched database contains taxonomy data in materialized path format. LCA
classification can be relaxed to allow a percentage of outliers.

6.3.3 Visualization of Alignment Differences

Manual inspection of the alignment differences (resulting for example from
different tools, changed parameters or modifications to the reference MSA) is
supported via a differencing function. This function prints a colored RC-MSA
representation of the sections of the alignment in which the reference align-
ment and the alignment to be inspected differ. Columns containing only gap
characters are removed from this view. The reference sequences used to con-
struct the PO-MSA template are listed together with the new and the original
alignment. If the SINA alignment stage was bypassed, the SINA search stage
can be used to select suitable sequences for display in combination with the
two different alignments of the candidate. Rows are consolidated such that
only unique alignments remain.

6.3.4 Parameter Tuning

The default parameter settings in SINA were tuned for the alignment of SSU
rRNA gene sequences. In order to simplify determining correct parameters for
other genes, SINA offers automated evaluation of alignment accuracy using a
leave-query-out approach. In this mode, each sequence in the reference align-
ment is newly aligned (excluding the sequence itself from the set of selected
reference sequences), the result compared to the original alignment and the
average scores reported. Alignment parameters such as match and mismatch
scores, gap penalties or k-mer length can then be adjusted to maximize this
score.

In order to simulate more difficult alignment cases where the candidate se-
quence is distant to the closest match in the reference MSA, reference sequence
selection may be constrained using a maximum identity parameter. The iden-
tity of each sequence considered during reference sequence selection with the
candidate sequence is computed using their original alignments. Sequences
with an identity higher than the configured threshold are discarded and not
included in computing the alignment template .
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6.4 Evaluation of SINA

MSA computation methods are generally validated by quantifying their ability
to accurately reproduce benchmark MSAs known to be of high quality. The de-
gree to which a tool was able to reproduce the benchmark MSA is measured by
determining the fraction of exactly reproduced alignment columns (CS score
[282]) and the fraction of correctly aligned residue pairs (Q score [64], also
called SP-score [283]). This measure was used in the evaluation of SINA. How-
ever, we expect significantly higher scores than commonly achieved by de novo
methods (see Discussion).

For evaluation, we used the three MSAs provided with BRAliBase III (5S
rRNA, tRNA and U5) and the manually aligned subsets of the MSAs provided
by SILVA (SSU and LSU). The SILVA alignments where chosen because they are
the largest manually created alignments available to us. The BRALiBase align-
ments were chosen to complement the SILVA alignments with test data from a
source not affiliated in any way with the authors of this paper. The SSU and
LSU test data was generated by excluding all sequences in the SILVA databases
that were themselves aligned by SINA, leaving only manually aligned sequen-
ces from the SILVA seed. This test data is equal to the published subsets of the
SILVA seed alignments. The SILVA seed alignments are based on alignments
published by the ARB project in 2004. During construction and maintenance
of the SILVA seed, sequences were removed if they could not be aligned un-
ambiguously and new sequences added to enhance phylogenetic coverage. All
sequences in the seed (and therefore in the test data) were aligned manually
by rRNA alignment experts. The alignment itself is guided strongly by the sec-
ondary and tertiary structure of the respective rRNA. The SSU and LSU test
data are made available at ftp.arb-silva.de/SINA/test_data/.

We compared SINA to the NAST implementations by mothur and PyNAST.
The align.seqs command from mothur (version 1.19.1) was used with default
parameters. PyNAST (version 1.1, UCLUST version v1.2.exportedq, cogent ver-
sion 1.5.0) was used with identity threshold below which it refuses alignment
lowered to 0.0001. Minimal reference sequence length was set to 50 for SINA
and PyNAST. SINA (version 1.2.8) was also configured with appropriate values
for full-length sizes (5S rRNA: 120, tRNA: 80, U5: 80, SSU: 1400, LSU: 2900).
The k-mer size used by SINA was lowered to eight for the tRNA and U5.

Three different benchmarks were performed, one using the four smaller
MSAs and two using the large SSU MSA. The three benchmarks differ in the
way the benchmark MSA is split into the set of sequences to be used as a
reference MSA and the set to be used for measuring the alignment accuracy.
Since all three tools expect sizable reference MSAs, the benchmark based on
the four smaller MSAs follows a “leave-query-out” scheme: Every sequence
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in the benchmark MSA is aligned using all other sequences as reference MSA
(benchmark 1). The SSU MSA is large enough to create reference MSAs of
different size by randomly sampling sequences. Sampling was repeated 100
times, once using 1000 sequences and once using 5000 sequence. Candidate
sequence sets of equal size were sampled from the remaining sequences.

The typical identity between each candidate and its best matching refer-
ence sequence remains very high, even when sampling a reference MSA of
only 1000 sequences. In order to obtain more difficult test cases having lower
rates of identity, we constrained the reference sequence selection algorithm to
exclude sequences above a cut-off value (see 6.3.4). Using 21 cut-off values be-
tween 50% and 100% at 2.5% intervals (100% being equivalent to leave-query-
out benchmarking), we examined the accuracy in relation to the identity of the
candidate with the reference. This benchmark was repeated for numerous sets
of parameter settings and also used for parameter optimization (benchmark
2).

Lastly, we repeated benchmark 2 with an alternative alignment template
implementation relying on column profiles rather than a PO-MSA for compari-
son. All other settings including the selection of reference sequences remained
identical to the original benchmark 2.

6.5 Results

Table 6.1 shows that SINA performed better than both mothur and PyNAST for
all MSAs used in the leave-query-out benchmarks. Friedman rank tests using
the results for each sequence as blocks showed significant P-values (<2*10-5)
for all pairs of tools in each data-set except PyNAST vs mothur in the U5 data-
set (0.55).

Table 6.2 shows the results for the benchmarks using candidate sequences
and reference MSAs sampled from the SSU data-set. We show the average Q
scores from all successfully aligned sequences, although this slightly inflates
the scores for PyNAST which failed to align all candidate sequences. Lowering
the identity threshold below which alignment is refused by PyNAST to 0.0001
reduced the number of failed alignments. However, of the 100,000 sequen-
ces aligned using 1k reference MSAs, PyNAST still failed to align 547. Of the
500,000 sequences aligned using 5k reference MSAs PyNAST failed to align
2750 sequences. The average Q scores achieved by mothur for the sequen-
ces refused by PyNAST were 91.36% and 94.8%, respectively. The average Q
scores achieved by SINA for these sequences were 97.45% and 98.46%.

In addition to the average Q scores we show the standard deviation be-
tween averages computed for each of the 100 samples. The variance between
tests is much lower than the differences between tools, indicating that the
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Table 6.1 Results from Leave-Query-Out benchmarks

data-set 5S rRNA tRNA U5 SILVA LSU
sequences 597 1113 232 1588

PyNAST 98.6% 96.4% 94.0% 98.9%
mothur 97.5% 92.1% 93.3% 98.9%
SINA 99.3% 97.6% 96.1% 99.2%

The reported percentages are the average Q scores. Only sequences aligned
by all three tools where considered.

Table 6.2 Results using test data sampled from the SILVA SSU data-set

all SSU samples < 80% identity

reference size 1000 5000 1000 5000
sequences 100,000 500,000 5443 8811
mean identity 92.34% 95.24% 75.71% 75.9%

(PyNAST1) 96.7% 97.6% 90% 89%
(0.20%) (0.08%) (1.7%) (1.5%)

mothur 96.6% 97.8% 88% 88%
(0.23%) (0.07%) (2.0%) (1.3%)

SINA 98.9% 99.3% 94% 93%
(0.12%) (0.03%) (1.2%) (1.1%)

The average Q scores shown were obtained by randomly sampling sequences from the
SILVA SSU based test data to create 100 reference MSAs and benchmark sets. This
was repeated once with a reference MSA size of 1000and once with a size of 5000.
The standard deviation between Q score averages from each of the 100 reference
MSAs is shown in parentheses. The two columns on the right show the results when
considering only difficult cases where the candidate sequences have less than 80%
identity with all sequences in the respective reference MSA.
1PyNAST failed to align 0.5% of the sequences.
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Figure 6.2 Alignment accuracy decreases almost linearly with the shared fractional
identity of candidate and reference when using one reference sequence (red line). Using

larger numbers of reference sequences markedly increases accuracy.

reported Q score averages are sufficiently robust for comparing the tools. Pear-
son rank tests using the per sample averages as blocks showed P-values below
2*10-5 for all pairs of tools except PyNAST vs. mothur in the 1k reference MSA
benchmarks.

The second benchmark showed marked differences in alignment accuracy
for varying reference sequence set sizes. The average Q scores rises over all
identity thresholds with each increase in the number of reference sequences
used. Above 40 sequences, the effect tapers off (figure 6.2, supplementary fig-
ure S1). The same can be observed for the average fraction of bases that were
part of an insertion with respect to the template PO-MSA (figure S2). Configur-
ing SINA to use a column profile as alignment template yielded lower accuracy
(figure 6.3). Especially when candidate and reference sequences share a lower
fractional identity, alignment accuracy drops significantly. Increasing the refer-
ence set size beyond five had a detrimental effect.

At a reference set size of 40 sequences, and match/mismatch scores of 2
and -1 (figure S3), a gap open penalty of 5 and a gap extension penalty of
2 was found to perform best (figure S4). Enforcing the inclusion of at least
one sequence of at least 1400 bases in the reference set improved results at
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Figure 6.3 An alternative implementation which used simple column-profiles built
from the selected reference sequences showed overall lower accuracy. Increasing the num-

ber of reference sequences quickly led to a degradation in accuracy.

identity thresholds lower than 0.9 visibly (figure S5). Using the modified DP
algorithm to maintain fixed columns gave a slight improvement over using base
shifting (figure S6). Varying the k-mer size had little impact, values between
8 and 10 were found to produce best results (figure S7). Using only k-mers
beginning with ’A’ resulted in a slight accuracy degradation (figure S8). Among
the three methods for weighting match/mismatch scores per column using the
base frequency in the reference set performed best by far, improving Q scores
by almost 0.5% points (figure S9).

We did not benchmark speed and memory requirements specifically as
these depend heavily on sequence length, reference MSA size and parameter
settings. In the tests using reference MSAs sampled from the SSU data-set
we observed mothur to align roughly 20 sequences per second per core and
SINA to align roughly 2 sequences per second per core. PyNAST was as fast
as mothur in the benchmark using a reduced width alignment and matched
SINA when using the full 51,000 column MSA. Tests were executed on a non-
dedicated heterogeneous cluster comprising current 2, 4 and 8-way servers
equipped with Intel and AMD quad core CPUs.
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6.6 Discussion

We reported the average Q scores because they are commonly used as accuracy
indicator for sequence alignment. However, the values are not directly compa-
rable to results obtained for de novo methods as these lack the benefit of a
guiding reference alignment. Given a consistent reference alignment, selecting
a reference sequence closely resembling the candidate sequence and transfer-
ring the alignment positions of the shared segments suffices to perfectly align
those shared segments. The identity between the candidate sequences and
the available reference sequences should therefore be considered as a base-
line when interpreting the results. This also affects the precision with which
accuracy can be measured. As can be seen in Table 6.2, the variance among
sampled test cases was extremely low. When considering only those sequences
that had an identity with the reference sequences of less than 80%, variance
increased by an order of magnitude. We therefore believe that assessing ali-
gnment accuracy to a precision of 0.1% is permissible for the benchmarks we
performed.

In interpreting the results, it may also be more informative to consider error
rates, rather than the fraction of correctly aligned bases. For example, PyNAST
achieves 98.55% accuracy (Q) on the BRAliBase 5S rRNA data-set whereas
SINA achieves 99.23%. This amounts to error rates of 1.45% and 0.77%, thus
SINA placed only half as many bases in the wrong columns. Since sequence
alignment is only one of many sources for error in sequence alignment, the
permissible margin of error depends on many factors. We can, however, de-
termine an upper bound at which it is more sensible to forgo extension of the
reference MSA and instead use a homology search to map candidate sequen-
ces to results based solely on the reference MSA. In this case the error would
be equivalent to the distance between candidate and best matching reference
because both error and distance are measured as a fraction of differing base
positions. The average distance may therefore be used as a point of reference
for the permissible error. Methods expecting a MSA as input do not commonly
incorporate measures to deal with errors in the MSA. They will also make mu-
tual comparisons between the aligned candidate sequences. Demanding that
the error be at least an order of magnitude lower than the distance therefore
seems prudent.

According to the SSU benchmark, the distance between candidates and
references averages to 7.66% using 1000 reference sequences and 4.76% using
5000 reference sequences. The same benchmark shows error rates for the
NAST based methods of above 3.37% and 2.19%. In absolute numbers, this
means that when using a 5k reference MSA, the candidates and their best
matching reference sequences where on average distinguished by 71 positions
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(according to the original alignment). 32 positions where misaligned by NAST.
SINA fares much better. At 0.74% error rate ( or 11 misaligned positions),
its error was only a third of that produced by PyNAST and mothur. While
the aforementioned order of magnitude difference between error and distance
would demand at most seven misaligned positions, we may have reached the
resolution of the benchmark.

When manually inspecting the positions comprising the error, we found
that most cases were related to extensions of homo-polymers, conflicts between
primary and secondary structure alignment or inconsistencies in the reference
MSA. From the SILVA rRNA gene data-sets and the online SINA alignment ser-
vice, both of which having been available for several years now, we were able
to gather user feedback on these shortcomings. In general, users stated that
the changes they made in manually refining the SINA alignment were related
to the secondary structure. However, we were unable to collect sufficient prob-
lematic sequences in which secondary structure awareness would clearly im-
prove alignment accuracy to build a data-set for benchmarking. We therefore
concur with the observation made by Kemena [134] that much larger, high
quality benchmark MSAs are needed, especially for improving and evaluating
the accuracy of high throughput MSA methods. While the data-set extracted
from the SILVA SSU Ref database used in the evaluation of SINA is of high qual-
ity, it is merely a subset of the SILVA SSU seed. As such, it lacks a representative
distribution of distances between sequences and would require further refine-
ment and extension to become a good benchmark. Furthermore, a benchmark
MSA explicitly constructed to comprise fewer columns than a correct alignment
demands would be required to test the performance of alternative methods for
constraining the number of columns. Since we expect that many other genes
besides the RNAs will soon become available in numbers surpassing what can
be feasibly aligned using de novo techniques, we also see a need for advanced
interactive tools to support building and curating large MSAs to be used as
benchmark or reference MSAs. Once benchmarks of sufficient resolution at
high alignment accuracy levels become available, it may be interesting to in-
vestigate whether improving the POA based stage in SINA with methods em-
ployed by de novo MSA tools such as Infernal, MUSCLE or MaFFT can further
enhance alignment accuracy.

6.7 Conclusion

We have shown that combining a k-mer distance search with POA incremental
multiple sequence alignment to integrate candidate sequences into an existing
MSA yields highly accurate results. Using multiple reference sequences as a
basis for the alignment of the candidate sequences significantly improves ali-
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gnment quality. Dynamically selecting a low, fixed number of sequences from
which the alignment template is constructed rather than basing the alignment
on a global template built from all reference sequences allows the use of very
large reference MSAs, lowering the number of bases remaining unaligned be-
cause they do not occur in the reference MSA. Furthermore, suboptimal align-
ment behavior for groups of novel candidate sequences can be easily corrected
by manually optimizing the alignment of one of these sequences and adding it
to the reference MSA.

With SINA we provide a versatile and flexible tool for accurate high through-
put multiple sequence alignment that has proven its reliability and robustness
over several years of testing in the context of the SILVA project.
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7.1 INTRODUCTION

Comparative sequence analysis of evolutionary conserved marker molecules
nowadays is the standard procedure for assigning organisms to phylogenetic
groups and/or taxonomic units. The current prokaryotic taxonomic framework
is mainly based on rRNA-based phylogenetic conclusions [170, 173]. This ap-
proach provides the basis for identification or new description in pure culture
investigations or culture-independent studies of complex environmental sam-
ples [6]. Furthermore, comparative analysis of appropriate markers allows
assigning contigs to taxa in metagenomics studies.

Powerful interoperating bioinformatics tools are prerequisites for sound uti-
lization of the data flood for identification and phylogenetic inference in the
genomics era. Such tools were missing or only available as standalone pro-
grams when the ARB project was initiated about 16 years ago [177]. Given
this situation, two major goals were formulated in the early days of the ARB
project and are maintained to the present: (1) the maintenance of a structured
integrative secondary database combining processed primary structures and
any type of additional data assigned to the individual sequence entries and
(2) a comprehensive selection of software tools directly interacting with one
another as well as the central database which are controlled via a common
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graphical interface. Initially, the ARB package was designed for handling and
analyzing rRNA data. Later, it was extended by developing and/or including
software tools for managing protein sequences as well as contigs and genomes.

Currently, the ARB project is maintained by members of the institutions
with which the authors of this chapter are affiliated. The ARB package [145,
146, 175, 177] as well as expert-curated rRNA databases [226] are freely avail-
able via http://www.arb-home.de and http://www.arb-silva.de.

7.2 THE ARB SOFTWARE PACKAGE

The ARB software package provides a set of cooperating tools for database
maintenance and managing as well as data handling and analysis. These tools
directly interact with a central database of processed sequence and various
types of sequence associated meta data. A common graphical user interface al-
lows data access, modification, and analysis. The database structure as well as
the mode and parameters of interaction of the software tools are customizable
by the user to a large extent.

7.2.1 The ARB Main Window

After database selection and ARB program start, the ARB main window pro-
vides the turnip for accessing the various software tools and facilities of the
ARB package via the respective menus and buttons (Fig. 7.1). Furthermore,
a user-selected tree is shown in radial or (two different) dendrogram formats.
Primary data and metadata can be visualized at the terminal nodes. Compres-
sion of the view is possible by depicting user defined (phylogenetic) groups
as triangles or rectangles in radial trees or dendrograms, respectively. Alterna-
tively, these data can be shown by simple listing. Datasets for further analyses
can be selected by mouse button directed “marking” of the respective inter-
nal or terminal nodes. Opening a slave window for tree comparisons is also
possible. The respective trees can be exported to xfig – a simple open source
graphics program (http://www.xfig.org) – for further modification and/or
transformation into various formats.

7.2.2 The Central Database

The central component of the ARB package is a special hierarchical and highly
compressed database. During operation, it is loaded in the main memory ensur-
ing rapid access by the peripheral software tools. The sequences representing

http://www.arb-home.de
http://www.arb-silva.de
http://www.xfig.org
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Figure 7.1 The ARB main window. Buttons in top and left panels provide access to the
various ARB tools. Phylogenetic groups are indicated by brackets, and condensed groups
are represented by rectangles along with numbers of terminal nodes hidden. NDS (node
display settings)-controlled database field entries at terminal nodes indicate the names,
accession numbers, strain designations of the respective organisms (master entries), and

first authors of the respective bibliography.
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organisms, genes, or gene products are stored in individual database fields. Dif-
ferent sequences (genes, contigs, nucleic acid, and protein sequences) of the
same organism can be stored in individual containers (alignments) assigned to
the same master entry (organism). A unique identifier (short_name) is auto-
matically generated and assigned to each master entry under the control of a
“name server.” Following the ARB concept of an integrative database, any type
of additional data can be assigned to the individual master entry and stored
within default or user defined database fields. Besides a set of default database
fields, additional ones can be created, deleted, and renamed by the user. The
metadata can either be intrinsic parts of the database or linked to it via local
networks or the internet. In the latter case the path to the respective file or
the URL of an external database—optionally including commands and search
strings—have to be defined using the ARB WWW (world wide web) tool. The
default hierarchy of the database entries is according to the phylogeny of the
organisms derived from the respective sequence data. However, it can also
be changed according to other criteria defined by database field entries. This
hierarchy is used by special algorithms for highly effective data compression.
Different protection levels (0–6) can be assigned to the individual database
fields. Database as well as security management is facilitated by this tool. Data
import and export is possible in various common flat file formats. Default
or user-defined parsing filters control the storage or extraction of data and fea-
tures into and from defined ARB database fields, respectively. A versatile merge
tool allows data merging and exchanging between different ARB databases. A
similar tool can be used for exporting of data subsets in the ARB format.

7.2.3 Data Access and Visualization

Multiple alternative ways provide data access, selection, visualization, modi-
fication, and analysis using the ARB package. As mentioned above (see Sec-
tion 7.2.1), the tree or list shown in the ARB main window can be used for
browsing the data. Phylogenetic trees generated by intrinsic ARB tree recon-
struction tools or imported from external sources are stored in the database
and can be visualized in different formats within the ARB main window. Any
(combination of) database field entries can be visualized at the terminal nodes
of the tree currently shown (Fig. 7.1). Selection and order of data entries, the
results of data analysis, or extraction to be visualized are defined by the NDS
(node display settings) tool. Irrespective of the visualization mode used, the
ARB SRT (search and replacement tool), ACI (ARB command interpreter), and
RGE (regular expressions) tools can be used for extraction of combinations of
(sub)strings as well as for analysis of database field entries, respectively.

A powerful search tool allows simple (strings and combination of strings)
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and complex (default or user-defined algorithms) searches in one or more (up
to three) of the database fields. The matching master entries are shown in a
hit list along with restricted information on the respective hits. Selecting from
this list provides access to the information in all or user-defined selections of
database fields.

The “info” window – the standard tool for data visualization – lists the data-
base fields along with the respective stored information for one master entry.
Database field selection and order in this list can be customized by the user.
Furthermore, editing of the field entries is possible using this tool. Multiple
windows can be opened allowing simultaneous data access for different mas-
ter entries. Besides this standard procedure, raw and processed data visualiza-
tion is possible via “user masks.” The layout of the visualization windows (i.e.,
selection, size, and positioning) of database field entries can be customized
by the user. Furthermore, simple algorithms for modifying and analyzing of
database field entries (SRT, ACI, RGE) can be included when designing “user
masks.”

7.2.4 Sequence Editors

A powerful editor provides versatile user access to primary structure (nucleotide
or amino acid sequences) visualization, arrangement, and modification (Fig.
7.2). The set of sequences to be displayed can be interactively defined as
well as stored in user-defined “configurations.” The arrangement of the pri-
mary structures depends on the tree displayed in the ARB main window or is
taken from a “configuration” selected while starting the editor. The original
data as well as virtually transformed (e.g. purine-pyrimidine, in silico trans-
lated amino acid sequences, or simplified amino acid presentation) data are
displayed in user-defined color codes. Keyboard customization is possible for
data entry and modification. Two different editing modes can be selected. The
“Align” mode allows inserting/removing alignment gaps and moving sequence
characters or stretches, while character changes are possible by switching to
the “Edit” mode. The rights to overcome protection of the individual sequence
entries can be given for the two modes independently. This helps to prevent
unwanted character changes when manually modifying the sequence data or
the alignment. A set of hot keys in combination with (alignment, sequence, ref-
erence, or helix specific) cursor positioning facilities support easy navigation.
Block operations are available for modifying the respective primary structure or
alignment regions. Sets of search strings can be defined and optionally stored.
Perfect or partial matches can be visualized within the displayed sequences by
user-defined background colors (Fig. 7.1). Virtual compression—removal of ali-
gnment gaps common to all or a certain fraction of the displayed sequences—is
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Figure 7.2 The ARB primary structure editor. Buttons in top and left panels provide
access to the various editor-associated ARB tools. Subwindows in the upper part indicate
cursor positioning, error messages, and search strings. SAI (sequence-associated infor-
mation) lines show the E. coli reference sequence as well as secondary structure mask
and helix numbering. Condensed groups as shown in Figure 7.1 are represented by the
respective consensus. The “Probe” search string is highlighted in the respective primary
structures. Positional base pairing (~,-,+,=) or consensus secondary structure violation

(#) is indicated below the base symbols.

possible. This makes data inspection and editing more convenient in case of
large insertions occurring in only part of the sequences. Groups of sequences
can be interactively defined or are automatically shown if defined according to
the tree selected while starting the editor. Consensus sequences are determined
for each defined group of sequences according to default or user defined crite-
ria and optionally visualized along with or instead of the individual sequences.
This consensus can be edited, and changes made concern any sequence in the
group. A special feature of the editor is the simultaneous secondary structure
check if rRNA (gene) data are visualized. Symbols indicating the presence or
absence as well as the character of base pairings are shown below the individ-
ual nucleotide symbols and immediately refreshed during sequence editing. A
(three-domain) consensus secondary structure mask established according to
commonly accepted secondary structure models [32] functions as a guide for
this tool.

The ARB (nucleotide) secondary structure editor fits any sequence selected
by cursor positioning in the primary structure editor into the common con-
sensus model (Fig. 7.3). The layout of the structure—that is, color coding
of base paired, nonpaired, and loop positions as well as the arrangement,
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shape, and size of helices and loops—can be customized according to the
user’s preferences. Any of the search strings or SAIs (“sequence associated
information”; see above) activated in the primary structure editor can be visu-
alized by background colors in the secondary structure model [145]. The struc-
ture can be exported to xfig – a simple open source graphics program (http:
//www.xfig.org) – for further modification and/or transformation into vari-
ous formats.

Three-dimensional (3-D) presentation of the respective sequence option-
ally with search string and SAI visualization is also possible [145]. Color cod-
ing can be customized as described for the secondary structure editor. The 3-D
structure is based on x-ray structure data for the rRNA molecules of Escherichia
coli [17, 288].

The primary structure editor contains a “protein viewer” component allow-
ing in silico translation and virtual presentation of database inherited nucleic
acid sequences in selected or all frames. Two- and three-letter as well as user-
defined color code presentation is possible. This tool helps when performing
primary structure quality checking and optimizing the respective alignment.
For further analyses of the in silico translated amino acid, sequences have to
be stored in a separate protein sequence alignment (database field; see Sec-
tion 7.2.1). The respective nucleic and amino acid alignments can be synchro-
nized (see Section 7.2.8).

7.2.5 Profiles, Masks, and Filters

Conservation or base composition profiles, higher-order structure masks, and
filters including or excluding particular alignment positions are important tools
for sequence data analyses, especially for phylogenetic inference [170, 222].
The ARB package provides tools for determining such profiles based upon the
full database or user-defined subsets. These profiles, masks, and filters are
stored in the central database as so-called SAIs and can be visualized and mod-
ified by the primary structure editor. The filter selection tool not only allows
us to choose sets of particular filters but also allows to perform a fine tuning
with respect to the inclusion or exclusion of alignment positions in case of mul-
tiple character filters. Besides SAIs derived from the primary structures, any
other information that can be assigned to sequence/alignment positions or re-
gions can be stored and used as SAIs. Examples are rRNA–protein interaction
sites or “in situ” accessibility maps for FISH (fluorescence in situ hybridization)
[6, 145] probes.

http://www.xfig.org
http://www.xfig.org


94 7. ARB: A Software Environment for Sequence Data

Figure 7.3 The ARB secondary structure editor. Buttons in top and the left panels pro-
vide access to the editor associated layout tools. The “Probe” search string is highlighted

(see Fig. 7.1).

7.2.6 Phylogenetic Treeing

Software tools for nucleotide and amino acid sequencebased tree reconstruc-
tion according to the three most commonly used approaches (i.e. distance
matrix, maximum likelihood, and maximum parsimony-based procedures) are
incorporated in the package. They cooperate as intrinsic tools with the respec-
tive ARB components and database elements such as alignment and filters.

The central treeing tool of the package—ARB parsimony—is a special de-
velopment for the handling of several thousand sequences (more than 500.000
in the current small subunit (SSU Ref) rRNA SILVA database [226]. New se-
quences are successively added to an existing tree according to the parsimony
criterion. A special software component superimposes branch lengths to the
parsimony generated tree topology. These branch lengths reflect the signifi-
cance of the individual “tetra-furcations” by expressing the difference of the
most and the two less parsimonious solutions when performing NNI (nearest-
neighbor interchange of adjacent branches or sub trees). These relative dis-
tances are normalized according to a distance matrix deduced from primary
structure comparison. Thus branch lengths in ARB-parsimony-generated trees
in the first instance visualize the significance of topologies, while in the second
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instance they reflect a degree of estimated sequence divergence. A special fea-
ture of ARB parsimony allows adding sequences to an existing tree without per-
mitting any changes in the initial tree. This enables the user to include partial,
low-quality or preliminary aligned sequences without perturbing the topology
of an optimized tree based upon optimally aligned fulland high-quality data.
Another peculiarity of this treeing software concerns the tree optimization by
performing cycles of NNI (nearest-neighbor interchange) and KL [136] topol-
ogy modifications. These optimizations can not only be performed for the
complete tree but also can be confined to user-selected subtrees. Thus tree
optimization is possible by applying the appropriate filters for the respective
phylogenetic levels and groups.

The ARB-neighbor tool for generating distance matrix trees is an acceler-
ated and improved version of the respective component of Felsenstein’s [72]
PHYLIP package.

Selected stand-alone tools of the former package can be used in the ARB
environment in combination with all respective ARB features.

The various facilities of the currently most powerful maximum likelihood
program RAxML [265] can also be operated from the ARB user interface apply-
ing parameters and filters generated by the respective ARB features. Besides
RaxML, also TREE-PUZZLE [250] and PhyML [97] versions can be used for
ARB controlled tree reconstruction.

A “concatenation” tool allows merging alignments of different genes or
gene products for multiple markerbased phylogenetic studies. The full spec-
trum of filter and parameter setting is available for analyzing or controlling
the influences of the individual markers in the concatenated set.

7.2.7 The Positional Tree Server

Once established, the ARB PT server (positional tree) allows rapid and exact
searching for sequence identity or peculiarity. Thus, it represents the central
tool for fast searching of closest relatives for automated sequence alignment
or to define diagnostic sequence stretches for primer and probe design. Es-
tablishing a prefix tree server of any oligonucleotide sequence up to 100-mers
occurring in the underlying database and assignment of the individual oligonu-
cleotides to the sequences or organisms containing them is the basis for these
procedures. PT-server-based analyses do not rely upon aligned sequences. The
PT server is not provided with the ARB program package or ARB database. It
has to be established for the respective database locally. The PT server is used
for rapid finding of the most similar reference sequences indicating the closest
relative of the query organism. This also helps finding appropriate templates
for adding new sequences to existing alignments (see Section 7.2.8). The PT



96 7. ARB: A Software Environment for Sequence Data

server is also used for finding (taxon- or group-specific) diagnostic sequence
stretches for probe and primer design and evaluation (see Section 7.3).

7.2.8 Sequence Alignment and Quality Checks

For de novo-generating nucleic or amino acid sequence alignments, ClustalW
[280] was added to the peripheral tools of the ARB package. However, in the
context of database maintenance, new sequence entries have to be integrated
in an already existing database of aligned sequences. For this purpose the
ARB fast aligner was developed. This aligner uses a (set of) selected aligned
reference sequences as template(s) for rapid integration of a (set of) unaligned
sequence(s). Individual entries—that is, sequences or consensus defined by the
user or automatically determined by PT-server-based search for most similar
reference sequences—are used as template.

In case of protein coding nucleic acid sequences, the alignment usually is
optimized on the amino acid level (given that the phylogenetic information
is stored there) [222]. The underlying nucleic acid alignment can then be
adapted to the amino acid alignment by a back-translation based tool taking
into consideration all known codon usages.

Once a reasonable data set of high quality and optimally aligned primary
structures is reasonably structured (grouped) according to the results of care-
ful phylogenetic analyses, further sequence and alignment quality checking is
possible using the respective ARB tools. A component of the primary structure
editor takes into account SAIs (see Section 7.2.4) expressing positional vari-
ability as well as phylogenetic tree topologies for estimating reasonability of a
certain monomer (nucleotide or amino acid) at a certain alignment position.
The degree of “(miss)-fit” is optionally indicated by user defined background
colors in the editor window. Another tool determines a quality score for the
individual sequences by estimating degrees of deviation from group specific pri-
mary and secondary structure consensus, conservation profiles, sequence sizes,
and completeness.

7.3 Probe Design and Evaluation

Taxon- or gene-specific probes or primers certainly play a central role in many
molecular biological research and analysis projects—for example, the identi-
fication and detection of organisms in complex environmental samples or ex-
pression studies within the scope of genome projects. The ARB “Probe Design”
and “Probe Match” tools are searching the PT server identify short (10–100
monomers) diagnostic sequence stretches that are evaluated against the back-
ground of all sequences in the database the PT server has been built from. In
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principle, no alignment of the sequence data is needed for specific probe de-
sign. However, in the case of taxon-specific probes, alignment and phylogenetic
analyses are necessary for defining groups of phylogenetically (taxonomically)
related organisms as the targets of specific probes. The design of taxonspecific
oligonucleotide probes with ARB is performed in three steps. First, the (group
of) target organism(s), gene(s), or sequence(s) has to be defined (“marked,”
see Section 7.2.1). Second, potential target sites are searched by the “Probe De-
sign” tool with the aid of a PT server. The results are shown in a ranked list of
proposed targets, probes, and additional information. The ranking is according
to in silico-predicted probe quality. Third, the proposed oligonucleotide probes
are evaluated against the whole database by using the program “Probe Match.”
Local alignments are determined between the probe target sequence(s) and the
most similar reference sequences (optionally from 0 to 5 mismatches) in the
respective database. Furthermore, these sequence strings can automatically be
visualized in the primary and secondary structure editors (see Section 7.2.4). A
special advancement is the ARB multiprobe software component. It determines
sets of up to five probes optimally identifying the target group. Color-coded vi-
sualization of target master entries (see Section 7.2.2) and matching probe
combinations is possible in the ARB main window.

7.3.1 Further Useful ARB Tools

A large fraction of sequences in the currently available rRNA sequence data-
bases [226] comprises clusters of highly similar to identical primary structures
most often retrieved by culture independent environmental studies. Commonly,
such “sequence clouds” are represented as OTUs (operational taxonomic units)
in further data analyses. Such OTUs are defined either manually or by applying
respective software tools [249]. Using the ARB package OTUs can be defined
and automatically grouped in the selected tree by a newly developed compo-
nent. The OTU definition according to user provided parameters is deduced
from topology of a selected tree. A (best) representative is proposed by the
software.

ARB can also function as a simple genome viewer allowing comparison of
annotated contigs or genomes. Data access is possible by “search” and “info”
tools, alternatively via genome maps similarly as described in Section 7.2.2.
Extraction of (sets of) genes into ARB gene databases can also be managed by
this ARB facility.
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7.3.2 Availability and Training

The ARB software has been designed for Linux operating systems. Tested ver-
sions for SuSE and Ubuntu Linux distributions are available at http://www.
arb-home.de and http://www.arb-silva.de. The binaries, source code,
and some documentation are provided in the download area of these web
pages. The latter URL also provides access to the current release of the SILVA
LSU and SSU rRNA databases. Furthermore, there is a user group for the
world wide ARB community. Subscription is needed for those interested in
joining (subscribe@arb-home.de). Basic and advanced ARB training courses
are offered by the company Ribocon GmbH in Bremen (Germany, http://
www.ribocon.com). Mac users interested in ARB should contact http://www.
haloarchaea.com/resources/arb/.

7.4 CONCLUDING REMARKS

The ARB software package provides a powerful and comprehensive set of di-
rectly cooperating software tools for managing and analyzing integrative data-
bases of sequences. It is in use worldwide. The ARB software and database
maintaining teams try to keep it up to date and compatible with the ongoing
hardware developments. Given more than 16 years of ARB development by
different computer scientists and a large number of students of computer sci-
ence, the huge and heterogeneous source code needs to be cleaned and at least
partially redesigned. However, it is difficult to get funding or sponsoring for
software redesign.

INTERNET RESOURCES

ARB software (http://www.arb-home.de)
ARB databases (http://www.arb-silva.de)
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ABSTRACT
As an evolutionary marker, 23S ribosomal RNA (rRNA) offers more diagnostic
sequence stretches and greater sequence variation than 16S rRNA. However,
23S rRNA is still not as widely used. Based on 80 metagenome samples from
the Global Ocean Sampling (GOS) Expedition, the usefulness and taxonomic
resolution of 23S rRNA were compared to those of 16S rRNA. Since 23S rRNA
is approximately twice as large as 16S rRNA, twice as many 23S rRNA gene
fragments were retrieved from the GOS reads than 16S rRNA gene fragments,
with 23S rRNA gene fragments being generally about 100 bp longer. Datasets
for 16S and 23S rRNA sequences revealed similar relative abundances for major
marine bacterial and archaeal taxa. However, 16S rRNA sequences had a better
taxonomic resolution due to their significantly larger reference database.

Reevaluation of the specificity of previously published PCR amplification
primers and group specific fluorescence in situ hybridization probes on this
metagenomic set of non-amplified 23S rRNA sequences revealed that out of
16 primers investigated, only two had more than 90% target group coverage.
Evaluations of two probes, BET42a and GAM42a, were in accordance with
previous evaluations, with a discrepancy in the target group coverage of the
GAM42a probe when evaluated against the GOS metagenomic dataset.
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8.1 Introduction

Metagenomics, the study of community genomes taken directly from the envi-
ronment, allows the cultivation-independent access to the diversity and func-
tional information of microbial communities in their natural habitats [103].
For marine habitats, at least 51 metagenome studies are currently available
[162]. One of the largest and geographically most comprehensive is the Global
Ocean Sampling (GOS) Expedition. The initial dataset consisted of 6.3 billion
bp of Sanger sequence reads obtained from 41 surface water samples. These
41 samples covered a region from the North Atlantic to the South Pacific [239].
Furthermore, the publicly available GOS dataset has recently been augmented
by samples from the Atlantic, Pacific and Indian Oceans [315].

The taxonomic diversity of the GOS metagenomic dataset has been as-
sessed previously based on 16S ribosomal RNA (rRNA) gene fragments [25,
239]. The distribution of 23S rRNA gene sequences in the GOS and other
metagenomes remains unexplored. Although the 16S rRNA gene has been es-
tablished as the standard molecule for analyzing the taxonomic diversity in
metagenomes [286, 307], 23S rRNA offers advantages over 16S rRNA. With
an average length of 2900 bases, it is almost twice as long as the 16S rRNA
and, therefore, is theoretically a more informative phylogenetic marker than
the 16S rRNA gene [170, 171, 174]. The 23S and 16S rRNA molecules share
the same properties in terms of molecule-ubiquity, as well as sequence and
structure conservation. Furthermore, phylogenetic trees based on 16S rRNA
and on 23S rRNA genes have comparable topologies [172, 235].

A disadvantage of the 23S rRNA gene is the relatively low number of se-
quences available in the public databases as compared to 16S rRNA genes. Cur-
rently (March 2011), only 231,356 23S/28S sequences are publicly available,
compared to 1,962,952 16S/18S sequences [226]. Furthermore, the low num-
ber of 23S/28S rRNA sequences (20,959) longer than 1900 bases (full-length)
limits the assessment of taxonomic diversity due to reduced resolution in taxo-
nomic assignments. The lower number of available 23S rRNA gene sequences
can historically be explained by the technical difficulty and higher cost of se-
quencing the larger molecule with Sanger sequencing technology. However,
with new technologies and constantly decreasing sequencing costs, these diffi-
culties are becoming less.

This study is a systematic analysis of 23S rRNA gene sequences in unassem-
bled reads of 80 GOS samples, with the focus on the quantity of retrieved
fragments, the fragment length distribution, and the high level taxonomic clas-
sification of the fragments. In order to evaluate and validate the classification
results obtained using 23S rRNA sequences, a comparison of the bacterial and
archaeal diversity of the GOS sites was undertaken based on 23S rRNA and 16S
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rRNA gene classifications. Additionally, previously reported 23S rRNA primers
and probes have been evaluated based on the extended dataset.

8.2 Materials and methods

8.2.1 Retrieval, alignment and taxonomic
classification of 23S/28S and 16S/18S rRNA
fragments

Unassembled metagenomic reads for 80 GOS sample datasets were downloaded
as a FASTA file from the CAMERA website [253] in September, 2009. A total
of 10,085,737 reads, with an average read length of 822 bp, were processed
with the SILVA pipeline [227] in order to retrieve 23S/28S and 16S/18S rRNA
gene fragments. Aligned fragments were imported into the ARB software suite
for further analysis [177]. The fragments were added to the guide trees of the
large subunit (LSU (23S/28S)) and small subunit (SSU (16S/18S)) datasets
of the SILVA Reference (Ref) release 102 using the ARB Parsimony tool. Frag-
ments with 300-600 aligned bases within the 23S/28S rRNA gene boundaries,
and 100-500 aligned bases within the 16S/18S rRNA gene boundaries were
added to the guide tree using positional variability filters (an all domain fil-
ter for 23S/28S; individual Bacteria, Archaea and Eukarya filters for 16S/18S)
excluding highly variable positions indicated by numbers between 1 and 7,
which resulted in 2903 out of 3546 valid positions for 23S/28S rRNA sequen-
ces, and 1391 out of 1444 positions for 16S/18S rRNA sequences. Fragments
with more than 600 aligned bases for 23S/28S rRNA, and 500 aligned bases
for 16S/18S rRNA sequences were added with the same positional variability
filters but excluding highly variable positions between 1 and 9, leaving 2345
and 1224 valid positions for 23S/28S and 16S/18S rRNA sequences, respec-
tively. Taxonomic assignments are based on membership of the fragments to
the existing clades of the SILVA taxonomy, as represented by the guide trees of
the high quality SILVA Ref datasets [227]. Taxonomic path assignments were
stored in the “tax_slv” field of ARB files using the taxonomy(n) function of ARB
Command Interpreter (ACI).

A “Best-BLASTN (Nucleotide BLAST) hit” approach of 23S rRNA fragments
was also performed for comparison with the ARB-parsimony approach [2]. Un-
aligned 23S/28S rRNA fragments retrieved by the SILVA pipeline were used to
query the reference dataset of SILVA LSU release 102, using the Tera-BLASTN
algorithm (Tera-BLAST™, TimeLogic Inc., Carlsbad, CA, USA). The parame-
ters used for the BLASTN algorithm were as follows: word size=11, extension
threshold=20, nucleic match=1, nucleic mismatch=-3, gap open penalty=-5,
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Table 8.1 Percentage of 23S and 16S rRNA gene fragments that can be classified up
to Domain, Phylum, Class, Order, Family and Genus levels. Total number of fragments
classified are 20,036 and 12,491 for 23S and 16S rRNA, respectively, excluding Eukarya
and fragments with less than 300 aligned bases for LSU and less than 100 aligned bases

for SSU.

23S rRNA gene fragments (%) 16S rRNA gene fragments (%)
Domain 99.9 100.0
Phylum 96.6 100.0
Class 94.4 99.1
Order 78.8 96.3
Family 35.4 80.0
Genus 16.6 31.2

gap extension penalty=-2. Best-BLASTN hits were selected as the top-scoring
hit from a group of hits having an expect value of less than 0.00001, and an
identity to the query of more than or equal to 97%. The taxonomy of the
best hit in the reference dataset was assigned to the query sequence. Further
processing of data for taxa abundance counts and method comparisons was
performed using MegDB [27].

8.2.2 Primer and probe matching

Sequence Associated Information (SAI) filters corresponding to binding sites
of the primers and probes (Supplementary material 1) were manually con-
structed. These filters were used to count the number of bases within the
primer/probe binding sites of all 23S rRNA sequences found in the GOS and
SILVA LSU release 102. The target group sequences were chosen from all se-
quences having a full-length primer/probe-binding region according to these
counts. The sizes of primer/probe target groups for GOS and LSU Parc, as well
as sequences of the primers and probes are given in Table 8.1 and Supplemen-
tary material 1, respectively. Primer/probe matching was carried out manually
using the PROBE MATCH module of the ARB software package with the “zero
mismatches” and “no weighted mismatches” criteria. Results were parsed and
the group coverage in each target group was calculated as the relative number
of probe and primer hits to the total number of sequences in the respective
target group.
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8.2.3 Data Access

23S/28S rRNA sequences retrieved from the GOS metagenomes that were ana-
lyzed in this study are publicly available from http://www.arb-silva.de/
download/archive/GOS_diversity/ in ARB format, as well as unaligned
and aligned FASTA files. The ARB file contains fields created for the pur-
pose of the primer/probe matching procedure; specifically, fields named with
the primer or probe name (example, 129f) contain the PROBE MATCH re-
sults as ‘pos’ if the results reported were positive. The fields carrying the
primer name and the suffix ‘_len’ (example, 129f_len) contain the length of
the primer/probe binding regions.

8.3 Results and Discussion

8.3.1 Summary of rRNA gene fragment retrieval

A total of 29,581 23S/28S rRNA (0.3% of total reads), and 142,783 16S/18S
rRNA (1.4% of total reads) gene fragments were retrieved and aligned us-
ing SINA. Fragments with less than 100 aligned bases within the 23S/28S or
16S/18S rRNA gene boundaries were excluded from further analysis, which
reduced the dataset to 22,575 23S/28S (76% of total 23S/28S) and 12,742
16S/18S (9% of total 16S/18S) rRNA fragments. For the majority of the ex-
cluded sequences (>98%) less than 50 bases could be aligned. Excluding these
sequences from the analysis increased the reliability of taxonomic assignments,
since sequences this short do not carry sufficient phylogenetic information. Ten
GOS sample datasets (GS038-GS046, and GS050) had less than five rRNA gene
fragments of sufficient length (Figs. 8.1A and 8.2B) and were excluded from
further analysis. These sites contained, on average, only 700 total reads, ex-
plaining the low fragment retrieval. Furthermore, no rRNA fragments were
retrieved from the MOVE858 sample, which was obtained using 0.002-0.22
µm filters, representing the viral metagenome fraction.

The 23S/28S rRNA gene is twice the length of the 16S/18S rRNA gene,
hence the probability of retrieving a 23S/28S rRNA gene fragment should be
proportionately higher. This expectation was supported by the results of this
study, since ratios of almost 2:1 were observed at sites GS000d (904 23S/28S
vs. 438 16S/18S), GS029 (351 23S/28S vs. 162 16S/18S), or GS112a (227
23S/28S vs. 113 16S/18S) (Fig. 8.1A). This two-fold difference was also
reflected by the average number of fragments retrieved per site, which was
301 for 23S/28S rRNA and 177 for 16S/18S rRNA. Furthermore, 23S/28S
rRNA gene fragments were considerably longer than 16S/18S gene fragments
(Fig. 8.1B). Where an average 23S/28S rRNA fragment had 836 aligned bases

http://www.arb-silva.de/download/archive/GOS_diversity/
http://www.arb-silva.de/download/archive/GOS_diversity/
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Figure 8.1 A) Comparison of number of 23S/28S (dark grey bars) and 16S/18S
(light grey bars) rRNA fragments retrieved from each GOS sample dataset. B) Average
length of 23S/28S (dark grey circles) and 16S/18S (light grey circles) rRNA fragments
from each GOS sample dataset in terms of number of aligned bases within rRNA gene
boundaries, excluding any fragment (23S/28S or 16S/18S) that contained less than 100
aligned bases. Sites marked with a ‘*’ indicate that less than five fragments were retrieved.
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within the rRNA gene boundaries, a 16S/18S rRNA fragment had 713 aligned
bases. More abundant and larger rRNA gene fragments may provide additional
information in assessing taxonomic diversity, both with phylogeny and opera-
tional taxonomic unit based methods, as well as increasing the chances to affil-
iate other gene fragments with specific lineages. Both 23S/28S and 16S/18S
rRNA fragments were randomly distributed over the rRNA gene regions, mean-
ing that no specific sequence region was over- or under-represented (Supple-
mentary material 3).

8.3.2 Taxonomic diversity based on 23S and 16S rRNA
genes

Few eukaryotic sequences (340 28S rRNA and 251 18S rRNA) were retrieved
from samples obtained from 0.22-0.8 µm, 0.8-3 µm and 3-20 µm size fractions.
These were excluded from further analyses due to the inconsistent taxonomic
classification of eukaryotic sequences in databases and to allow greater focus
on the bacterial and archaeal fraction. As a result, a total of 20,036 23S rRNA
(>300 bases) and 12,491 16S rRNA (>100 bases) gene sequences were classi-
fied. Percentages of both 23S and 16S rRNA fragments associated with major
marine bacterial and archaeal taxa showed good agreement with each other
and with previous studies [83, 89, 224] (Figs. 8.2A and 8.2B). Specifically,
based on 23S rRNA assignments, 43% of the retrieved rRNA fragments were
found to be associated with Alphaproteobacteria, followed by 17% Gammapro-
teobacteria, 9% Actinobacteria, 8% Cyanobacteria, 8% Bacteroidetes, 3% Be-
taproteobacteria, 2% Euryarchaeota, and 0.4% Crenarchaeota (Fig. 8.2A). How-
ever, less agreement in the assignment of 23S rRNA and 16S rRNA fragments
was observed with less abundant marine taxa. For example, Chloroflexi and
Deferribacteres associated fragments were not observed in the 23S rRNA gene-
based classification, which may be ascribed to the lack of annotated clades
for these taxa. In such cases, 16S rRNA gene-based classifications appear to
provide better estimations.

Similar trends were observed in sample-by-sample distribution of taxa at
the “Class” level for both 23S and 16S rRNA-based assignments, as compared
to the previous overall assessment (Figs. 8.3A and 8.3B, Supplementary mate-
rial 2). Alphaproteobacteria, followed by Gammaproteobacteria, Actinobacteria,
Cyanobacteria, Flavobacteria and Betaproteobacteria were the most abundant
taxa in the majority of sample datasets. However, differences were observed in
the occurrence or relative abundance of minor groups, such as Planctomyceta-
cia or Aquificae. For example, Planctomycetacia associated 16S rRNA fragments
were found in 15 sample datasets, whereas only 13 sample datasets contained
Planctomycetacia associated 23S rRNA fragments. The differences in relative
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Figure 8.2 Percentage of 23S (A) and 16S (B) rRNA fragments associated with major
marine bacterial and archaeal taxa among all GOS sample datasets, except GS038-GS046
and GS050. Percentages were calculated based on absolute numbers of fragments associ-

ated with a given taxa.
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abundance observed with 16S or 23S rRNA-based assignments in these sam-
ple datasets were up to six-fold (GS000a). Surprisingly, in certain cases, 23S
rRNA-based assessments predicted higher relative abundances or occurrence in
sample datasets for other taxa. Up to 12-fold more Epsilonproteobacteria asso-
ciated 23S rRNA fragments were found in sample dataset GS000b compared to
16S rRNA fragments. Additionally, Lentisphaeria, which appeared to be present
in ten sites according to 23S rRNA classifications, were observed only at two
sites according to 16S rRNA gene classifications.

The former case, where 16S rRNA-based assignments estimated more taxa
in more sample datasets, demonstrated the current drawback of 23S rRNA-
based classification (i.e. its lack of resolution due to insufficient full-length
reference sequences). On the other hand, the latter observations demonstrated
that when reference sequences are present for a taxon, the higher number
of 23S rRNA fragments retrieved can capture what is missed with 16S rRNA
fragments.

An evaluation of the suitability of 23S rRNA-based diversity assessments
can be obtained by comparing the community composition of contrasting habi-
tats. Subtle differences in contrasting marine habitats are evident and compa-
rable to each other and to general expectations for both 23S and 16S rRNA-
based diversity assessments (Figs. 8.3A and 8.3B). For example, Gammapro-
teobacteria were less frequent in estuarine and freshwater habitats compared
with coastal and open ocean habitats (GS000a vs. GS020). On the contrary,
Actinobacteria and Betaproteobacteria were more abundant in estuarine and
freshwater habitats than in coastal or open ocean habitats (GS011 vs. GS119),
underlining previously reported trends [44, 91, 113]. Additionally, a distinct
composition was evident in non-open ocean GOS habitats (GS033-hypersaline,
GS030-mangrove).

Investigating relative abundances at lower taxonomic levels can shed light
on more prominent habitat-specific diversity patterns. However, with the cur-
rent size and content of LSU rRNA reference databases, the 23S rRNA has a
distinct disadvantage in achieving this. As summarized in Table 8.1, the per-
centage of 23S rRNA gene fragments that can be classified to a certain taxa is
comparable to the 16S rRNA gene-based classification at Domain, Phylum or
Class levels. A decrease in percentage of classified 23S rRNA fragments was
observed at lower levels, from 95% at the Class level, down to even 17% at the
Genus level. This can be explained by the 23,197 sequences of taxonomically
classified cultured organisms in the SILVA Ref release 102 SSU dataset versus
only 3,602 sequences in the LSU Ref dataset.

In addition to the comparison of tree guided taxonomic classification meth-
ods, a comparison of the parsimony classification approach to a Best-BLAST hit
approach was performed for 23S/28S rRNA gene fragments. BLAST, or mod-
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Figure 8.3 The relative abundance of 23S (A) and 16S (B) rRNA fragments associated
with different taxa (rows) at each GOS sample dataset (columns). Presence of a spot
indicates the presence of fragments associated with a given taxa, and the area of a spot
represents the relative abundance. Relative abundances are based on absolute counts of
all fragments from a given site associated with a certain taxa, which are then normalized
according to the total fragment counts from that site. Abundances are not normalized
with respect to single copy genes, and since rRNA operons can occur multiple times in a
genome, the numbers do not represent cell abundances. The taxa shown here are on the

‘Class’ level, except Cyanobacteria, which is at the ‘Phylum’ level.
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ifications of this method, are increasingly popular in assessing the taxonomic
diversity of high-throughput metagenomic datasets and rRNA surveys. This is
due to BLAST being faster than phylogenetic methods, such as ARB Parsimony,
and it also provides a means of a multiple-alignment free taxonomic classifica-
tion approach [121, 122, 191, 261].

A total of 15,798 (excluding 86 Eukaryotic sequences) out of 29,581 un-
aligned GOS 23S/28S rRNA fragments could be classified using the Best-
BLASTN hit approach. Sequences below 300 nucleotides were rejected, reveal-
ing a total of 14,656 classified sequences. The BLASTN approach was success-
ful in classifying 5,380 sequences, which were not classified by ARB Parsimony.
However, the identity to the target sequence was below the chosen thresholds.
The differences between the two methods could be settled by a sufficiently high
bit score for the Best-BLASTN hit approach as the sole criterion for assigning
taxonomy [39].

In the next step, the taxonomic assignments between Best-BLASTN hit and
ARB parsimony were investigated. In summary, 97% of the 14,656 common
sequences were assigned identical taxonomy by both methods. The remaining
3.4% (499) of the sequences, which had different taxonomic paths, fell into
three different cases: 1) the taxonomic path assigned by the Best-BLASTN hit
was at a lower rank compared to ARB Parsimony, 2) the taxonomic path as-
signed by ARB Parsimony was at a lower rank compared to the Best-BLASTN
hit, and finally, 3) the assigned taxonomies were entirely different below a
certain rank. For the majority of the sequences (408), the Best-BLASTN hit
provided classification at a lower rank (case 1). This is an expected outcome
because the taxonomic path is assigned directly from the next relative of the
target sequence by the Best-BLASTN hit approach. On the contrary, in the ARB
Parsimony approach the taxonomy is assigned based on a group membership,
and a sequence can be placed close to, but outside, a group. At a lesser amount,
with 28 sequences, a classification to a lower rank was achieved with the ARB
Parsimony approach. Finally, 63 sequences had different taxonomic assign-
ments, which could be broken down into 36 sequences assigned to different
genera, 15 to different orders, and 12 to different classes.

The relatively small differences in taxonomic assignments between the two
methods were encouraging, especially regarding concerns about the suitability
of large multiple alignments for taxonomic classification. In response to these
concerns, it is important to point out that the SILVA alignment has been rated as
having the ‘best-quality’ within similar projects [247]. Furthermore, the SILVA
alignment is based on a reference seed alignment, hence it is not subjected
to the many drawbacks of large-scale multiple de novo alignments. Finally,
with this comparison, it was shown that both Best-BLAST hit and phylogenetic
approaches, such as ARB Parsimony, can provide comparable and very similar
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results. This methodological comparison showed that if a congruent dataset for
taxonomic classification is used, very similar results are obtained, regardless of
the algorithms behind the taxonomic classifications.

8.3.3 Specificity of common 23S rRNA primers and
probes

The addition of GOS 23S rRNA sequences increases the size of the current
23S/28S rRNA databases (based on SILVA 102 LSUParc) by 12%. Furthermore,
they have not undergone PCR amplification, and hence provide a unique oppor-
tunity for testing the coverage of previously described universal amplification
primers, as well as widely used class-specific probes.

The most recently developed primer sets (129f, 189f, 457r, 2490r) [120],
as well as primer 2241r [151], showed reasonable group coverage in the GOS
23S dataset sequences with an average of 85% (Table 8.2), and the results were
comparable to those obtained from matching the primers against the SILVA re-
lease 102 LSU Parc dataset with only a ±2% difference. The reference dataset
used by Hunt et al. [120] was smaller with 2,176 sequences than both the LSU
Parc (average of 11,000 target group sequences) and the GOS 23S (average
of 5,400 target group sequences) datasets used in this study. However, the au-
thors have included environmental shotgun sequences from the Sargasso Sea
pilot study [293] in their dataset, which would account for the comprehensive-
ness of these primers also in the GOS 23S dataset.

Contrary to these results, the primers developed for the amplification of
variable regions of bacterial 23S rRNA sequences (11a-97ar) [290] showed
very poor group coverage in the GOS 23S dataset sequences, with generally
less than 50% coverage of the target group. A 90% group coverage was only
observed for 69ar (Table 8.2). Although the primer binding sites were highly
conserved, this was obviously counteracted by the very small dataset that these
primers were based on [100]. Surprisingly, primers 53a to 97ar were observed
to have higher group coverage within the GOS 23S rRNA sequences than within
LSU Parc.

The two archaeal primers (LSU190-F and LSU2445a-R) [51] showed very
low group coverage in the GOS 23S dataset (Table 8.2), with 14% and 5%,
respectively. Nevertheless, while the percentages were higher in the LSU Parc,
they did not exceed 50%.

For the BET42a probe [180], 79% group coverage was found. This, as well
as the number of outgroup hits within the GOS 23S dataset, was close to that
reported by a previous evaluation [4] (Table 8.2). Group coverage within LSU
Parc (87%) was in accordance with Amann and Fuchs [4] (Table 8.2), although
considerably more outgroup hits, 348 in LSU Parc vs. 62, were observed.
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The GAM42a probe coverage in the GOS 23S dataset (Table 8.2) was al-
most half (42%) of the value reported previously (76%) [4], and the corre-
sponding evaluation of the LSU Parc (78%) dataset. Since the mismatches
could result from sequencing errors, the alignments of sequences with mis-
matches to the probe GAM42a were manually inspected. A few cases were
likely to be sequencing errors, and were mainly observed in fragments obtained
from ends of sequencing reads. The majority of the mismatches revealed con-
sistent, class-specific mismatches. These mismatches were up to four bases,
and were found mainly between E. coli positions 1030 to 1040. Although this
evaluation of the GAM42a probe was based on a single environment, the sur-
face ocean, limitations and anomalous results with the GAM42a probe have
been reported previously for other environments as well, which were found to
be mainly due to polymorphisms at E. coli position 1033 [20, 313]. Our ob-
servation confirms these reports, by adding additional polymorphisms before
and after this position. Consequently, the limitations of the GAM42a probe
might be more severe than previously thought, and therefore we recommend
the design and testing of novel Gammaproteobacteria probes.

8.4 Conclusions

This study exemplifies the possibility and power of using 23S rRNA genes for
biodiversity surveys by providing a comparative overview of 16S and 23S rRNA
fragments retrieved from the GOS metagenomes. High quality taxonomic clas-
sification for biodiversity analysis, as well as primer and probe design, depends
on the size and extent of the reference dataset used. The advantage of using
the larger 23S rRNA genes for biodiversity analysis, especially for the marine
system, has been shown previously [221]. Additionally, a recent study assess-
ing the diversity of paralogous 23S rRNA genes has shown that significant
sequence diversification was observed in 184 species, further supporting the
suitability of this molecule for taxonomy [219]. Although an obvious limita-
tion faced during this study was the small size of the 23S rRNA gene reference
datasets, this is likely to be overcome in the near future with the contribu-
tion of (meta-) genomic sequences from mega-sequencing projects, such as
the Human Microbiome Project [289], the TerraGenome [295], Tara Oceans
(see http://oceans.taraexpeditions.org/) or the Genomic Encyclopedia
of Bacteria and Archaea [308]. Moreover, studies assessing the characteristics
and sequence diversity of 23S rRNA genes in bacterial and archaeal genomes,
in combination with efforts to design, test and re-evaluate universal and group
specific primers and probes [120], can renew the interest and utilization of this
molecule. Application of continually advancing, cheaper sequencing technolo-
gies to the undiscovered fraction of the 23S rRNA gene sequences can result in

http://oceans.taraexpeditions.org/
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a higher appreciation of this valuable phylogenetic marker.
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415-420.

ABSTRACT
Here we present a standard developed by the Genomic Standards Consortium
(GSC) for reporting marker gene sequences – the minimum information about a
marker gene sequence (MIMARKS). We also introduce a system for describing
the environment from which a biological sample originates. The ’environmental
packages’ apply to any genome sequence of known origin and can be used in
combination with MIMARKS and other GSC checklists. Finally, to establish a
unified standard for describing sequence data and to provide a single point of
entry for the scientific community to access and learn about GSC checklists, we
present the minimum information about any (x) sequence (MIxS). Adoption of
MIxS will enhance our ability to analyze natural genetic diversity documented by
massive DNA sequencing efforts from myriad ecosystems in our ever-changing
biosphere.

9.1 Introduction

Without specific guidelines, most genomic, metagenomic and marker gene se-
quences in databases are sparsely annotated with the information required to
guide data integration, comparative studies and knowledge generation. Even
with complex keyword searches, it is currently impossible to reliably retrieve
sequences that have originated from certain environments or particular loca-
tions on Earth—for example, all sequences from ’soil’ or ’freshwater lakes’ in a
certain region of the world. Because public databases of the International Nu-
cleotide Sequence Database Collaboration (INSDC; comprising DNA Data Bank
of Japan (DDBJ), the European Nucleotide Archive (EBI-ENA) and GenBank
(http://www.insdc.org/)) depend on author-submitted information to en-
rich the value of sequence data sets, we argue that the only way to change the
current practice is to establish a standard of reporting that requires contextual
data to be deposited at the time of sequence submission. The adoption of such
a standard would elevate the quality, accessibility and utility of information
that can be collected from INSDC or any other data repository.

The GSC has previously proposed standards for describing genomic sequen-
ces – the “minimum information about a genome sequence” (MIGS) – and
metagenomic sequences – the “minimum information about a metagenome se-
quence” (MIMS) [74]. Here we introduce an extension of these standards for
capturing information about marker genes. Additionally, we introduce ’envi-
ronmental packages’ that standardize sets of measurements and observations

http://www.insdc.org/
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describing particular habitats that are applicable across all GSC checklists and
beyond [277]. We define ’environment’ as any location in which a sample or
organism is found, e.g., soil, air, water, human-associated, plant-associated or
laboratory. The original MIGS/MIMS checklists included contextual data about
the location from which a sample was isolated and how the sequence data were
produced. However, standard descriptions for a more comprehensive range of
environmental parameters, which would help to better contextualize a sample,
were not included. The environmental packages presented here are relevant to
any genome sequence of known origin and are designed to be used in combi-
nation with MIGS, MIMS and MIMARKS checklists.

To create a single entry point to all minimum information checklists from
the GSC and to the environmental packages, we propose an overarching frame-
work, the MIxS standard (http://gensc.org/gc_wiki/index.php/MIxS).
MIxS includes the technology-specific checklists from the previous MIGS and
MIMS standards, provides a way of introducing additional checklists such as
MIMARKS, and also allows annotation of sample data using environmental
packages. A schematic overview of MIxS along with the MIxS environmental
packages is shown in Figure 1.

9.1.1 Development of MIMARKS and the
environmental packages

Over the past three decades, the 16S rRNA, 18S rRNA and internal transcribed
spacer gene sequences (ITS) from Bacteria, Archaea and microbial Eukaryotes
have provided deep insights into the topology of the tree of life [175, 176]
and the composition of communities of organisms that live in diverse environ-
ments, ranging from deep sea hydrothermal vents to ice sheets in the Arctic
[52, 57, 84, 87, 113, 119, 167, 193, 215, 230, 264, 301]. Numerous other
phylogenetic marker genes have proven useful, including RNA polymerase
subunits (rpoB), DNA gyrases (gyrB), DNA recombination and repair proteins
(recA) and heat shock proteins (HSP70) [175]. Marker genes can also reveal
key metabolic functions rather than phylogeny; examples include nitrogen cy-
cling (amoA, nifH, ntcA) [80, 316], sulfate reduction (dsrAB) [192] or phos-
phorus metabolism (phnA, phnI, phnJ)[86, 184]. In this paper we define all
phylogenetic and functional genes (or gene fragments) used to profile natu-
ral genetic diversity as ’marker genes’. MIMARKS (Table 9.1) complements
the MIGS/MIMS checklists for genomes and metagenomes by adding two new
checklists, a MIMARKS survey, for uncultured diversity marker gene surveys,
and a MIMARKS specimen, for marker gene sequences obtained from any ma-
terial identifiable by means of specimens. The MIMARKS extension adopts and
incorporates the standards being developed by the Consortium for the Barcode

http://gensc.org/gc_wiki/index.php/MIxS
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Figure 9.1 Schematic overview about the GSC MIxS standard (brown), including com-
bination with specific environmental packages (blue).

Shared descriptors apply to all MIxS checklists; however, each checklist has
its own specific descriptors as well. Environmental packages can be applied
to any of the checklists. EU, eukarya; BA, bacteria/archaea; PL, plasmid; VI,
virus; ORG, organelle.
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of Life (CBOL) [105]. Therefore, the checklist can be universally applied to any
marker gene, from small subunit rRNA to cytochrome oxidase I (COI), to all
taxa, and to studies ranging from single individuals to complex communities.

Both MIMARKS and the environmental packages were developed by collat-
ing information from several sources and evaluating it in the framework of the
existing MIGS/MIMS checklists. These include four independent community-
led surveys, examination of the parameters reported in published studies and
examination of compliance with optional features in INSDC documents. The
overall goal of these activities was to design the backbone of the MIMARKS
checklist, which describes the most important aspects of marker gene contex-
tual data.

9.1.2 Results of community-led surveys

Four online surveys about descriptors for marker genes have been conducted
to determine researcher preferences for core descriptors. The Department of
Energy Joint Genome Institute and SILVA [226] surveys focused on general de-
scriptor contextual data for a marker gene, whereas the Ribosomal Database
Project (RDP) [42] focused on prevalent habitats for rRNA gene surveys, and
the Terragenome Consortium[295] focused on soil metagenome project con-
textual data (Supplementary Results 1). The above recommendations were
combined with an extensive set of contextual data items suggested by an Inter-
national Census of Marine Microbes (ICoMM) working group that met in 2005.
These collective resources provided valuable insights into community requests
for contextual data items to be included in the MIMARKS checklist and the
main habitats constituting the environmental packages.

9.1.3 Survey of published parameters

We reviewed published rRNA gene studies, retrieved from SILVA and the
ICoMM database MICROBIS (The Microbial Oceanic Biogeographic Informa-
tion System, http://icomm.mbl.edu/microbis/) to further supplement con-
textual data items that are included in the respective environmental packages.
In total, 39 publications from SILVA and >40 ICoMM projects were scanned
for contextual data items to constitute the core of the environmental package
subtables (Supplementary Results 1).

In a final analysis step, we surveyed usage statistics of INSDC source fea-
ture key qualifier values of rRNA gene sequences contained in SILVA (Supple-
mentary Results 1). Notably, <10% of the 1.2 million 16S rRNA gene sequen-
ces (SILVA release 100) were associated with even basic information such as
latitude and longitude, collection date or PCR primers.

http://icomm.mbl.edu/microbis/
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Table 9.1 The core items of the MIMARKS checklists, along with the value types, de-
scriptions and requirement status (part 1)

Report Type

Item Description survey specimen

Investigation
Submitted to INSDC
[boolean]

Depending on the study (large-scale, e.g., done with
next-generation sequencing technology, or small-scale)
sequences have to be submitted to SRA (Sequence Read
Archives), DRA (DDBJ Sequence Read Archive) or through the
classical Webin/Sequin systems to GenBank, ENA and DDBJ

M M

Investigation type
[mimarks-survey or

mimarks-specimen]

Nucleic Acid Sequence Report is the root element of all
MIMARKS compliant reports as standardized by Genomic
Standards Consortium (GSC). This field is either MIMARKS
survey or MIMARKS specimen

M M

Project name Name of the project within which the sequencing was organized M M

Environment
Geographic location
(latitude and
longitude [float, point,

transect and region])

The geographical origin of the sample as defined by latitude
and longitude. The values should be reported in decimal
degrees and in WGS84 system

M M

Geographic location
(depth [integer, point,

interval, unit])

Please refer to the definitions of depth in the environmental
packages

E E

Geographic location
(elevation of site
[integer, unit]; altitude
of sample [integer,

unit])

Please refer to the definitions of either altitude or elevation in
the environmental packages

E E

Geographic location
(country and/or sea
[INSDC or GAZ]; region
[GAZ])

The geographical origin of the sample as defined by the country
or sea name. Country, sea or region names should be chosen
from the INSDC list (http://insdc.org/country.html), or
the GAZ (Gazetteer, v1.446) ontology
(http://bioportal.bioontology.org/visualize/40651)

M M

Collection date
[ISO8601]

The time of sampling, either as an instance (single point in
time) or interval. In case no exact time is available, the
date/time can be right truncated, that is, all of these are valid
times: 2008-01-23T19:23:10+00:00; 2008-01-23T19:23:10;
2008-01-23; 2008-01; 2008; except for 2008-01 and 2008, all
are ISO6801 compliant

M M

Environment
(biome [EnvO])

In environmental biome level are the major classes of
ecologically similar communities of plants, animals and other
organisms. Biomes are defined based on factors such as plant
structures, leaf types, plant spacing and other factors like
climate. Examples include desert, taiga, deciduous woodland or
coral reef. Environment Ontology (EnvO) (v1.53) terms listed
under environmental biome can be found at
http://bioportal.bioontology.org/visualize/44405/
?conceptid=ENVO:00000428

M M

Environment
(feature [EnvO])

Environmental feature level includes geographic environmental
features. Examples include harbor, cliff or lake. EnvO (v1.53)
terms listed under environmental feature can be found at
http://bioportal.bioontology.org/visualize/44405/
?conceptid=ENVO:00002297

M M

Table continues on page 123.

http://insdc.org/country.html
http://bioportal.bioontology.org/visualize/40651
http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO:00000428
http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO:00000428
http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO:00002297
http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO:00002297
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Table 9.2 The core items of the MIMARKS checklists, along with the value types, de-
scriptions and requirement status (part 2)

Report Type

Item Description survey specimen

Environment
(material [EnvO])

The environmental material level refers to the matter that was
displaced by the sample, before the sampling event.
Environmental matter terms are generally mass nouns.
Examples include: air, soil or water. EnvO (v1.53) terms listed
under environmental matter can be found at
http://bioportal.bioontology.org/visualize/44405/
?conceptid=ENVO:00010483

M M

MIGS/MIMS/MIMARKS extension
Environmental
package [air,

host-associated,

human-associated,

human-skin, human-oral,

human-gut, human-vaginal,

microbial mat/biofilm,

miscellaneous natural or

artificial environment,

plant-associated, sediment,

soil, wastewater/sludge,

water]

MIGS/MIMS/MIMARKS extension for reporting of
measurements and observations obtained from one or more of
the environments where the sample was obtained. All
environmental packages listed here are further defined in
separate subtables. By giving the name of the environmental
package, a selection of fields can be made from the subtables
and can be reported

M M

Nucleic acid sequence source
Isolation and growth
conditions [PMID, DOI

or URL]

Publication reference in the form of PubMed ID (PMID), digital
object identifier (DOI) or URL for isolation and growth
condition specifications of the organism/material

- M

Sequencing
Target gene or locus
(e.g., 16S rRNA, 18S
rRNA, nif, amoA,
rpo)

Targeted gene or locus name for marker gene study M M

Sequencing method
(e.g.,
dideoxysequencing,
pyrosequencing,
polony)

Sequencing method used, e.g., Sanger, pyrosequencing,
ABI-solid

M M

Items for the MIMARKS specification and their mandatory (M), status for both MIMARKS-survey and
MIMARKS-specimen checklists. Furthermore, “–” denotes that an item is not applicable for a given checklist.
E denotes that a field has environment-specific requirements. For example, whereas “depth” is mandatory
for the environments water, sediment or soil, it is optional for human-associated environments. MIMARKS-
survey is applicable to contextual data for marker gene sequences, obtained directly from the environ-
ment, without culturing or identification of the organisms. MIMARKS-specimen, on the other hand, ap-
plies to the contextual data for marker gene sequences from cultured or voucher-identifiable specimens.
Both MIMARKS-survey and specimen checklists can be used for any type of marker gene sequence data,
ranging from 16S, 18S, 23S, 28S rRNA to COI, hence the checklists are universal for all three domains
of life. Item names are followed by a short description of the value of the item in parentheses and/or
value type in brackets as a superscript. Whenever applicable, value types are chosen from a controlled
vocabulary (CV) or an ontology from the Open Biological and Biomedical Ontologies (OBO) foundry
(http://www.obofoundry.org/). This table only presents the very core of MIMARKS checklists, that is,
only mandatory items for each checklist. Supplementary Results 2 contains all MIMARKS items, the tables
for environmental packages in the MIGS/MIMS/MIMARKS extension and GenBank structured comment
name that should be used for submitting MIMARKS data to GenBank. In case of submitting to EBI-ENA, the
full names can be used.

http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO:00010483
http://bioportal.bioontology.org/visualize/44405/?conceptid=ENVO:00010483
http://www.obofoundry.org/
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9.1.4 The MIMARKS checklist

The MIMARKS checklist provides users with an ’electronic laboratory note-
book’ containing core contextual data items required for consistent reporting of
marker gene investigations. MIMARKS uses the MIGS/MIMS checklists with re-
spect to the nucleic acid sequence source and sequencing contextual data, but
extends them with further experimental contextual data such as PCR primers
and conditions, or target gene name.

For clarity and ease of use, all items within the MIMARKS checklist are
presented with a value syntax description, as well as a clear definition of the
item. Whenever terms from a specific ontology are required as the value of
an item, these terms can be readily found in the respective ontology browsers
linked by URLs in the item definition. Although this version of the MIMARKS
checklist does not contain unit specifications, we recommend all units to be
chosen from and follow the International System of Units (SI) recommenda-
tions. In addition, we strongly urge the community to provide feedback re-
garding the best unit recommendations for given parameters. Unit standard-
ization across data sets will be vital to facilitate comparative studies in future.
An Excel version of the MIMARKS checklist is provided on the GSC web site
(http://gensc.org/gc_wiki/index.php/MIMARKS).

9.1.5 The MIxS environmental packages

Fourteen environmental packages provide a wealth of environmental and epi-
demiological contextual data fields for a complete description of sampling envi-
ronments. The environmental packages can be combined with any of the GSC
checklists (Fig. 9.1 and Supplementary Results 2). Researchers within The Hu-
man Microbiome Project [289] contributed the host-associated and all human
packages. The Terragenome Consortium contributed sediment and soil pack-
ages. Finally, ICoMM, Microbial Inventory Research Across Diverse Aquatic
Long Term Ecological Research Sites and the Max Planck Institute for Marine
Microbiology contributed the water package. The MIMARKS working group de-
veloped the remaining packages (air, microbial mat/biofilm, miscellaneous nat-
ural or artificial environment, plant-associated and wastewater/sludge). The
package names describe high-level habitat terms in order to be exhaustive. The
miscellaneous natural or artificial environment package contains a generic set
of parameters, and is included for any other habitat that does not fall into the
other thirteen categories. Whenever needed, multiple packages may be used
for the description of the environment.

http://gensc.org/gc_wiki/index.php/MIMARKS
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9.1.6 Examples of MIMARKS-compliant data sets

Several MIMARKS-compliant reports are included in Supplementary Results 3.
These include a 16S rRNA gene survey from samples obtained in the North
Atlantic, an 18S pyrosequencing tag study of anaerobic protists in a perma-
nently anoxic basin of the North Sea, a pmoA survey from Negev Desert soils,
a dsrAB survey of Gulf of Mexico sediments and a 16S pyrosequencing tag
study of bacterial diversity in the western English Channel (SRA accession no.
SRP001108).

9.1.7 Adoption by major database and informatics
resources

Support for adoption of MIMARKS and the MIxS standard has spread rapidly.
Authors of this paper include representatives from genome sequencing centers,
maintainers of major resources, principal investigators of large- and small-scale
sequencing projects, and individual investigators who have provided compliant
data sets, showing the breadth of support for the standard within the commu-
nity.

In the past, the INSDC has issued a reserved ’barcode’ keyword for the
CBOL7. Following this model, the INSDC has recently recognized the GSC as
an authority for the MIxS standard and issued the standard with official key-
words within INSDC nucleotide sequence records [24]. This greatly facilitates
automatic validation of the submitted contextual data and provides support for
data sets compliant with previous versions by including the checklist version
as a keyword.

GenBank accepts MIxS metadata in tabular format using the sequin and
tbl2asn submission tools, validates MIxS compliance and reports the fields
in the structured comment block. The EBI-ENA Webin submission system
provides prepared web forms for the submission of MIxS compliant data; it
presents all of the appropriate fields with descriptions, explanations and exam-
ples, and validates the data entered. One tool that can aid submitting contex-
tual data is MetaBar [104], a spreadsheet and web-based software, designed
to assist users in the consistent acquisition, electronic storage and submission
of contextual data associated with their samples in compliance with the MIxS
standard. The online tool CDinFusion (http://www.megx.net/CDinFusion)
was created to facilitate the combination of contextual data with sequence data,
and generation of submission-ready files.

The next-generation Sequence Read Archive (SRA) collects and displays
MIxS-compliant metadata in sample and experiment objects. There are several
tools that are already available or under development to assist users in SRA

http://www.megx.net/CDinFusion
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submissions. The myRDP SRA PrepKit allows users to prepare and edit their
submissions of reads generated from ultra-high-throughput sequencing tech-
nologies. A set of suggested attributes in the data forms assist researchers in
providing metadata conforming to checklists such as MIMARKS. The Quanti-
tative Insights Into Microbial Ecology (QIIME) web application (http://www.
microbio.me/qiime) allows users to generate and validate MIMARKS-com-
pliant templates. These templates can be viewed and completed in the users’
spreadsheet editor of choice (e.g., Microsoft Excel). The QIIME web-platform
also offers an ontology lookup and geo-referencing tool to aid users when com-
pleting the MIMARKS templates. The Investigation/Study/Assay (ISA) is a
software suite that assists in the curation, reporting and local management
of experimental metadata from studies using one or a combination of tech-
nologies, including high-throughput sequencing [236]. Specific ISA configura-
tions (http://isa-tools.org/tools.html) have been developed to ensure
MIxS compliance by providing templates and validation capability. Another
tool, ISAconverter, produces SRA.xml documents, facilitating submission to the
SRA repository. MIxS checklists are also registered with the BioSharing catalog
of standards (http://biosharing.org/), set to progressively link minimal
information specifications to the respective exchange formats, ontologies and
compliant tools.

Further detailed guidance for submission processes can be found under
the respective wiki pages (http://gensc.org/gc_wiki/index.php/MIxS)
of the standard.

9.1.8 Maintenance of the MIxS standard

To allow further developments, extensions and enhancements of MIxS, we set
up a public issue tracking system to track changes and accomplish feature re-
quests (http://mixs.gensc.org/). New versions will be released annually.
Technically, the MIxS standard, including MIMARKS and the environmental
packages, is maintained in a relational database system at the Max Planck In-
stitute for Marine Microbiology Bremen on behalf of the GSC. This provides a
secure and stable mechanism for updating the checklist suite and versioning.
In the future, we plan to develop programmatic access to this database to allow
automatic retrieval of the latest version of each checklist for INSDC databases
and for GSC community resources. Moreover, the Genomic Contextual Data
Markup Language is a reference implementation of the GSC checklists by the
GSC and now implements the full range of MIxS standards. It is based on XML
Schema technology and thus serves as an interoperable data exchange format
for infrastructures based on web services [142].

http://www.microbio.me/qiime
http://www.microbio.me/qiime
http://isa-tools.org/tools.html
http://biosharing.org/
http://gensc.org/gc_wiki/index.php/MIxS
http://mixs.gensc.org/


9.1. Introduction 127

9.1.9 Conclusions and call for action

The GSC is an international body with a stated mission of working towards
richer descriptions of the complete collection of genomes and metagenomes
through the MIxS standard. The present report extends the scope of GSC guide-
lines to marker gene sequences and environmental packages and establishes a
single portal where experimentalists can gain access to and learn how to use
GSC guidelines. The GSC is an open initiative that welcomes the participation
of the wider community. This includes an open call to contribute to refinements
of the MIxS standards and their implementations.

The adoption of the GSC standards by major data providers and organiza-
tions, as well as the INSDC, supports efforts to contextually enrich sequence
data and complements recent efforts to enrich other (meta) ’omics data. The
MIxS standard, including MIMARKS, has been developed to the point that it is
ready for use in the publication of sequences. A defined procedure for request-
ing new features and stable release cycles will facilitate implementation of the
standard across the community. Compliance among authors, adoption by jour-
nals and use by informatics resources will vastly improve our collective ability
to mine and integrate invaluable sequence data collections for knowledge- and
application-driven research. In particular, the ability to combine microbial com-
munity samples collected from any source, using the universal tree of life as a
measure to compare even the most diverse communities, should provide new
insights into the dynamic spatiotemporal distribution of microbial life on our
planet and on the human body.
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ABSTRACT
16S ribosomal RNA gene (rDNA) analysis remains the standard approach for
the cultivation independent determination of microbial diversity. Polymerase
chain reaction (PCR) amplicon-based high throughput sequencing offer a fast
and cost effective way to generate massive amounts of 16S rDNA fragments.
However, accurateness of such analyses of biodiversity strongly depends on the
choice of primers. The overall coverage and phylum spectrum of 54 primers
and 96 selected pairs of primers generating fragment length <1000 bases were
evaluated in silico based on the SILVA 16S rDNA reference dataset. Arch20_F/
Parch519_R and Arch20_F/A519_R showed the best results for the domain
Archaea. For Bacteria, Bakt_341_F/Bakt_805_R provided sufficient coverage
and a large phylum spectrum. The in silico evaluation was experimentally veri-
fied by comparing the taxonomic distribution of 16S rDNA amplicons from py-
rosequencing with 16S rDNA fragments from directly sequenced metagenomes
as well as quantitative data from single cell fluorescence in situ hybridization
(FISH) studies. Additionally, 54 pairs of primers resulting in fragments >1000
bases were evaluated in silico. This study provides validated sets of 16S rDNA
targeting PCR primers to successfully reveal the complexity of archaeal and
bacterial diversity using classical, clone library based methods as well as next-
generation sequencing methods.
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10.1 Introduction

Understanding microbial diversity has been fascinating scientists for decades.
Microbes are ubiquitous [118] and their habitats range from terrestrial [76,
237, 248] to oceans [9, 82, 109, 261, 269], any living body [56, 94, 102, 208]
as well as plants [70]. They participate in the global cycles of energy and mat-
ters, use a wide range of substrates and feature unique metabolic pathways
[56, 118]. Therefore understanding patters and function of microbial diver-
sity is of particular importance. It is estimated that between 90-99% of the
microbial diversity resists cultivation [6], most likely because of their inabil-
ity to grow alone or under standard laboratory conditions [287]. Even for
the extensively studied habitats, such as the human distal gut, only 20-40% of
the bacterial population have been cultivated so far [121]. To overcome this
‘cultivation-barrier’, culture-independent surveys have been developed. In the
past, the most commonly used approach relied on amplifying, cloning and se-
quencing of the 16S ribosomal RNA gene (rDNA) using conserved broad-range
PCR primers [208]. With the advent of massive parallel sequencing technolo-
gies, direct sequencing of PCR amplicons became feasible [11, 182, 188]. This
fast and cost effective sequencing allows unprecedented statistical analysis and
uncovered the “rare biosphere” [261]. In 2006, Roche’s 454 pyrosequencing
[183] became the first high throughput sequencing technology to be success-
fully applied in large scale biodiversity analysis [261]. For this purpose, the
hyper variable (HV) region 6 of the 16S rDNA was PCR-amplified and se-
quenced using the first generation of the 454 pyrosequencing platform [261].
With the release of the 454 FLX and Titanium system [59] the throughput
and resolution of 16S rDNA sequencing improved further [165]. Consequently,
Roche’s 454 pyrosequencing technology has been used for microbial diversity
analysis in a great range of different habitat types, such as soil [237], hu-
man [56, 95, 154, 208], arctic ocean [139] and Baltic sea [9, 139] to name
just some. Despite the many advantages of high throughput sequencing ap-
proaches, the absence of clone libraries and the relatively short read length
still hampers in depth phylogenetic analysis [208, 286, 306]. At present, with
up to 1000 bases, the commercially available Roche’s 454 pyrosequencing ma-
chines produce the longest read length. However, Pacific Bioscience (PacBio)
recently introduced the single-molecule real-time (SMRT) sequencing technol-
ogy [67], which has the potential to produce much longer reads [244].

Besides appropriate fragment length, accurate rDNA analysis heavily de-
pends on the choice of primers [11]. Using suboptimal primers could lead to
under-representation [16] or discrimination of single species or even whole
groups [102, 286, 300]. For example, the general primer 384F discriminates
Verrucomicrobia [8] and 967F matches only <5% of Bacteriodetes [261]. Using
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primers with insufficient coverage consequently results in significantly differ-
ent biological conclusions [8, 102, 164]. Therefore, careful choice of primer
sets is a crucial step to ensure minimum-biased results.

In this study, the overall coverage of a wide range of primers described as
‘universal’ and/or recently used in diversity analysis was investigated in silico.
The primer sequences were compared with all 16S rDNA sequences available in
the SILVA reference database release 106 [226]. Additionally, selected primer
pairs and combinations of primer pairs have been evaluated. In silico evalua-
tion was carried out in terms of domain and phylum coverage for Bacteria and
Archaea. With the optimal primer sets for Bacteria (fragment length <1000
bases) a field study at Helgoland Roads was performed and the results were
compared with PCR independent metagenomic results and single cell fluores-
cence in situ hybridization (FISH) results.

10.2 Material and Methods

10.2.1 In silico evaluation of primers, primer pairs
and combination of primer pairs

Primers were evaluated using the SILVA Reference database release 106 (April
2011) containing all sequences longer than 1,200 bases for Bacteria and Eu-
karya and above 900 bases for Archaea and an alignment quality value better
than 50 [226]. All primers were resolved into wobble free oligos. A list of
matches was retrieved via the probe match function of the ARB PT server [226].
No mismatches were allowed during probe matching. A canonical match posi-
tion was derived at the alignment position at which the primer matched most
frequently. Thereafter, the sequences where split into three sets: 1) a sequence
is considered to be matched by the primer if one of its oligos matched the se-
quence exactly at the canonical match position; 2) a sequence is considered
to have insufficient data if the alignment position of its first base is larger (or
smaller for reverse primers) than the canonical match position of the primer;
3) all other sequences are considered to be not matched. The coverage of a
taxon was computed as the matched fraction of sequences either matched or
not matched.

In the evaluation of primer pairs, a sequence is considered matched if it
matches both forward and reverse primers. A sequence is considered to have
insufficient data if there were no matches for either forward or reverse primers.
All scripts and SQL queries as well as database dumps and raw output data in
CSV format are available in the supplementary materials.

In this study the term ‘coverage’ refers to the percentage of matches for a
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given taxonomic path. The threshold was set at 50%. Thus, a coverage ≤50%
refers to ‘taxonomic path not covered’. Evaluation was carried out in order to
find primers and primer pairs sensitive enough to match all target sequences
(high sensitivity) and exclude all non target sequences (high specificity). The
term ‘phylum spectrum’ refers to the number of matched phyla. For example, if
a primer or primer pair is covering the majority of all phyla it will be described
as ‘large phylum spectrum’. In this study, he term ‘universal primer’ will be
used to describe a primer targeting both, Archaea and Bacteria.

10.2.2 Selection criteria for primer pairs and
combination of primer pairs suitable for 16S
rRNA gene amplification using long range next
generation sequencing methods like Roche’s
454 pyrosequencing

Primer pairs were selected according to annealing temperature, coverage of
variable regions and length of PCR fragments. Annealing temperatures were
calculated with Oligo Calc1. Primers with annealing temperature differences
of less than 5°C were accepted as pairs. Only primer pairs generating PCR-
fragments with a minimum fragment length of 450 bases and a maximum read
length of 1000 bases were chosen conforming to Roche’s 454 pyrosequencing
technology [59]. In addition, primers pairs generating fragments ≥1000 bp
were chosen, which are of particular interest for the new emerging long-range,
SMRT sequencing technologies [67].

Roche’s 454 FLX Titanium System [59] was chosen as method of choice
because of its longer reads length and comparatively low cost. New even
long-ranging, SMRT sequencing technologies as provided by Pacific Bioscience
(PacBio) were not commercially available at that time.

10.2.3 Sampling site and collection of water samples

Sample collection was done within in the MIMAS project2. Surface water was
collected on 11th February 2009 and weekly from 31th of March 2009 till
October 2009. Water samples (total volume of 360 L) from the Kabeltonne
site at Helgoland Roads in the North Sea (54°11.18[2032?]N, 7°54[2032?]E)
were collected at a depth of 0.5 m and processed immediately at the Biologi-
cal Station of Helgoland. The water was pre-filtered through a 10 µm and 3

1http://www.basic.northwestern.edu/biotools/oligocalc.html
2http://www.mimas-project.de

http://www.basic.northwestern.edu/biotools/oligocalc.html
http://www.mimas-project.de
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µm pore-size filter. For sample collection a 0.2-µm-pore-size filter was used.
Per sampling day eight filters for genomic DNA extraction were sampled con-
taining biomass of 10 L and 15 L seawater respectively. For catalyzed reporter
deposition FISH (CARD-FISH) procedure, 500 ml seawater was fixed in 1%
paraformaldehyde and incubated for 4 hours at 4°C. Alternatively 1 h at room
temperature. 0.2-µm-pore-size filter was used to filter three times 100 ml and
10 ml respectively. In the end, all filters were stored at -80°C until future usage.

10.2.4 DNA extraction

Genomic DNA was directly extracted from filter as described in Zhou et al.
[318] with the following changes: all extraction steps were performed with 50
µl proteinase K (10 mg/ml), and after isopropanol precipitation the pellet of
crude nucleic acids was obtained by centrifugation at 50,000 g for 30 min at
room temperature.

The quantity and quality of the extracted DNA were analyzed by spectro-
photometry using ND-1000 spectrophotometer (NanoDrop Technologies, Wilm-
ington, DE) and by agarose gel electrophoresis. The genomic DNA was stored
at -20°C until it was used for PCR amplification and metagenomics.

10.2.5 Amplification

Fragments of the bacterial 16S rRNA genes were amplified from the extracted
DNA using the primer pair Bakt_341_F, 5’CCTACGGGNGGCWGCAG3’[111],
and Bakt_805_R, 5’GACTACHVGGGTATCTAATCC3’[111]. The reaction was
carried out in 50-ml volumes and contained 0.3 mg/ml BSA (Bovine Serum Al-
bumin), 250 µM dTNPs, 0.5 µM of each primer, 0.02 U Phusion High-Fidelity
DNA Polymerase (Finnzymes OY, Espoo, Finland) and 5x Phusion HF Buffer,
which contains 1.5 mM MgCl2. The PCR was run at the following cycling con-
ditions: initial denaturation at 95°C for 5 min, followed by 25 cycles consisting
of denaturation (95°C for 40 sec), annealing (55°C for 2 min) and extension
(72°C for 1 min) and a final step at 72°C for 7 min. PCR products were puri-
fied with a QiaQuick PCR purification kit (QUIAGEN, Hilden, Germany). The
quantity and quality of the extracted DNA were analyzed by spectrophotometry
using ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE)
and by agarose gel electrophoresis. The PCR products were stored at -20°C for
future sequencing.
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10.2.6 Sequencing

PCR amplified DNA fragments as well as genomic DNA for metagenome stud-
ies were sent for sequencing to LGC Genomics (Berlin, Germany). Sequenc-
ing was performed using Roche’s GS-FLX 454 Titanium pyrosequencer (Roche,
Mannheim, Germany). For PCR amplified DNA fragments 1/8 pico titer plate
(PTP) was sequenced per sampling date. For metagenomics two full PTPs per
sample were sequenced. Raw data was stored as FNA file. Sequences were
submitted to XXX with accession numbers XXX.

10.2.7 Identification and taxonomic classification of
16S rRNA fragments

Unassembled sequence reads from both, SSU rRNA gene PCR amplicons and
metagenome sequencing, were preprocessed (quality control and alignment)
by the bioinformatics pipeline of the SILVA project [226]. Briefly, reads
shorter than 200 nucleotides and with more than 2% of ambiguities or 2%
of homopolymers, respectively, were removed. Remaining reads were aligned
against the SSU rRNA seed of the SILVA database release 1063 [226] where-
upon non-aligned reads have not further been considered for downstream anal-
ysis. Using this strategy, contaminations/artifacts in the PCR amplicon pool
could be identified as well as all putative SSU rRNA gene reads within the me-
tagenomic data sets. Subsequently, reads of the filtered datasets were derepli-
cated, clustered and classified on a sample by sample basis. Dereplication
(identification of identical reads ignoring overhangs) was done with cd-hit-est4

[160] using an identity criterion of 1.00 and a wordsize of 8. Remaining se-
quences were clustered again with cd-hit-est using an identity criterion of 0.98
(same wordsize). The longest read of each cluster was used as a reference for
taxonomic classification done by a local blastn search against the SILVA SSURef
106 NR dataset5 using blast-2.2.22+6 with standard settings. The full SILVA
taxonomic path of the best blast hit has been assigned to the reads in case the
value for (% sequence identity + % alignment coverage)/2 was at least 93.0.
In the final step, the taxonomic path of each cluster reference read was mapped
to the additional reads within the corresponding cluster plus the corresponding
replicates, identified in the previous analysis step, to finally obtain quantitative
information (number of individual reads representing a taxonomic path). All
process data can be found in supplementary material.

3http://www.arb-silva.de/documentation/background/release-106
4http://www.bioinformatics.org/cd-hit
5http://www.arb-silva.de/projects/ssu-ref-nr/
6http://blast.ncbi.nlm.nih.gov/Blast.cgi

http://www.arb-silva.de/documentation/background/release-106
http://www.bioinformatics.org/cd-hit
http://www.arb-silva.de/projects/ssu-ref-nr/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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10.2.8 Catalyzed reporter deposition (CARD)-FISH

The CARD-FISH procedure was performed according to Pernthaler et al. [223].
Distribution of Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria
have been detected by probe CF319a [179], ALF968 [207] and GAM42a2
[180] (relative abundance, % of 4,6-diamidino-2-phenylindole (DAPI) counts)
respectively.

10.3 Results and Discussion

10.3.1 In silico evaluation of 16S rDNA primers

We compiled and evaluated 54 forward and reverse primers described as ‘uni-
versal’ and/or recently used in bacterial and archaeal diversity analysis (Ta-
ble 10.1). Primers were evaluated using the SILVA Reference database release
106 (April 2011) in order to find primers and primer pairs sensitive enough to
match all target sequences (high sensitivity) and exclude all non target sequen-
ces (high specificity). The term ‘coverage’ refers to the percentage of matches
for a given taxonomic path and is given for all three domains of life, although
the focus of this study lies on Archaea (A) and Bacteria (B). In this study, the
threshold was set at 50%. Thus, a coverage ≤ 50% refers to ‘taxonomic path
not covered’. The term ‘phylum spectrum’ refers to the number of matched
phyla. For example, if a primer or primer pair is covering the majority of all
phyla it will be described as ‘large phylum spectrum’. In this study, he term
‘universal primer’ will be used to describe a primer targeting both, Archaea and
Bacteria.

The evaluation revealed that the coverage of nine primers was ≤50% and
for 18 primers between 50% and 79% for the domain Archaea and Bacteria,
respectively (Table 10.1). For 27 primers coverage above 80% could be ob-
tained. Additionally, twelve primers with coverage of ≤50% for 18S sequences
of Eukarya (E) could be detected.

The majority of the analysed primers are domain specific (Table 10.1).
However the primers Bakt_805_R (A: 92.6%; B: 91.9%), 806V_R (A: 92%;
B: 91.8%), U1053_R (A: 60.1%, B: 51.9%) and GM4_R (A: 80.8%; B: 71.8%)
show relatively high coverage for both, Archaea and Bacteria. Similar results
could be obtained for U515_F, U519_F, Parch519_R, U529_R, Uni1392_R and
UA1406_R with the difference that they also match a high amount of eukary-
otic 18S rDNA gene sequences. The universality of U515_F and 806V_R has
also been approved by Walters et al. [298]. The study of Wang and Qian [300]
detected similar results for U515_F (A: 63.3%; B: 99.0%) but for U519F (A:
96.7%; B: 98.5%) much higher results were obtained.
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Table 10.1 Coverage rate of commonly used primers

Coverage rate (%)**

Primer Reference Sequence 5’-3’ Position* Archaea Bacteria Eukarya

bio-pB_R5’.SE_F [124] GAAGAGTTTGATCATGGCTCAG 6-27 0.0 6.9 0.4
GM3_F [202] AGAGTTTGATCMTGGC 8-23 0.0 83.9 0.3
Arch8_F [278] TCCGGTTGATCCTGCC 8-23 62.7 0.0 1.3
8_F [81] AGAGTTTGATCCTGGCTCAG 8-27 0.0 69.1 0.3
Arch20_F [185] TTCCGGTTGATCCYGCCRG 20-38 78.2 0.0 0.6
pB_R-V1.AS_F rc [124] AGTGGCGGACGGGTGAGTAA 101-120 0.0 20.3 0.0
Bakt_341_F [111] CCTACGGGNGGCWGCAG 341-358 0.2 95.5 0.0
347_F [208] GGAGGCAGCAGTRRGGAAT 347-365 0.0 86.9 0.0
Arch349_F [273] GYGCASCAGKCGMGAAW 349-365 81.5 0.0 0.0
U515_F [298] GTGCCAGCMGCCGCGGTAA 515-534 59.7 96.3 93.1
Arch516_F [273] TGYCAGCCGCCGCGGTAAHACCVGC 516-484 84.7 0.0 0.1
517_F [300] GCCAGCAGCCGCGGTAA 517-533 1.4 96.6 93.1
518_F [201] CCAGCAGCCGCGGTAAT 518-534 0.5 89.1 90.1
U519_F [300] CAGCMGCCGCGGTAATWC 519-537 54.4 89.2 90.3
A519_F [300] CAGCMGCCGCGGTAA 519-533 0.0 0.0 0.0
Ab779_F [16] GCRAASSGGATTAGATACCC 779-800 62.6 5.7 0.0
U779_F [300] GCTAASSGGATTAGATACCC 779-799 0.0 0.0 0.9
U789_F [16] TAGATACCCSSGTAGTCC 789-807 88.1 5.7 0.0
U906_F [16] GAAACTTAAAKGAATTG 906-923 86.8 0.4 77.3
Arch915_F rc [263] AGGAATTGGCGGGGGAGCAC 915-896 83.1 0.0 0.0
bio-pJBS-V3.SE_F [124] GCAACGCGAAGAACCTTACC 947-967 0.0 60.7 0.0
Arch958_F rc [52] AATTGGAKTCAACGCCGGR 938-958 50.6 0.0 0.0
Arch958B_F in house AATTGGABTCAACGCCGGR 938-958 68.9 0.0 0.0
967_F [212, 261] CAACGCGAAGAACCTTACC 967-985 0.0 60.8 0.0
968_F [212] AACGCGAAGAACCTTAC 968-984 0.0 60.9 0.0
U1053_F [16] GCATGGCYGYCGTCAG 1053-1068 42.0 51.9 0.0

pB_R-V1.AS_R [124] TTACTCACCCGTCCGCCACT 120-101 0.0 19.7 0.0
518_R [201] ATTACCGCGGCTGCTGG 534-518 0.4 89.1 88.9
A519_R [300] GGTDTTACCGCGGCKGCTG 537-519 92.9 0.1 0.8
Parch519_R [214] TTACCGCGGCKGCTG 533-519 94.9 96.6 92.3
U529_R [16] ACCGCGGCKGCTGGC 529-514 59.6 97.4 92.3
803_R [208] CTACCRGGGTATCTAATCC 803-785 8.8 87.2 0.0
805_R [81] GACTACCAGGGTATCTAAT 805-787 0.2 82.6 0.0
Bakt_805_R [111] GACTACHVGGGTATCTAATCC 805-785 92.6 91.9 0.0
A806_R [300] GGACTACVSGGGTATCTAAT 806-787 89.8 7.0 0.0
E806_R [300] GGACTACCAGGGTATCTAAT 806-787 0.2 82.2 0.0
806V_R [298] GGACTACHVGGGTATCTAAT 806-787 92.0 91.8 0.0
U906_R rc [16] CAATTCMTTTAAGTTTC 923-906 86.8 0.4 77.3
Arch915_R [263] GTGCTCCCCCGCCAATTCCT 915-896 83.1 0.0 0.0
907_R [200] CCGTCAATTCMTTTGAGTTT 926-907 0.0 91.0 0.1
bio-pJBS-V3.SE_R rc [124] GGTAAGGTTCTTCGCGTTGC 967-947 0.0 60.7 0.0
Arch958_R [52] YCCGGCGTTGAMTCCAATT 958-940 52.0 0.0 0.0
Arch958V_R in house YCCGGCGTTGAVTCCAATT 958-940 70.7 0.0 0.0
967_R rc [52, 261] GGTAAGGTTCTTCGCGTTG 985-967 0.0 60.8 0.0
B-V3.AS_R [124] ACGACAGCCATGCAGCACCT 1047-1027 0.0 39.4 0.0
1046_R [261] CGACAGCCATGCANCACCT 1046-1028 0.0 49.8 0.0
U1053_R rc [16] CTGACGRCRGCCATGC 1068-1053 60.1 51.9 0.0
GM12_R [125] CGTCATCCMCACCTTCCTC 1193-1175 0.0 62.6 0.0
Uni1390_R [317] GACGGGCGGTGTGTACAA 1390-1373 5.7 65.9 94.4
Uni1392_R [150] ACGGGCGGTGTGTRC 1392-1378 80.2 79.5 95.2
1401_R [212] CGGTGTGTACAAGACCC 1401-1385 0.0 14.1 0.0
UA1406_R [151] ACGGGCGGTGTGTRCAA 1406-1390 65.2 72.0 94.6
Arch1492_R [278] GGCTACCTTGTTACGACTT 1492-1474 42.8 35.1 0.9
GM4_R [202] TACCTTGTTACGACTT 1507-1492 80.8 71.8 5.8

The names of forward and reverse primer end with ‘_F’ and ‘_R’ respectively. ‘U’ as well as ‘Uni’ refers to
known universal primer. The dashed line separates forward and reverse primer. *Numbering based on the
Escherichia coli system of nomenclature [28]; **Evaluation is based on SILVA Reference database 106 [226];
in house: in house modification of corresponding primer; rc: reverse complement of corresponding forward
and reverse primer respectively; bold numbers: coverage ≥ 80%.
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Our evaluation cast doubt on the accuracy of some universal primers such
as U779_F (A: 0.0%; B: 0.0%), U789_F (A: 81.1%; B: 5.7%), U906_F (A:
86.8%; B: 0.4%), U906_R (A: 86.8%; B: 0.4%) and Uni1390_R (A: 5.7%; B:
65.9%). In comparison with the study of Wang et al. (2009), major discrepan-
cies arose. With 89% archaeal and 5% bacterial coverage U779_F was claimed
to be specific for Archaea but according to our results this primer failed to de-
tect this domain. However, because Ab779_F and U779_F differ only in one
base, we believe that a simple spelling mistake might be the reason for this
discrepancy. Furthermore U789_F and U906_F have previously been asserted
to be universal for Bacteria and Archaea [300], but with only 5.7% and 0.4%
coverage rate for Bacteria, respectively, our evaluation revealed a high bias
against Bacteria. Our results rather confirm the original purpose of Ab779_F
[29], 789_F [19] and 906_F [233], which were primarily designed as archaeal
primer.

The highest coverage and specificity for the domain Bacteria could be de-
tected for the forward primers GM3_F (83.9%), Bakt_341_F (95.5%) and 347_-
F (86.9%) and reverse primers 803_R (87.2%), 805_R (82.6%) and 907_R
(91.0%). However, high coverage of a single primer does not automatically
result in a wide phylum spectrum as revealed by the detailed analysis (see Sup-
plementary Table 2 online). For example, if at least half of the sequences in a
phylum need to be targeted by the primer, 907_R discriminates 12 out of 59
phyla such as Chlamydiae and Verrucomicrobia as well as the class Epsilonpro-
teobacteria. In terms of phylum spectrum, the best results could be obtained
for GM3_F. Although with 83.9% it did not reveal the highest coverage rate,
this primer excels by discriminating only Chlamydiae, Dictyoglomi and WCHB1-
60. This clearly shows that overall coverage and analysis of phylum spectrum
needs to be taken into account for primer evaluation.

For the domain Archaea, the primer with the best values and domain speci-
ficity are Arch516_F (84.7%), U789_F (88.1%) and U906_F (86.8%) as well as
A519_R (92.9%), A806_R (89.8%) and U906_R (86.8%). The high coverage
of A519_R has also been reported by Wang and Qian [300]. Detailed analysis
of the six best primers showed that all of them cover the two main archaeal
phyla Crenarchaeota and Euryarchaeota (see Supplementary Table 1 online).
However in terms of phylum spectrum the best results could be obtained for
A519_R. This primer is covering seven out of eight achaeal phyla. Only Nanoar-
chaeota is discriminated, which is not surprising, since the majority of Archaea
specific primers were designed prior to the discovery of the Nanoarchaeota
[16].

Although specificity of primers has been analysed in previous studies our
results are complementary or provide more details that will help to select an
appropriate primer or primer pair. A direct comparison of our results with the
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studies of Huws et al. [123] and Baker et al. [16] is not possible, because in the
respective studies the coverage rates of the primers were not given. Nossa et al.
[208] restricted their evaluation to a single habitat. Walters et al. [298] anal-
ysed only four primers. In Wang and Qian [300], phyla containing less than
100 sequences were not taken into account and their evaluation was relaxed by
allowing a single mismatch, which can explain the discrepancies to our results.
Although, it is assumed that a standard PCR can tolerate up to two mismatches
between primer and its target [208], it has been shown that a primer mis-
match results in a biased picture of the bacterial diversity [256]. Preferential
amplification might lead to under-representation of important members of a
community [16, 256]. Consequently, in our study no mismatch was allowed
and all phyla as well as the Proteobacteria classes were included.

10.3.2 In silico evaluation of primer pairs for
long-range next generation sequencing
methods

The evaluation in the previous section revealed suitable primers for 16S rDNA
gene amplification. When both forward and reverse primers are needed, the
bias of the used primers accumulates. To minimize total bias, primers with
similar bias pattern must be used. Therefore, the careful choice of primer pair
is a crucial step to ensure minimum-biased results. In this study, we evaluated
the combined coverage of 150 possible primer pairs for the three domains of
life (Table 10.2).

Primarily, a set of 96 primers pairs generating fragments between 400-1000
bases, which is optimal for Roche’s 454 FLX Titanium machines, has been anal-
ysed in more detail (Table 10.2). 34 of those primer pairs showed coverage
above 50% for Archaea and Bacteria, respectively. None achieved more than
86%.

No primer pair could be found to qualify as universal for Bacteria and Ar-
chaea. Only primer pairs 519_R/UA1406_R (A: 34.4%, B: 65.3%), U519_F/
Uni1392_R (A: 42.7%, B: 72.1%) and U519_F/Arch1492_R (A: 30.3%, B:
31.6%) target Archaea and Bacteria, but the combined coverage are all below
our threshold of 50%. Thus we recommend amplifying archaeal and bacterial
16S rDNA sequences separately.

For the domain Archaea, Arch20_F/Parch519_R (75.9%) and Arch20_F/
A519_R (74.9%) revealed relatively high overall coverage. A more detailed
analysis of these primer pairs showed that all main and sequence-rich phyla
are covered (see Supplementary Table 3 online). Again, only the phylum
Nanoarchaeota is discriminated. Although the primer U1053F and U1053_R
cover 75% of the known Nanoarchaeota sequences (see Supplementary Table 1
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online), no suitable primer pair could be found to address this missing phyla
(see Supplementary Table 3 online). However, if known Nanoarchaeota specific
primers [119] are added, any of those two primer pairs could be recommended
for archaeal 16S rDNA amplification.

For the domain Bacteria, the best results could be obtained for the pairs
GM3_F/907_R (76.4%), GM3_F/806V_R (78.1%), Bakt_341_F/Bakt_805_R
(88.1%), Bakt_341_F/803_R (84.3%), 347_F/Bakt_805_R (81.5%) and 341_F/
803_R (78.1%). However, detailed analysis of the targeted phyla showed that
several phyla are discriminated (see Supplementary Table 3 online). For ex-
ample, GM3_F/907_R as well as GM3_F/806V_R neglects EM19, Chlamydiae,
Dictyoglomi and Candidate division OP11. Furthermore, 347_F/Bakt_805_R
and 341_F/803_R fail to detect e.g. Verrucomicrobia, Planctomycetes and Chlo-
roflexi. Unfortunately all other 97 primer pairs tested showed similar insuf-
ficiencies (see Supplementary Table 4 online). The primer pair Bakt_341_F/
Bakt_805_R with the highest coverage neglects only 8 out of 59 phyla like
Chloroflexi, Candidate division WS6 and EM19. Although complete phylum
spectrum could not be accomplished, this primer pair shows relatively good
results for domain and phylum coverage. These findings are in line with the
conclusion of Baker and Cowan [15]. They claim that no primer of sufficient
length exists or can be designed that matches all bacterial 16S rDNA sequences.
However, additional primer pair can be used to complement the missing phyla
(see Supplementary Table 4 online). For example, GM3_F/806V_R e.g. would
cover five additional groups including Candidate division WS6 and OP10.

Table 10.2 Coverage rate of selected primer pairs

Fragment Covered HV coverage rate (%)**

Forward Primer Reverse Primer length (bp) regions* Archaea Bacteria Eukarya

GM3_F 805_R 797 1-4 0,0 70,8 0,0
GM3_F 907_R 918 1-5 0,0 76,4 0,0
GM3_F U906_R 915 1-5 0,0 0,3 0,3
GM3_F 967_R 977 1-5 0,0 54,0 0,0
GM3_F A806_R 798 1-4 0,0 5,0 0,0
GM3_F 806V_R 798 1-4 0,0 78,1 0,0
Bakt_341_F Bakt_805_R 464 3-4 0,2 88,1 0,0
Bakt_341_F GM12_R 852 3-7 0,0 60,7 0,0
Bakt_341_F bio-pJBS-V3,SE_R 626 3-5 0,0 58,4 0,0
Bakt_341_F B-V3,AS_R 705 3-6 0,0 38,2 0,0
Bakt_341_F U1053_R 727 3-6 0,1 49,9 0,0
Bakt_341_F 1046_R 705 3-6 0,0 47,9 0,0
Bakt_341_F 803_R 462 3-4 0,0 84,3 0,0
Bakt_341_F Arch_915_R 574 3-5 0,2 0,0 0,0
Bakt_341_F Arch958_R 617 3-5 0,1 0,0 0,0
U519_F UA1406_R 887 3-8 34,4 65,3 86,5
U519_F GM12_R 674 4-7 0,0 56,1 0,0
U519_F 1401_R 882 4-8 0,0 13,5 0,0
U519_F B-V3,AS 528 4-6 0,0 35,9 0,0

Table continued on next page
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Table 10.2 Coverage rate of selected primer pairs

Fragment Covered HV coverage rate (%)**

Forward Primer Reverse Primer length (bp) regions* Archaea Bacteria Eukarya

U519_F Uni1390_R 871 4-8 3,7 59,7 86,3
U519_F Uni1392_R 873 4-8 42,7 72,1 87,0
U519_F Arch1492_R 973 4-9 30,3 31,6 0,7
518_F UA1406_R 888 4-8 0,4 65,2 86,3
518_F GM12_R 675 4-7 0,0 56,0 0,0
518_F 1401_R 883 4-8 0,0 13,5 0,0
518_F B-V3,AS_R 529 4-6 0,0 35,9 0,0
518_F Uni1390_R 872 4-8 0,1 59,7 86,2
518_F Uni1392_R 874 4-8 0,5 72,0 86,8
518_F Arch1492_R 974 4-9 0,6 31,5 0,7
8_F Bakt_805_R 797 1-4 0,0 64,6 0,0
8_F 518_R 510 1-3 0,0 0,0 0,0
8_F 907_R 918 1-5 0,0 62,7 0,0
8_F bio-pJBS-V3,SE_R 959 1-5 0,0 45,1 0,0
8_F 803_R 795 1-4 0,0 61,0 0,0
8_F U529_R 521 1-3 0,0 67,4 0,3
8_F Arch958_R 950 1-5 0,0 0,0 0,0
8_F Arch958V_R 950 1-5 0,0 0,0 0,0
bio-pBR5’,SE_F Bakt_805_R 799 1-4 0,0 6,8 0,0
bio-pBR5’,SE_F GM1_R 512 1-3 0,0 0,0 0,0
bio-pBR5’,SE_F 907_R 920 1-5 0,0 6,8 0,0
bio-pBR5’,SE_F bio-pJBS-V3,SE_R 961 1-5 0,0 6,6 0,0
bio-pBR5’,SE_F 967_R 979 1-5 0,0 6,6 0,0
bio-pBR5’,SE_F 803_R 797 1-4 0,0 6,8 0,0
bio-pBR5’,SE_F Arch958_R 952 1-5 0,0 0,0 0,0
bio-pBR5’,SE_F Arch958R-V 952 1-5 0,0 0,0 0,0
pBR-V1,AS_F bio-pJBS-V3,SE_R 866 2-5 0,0 17,3 0,0
pBR-V1,AS_F B-V3,AS_R 946 2-6 0,0 6,2 0,0
pBR-V1,AS_F 1046_R 945 2-6 0,0 8,0 0,0
pBR-V1,AS_F Arch915_R 814 2-5 0,0 0,0 0,0
pBR-V1,AS_F Arch958_R 857 2-5 0,0 0,0 0,0
pBR-V1,AS_F Arch958V_R 857 2-5 0,0 0,0 0,0
U779_F UA1406_R 627 4-8 0,0 0,0 0,9
U779_F Uni1390_R 611 4-8 0,0 0,0 0,9
U779_F Uni1392_R 613 4-8 0,0 0,0 0,9
U779_F Arch1492_R 713 4-9 0,0 0,0 0,0
Ab779_F UA1406_R 627 4-8 39,2 4,0 0,0
Ab779_F Uni1390_R 611 4-8 2,0 3,8 0,0
Ab779_F Uni1392_R 613 4-8 48,3 4,4 0,0
Ab779_F Arch1492_R 713 4-9 16,6 1,5 0,0
U789_F UA1406_R 617 4-8 60,1 4,0 0,0
U789_F Uni1390_R 601 4-8 5,3 3,8 0,0
U789_F Uni1392_R 603 4-8 73,9 4,4 0,0
U789_F Arch1492_R 703 4-9 39,2 1,5 0,0
967_F GM4_R 540 6-9 0,0 41,4 0,0
347_F Bakt_805_R 458 3-4 0,0 81,2 0,0
347_F GM12_R 846 3-7 0,0 56,3 0,0
347_F bio-pJBS-V3,SE_R 620 3-5 0,0 54,1 0,0
347_F B-V3,AS_R 700 3-6 0,0 35,1 0,0
347_F U1053_R 721 3-6 0,0 44,7 0,0
347_F 1046_R 698 3-6 0,0 43,5 0,0
347_F 803_R 456 3-4 0,0 78,1 0,0
347_F Arch915_R 568 3-5 0,0 0,0 0,0

Table continued on next page
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Table 10.2 Coverage rate of selected primer pairs

Fragment Covered HV coverage rate (%)**

Forward Primer Reverse Primer length (bp) regions* Archaea Bacteria Eukarya

347_F Arch958_R 611 3-5 0,0 0,0 0,0
Arch8_F U529_R 521 1-3 32,1 0,0 1,3
Arch8_F A519_R 529 1-3 60,5 0,0 0,0
Arch8_F Parch519_R 525 1-3 61,3 0,0 1,3
Arch8_F Arch915_R 907 1-5 48,3 0,0 0,0
Arch8_F Arch958_R 950 1-5 31,4 0,0 0,0
Arch8_F Arch958V_R 950 1-5 40,9 0,0 0,0
Arch349_F Arch915_R 566 3-5 69,8 0,0 0,0
Arch349_F Arch958_R 609 3-5 43,0 0,0 0,0
Arch349_F Arch958V_R 609 3-5 58,7 0,0 0,0
Arch915_F Uni1390_R 494 6-8 4,5 0,0 0,0
Arch915_F Uni1392_R 496 6-8 69,9 0,0 0,0
Arch915_F Arch1492_R 596 6-9 39,5 0,0 0,0
Arch958_F Uni1390_R 452 6-8 1,9 0,0 0,0
Arch958_F Uni1392_R 454 6-8 34,6 0,0 0,0
Arch958_F Arch1492_R 554 6-9 13,6 0,0 0,0
Arch958 B _F Uni1390_R 452 6-8 5,2 0,0 0,0
Arch958 B _F Uni1392_R 454 6-8 59,3 0,0 0,0
Arch958 B _F Arch1492_R 554 6-9 36,2 0,0 0,0
Arch20_F A519_R 517 1-3 74,9 0,0 0,0
Arch20_F Parch519_R 513 1-3 75,9 0,0 0,6
Arch 20_F Arch915_R 895 1-5 60,0 0,0 0,0
Arch 20_F Arch958_R 938 1-5 43,6 0,0 0,0
Arch20_F Arch958V_R 938 1-5 53,8 0,0 0,0
bio-pB_R5’,SE_F B-V3,AS_R 1041 1-6 0,0 6,7 0,0
bio-pB_R5’,SE_F U1053_R 1062 1-6 0,0 6,8 0,0
bio-pB_R5’,SE_F GM12_R 1187 1-7 0,0 5,7 0,0
bio-pB_R5’,SE_F Uni1390_R 1384 1-8 0,0 7,0 0,5
bio-pB_R5’,SE_F Uni1392_R 1386 1-8 0,0 7,0 0,5
bio-pB_R5’,SE_F 1401_R 1395 1-8 0,0 0,1 0,0
bio-pB_R5’,SE_F UA1406_R 1400 1-8 0,0 7,0 0,5
bio-pB_R5’,SE_F Arch1492_R 1486 1-9 0,0 1,4 0,0
GM3_F GM4_R 1499 1-9 0,1 74,9 0,0
Arch8_F B-V3,AS_R 1039 1-6 0,0 0,0 0,0
Arch8_F U1053_R 1060 1-6 34,4 0,0 0,0
Arch8_F GM12_R 1185 1-7 0,0 0,0 0,0
Arch8_F Uni1390_R 1382 1-8 5,3 0,0 1,4
Arch8_F Uni1392_R 1384 1-8 60,8 0,0 1,4
Arch8_F 1401_R 1393 1-8 0,0 0,0 0,0
Arch8_F UA1406_R 1398 1-8 60,6 0,0 1,4
Arch8_F Arch1492_R 1484 1-9 31,3 0,0 0,2
8_F B-V3,AS_R 1039 1-6 0,0 20,2 0,0
8_F U1053_R 1060 1-6 0,0 26,9 0,0
8_F GM12_R 1185 1-7 0,0 40,7 0,0
8_F Uni1390_R 1382 1-8 0,0 39,6 0,3
8_F Uni1392_R 1384 1-8 0,0 51,3 0,3
8_F 1401_R 1393 1-8 0,0 9,6 0,0
8_F UA1406_R 1398 1-8 0,0 50,6 0,3
8_F Arch1492_R 1484 1-9 0,1 26,6 0,0
Arch20_F B-V3,AS_R 1039 1-6 0,0 0,0 0,0
Arch20_F U1053_R 1060 1-6 41,8 0,0 0,0
Arch20_F GM12_R 1185 1-7 0,0 0,0 0,0
Arch20_F Uni1390_R 1382 1-8 8,9 0,0 0,6

Table continued on next page
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Table 10.2 Coverage rate of selected primer pairs

Fragment Covered HV coverage rate (%)**

Forward Primer Reverse Primer length (bp) regions* Archaea Bacteria Eukarya

Arch20_F Uni1392_R 1384 1-8 61,9 0,0 0,6
Arch20_F 1401_R 1393 1-8 0,0 0,0 0,0
Arch20_F UA1406_R 1398 1-8 61,7 0,0 0,6
Arch20_F Arch1492_R 1484 1-9 31,3 0,0 0,1
pB_R-V1,AS_F Uni1390_R 1289 2-8 0,0 10,9 0,0
pB_R-V1,AS_F Uni1392_R 1291 2-8 0,0 14,4 0,0
pB_R-V1,AS_F 1401_R 1300 2-8 0,0 3,2 0,0
pB_R-V1,AS_F UA1406_R 1305 2-8 0,0 13,0 0,0
pB_R-V1,AS_F Arch1492_R 1391 2-9 0,0 5,3 0,0
pB_R-V1,AS_F GM12_R 1092 2-7 0,0 10,6 0,0
Bakt_341_F Uni1390_R 1289 3-8 0,0 63,4 0,0
Bakt_341_F Uni1392_R 1291 3-8 0,2 76,2 0,0
Bakt_341_F 1401_R 1300 3-8 0,0 13,6 0,0
Bakt_341_F UA1406_R 1305 3-8 0,2 69,0 0,0
Bakt_341_F Arch1492_R 1391 3-9 0,1 34,0 0,0
347_F Uni1390_R 1289 3-8 0,0 58,7 0,0
347_F Uni1392_R 1291 3-8 0,0 70,4 0,0
347_F 1401_R 1300 3-8 0,0 12,4 0,0
347_F UA1406_R 1305 3-8 0,0 63,8 0,0
347_F Arch1492_R 1391 3-9 0,0 32,1 0,0
Arch349_F Uni1390_R 1289 3-8 3,2 0,0 0,0
Arch349_F Uni1392_R 1291 3-8 66,9 0,0 0,0
Arch349_F 1401_R 1300 3-8 0,0 0,0 0,0
Arch349_F UA1406_R 1305 3-8 53,9 0,0 0,0
Arch349_F Arch1492_R 1391 3-9 39.2 0,0 0,0

The names of forward and reverse primer end with ‘_F’ and ‘_R’ respectively, ‘U’ as well as ‘Uni’ refers
to known universal primer, HV = hyper variable; The line separates primer pairs generating PCR
fragments >1000 bp in length from the others; *Positions of hypervariable regions span nucleotides
69-99, 137-242, 433-497, 576-682, 822-879, 986-1043, 1117-1173, 1243-1294 and 1435-1465 for
V1 through V9 respectively and are based on the E,coli system of nomenclature [59]; **Evaluation is
based on SILVA Reference database 106 [226]; bold numbers: coverage ≥ 50%,

Additionally, a set of 54 primers that generate PCR fragments >1000 bp
in length were tested in silico. These primer pairs could be of particular inter-
est for classical, clone library based diversity analysis and the upcoming third
generation SMRT technology. 15 of the 54 primer pairs (Table 10.2) showed
coverage above 50% for Archaea and Bacteria, respectively. Again, no primer
pair could be detected to qualify as universal.

For Archaea, no combination covers all nine HV regions in combination
with high coverage. However, with 66.9% Arch349_F/Uni1392_R sticks out.
This pair generates fragments of 1291 bp in length and spans HV regions 3-
8. However, detailed analysis revealed that only the two sequence-rich phyla,
Crenarchaeota and Euryarchaeota, are covered (see Supplementary Table 3
online). Despite lower domain coverage Arch20_F/Uni1392_R (61.4%) and
Arch20nano_F (61.4%) only neglect Marine Hydrothermal Vent Group 1 (MHVG-
1) and Nanoarchaeota. However, the high coverage and almost complete phy-
lum spectrum of Arch20_F/Parch519_R and Arch20nano_F/Parch519_R could
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not be achieved.
For the domain Bacteria, the highest coverage could be obtained for

GM3_F/GM4_R (74.9%) and Bakt_341_F/Uni1392_R (76.2%). However, de-
tailed analysis revealed a larger phylum spectrum for GM3_F/GM4_R (see
Supplementary Table 4 online). This pair neglects only seven phyla, including
Chlamydiae, Candidate division WS6 and Dictyoglomi. Bakt_341_F/Bakt_805_R
gained a similar wide phylum spectrum. GM3_F/GM4_R also generates al-
most full length 16S rDNA sequences and covers all HV regions. Again, ad-
ditional primer pairs can be used to target the missing groups. For example,
Bakt_341_F/UA1406_R covers five out of the seven missing phyla (see Supple-
mentary Table 4 online).

This detailed evaluation of primers and primer pairs also demonstrates that
a relatively good reverse and forward primer do not automatically result in a
good pair. For instance, 967_F and GM4_R cover 60.8% and 71.8% of the
domain Bacteria, respectively. For the pair 967_F/GM4_R the combined cover-
age rate decreases to 41.4%. Another example are the primers 347_F (86.9%)
and 803_R (87.2%), which have been designed and approved by the Human
Microbiome Project for analysing the foregut microbiome [208]. Based on
the promising results for the human habitat, Nossa et al. [208] suggests that
this pair may be a good candidate to access the bacterial diversity in any habi-
tat. With 79.1% combined coverage for 347_F/803_R and discrimination of
37 bacterial phyla (see Supplementary Table 4 online) we are not in favour of
this recommendation.

Furthermore we like to note that in silico evaluation studies, including this
study, are perforce limited by the diversity of 16S rDNA sequences represented
in the public repositories. Although we believe that the SILVA datasets pro-
vide one of the most comprehensive set of high quality rDNA sequence data
currently available, it is not likely that they represent the ‘real’ microbial diver-
sity. The majority of the sequences in the public databases are a result of prior
PCR amplification, and taking our data into account, a bias must be expected.
As soon as more metagenome studies become available re-evaluation of the
primers is critical. Technically it has to be noted that the gained values for phy-
lum coverage are affected by the numbers of sequences present in a phylum.
If the majority of a small phylum is targeted, the coverage rate will probably
be higher than for a member rich phylum. Similar effects occur for the phyla
where only a small number of sequences contain full sequence information at
the primer position of interest.
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10.3.3 Experimental evaluation of GM3F/907R
in combination with Bakt_341F/Bakt_805F

The primer pair Bakt_341_F/Bakt_805_R was applied on DNA extracted from
a time series of four marine environmental samples at Helgoland Roads. For
simplification we will refer to ‘16S tags’ in this study. In addition PCR indepen-
dent metagenomic studies and quantitative CARD-FISH analysis of the same
samples were performed for comparison.

The results of the 16S tag analysis showed that the bacterial community
is dominated by Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria
(Fig. 10.1A). Bacteroidetes appear to most abundant on 07.04.09 and 14.04.09
with a clear peak on 07.04.09. In contrary the abundance of Gammaproteobac-
teria increases relatively on the 14.04.09. Alphaproteobacteria appear to be
most abundant in winter on the 11.02.09. The same trends could be obtained
from the metagenome (Fig. 10.1B) and CARD-FISH studies (Fig. 10.1C), al-
though small variations occurred. A quick evaluation using the TestProbe tool
of the SILVA ribosomal RNA (rRNA) database project (http://www.arb-silva.
de/search/testprobe/) reveals that the ALF968 FISH probe targets about
6,400 nearly full length sequences (>1200 bp) outside the alpha subclass of
Proteobacteria. This can explain the overrepresentation of Alphaproteobacteria
in the CARD-FISH results.

Additionally, 16S tag analysis provides an enhanced resolution up to the
group or genus level. As an example, the distribution of the six most abundant
taxonomic groups and genera have been examined in more detail (see Supple-
mentary Fig. 2A online). Noticeable is for example the Formosa peak which
goes along with the Bacteroidetes peak on the 07.04.09 (Fig. 10.1A) or that
Reinekea has only been detected on 14.04.09. The same trend was confirmed
by 16S rDNA studies from the corresponding metagenomes (see Supplemen-
tary Fig. 2B online). This demonstrates that Bakt_341_F/Bakt_805_R are able
to provide a mostly unbiased picture of the bacterial diversity down to genus
and group level.

10.4 Conclusion

16S rDNA analysis based on PCR is still the standard technology for the cultiva-
tion independent determination of bacterial and archaeal diversity. However,
bias in phylogenetic analysis can occur through suboptimal choice of primer
pairs. This could lead to discrimination or under representation of important
members of the microbial community. We claim that the results of our study
can guide the selection of optimal primer combinations, by providing coverage
rates for all analysed primer and primer pairs for Archaea and Bacteria down to

http://www.arb-silva.de/search/testprobe/
http://www.arb-silva.de/search/testprobe/
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Figure 10.1 Taxonomic distribution of 16S rRNA gene sequences gained from four
different surface water samples at Helgoland Roads in the North Sea. (A) 16S tags gen-
erated from PCR and sequenced with 454 pyrosequencing (relative abundance, % of total
counts) (B) 16S tags gained from metagenome studies (relative abundance, % of total
counts) (C) Results from catalyzed reporter deposition (CARD)-FISH studies, Distribution
of Bacteroidetes, Alphaproteobacteria and Gammaproteobacteria as detected by probes
CF319a, ALF968 and GAM42a2 (relative abundance, % of 4,6-diamidino-2-phenylindole

(DAPI) counts), respectively.
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genus level (see Supplementary Table 1-4 online). Especially the evaluation of
primer pairs can be used as a tool to find the most appropriate pair for specific
research questions. However, with regard to comparability of results between
studies and taking into account the high rate of unknown biodiversity in nat-
ural habitats, we think that a standard set of primers should be favoured over
sets of habitat specific primers pairs.

For Archaea, primer pairs Arch20_F/Parch519_R and Arch20_F/A519_R
stick out with high values and large phylum spectrum. But Nanoarchaeota
specific primers [119] need to be added additionally to access the whole ar-
chaeal diversity. For the domain Bacteria, we recommend the primer pair
Bakt_341_F/Bakt_805_R. Based on the computational and experimental anal-
ysis, we believe that this combination of primer pairs can be seen as a suitable
set to successfully reveal the complexity of bacterial diversity using state of
the art next-generation sequencing methods as it is currently represented by
Roche’s 454 FLX Titanium pyrosequencing method. It is interesting to note
that GM3_F/GM4_R, which are commonly used primers for classical clone li-
brary based diversity analysis, will be most probably the primers of choice for
the upcoming third generation SMRT technology. In silico evaluation shows
that this combination provides a relatively unbiased picture of the bacterial
diversity. However experimental analysis of this primer pair with respect to
PCR-free methods is necessary. For Archaea, no suitable set of primers gen-
erating full length sequences could be verified, indicating the need for new
optimized achaeal primer pairs.



Part IV

Concluding Discussion





CHAPTER 11

Summary

In Chapters 4 and 5 we have presented the SILVA project as it was originally
published and the developments that have been made since then. With the
SILVA pipeline we have created a software system for automated construction
of rRNA gene databases. The system uses offline batch processing and a rela-
tional database management system (RDBMS) for persisting structured data.
Volume sequence data is processed and filtered using a tool chain composited
from both proprietary solutions and publicly available software. Descriptive
data from multiple upstream sources can be incorporated into the resulting
database. With the SILVA website we have created an easily accessible inter-
face for querying the rRNA gene databases built in a regular schedule using
the SILVA pipeline. The database can be browsed by taxonomic hierarchy and
searched or filtered using string and numeric matching on combinations of de-
scriptors. Both the full databases and custom subsets defined via search and
browser can be downloaded in a variety of exchange formats. A facility for
aligning and classifying user submitted sequences exist, which may also be
used for sequence based search of the SILVA databases. The TestProbe tool
allows evaluating probe specificity and sensitivity based on the full SILVA data-
bases and a target group defined via browse and search mechanisms.

The alignment problem has been addressed by the development of the
alignment tool SINA described in Chapter 6. The concept of using a kmer
distance search to select closely related sequences from a large database of
curated, mutually aligned sequences and transferring that alignment onto the
target sequences using partial order alignment has been shown to work reliably.
Compared to its most direct competitors, mothur and PyNAST, SINA is slower,
yet more accurate. SINA also implements a fast sequence search that relies
on the computed alignment. The number of pairwise alignment comparisons
made during the search can be optionally reduced to the top results of a kmer
based search. A lowest common ancestor (LCA) classification can be derived
from the classifications of the search results.



150 11. Summary

Figure 11.1 SILVA adoption: Development of monthly visits on www.arb-silva.de ac-
cording to google analytics.

The ARB software suite for sequence analysis described in Chapter 7 has
been enhanced to allow the use of the complete SILVA databases. The scalabil-
ity issues caused by the limitation to 32-bit address space and the lack of mod-
eling multiple SSU genes per accession number have been resolved. Well tested
production releases of the ARB software have been made available. The entry
barrier for novice users has been lowered by separating functions targeted at
expert users from commonly required features. Several other improvements
were made to improve user experience.

Based on these tools and databases and the experiences gained in their
development, three flanking efforts have been completed. The MIMARKS stan-
dard described in Chapter 9 sets a baseline for the descriptors that should be
included with newly sequenced marker genes. Extended use of the large sub-
unit rRNA gene (LSU) in addition or alternative to the small subunit rRNA gene
(SSU) has been promoted by the comparative case study described in Chapter 8.
Suitable primer combinations for biodiversity studies relying on PCR amplicon
sequencing have been determined and evaluated in Chapter 10.

The assessment that there is a high demand for a rRNA gene database such
as SILVA and our success in meeting the requirements of dependent studies can
be quantified bibliometrically and through website usage statistics. The SILVA
project has been referenced by 529 studies 1. The SILVA website currently
receives well over a thousand visits per week (Fig. 11.1. Over the past six
months, the alignment, custom export and TestProbe features have been used
on average 338, 272 and 115 times per week, respectively.

1according to google scholar (accessed on Oct. 25th, 2011)



CHAPTER 12

Discussion

12.1 Infrastructure in Science

In this thesis, the focus lay on devising more comfortable and efficient ways
to enact pre-existing, well established work-flows. This approach was mo-
tivated by the potential perceived in reducing the manual effort involved in
these methods. Resources freed by eliminating repetitive tasks can be invested
in other research activities. The work-flows can also be extended to larger
volumes of primary data, thereby improving result significance and allowing
work-flow application to scenarios previously intractable. The abstract means
chosen to achieve overall effort reduction were automation and centralization.
Automation, as implemented via a bioinformatics pipeline comprising tools for
sequence preparation and data integration, resolves most repetitive tasks. Cen-
tralization reduces the overall effort incurred by tasks not easily automated.
Such tasks include quality assurance, which always requires expert inspection,
and large scale phylogenetic tree reconstruction, which is very compute inten-
sive and must itself undergo quality assurance.

Centralization was achieved by providing processed data as a database ser-
vice, rather than providing the means to build the database. This is a time
honored approach which has been applied to art and literature throughout his-
tory by library institutions. Yet, in the position of the librarian, who builds,
maintains, curates and indexes library collections, who cares for the library in-
frastructure and who acts as a teacher and a guide to those who would use the
library, the drawbacks of the approach become visible. Biological databases
require curation as much as any other document collection, their technical in-
frastructure must be continuously maintained and their users require guidance
and support. Significant amounts of time have been invested into these tasks,
both by the author and the other members of the SILVA team. However, fill-
ing the position of librarian, whether in terms of technical, support or curative
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staff, by means of PhD students is not sustainable. While conceptual work on
library or database infrastructure and content, such as involved in initially es-
tablishing the library or significantly enhancing the methods it employs, may
be considered research, purely operational tasks must eventually be delegated
to staff hired for this purpose. Operational tasks not only infringe unduly in
their scale on the work expected from research staff, but their adequate exe-
cution also requires different qualifications. Enthusiasm, creativity and minds
unencumbered by the routine of tried and tested processes are helpful when
aiming for innovative research, but detrimental to the operation of robust and
reliable services, where experience and a certain amount of stoicism are most
sought for. Yet, at the time of writing, funding for adequate staff positions
is extremely hard to acquire. Thus, we were faced with the alternatives of
ignoring the operational tasks, effectively consigning the SILVA project to the
grave, or assuming the burden ourselves. Accepting, that this would severely
limit our capacity for further innovation, the entire SILVA team opted for the
latter. Based on our experiences, we firmly believe it to be imperative for fruit-
ful future research that this situation is remedied. As libraries have been the
answer to preserving and disseminating the knowledge represented in the writ-
ten word, databases in general are needed to realize the value of other data
produced at significant cost. Although a system of such databases will itself
require significant funding, we believe the allocation of such funds to be a very
worthwhile investment. We also believe, that these databases should remain at
their origin of development, rather than be moved to central locations. As we
have also observed during the SILVA project, a database project is never com-
plete. Every solved problem opens opportunities for further enhancements.
This is therefore essential to continued research into ways of improving data
and services hosted by individual database that these remain in the vicinity of
the institution at which they were initially conceived. These beliefs are shared
by many researchers in the life sciences, as illustrated by the founding of the Eu-
ropean Life sciences Infrastructure for Biological Information (ELIXIR) project
(www.elixir-europe.org) by EMBL-EBI. The mission statement of ELIXIR in-
cludes the acquisition of funding dedicated to infrastructure such as biological
databases and the hubs-and-spokes model envisioned resembles the aforemen-
tioned wish for enabling the preservation of locally acquired knowledge. Be-
yond databases, ELIXIR also includes the areas of training, infrastructure for
large scale computing and the development of tools dedicated to the tasks of
data analysis in life-science.

www.elixir-europe.org
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12.2 Tool Development

The development of bioinformatical software tools faces the same difficulties
as the provision of database services. Similar to statistical methods, bioinfor-
matical methods are often opaque and difficult to understand for those not
schooled in the discipline. It is therefore usually expected that novel methods
or algorithms are accompanied by ready-to-use implementations. In this, a
conflict of interest exists between the biological and bioinformatical domains.
From a purely bioinformatical research point of view, a prototypical proof-of-
concept implementation is entirely sufficient to complement the theoretical
basis of the scientific contribution with its empirical evaluation. The domains
applying bioinformatical methods, however, have justified interest in well de-
signed, robust and easy to use tools to be immediately fielded in production
environments. The natural way of reconciling these interests is the interjection
of a commercialization step. Yet, this solution is not without caveats. Firstly,
it is limited to applications for which a well funded market exists. Secondly,
commercialization introduces business interests, which include the protection
of innovations rather than their open exchange to further scientific progress.
As with databases, we therefore believe that the life sciences would be best
served by the allocation of funds to the development of scientific software by
qualified programmers under free and open source licenses.

Although the practice of publishing algorithms and methods in the form
of tools has lead to synonymous use of the terms “algorithm”, “method” and
“tool”, it is important to realize the difference between the terms. An algorithm
may be of interest even if it has no practical worth. A tool, on the other hand,
is valued for its practical merit, even if the algorithms or methods it employs
are inferior. Practical merits, such as the ease with which the tool can be ap-
plied, often even eclipse scientific precision in their relevance to the choice of
tool made by researchers. For example, neighbor joining (NJ) is often applied
because a NJ-tree can be easily acquired using web tools integrated with data-
base searches. Although trees reconstructed with Maximum Parsimony (MP)
and Maximum Likelihood (ML) methods more accurately reflect the true phy-
logenetic relationships, NJ is applied even to datasets were MP and ML based
reconstruction would pose no significant computational problems. Web ser-
vices use NJ mainly because it is much faster and therefore easy to implement
without risking high computational costs even if offered to a large number of
users.

Choosing a tool based on practical merit, however, is not inherently wrong.
A tool that is simple to use and that produces results that are easy to interpret
is less likely to be applied inappropriately. In producing tools that are ready
to use, rather than methods that must be adapted to the research question,
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bioinformatics implicitly takes on responsibility. This can be of great benefit to
the interdisciplinary application of bioinformatical methods in biology or other
life sciences, but only if the responsibility is taken seriously. There is also a
conflict between the attributes “powerfull” and “flexible” on one hand, and the
attributes “simple” and “safe” on the other hand. While it may be considered
to be more responsible, to programmatically limit the application of a tool to
what is judged correct or appropriate, such limits also reduce the flexibility and
power of the tool. Our introduction of the “expert mode” into ARB was an at-
tempt to fulfill both aims at once. By default, the features deemed potentially
dangerous yet powerful and valuable are deactivated to safeguard them from
accidental use. In our work on ARB, SINA and the SILVA website we have often
found it to be very challenging to design user interfaces that are easily under-
stood yet sufficiently powerful. It is easy to err on the side of flexibility as it
is tempting to expose all functionality offered by the underlying engine. Cater-
ing only to standard work-flows, on the other hand, unduly inhibits creative
application to novel research questions.

12.3 Alternatives to MSA Oriented
Approaches

As our purpose was to seamlessly integrate with existing work-flows, rather
than radically change them to allow continued feasibility at current data vol-
umes, we considered the preparation of a MSA an axiomatic requirement. How-
ever, MSA, or even completely alignment free techniques exist for most of the
methods stacked on top of MSA preparation. Phylogenies can be constructed
from distance matrices alone, which in turn could be derived by pairwise align-
ment or other means of distance estimation. Alternatively, there are methods
that will compute both MSA and phylogenetic tree at once. For sequence classi-
fication, naive Bayesian methods have recently become popular. Aside from the
fact that it is a well researched topic, the most major benefits of using an MSA
stage in sequence analysis are modularity and transparency. An MSA repre-
sents the interface between homology detection and homology interpretation.
Irrespective of whether one is interested in determining sequence distance, phy-
logenetic relationship, covariance behavior or conservation, methods exist to
do so based on a preexisting MSA. This MSA can be constructed by a variety
of different tools or even manually, and the results can be easily inspected and
compared. Thus, trust in this stage of analysis can be established and built
upon in further stages.

One alternative to MSA based methods are those relying purely on pairwise
alignments. Besides performance issues, the main argument brought forth by
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proponents of pairwise alignment is that multiple sequence alignments (MSAs)
overestimate the distance between sequences. We would, however, argue that
pairwise alignments always underestimate evolutionary distance. Pairwise ali-
gnment strives to minimize the distance as defined by the applied metric, and
in the algorithm by Gotoh a method exists to do so optimally for edit distance
with affine gap penalties. The shortest path of weighted edit operations con-
necting one observed sequence to another, however, is not necessarily the one
having actually occurred in nature. Off-roads will have been taken and al-
though not all intermediate versions of the sequence need to have been func-
tional, it is safe to assume that at least some were. Especially for large distances
between functionally homologous sequences, it is unlikely that the path taken
by evolution deviated far from the sequence space constrained by functional
viability. Beyond the use of DNA evolution models to correct for hidden muta-
tions, pairwise alignment based analysis must therefore always be aware of the
increasing ambiguity of the computed results as sequence dissimilarity grows.
Multiple sequence alignment is certainly not immune to this issue. The process
followed in progressive alignment is derived exactly from the observation that
an alignment will be most reliable if the pair of sequences aligned is most sim-
ilar. Given sufficiently dense data, however, multiple sequence alignment has
the opportunity of closely tracking the path actually taken by evolution and
thus arriving at more precise results.

12.4 Redundancy with Competing Databases

In the RDP II and the greengenes databases, competitors to SILVA exist, raising
the question, whether it is necessary for several projects with largely overlap-
ping purposes to exist. We believe this to be most definitely the case. The
possibility of establishing result independence from the choices made by the
database providers alone would be sufficient justification. The more orthog-
onal the collection of methods used by the database providers is, the more
trustworthy become results that can be equally derived from any of the data-
bases. In this sense, we believe it to be highly valuable that the alignment
method used by RDP II, Infernal, relies on a wholly different approach than
SINA. Of course, the data quality in both RDP II and SILVA is sufficient to
forgo comparative evaluation in most studies. Yet, occasionally such evalua-
tion should be executed to ensure satisfactory precision in the data provided,
thus maintaining the infrastructure character of both projects. All databases
also feature “unique selling points”. SILVA is the only rRNA database to offer
LSU sequences. It is also still the only one to provide eukaryotic sequences,
although efforts are underway at RDP II to remedy this and a joint working
group Eukaryotic Taxonomy Working Group (ETWG) has been formed. It will
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be the purpose of ETWG to expedite establishing a reliable, curated, rRNA phy-
logeny based taxonomy for this domain. Only greengenes and SILVA include
the taxonomies of the other databases, and only the SILVA web interface allows
changing the active taxonomy without loosing the active set of sequences of in-
terest. Only SILVA provides fully featured datasets in ARB format. On the other
hand, only RDP features an assignment generator for lectures, an automated
tree-generator (using Weighbor to build a weighted neighbor-joining tree) or
an online interface to a pipeline for preprocessing data from pyrosequencing
projects. Lastly, the existence of multiple databases addressing overlapping or
identical needs created an environment of friendly competition. While some
of the features shared by the databases were arrived at independently, others
were pioneered by one database, whereupon the remaining databases moved
to close the gap in usability. For example, SILVA was the first database to dare
assigning quality values to the sequence it hosts. This, as well as the concept
of a sequence cart (called SEQCART in RDP II and interest list by greengenes)
have been subsequently been implemented by all databases. Similarly, RDP
II set a new standard with their classifier and sequence search tools. These
have been answered in SILVA by the search and classification features offered
through SINA. Thus, we conclude, that it is highly beneficial for all three data-
bases to exist. Even though they are to a certain degree mutually redundant,
science is better served by the current diverse scenario than by a single, mono-
lithic project.

12.5 Quality Assertion

In the SILVA pipeline, we have dared to assign quality measures to sequences
in an attempt to allow researchers to focus on reliable sequence data, thereby
reducing the noise that low quality sequences introduce into their analyses.
We use the term “dared” because inferring sequence quality from the sequence
data alone cannot be accomplished with certainty. We count ambiguous bases
and homopolymers as these typically result from problems during sequence
acquisition. In the case of ambiguities this is relatively safe, as it is clear that
the actual sequence is not precisely represented. Homopolymers on the other
hand may also occur naturally. We measure the fractional content of vector
contamination by using BLAST to determine whether the parts of a sequence
not found to be homologous with rRNA are homologous with vector sequences
instead. In using this value as a quality indicator, rather than simply removing
the contamination, we assume that the failure to remove the vector content
by the original research indicates a lack of diligence that may also pertain to
the remainder of the sequence. We use the alignment score and a value indi-
cating to which degree the aligned sequence matches the secondary structure
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associated with the alignment as “alignment quality”. More precisely defined,
the value is an indication of the primary and secondary structure similarity
of the query sequence with the sequences in our seed alignment. While this
value does correlate highly with measured alignment accuracy, it is no actual
estimation of expected alignment accuracy. It is also no true homology score,
but it does show that a sequence is distant to the sequences contained within
our seed alignment. The Pintail software measures to which degree the mu-
tations spread over a sequence deviate from the typical distribution. Thus, it
can only detect that a sequence is unusual, not whether it is faulty. Knowing
these limitations in our quality estimation procedures, we use only very low
cut-offs to reject sequences and expose the quality values prominently on the
SILVA website.





CHAPTER 13

Conclusion & Outlook

In the combination of ARB, SILVA and SINA, we have presented powerful com-
ponents to be used in rRNA gene analysis based work-flows. However, with the
elimination of one bottleneck, another arises, as any answered question raises
a number of new questions. Elements of the so-called “data-deluge”, in partic-
ular those caused by next-generation sequencing technology, offer a multitude
of new applications. Yet, as these applications can be expected to be data-heavy,
much work remains to be done in the area of data analysis. Hardware scaling,
such as through the use of cloud computing, can only address a small fraction
of the problems surrounding the analysis of large volumes of complex data.
Using buisiness accounting as an example of data analysis spanning orders of
magnitude in data volume, the problems in data scaling become clear. While
on household-scale, accounting can be accomplished easily by an unschooled
individual using pen and paper methods. Small buisinesses may get by with
a spread-sheet application and a personal computer. An international corpo-
ration, however, requires more than a mainframe or compute cluster. Rather,
extremely complex (and expensive) custom software modelling the business
logic is used to collect, persist, analyze and visualize data. And no matter how
refined this software, entire buildings are filled with specifically schooled ac-
countants and buisiness analysts. Consequently, we cannot assume that more
data and more compute power will by itself result in furthered knowledge.
Rather, extensive bioinformatical training needs to be included in the curricu-
lum of the disciplines applying bioinformatical methods. Ultimately, a thor-
ough understanding of the applied methods cannot be replaced by automation
or simple and easy user interfaces. Yet, more refined methods and tools are of
course required as well. In the remainder of this chapter we highlight some
ideas on extending the capabilities of the tools developed in this thesis.

Tools assisting the curation of large taxonomies and the incorporation of
information from phylogenetic trees are mandated by the growing volumes of
sequence data and the scale of a taxonomy encompassing the entire tree of
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life. The SILVA taxonomy in release 108 of the SSU database comprises 27,075
taxa. Including the other three taxonomies, the database contains a total of
70,163 taxa. These numbers illustrate the magnitude of the task of curating a
complete taxonomy. Currently, this task is addressed in an almost entirely man-
ual fashion. The SILVA taxonomy derives from a phylogenetic tree constructed
iteratively using the ARB maximum parsimony add-to-tree function. This tree
can be merely considered a guide tree, as the method is inferior and the tree
must be modified to remove conflicts with established taxonomy. Especially in
light of the recently formed ETWG, tools that bridge the gap between phylo-
genetic inference and taxonomic classification are sorely needed. At current
scales, building a “phylogeny informed” taxonomy manually has become diffi-
cult to manage. The exact shape a useful tool should take is difficult to predict.
A means to visualize the differences in topology between phylogenetic and/or
taxonomic trees may be a worthwhile approach. Ultimately, the intention must
be to incorporate the phylogenetic signal from many trees reconstructed using
different methods and based on different genes. While resorting to “crowd-
sourcing” to accomplish the curation as a community effort may at first seem
to be a good idea, this approach would endanger the reference character of
the taxonomy. Even assuming that sufficient contributions could be collected,
ensuring the quality of those contributions would be a very challenging task.
Considering that databases such as SILVA are used in tag sequencing or bar-
coding approaches as a dictionary to translate sequence data into taxonomic
identifications, the stability and accuracy of the taxonomy is imperative.

As SILVA already contains databases for two genes, an extension to a larger
number of marker genes is therefore easily conceivable. Most of the software
components comprising the SILVA system would support such an extension
easily. However, two factors have thus far prevented the extension to more
genes. The first is the gene specific data needed for pipeline operation. This
includes the parameters that are tuned to each gene, the reference databases
and the hidden Markov models used for sequence detection. However, the
limiting factor is the additional manual effort required for curation and quality
control. As long as the preparation of a database release continues to require
manual effort, the extension of SILVA to further genes would bind to much
resources.

Nevertheless, extending SINA to also allow the alignment of protein se-
quences may be worthwhile. As the PT server currently used for k-mer searches
can only support DNA sequences, this would entail adding a k-mer search mod-
ule to SINA itself. Such a module would also be desirable as we expect a
simple word index to be faster than the suffix-tree solution. Further improve-
ments to SINA would be detecting and handling introns appropriately, explicit
calculation of the expected alignment accuracy and more refined search and
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classification modules. Also, as SINA depends on a high quality reference MSA,
features supporting the construction or improvement of such MSAs would be
particularly useful. The strategies used in the iterative refinement stages of pro-
gressive alignment methods may contain concepts applicable to this problem.

We also see much room for improving the services offered via the website.
The TestProbe tool should be extended to support the evaluation of primers,
and primer or probe combinations. This could be complemented by a tool
for primer and probe design. The sequence based search is currently imple-
mented via the alignment facility. A more convenient implementation would
be the integration of sequence based search directly into the search based on
sequence descriptors. Currently, sequences can only be submitted for align-
ment and classification. In a more integrated service, these sequences would
remain associated with a user account and passed through all components of
the SILVA pipeline including quality screening, removal of redundant sequen-
ces and calculation of statistical summaries. A data entry module combined
with a gateway for sequence submission to the primary sequence data archives
would serve to further reduce the effort for completing rRNA studies. At the
same time, such a module would offer an opportunity for increasing the con-
sistency and completeness of the submitted descriptive data.

Ideas for further improving the ARB software include a revised plugin sys-
tem, a database schema more suited to next generation sequencing (NGS) data,
a modernization of the toolkit employed by the graphical user interface, a
means for offloading compute heavy tasks to cloud or cluster infrastructure
and perhaps a tighter integration with SILVA. The current plugin system was
designed to be compatible with a software called “GDE”. While this system the-
oretically allows integrating external tools by simply replacing a configuration
file, this has never been exploited to allow flexible extension of ARB. If sys-
tem were revised to reflect the extension system used in the Mozilla products,
ARB could be used as a graphical shell for command line based bioinformatic
tools in a much broader fashion. The current database schema in ARB is se-
quence central and allows only key-value pairs to be added to sequence entries.
Refactoring ARB to use a more normalized schema would reduce main mem-
ory requirements and increase database consistency. For example, publications
should be stored as separate entities, rather than as series of author and title
properties repeated in each sequence. The Motif toolkit used by ARB to render
its graphical user interface (GUI) is outdated and lacks many useful widgets
offered by more current tool kits. A port to Qt or Gtk would immediately mod-
ernize the look-and-feel significantly and could be used as a starting point for
more in depth work on the ergonomic properties of the ARB user interfaces. It
would also be extremely useful to change the way ARB launches and controls
external tools such that these can continue to run after the ARB software is
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closed. At the same time, an interface could be integrated that allows submit-
ting external computations for offline computation on a cluster or in the cloud.
Furthermore, an active synchronization feature that updates the ARB database
to the most recent SILVA release or even integrates with the data stored by
SILVA as part of a user account could drastically improve user experience. At
a smaller scope, simply allowing the synchronization between selected sequen-
ces in ARB and on the SILVA website would be a powerful feature. This will,
however, necessitate stable and compatible sequence identifiers in SILVA and
ARB that can be assigned even before sequence submission to the nucleotide
archives.
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APPENDIX A

SINA manual

ABSTRACT
SINA is a tool for aligning sequences with an existing multiple sequence align-
ment (MSA) at high accuracy. It can also execute a homology search based on
the computed alignment and generate a per sequence classifications from the
search results.

This manual documents the command line usage of sina. Please see http:
//www.arb-silva.de/aligner for a reference to the scientific description of
the employed algorithms.

A.1 Synopsis

sina -i sequences.fasta|arb -o output.fasta|arb
{--prealigned |--ptdb aligndb.arb}
[--search --search-db searchdb.arb]
[options]

A.2 Description

You can view SINA as a one-command pipeline composed of the following
stages:

1. Read sequences from FASTA or ARB file.

2. Align sequences with reference MSA.

3. Search for most similar sequences in search MSA.

http://www.arb-silva.de/aligner
http://www.arb-silva.de/aligner
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4. Classify sequences using search result.

5. Write sequences to FASTA or ARB file.

You can enable or disable the middle three stages as required. By default,
only the alignment stage is enabled. Briefly, this is what those stages do (see
section Options for details on the configuration options accepted by each of the
stages).

Read: Reads sequences from a multi-FASTA file or an ARB database. If read-
ing from ARB, additional meta-data can be read as key-value pairs. These
key-value pairs are carried with each sequence throughout the pipeline
and will be exported at the end.

Align: Sequences are aligned using the POA algorithm with a set of reference
sequences drawn from the reference MSA. Reference sequence selection
is based on a kmer search.

Search: Sequences are compared after alignment with the aligned sequences
in the configured search database. Comparison is done either against all
sequences or against the best matches from a kmer search. Identity is
computed as the number of identical column/base pairs divided by the
length of the query sequence.

Classify: Sequence classification uses least-common-ancestor (LCA) to derive
a classification from the classifications of the sequences found during the
search stage.

Write: Writes sequences and meta-data to a multi-FASTA file or an ARB data-
base. See section Options for possible format options to export meta
data when writing to multi-FASTA.

The default parameters are a pretty good starting point. They were opti-
mized using a large SSU rRNA gene reference MSA. If you want to use SINA
for other gene sequences, see section Examples on how to do some simple ac-
curacy benchmarks on them. To improve the results, the parameters you will
want to start with are –fs-full-len (set to the typical size of a full-length
sequence) and –fs-kmer-len (setting this to 8 may help with more variable
or shorter sequences).

A.3 Options

Options beginning with a single “-” must be separated from arguments with
a space character. Options beginning with “--” can also be separated from
arguments with an equal sign.
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A.3.1 General Options

-h, --help Print a summary of the available options and exit.

--version Print the version information and exit.

--show-conf Print a summary of all configuration settings before processing
the input sequences.

-i filename, --in=filename Specify the source file containing the sequences
to be aligned. The special filename “:” can be used to access an open
ARB database when starting SINA from a shell spawned from within
ARB. The sequence data may already be aligned (and should be, if you
supply --prealigned).

--intype {fasta|arb} Specify the format of the source file. If the filename
ends with “arb” or “fasta”, the type is automatically deduced.

-o filename, --out=filename Specify the destination file for the aligned se-
quences. The special filename “:” can be used to access an open ARB
database when starting SINA from a shell spawned from within ARB.
If you want to discard the aligned sequences, you can set filename to
/dev/null and --outtype to fasta.

--outtype fasta|arb Specify the format of the destination file. If the file-
name ends with “arb” or “fasta”, the type is automatically deduced.

--prealigned If set, the alignment stage is disabled. Sequences are passed to
search (if enabled) and output stage unmodified. Mandatory alignment
parameters (--ptdb) are not required in this case. The input file should
contain correctly aligned sequences.

--search If set, the search stage is enabled.

A.3.2 Logging Options

--show-diff This flag enables visualization of alignment differences. This
feature allows you to quickly assess where your alignment differs from
the one SINA computed. By also showing you the alignment of the ref-
erence sequences used for aligning the sequence, you can get an idea
of why SINA came to its conclusions. Many cases of “suboptimal” ali-
gnment can be attributed to inconsistent alignment of the reference se-
quences. To fix such problems, you could either correct the alignment of
the reference sequences or add your corrected sequence to the reference
alignment.
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Alignment difference visualization requires the input sequences to have
been previously aligned in a way compatible with the used reference ali-
gnment. For positions at which the original alignment and the alignment
computed by SINA differ, output as shown below will be printed to the
log:

Dumping pos 1121 through 1141:
--------- 4 14 16-17 21 24
G-C-AGUC- 40 <---(%% ORIG %%)
GCA--GUC- 41 <---(## NEW ##)
GCA-AGUC- 0-3 5-13 15 18-20 22-23 25-27 29-39
GCAA-GUC- 28

In this case, the bases ’C’ and ’A’ where placed in other columns than
as per the original alignment. The original alignment is marked with
<---(%% ORIG %%). The new alignment is marked with <---(## NEW
##). The numbers to the right of the alignment excerpt indicate the in-
dices of the sequences in the alignment reference (field align_family_slv)
which the respective row represents. All-gap columns are not shown.
The first line indicates the range of alignment columns displayed.

--show-dist This flag enables computing the values sps, error, matches, mis-
matches, bps, cpm, idty and achieved_idty. See section “Generated Meta
Data Values” for an explanation of the individual values. All values ex-
cept bps are computed by comparing the newly computed alignment
with the original alignment of the sequences. If a database is configured
using --orig-db, the original alignment is obtained from that database.
Otherwise, the alignment of the input sequences is used.

--orig-db arb database The database arb database is used to retrieve a ali-
gned sequences to be used as a reference for comparison by --show-diff
and --show-dist. Sequences are retrieved based on the contents of the
ARB field name. If FASTA is used as input format, the first word of the
FASTA header will be used for matching.

--colors Enable color in the output of --show-diff.

--log-file filename Redirect the log output to filename.

A.3.3 Reading from ARB

--select-file filename If using an ARB database as sequence input file,
only sequences with a name matching a line contained within filename
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will be passed into alignment and search stages.

--select-step n If using an ARB database as sequence input file, only every
nth sequence will be passed into alignment and search stages. This may
be combined with --select-file. In combination with --select-skip this
option can be used transparently distribute processing of a single ARB
database to multiple instances of SINA.

--select-skip n If using an ARB database as sequence input file, the first n
sequences will be skipped. Combination with --select-file is possible. In
combination with --select-step this option can be used transparently
distribute processing of a single ARB database to multiple instances of
SINA

--extra-fields fieldnames Passing a colon separated list of field names
will load the meta data contained within these database fields from ARB.
The contents will be passed as key-value pairs through the internal SINA
pipeline. They will be treated like meta data generated by SINA itself.
That is, they will be printed to the log file and written to the output file.

A.3.4 Writing to ARB

--prot-level n Set the protection level used to write to the ARB database
to n. If a field was set to have a protection level above n, SINA will
(silently) fail to write to these fields. If your sequences have a protection
level of for example 4 and you set n to 0, your sequence data will not be
modified. If you use the same ARB database for input and output, this
may be used in combination with --show-diff to inspect the effect of
varying the alignment parameters without modifying the alignment.

A.3.5 Writing to FASTA

--meta-fmt {none|header|comment|csv} This option configures the format
in which meta data will be exported if the output format is FASTA. none
will discard all meta data (it will still be written to the log, however).
header will export meta data values as bracket enclosed key value pairs
on the FASTA header line. comment will export meta data values as key
value pairs on FASTA comment lines, that is lines beginning with a semi-
colon between the header and the sequence data. csv will export meta
data values to a separate file in RFC4180 compatible comma separated
value format. The filename will be generated from the output filename
by appending “.csv ”.



170 A. SINA manual

--line-length n If n is different from 0, sequence data will be line wrapped
after n characters.

A.3.6 Alignment Options

--ptdb filename Specifies the ARB database to be used as alignment refer-
ence. This is a mandatory parameter. The file must be in ARB format.
See section Examples below for an explanation how to generate such a
database from a FASTA file using only SINA. The name of this parameter
is historical and refers to the fact that a ARB PT server will be started us-
ing the configured database to search for the sequences having the least
kmer distance to the input sequences.

--ptport socket Configures the socket which will be used for communication
with the ARB PT server. SINA will attempt to contact a running PT server
via this port. If no PT server can be contacted, SINA will attempt to start
one itself.

socket may either be of the format hostname:port, specifying a TCP socket,
or of the format :filename, specifying a Unix socket. If no running PT
server could be contacted and a Unix socket is specified or hostname is
“localhost”, a PT server will be started locally. If hostname is “__SGE__”
SINA will start and contact a PT server on a cluster node using qrsh1.
Otherwise, ssh1 will be used to start a PT server on the configured host.

The default is to use port “localhost:4040”.

CAUTION: If a PT server is already running on the configured socket,
but its database does not match the database configured with --ptdb
the results will be undefined. The search result retrieved from the PT
server identifies sequences using the name field. For completely different
databases, this will usually result in SINA being unable to find reference
sequences. It may, however, also result in SINA retrieving the wrong
sequences.

--turn {none|revcomp|all} Using this option, SINA can be configured to
automatically reorient input sequences. If set to none, automatic reorien-
tation is disabled. If set to revcomp only the reversed and complemented
orientation of the input sequences is considered. If set to all all four
combinations of reversing and complementing the sequence are consid-
ered. The default is all. Turning this feature off or reducing its scope
will improve performance.

To determine which orientation is most likely, SINA uses the PT server to
search for the sequence in the configured orientations. If an orientation
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different to the original yields a higher scoring best match, the sequence
is modified accordingly.

--realign Configures SINA not to copy alignment information from identical
reference sequences or reference sequence of which the input sequence
is a substring.

Normally, SINA will compare the input sequence with all reference se-
quences found via the PT server search. If the input sequence is a sub-
string of any of the reference sequences, the alignment of the reference
sequence of which the input sequence is a substring will be directly trans-
ferred to the input sequence.

If the input sequence is found to be an exact match to a reference
sequence, this will be noted in the field align_log_slv with the string
“copied alignment from identical template sequence”. If the
input sequence is found to be a substring of a reference sequence,
this will be noted with the string “copied alignment from (longer)
template sequence”. In both cases, the contents of the fields acc and
start will also be logged to identify the reference sequence.

If suitable sequences for alignment copying are found, but --realign is set,
the sequences will be removed from the alignment reference. This will
be noted in the log with the message “sequences <list of accessio
numbers> containing exact candidate removed from family;”.

--overhang {attach|remove|edge} If the reference sequences used for align-
ment do not cover the input sequence completely, e.g. because it con-
tains bases beyond the gene boundary, these bases cannot be aligned.
This option configures how SINA handles such unaligned bases at the
end of the input sequences. If set to attach, the bases will be placed
in consecutive columns outwards from the last aligned base, i.e. they
will be “attached” to the outer most aligned base. If set to remove, these
bases will be omitted from the output. If set to edge, these bases will be
placed in consecutive columns inwards from the first and last alignment
column, i.e. “moved to the edge of the alignment”. The default is attach.

--lowercase {none|original|unaligned} Use this option to configure which
bases you wish to be in lower case in the output. The default setting is
none, which will output all bases in upper case. If set to original, the
original cases will not be modified. If set to unaligned, the case will be
used to convey which bases of the input sequences remained unaligned
by setting aligned bases to upper case and unaligned bases to lower
case in the output. Unaligned bases are either overhang (see --overhang
above) or result from insertions which could not be found in any of
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the reference sequences. If large insertions required shifting aligned
bases (see --insertion below), the shifted bases will also be considered
unaligned and shown in lower case.

--insertion {shift|forbid|remove} Since SINA aligns sequences to match a
given fixed column reference alignment, insertions in the input sequen-
ces may have occurred that cannot be accommodated by the reference
alignment. While the only correct way of dealing with this is certainly in-
serting further columns into the reference alignment to create sufficient
room, this may not always be feasible.

The default setting is to shift the bases surrounding such a large inser-
tion aside as required. This is done by iteratively choosing the nearest
free column to the left or right until sufficient columns have been found.
Each time bases are encountered between the insertion and the free col-
umn, these bases are added to the insertion. The main benefit of this
naive approach is that the position and size of insertions that could not
be accommodated are known. The message “shifting bases to fit
in N bases at pos X to Y” will be logged each time an insertion of
length N is attempted between positions X and Y with Y − X < N . The
affected bases can be marked as unaligned by exporting them in lower
case letters using the --lowercase option described above. A summary
giving the total number of shifted bases and the longest insertion is also
logged for each sequence.

The option forbid configures SINA to instead disallow insertions that
will not fit the reference alignment during the dynamic programming
stage of sequence alignment. While this option constitutes a loss of
optimality of the alignment algorithm if the gap extension penalty
(see --pen-gapext below) is different from the gap open penalty (see
--pen-gap below) it results in slightly less damage to the alignment ac-
curacy.

The option remove configures SINA to omit bases from insertions as
necessary to fit these insertions into the alignment without moving sur-
rounding aligned bases. This option should be handled with care as the
original sequence is altered. If the alignment is subjected to column
masking or column sampling (such as during tree reconstruction with
bootstrapping), omitting bases is safe, as these methods interpret the
resulting MSA from a column perspective.

Which option is the most suitable should be carefully considered for each
use case. Whenever possible, circumventing the necessity to handle in-
sertions that do not fit into the alignment by simply adding gap columns
into the reference alignment is the preferred solution.
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--filter filtername Using this option it is possible to configure using statis-
tical information on positional variability during the alignment. “Filter”
is a colloquial term used for “sequence associated information” or SAIs
as used by ARB. Filters/SAIs of the type “positional variability by parsi-
mony” (PVP) are eligible for use via this parameter. Please consult the
SINA publication and the ARB documentation for more information.

--auto-filter-field fieldname This option allows automatically selecting
a PVP filter based on strings contained in an ARB database field. If
the configured field contains a shared prefix over all selected refer-
ence sequences, the ARB database configured with --ptdb is searched
for a matching filter. A filter is considered matching if the part of its
name following the first colon is a itself a prefix of the shared pre-
fix described above. As an example, if tax_slv is chosen and all refer-
ence sequences share the prefix “Bacteria;Proteobacteria;” then the filter
“silva_108:Bacteria” will match. If --filter is also provided, the filter-
name must match the part of the filter name before the first colon.

--auto-filter-threshold value The term “shared prefix of all reference
sequence” can be relaxed to “longest prefix shared by value of the refer-
ence sequence” using this parameter. (Default: 0.8)

--fs-min value The minimum number of reference sequences that should
be used. If less matches are returned by the kmer search, less sequences
will be used. (Default: 40)

--fs-max value The maximum number of reference sequences that should
be used. (Default: 40)

--fs-msc value The minimal kmer score reference sequences should have
with the input sequence. At least as many sequences as configured by
--fs-min will be used. Up to --fs-max sequences will be used if they have
a kmer score higher than configured by --fs-msc. (Default: 0.7)

--fs-msc-max value Limits sequence selection to sequences having kmer
score no higher than value. (Default: 2, that is, disabled)

--fs-leave-query-out Setting this option will remove the query sequence
from the reference sequences based on its name. This is sensible for eval-
uation in comparison to other tools where leave-query-out style evalua-
tion can only be done by excluding the exact query sequence from the
reference. If the alignment must not be directly derived from any ref-
erence sequence, even if the reference dataset contains redundant data,
--realign should be used.



174 A. SINA manual

--fs-req value The minimum number of reference sequences that must be
used. If less matches are returned by the kmer search, alignment is
refused. The sequence will not be contained in the output. (Default: 1)

--fs-req-full value The minimum number of full length sequences that
should be included in the reference. The matches from the kmer search
are parsed until, beyond the limits given by --fs-max and --fs-msc, at
least value such sequences have been found and added to the reference
sequences.

--fs-full-len value The minimum number of bases constituting a full-
length sequence.

--fs-kmer-no-fast Disable the PT server fast search. The fast kmer search
considers only kmers beginning with ’A’.

--fs-kmer-len k Configures the length k of the kmers used for the kmer
similarity search.

--fs-kmer-mm value Configures the number of mismatching bases a kmer
may have to be considered matching.

--fs-kmer-norel Computes the kmer score using the length of the query
sequence only. If not set, the kmer score is computed as the number
of shared kmeres between query and match candidate divided by the
length of the shorter.

--fs-min-len value Minimal length sequences found via the kmer search
must have to be considered for inclusion into the reference sequences.

--fs-weight value Factor with which the frequency at which a base occurs
within the reference sequences will be used to weight match and mis-
match scores between the base and bases from the input sequence.

--gene-start value Position within the alignment corresponding to the first
base of the aligned gene.

--gene-stop value Position within the alignment corresponding to the last
base of the aligned gene.

--fs-cover-gene value Minimum number of times the gene-start and gene-
stop positions are at least touched by one of the reference sequences.
If the above rules did not result in sufficient such sequences, further
sequences covering the respective position are added until the condition
is met.
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--match-score value The match score used during the dynamic program-
ming stage of partial order alignment (POA).

--mismatch-score value The mismatch score used during the dynamic pro-
gramming stage of partial order alignment (POA).

--pen-gap value The gap open penalty used during the dynamic program-
ming stage of partial order alignment (POA).

--pen-gapext value The gap extension used during the dynamic program-
ming stage of partial order alignment (POA).

--debug-graph Enables dumping of graph data in graphviz format suitable
for processing with e.g. dot1. For each aligned sequence, the DAG
used as alignment template is dumped. Subsections of the dynamic pro-
gramming graph/mesh, each covering the same fractions as shown with
--show-diff, are also dumped. Please be aware that the output will be
huge.

--use-subst-matrix Experimental. Do not use!

A.3.7 Search and Classification Options

--search-db filename Configures the name of the ARB database which will
be used for sequence search. Unless --search-all is also set, a PT server
will be started for this database. The same rules as for --ptdb apply. It is
permissible to use the same file as in --ptdb. In this case, the database
will be loaded only once.

--search-port socket Configures the port on which SINA should communi-
cate with the PT server used for kmer searching. The same rules as for
--ptport apply. If --search-all is set, no PT server will be used and this
setting will be ignored.

--search-all Configures SINA to compare the aligned input sequence with
all sequences contained in the database given by --search-db. No PT
server will be used.

--search-no-fast Disable the PT server fast search. The fast kmer search
considers only kmers beginning with ’A’.

--search-kmer-candidates n Configures the number of best matching re-
sults from the kmer search that should be compared with the input se-
quences based on the alignment.
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--search-kmer-len arg Configures the length k of the kmers used for the
kmer similarity search.

--search-kmer-mm arg Configures the number of mismatching bases a kmer
may have to be considered matching.

--search-kmer-norel Computes the kmer score using the length of the query
sequence only. If not set, the kmer score is computed as the number
of shared kmeres between query and match candidate divided by the
length of the shorter.

--search-min-sim value Minimal identity a sequence must have with the
input sequence to be included in the search result.

--search-ignore-super Exclude sequences of which the input sequence is
a substring from the search result.

--search-max-result value Limit the maximum number of search results
per input sequence.

--search-copy-fields fieldnames Configures a colon separated list of ARB
fields which will be copied into the input sequence. The field name will
be prepended with “copy_<accession>_” in the output to indicate from
which search result the data came.

--lca-fields fieldnames Derives a LCA classification of the input sequence
from the classifications of the sequences found in the search. This fea-
ture requires the reference database to contain a field specifying the se-
quence classifications in materialized path format (i.e. “Bacteria;Proteo-
bacteria;...”). The “least common ancestor” is the shared prefix of these
strings. Prefixes must always end with a semicolon. Depending on the
desired rank up to which the sequences should be classified, appropriate
sequence similarity cutoffs should be configured with --search-min-sim.
It is possible to specify multiple source taxonomies as fieldnames by
passing colon separated list. Derived LCA classification will be stored in
fields named “lca_<fieldname>”.

--lca-quorum value Relaxes LCA classification from “shared by all search
results” to a fraction value of the search results.

A.4 Generated Meta Data Values

align_bp_score_slv This is a score calculated from the aligned sequence and
the HELIX SAI. If the reference database contains no HELIX SAI the score
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will be NaN. Otherwise, the score is computed as follows. For each pair
of columns covered by the aligned sequence a score of 1 is awarded if
the pair is AU, GU or GC; a score of 0 is awarded if the pair is AG or GG;
a score of -1 is awarded if the pair is AA, AC, CC, CU or UU or if one of
the columns contains a gap character; the sum of these scores is divided
by the number of considered columns. The value is scaled to match the
range between 0 and 100.

This value is likely to change or disappear in future versions.

align_cutoff_head_slv This is the number of bases at the beginning of the
sequences that remained unaligned.

align_cutoff_tail_slv This is the number of bases at the end of the sequences
that remained unaligned.

align_family_slv This is a list of the sequences that were used to build to align
the input sequence.

align_filter_slv If a PVP filter was applied, the name of that filter will be stored
in this field.

align_log_slv Messages generated during the alignment process will be logged
here.

align_startpos_slv This is the alignment position (column number) of the first
aligned base.

align_stoppos_slv This is the alignment position (column number) of the last
aligned base.

aligned_slv This is the current date.

full_name If FASTA is chosen as input format, this field will contain the part
of the FASTA header lines after the first space character.

nearest_slv This field contains a space separated list of the results from the
homology search stage. Each search result is given in the following form:
“<accession>.<version>:<start>:<stop> <identity>”

nuc The number of nucleotides in the input sequence.

nuc_gene_slv The number of nucleotides in the sequence aligned to be within
the gene borders.

turn_slv Documents actions taken by the automatic reorientation of sequen-
ces. Possible values are “disabled”, “none”, “reversed”, “complemented”
and “reversed and complemented”.
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sps This field contains the fractional identity of the aligned input sequence
with the input sequence in its original alignment. The number of identi-
cal base/column pairs is divided by the number of nucleotides.

error The number of differing base/column pairs divided by the number of
nucleotides. The sum of error and sps may be larger than 1 because of
gap characters. If in the new alignment, a base ends up in what should
be a gap position and a gap is placed where the base was in the original
alignment, two misaligned positions are found.

matches Number of identical base/column pairs in SINA aligned sequence and
input alignment.

mismatches Number of differing base/column pairs in SINA aligned sequence
and input alignment.

bps The same as slv_bp_score but unscaled and not rounded to integer.

cpm Correctly placed mutations, or rather, an attempt at calculating such a
measure intended to be used as a measure of alignment accuracy inde-
pendent of the identity an input sequence as with its closest reference
sequences. The value is the number of base/column pairs the aligned
sequence shares with its original alignment more than the sequence in
its original alignment shares with the closest found reference sequence
divided by the number of base/column pairs in original alignment that
are not matched by the closest reference.

This value is likely disappear or change in future versions.

idty The highest fractional identity of the input sequence with any of the se-
lected reference sequences calculated as the number of matches (see
above) divided by the length of the input sequence.

achieved_idty Identical to idty but using the SINA alignment rather than the
original alignment.

lca_* These fields contain the classifications derived via LCA.

copy_* These fields contain the data copied from the search results.

A.5 Examples

Aligning some sequences To align sequences, you need to get a suitable ref-
erence alignment in ARB format. If you have LSU or SSU sequences
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to align, the Ref or RefNR datasets from www.arb-silva.de work well.
Otherwise, check below for an example on how to convert your own
multi-fasta reference alignment to ARB format.

./sina -i mysequences.fasta -o alignedsequences.fasta \
--ptdb reference.arb

The first time you run this, a PT server will be started and will begin
building its index. The index is stored in reference.arb.pt and will
only be computed again if reference.arb changes (the decision is made
based on file timestamps only). The PT server will also continue to run
once it has been started. Subsequent sina runs will be much faster there-
fore. Nonetheless, start-up time may be long if reference.arb is large.

Classifying some sequences If you are using a reference database that has
a field containing classifications, you can use SINA to classify your se-
quences. The SILVA Ref database contain several taxonomies in fields
beginning with “tax_”. To classify sequences based on the SILVA taxon-
omy, you can use this command line:

./sina -i mysequences.fasta -o aligned.fasta \
--meta-fmt CSV \
--ptdb reference.arb \
--search --searchdb reference.arb \
--lca-fields tax_slv

The classifications will be (among the other values) written to the col-
umn labeled “lca_tax_slv” in the file “aligned.fasta.csv”.

Converting FASTA to ARB By disabling all stages, SINA can be used to con-
vert between ARB and FASTA format (in a limited fashion, use ARB if
you want to do more fancy stuff):

./sina -i mysequences.fasta -o mysequences.arb \
--prealigned

This will generate an ARB file from your aligned sequences suitable for
use as a reference MSA. The first word of each FASTA header will be
written to the ARB field “name”. Make sure they are unique for each
sequence. ARB uses this field to identify sequences, duplicates will over-
write the previous sequence with the same name. The remainder of the
fasta header will be written to the field “full_name”.

www.arb-silva.de
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Running a leave-query-out accuracy benchmark You can run a quick check
on the accuracy achieved by SINA with your reference MSA by having
it align each of those sequences (ignoring the same sequence in the pro-
cess) and log the accuracy with which it could reproduce the original
alignment.

./sina -i myreference.arb --ptdb myreference.arb \
-o /dev/null --outtype fasta \
--fs-leave-query-out --show-dist

The average accuracy will be printed at the end of the SINA run.

Converting FASTA output from RNA to DNA SINA encodes bases in its FASTA
format output as RNA using IUPAC characters. Conversion to DNA can
be achieved by simply replacing all occurences of U and u with T and t
using sed:

sed ’/^[^>]/ y/uU/tT/’ rna.fasta > dna.fasta

A.6 See Also

ARB, http://www.arb-home.de
SILVA, http://www.arb-silva.de

A.7 Version

Version: 1.2.9 of Oct. 10th 2010.

A.8 License and Copyright

Copyright © 2006-2011 Elmar Pruesse (epruesse@mpi-bremen.de)

License This copy of SINA is licensed under the SINA PUEL (see below).

The author of SINA reserves all copyrights and other intellectual prop-
erty rights. All further rights are at Ribocon GmbH (the "Owner") in
legal agreement with the author of SINA and all third parties involved.

If you are interested in commercial use of the SILVA stand-alone software
contact sina@ribocon.com.

http://www.arb-home.de
http://www.arb-silva.de


A.8. License and Copyright 181

Personal Use and Evaluation License (PUEL) for SINA Stand-Alone
Software

This license applies if you download the SINA Stand-Alone Software
Package (the "Product") from www.arb-silva.de. In summary, the li-
cense allows you to use the Product free of charge for academic Personal
Use or, alternatively, for non-academic, time-limited Evaluation.

Overview: Personal Use (academic) is when you install the Product your-
self and you make use of it. You can use the Product within an academic
study to process as much data as you like and publish the processed data
as long as you follow the terms below. If you deploy the Product to a
single or multiple computers for colleagues within your institution, e.g.
in the capacity as a system administrator, this would no longer qualify
as Personal Use.

Personal Use does NOT include (1) any redistribution of the Product, (2)
any kind of Product-based data analysis service for third parties, or (3)
integration of the Product into another software.

License Agreement: You should have received a copy of the license
agreement with this software in the file LICENSE.txt. If you did not,
please visit http://www.arb-silva.de/aligner/sina.

www.arb-silva.de
http://www.arb-silva.de/aligner/sina




APPENDIX B

SINA supplementary

B.1 Algorithm

B.1.1 Positional Variability by Parsimony (PVP)

The “positional variability by parsimony” (PVP) function of ARB computes a
per-column conservation profile from a MSA and a phylogenetic tree. For each
column, the number of transitions and transversions required to explain the
tree given the aligned sequence data is computed. The sum of transitions and
transversions divided by the number of observed bases, capped at 0.55 and
corrected for not observed mutations using the Jukes Cantor formula [126].
From this rate, we compute the scoring weight as 0.5-log(rate). This weight
is capped at 20. Columns containing gap characters in more than 80% of the
sequences are assigned a weight of 1.

The PVP statistic applied may be chosen dynamically for each candidate se-
quence based on classification meta-data in the reference MSA database. This
allows using for example domain specific statistics. The name of each PVP
statistic stored in the reference database is compared with the configured clas-
sification attribute of each reference sequence. If a name is a prefix of the
attribute for a majority of the sequences, the corresponding PVP statistic is
used instead of a globally configured PVP statistic.

B.2 Results

All figures displaying mean accuracy (all except Fig. B.2) are shown twice,
once using a linear (labeled A) and once using a logarithmic scale on the y-axis
(labeled B).
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Figure B.1 Effect of increasing the number of reference sequences on alignment accu-
racy at different levels of identity with the reference alignment.
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Figure B.2 Effect of increasing the number of reference sequences on the fraction of
“insertions” with respect to the alignment template.
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Figure B.3 Using a mismatch score of -1 a match score of 2 is minimally better than
a match score of 1 or 1.5. The difference, however, is almost beyond the resolution of this

figure.
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Figure B.4 A gap open penalty of 5 works better than a gap open penalty of 2. Among
the tested gap extend penalties using a gap open penalty of 5, a gap extension penalty of

2 is best by a small margin.
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Figure B.5 Requiring that at least one sequence of 1500 or 1600 bp length be included
in the reference set improves averaged results.
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Figure B.6 The method used for column preservation makes little difference to align-
ment accuracy using the SSU benchmark. Considering that the SSU alignment is more
than 30 times wider than typical SSU sequences and that special care was taken to have
sufficient alignment space between bases in the construction of the alignment, this is not

unexpected.
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Figure B.7 Varying the length of the kmeres used to find reference sequences has little
impact, values between 8 and 12 work well for SSU sequences.
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Figure B.8 Using the “fast mode” of the kmer search provided by the ARB PT server
ignores kmeres that do not begin with ’A’. The impact to alignment accuracy is visible. The
graphs labled “+full” require that at least one sequence of at least 1400 bp be included in

the reference.
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Figure B.9 All weighting schemes and combinations thereof provide some improve-
ment to unweighted alignment. Using only the base frequency among the selected refer-

ence sequences performs significantly better than all other tested methods.
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Figure B.10 Effect of increasing the number of reference sequences when using a col-
umn profile and PSPx y scoring function instead of the DAG based method.
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Supplementary Materials

The attached DVD contains further supplementary materials including test data
and source code as well as a PDF version of this document.
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