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Man cannot discover new oceans  
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Summary 

 

Understanding biodiversity and its distribution across space, time, and along environmental 

gradients, is crucial in order to assess the ecological functions of groups of organisms in the 

environment and gain insights into overall ecosystem functioning. In contrast to the distribution 

patterns of larger organisms, little is known about the structuring of bacterial communities in the 

environment. The reason being, that appropriate tools for the study of microbial ecology have 

only become available during the last decades. Today, molecular tools like fingerprinting or next-

generation sequencing enable a time- and cost-effective, high-throughput processing of 

environmental samples to study bacterial diversity patterns. The application of such tools has 

revealed non-random patterns of bacterial diversity across space and time, and along 

environmental gradients in a variety of habitats. However, research on microbial community 

ecology is just starting to pick up pace, and entire ecosystems, such as the deep seafloor, remain 

largely uncharted. The deep sea represents the largest ecosystem on Earth and at the same time 

remains one of the least explored regions on our planet. Bacterial communities play an essential 

role for carbon and nutrient cycling in deep-sea sediments, and are thus an important component 

of benthic deep-sea ecosystems. Therefore, the specific investigation of bacterial diversity and its 

distribution at the deep seafloor in the context of environmental parameters were major 

objectives of this thesis. The influence of both spatial distance, as an indicator for dispersal 

limitation, and contemporary environmental factors on bacterial communities were investigated 

at different spatial scales.  

In Chapter I, global-scale patterns of bacterial community composition in deep-sea surface 

sediments were explored. Strong distance-decay relationships (i.e., the decrease in shared bacterial 

types between samples with increasing distance) and a high degree of endemism suggested a 

limited dispersal of benthic bacterial populations in the deep sea. In addition, potential members 

of a core deep-sea surface sediment community were identified.  

Results presented in Chapter II describe the distribution of bacterial diversity at 

intermediate (10–3000 km) and large (>3000 km) scales and further test the influence of an 

underwater mountain range, the Walvis Ridge, on the dispersal of bacterial communities. Both, 

geographic distance and environmental heterogeneity influenced bacterial diversity at these scales, 

indicating a complex interplay of local contemporary environmental effects and dispersal 

limitation. The Walvis Ridge, however, did not appear to present a geographic barrier for the 

dispersal of bacterial communities.  



The relationship between energy availability and bacterial diversity and activity was 

investigated at the regional scale (7–500 km) in Arctic Ocean deep-sea sediments (Chapter III). 

Phytodetritus input, as a proxy for energy availability at the deep seafloor, was evidenced to be an 

important driver of changes in bacterial diversity and activity along the investigated depth 

transects. The results indicate that bacterial communities may exhibit energy-diversity 

relationships comparable to the ones observed for macrofaunal deep-sea organisms. 

Furthermore, contrasting responses of individual taxa to changes in phytodetritus input suggested 

varying ecological strategies among bacterial groups, and may enable the classification of 

indicator taxa for certain environmental states.  

Finally, the influence of a specific source of energy, i.e., wood, on the biogeochemistry and 

bacterial diversity at the deep seafloor was investigated using experimental wood deployments 

(Chapter IV). The deposition of wood at the deep seafloor presents a localized input of organic 

matter to an otherwise largely oligotrophic environment. Wood colonization experiments were 

deployed in the Eastern Mediterranean deep sea for one year, and revealed the development of 

sulfidic niches and the colonization of specialized communities at these large organic food falls.  

 



Zusammenfassung 

 

Ein besseres Verständnis von Biodiversität und der Verteilung von Biodiversität über Raum 

und Zeit, sowie entlang von Umweltgradienten ist wichtig, um die ökologische Funktion 

einzelner Gruppen in der Umwelt zu verstehen, sowie Einblicke in die Funktion gesamter 

Ökosysteme zu erhalten. Im Gegensatz zu den Verteilungsmustern größerer Organismen, ist 

wenig über die Strukturierung bakterieller Gemeinschaften in der Umwelt bekannt. Ein Grund 

hierfür ist, dass geeignete Methoden für die Untersuchung mikrobieller Ökologie erst in den 

letzten Jahrzehnten verfügbar geworden sind. Heute ermöglichen molekulare Methoden wie das 

„fingerprinting“ (das Erstellen molekularer Fingerabdrücke bakterieller Gemeinschaften) und 

neueste Sequenzierungstechniken, einen zeit- und kosten-effizienten, hohen Durchsatz von 

Umweltproben für die Analyse bakterieller Gemeinschaftsmuster. Die Anwendung derartiger 

Methoden zeigte, dass bakterielle Gemeinschaften in einer Reihe von Habitaten nicht einfach 

zufällig in Raum, Zeit, oder entlang von Umweltgradienten verteilt sind. Allerdings steht die 

Erforschung mikrobieller Gemeinschaftsmuster noch am Anfang, und komplette Ökosysteme, 

wie z.B. der Tiefseeboden, sind in dieser Hinsicht weitgehend unerforscht. Die Tiefsee stellt das 

größte Ökosystem der Erde dar, bleibt aber gleichzeitig eines der am wenigsten erforschten 

Gebiete auf unserem Planeten. Bakterielle Gemeinschaften spielen eine grundlegende Rolle für 

die Umsetzung von Kohlenstoff und Nährstoffen in Tiefseesedimenten, und sind deshalb ein 

wichtiger Teil des Tiefseeökosystems. Aus diesen Gründen war die gezielte Untersuchung 

bakterieller Diversitätsmuster am Tiefseeboden und eine Bewertung im Zusammenhang mit 

Umweltparametern ein Hauptziel dieser Arbeit. Auf unterschiedlichen räumlichen Skalen wurden 

der Einfluss geographischer Distanz, als Anzeiger für eine eingeschränkte Verbreitung, sowie der 

Einfluss von Umweltfaktoren auf bakterielle Gemeinschaften untersucht.  

In Kapitel I wurden bakterielle Gemeinschaftsmuster in Oberflächensedimenten der 

Tiefsee auf globaler Ebene untersucht. Die Abnahme gemeinsamer Bakterientypen in 

Probenvergleichen mit zunehmender Distanz („distance-decay relationship“), sowie ein hoher 

Anteil endemischer Bakterientypen, deutete auf eine eingeschränkte Verbreitung benthischer 

bakterieller Populationen in der Tiefsee hin. Des Weiteren konnten potentielle Vertreter einer 

Kern-Population in Tiefseeoberflächensedimenten identifiziert werden.  

Ergebnisse, die in Kapitel II präsentiert werden, beschreiben die Verteilung bakterieller 

Diversität über mittlere (10–3000 km) und große (>3000 km) Distanzen. Außerdem wurde der 

Einfluss des untermeerischen Bergrückens Walfischrücken auf die Verbreitung bakterieller 

Gemeinschaften untersucht. Sowohl geographische Distanz als auch Umweltfaktoren 



beeinflussten die bakterielle Diversität über diese räumlichen Skalen, was auf ein komplexes 

Zusammenspiel von lokalen Umweltbedingungen und Verbreitungsgrenzen hindeutet. Der 

Walfischrücken schien allerdings keine geographische Barriere für die Verbreitung bakterieller 

Gemeinschaften darzustellen.  

Der Zusammenhang zwischen Energieverfügbarkeit und bakterieller Diversität und 

Aktivität wurde auf regionaler Ebene (7–500 km) in Tiefseesedimenten des Arktischen Ozeans 

untersucht (Kapitel III). Der Eintrag von Phytodetritus (pflanzliche Überreste), als eine der 

Hauptenergiequellen am Tiefseeboden, konnte als wichtiger Einflussfaktor für Veränderungen in 

bakterieller Diversität und Aktivität entlang der untersuchten Tiefentransekte nachgewiesen 

werden. Die Ergebnisse deuten darauf hin, dass Bakteriengemeinschaften ähnliche 

Zusammenhänge zwischen Energieverfügbarkeit und Diversität aufweisen könnten, wie die, die 

bei Makroorganismen in der Tiefsee beschrieben worden sind. Des Weiteren wurden 

unterschiedliche Reaktionen einzelner Gruppen auf Veränderungen in der Phytodetritus-

Verfügbarkeit aufgezeigt, die auf unterschiedliche ökologische Strategien dieser Gruppen 

hinweisen. Zukünftig könnte dies eine Charakterisierung von Indikatorgruppen für bestimmte 

Umweltbedingungen ermöglichen.  

Zuletzt wurde mit Hilfe experimenteller Holzeinträge in die Tiefsee der Einfluss dieser 

speziellen Energiequelle auf die Biogeochemie und bakterielle Diversität am Tiefseeboden 

untersucht (Kapitel IV). Der Eintrag von Holz in die Tiefsee stellt einen lokalen Eintrag 

organischen Materials in eine anderenfalls weitgehend nahrungsarme Umgebung dar. 

Holzbesiedlungsexperimente wurden in der Tiefsee des östlichen Mittelmeeres versenkt und  

nach einem Jahr konnten die Entwicklung sulfidischer Nischen, sowie die Besiedlung 

spezialisierter Gemeinschaften an diesen lokalen Nahrungseinträgen beobachtet werden.  
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  Introduction 

 

1.1 Biodiversity and Biogeography 

 

The term biodiversity originates from a combination of the words “biological diversity”, 

and is the sum of all biological variation, from the level of genes to ecosystems (Purvis and 

Hector, 2000). Diversity can be measured in different ways; for example, species richness and 

species evenness are commonly used to describe diversity in given area (BOX 1). Furthermore, 

it can be differentiated between the use of species incidence (presence-absence) or relative 

abundance data in comparisons of diversity between samples. The term alpha-diversity refers to 

the diversity within one sample or location and is often measured as species richness (i.e., number 

of species), while beta-diversity compares differences in diversity between two or more samples 

or locations (BOX 1). Biodiversity is not distributed homogenously across the Earth, but shows 

patterns of variation between different geographic regions and with time (Gaston, 2000). 

Accordingly, biogeography is the study of the distribution of biodiversity over space, time, and 

along environmental gradients. Biogeographic studies address a variety of questions, e.g., why are 

species or broader taxonomic groups confined to their present range, how have historical events 

such as continental drift or recent climate change shaped species distributions, or, what role do 

climate, topography and interactions with other organisms play in limiting the distribution of a 

species (Lomolino et al., 2005). The study of diversity patterns is therefore also important in 

order to understand the ecological function of a group of organisms in the environment. 

Historically, studies of biogeography have focused on macroorganisms, and to date little is 

known about microbial biogeography.  

 

1.1.1 Why study patterns of bacterial biodiversity?  

Prokaryotes are highly diverse and represent the majority of diversity on Earth (Dykhuizen, 

1998; Pace, 1997; Torsvik and Ovreas, 2002; Venter et al., 2004). Estimates of bacterial diversity 

reach 2 x 106 species in global oceans (Curtis et al., 2002) and with projections of 4–6 x 1030 cells 

on Earth, prokaryotes represent a significant proportion of the Earth’s total biomass (Whitman et 

al., 1998). Bacteria play an important role in global biogeochemical cycles by contributing 

significantly to carbon and nutrient recycling (Azam and Worden, 2004; Falkowski et al., 2008), 

and therefore to ecosystem functioning. In general, biodiversity is assumed to enhance the 

capacity of ecosystems to recover from perturbations (i.e. ecosystem resilience), both by ensuring 

the maintenance of specific functions despite species loss, as well as by diversifying organisms’ 

responses to different perturbations (Chapin et al., 2000; Loreau et al., 2001; Naeem and Li, 1997; 

Naeem, 1998). These ideas are mainly based on studies of macroorganisms, but first 
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investigations of microbial communities have shown that changes in microbial community 

composition and structure may also directly affect ecosystem processes (Allison and Martiny, 

2008). All of these considerations emphasize the urgent need to better understand patterns of 

bacterial diversity in the context of space, time as well as according to environmental factors, if 

we are to better estimate the effects of future environmental changes on ecosystem 

functioning.  

 

 

 

1.1.2 Biogeographic patterns of bacteria  

In contrast to classical ecology, where studies have historically focused on plants and 

animals, the field of microbial ecology is much younger, a major reason being the lack of 

appropriate methods until a couple of decades ago. With emerging molecular tools the field of 

microbial ecology is just starting to pick up pace; however, the application of theoretical concepts 

is largely missing (Prosser et al., 2007). The earliest, and most famous statement in microbial 

biogeography goes back to Baas-Becking (1934) who wrote: “everything is everywhere, but, the 

environment selects”. His statement implies that the small size, high abundance, and virtually 

unlimited dispersal of bacteria should lead to a cosmopolitan distribution, and local communities 

would then be selected by contemporary environmental conditions. A cosmopolitan distribution 

of microbial organisms has indeed been proposed by some studies (Fenchel and Finlay, 2004; 

Finlay and Clarke, 1999; Finlay, 2002). Nonetheless, a number of studies have refined this view, 

reporting on a heterogeneous distribution of microbial communities across space, time 

BOX 1| Measures of diversity 
             
 
Alpha-diversity. Alpha diversity, or species richness, refers to the total number of species present 
within a particular area or community. Species richness is sensitive to sampling effort and requires 
standardized sampling and counting procedures, or the use of estimators that correct for 
undersampling biases (e.g. Chao1 or ACE estimators). Estimates of bacterial richness are described 
in more detail in BOX 3.  
 
Species evenness. Evenness is a measure of diversity that considers how individuals are distributed 
among species (Purvis and Hector, 2000), e.g., a sample with 20 species A and 23 species B would be 
more even than a sample with 20 species A and 100 species B.  
 
Beta-diversity. Beta-diversity compares the variation in community composition (presence-absence) 
or structure (relative abundance data) between two or more samples (Whittaker, 1972). It describes the 
dynamics of a community across space, time, or along an environmental gradient (Magurran, 2004). 
Measures of dissimilarity are obtained in pairwise comparisons between samples. The Bray-Curtis 
index is commonly used for abundance data (Bray and Curtis, 1957) and the Jaccard index (Jaccard, 
1901) for presence-absence data. For more information on the properties of these indices and how 
they are calculated, see (Anderson et al., 2011; Legendre and Legendre, 1998).  
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and along environmental gradients in a variety of habitats (see Martiny et al., 2006 for a 

review). For example: a restricted dispersal of soil bacteria across continents suggested a certain 

degree of spatial isolation (Fulthorpe et al., 2008), and in another study soil pH was proposed as 

an important structuring factor for soil bacterial communities (Fierer and Jackson, 2006; Lauber 

et al., 2009). Bacterial diversity varied with environmental heterogeneity in a salt marsh (Horner-

Devine et al., 2004), and also along gradients of primary productivity in aquatic mesocosms 

(Horner-Devine et al., 2003). In lakes, bacterial communities were shown to vary according to 

physicochemical characteristics, e.g., pH, temperature, and lake water retention time (Lindstrom 

et al., 2005; Logue and Lindstrom, 2008). Lastly, seasonal effects have been observed for oceanic 

bacterioplankton (Fuhrman et al., 2006; Gilbert et al., 2009) and for bacterial communities in 

coastal sediments (Böer et al., 2009). Studies in the marine realm have mainly focused on pelagic 

ecosystems. In concordance with results from terrestrial and aquatic ecosystems, they evidenced 

distinct patterns in bacterioplankton communities that were related to, e.g., water depth (DeLong 

et al., 2006), temperature and latitude (Fuhrman et al., 2008; Pommier et al., 2007), and different 

water masses (Agogue et al., 2011; Galand et al., 2009).  

The observation of taxa-area relationships, i.e., a positive relationship between the 

number of species in an area and the size of that area, provided further evidence for a microbial 

biogeography (Bell et al., 2005; Green and Bohannan, 2006; Green et al., 2004; Horner-Devine et 

al., 2004): relationships were steeper in discontinuous habitats, implying that the distribution of 

microbial communities may to some degree be shaped by historical contingencies. Indeed, 

dispersal is likely to be lower in discontinuous habitats, which may favor local adaptation or 

speciation. This was further affirmed by several studies that found indications of dispersal 

limitation and endemism in bacterial communities. For example, in hot springs, Papke et al. 

(2003) reported on the genetic isolation of cyanobacteria by geographic barriers, and Whitaker et 

al. (2003) evidenced a strong relationship between genetic and geographic distance together with 

endemic populations of hyperthermophilic archaea in geothermal hot springs. Also, studies of 

less extreme habitats (e.g. soils, marine bacterioplankton) suggested the occurrence of endemism 

in bacterial communities (Cho and Tiedje, 2000; Fulthorpe et al., 1998; Fulthorpe et al., 2008; 

Pommier et al., 2007).  

Hence, the distribution of microorganisms appears to be non-random and may be driven by 

contemporary environmental factors as well as by historical effects (e.g., isolation by distance, 

geographic barriers, past environmental conditions) (Ramette and Tiedje, 2007). An important 

objective in current microbial ecology is to disentangle the relative effects of contemporary 

environmental factors versus the legacies of historical events on present day distribution 
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patterns, in order to identify the major underlying processes shaping microbial community 

composition and diversity (Martiny et al., 2006; Ramette and Tiedje, 2007). The work presented 

in this thesis was aimed at testing whether and to what extent these concepts may apply to 

bacterial communities in surface sediments of the largely underexplored deep seafloor.  

 

1.2 The deep-sea environment  

The deep seafloor below 200 m water depth covers approximately 65% of the Earth’s 

surface and therefore presents the largest continuous ecosystem on Earth, but also one of the 

least understood (Figure 1). It comprises a variety of habitats (Figure 2a), but most of the deep 

seafloor is covered with fine-grained sediments (Figure 2b), that are usually well oxygenated 

across the upper few cm. Currents are generally weak and most of the deep sea is characterized 

by low temperatures (between -1 and 4°C), high pressures, and the absence of light. Due to the 

absence of light there is no photosynthetic primary production in the deep sea and fixation of 

inorganic carbon only takes place at patchily distributed chemosynthetic ecosystems such as 

hydrothermal vents and cold seeps. Therefore, benthic communities mainly depend on the input 

of organic matter produced in the euphotic zone. However, most of the organic matter is utilized 

during its descent through the water column, and only 1–5% of the primary produced organic 

matter (~ 1 g C m-2 yr-1) reaches the seafloor, making the deep sea an oligotrophic and extremely 

energy-limited environment (Jahnke and Jackson, 1992; Jorgensen and Boetius, 2007; Klages et 

al., 2003; Lampitt and Antia, 1997; Smith et al., 2008). The deep sea constitutes a significant 

long-term sink in the global carbon budget and may remove carbon from the atmosphere for 

centuries or millions of years (Jahnke et al., 1990). The recycling of organic matter at the deep 

seafloor is therefore a key component of the global carbon cycle and links the deep-sea 

ecosystem to the global biosphere (Seiter et al., 2005; Wenzhöfer and Glud, 2002).  

Hence, the functioning of deep-sea ecosystems is crucial to global biogeochemical 

cycles. Additionally, deep-sea ecosystems provide a number of goods and services of importance 

for society; some examples include the provision of oil and gas, biomass, climate regulation, 

nutrient regeneration, food (Danovaro et al., 2009), and unexplored genetic diversity (Deming, 

1998). Despite its remoteness, the deep sea is exposed to some principal human threats, such as 

the disposal of wastes (radioactive wastes, munitions and carbon dioxide), contamination during 

oil and gas extraction, deep-sea fishing, marine mineral extraction, as well as climate change 

(Glover and Smith, 2003).  These factors have yet unknown effects on deep-sea biodiversity and 

functioning. Even now, the deep sea remains one of the least explored regions on Earth, 

mainly due to the difficulties associated with accessing and sampling this region. However, recent 
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improvements of underwater technologies, e.g., manned submersibles, remotely operated 

vehicles, lander systems, and in situ technologies, have enabled in situ observations and 

measurements at the seafloor (Boetius and Wenzhöfer, 2009), as well as targeted sampling and 

long-term observations, which will help to develop a better understanding of diversity and 

ecosystem functioning at the deep seafloor.  

 

 

 
Figure 1 Bathymetry of the ocean floor. The deep seafloor covers almost 95% of the seabed and is represented by 
all the blue and purple regions, except for the light blue parts primarily in shelf regions around continents (adapted 
from: http://en.wikipedia.org/wiki/Bathymetry, downloaded: 30.04.2011).  
 
 
 

Figure 2 Vertical section of the seafloor (a) and bathyal ocean floor at a continental margin (b) (adapted from 
Jorgensen and Boetius, 2007). Image b is courtesy of the Monterey Bay Aquarium Research Institute, California, 
USA.  
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1.2.1 General patterns of faunal diversity in the deep sea  

While early researchers believed the deep sea to be a species-poor environment due to the 

extreme conditions (BOX 2), surprisingly high species diversity was discovered at the deep 

seafloor (Hessler and Sanders, 1967) and extrapolations reached estimates of at least 1 million 

and up to 10 million species of macrofaunal organisms (Grassle and Maciolek, 1992). 

Explanations for this tremendous diversity have included effects of predation (Dayton and 

Hessler, 1972), and the long-term environmental stability in the deep sea that may have allowed 

diversity to develop through specialized biological interactions (stability-time hypothesis) 

(Sanders, 1968). But the most widely accepted mechanism proposed to be responsible for high 

diversity at the deep seafloor, was the concept of patch dynamics, where small-scale disturbances 

at the seafloor, e.g., temporal and spatial variations in food supply, would permit high local 

diversity by creating successional sequences that are temporally out of phase (Grassle and 

Sanders, 1973).  

Variations of diversity in the deep sea have historically mainly been studied on mega- and 

macrofaunal organisms. Patterns have been observed, for example, with changes in sediment 

grain size (Etter and Grassle, 1992), indicating differences in resource partitioning (Rex and Etter, 

2010), and along latitudinal gradients, with some groups exhibiting poleward decreases in species 

BOX 2| Early deep-sea research          
             
 
First deep-sea cruises. Early researchers believed the deep sea to be a desert-like environment, 
isolated from the rest of the biosphere and devoid of life (Forbes, 1844). This conception was 
ultimately proven wrong when in 1860 a deep-sea cable was brought up from 1830 m water depth 
and was covered with organisms. A little over a decade later, the British Challenger expedition (1872-
1876) provided a first overview of major seafloor features such as the deep ocean basins and 
discovered more than 4700 new species (Lalli and Parsons, 2004); and more than 50 years after that 
the second Danish Galathea expedition (1950-1952) obtained biological material from over 10,000 m 
water depth in the Mariana Trench (Bruun et al., 1956).  

 
Microbial deep-sea research. Microbial deep-sea research began in 1882/1883 with the French 
Travaillieur and Talisman expeditions, where bacteria were detected in samples from 5000 m depth 
(Jannasch and Taylor, 1984). Later, living microorganisms were recovered from 10,400 m depth 
(Zobell, 1952). Due to the low temperatures and high pressure, the cell machinery of deep-sea 
bacteria must be specifically adapted to work under these conditions (e.g. Bartlett et al., 1989; Chi and 
Bartlett, 1993; Lauro and Bartlett, 2008; Li et al., 1998; Nakasone et al., 1998; Yayanos, 1995); first 
isolates were described as psychrophilic (“cold-loving”) and piezophilic (“pressure-loving”). Most of 
the cultivated strains of psychrophilic and piezophilic deep-sea bacteria belong to the 
Gammaproteobacteria, and the genera Shewanella, Photobacterium, Colwellia, Moritella (DeLong et al., 1997) 
and Psychromonas (Nogi et al., 2002).  
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richness (Rex et al., 1993; Rex et al., 2000; Stuart et al., 2003). The most prominent patterns of 

species diversity, however, have been observed along bathymetric gradients, together with an 

exponential decrease in benthic standing stock, and were mainly explained by the decrease in 

food availability that occurs with increasing water depth (Gooday et al., 1990; Rex and Etter, 

2010). For a variety of organisms, unimodal (hump-shaped) relationships between species 

diversity and water depth were reported, with highest diversity at intermediate water depths, and 

lower diversity at the shallowest and deepest stations. These were mainly ascribed to changes in 

food (energy) availability and its potential mediation of biological interactions (Rex, 1973; Rex, 

1976; Rex, 1981). Depressed diversity in the abyss is attributed to food limitation constraining the 

number of species that can survive, resulting in extremely low population densities (Rex, 1973). 

As food supply increases, diversity may increase because more species can maintain viable 

populations. The decline of diversity at higher productivity levels may then be due to competitive 

exclusion (Huston, 1979; Levin et al., 2001; Rex, 1976), higher variability in productivity, oxygen 

limitation (Levin et al., 2001), and predation (Rex, 1981).  

Knowledge on global distribution ranges and large-scale biogeographic patterns of deep-sea 

fauna is limited because data are scarce. A restriction to specific oceanic regions has been 

proposed for macrofauna (Vinogradova, 1979; Vinogradova, 1997), but many taxa appear to be 

broadly distributed across the deep-sea floor (McClain and Hardy, 2010). Additional sampling 

and more complete taxonomic information will be needed to decipher biogeographic ranges of 

benthic organisms in the deep sea and disentangle the possible influence of historical events and 

contemporary environmental factors. A small number of studies have also addressed the 

distribution and diversity patterns of smaller benthic size classes, suggesting latitudinal patterns 

for benthic foraminifera (Culver and Buzas, 2000) as well as bathymetric and latitudinal patterns 

of nematode diversity (Danovaro et al., 2008; Danovaro et al., 2009). The most recent study has 

indicated that environmental gradients may shape microbial eukaryote community structure at the 

landscape scale (Scheckenbach et al., 2010). In contrast, biogeographic patterns of bacterial 

communities at the deep seafloor remain a black box.   

 

1.2.2 Significance of bacteria at the deep seafloor  

Seafloor sediments contain 10–10,000-fold more bacterial cells per unit volume than 

productive ocean-surface waters and bacteria likely comprise the major fraction of the total 

microbial community of the detritus-fueled oxic seafloor (Jorgensen and Boetius, 2007). Bacterial 

cell numbers in deep-sea surface sediments reach the order of 109 cells per g sediment, which is 

comparable to coastal sediments (Boetius et al., 1996; Deming and Colwell, 1982; Guezennec and 
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FialaMedioni, 1996; Harvey et al., 1984; Schauer et al., 2010). Due to a rapid decline of biomass 

in benthic meio-, macro- and megafaunal organisms and only to a smaller extent in bacterial 

biomass, the relative contribution of bacteria to benthic biomass increases with water depth, i.e., 

with decreasing food supply (Rex et al., 2006; Rex and Etter, 2010; Wei et al., 2010) (Figure 3). 

Thus, in abyssal sediments, bacteria can make up 95% of the total benthic biomass (Pfannkuche, 

1992; Rowe et al., 1991). In addition, the more recent discovery of a deep-subsurface biosphere 

has provided evidence for prokaryotic populations as deep as 800 m below the seafloor (Parkes et 

al., 2000; Sturt et al., 2004; Teske, 2006; Zink et al., 2003), and may indicate that the largely 

unexplored deep subsurface ocean floor contains the largest reservoir of microbial life on Earth 

(Whitman et al., 1998).  

 
 
Figure 3 Biomass as a function of depth for 
four benthic size classes: bacteria, meiofauna, 
macrofauna and megafauna (Wei et al., 2010). 
Animal biomass decreases with depth while 
bacterial biomass stays nearly constant.  

 

 

 

 

 

 

 

 

 

 

Bacteria not only dominate deep-sea sediments in terms of abundance and biomass but they 

are an integral part of the recycling of organic matter and nutrients, i.e., for ecosystem 

functioning, at the deep seafloor (Figure 4). They dominate the turnover of organic matter in 

deep-sea sediments (Deming and Baross, 1993; Pfannkuche, 1993) and therefore play an 

essential role in the global carbon cycle. Accordingly, bacteria play an important role in the 

deep-sea benthic food web, by being primary decomposers and constituting an energy (food) 

source for other groups of organisms such as flagellates and foraminifera (Gooday et al., 1990; 

Turley, 2000) which present links to higher trophic levels, and emphasize the importance of 

bacterial communities in deep benthic ecosystems (Deming and Baross, 1993). Understanding the 
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diversity, distribution, and activity of bacterial communities in deep-sea sediments is therefore an 

essential step toward a better picture of ecosystem functioning at the deep seafloor and its 

influence on global biogeochemical cycles.  

 

 
Figure 4 Organic matter respiration in the water 
column and in deep-sea surface sediments (adapted 
from DeLong, 2004). Organic matter is produced in the 
euphotic zone and sinks to the seafloor where bacterial 
communities play an important role for the turnover of 
organic matter, by aerobic processes in the upper 
sediment horizons and anaerobic processes in the 
deeper sediment layers.  

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 Early studies of bacterial deep-sea communities  

A first global-scale assessment of the distribution of bacterial biomass in deep-sea sediments 

indicated water depth to be a weak predictor of changes in bacterial biomass, while the 

magnitude of particulate organic carbon (POC) flux proved a strong one (Deming and Yager, 

1992). Several other studies also evidenced a positive relationship of bacterial abundance and 

biomass at the seafloor with the input of phytodetritus (Boetius and Damm, 1998; Smith et 

al., 1997; Smith et al., 2008; Turley and Dixon, 2002). In fact, bacterial communities at the deep 

seafloor were shown to quickly respond to the deposition of organic matter (Lochte and Turley, 

1988; Turley and Lochte, 1990; Witte et al., 2003a). Although sinking particles may already be 

colonized and partly degraded on their way through the water column (Turley and Mackie, 1994; 

Turley et al., 1995), bacterial communities at the deep seafloor likely play a significant role for the 

degradation of organic material at the seafloor. Local communities are much more adapted to the 
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low temperatures and high pressure than surface-derived bacteria whose metabolic activities may 

be slowed down under these conditions (Deming and Baross, 1993). Furthermore, the input of 

phytodetritus and other labile organic materials to deep-sea sediments was shown to induce the 

production of hydrolytic extracellular enzymes like beta-glucosidase and chitobiase (Boetius and 

Lochte, 1994; Vetter and Deming, 1994). The availability of energy in the form of organic matter 

produced in surface waters thus seems to play an important role not only for larger benthic size 

classes, but also for the distribution of bacterial biomass and activity at the seafloor. However, up 

to this point in time, the diversity of bacterial communities at the deep seafloor, their major 

representatives, and distribution patterns remained largely uncharted.  

 

1.2.4 Molecular studies of bacterial diversity at the seafloor  

In recent years, several molecular studies have become available that describe bacterial 

diversity in deep-sea surface sediments. Most of them were based on 16S rRNA gene clone 

libraries and thus confined to one or a few samples in locally restricted areas. Hence, they do not 

provide the necessary framework to statistically test links between bacterial diversity patterns and 

spatial or environmental parameters. However, they have yielded valuable insights into bacterial 

taxonomic diversity in deep-sea sediments (see also Orcutt et al., 2011). The taxa most commonly 

reported as dominating deep-sea sediments are Gammaproteobacteria, Deltaproteobacteria, 

Alphaproteobacteria, Acidobacteria, and Actinobacteria (Table 1). Some differences can be observed in 

the taxa and their relative ranking within and between oceanic regions at this broad level of 

comparison. For example, the Eastern Mediterranean is not dominated by Gammaproteobacteria, 

but rather by Planctomycetes, Acidobacteria or Chloroflexi. Nonetheless, a systematic and 

comprehensive description and analysis of bacterial diversity patterns in deep-sea 

sediments in relation to spatial and environmental parameters is still missing.  
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Table 1 Most common bacterial taxa in decreasing order of their dominance as observed in several studies of deep-
sea surface sediments. Proteobacterial classes Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, 
Epsilonproteobacteria, Gammaproteobacteria are abbreviated as Alpha-, Beta-, Delta-,  Epsilon-, and Gamma-.  

Location Method Most common taxa Reference 

Arctic  16S rRNA gene 
clone library 

Delta-, Gamma-, Alpha-, Cytophaga, 
Flavobacteria 

(Ravenschlag et al., 1999) 

    
Arctic  16S rRNA gene 

clone library 
Gamma-, Alpha-, Delta-, Beta- (Tian et al., 2009)  

    
Pacific Arctic Ocean 16S rRNA gene 

clone library 
Gamma-, Beta-, Alpha-, Delta- (Li et al., 2009)  

    
North Pacific 16S rRNA gene 

clone library 
Gamma-, Delta-, Actinobacteria (Kouridaki et al., 2010)  

    
Pacific (Sagami Bay, 
Japan) 

16S rRNA gene 
clone library 

Gamma-, Delta-, Epsilon-, 
Verrucomicrobia  

(Urakawa et al., 1999)  

    
Pacific  16S rRNA gene 

clone library 
Gamma-, Cytophaga, Delta-, Alpha- (Li et al., 1999)  

    
East Pacific Rise 16S-V3 rDNA 

sequences / 
DGGE 

Chloroflexi, Gamma-, Actinobacteria (Li et al., 2008)  

    
East Pacific 16S rRNA gene 

clone library 
Gamma-, Alpha-, Delta-, Chloroflexi (Dang et al., 2009)  

    
Eastern 
Mediterranean  

16S rRNA gene 
clone library 

Chloroflexi, Alpha-, Delta-, Acido- (Heijs et al., 2008)  

    
Eastern 
Mediterranean 

16S rRNA gene 
clone library 

Acidobacteria, Gamma-, Actinobacteria (Kouridaki et al., 2010)  

    
Eastern 
Mediterranean (Sea 
of Marmara) 

Metagenomic 
study 

Planctomycetes, Delta-, Gamma-, 
Acidobacteria  

(Quaiser et al., 2011)  

    
South Atlantic 16S rRNA gene 

clone library 
Gamma-, Delta-, Alpha-, Planctomycetes, 
Acidobacteria  

(Schauer et al., 2010)  

 

 

1.3 Factors that may influence bacterial diversity and distribution in deep-sea sediments  

Although a structuring of bacterial diversity has been demonstrated along spatial and 

environmental gradients in a variety of habitats, these results cannot be easily translated to the 

deep-sea environment. The deep seafloor presents a largely under-sampled habitat with many 

unique characters that may influence the distribution of bacterial diversity in various ways. Here, 

I consider three major factors that are likely important in structuring bacterial communities in 

deep-sea surface sediments (in this context defined as the upper 2 cm), and that present the main 

foci of this thesis.  
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1.3.1 Dispersal limitation  

 Theoretically, deep-sea organisms may show no restriction in their geographical 

range. For one, the deep sea is characterized by relatively stable and uniform conditions (e.g., 

low temperatures, high pressure, absence of light), and may be relatively isolated from 

atmospheric climatic fluctuations, so that environmental factors may have little structuring effect 

on deep-sea benthic communities. Physical disturbances such as near-bottom currents (Gage and 

Tyler, 1991; Gage, 1997; Levin et al., 2001) or periodic benthic storms (Hollister et al., 1984; 

Richardson et al., 1993), or feeding activity of benthic fauna, may lead to resuspension of deep-

sea sediments and facilitate a long-range dispersal of bacteria, comparable to what has been 

proposed for the larval stages of benthic deep-sea fauna (Rex and Etter, 2010). In fact, broad 

geographic ranges and little evidence for dispersal limitation have been reported for many faunal 

deep-sea organisms (McClain and Hardy, 2010), though some macrofauna were shown to be 

restricted to specific oceanic regions (Vinogradova, 1979; Vinogradova, 1997), or isolated by 

geographic barriers (Brandt et al., 2005). However, data are still too scarce to allow for well-

grounded conclusions.  

In contrast to the assumption of large dispersal ranges, dispersal of bacterial communities 

in deep-sea sediments may also be limited due to a lack of physical mixing, as currents are 

usually weak across large parts of the deep-sea floor and bacteria associated with the sediment 

matrix may be relatively immobile. This would limit the potential for long-range transport in 

comparison to, e.g., the water column, and should make geographic distance a good predictor for 

changes in bacterial communities. Furthermore, geological structures such as deep-sea mountain 

ranges, as shown for peracarid crustaceans (Brandt et al., 2005), or oceanographic properties such 

as water masses (Galand et al., 2009) may act as biogeographic barriers and limit the dispersal of 

bacterial communities in the deep sea. As yet, almost no studies testing dispersal ranges of 

bacterial communities in the deep sea are available. This was investigated in Chapters I and II.  

 

1.3.2 Energy availability at the seafloor  

The availability of energy at the seafloor is largely dependent on the input of organic matter, 

primarily as surface-derived phytodetritus, and is a main factor structuring benthic 

communities (Klages et al., 2003; Smith et al., 2008). As mentioned earlier, relationships 

between energy availability and abundances, biomass, and biodiversity of various size classes of 

benthic organisms have been described (Gooday, 1988; Soltwedel et al., 2009; Turley et al., 1988; 

Vanaverbeke et al., 2004; Witte et al., 2003b). The input of phytodetritus to the deep sea was also 

shown to influence bacterial biomass and activity (Boetius and Lochte, 1994; Deming and Yager, 
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1992; Lochte, 1992; Vetter and Deming, 1994). However, very little is known on how the 

composition and structure of benthic bacterial communities could be affected by spatial and 

temporal variations in phytodetritus availability, which co-varies with water depth, distance from 

coast, and seasons (Jahnke, 1996; Rowe et al., 1994; Suess, 1980).  

Investigations of experimental systems have suggested that the availability of energy, 

measured as primary productivity or organic carbon concentration, may be an important factor 

structuring bacterial alpha- and beta-diversity (i.e., changes in richness and community 

composition and structure, respectively). Primary productivity was shown to influence bacterial 

community composition in aquatic mesocosms (Horner-Devine et al., 2003), and diversity of 

Pseudomonas fluorescens genotypes in microcosms (Kassen et al., 2000). Furthermore, changes in 

bacterial community composition in response to organic carbon input were also evidenced in 

seawater mesocosms (Riemann et al., 2000) and in aquatic batch cultures (Eiler et al., 2003). A 

recent review on energy/productivity-diversity relationships in aquatic ecosystems suggests that 

microbial communities may exhibit patterns similar to the ones observed for macroorganisms 

(Smith, 2007). In classical ecology the study of productivity- and energy-diversity relationships 

has a long tradition and although there are many possible forms of this relationship, the most 

commonly observed are positively increasing or hump-shaped curves (Cardinale et al., 2009; 

Dodson et al., 2000; Mittelbach et al., 2001; Waide et al., 1999).  

Studies of bacterial communities in relation to energy availability in natural (marine) 

ecosystems are sparse. On a global scale, marine bacterioplankton diversity (richness) was weakly 

positively correlated with chlorophyll a as a proxy for surface productivity (Fuhrman et al., 2008; 

Pommier et al., 2007). Few studies have reported on specific relationships between organic 

matter availability and bacterial community composition in benthic marine systems. For example, 

bacterial community composition was influenced by phytoplankton deposition in North Sea 

sediments (Franco et al., 2007), and by organic carbon and chlorophyll concentrations in Eastern 

Mediterranean sediments (Polymenakou et al., 2005). Similarly, chitin enrichments (a main 

component of particulate organic matter reaching the deep seafloor) resulted in changes in 

bacterial community structure (Kanzog et al., 2009). Thus, there are strong indications that 

energy availability is an important factor structuring bacterial communities in marine sediments 

and in other environments, and it may be of particular importance in the energy-limited 

deep sea. It also remains largely unknown which taxa may specifically respond to the input of 

phytodetritus to deep-sea sediments. Therefore, we investigated how changes in phytodetritus 

availability affect bacterial diversity and activity in Arctic Ocean sediments in Chapter III.  
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1.3.3 Chemosynthetic ecosystems in the deep sea - Wood falls as a special energy source   

Hydrothermal vent (e.g. Fisher et al., 2007) and cold seep ecosystems (e.g. Foucher et al., 

2009; Vanreusel et al., 2009) were discovered only about 30 years ago (Figure 5a,b). Here, 

chemolithoautotrophic bacteria act as primary producers in the deep, dark ocean and gain 

energy by the oxidation of reduced chemical compounds such as sulfide and methane that 

emerge through hydrothermalism and hydrocarbon venting (Jorgensen and Boetius, 2007). With 

specific seep and vent microorganisms at the basis of the food chain, such localized habitats are 

able to sustain rich communities of animals that must, however, be adapted to the extreme 

conditions, e.g., steep chemical and temperature gradients. In addition to free-living 

chemolithoautotrophic bacteria, a variety of symbioses with vent and seep fauna have been 

discovered, where bacterial ecto- and endo-symbionts transform the chemical energy of reduced 

compounds into food for their hosts (Dubilier et al., 2008). Chemosynthetic ecosystems thus 

present biogeochemical and biological hotspots in the deep sea.  

 
 

Figure 5 Hydrothermal 
vent (a), cold seep (b), 
whale fall (c) and wood 
fall (d) ecosystems 
provide localized 
sources of energy to 
benthic deep-sea 
communities. Image a 
copyright University of 
Victoria, Canada; 
images b and d are 
courtesy of Ifremer, 
France; and image c 
was taken by C. Smith 
(from Treude et al., 
2009).  
 

 

 

 

 

 

Due to the patchy distribution of these ecosystems, which are mainly located along mid-

ocean ridges or back-arc basins (hydrothermal vents) or along continental margins (seeps), the 

distribution and evolutionary history of animals thriving in these environments is a major 

research question. The discovery of diverse deep-sea communities at whale falls (whale carcasses 

deposited at the seafloor) in 1987 marked the exploration of a new, unique kind of deep-sea 
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ecosystem (Smith and Baco, 2003). Similarly, the input of wood and other plant remains, such as 

kelp, provide a locally and temporally restricted input of organic matter to the deep sea and serve 

as a special source of energy in an otherwise largely oligotrophic environment. Local degradation 

processes at large organic food falls may lead to the establishment of reducing, sulfidic conditions 

at the seafloor that may facilitate the settlement of chemosynthetic organisms. For instance, the 

decomposition of the soft tissue and bone lipids of whales leads to the production of sulfide, 

creating conditions similar to those experienced at vents and seeps (Deming et al., 1997). 

Observations of shared and closely related organisms at hydrothermal vents, cold seeps, wood 

falls, and whale carcasses led to the hypothesis that large food falls may present stepping stones 

in the evolution and distribution of chemoautotrophic communities in the deep sea, which are 

constrained to sulfide- and methane-rich niches for their energy supply (Baco et al., 1999; Distel 

et al., 2000; Glover et al., 2005; Lorion et al., 2009; Smith et al., 1989). Considerable effort has 

been spent on the exploration of hydrothermal vent and cold seep ecosystems as well as whale 

falls, but the role of wood falls as localized boosts of organic material to the deep seafloor 

remains largely unstudied.  

Wood falls are derived from branches and stems of trees, which may be transported by 

rivers and oceanic currents to the open ocean, where they soak with water and eventually sink to 

the seafloor (Figure 5d). Their occurrence as specific submarine habitats is traced back in the 

fossil record to 56 to 34 million years ago (Kiel and Goedert, 2006; Kiel, 2008). Wood falls have 

been observed in all oceans and at all water depths (Wolff, 1979), though they are likely to be 

more common off the mouths of rivers, around wooded coastlines, and along shipping routes. 

The colonization of wood substrates was first examined by Turner (1973) who deployed wood at 

abyssal depths and showed a significant colonization already after 1–2 months. While some of 

the taxonomic groups recovered from wood falls have also been reported from other 

chemosynthetic ecosystems, wood falls may also support highly endemic communities of wood-

degrading organisms that are able to utilize the wood under deep-sea conditions. This includes 

wood-boring bivalves that harbor bacterial symbionts in their gills, and play an important role in 

the degradation of wood in the deep sea by converting woody plant material to food sources 

available to other organisms (Turner, 1973). However, free living or other symbiotically 

associated bacteria in particular, and to a lesser extent fungi, may play a major role in the 

degradation of wood in aquatic environments (Huisman et al., 2008; Landy et al., 2008), as they 

are the only organisms known to be able to degrade cellulose and lignin.  

Even some decades after the first observations of wood fall environments (Turner, 1973), 

the succession of colonization and the establishment of biogeochemical gradients at deep-sea 
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wood falls remain poorly understood. Virtually nothing is known about bacterial communities 

colonizing deep-sea wood falls or about the effects of wood and its associated degradation 

processes on surrounding benthic communities. Thus, the impact of large wood falls on bacterial 

communities and sediment biogeochemistry at the seafloor was investigated using wood 

colonization experiments (Chapter IV).  
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1.4 Objectives  

 

As outlined above, research on microbial community ecology and the generation and 

formulation of hypotheses and theories is just starting to pick up pace. New molecular techniques 

and powerful statistical methods (see 1.5) now provide us with the basic framework to study and 

evaluate the structuring of complex natural bacterial communities at different spatial scales and 

evaluate it in an environmental context. We have recently begun to understand that bacterial 

communities show distinct patterns of diversity across space and time, which may be explained 

by environmental properties and historical contingencies such as dispersal limitation. It remains 

an open question, however, whether and to what extent bacterial communities in one of the 

largest ecosystems on Earth, the deep seafloor, show patterns of distribution and by which 

factors they are influenced. Given that bacteria dominate deep-sea sediments in terms of biomass 

and play an important role in carbon cycling at the seafloor, a better understanding of bacterial 

community dynamics will be crucial in order to better predict the effects of global environmental 

changes on the structure and functioning of deep-sea ecosystems.  

 

The overall aim of this thesis was to develop a better understanding of the factors that 

shape bacterial communities at the deep seafloor, and to test whether basic concepts of microbial 

biogeography, e.g., a structuring of diversity across space and with changing environmental 

parameters that have been observed for terrestrial, aquatic, and marine pelagic communities, can 

be extended to bacterial communities in deep-sea sediments.  

 

The specific objectives were to explore bacterial diversity patterns in pelagic deep-sea 

surface sediments both at global and at regional spatial scales, as well as in localized wood fall 

environments, and evaluate them in an environmental context. These objectives were addressed 

by using high-throughput molecular techniques (see 1.5), and applying multivariate statistics in 

order to disentangle the effects of different contextual parameters.  
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The major questions addressed in this thesis were:  

 

 

1) Do we observe isolation-by-distance effects in bacterial deep-sea communities, 

possibly resulting from limited dispersal or the presence of geographic barriers? If a lack 

of physical mixing leads to a limited dispersal of sedimentary bacterial communities this should 

be reflected in a strong effect of geographic distance on bacterial community variation. In 

addition, geographic barriers or oceanographic properties may present barriers for bacterial 

dispersal. (Chapters I and II) 

 

 

2) What is the relationship between energy-availability and bacterial diversity and activity 

in deep-sea sediments? The supply of organic matter to the deep seafloor has been shown to 

be a major structuring factor for larger benthic size classes. Also, bacterial biomass and enzymatic 

activity were shown to respond to the input of organic matter in the form of phytodetritus. But 

whether and in which way bacterial diversity at the seafloor may be affected by changes in energy 

availability and how this may be associated with changes in activity remains largely unknown. 

(Chapter III)  

 

 

3) How do large wood falls influence the biology and biogeochemistry at the seafloor?  

Large organic food falls present a localized source of energy to the otherwise largely oligotrophic 

deep sea. The role of wood falls for the development of reduced, sulfidic environments at the 

deep seafloor, and a subsequent attraction of chemosynthetic organisms, is not well understood. 

It also remains largely unknown which microorganisms colonize the wood and how bacterial 

communities in surrounding sediments may be affected. Wood colonization experiments help to 

develop a better understanding of the role of wood falls as biological and biogeochemical 

hotspots in the deep sea. (Chapter IV)   
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1.5 Methods used to study and interpret patterns of bacterial diversity  

 

Until some decades ago the study of bacteria depended on the cultivation of organisms from 

environmental samples. While this approach is still important in the description of bacterial 

strains and their metabolic capabilities, the process is very selective and a large part of the 

diversity in a sample remains undetected, the so called Great Plate Count Anomaly (Staley and 

Konopka, 1985). In seawater, for example, the proportion of cultivable bacteria is only 0.0001–

0.1% and 0.25% in sediments (Amann et al., 1995; Rappe and Giovannoni, 2003). The 

identification of the 16S rRNA gene as an important tool for the classification of bacteria and 

their phylogenetic relationships (Woese, 1987) paved the way to a variety of cultivation-

independent approaches. Comparative analyses of 16S rRNA gene sequences enabled the 

description of communities from environmental samples without cultivation (Amann et al., 1995) 

and whole groups of organisms that are only known from molecular sequences are believed to be 

quantitatively significant in many environments (Head et al., 1998). The construction of 16S 

rRNA gene clone libraries presents an extensive approach for the analysis of 16S rRNA gene 

sequences from the environment and enables the phylogenetic classification and identification of 

prokaryotes (Amann et al., 1995; Giovannoni et al., 1990, Chapter II). It is, however, relatively 

time-consuming and does not allow a rapid assessment of large numbers of samples. Also, the 

composition of sequences in a clone library does not necessarily reflect the composition of 

microorganisms in the environment. Quantitative information on members of a bacterial 

community may be obtained with other methods, such as fluorescence in situ hybridization 

(FISH) (e.g. Amann and Fuchs, 2008) or quantitative PCR (e.g. Smith and Osborn, 2009), but 

these methods usually target specific groups and not the entire community.  

Only within the last decade other molecular tools have become available, e.g., 

fingerprinting methods and next-generation high-throughput sequencing that enable higher 

throughput of samples and increased sequencing effort. These tools allow for a rapid and cost-

effective exploration of bacterial biodiversity in a large number of samples and enable the 

systematic assessment of bacterial diversity patterns across spatial, temporal and environmental 

gradients. Here, I will introduce the two main techniques applied during this thesis, automated 

ribosomal intergenic spacer analysis and 454 massively parallel tag sequencing.  
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1.5.1 Automated ribosomal intergenic spacer analysis (ARISA) 

There is a variety of molecular methods that use chemical or enzymatic reactions to produce 

specific nucleic acid patterns, i.e., fingerprints, of a community. Some examples are denaturing 

gradient gel electrophoresis (DGGE), single strand conformation polymorphism (SSCP), 

amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment length 

polymorphism (T-RFLP), of which the latter was used in Chapter II. Among these methods, we 

applied ARISA, which targets the intergenic transcribed spacer region (ITS) between the 16S and 

the 23S rRNA genes in the rRNA operon. The length heterogeneity of the ITS region (~ 300–

1200 bp) is used to produce a fingerprint of the microbial community (Fisher and Triplett, 

1999). In brief, community DNA is extracted from an environmental sample and amplified in 

triplicate with primers targeting the ITS region, one of the primers being fluorescently labeled 

(Figure 6). The amplification products are cleaned and analyzed via capillary electrophoresis. 

DNA fragments are separated according to their length, which is determined by comparison to 

an internal size standard. Each peak of the electropherogram corresponds to one bacterial 

ARISA operational taxonomic unit (ARISA OTU), not to be confused with OTUs defined at 3% 

sequence difference in studies of 16S rRNA genes (BOX 3). ARISA profiles are analyzed and 

standardized by applying a binning procedure (Cardinale et al., 2004; Hewson and Fuhrman, 

2006; Ramette, 2009) and by dividing individual peak areas by the total area of peaks in a given 

sample profile to obtain “relative ARISA OTU abundances”.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 ARISA workflow (Böer, 2008). Amplification of the ITS region produces fragments of different length that 
are separated by capillary electrophoresis and detected as individual peaks in the electropherogram.  
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ARISA, per se, does not allow the taxonomic identification of bacteria, but attempts have been 

made to couple ARISA with 16S-ITS gene clone libraries to infer taxonomy of selected ARISA 

OTUs (Brown et al., 2005; Schöttner et al., 2011). Remaining limitations of the process are the 

inability to precisely determine the length of an ARISA OTU, and the fact that several bacterial 

types may have intergenic spacer genes of the same length, as well as intragenomic diversity 

between multiple operons (Brown and Fuhrman, 2005), so that unambiguous assignments may 

not be possible. Some well-known biases have been acknowledged for all PCR-based approaches, 

such as the preferential annealing (Suzuki and Giovannoni, 1996) and amplification of specific 

sequences or the formation of chimeric sequences (Head et al., 1998; Wang and Wang, 1997; 

Wintzingerode et al., 1997). Nevertheless, a number of studies have demonstrated ARISA to be a 

robust and reproducible method for the assessment of bacterial community profiles (Fisher and 

Triplett, 1999; Yannarell and Triplett, 2005).  

 

1.4.2 454 massively parallel tag sequencing (454 MPTS) 

454 massively parallel tag sequencing is based on high-throughput pyrosequencing that 

enables a significantly higher throughput than traditional Sanger sequencing based on capillary 

electrophoresis (Margulies et al., 2005; Sogin et al., 2006). This highly parallel sequencing system 

is able to sequence 25 million bases in a four-hour run (Margulies et al., 2005). Within the 

framework of the International Census of Marine Microbes (ICoMM), Sogin and colleagues 

(2006) introduced a “tag sequencing” strategy that, instead of sequencing nearly full-length 

sequences of the 16S rRNA gene, is based on sequence tags from a hypervariable region in the 

16S rRNA gene, the V6 region (Sogin et al., 2006). In most cases, sequence variation within the 

V6 region appears sufficient to broadly characterize the phylogenetic lineage of an organism 

(Kysela et al., 2005).  

For the studies in this thesis, 454 massively parallel tag sequencing was performed on a 

Genome Sequencer FLX System (Roche, Basel, Switzerland) at the Marine Biological Laboratory 

in Woods Hole, Massachusetts, USA. In the general procedure, extracted DNA is amplified using 

a cocktail of primers targeting the V6 region of the bacterial 16S rRNA gene and including 454 

Life Science’s A and B sequencing adapters. Adapter B enables the immobilization of single-

stranded assemblies onto a bead (Figure 7C). Beads are then emulsified in a water-oil mixture 

containing PCR reagents. A PCR will yield many (about ten million) clonally amplified DNA 

fragments per bead. The emulsion is broken, DNA strands denatured, and beads with single-

stranded DNA templates are deposited in wells of a Pico Titer plate (Figure 7C). Smaller beads 

with immobilized enzymes are added to the wells (Figure 7D) and sequencing reagents (e.g., 
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buffers and nucleotides) are then flowed across the wells of the plate (Figure 7F). Nucleotides are 

flowed sequentially (TACG) and each of the hundreds of thousands of beads with millions of 

copies of DNA is sequenced in parallel (massively parallel tag sequencing). The addition of a 

nucleotide results in a reaction generating a light signal which is recorded by a CCD (charge-

coupled device) camera and generates a peak in a flowgram. In follow-on steps, tag sequences are 

trimmed and low-quality reads removed (Huse et al., 2007; Huse et al., 2008).  

Taxonomic assignments are performed with the Global Alignment for Sequence Taxonomy 

tool (GAST) (Huse et al., 2008; Sogin et al., 2006) and are based on comparisons to a reference 

database of hypervariable V6 regions within the context of full-length rRNA sequences of known 

phylotypes. The limited length (50–70 nucleotides after trimming) of the sequences does not 

allow direct reconstruction of phylogenetic relationships between sequences. But, in contrast to 

ARISA, 454 MPTS allows the extraction of information about taxonomic identity and previously 

undocumented microbial diversity. In addition, the enumeration of the number of different 

rRNA sequences may provide an approximation of the relative abundance of specific microbes in 

a sample (Sogin et al., 2006), although the occurrence of multiple operons in strains generally 

limits the quality of quantitative information obtained in studies of the 16S rRNA gene. For 

further analyses of community patterns, broad (e.g., phylum, class), as well as fine levels of 

taxonomic resolution (e.g., operational taxonomic units defined at 3% sequence difference, BOX 

3) were used.  

 

 

 

Figure 7 Workflow 454 massively parallel tag sequencing (adapted from Margulies et al. 2005; Roche Genome 
Sequencer FLX System brochure; www.roche-applied-science.com). For explanations of the individual steps see text.  
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BOX| 3 Operational taxonomic units and bacterial richness  
             
 
Operational taxonomic units (OTU). There is no commonly accepted theoretical species concept 
for microbes (Rossello-Mora and Amann, 2001; Staley, 2006). The classical definition of a bacterial 
species is a 70% DNA-DNA hybridization of their genome (Stackebrandt and Goebel, 1994). In 
addition, microbes whose 16S rRNA gene sequences are <97% (Stackebrandt and Goebel, 1994) or 
<98.7% (Stackebrandt and Ebers, 2006) identical are likely to be of different species, as these 
differences correlate with <70% DNA-DNA homology. Though the 3% difference threshold is not 
flawless, e.g. some microbes have identical rRNA genes but their genome similarities fall below the 70% 
threshold (Acinas et al., 2004), it serves as a general guideline in molecular studies.  
In practice, many researchers define bacterial OTUs at 3% sequence difference and this definition 
was also adopted in Chapter I, and with a slightly more conservative definition at 2% in Chapter II. 
Furthermore, the studies in this thesis generally focused on relative comparisons of diversity and 
therefore may to a certain extent overcome problems associated with different OTU definitions 
(Hughes et al., 2001). Also, highly similar patterns of diversity were observed with ARISA and 454 tag 
sequencing and on different taxonomic levels of 454 MPTS data (Chapter III, Gobet et al., in 
preparation), which makes us confident that we are describing ecologically meaningful patterns.  

 
Bacterial richness. Estimates of bacterial richness are often inferred from rarefaction curves, by 
plotting the number of recovered OTUs versus the number of sequences sampled (Gotelli and Colwell, 
2001; Kemp and Aller, 2004, Chapter II). These estimates reveal that the “true” bacterial diversity is 
usually larger than what was sampled. But even with next-generation sequencing, which allows insights 
into the rare biosphere (i.e. members of very low abundance), it seems that bacterial diversity is still 
undersampled (Sogin et al., 2006) and a considerable increase in sequencing effort would be required to 
more accurately determine the true number of bacterial species present (Quince et al., 2008). Other 
ways to estimate species richness is the use of coverage-based non-parametric estimators such as the 
Chao and ACE estimators (Chao, 1984; Chao and Lee, 1992). These estimators are very conservative 
and may still largely underestimate true microbial diversity (Hong et al., 2006; Quince et al., 2008). The 
true extent of bacterial richness might never be accurately determined, but the use of relative 
comparisons of patterns in alpha- and beta-diversity between different samples has been shown to be 
conserved, regardless of sequencing depth or diversity index used (Shaw et al., 2008).  
 

1.5.3 Extracting ecological information from molecular data 

The advent of high-throughput molecular techniques has opened doors to a new era of 

discovery in microbial ecology. In combination with contextual information on physical, 

chemical, and biological parameters we are now able to address complex ecological questions, 

such as about the distribution of bacterial diversity and the main factors driving it. The increasing 

accumulation of molecular and contextual information, however, also presents computational 

challenges. This has initiated the incorporation of statistical tools developed by community 

ecologists into the microbial ecologist’s toolbox (Ramette, 2007). Most importantly, multivariate 

statistics enable the analysis of complex datasets, which can be used to test and interpret 

patterns of bacterial diversity in the context of spatial and environmental parameters, to better 

understand the factors shaping bacterial communities (e.g. Martiny et al., 2006; Ramette and 

Tiedje, 2007). For a review of the most commonly used multivariate analysis techniques please 

refer to Ramette (2007).  
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1.6 Publication Outline  

 

In the following four chapters, I will first present evidence for a spatial isolation of bacterial 

communities in deep-sea sediments at the global scale as well as the effects of both geographic 

distance and environmental heterogeneity on benthic bacterial diversity at large (>3000 km) and 

intermediate (10–3000 km) scales. Following, I will highlight the significance of energy availability 

in the form of phytodetritus for the diversity and activity of bacterial communities at regional 

scale (7–500 km) in Arctic Ocean deep-sea sediments. Finally, investigations of experimental 

wood falls as a special energy source in the deep sea will reveal the colonization of specialized 

communities and the establishment of sulfidic conditions at these localized organic food inputs in 

the deep sea.  

 

Chapter I: Biogeography of abyssal seafloor bacteria  

Christina Bienhold, Lucie Zinger, Antje Boetius, Alban Ramette 

(22.06.2011 – in preparation for The ISME Journal)  

This study investigates global biogeographic patterns of bacterial communities in deep-sea 

surface sediments and reveals isolation-by-distance effects and a high degree of endemism. 

Samples originate from sample repositories of A. Boetius and additionally include data obtained 

within the International Census of Marine Microbes (ICoMM) project. The study was designed 

by C. Bienhold, L. Zinger and A. Ramette. Molecular analyses were performed by C. Bienhold. 

Statistical analyses were done by C. Bienhold and L. Zinger with input from A. Ramette. The 

manuscript was written by C. Bienhold with support and input from all co-authors.  

 

Chapter II: Bacterial diversity and biogeography in deep-sea surface sediments of the 

South Atlantic Ocean   

Regina Schauer, Christina Bienhold, Alban Ramette, Jens Harder  

(The ISME Journal (2010) 4:159-170)  

This study shows that both geographic distance and environmental heterogeneity influence 

bacterial diversity in deep-sea surface sediments at intermediate (10–3000 km) and large scales 

(>3000 km). The study was initiated by J. Harder and R. Schauer. Sampling and 16S rRNA gene 

sequencing were conducted by R. Schauer. Terminal restriction fragment length polymorphism 

and corresponding data analyses were performed by C. Bienhold. Statistical analyses were done 

by R. Schauer, C. Bienhold, and A. Ramette. The manuscript was written by R. Schauer with 

support and input from all co-authors.  
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Chapter III: The energy-diversity relationship of complex bacterial communities in 

Arctic deep-sea sediments  

Christina Bienhold, Antje Boetius, Alban Ramette 

(22.06.2011 – Manuscript has been in review with Proceedings of the National Academy of 

Sciences, but was not accepted for publication and is currently under review with The ISME 

Journal)  

This study describes energy-diversity relationships for bacterial communities in Arctic deep-sea 

sediments and highlights potential bioindicator taxa for changes in energy availability. Sampling 

and initiation of the study were done by A. Boetius, the design of the study was done jointly by 

all coauthors. Molecular and statistical analyses were done by C. Bienhold with input from A. 

Ramette. The manuscript was written by C. Bienhold with support and input from all co-authors.  

 

Chapter IV: Biogeochemistry and bacterial diversity of deep-sea wood falls  

Christina Bienhold, Petra Pop Ristova, Frank Wenzhöfer, Thorsten Dittmar, Antje Boetius 

(22.06.2011 – in preparation for PLoS One)  

Wood colonization experiments in the Eastern Mediterranean deep sea were used to study the 

colonization and development of biogeochemical gradients at large organic food falls at the deep 

seafloor. A. Boetius initiated the study and F. Wenzhöfer the experiments. Sampling and 

observations on board were conducted by C. Bienhold. Molecular analyses were performed by C. 

Bienhold with support by P. Pop Ristova. Microsensor measurements (ex situ) of sulfide, oxygen 

and pH as well as in situ benthic chamber incubations were conducted by F. Wenzhöfer. Samples 

for sulfate reduction rates, anaerobic oxidation of methane and nutrient measurements were 

prepared by A. Boetius and C. Bienhold. DOC measurements were conducted by T. Dittmar. 

Bacterial community analyses were conducted by C. Bienhold. The manuscript was written by C. 

Bienhold with support and input from A. Boetius and comments of the coauthors.  

 

 

 

Participation in seminars and courses of the excellence graduate school GLOMAR provided the 

framework for discussions of the impact of global change on the diversity and function of marine 

ecosystems and how they may respond to global environmental changes. The study on woods 

was financed by the CNRS MPG Groupement de Recherche Européene DIWOOD; this project 

and the ESF Eurocores project CHEMECO provided the framework for discussions of zoology 

and ecology of large food falls.   
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Abstract  
Distinct biogeographical patterns of bacterial communities have been detected in soils, lakes, 

ocean waters and on the human body in the past decade, indicating strong effects of spatial and 

temporal variations in the environment on the distribution of bacterial diversity. This study 

focuses on bacterial community distribution in one of the world’s largest ecosystems, the deep-

sea ocean floor, which covers almost 70% of Earth’s surface. To provide a first comprehensive 

description of bacterial communities of pelagic surface sediments, and to further determine their 

specific distribution, we analysed samples from nine oceanic regions across the globe, using 454 

massively parallel tag sequencing. Bacterial communities markedly differed between oceanic 

regions, and the number of shared bacterial types at fine taxonomic resolution decreased with 

geographic distance, indicating isolation-by-distance effects. Accordingly, these bacterial types 

displayed a high degree of endemism, suggesting a limited dispersal in deep-sea sediments, as 

opposed to generally cosmopolitan patterns identified at broad taxonomic resolution. Noticeably, 

the most sequence-abundant bacterial types were affiliated to Gammaproteobacteria and 

Actinobacteria and were widely dispersed. In contrast, the majority of rare members of the bacterial 

community (~80%) were restricted to a small number of samples, but 20% of them showed large 

fluctuations in sequence abundance between and within oceanic regions. Our results provide 

evidence for bacterial endemism in deep-sea sediments that may be the result of long-term 

isolation processes. In addition we identify possible members of a core deep-sea surface sediment 

community.  
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1. Introduction  

 

Increasing evidence suggests that bacterial communities, similar to macroorganisms, exhibit 

large-scale patterns of biogeography which have been linked to ecosystem properties like 

productivity, salinity or pH, as well as to historical events such as dispersal limitation (e.g. Fierer 

and Jackson, 2006; Horner-Devine et al., 2003; Lozupone et al., 2007; Martiny et al., 2006; 

Ramette and Tiedje, 2007). The structuring of bacterial communities with environmental 

parameters has also been demonstrated in the marine pelagic realm (e.g. Fuhrman et al., 2006; 

Galand et al., 2009b), including some investigations at the global scale that evidenced large-scale 

patterns of bacterial communities along gradients such as latitude and temperature (Fuhrman et 

al., 2008; Pommier et al., 2007; Rusch et al., 2007). In contrast, little is known if such structuring 

occurs also in bacterial communities of surface sediments of the deep sea. Pelagic sediments 

cover approximately 65% of the Earth’s surface and are dominated by bacteria in terms of total 

organism abundance and biomass (Rex and Etter, 2010; Whitman et al., 1998). Our limited 

understanding of deep-sea sediment microbial communities is largely due to difficulties in 

accessing and sampling this remote environment. The bacterial communities are responsible for 

carbon and nutrient recycling at the deep seafloor (Jorgensen and Boetius, 2007), and the 

characterization of their composition and structure, as well as their patterns of distribution is 

highly relevant for our understanding of the ecological structure and functioning of this 

ecosystem. Previous studies describing bacterial communities in deep-sea sediments have been 

restricted to one or a few samples from locally restricted sites (e.g. Dang et al., 2009; Li et al., 

2009; Schauer et al., 2010; Tian et al., 2009), but a global-scale approach comparing bacterial 

communities of surface deep-sea sediments and their distribution patterns is not available yet.  

The deep sea is considered a relatively stable and uniform environment, characterized by a 

low supply of organic matter, low temperatures, generally oxygenated surface sediments, the 

absence of light, and high pressure. As a consequence, bacterial communities at the seafloor may 

show little structuring with environmental parameters. Also, seafloor currents are usually weak 

and the lack of horizontal mixing may result in a limited dispersal of microbes in deep-sea 

sediments. An isolation of microbial communities by long distances or geographic barriers may 

lead to the development of endemic populations through local evolutionary processes (Cho and 

Tiedje, 2000; Papke et al., 2003; Papke and Ward, 2004; Whitaker et al., 2003). This was 

supported in a broad comparison of marine pelagic and benthic bacterial communities that 

evidenced higher provincialism for benthic than for pelagic communities (Zinger et al., 
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submitted). However, the specific effects of dispersal limitation on the distribution of bacterial 

communities at the seafloor, and the mechanisms underlying these patterns remain to be 

determined.  

Here, we provide a first comprehensive description of bacterial communities and their 

distribution patterns in deep-sea sediments from all major oceans by analysing 454 massively 

parallel tag sequencing data from 41 deep-sea surface sediments (> 1000 m water depth) 

collected across the globe. Because the class level presents a common entity in taxonomic studies 

to which ecological knowledge is often associated (Philippot et al., 2009), we first describe the 

bacterial classes present in deep-sea sediments. Subsequently, we investigate the dataset at finer 

taxonomic resolution (i.e. that of operational taxonomic units at 3% sequence difference), to yield 

insights into community patterns that may be masked by pooling different populations into the 

same, broad categories. Bacterial community turnover is compared between nine oceanic regions, 

taking into account their geographic proximity so as to test isolation-by-distance effects. Both, 

community composition (presence/absence) and structure (relative abundances) are considered 

in this analysis, as changes may occur at one or both of these levels, which may imply different 

ecological processes (Anderson et al., 2011; Lozupone et al., 2007). Effects of dispersal limitation 

were further examined by determining the degree of endemism and cosmopolitanism of bacterial 

types as well as their ranges of spatial dispersal, in association with their relative abundances to 

infer potential ecological strategies. In this context, we also investigated the occurrence and 

distribution of rare types that often account for significant portions of bacterial populations. 

 

 

2. Material and Methods  
 

2.1 454 massively parallel tag sequencing (454 MPTS)  

For samples of the DSS project (Table S1) total community DNA was extracted from 1 g of 

sediment using Ultra Clean Soil DNA Isolation Kits (MoBio Laboratories Inc., Carlsbad, CA) 

and stored in a final volume of 100 μl Tris-EDTA buffer. For other projects DNA extraction 

procedures were done according to publicly available protocols 

(http://icomm.mbl.edu/microbis). Extracted DNA was amplified using a cocktail of primers 

targeting the V6 region of the bacterial 16S rRNA gene as published on http://vamps.mbl.edu. 

Fragments were sequenced by pyrosequencing on a Genome Sequencer FLX system (Roche, 

Basel, Switzerland) at the Marine Biological Laboratory in Woods Hole, MA, USA. Taxonomic 

assignments of V6-hypervariable region tags were obtained through comparisons with a reference 
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database of rRNA sequences using the Global Alignment for Sequence Taxonomy tool (GAST) 

(Huse et al., 2008; Sogin et al., 2006). Taxonomic assignments were shown to be highly consistent 

with results based on full-length rRNA sequences (Huse et al., 2008). The total number of 

sequences in the complete dataset was 761,508, corresponding to 24,398 unique OTUs at 3% 

sequence difference (hereafter referred to as OTU0.03). The percentage of singletons, i.e., 

sequences occurring only once in the full dataset, was 43%. Based on the fact that public 

databases do not contain information on the full global bacterial diversity, the taxonomic 

annotation automatically excluded an increasing amount of sequences with increasing taxonomic 

resolution, i.e., 93% of all sequences were assigned at phylum level, while only 23% were assigned 

at the genus level (Class: 82%, Order: 47%, Family: 39%).  

 

2.2 Datasets 

Sequence data for 41 deep-sea surface sediment samples (> 1000 m water depth) were 

obtained through the VAMPS database (Visualization and Analyses of Micbrobial Population 

Structures, http://vamps.mbl.edu) of the ICoMM project (http://icomm.mbl.edu). Data either 

originated from own sample repositories or from public ICoMM projects. All samples analyzed 

here consisted of 0.5-1 g of the top 2-3 cm of pelagic deep-sea sediments composed of clays and 

biogenic particles. Samples covered water depths between 1025 and 5347 m. A list of all samples 

used in this study, their corresponding projects and geographic location as well as the number of 

samples in each region is shown in (Table S1). Sequences are deposited in the Genbank Sequence 

Read Archives (www.ncbi.nlm.nih.gov) and their accession numbers are provided in Table S1 

(submission of DSS sequences is pending). For part of the analyses, samples were classified into 

nine different oceanic regions: South Pacific (New Zealand, 6 samples), North Pacific (Station M, 

16 samples), North Pacific (Japan, 1 sample), Arabian Sea (2 samples), Northeast-Atlantic (3 

samples), Eastern Mediterranean (4 samples), Arctic Ocean (5 samples), Antarctic (1 sample), 

South Atlantic (3 samples) (see also Figure 1).  

 

2.3 Statistical analyses  

Overall patterns of bacterial community composition (presence/absence data) and 

community structure (relative abundance data) were detected with non-metric multidimensional 

scaling based on Bray-Curtis and Jaccard distances, respectively. For analyses of variations in 

community structure, data were standardized to relative sequence abundances within samples, 

where the number of reads for a specific OTU was divided by the total number of reads in the 

sample. Shared and unique OTUs were calculated with 1000 sequence re-samplings in each 
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sample based on the smallest dataset (n = 7602 sequences), to account for differences in 

sequence numbers between samples. To test whether dissimilarity matrices were significantly 

correlated (Spearman correlation), a Mantel test (Legendre and Legendre, 1998; Mantel, 1967) 

was applied and significance assessed based on 999 matrix permutations. All statistical analyses 

were performed in R (v. 2.9.1) (R Development Core Team 2009, http://www.R-project.org) 

using packages vegan (Oksanen et al., 2010), gplots (Warnes et al., 2010), gmt (Magnusson, 2010), 

and custom R scripts.  

 

 

3. Results  

 

3.1 Which bacterial clades comprise the average benthic bacterial deep-sea community?  

Based on all samples, an average bacterial deep-sea sediment community was assembled at 

the class level (Figure 1). Over half of the sequences were affiliated with Proteobacteria (55%), 

where Gammaproteobacteria dominated with 28% of relative sequence abundance. In order of 

decreasing relative abundance, sequences affiliated with Deltaproteobacteria (14%), Actinobacteria 

(13%), Alphaproteobacteria (12%), Planctomycetacia (9%), and Acidobacteria (7%) were most commonly 

detected. Within oceanic regions and between individual samples relative sequence abundances 

varied considerably (Figure 1). The most abundant classes were consistently present in all oceanic 

regions. Gammaproteobacteria sequences were the most abundant in all deep-sea sediments, except 

for the Eastern Mediterranean samples that were dominated by Planctomycetacia-affiliated 

sequences.  
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Figure 1 Community composition of deep-sea sediment bacterial communities at the class level. Large pie chart 
presents the average community based on all global samples and numbers give the relative abundances (� 2%) of 
classes and the range of relative abundances in individual samples. Small pie charts give the average community 
compositions in nine different oceanic regions. The numbers of samples as well as the number of tag sequences (n) 
are indicated.  
 

 

3.2 Do communities differ between oceanic regions? How much?  

Although most classes (60%) were shared between all oceanic regions, differences in overall 

community composition and structure between oceans could be evidenced both at broad and 

fine taxonomic levels (Figure 2a-b, Figure S1). An effect of oceanic regions on bacterial 

community composition and structure was confirmed with an analysis of similarity (Class 

composition: R = 0.44, p = 0.001; OTU0.03 composition: R = 0.83, p = 0.001; Class structure: R = 

0.31, p = 0.002; OTU0.03 structure R = 0.66, p = 0.001). Consistent with the large amount of 

shared classes, community composition (presence/absence) at the class level showed large 

overlaps between oceanic regions, while patterns at the OTU0.03 level were consistent when 

considering presence/absence or relative abundance data (Figure 2a-b). Largest variations within 

oceanic regions were observed for samples from the Eastern Mediterranean and Arabian Sea. 
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Figure 2 Differences in bacterial communities between oceanic regions. a and b: Non-metric multidimensional 
scaling plots for community composition at the class (a) and at the 3% OTU level (b). Samples originating from 
different oceanic regions are grouped by colours and lines. c: Percent of shared OTU0.03 between oceanic regions. 
 

 

Despite differences in the overlap of oceanic regions in ordination plots, overall patterns in 

community  composition and structure were found to be consistent at the class and OTU0.03 level 

(composition Spearman’s r = 0.59, p = 0.001, structure r = 0.74, p = 0.001, as tested by Mantel 

test with 999 matrix permutations). The proportion of pairwise shared OTU0.03 between oceanic 

regions ranged from 7–26% (Figure 2c). Highest proportions of shared OTU0.03 (> 22%) were 

found for comparisons between Northeast Atlantic vs. South Atlantic, Northeast Atlantic vs. 

Arctic, South Pacific vs. North Pacific, Arabian vs. South Atlantic. When comparing individual 

samples, 5–34% of OTUs were shared in pairwise comparisons (Figure S2). The highest 

proportions of shared OTU0.03 were observed for samples from the North Pacific Station M, 
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which were sampled at one station during September 2007 (http://icomm.mbl.edu/microbis). 

Also intra-ocean sample comparisons showed relatively high proportions of shared OTU0.03 in 

the Arctic and the Northeast Atlantic oceans. Eastern Mediterranean and southern Arabian Sea 

samples had least shared OTU0.03 with samples from other oceans, consistent with the ordination 

results.  

 

3.3 What are the proportions of cosmopolitan and endemic OTUs? 

At broad taxonomic resolution, i.e., the class level, most taxa were present in all oceans and 

samples (Figure 3a-b). The patterns found at broad taxonomic resolution, i.e., phylum, class, 

order, consistently showed a high percentage of cosmopolitan taxa (40 to 25% at the phylum or 

class, and order level, respectively). This feature shifted at the family level, and a high proportion 

of endemism was observed at the genus and 3% OTU levels (Figure S3).  

 

Figure 3 Proportions of unique and cosmopolitan OTUs between oceanic regions and individual samples at the 
class (a, b) and the OTU0.03 level (c, d). 16,164 OTU0.03 were unique to one ocean, of which 13,712 were unique to 
one sample. 149 OTU0.03 were common to all oceans and 15 common to all samples. Dashed areas in c and d 
indicate the fraction accounted for by absolute singletons (i.e. OTU0.03 only occurring with one sequence in the 
whole dataset). 
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Most OTU0.03 (16,164 OTU0.03, 66% of all OTU0.03) occurred only in one ocean (i.e., were 

endemic), whereas less than 10% OTU0.03 were cosmopolitan, i.e., occurred in five or more 

oceans, with only 149 (0.6%) OTU0.03 detected in all oceanic regions (Figure 3c).  

A similar picture emerged when individual samples were considered: most OTU0.03 (13,712 

OTU0.03, 56%) occurred in only one sample and 15 OTU0.03 (0.06%) were common to all samples 

(Figure 3d). It must be noted that absolute singletons, i.e., OTU0.03 occurring with only one 

sequence in the whole dataset, accounted for about 40% of all OTU0.03 (Figure 3, hatched area). 

But, even when removing these singletons, a high amount of OTU0.03 remained unique to one 

ocean or to one sample.  

 

3.4 Do community composition and structure change with geographic distance?  

Notably, the proportion of shared OTU0.03 between samples decreased significantly with 

geographic distance (Figure 4). A LOESS curve for the relationship between the number of 

shared OTU0.03 and geographic distance showed a strong decrease in shared OTU0.03 until 5,000 

km (Figure 4). The curve levelled off between 5,000 and 10,000 km and showed a strong decrease 

again for larger distances.  

 
 

 
Figure 4 The proportion of shared OTU0.03 between samples 
decreased significantly with geographic distance (defined as 
straight lines between samples). Solid line is a LOESS curve 
and dotted line is a linear model fit.  
 

 

 

 

 

 

 

 

 

To better resolve the effects of different spatial components, we plotted changes in 

community composition and structure against geographic distance, latitudinal distance, 

longitudinal distance and differences in water depth (Figure S4). Bacterial community 

composition and structure showed significant relationships with all of the investigated 
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components. The strongest relationship was observed with geographic distance (composition r = 

0.56, p = 0.001; structure r = 0.47, p = 0.001), which seemed to be mainly due to changes along 

longitude (composition: r = 0.53, p = 0.001; structure: r = 0.49, p = 0.001), while latitudinal 

patterns were less pronounced (composition r = 0.40, p = 0.001; structure: r = 0.24, p = 0.018). 

A weaker but significant relationship was observed for community changes along water depth 

(composition: r = 0.41, p = 0.001; structure: r = 0.24, p = 0.005).  

 

3.5 What is the relationship between dispersal and abundance: do more abundant OTUs 

have larger dispersal ranges?  

When considering the relative abundance of unique and cosmopolitan OTU0.03, it could be 

shown that the large proportion of OTU0.03 only found in one sample belonged to low abundant 

(rare) members of the community (Figure 5). At the same time a smaller proportion of OTU0.03 

was found in all samples, but included all of the more abundant OTU0.03. Another way of looking 

at distributions of OTU0.03 is to consider the maximum distance between samples in which a 

given OTU0.03 was detected, regardless of the number of samples it was found in (Figure S5). 

Distances ranged between 0 and 19,327 km between samples of the Arabian Sea (Western) 

and the North Pacific (Station M). Noticeably, all of the most abundant OTU0.03 were widely 

dispersed, up to the maximum distance of 19,327 km (Figure S5). However, the largest fraction 

of OTU0.03 to the total detected OTU0.03, occurred at low spatial ranges (0–5,000 km) and had low 

sequence abundances. The most sequence-abundant, globally dispersed OTU0.03 (i.e., found at 

maximum distances and common to all samples) were affiliated to Actinobacteria and 

Gammaproteobacteria. But also some less abundant OTU0.03 affiliated to Gemmatimonadetes, 

Acidobacteria and Alphaproteobacteria were globally distributed.  

 
Figure 5 Distribution and abundance of OTU0.03. 
Relative OTU0.03 abundance (black circles) and the 
fraction of all OTU0.03 (red squares) as a function of the 
number of samples an OTU0.03 was detected in.  
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3.6 Do rare types have specific spatial patterns and do they stay always rare?  

Single sequence OTU (SSOrel), i.e., OTU0.03 occurring as one sequence in at least one 

sample, which accounted for 39% of all OTU0.03, were used to further explore patterns of rare 

types in the community. Most SSOrel remained at low sequence abundance in the samples they 

were observed in, e.g., 79% of all SSOrel had a maximum abundance of 10 sequences or lower 

and only smaller proportions of SSOrel reached maximum abundances of over 100 sequences 

(maximum abundance of one SSOrel was 4059 sequences) (Figure 6). For a few selected cases 

higher fluctuations were observed, e.g., maximum abundances of 50 and 4059 sequences, and a 

random sampling indicated that some SSOrel only occurred at specific sites while others were 

present in many samples.  
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Figure 6 Distribution of the maximum abundance of SSOrel (i.e., OTU0.03 occurring as one sequence in at least one 
sample). Panels 1-2 are exemplary cases of SSOrel showing high fluctuations, with maximum abundances of 50 (1a, 
b) and 4059 (2) sequences. The patterns demonstrate that some SSOrel may only occur at a few sites (1a, 3), while 
others are present in many samples (1b). Relative abundances in subpanels are proportions of the total number of 
sequences. 
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4. Discussion  

 

4.1 Which bacterial clades comprise the average benthic bacterial deep-sea community?  

So far it remains unknown as to which bacterial taxa form typical deep-sea bacterial 

communities inhabiting pelagic surface sediments, and if these are distinct from deep water or 

deep subsurface communities. Here, we show that the major taxa observed in globally distributed 

deep-sea surface sediments were Gammaproteobacteria, Deltaproteobacteria, Actinobacteria, 

Alphaproteobacteria, Planctomycetacia, and Acidobacteria (Figure 1). This is in agreement with previous 

studies of deep-sea sites, e.g., in the Eastern Mediterranean, Arctic, East Pacific and South 

Atlantic Ocean (Dang et al., 2009; Heijs et al., 2008; Li et al., 2009; Schauer et al., 2010; Tian et 

al., 2009). These studies were mainly based on 16S rRNA gene clone libraries and consistently 

reported Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria among the most dominant 

representatives of surface deep-sea sediments, which confirms a certain degree of consistency 

between different molecular methods, when broad taxonomic categories are considered. Benthic 

bacterial community composition can be differentiated from both surface and deep pelagic 

communities, where Alphaproteobacteria were the dominant group observed (Giovannoni and 

Stingl, 2005; Zinger et al., submitted). Furthermore, surface waters were shown to be dominated 

by Flavobacteria and Cyanobacteria, while Actinobacteria and Deltaproteobacteria increased in relative 

sequence abundances in deeper waters. Also the vast subsurface biosphere underlying the surface 

sediments investigated here can be distinguished in terms of the most commonly reported 

bacterial types, which belong to the groups Gammaproteobacteria, Chloroflexi and candidate division 

JS1 (Fry et al., 2008; Giovannoni and Stingl, 2005; Inagaki et al., 2006; Teske, 2006; Webster et 

al., 2006; Zinger et al., submitted). This shows that pelagic, benthic surface and deep-subsurface 

environments exhibit distinct bacterial community signatures already at broad taxonomic 

resolution, which probably reflect differences in life styles and environmental pressures between 

these three habitats, as shown for other environments (Philippot et al., 2010).  

 

4.2 Do communities differ between oceanic regions? How much?  

A certain degree of provincialism of benthic bacterial communities has been proposed 

previously (Zinger et al., submitted). To determine specific distribution patterns between oceanic 

regions, we first investigated differences in bacterial community composition and structure 

between oceanic regions. The major classes, namely Gammaproteobacteria, Deltaproteobacteria, 

Actinobacteria, Alphaproteobacteria, Planctomycetacia, and Acidobacteria were widely distributed and 

appeared in all sediments investigated, similar to what has been reported for marine 
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bacterioplankton (Pommier et al., 2007). On the one hand, the systematic recruitment of similar 

taxa at broad taxonomic resolution may support an ecological coherence of high taxonomic ranks 

(Philippot et al., 2010), with lifestyles adapted to the deep seafloor environment in this case. On 

the other hand, this observation may also reflect the distribution of a few dominant members of 

these classes, e.g., as the global dominance of Alphaproteobacteria in surface waters is caused by 

some cosmopolitan SAR and Roseobacter taxa (Rusch et al., 2007; Venter et al., 2004).  

Higher proportions of shared OTUs were observed between oceans that were connected by 

deep-water ocean currents, e.g., the South and North Pacific, and the Northeast and South 

Atlantic (Figure 2c), although the southernmost station in the South Atlantic is filled with 

Antarctic lower circumpolar deep water and would need to be considered separately. 

Nonetheless, this suggests that dispersal is limited over longer distances and across continents. 

The lowest proportions of shared OTUs were observed in comparison of all ocean regions with 

the Eastern Mediterranean. Similar trends have also been evidenced in a metagenome study of 

deep-water communities (Martin-Cuadrado et al., 2007). The Eastern Mediterranean deep-water 

current has little exchange with the bottom water of other oceans, and benthic microbes may 

therefore display limited dispersal, resulting in the development of endemic populations due to 

local, isolated evolutionary processes. In addition, the Mediterranean deep sea has higher 

temperatures (13–14°C) compared to other deep-sea regions, and the influence of land, e.g., river 

input, may be especially pronounced in this enclosed ocean. Low proportions of shared OTUs 

were also observed when comparing samples with the sample from the North-Pacific (Japan). 

The sample was taken from a trench system probably also indicating different environmental 

settings and limited dispersal. However, the nature of dispersal of surface sediment communities 

remains enigmatic, and needs further investigation. As sedimentation of pelagic bacteria with 

particles sinking from the surface waters appears not to be a main source for benthic bacterial 

diversity (Zinger et al., submitted), it is likely that resuspension of sediments by bottom water 

currents and feeding fauna is a main source of dispersal of benthic surface bacteria.  

 

4.3 What are the proportions of cosmopolitan and endemic OTUs? 

At broad taxonomic resolution (i.e., phylum, class), most taxa occurred in all oceans and 

samples (e.g., 61% and 41% of all classes, respectively) and therefore exhibited cosmopolitanism 

(Figure 3). But this pattern reversed at the family level (Figure S3) and most genera and OTU0.03 

were unique to one ocean (66% of all OTU0.03) and sample (56% of all OTU0.03), indicating a high 

degree of endemism of bacterial taxa in deep-sea sediments. Absolute singletons, i.e., sequences 

occurring only once in the dataset, contributed significantly to this trend, but did not change the 
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overall pattern when removed. For one, the occurrence of large numbers of singletons may 

indicate that we are still under-sampling bacterial diversity. But, in general, the relevance of rare 

types in bacterial communities is not well resolved. In agreement with our observations, earlier 

studies have shown that the removal of singletons or rare types neither affected the overall 

patterns of bacterial communities nor their ecological interpretation (Gobet et al., 2010; Zinger et 

al., submitted). The high degree of endemism observed here (including or not singletons) reflects 

high spatial turnover for bacterial communities in deep-sea sediments and has also been observed 

for marine bacterioplankton communities (Pommier et al., 2007). In the future, differences in 

turnover between different ecosystems may be quantified, to determine to what degree sediment 

or soil associated bacterial communities show stronger dispersal limitation than marine or aquatic 

pelagic communities, though differences in methodologies, which represent abundant (e.g., 16S 

rRNA gene clone libraries,), or rare types (e.g., 454 massively parallel tag sequencing) would need 

to be considered.  

 

4.4 Do community composition and structure change with geographic distance?  

The proportion of shared OTU0.03 significantly decreased with increasing geographic 

distance, both on small and large scales, providing strong evidence for isolation-by-distance of 

bacterial communities in deep-sea surface sediments (Figure 4). This is supported by earlier 

observations of geographic isolation of bacterial communities in other environments, e.g., for 

Pseudomonas genotypes in soils (Cho and Tiedje, 2000) and for cyanobacteria and archaea in hot 

springs (Papke et al., 2003; Whitaker et al., 2003). The relationship between the percent of shared 

OTU0.03 with distance showed a strong decrease until 5,000 km which corresponded 

approximately to the maximum distance of samples within an oceanic region (South Atlantic). 

Between 5,000 and 10,000 km the curve levelled off and showed a stronger decrease in shared 

OTU0.03 again for larger distances, demonstrating an effect of distance both for within ocean as 

well as between oceans.  

We used different spatial components to better decipher the parameter responsible for 

community turnover both at the level of community composition (presence/absence) and 

structure (relative abundances) (Figure S4). The observed patterns were consistent for 

community composition and structure, indicating that variation was mainly caused by differences 

in the occurrence of specific OTU0.03 (composition) between sites. Changes of overall community 

composition and structure along latitude were not very pronounced, suggesting that energy 

gradients associated with latitude might not play an important role in bacterial community 

composition and structure at the deep seafloor, compared to other ecosystems and other 
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organisms (Hillebrand, 2004; Soininen et al., 2007). A reason for this may be the isolation of the 

deep seafloor from climatic, light and temperature fluctuations along latitudes. Strong community 

variation along longitude suggests that continents and deep-water currents may present an 

important barrier for dispersal (McClain and Hardy, 2010). However, also spatially structured 

environmental parameters may account for changes with geographic distance. For example, the 

role of surface productivity, particle flux, and of other biological factors in the structuring of 

benthic communities have been suggested previously (Bienhold et al., submitted; Zinger et al., 

submitted), but need to be further explored for the deep seafloor at the global scale. 

Furthermore, the geological history of deep-sea basins or past environmental conditions may 

have played a role in shaping distribution patterns of benthic bacterial communities. Also 

topographic features such as deep-sea mountain ranges could act as biogeographic barriers which 

has been demonstrated for some macrofaunal organisms in the South Atlantic that were 

separated by the Walvis Ridge (Brandt et al., 2005), but could not be confirmed for bacterial 

communities (Schauer et al., 2010). The weak relationship of bacterial community composition 

and structure with water depth would indicate that, below 1000 m, bacterial communities may 

only be slightly affected by subtle changes in biological or physical parameters that are correlated 

with water depth (e.g., gradients in resource availability, pressure).  

 

4.5 What is the relationship between dispersal and abundance: do more abundant OTUs 

have larger dispersal ranges?  

Most OTU0.03 were either unique to one sample or only common to a few samples and were 

restricted in their dispersal to ranges between 0 and 5,000 km. This spatial range approximately 

corresponds to the largest distance observed between samples within an oceanic region (South 

Atlantic), suggesting that most OTU0.03 may be limited in their dispersal over larger scales (Figure 

5, Figure S5). The majority of OTU0.03 were associated with low sequence abundances, thus 

exhibiting typical features of bacterial populations with a long tail of rare types in rank abundance 

curves (Pedros-Alio, 2006; Sogin et al., 2006). All of the most abundant OTU0.03 were widespread, 

i.e., occurred in a large number of samples and were found at maximum distances of ~20,000 

km. Positive range-abundance relationships for bacterial types have been observed in a variety of 

other studies (Green and Bohannan, 2006; Nemergut et al., 2011; Pommier et al., 2007), and have 

also been described as a property of macroorganisms (Brown, 1984). A plausible ecological 

explanation would be that higher local population size enables a wider dispersal, but we should 

keep in mind that methods based on sequencing of 16S rRNA genes do not necessarily reflect 

the true abundance of organisms in the environment (Venter et al., 2004). Sequences belonging 
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to the globally dispersed OTU0.03 were affiliated to taxa commonly observed in deep-sea benthic 

communities, e.g., Gammaproteobacteria and Actinobacteria (Dang et al., 2009; Schauer et al., 2010; 

Tian et al., 2009). These OTU0.03 may constitute part of a core bacterial community in deep-sea 

sediments that may consist of generalists highly adapted to life in the deep sea or that may be able 

to form dormant stages, which could enable dispersal over large spatial ranges. Our study 

presents a first step toward the characterization of a core bacterial community in deep-sea 

sediments that may serve as a bacterial fingerprint of the deep seafloor when contrasting it with 

other marine habitats, e.g., the pelagic or subsurface biosphere. 

 

4.6 Do rare types have specific spatial patterns and do they stay always rare?  

The advent of high-throughput sequencing technology has opened doors to the exploration 

of a largely underexplored biosphere in bacterial communities (Sogin et al., 2006). But, up to 

now, there is no general agreement on how a rare member of the community should be defined. 

Some authors have arbitrarily defined rare types as having a frequency of less than 0.01% within a 

sample (Galand et al., 2009a), while others have applied systematic cut-offs to explore the effect 

of removing rare sequences from the dataset on ecological interpretations (Gobet et al., 2010). 

The occurrence of substantial numbers of rare OTU0.03 in our dataset, prompted us to further 

explore whether rare types are rare in all deep-sea sediment samples or whether patterns in their 

distribution could be observed. Relative single sequence OTU (SSOrel), i.e., OTU0.03 occurring as 

one sequence in at least one sample, are a possible definition of a rare type (Gobet et al., 

submitted). Most SSOrel appeared at low abundances in all samples (Figure 6), consistent with 

other studies investigating variations of rare members in bacterial communities in oceanic waters 

or coastal sediments (Galand et al., 2009a; Gobet et al., submitted; Kirchman et al., 2010). 

Nevertheless, members of the rare biosphere may exhibit non-random, ecological patterns 

(Galand et al., 2009a) and could be relevant to ecosystem functioning by forming a “seed bank” 

of organisms able to increase in abundance and maintain ecosystem functioning when 

environmental conditions change (Loreau et al., 2001; Pedros-Alio, 2006).  

For a few selected cases we observed that SSOrel may show differing patterns across 

samples (Figure 6). Disregarding their maximum sequence abundance, some only occurred at 

specific sites, while others were present in most samples. This illustrates that SSOrel are not 

distributed randomly across space and time (some stations included several time points), but may 

also either be limited in their dispersal and/or depend on specific environmental conditions. This 

was indicated by one example, where an SSOrel, affiliated to Planctomycetes, was absent or only 

present at low abundances in most samples, but showed extremely elevated sequence counts for 
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two samples, which corresponded to samples from a deep-sea trench in the Eastern 

Mediterranean, where increased microbial biomass had been evidenced due to the accumulation 

of phytodetritus (Boetius et al., 1996). This is consistent with earlier studies that have found 

Planctomycetes in association with marine phytodetritus aggregates (Crump et al., 1999; Delong et 

al., 1993; Fuerst, 1995; Gihring et al., 2009). Further studies would be needed to better 

understand the community composition and turnover in deep sea surface sediments, including 

targeted sampling across spatial and temporal gradients of environmental parameters, deep water 

currents, sinking particles, to follow and resolve the distribution patterns of specific bacterial 

clades.  
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Supplementary information  

 

Table S1 Contextual data for all deep-sea samples: VAMPS (http://vamps.mbl.edu.) sample ID, geographic origin, 
water depth, oceanic region, and sequence archive accession numbers for Genbank Sequence Read Archives 
(www.ncbi.nlm.nih.gov) (n.a. = not available, submission of DSS sequences is pending).  

Sample ID Longitude Latitude Water 
depth (m)

Date of 
sampling Oceanic region Sequence Archive 

accession #
NZS_0003_2007_04_16 -176.714 -42.782 1025 16.04.2007 South Pacific (New Zealand) SRA009906.1
NZS_0004_2007_04_26 175.930 -42.992 1197 26.04.2007 South Pacific (New Zealand) SRA009906.1
NZS_0007_2007_04_06 177.141 -44.485 1241 06.04.2007 South Pacific (New Zealand) SRA009906.1
NZS_0011_2007_04_20 -178.339 -42.531 1400 20.04.2007 South Pacific (New Zealand) SRA009906.1
NZS_0013_2007_05_30 167.526 -36.920 1217 30.05.2007 South Pacific (New Zealand) SRA009906.1
DSS_0023_2007_02_11 177.023 -40.022 1181 11.02.2007 South Pacific (New Zealand) n.a.
SMS_0001_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0002_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0003_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0004_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0005_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0006_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0007_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0008_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0009_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0010_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0011_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0012_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0013_2007_09_19 -123.016 35.164 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0014_2007_09_19 -123.016 35.146 3953.5 19.09.2007 North Pacific (Station M) SRA009865.1
SMS_0015_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
SMS_0016_2007_09_23 -123.016 35.164 3953.5 23.09.2007 North Pacific (Station M) SRA009865.1
DSS_0022_2006_06_07 143.893 39.106 5347 07.06.2006 North Pacific (Japan) n.a.
DSS_0001_1995_10_03 60.268 16.051 4078 03.10.1995 Arabian Sea n.a.
DSS_0002_1995_10_21 65.034 10.050 4411 21.10.1995 Arabian Sea n.a.
DSS_0003_1992_03_27 -19.583 47.167 4560 27.03.1992 North-East Atlantic n.a.
DSS_0004_1992_04_04 -19.583 47.167 4560 04.04.1992 North-East Atlantic n.a.
DSS_0005_1992_08_05 -19.583 47.167 4560 05.07.1992 North-East Atlantic n.a.
DSS_0006_1993_05_26 25.859 34.742 1375 26.05.1993 Eastern Mediterranean n.a.
DSS_0007_1993_05_27 26.097 34.414 4260 27.05.1993 Eastern Mediterranean n.a.
DSS_0008_1993_05_29 28.571 33.604 2968 29.05.1993 Eastern Mediterranean n.a.
DSS_0009_1993_05_31 30.597 32.680 1904 01.06.1993 Eastern Mediterranean n.a.
DSS_0015_1993_09_04 133.191 78.387 2019 04.09.1993 Arctic Ocean (Laptev Sea) n.a.
DSS_0016_1993_09_03 130.596 79.652 3427 03.09.1993 Arctic Ocean (Laptev Sea) n.a.
DSS_0017_1993_09_03 130.596 79.652 3427 03.09.1993 Arctic Ocean (Laptev Sea) n.a.
DSS_0020_1993_09_15 118.577 77.680 1517 15.09.1993 Arctic Ocean (Laptev Sea) n.a.
DSS_0021_1993_09_14 118.742 78.667 2620 14.09.1993 Arctic Ocean (Laptev Sea) n.a.
DSS_0033_2005_02_23 -14.000 -70.000 4300 23.02.2005 Antarctic n.a.
DSS_0034_2005_03_04 7.347 -28.112 5114 04.03.2005 South-Atlantic (Cape) n.a.
DSS_0035_2005_03_11 0.897 -9.932 1928 11.04.2005 South-Atlantic (Angola) n.a.
DSS_0036_2005_03_19 -5.583 0.833 5225 19.04.2005 South-Atlantic (Guinea) n.a.  
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Figure S1 Non-metric multidimensional scaling plots for community structure (considering relative abundances) at 
the class (a) and at the 3% OTU level (b). Samples originating from different oceanic regions are grouped by colors 
and lines.  
 

 

 

 

 
Figure S2 Symmetric heatmap of the percent of shared OTU0.03 between samples, indicating the oceanic region of 
the samples.  
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Figure S3 Proportions of unique and cosmopolitan OTU between samples at all taxonomic levels.  
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Figure S4 Changes in global bacterial community composition (a-d) and structure (e-h) with a, e) geographic 
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by Mantel tests with 999 permutations are indicated in the plots. Lines are LOESS curves; the dotted line in a and e 
marks the maximum distance between samples originating from one ocean (4000 km, South Atlantic).  
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Figure S5 Distribution and abundance of OTU0.03. Relative OTU0.03 abundance (black circles) and the fraction of all 
OTU0.03 (red bars) as a function of the maximum occupation range of an OTU (maximum distance an OTU was 
detected at).  
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ORIGINAL ARTICLE

Bacterial diversity and biogeography
in deep-sea surface sediments
of the South Atlantic Ocean

Regina Schauer1, Christina Bienhold1, Alban Ramette2 and Jens Harder1
1Department of Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
and 2Microbial Habitat Group, Max Planck Institute for Marine Microbiology, Bremen, Germany

Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to
disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the
Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial
communities in three basins of the eastern South Atlantic Ocean to determine diversity and
biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S
ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521
phylotypes with 98% identity in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria,
Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these
shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water
masses, suggesting a high dispersal capability, as also indicated by low distance–decay
relationships. However, the total bacterial diversity showed significant differences between the
basins, based on 16S rRNA gene sequences as well as on terminal restriction fragment length
polymorphism fingerprints. Noticeably, both geographic distance and environmental heterogeneity
influenced bacterial diversity at intermediate (10–3000 km) and large scales (43000 km), indicating a
complex interplay of local contemporary environmental effects and dispersal limitation.
The ISME Journal (2010) 4, 159–170; doi:10.1038/ismej.2009.106; published online 15 October 2009
Subject Category: microbial population and community ecology
Keywords: barrier; biogeography; deep sea; Gammaproteobacteria; spatial scale

Introduction

Biogeographic patterns in microbial communities
are traditionally explained by two factors,
the environmental heterogeneity and historical
events (Martiny et al., 2006; O’Malley, 2008). On
the basis of the cosmopolitan hypothesis, ‘every-
thing is everywhere, but the environment selects’
(Baas-Becking, 1934), environmental conditions
have long been considered to have a strong influ-
ence on microbial biogeography. The effects of
spatial distances (historical events) have been
shown to affect microbial diversity in several
studies (Papke et al., 2003; Whitaker et al., 2003;
Martiny et al., 2006; Ramette and Tiedje, 2007). The
relative influences of environmental heterogeneity
and historical events on microbial biogeography are
still poorly understood. In marine habitats like the
deep sea, microorganisms in the surface sediment
may be assumed to disperse with oceanic currents.

Bioirrigation by the activities of larger benthic
organism as well as near-bed currents (Hughes and
Gage, 2004; Queric and Soltwedel, 2007) influence
the sediment-water interface exchange and conse-
quently lead to the dispersal of particles and
therefore of microorganism. Barriers to microbial
dispersal could be physical (topography) or physio-
logical conditions (temperature, pH or hydrostatic
pressure).

In the eastern South Atlantic Ocean, the Cape
Basin is separated from the Angola and Guinea
basins by the Walvis Ridge that forms a barrier to the
northward and southward flow of water below a
depth of about 3000m (Shannon and Chapman,
1991). Furthermore, the Cape Basin is dominated by
Lower Circumpolar Deep Water arriving from Ant-
arctica and the deepest part of the Angola and
Guinea Basins are filled with North Atlantic Deep
Water originating from the Arctic (Bickert and
Wefer, 1996). Noticeably, the Walvis Ridge has been
shown to function as a barrier for the dispersal of
some crustacean species of Peracarida (Brandt et al.,
2005), but it is not known whether this physical
barrier also affects microbial dispersal.

To analyze whether different deep water masses
associated with the physical barrier of the
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Walvis Ridge have significant structuring effects on
microbial diversity, the bacterial diversity in three
deep-sea basin surface sediments was determined
by 16S ribosomal RNA (rRNA) gene sequencing and
the community fingerprinting method terminal
restriction fragment length polymorphism (T-RFLP).
The relative contribution of environmental hetero-
geneity and of historical events on microbial
biogeography were assessed for this data set in
concert with earlier published data on basaltic lavas
in the Pacific Ocean (Santelli et al., 2008), shallow
permanently cold sediment of the Arctic Ocean
(Ravenschlag et al., 1999) and Antarctic continental
shelf sediment (Bowman and McCuaig, 2003).

Materials and methods

16S ribosomal RNA gene clone libraries construction
Sediment sampling was performed on the DIVA II
cruise by a multicorer (Barnett et al., 1984) in water
depths ranging from 5032 to 5649m. The sediment

cores were sliced on board in layers of 2 cm and the
layers were subsampled top-to-bottom by sterile
1- to 2-ml syringes at 4 1C. After storage at �80 1C,
DNA was extracted from 0.5 g of the surface sedi-
ment sample (0–2 cm) of the Cap, Angola and
Guinea I areas (Figure 1, Table 2) after the protocol
of the FastDNA SPIN Kit for Soil (Q-BIOgene,
Carlsbad, CA, USA). Bacterial 16S rRNA genes were
amplified using the primer pair GM3/GM4 (Muyzer
et al., 1995). The 100-ml reaction contained 30ng
DNA as template, 0.5 mM of each primer, 10mM of
dNTPs, 1� buffer (Eppendorf, Hamburg, Germany)
and 5 U of the Takara-Taq DNA polymerase
(TAKARA, Dalian, China). PCRs were performed in
10 replicates with 20 cycles to minimize PCR bias.
Final extension was performed 60min at 60 1C to
increase 30-A-overhang. The amplicons were pooled
and purified with a PCR purification kit (Qiagen,
Hilden, Germany). Cloning of the amplicons was
performed using TOPO TA Cloning Kit for sequen-
cing (pCR4-TOPO, Invitrogen, Karlsruhe, Germany).
Clones with a correct insert size of B1500 bp were

Figure 1 Sampling areas in the South Atlantic Ocean as well as the Walvis Ridge that separates the Cape Basin from the Angola and
Guinea basins. For the 16S ribosomal RNA (rRNA) gene approach surface sediment (0–2 cm) of the Cape, Angola and Guinea I areas were
used and for the terminal restriction fragment length polymorphism (T-RFLP) analysis 3–5 surface sediments of the Cape, Angola and
Guinea I–III areas were analyzed.
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sequenced using the vector primers M13 F (50-GGAA
ACAGCTATGACCATG-30) and M13 R (50-GTTGTAA
AACGACGGCCAGT-30).

Phylogenetic and sequence analyses
The quality of the obtained sequences was manually
checked using Sequence Analysis 5.2 (Applied
Biosystems, Weiterstadt, Germany). Full-length se-
quences were assembled with Sequencher (Gene
Code, Ann Arbor, MI, USA). No chimeras were
detected with Bellerophon (Huber et al., 2004) and
CHECK_CHIMERA (Maidak et al., 1996). Sequences
were imported into the ARB software package
(Ludwig et al., 2004) and aligned using the ARB
FastAligner, then refined manually. The ARB soft-
ware package was used to generate phylogenetic
trees of 810 full-length sequences using the max-
imum likelihood algorithm with a 50% positional
conservation filter and with 100 bootstrap repli-
cates. Sequences reported in this study were
deposited at EMBL under the accession numbers
AM997284–AM997988 for 705 full-length sequences
and under AM997989–998333 and AM997283 for 346
partial sequences.

The software distance-based OTU and richness
(DOTUR) was applied to ARB distance matrices
generated with the Jukes-Cantor correction to esti-
mate operational taxonomic units (OTU), rarefaction
curves of observed OTUs, richness estimators and
diversity indices (Schloss and Handelsman, 2005).
A sequence identity of 98% was used to define
OTUs, as this cut-off roughly corresponds to the
species level (Rossello-Mora and Amann, 2001;
Stackebrandt and Ebers, 2006). The statistical toolR
-LIBSHUFF was applied to genetic distance ma-

trices to determine whether differences in library
composition were because of chance or to biological
effects, and significances were assessed by Monte
Carlo permutations and further corrected for multi-
ple comparisons (Schloss et al., 2004). The statis-
tical tool SONS (Schloss and Handelsman, 2006)
was used on full-length 16S rRNA gene sequences to
calculate Chao1 shared richness estimates, the Jclass
index for the ratio of shared to total number of OTUs,
and yyc for the estimated similarity in community
structure between any two communities.

Terminal restriction fragment length polymorphism
Terminal restriction fragment length polymorphism
analyses included three to five samples of surface
sediments (0–2 cm) from several cores of each area,
Cape, Angola and Guinea I–III (Figure 1, Table 2).
Genomic DNA was extracted from 0.5 g sediment
samples using the FastDNA Spin Kit for Soil
(Q-Biogene, Irvine, CA, USA). PCR amplification of the
16S rRNA gene was carried out using the fluores-
cently labelled primers 27F (FAM, 50-AGAGTTTGA
TCCTGGCTCAG-30) and 907R (HEX, 50-CCGTCAAT
TCCTTTRAGTTT-30), targeting all bacteria as well

as 558F (FAM, 50-ATTGGGTTTAAAGGGTCCG-30)
(Abell and Bowman, 2005a, b) and 1390R (HEX,
50-GACGGGCGGTGTGTACAA-30) (Zheng et al., 1996),
targeting the class Flavobacteria. Undigested and
digested amplicons were identified by capillary
electrophoresis to verify the absence of false-posi-
tive fragments in the undigested control and the
completeness of the digestion. PCRs were carried
out in a total volume of 25ml, including 12.5 ml PCR
Master Mix (Promega GmbH, Mannheim, Germany),
1mM forward and reverse primer, and 5–24ng DNA
template. PCR reactions were carried out in tripli-
cates and purified on Sephadex columns (Sephadex
G-50 Superfine, Amersham Biosciences AB, Uppsa-
la, Sweden). PCR amplicons (70-120ng) were
digested in a total volume of 10ml at 37 1C for 3 h
using 5 U of the restriction enzyme AluI (Fermentas,
Burlington, Canada) for bacterial amplicons and 5 U
of the enzyme MspI (Fermentas) for Flavobacteria
amplicons. The two restriction enzymes were
chosen based on high numbers of unique terminal
restriction fragments assessed with in silico analyses
using enzyme restriction power analysis (http://
mica.ibest.uidaho.edu/) as well as on best perfor-
mance in laboratory experiments (that is, producing
maximum numbers of terminal restriction fragments
(TRFs)). After heat inactivation (65 1C, 25min) and
purification on Sephadex columns, detection of
TRFs was performed on a ABI Prism 3130 XL
Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA) equipped with a 80-cm capillary, a POP-7
polymer and the filter set DS-30. The ROX-labelled
MapMarker 1000 (Eurogentec, Seraing, Belgium)
served as a size standard between 50 and 1000 bp.
The fragment profiles were visualized and automa-
tically analyzed with GeneMapper v. 3.7 Software
(Applied Biosystems), using standardized settings
with a peak detection cut-off set to 30 fluorescence
units. The 50-end labelled TRFs were used as they
produced a higher number of fragments in compar-
ison with 30-end TRFs (Suzuki et al., 1998; Osborn
et al., 2000).

A binning procedure was applied to the Gene-
Mapper output to compensate for slight peak shifts
between runs and for TRF size calling imprecision,
in order to avoid artificial, technically derived
differences between profiles (Hewson and Fuhrman,
2006). The technical variability of peak size calling
in different replicates including runs conducted on
different days was determined as of±0.25 bp (win-
dow size of 0.5 bp). The binning function included
two different starting points (50 and 50.25 bp) and
the binning strategy yielding higher correlation
between all samples was selected for further
statistical analyses. The binning window was
adjusted to 1 bp for samples amplified with Flavo-
bacteria primers, because a window frame of 0.5 bp
did not yield higher resolution. The computation
was carried out with the Interactive Binner function
(Ramette, 2009 http://www.ecology-research.com).
The output consisted of a table of TRFs with
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corresponding relative fluorescence intensities,
which are the individual peak area divided by the
total area of peaks in a given profile. Master profiles
were generated by building a consensus table of the
binned TRF profiles for all samples from one basin,
averaging the respective relative fluorescence in-
tensities values of all samples. A TRF was consid-
ered present if it appeared in one or more PCR
parallels, therefore including all natural and tech-
nical variability at this level of analysis.

Statistical analyses
Non-metric multidimensional scaling (nMDS) and
analysis of similarity (ANOSIM) were carried out
with the program PAST (Paleontological Statistics,
ver. 1.47, http://folk.uio.no/ohammer/past). Simple
and partial Mantel tests were used to determine the
significance and correlation coefficients between
genetic-, spatial- and environmental distance matri-
ces, using the R package vegan (http://vegan.r-forge.
r-project.org/) (Legendre and Legendre, 1998;
Mantel, 1967). Spatial dissimilarities based on
geographic distances between sites and environ-
mental dissimilarities (temperature, salinity, pH, Eh,
TOC, Chl a and grain size; Table 1) were used to
explain genetic dissimilarity. To determine the
strength of the relationship between genetic and
geographic distance linear models were fitted and
slope coefficients were calculated with their 95%
confidence intervals.

Results and discussion

Bacterial biomass and richness in sediments of the
South Atlantic Ocean
The cell numbers of the suboxic surface sediments
(0–2 cm) in three eastern South Atlantic Ocean
basins were 3.4–3.7� 109 cells g–1 sediment
(Table 1). The abundances were in the range found
in other deep-sea sediments (9.2� 108 cells g–1 (Dem-
ing and Colwell, 1982), 1.5� 109 cells g–1 (Guezen-
nec and Fiala-Medioni, 1996) and 5� 108 cells g–1

(Harvey et al., 1984)). The 16S rRNA gene libraries
showed a high diversity with up to 20 different
phyla in the Cape Basin and 17 phyla in the Angola
and Guinea basins (Figure 1). Earlier described

deep-sea (Bowman and McCuaig, 2003; Polymena-
kou et al., 2005, 2009; Xu et al., 2005) and shallow
sediments (Ravenschlag et al., 1999) had also found
a large diversity, which may be based on a weak and
symmetric competition (Grant, 2000). The reciprocal
Simpson’s indices for all sites were above 50
(Table 2), suggesting evenly distributed diversity
profiles as typical dominance profiles show 1/D
values below approximately 50 (Zhou et al., 2002).
Total richness estimates (Chao1) (Table 2) and
rarefaction curves (Supplementary Figure S1) based
on a 98% sequence identity showed that Cape,
Angola and Guinea basin surface sediments con-
tained an equal bacterial richness at a significance
level of 0.05.

Both analyses predicted a lower richness for the
South Atlantic sediments in comparison to the
Antarctic sediments and a higher richness in
comparison to the Arctic sediment. The library-
based equality of richness was supported by the
T-RFLP analysis, as basin-specific master profiles
showed a comparable OTU richness (167, 190 and
182 TRFs for the Cape, Angola and Guinea Basin,
respectively) (Figure 4a).

Bacterial diversity of the 16S ribosomal RNA genes
The clone libraries contained 521 phylotypes with
98% identity in 1051 sequences, containing 705
full-length sequences. Applying a 100% identity
threshold revealed 230 sequences, which were
present at least twice, with a majority of 176
sequences (18 OTUs) present in all deep-sea sedi-
ments. The bacterial communities were dominated
by Proteobacteria, which accounted for 64, 58 and
63% of all sequences in the Cape, Angola and
Guinea Basin, respectively, with the class Gamma-
proteobacteria representing 45, 37 and 40% of all
sequences in the respective basins (Figure 2). The
class Gammaproteobacteria comprised 116 phylo-
types (98% identity, 427 sequences), of which 39
phylotypes (138 sequences) were related to known
cultivated species. These belonged mainly to fa-
milies of psychrophilic microorganisms including
Enterobacteriaceae, Alteromonadaceae, Oceanos-
pirillaceae and Legionellaceae (Figure 3a). Among

Table 1 Sediment data (Türkey and Kröncke, in preparation) and cell numbers of microbial communities in the South Atlantic Ocean

Basin Depth
(mbsl)a

Temp.
(1C)

Salinity
(%)

pH Eh
(mV)

TOC
(%)

Chl a
(mg g�1)

Grain size (%) Cell counts
(cell g�1)

MPN
(cells ml�1)

o63mm 463 mm

Cape 5032 1.14 34.6 7.74 177 0.83 0.017 92.89 6.87 3.5� 109 1.22�104

Angola 5649 ND ND 7.72 96 0.9 0.069 83.84 16.4 3.4� 109 2.67�105

Guinea I 5063 2.1 34.9 7.77 183 0.72 0.264 84.23 15.23 3.7� 109 2.67�104

Guinea II 5225 ND ND 7.76 132 0.77 0.301 84.99 14.46 ND ND
Guinea III 5525 2.1 34.5 ND ND 0.76 0.152 86.45 13.34 ND ND

Abbreviation: ND, not detected.
aMeters below sea level.
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these phylotypes 11 OTUs (12 sequences) clustered
with the NOR5/OM60 clade that includes ‘Congregi-
bacter litoralis’ strain KT71, the first marine aerobic
anoxygenic phototrophic Gammaproteobacteria
in culture (Fuchs et al., 2007; Yan et al., 2009).
Three phylotypes (5 sequences) were related to free
living (Thiothrix) and endosymbiotic sulfur oxi-
‘dizers and methylotrophic bacteria. A large por-
tion of 77 phylotypes (289 sequences) clustered
distinctly from cultured species to JTB255/BD3-6
(38 phylotypes, 192 sequences), BD7-8/MERTZ
(10 OTUs, 36 sequences), JTB23/Sva0091 (18 OTUs,
34 sequences) (Figures 3a and b) and to Cret-1F,
BD1-1, PWP and South Ionian groups (11 OUT,
27 sequences). These groups included only 16S
rRNA gene sequences that originated from other
deep-sea or permanent cold marine habitats (Kato
et al., 1999; Li et al., 1999; Ravenschlag et al., 1999;
Urakawa et al., 1999; Bowman and McCuaig, 2003;
Polymenakou et al., 2005; Xu et al., 2005; Zhao and
Zeng, 2005).

The Alpha-, Beta- and Deltaproteobacteria ac-
counted together for 18 to 23% of all sequences in
the libraries. Deltaproteobacteria (11 to 14%) out-
numbered Alphaproteobacteria (6 to 8%) and
Betaproteobacteria (1 to 3%) (Figure 2). Other
groups with a sequence abundance of over 5%,
which occurred in all three basins, were the

phyla Chloroflexi (1, 10 and 4% for Cape, Angola
and Guinea basins, respectively), Planctomycetes (6,
4 and 10%), Acidobacteria (4, 7 and 5%) and
Bacteroidetes (10, 4 and 6%).

Bacterial diversity comparison
The proportion of bacteria present in two or three
basins was high in the 16S rRNA gene sequences
analyses (23%) and in the T-RFLP analyses (58%)
(Figure 4a). A third of the fragments (93 TRFs) was
detected in the sediments of all basins and repre-
sented 82% of the total relative fluorescence
intensities. Among the 16S rRNA gene sequences,
a shared membership of 19 OTUs (98% identity)
was found in all three basins with the statistical tool
SONS. The manual assignment in ARB confirmed
the small fraction of OTUs detected in all three
basins (29 OTUs, 347 sequences), but provided
additional information regarding the sequence
abundance and identity of each OTU. These
were dominated by Gammaproteobacteria (76%;
Figure 4b). In this class, the common members were
related to marine heterotrophic aerobic and faculta-
tive anaerobic microorganisms (Alteromonadaceae
and Oceanospirillaceae), photoheterotrophic aero-
bic bacteria (NOR5/OM60 clade) (Fuchs et al., 2007),
and to groups consisting of uncultivated bacteria

Table 2 Sampling sites of sediments used for 16S rRNA gene sequencing or for T-RFLP analysis with corresponding richness and
diversity indices for bacteria

Sampling
area

Latitude Longitude Depth
(mbsl)a

Stationsb

T-RFLP
Stationsb

16S
No. of
clonesc

OTU
DOTUR

Richness
estimator

Simpson
1/D

Study

rRNA
gene
seq.

0.02 Chao1d

Cape 281060420 0 S 71 200480 0 E 5032 33, 34, 37, 38 33 342 FP 202 466 (369, 620) 77 This study
228 F 145 508 (351, 785) 53

Angola 91560000 0 S 01 530480 0 E 5649 46, 48, 50 46 354 FP 183 256 (227, 305) 77 This study
219 F 126 369 (259, 570) 59

Guinea I 01000000 0 S 21250060 0 W 5063 56, 58, 59, 60, 61 60 355 FP 203 369 (308, 465) 125 This study
258 F 155 489 (348, 735) 91

Guinea II 01500000 0 N 51 350000 0 W 5225 74, 75, 76, 77, 79 — — This study

Guinea III 01370120 0 N 61 280060 0 W 5525 95, 97, 99 — — This study

Antarctic
continental

661310860 0 S 1431380300 0 E 761 — MERTZ
0–2cm

590 P 322 899 (713, 1175) 125 Bowman and
McCuaig, 2003

shelf
Arctic ocean
Svalbard

791420810 0 N 111050180 0 E 218 — Station J 123 P 84 125 (104, 167) 167 Ravenschlag
et al., 1999

East Pacific 91280480 0 N 1041130480 0 W 2516 — EPR 370 F 239 601 (475, 796) 200 Santelli et al.,
2008

Rise �91500380 0 N �1041170860 0 W �2674
Hawaii 181520170 0 N 1551140530 0 W 888 — PV 472 F 276 764 (597, 1017) 167 Santelli et al.,

2008
�181580310 0 N �1551530420 0 W �1714

Abbreviations: DOTUR, distance-based OTU and richness; OTU, operational taxonomic units; rRNA, ribosomal RNA; T-RFLP, terminal restriction
fragment length polymorphism.
aMeters below sea level.
bFor details see cruise report DIVA II (M63/2).
cNumber of full-length (F) and partial (P) sequences, full-length sequences and values calculated from them are presented in bold.
dChao1 richness with lower and upper bound of 95% confidence interval.
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(JTB255/BD3-6, JTB23/Sva0091/BD3-1, BD7-8/MERTZ,
Gret-1F and South Ionian).

Phylotypes present in two of three basins be-
longed to the Gamma- and Deltaproteobacteria and
to the Chloroflexi. A major group of Chloroflexi-
OTUs were restricted to Angola and Guinea basin
sediments (7 OTUs, 21 sequences). The

R
-LIB-

SHUFF analyses revealed no significant difference
between the Angola and Guinea libraries as well as
Cape and Guinea libraries (using a minimum
P-value of 0.0012) (Supplementary Table S1). Thus,
common phylotypes dominate the communities of
these basins. The largest number of TRFs covered by
two basins was found for the Angola and Guinea
basins (30 TRFs, 30.5 relative fluorescence inten-
sity) (Figure 4a). High chlorophyll a contents were
detected in the Angola and Guinea surface sedi-
ments indicating a large fraction of fresh, recently
arrived organic carbon (Table 1, Türkay and
Kröncke, in preparation). This probably originated
from a primary productivity in the surface waters
that can be linked to the discharge of nutrients from
the Congo and the Niger Rivers into the Angola and
Guinea basins, respectively (Schefuss et al., 2004).

Angola and Cape basins showed significantly
different communities (

R
-LIBSHUFF test, P¼ 0.008)

and significantly different Flavobacteria T-RFLP
profiles (Figure 5b) (analysis of similarity, R values
0.869, Po0.001) (Supplementary Table S2). These
differences were consistent with a different
chlorophyll a content as well as a different sediment
particle size in the Cape Basin (Table 1) (Etter
and Grassle, 1992), indicating that environmental
factors seem to influence bacterial communities
in deep-sea sediments of the eastern South Atlantic
Ocean. It is, however, needed to also take spatial
parameters into account in this analysis to
strengthen our interpretation concerning environ-
mental or spatial effects on the observed community
shifts.

Biogeography: environmental and historical factors
In the eastern South Atlantic Ocean the Walvis
Ridge separates the Cape Basin from the Angola
and Guinea basins below a depth of about 3000m
and causes different deep water masses in these
basins. The dominance of common phylotypes in
the 16S rRNA gene libraries and T-RFLP master
profiles suggested that microbial dispersal may
not be influenced by the Walvis Ridge or by the
presence of different water masses. This was

Chloroflexi

Nitrospira

Cyanobacteria

Chlorobi

Alphaproteobacteria

Betaproteobacteria

Gammaproteobacteria

Deltaproteobacteria

Clostridia

Actinobacteria

Planctomycetacia

Fibrobacteres

Gemmatimonadates

Acidobacteria

Bacteroidetes

Flavobacteria

Sphingobacteria

Verrucomicrobia

candidate division BRC1

candidate "Chaldithrix"

candidate division OD1

candidate division OP3

candidate divison OP5

candidate division OP11

candidate division TM6

candidate division WS3

cl
as

s

relative abundance of sequences [%]

Guinea Basin I

Angola Basin

Cape Basin

0 5040302010

Figure 2 Bacterial diversity in the Cape Basin (342 sequences), Angola Basin (354 sequences) and Guinea Basin (355 sequences).
All detected classes in the domain Bacteria are shown.
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supported by the significantly similar distance–decay
relationships of the TRFs in the pairwise comparison
(Cape/Angola, slope coefficient 6.9� 10–5 and 95%
confidence interval (3.4� 10–5, 10.3� 10–5); Angola/
Guinea, slope coefficient 8.7� 10–5 and 95% confi-
dence interval (1.5� 10–5, 15.9� 10–5)). Phylotypes
common in the communities of the South Atlantic
Ocean and the Pacific, Antarctic and Arctic Oceans
sediments (Supplementary Table S1) indicated that
some microorganisms disperse effectively over a huge
distance and therefore are cosmopolitan, at least at
the resolution of 16S rRNA genes that is insufficient
for the classification of microorganisms into species
(Konstantinidis and Tiedje, 2005).

To get more information regarding the amount
of spatial structure present, we analyzed the rela-
tive relationships between genetic diversity and
geographic distances. The 16S rRNA gene and
TRFs based distance–decay relationships for the
South Atlantic Ocean and for all sites were all

very low (0.003 to 0.07) (Table 3), as also found
in taxa-area relationships for soil and salt marsh
communities (0.03 to 0.074) (Green et al., 2004;
Horner-Devine et al., 2004; Fierer and Jackson,
2006), suggesting high dispersal rates and low
extinction rates because of vast population sizes
(Connor and McCoy, 1979).

From the clustering of TRF profiles by basins, as
shown by non-metric multidimensional scaling
(Figure 5a) associated with large, significant
R values for all pairwise comparisons between
the deep-sea basins (analysis of similarity, 0.586
to 0.999, Po0.001) (Supplementary Table S2), and
from significant differences between the South
Atlantic Ocean communities to all other commu-
nities (

R
-LIBSHUFF tests, Supplementary Table S1),

it seemed obvious that communities were structured
either by the contemporary environment, spatial
distances (historical events) or by a combination of
both (Martiny et al., 2006; Ramette and Tiedje 2007).

Figure 3 Phylogenetic tree based on 16S ribosomal RNA (rRNA) gene sequences of the class Gammaproteobacteria showing position of
(a) marine heterotrophic aerobic and facultative anaerobic microorganisms and photoheterotrophic aerobic (NOR5/OM60 clade) bacteria
and (b) potential auto- or mixotrophic sulfur oxidizers and bacteria that inhabit various geographic regions (JTB255/BD3-6). The tree was
calculated using the maximum-likelihood algorithm with a 50% positional conservation filter and with 100 bootstrap replicates. The bar
represents 10% estimated sequence divergence. Full-length sequences (Ca, An and Gu), partial sequences (cap, ang and gui), the number
of OTUs in a cluster and the corresponding number of sequences (squared bracket) are shown.
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To disentangle the relative influence of environ-
mental heterogeneity and spatial distance on the
distribution of microbial deep-sea sediment com-
munities, we used a combination of simple and
partial Mantel tests. For distances of 0–1200 km
T-RFLP results showed a comparable influence
of both factors (environment r¼ 0.636, Po0.001,
geography r¼ 0.651, Po0.001) (Table 2) (Figure 6b).

But environment (r¼ 0.588, Po0.001) overwhelmed
any effect of geographic factors (r¼ 0.278, P¼ 0.009)
for intermediate distances (1200–3500 km), as
also supported by significant partial Mantel tests
(Table 3). A higher correlation between spatial and
genetic distance for small spatial scales (o200m)
was reported for other microbial groups in soil
(Cho and Tiedje, 2000), suggesting the existence of
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endemic taxa, as genetic distance increases with
spatial distances.

Mantel tests for 16S rRNA gene sequences
revealed that both environment and geography
(r¼ 0.008, P¼ 0.006 and r¼ 0.024, P¼ 0.001, respec-
tively) had an influence on the bacterial diversity of
the South Atlantic. Significant correlations between
genetic and geographic distances (Mantel’s coeffi-
cient r¼ 0.013, P¼ 0.001) (Table 3, Figure 6a) were
as well observed for all deep-sea and coastal
sediments.

When compared in more detail, the two methods
showed different results for the relative influence of
both factors on microbial biogeography. These
detected differences reflect different levels of simi-
larity, saturation and resolution of each method and
sampling effort, for example, the T-RFLP analyses
including Guinea I versus Guinea I+II+III (Table 3).
Indeed, the analysis of 16S rRNA gene sequences

Cape

Angola

Guinea I

Guinea II

Guinea III

Cape

Angola

Guinea I

Guinea II

Guinea III

Figure 5 (a) Non-metric multidimensional scaling (nMDS) plot
using Bray–Curtis distance for the data set derived from
amplification with bacterial primers 27F and 907R and subse-
quent digestion with AluI. Stress: 0.15. (b) nMDS plot using Bray–
Curtis distance for the data set derived from amplification with
Flavobacteria-specific primers 517F and 1457R and digestion
with MspI. Stress: 0.07.
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provides information regarding randomly chosen
phylotypes (‘sampling communities’) where the
finding of an OTU is proportional to its abundance
in the clone library (Bent and Forney, 2008). In
contrast, the fingerprinting method T-RFLP screens
for all OTUs present above the detection threshold
of the method (‘screening’ communities; Bent and
Forney 2008), typically 46� 102–103 DNA fragment
copies per ml samples (Ramette 2009), but does not
provide clear taxonomic distinction (Dunbar et al.,
2001).

Although high dispersal rates were detected for
some groups in deep-sea sediments, both T-RFLP
and 16S rRNA-based analyses suggest barriers for
the dispersal of microorganisms in the deep sea.

The influence of both factors at intermediate scales
was already shown by other studies (Green et al.,
2004; Reche et al., 2005; Yannarell and Triplett,
2005), but our study suggest an effect of both factors
for large scales as well, as shown for soil microbial
communities (Fierer and Jackson, 2006). Although
the small size, high dispersal rates, large population
size and low extinction rates of microorganisms sug-
gest a low effect of geographic barriers on micro-
organisms (Staley and Gosink, 1999; Beja et al.,
2002; Finlay, 2002; Ramette and Tiedje, 2007), our
study shows that the distribution of microorganisms
in deep-sea sediments is limited at intermediate
(10–3000km) and large scales (43000 km).
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Supplementary Information 

 

Microbial biomass 

Samples of 0-2 cm depth were sonicated and cell numbers were determined after 4’,6-diamidino-

2-phenylindole (DAPI)-staining (1 μg/ml). Counts were performed until 1,000 cells were reached 

for statistical significance (Pernthaler et al, 2003). Most probable number (MPN) determinations 

were performed in three dilution series with ten-fold dilutions with artificial sea-water medium 

(Widdel and Bak, 1992), containing casamino acids, glucose, ribose (each 2 g/l), pyruvate, 

propionate, fumarate (each 1.2 g/l) and yeast extract (Difco, 0.4 g/l). All tubes were incubated 

for the first 4 weeks at 4°C and afterwards at 12°C. The number of culturable cells/ml was 

calculated based on visible cell pellets with standard probability tables (American Public Health 

Association, 1969). 

 

Supplementary References 
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Verlag,New York,pp 3352-3378. 
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Figure S1: Rarefaction analyses of the relative bacterial richness of different communities compared at a distance of 
0.02. 
 
 
Table S1: Comparison of bacterial community structure by the statistical tools SONS (upper matrix) and �-
LIBSHUFF (lower matrix). 

Guinea
 I

68 96 5 42 73
 (0.11/0.57)  (0.14/0.35) (0.01/0.01) (0.04/0.03)  (0.03/0.03)

0.0008* 2
0* (0.00/0.00)

0.4011 0.0338
0.0014 0.0966
0.0602 0.0336 0.0256 5

0* 0* 0*  (0.01/0.00)
0* 0* 0* 0.4735

0.4116 0* 0* 0.4735
0* 0* 0* 0* 0*
0* 0* 0* 0* 0*
0* 0* 0* 0* 0* 0*
0* 0* 0* 0* 0* 0*

                         SONS      Cape Angola Arctic Antarctic EPR Hawaii

Cape 217 
(0.04/0.02)

Angola 90    
(0.16/0.49)

46    
(0.03/0.02)

38    
(0.03/0.02)

47    
(0.03/0.06)

51    
(0.05/0.05)

Guinea I 5       
(0.01/0.00)

50    
(0.02/0.01)

53    
(0.04/0.04)

25    
(0.04/0.03)

Arctic 181 
(0.06/0.04)

13    
(0.01/0.01)

Antarctic 95    
(0.05/0.04)

In the upper matrix (SONS analyses) shared OTU0.02s are shown in bold numbers and the ratio of shared OTU0.02s to the 
total number of OTU0.02s is the first number in parenthesis and the similarity index � is the second number in 
In the lower matrix (�-LIBSHUFF analyses) significant P -level are indicated by an asterisk (*).

EPR 148    
(0.1/0.13)

Hawaii

�-LIBSHUFF

 
 
 
Table S2: Analysis of similarity (ANOSIM) of bacterial and Flavobacteria derived T-RFLP profiles. 
Parameter R Angola Guinea I Guinea II Guinea III

0.831 (< 0.001)* 0.999 (<0.001)* 0.672 (<0.001)* 0.777 (<0.001)*
0.869 (<0.001)* 0.841 (<0.001)* 0.595 (<0.001)* 0.534 (0.004)*

0.998 (<0.001)* 0.586 (<0.001)* 0.716 (<0.001)*
0.415 (0.008) 0.285 (0.027) 0.52 (0.002)*

0.672 (<0.001)* 0.976 (<0.001)*
0.002 (0.413) 0.569 (0.001)*

-0.014 (0.49)
0.304 (0.05)

Cape 

Angola 
-

-
P values are indicated in parentheses with * to indicate significant P values following Bonferroni correction for multiple 
testing. The first (bold) line represents bacterial datasets for each pairwise comparison and the second lines 
Flavobacteria  T-RFLP datasets. 

Guinea I
- -

Guinea II
- -

 

84



 

 

Chapter III 

 

The energy-diversity relationship of 

complex bacterial communities 

in Arctic deep-sea sediments 

 

 

 

Christina Bienhold, Antje Boetius, Alban Ramette* 

 

 

HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener 

Institute for Polar and Marine Research, Bremerhaven, Germany, and Max Planck 

Institute for Marine Microbiology, Bremen, Germany 

 

*Corresponding author 

 

 

In Review with The ISME Journal

85



86



Chapter III – Energy-diversity relationships Arctic 
   

Abstract 
The availability of nutrients and energy is a main driver of biodiversity for plant and animal 

communities in terrestrial and marine ecosystems, but we are only beginning to understand 

whether and how energy-diversity relationships may be extended to complex natural bacterial 

communities. Here, we analyzed the link between phytodetritus input, diversity and activity of 

bacterial communities of the Siberian continental margin (37 to 3427 m water depth). 

Community structure and functions, such as enzymatic activity, oxygen consumption and carbon 

remineralization rates, were highly related to each other, and with energy availability. Bacterial 

richness substantially increased with increasing sediment pigment content, suggesting a positive 

energy-diversity relationship in such oligotrophic regions. Hump-shaped relationships were 

indicated when including mesotrophic sites, implying that bacterial communities and other 

benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong 

positive or negative relationships with phytodetritus input and allowed us to identify candidate 

bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also 

suggest varying ecological strategies among bacterial groups along the energy gradient. Our 

results imply that environmental changes affecting primary productivity and particle export from 

the surface ocean will also cause shifts in bacterial community structure and function at depth, 

and that sediment bacterial communities can record shifts in the whole ocean ecosystem 

functioning.  
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1. Introduction  

 

The relationship between diversity and bioavailable energy, often measured as 

photosynthetic productivity, is best described by positive or hump-shaped functions in animal 

and plant communities (Evans et al., 2005; Mittelbach et al., 2001; Waide et al., 1999). A variety 

of explanations for this ecological pattern have been proposed, including effects of population 

size, biomass, competition, evolutionary, environmental or resource heterogeneity (Cardinale et 

al., 2009; Waide et al., 1999 and references therein). Although microbes dominate most 

ecosystems in terms of abundance, diversity and biomass (Whitman et al., 1998), we have only 

recently begun to understand to what degree these relationships may be extended to complex 

microbial communities (studies reviewed in Smith, 2007). Noticeably, studies have mainly 

focused on pelagic or simplified ecosystems and came to different conclusions: No relationship 

of overall richness with productivity could be found in aquatic mesocosms (Horner-Devine et al., 

2003), weak positive correlations were shown for global patterns of bacterioplankton diversity 

(Fuhrman et al., 2008; Pommier et al., 2007), and hump-shaped relationships for genotypes of 

Pseudomonas fluorescens in microcosms (Kassen et al., 2000). Recently, as high-throughput 

fingerprinting methods became available, the bacterial energy-diversity relationship may now start 

being addressed in complex aquatic or terrestrial communities (Fuhrman, 2009). Unravelling the 

relationships between environmental conditions, organism diversity and its links to ecosystem 

functions remains a priority if we are to better understand effects of global change.  

For benthic life, productivity-diversity relationships have been mostly studied along 

continental slopes, which constitute ideal natural laboratories because of relatively defined 

variations in energy availability with water depth. Benthic communities in the deep sea depend on 

the sedimentation of phytodetritus from the productive surface waters, but detritus flux to the 

seafloor decreases substantially with increasing water depth due to the grazing and 

remineralization of particles in the water column. As the main source of energy, phytodetritus 

flux to the deep sea strongly impacts the abundance, biomass and biodiversity of various size 

classes of benthic organisms (Smith et al., 2008 and references therein). The input of 

phytodetritus to deep-sea sediments has also been shown to influence bacterial biomass and 

activity (Boetius and Lochte, 1994; Deming and Yager, 1992; Jorgensen and Boetius, 2007), but 

studies linking energy availability at the seafloor to bacterial diversity patterns are still rare 

(Franco et al., 2007; Polymenakou et al., 2005).  

Here we tested for the first time bacterial energy-diversity relationships for complex natural 

bacterial communities in Arctic seafloor on a regional scale, in order to minimize confounding 
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factors from sampling across different ocean provinces. We have chosen depth transects across 

the Arctic continental slope, covering a range of phytodetritus fluxes,  representing mesotrophic 

to oligotrophic deep-sea settings. As a common proxy for phytodetritus input to sediments, we 

used the chlorophyll pigment content of surface sediments (Boetius and Damm, 1998; Dell'Anno 

et al., 2002; Soltwedel, 2000; Soltwedel et al., 2009). Along this natural energy gradient, we 

described the shape of the relationships between energy, bacterial activity and bacterial diversity 

at the community and at different taxonomic levels, and identified bacterial taxa that are most 

likely affected by changes in energy availability.  

 

 

2. Materials & Methods 

 

2.1 Study site and contextual parameters  

Sediment samples were collected on three transects down the Laptev Sea continental slope 

during RV Polarstern cruise ARK IX/4 in September 1993 (Boetius and Damm, 1998). The 

samples analyzed here included 17 stations from the outer Laptev Sea shelf into the deep 

Eurasian basin (Figure S1). An opening of the ice cover occurred as a temporally and regionally 

restricted event between June and September for periods of 2-12 weeks at different stations 

(Fütterer, 1994), leaving the Eastern most transect largely ice free at the time of sampling. 

Sediment cores were horizontally sliced into 1 cm thick layers and sediment samples from the 

same stations were used for measuring environmental parameters, potential enzyme activities and 

DNA extraction. Measurements of chlorophyll pigments, protein concentration and hydrolytic 

enzyme activities (esterase, lipase, peptidase, beta-glucosidase) have been previously published 

(Boetius and Damm, 1998). Corresponding phaeopigment concentrations of the same stations 

were retrieved through the Publishing Network for Geoscientific and Environmental Data” 

(PANGAEA, doi:10.1594/PANGAEA).  

 

2.2 Community structure analysis  

Total community DNA was extracted from 1 g of sediment using UltraClean Soil DNA 

Isolation Kits (MoBio Laboratories Inc., Carlsbad, CA) and stored in a final volume of 100 μl 

Tris-EDTA buffer. DNA quantities were spectrophotometrically adjusted with a NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE) for each step of 

the molecular protocol.  
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2.3 Automated ribosomal intergenic spacer analysis (ARISA) 

A total of 42 samples composed of three sediment horizons (0-1 cm, 1-2 cm, 4-5 cm) were 

analyzed by ARISA. DNA quantities were standardized to 10 ng. PCR amplification, separation 

of fragments by capillary electrophoresis, evaluation of electrophoretic signals, and subsequent 

binning into OTUs were done as reported elsewhere (Ramette, 2009). An OTU was considered 

present if it appeared in at least two of the three PCR replicates and fingerprint profiles were 

standardized by dividing each individual peak area by the total area of peaks in a given profile.  

 

2.4 454 massively parallel tag sequencing  

A subset of 10 samples was selected for 454 MPTS. To increase the representativeness of 

our analyses we combined samples from the upper two sediment layers (0-1 and 1-2 cm), after 

verifying that no significant differences were found in community structure between these two 

layers based on ARISA fingerprinting. Pigment concentrations for corresponding samples were 

averaged accordingly. Extracted DNA was amplified using primers targeting the V6 region of the 

bacterial 16S rRNA gene and including 454 Life Science’s A or B sequencing adapters as 

published on http://vamps.mbl.edu. Fragments were sequenced by pyrosequencing on a 

Genome Sequencer FLX system (Roche, Basel, Switzerland) at the Marine Biological Laboratory 

in Woods Hole, MA, USA. Taxonomic assignments were performed with the Global Alignment 

for Sequence Taxonomy tool (GAST, Huse et al., 2008; Sogin et al., 2006). Data were normalized 

to relative sequence abundances within samples, where the number of reads taxonomically 

assigned was divided by the total number of reads in the sample.  

In order to keep analyses over different taxonomic levels consistent, we used a subset of the 

454 MPTS dataset for further analysis, in which only sequences with a complete assignment up to 

genus level were retained. A high Spearman correlation between dissimilarity matrices of the 

reduced (20% of original) and the original dataset confirmed that ecological patterns were 

consistent in both datasets (Table S1). To investigate potential differences in the response of rare 

and common types to changes in phytodetritus input, we first removed all singletons (defined as 

sequences occurring only once in the dataset), as statistical relationships cannot be tested for 

these cases. Subsequently we defined subsets of “rare” and “common” types and required that 

such types appeared in at least four samples so as to obtain enough statistical power to detect 

individual OTU responses as a function of phytodetritus input.  
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2.5 Statistical analyses  

To identify overall patterns in bacterial beta-diversity, non-metric multidimensional scaling 

(nMDS) was performed on Bray-Curtis dissimilarity matrices of OTU relative abundance tables. 

Significant differences of a posteriori groupings of samples were assessed with an analysis of 

similarity (ANOSIM). Mantel tests were used to compare spearman correlations of dissimilarity 

matrices between different datasets.  

To avoid over-determination in modeling the community responses to environmental 

parameters, forward selection procedures were performed on groups of factors with redundancy 

analysis (RDA) models. The best fitting models were selected using the Akaike Information 

Criterion (AIC). Space was modeled by using a polynomial of degree three of the spatial 

coordinates, from which the terms Y, XY, XY2, X3, Y3 were finally retained after forward 

selection. Protein, water depth, sediment depth and ice cover were kept as separate categories. 

The respective effects of various groups of variables on the variation in community composition 

were investigated by canonical variation partitioning (Legendre and Legendre, 1998; Ramette and 

Tiedje, 2007). Among different pigment measurements (Boetius and Damm, 1998), 

phaeopigments explained the highest amount of variation with 4% (p < 0.001). Phaeopigments 

were therefore used to explore the response of the bacterial community to changes in 

phytodetritus input.  

Directed dependencies between the response variables (ARISA diversity and enzymatic 

activity) and all groups of relevant contextual parameters were displayed in one causal model with 

path analysis (Legendre and Legendre, 1998). The RV coefficient (Robert and Escoufier, 1976) 

was used to derive a correlation matrix between groups of variables. Based on our previous 

statistical analyses an initial model was tested and subsequently improved by comparing the fit of 

new models to the original matrix using Chi-square tests. Other goodness-of-fit indices (e.g. 

Bentler Comparative Fit Index, Bayesian Information Criterion) were used to further compare 

model performance. All statistical analyses were performed in R (v. 2.9.1; R Development Core 

Team 2009, http://www.R-project.org) using vegan, gmt, sem, and FactoMineR packages and 

custom R scripts.  
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3. Results 

3.1 Relationships between bacterial diversity and function with increasing energy 

availability  

Changes in bacterial alpha-diversity (richness) and beta-diversity (changes in community structure 

between sites) were strongly related to changes in pigment concentrations (Figure 1a-f): OTU 

(operational taxonomic unit as defined by ARISA, based on fingerprinting of the intergenic 

region of the ribosomal genes) richness and pigment concentrations showed a strong positive, 

linear relationship until pigment concentrations of about 2 μg/cm3 sediment were reached, 

changing into a hump-shaped relationship with a good quadratic model fit for the range of 

pigment concentrations between 0 and 3 μg/cm3 (Figure 1a). Patterns of bacterial community 

structure also showed high correlations with pigment concentrations (r = 0.52, p = 0.001, Figure 

1d) and lower, yet significant correlations with spatial distance and water depth (r = 0.24, p < 

0.001 and 0.14, p = 0.011, respectively) (Figure S2 a, b). When 454 MPTS (pyrosequencing of the 

variable V6 region of the 16S rRNA gene) was applied to a subset of samples to further explore 

the response of bacterial taxa to this range of energy availability, a similar linear relationship was 

found, appearing to level off at higher pigment concentrations (>3 μg/cm3) (Figure 1 c). The two 

molecular techniques, ARISA and 454 MPTS, revealed similar ecological patterns. Additional 

statistical tests further validated the technical concordance (Table S1; SI text) and the usefulness 

of combining the two techniques to ecologically interpret the data.  

Hydrolytic enzyme activities (esterase, lipase, peptidase, beta-glucosidase) showed a slightly 

lower, yet significant relationship with pigments (r = 0.38, p = 0.001, Figure S3) and was also 

highly correlated with variations in bacterial community structure (r = 0.63, p = 0.001, Figure 1 g-

i). Changes in activity showed a low, but significant correlation with spatial distance (r = 0.17, p = 

0.003), and no correlation with water depth (Figure S2 c, d). Similar results were obtained for 

oxygen consumption and carbon remineralization rates previously measured at 19 stations in the 

same area (Boetius and Damm, 1998): Oxygen consumption was significantly correlated with 

differences in pigment concentrations (r = 0.59, p < 0.001), spatial distance (r = 0.26, p = 0.01), 

and water depth (r = 0.16, p = 0.04), as were carbon remineralization rates with pigment 

concentrations (r = 0.72, p < 0.001), spatial distance (r = 0.24, p = 0.01), and water depth (r = 

0.31, p = 0.004). Oxygen consumption and carbon remineralization were also correlated to 

changes in community structure (r = 0.39, p = 0.08 and r = 0.66, p < 0.001, respectively).  
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Figure 1 Changes in bacterial OTU richness, community structure and enzyme activity with pigment concentrations 
and correlation of changes in community structure with changes in enzyme activities for ARISA and 454 MPTS data. 
The plots in the left column of the figure (a, d, g) are based on the full ARISA dataset, the ones in the middle 
column (b, e, h) are based on a reduced ARISA dataset containing only samples used for 454 MPTS and plots in the 
right column (c, f, i) are based on 454 MPTS data. Linear regression R2 values and Spearman correlations as tested by 
Mantel tests with 999 permutations are indicated in the plots. The full dataset (a) exhibits a strong linear correlation 
for very low pigment values (linear model R2 = 0.59, p < 0.001), changing into a hump-shaped relationship with a 
good quadratic model fit when extending the range of pigment concentrations, but removing the three highest 
pigment values (quadratic model R2 = 0.52, p < 0.001). Quadratic model fits for b) and c) are R2 = 0.55, p = 0.03 
and R2 = 0.84, p < 0.001, respectively.  

 

 

The effects of sedimentary pigments and protein (as proxies for phytodetritus input) on 

variation in bacterial community structure and function were further investigated by taking into 

account the confounding effects of spatial distance (geographic distance between samples) and 

water depth (Figure 2). Variations in bacterial community structure and function were best 
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explained by changes in pigment and protein concentrations. The full multivariate model 

explained 47% of the community variation, with pigment and protein concentrations significantly 

explaining 5% and 6% of the variation, respectively (p < 0.001, based on 999 Monte Carlo 

permutation tests), and water depth and spatial distance explaining 3% and 10%, respectively. 

Sediment depth and ice cover could only explain a very small amount of variation in the 

biological data (1%). Co-variation between explanatory variables, i.e. variation that can be 

explained by the combined effects of several parameters, summed up to 23%. At the functional 

level, the variation in available energy as represented by pigment concentrations had the largest 

specific effects on the variation in enzyme activity (16% of the total variation, p < 0.001 ; Figure 

2), followed by protein concentration and spatial distance that explained 9% (p < 0.001) and 8% 

(p < 0.01) of the variation in enzyme activities, respectively. Water depth alone could not explain 

any significant part of the variation, while co-variation between variables overall accounted for 

33%.  

 

Figure 2 Partitioning of the variation in 
bacterial community structure (ARISA) and 
activity (enzyme activity: esterase, lipase, 
peptidase, beta-glucosidase). Represented are 
the specific effects of contextual parameters 
(protein concentration, pigment 
concentrations, water depth, spatial distance) 
and total co-variation between these 
parameters. Statistical significance is indicated 
as determined by 999 Monte Carlo 
permutations under the full multivariate model. 
*** p < 0.001, ** p < 0.01. 

 

 

 

 

We further validated the causal relationship between bacterial community structure, activity 

and environmental parameters by path analysis. This method helps to determine the most 

plausible ecological models among a set of candidate models (Figure 3, Figure S4). The strongest 

factor directly affecting changes in both bacterial community structure and their activity 

(enzymatic hydrolysis) was the energy gradient (combination of pigments and protein 

concentrations as indicators for the presence of labile organic matter, and depth for other flux-

related processes; p < 0.001). Noticeably, community structure and function were so tightly 

coupled that modeling a causal relationship in either direction resulted in very similar partial 

correlation values and overall path models (Figure S4).  
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Figure 3 Path analysis of the causal 
relationships between bacterial community 
structure, bacterial activity and contextual 
parameters. The significance of a Chi-square 
test shows that the model is not significantly 
different from the correlation matrix of the 
data based on the RV coefficient (p = 0.76). A 
goodness-of-fit index (0.98) and Bentler 
Comparative Fit Index (1) indicate an optimal 
fit of the model. The Bayesian Information 
Criterion (-16.1) is another measure of the 
goodness of fit, and was the criterion that was 
iteratively minimized. The coefficient of non-
determination (ND = 1-R2) determines the 
fraction of the variance in bacterial community 
structure and enzyme activity that is not 
explained by the model. 

 

 

3.2 Response of individual taxa to changes in energy availability  

The most abundant sequences in the complete 454 MPTS dataset were affiliated with the 

phylum Proteobacteria (51% of all sequences), followed by Actinobacteria (10%) and Acidobacteria 

(9%). On the class level, Gammaproteobacteria (26%), Deltaproteobacteria (14%), Actinobacteria (10%), 

Alphaproteobacteria (7%) and Acidobacteria (6%) contained the majority of all sequences (see SI text 

for sequence taxonomic classification). Taxa showing significant positive or negative relationships 

with pigment concentrations comprised the dominant fraction of the dataset in terms of relative 

sequence abundance (> 50%).  

Already at coarse taxonomic resolution (i.e. phylum and class level) patterns of community 

structure with pigments could be detected (Table S2) and variable responses to changes in 

phytodetritus input were observed (Figure 4 a, b): The major phylum Proteobacteria overall strongly 

responded positively to pigment concentration increase, while its corresponding classes showed 

positive or no correlations (Figure 4 a, b; Table S3). Examples of classes showing positive linear 

relationships with pigments included Gammaproteobacteria and Flavobacteria (phylum Bacteroidetes), 

while no such relationship could be found for other bacterial classes, e.g. Betaproteobacteria (Table 

S3). Acidobacteria showed a negative, linear relationship with pigment concentrations. Taxa were 

also tested for quadratic relationships with pigment concentrations, but only very few significant 

correlations were found at high taxonomic resolution levels, e.g. for the families 

Desulfuromonadaceae and Flavobacteriaceae.  
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Figure 4 Examples of typical behaviors of taxa (a, b) and individual OTUs (c-e) with pigment concentration. 
Significant positive and negative Spearman rank correlation values are displayed in red and blue, respectively, 
whereas no significant relationships are in gray. The proportions of positively and negatively correlated taxa and 
OTUs are: For phyla, 21% positive, 16% negative; classes, 40% positive, 20% negative; Proteobacteria, 4.6% positive, 
0.6% negative; Gammaproteobacteria, 3.8% positive, 0.1% negative; and for Acidobacteria, 4.8% positive, 1.9% negative.  

 

 

The significant relationships were, in some cases, consistent at various taxonomic levels, e.g. 

the class Gammaproteobacteria, the family Psychromonadaceae and the genus Psychromonas were 

significantly positively related to phytodetritus input (Table S3). Yet, a more complex picture 

emerged when considering the highest resolution level, i.e. that of individual sequences (Figure 

4c-e): Proteobacteria and the class Gammaproteobacteria showed strong positive relationships with 

pigment concentrations, but OTUs consisting of individual sequences assigned to these taxa 

varied in their response from positive to negative, the same being true for OTUs assigned to 

Acidobacteria which overall showed negative relationships with pigments. To investigate potential 

differences in the response of rare and common types, we created subsets defining “rare” as 

those that occurred with � 5 sequences in at least four samples and “common” as those 

occurring > 5 times in at least four samples. Noticeably, of the rare types only 26% showed 

significant relationships with phytodetritus input, whereas of the more common types 46% 

showed significant relationships.  
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4. Discussion  

 

4.1. Change in richness with increasing energy availability  

Our results suggest an overall positive response of bacterial OTU richness to energy 

availability in the form of phytodetritus, which was strongest at oligotrophic conditions defined 

by low levels of pigment concentrations (<2-3 μg/cm3 sediment) (Figure 1a-c). Positive 

relationships between diversity and food availability have also been described for benthic meio- 

and megafaunal organisms (Soltwedel et al., 2009; Vanaverbeke et al., 1997)  and suggest that 

bacteria and animals of different size classes may be structured by similar ecological mechanisms. 

Increasing phytodetritus input sustains increasing bacterial abundance and biomass (Wei et al., 

2010), potentially enabling more species to coexist. This would be in line with the “more 

individuals” hypothesis (Srivastava and Lawton, 1998) of the species-energy theory (Wright, 1983). 

A leveling off of richness and the hump shape emerging from the inclusion of sites with higher 

phytodetritus supply (mesotrophic sites at the upper slope and close to the ice-edge) could be 

explained by the resource-ratio theory (Tilman, 1980), when other resources, e.g. oxygen, become 

limiting, favoring the survival of fewer specialists (Levin et al., 2001 and references therein). 

Other types of community dynamics may also cause this type of relationship, like competition or 

predation which may put a limit to the number of coexisting species (Levin et al., 2001; Rex, 

1976). The patterns we observed at the Arctic continental margin suggest that bacteria may 

conform to ecological rules that have originally been established for larger organisms. Further 

studies of natural and experimental systems are needed to test and decipher the mechanisms 

responsible for the establishment and maintenance of energy-diversity relationships in bacterial 

communities and if these can be extended to the global scale.  

 

4.2 Changes in community structure and function with increasing energy availability  

Not only bacterial richness but also community structure and function were affected by 

energy availability, suggesting a tight coupling between community structure and functions in 

organic matter remineralization, such as hydrolytic enzyme activity and oxygen consumption. A 

close association between community structure and functional patterns has also recently been 

reported for other Arctic regions (Teske et al., 2011). This may imply that changes in bacterial 

community structure could directly translate into functional changes that may even affect overall 

ecosystem functioning, e.g. such as carbon retention and nutrient remineralization. Additional 

analyses will be needed to investigate not only the role of quantity but also quality of 
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phytodetrital material for the specific functional response of benthic bacterial communities, 

which may alter organic matter recycling at the seafloor.  

Some of the community variation was explained by pure effects of the categories “spatial 

distance” and “water depth”. Although this suggests some isolation-by-distance processes, we 

cannot rule out the effects on community variation of other unmeasured biogeochemical 

parameters that would also be spatially structured (Legendre and Legendre, 1998). Furthermore, 

the relation between phytodetritus input and bacterial community structure could also be 

indirectly enforced by top-down effects such as nanoflagellate grazing (Danovaro et al., 1998; 

Lebaron et al., 1999; Lindstrom, 2000) or viral infection (Danovaro and Serresi, 2000), or food-

dependent differences in benthic fauna composition that would affect grazing, defecation, and 

bioturbation. We identified reproducible ecological patterns of diversity on all taxonomic levels 

investigated, demonstrating that bacterial diversity is not just randomly distributed along a well-

defined energy gradient but compares well with response patterns of other benthic organisms.  

 

4.3 Specific taxa – energy relationships  

While bacterial OTU richness generally increased with phytodetritus input, the response 

varied from positive to negative for individual taxonomic groups of bacteria. Taxa showing 

significant relationships with phytodetritus input were usually sequence abundant. Common taxa 

such as the Gammaproteobacteria and Acidobacteria with strong relationships to energy availability 

may serve as indicator taxa for certain environmental conditions, e.g. high vs. low phytodetritus 

availability, and could be helpful for future monitoring studies of benthic ecosystems in the 

Arctic Ocean. The strong positive correlations with energy availability in the Gammaproteobacteria, 

a globally ubiquitous group in marine sediments, imply that these organisms may include many 

opportunistic, fast growing bacteria. In contrast, the Acidobacteria may be especially adapted to 

oligotrophic conditions (Fierer et al., 2007), indicated by their significant negative relationship 

with pigments. Our results are consistent with other studies that showed differing responses of 

bacterial taxa to changes in productivity (Horner-Devine et al., 2003; Pommier et al., 2007). This 

suggests that varying ecological strategies and broad-scale patterns of co-existence or avoidance 

between bacterial groups may exist. Also at the level of individual OTUs, different relationships 

are realized, indicating niche differentiation even in closely related bacterial types. Future 

experimental studies on microbial energy-diversity relationships using quantitative methods such 

as fluorescence in situ hybridization or quantitative PCR, which generally target specific microbial 

populations, would need to consider this biological variability in their assays. Interestingly, 

common types were more likely to show significant relationships with food input than rare types, 

98



Chapter III – Energy-diversity relationships Arctic 
   

possibly supporting the notion that the more abundant types are actively growing and mediating 

most ecosystem functions (Pedros-Alio, 2006). But, the fact that also 26% of rare types exhibited 

relationships with food availability, indicates that both common and rare types follow ecological 

patterns (cf. Galand et al., 2009).  

 

4.4 Further implications 

Beyond the insight in energy availability – diversity relationships in complex bacterial 

communities, this study strongly suggests that any environmental changes affecting primary 

productivity and particle export will cause shifts in bacterial community structure and function in 

the Arctic, which in turn could affect key processes such as carbon cycling (Deming and Baross, 

1993; Klages et al., 2003). Already now, structural shifts of Arctic ecosystems in response to 

changing environmental conditions have been observed (Grebmeier et al., 2006) and may further 

affect benthic-pelagic coupling (Aagaard et al., 1999). Our samples were collected at a time when 

the Laptev Sea was largely ice-covered throughout the year, explaining why short-term changes in 

ice cover occurring during our study were mostly not reflected in changes in bacterial community 

structure and function. Since then, a rapid decline in sea ice cover has occurred, leaving most of 

this area ice-free during the Arctic summer (Serreze et al., 2007). Such long-term changes in ice 

cover are predicted to result in changing primary productivity and particle flux (Arrigo et al., 

2008; Lalande et al., 2009; Wassmann et al., 2010). Our study thus offers a unique ecological 

baseline against which ecosystem shifts can be assessed in the future, especially by incorporating 

bacterial community dynamics in a region increasingly influenced by global change. 
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Supplementary Information  

 
Supplementary Material and Methods  

 

Statistical analyses  

The Mantel test determines correlation coefficients between dissimilarity matrices. The 

Procrustes test compares two ordinations using symmetric Procrustes rotation (Peres-Neto and 

Jackson, 2001), i.e. it uses reduced space instead of complete dissimilarity matrices as in the 

Mantel test (Legendre and Legendre, 1998; Ramette, 2007).  

The ARISA and 454 MPTS tables were Hellinger transformed, in order to standardize the 

tables and to make them more suitable for multivariate linear analyses (Legendre and Gallagher, 

2001). Environmental parameters were log- or square root transformed when necessary, in order 

to normalize their distribution (Ramette, 2007). Environmental data tables were standardized (z-

score transformation; x scaled to zero mean and unit variance) prior to analyses to remove the 

influence of magnitude differences between scales and units. Chao1 richness estimates (Chao, 

1984) were calculated with re-sampling of the OTUs (at 3% difference) based on the smallest 

dataset (n = 7613 sequences) in order to have comparable estimates between samples.   

 

Taxonomy based on 454 MPTS  

454 massively parallel tag sequencing presents a cost-effective, high-throughput technique 

allowing a much higher sequencing depth (sampling effort) than traditional sequencing of the full 

length 16S rRNA gene (Margulies et al, 2005; Sogin et al, 2006). Taxonomic assignments of V6-

hypervariable region tags were obtained through comparisons with a reference database of rRNA 

sequences using the Global Alignment for Sequence Taxonomy tool (Sogin et al, 2006; Huse et 

al, 2008). The retrieved taxonomy was shown to be highly consistent with results based on full-

length rRNA sequences (Huse et al, 2008).  

 

Technical considerations  

Recent studies using 454 MPTS on Arctic water samples have explored the ecology of 

rare tags in 454 MPTS datasets (Galand et al, 2009; Kirchman et al, 2010), while other studies 

have critically discussed the existence of the rare biosphere and suggested that diversity estimates 

may be inflated by sequencing errors in massively parallel tag sequencing approaches (Kunin et al, 

2009; Quince et al, 2009). In our study we neither focused our analysis on rare tags nor put an 
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emphasis on richness estimates in comparison with other studies, but rather explored relative 

differences between samples (Reeder and Knight, 2010). To test the impact of rare tag sequences 

on ecological interpretations of 454 MPTS datasets, Gobet et al. (2010) compared the effects of 

removing or not the pyrosequencing noise in datasets with the PyroNoise tool (Quince et al., 

2009) and demonstrated that the observed variation in profiles were mostly due to non-technical 

fluctuations in the data, i.e. to real structural and ecological characteristics of the studied data sets. 

This result and the consistency of our 454 MPTS data with the ARISA data make us confident 

that the patterns we describe reflect true ecological variations between communities and not 

sequencing artifacts. 

 

 

Supplementary Results  

 

ARISA and 454 MPTS datasets 

A total of 42 samples composed of three sediment horizons (0-1 cm, 1-2 cm, 4-5 cm) 

were analyzed by the molecular community fingerprinting technique ARISA, and for each sample 

106-230 OTUs were obtained after binning (binning was done to take into account technical 

imprecision in the OTU definition). A subset of ten samples was selected for 454 MPTS, where 

the total number of sequences in our dataset was 225,744; the number of sequences from each of 

the selected samples ranged from 7,613 to 45,891, with 1275 to 4844 unique OTUs at 97% 

sequence similarity. The proportion of singletons, i.e. sequences that occurred only once in the 

study, was 65% and 11% respectively, when relating it either to the number of OTUs defined as 

unique sequences or to the total number of sequences in the dataset.  

 

Comparability between ARISA and 454 MPTS  

To demonstrate comparability in the ecological patterns extracted with ARISA and 454 

MPTS, a Mantel test with Spearman correlation was used to compare dissimilarity matrices. 

Correlations were highly significant for comparisons on all taxonomic levels, legitimizing a 

combination of the two techniques for the interpretation of bacterial ecological patterns in our 

study (Table S1). In order to keep analyses over different taxonomic levels consistent, we used a 

subset of the 454 MPTS dataset for further analysis, in which only sequences with a complete 

assignment up to genus level were retained. A high Spearman correlation between dissimilarity 

matrices of the reduced (20% of original) and the original dataset confirmed that ecological 

patterns were consistent in both datasets (Table S1).  
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Supplementary Figures  

 

Figure S1 Map of the sampling area in the Arctic Ocean with three water depth transects in the Laptev Sea. The ice 
cover at the time of sampling is indicated by the dotted line, where the eastern part was ice free and the western part 
mostly ice covered. (Left: http://www.ngdc.noaa.gov/mgg/bathymetry/arctic, right: the map was generated in 
ArcMap (ArcGIS Desktop 9.3; ESRI, Kranzberg, Germany). The bathymetry was obtained from Jakobsson et al. (1).  
  
 

Figure S2 Scatterplots with LOESS curves displaying the relationships between differences in ARISA community 
structure and a) geographic distance (Spearman’s r = 0.24, p < 0.001 as tested by 999 Monte Carlo permutations), 
and b) differences in water depth (r = 0.14, p = 0.011), as well as relationships between differences in enzyme 
activities (esterase, lipase, peptidase, beta-glucosidase) and c) spatial distance (r = 0.17, p = 0.003), and d) differences 
in water depth (r = 0.05, p = 0.22).  
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Figure S3 Changes in enzyme 
activities (esterase, lipase, 
peptidase, beta-glucosidase) with 
increasing pigment concentrations 
a) for the full dataset, and b) for a 
reduced dataset only including 
samples used for 454 MPTS. 
Spearman correlations as tested 
with the Mantel test and 999 
permutations are indicated in the 
figure.  
 
 

 
 
 
 

Figure S4 Initial and final path models obtained with structural equation modeling. In the final model (E�A) the 
path is directed from enzyme activities to ARISA and in final model (A�E) the direction of the path is reversed. 
The tables show the significance value for the Chi-square test, assessing whether the model is significantly different 
from a correlation matrix of the data based on the RV coefficient. The goodness-of-fit index and Bentler CFI 
(Comparative Fit Index) indicate the goodness of fit of the model, the best fit would result in a value of 1. The BIC 
(Bayesian Information Criterion) is another measure of the goodness of fit and needs to be minimized. The 
coefficient of non-determination (ND = 1-R2) determines the fraction of the variance in bacterial community 
structure and enzyme activity that is not explained by the model. 
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Supplementary Tables  

 
Table S1 Mantel and Procrustes tests for comparisons between ARISA and 454 MPTS community data, as well as 
for comparisons between the 454 MPTS taxonomic table with all available taxonomic assignments and a reduced 
table where only tags are kept that have a full assignment up to the genus level. *p<0.05, **p<0.01, p<0.001 

 Taxonomic 

level 

Number of OTU 

categories 

Mantel 

test 

Procrustes 

test 

Phylum 19 0.77 *** 0.88 ** 

Class 31 0.75 *** 0.79 ** 

Order 74 0.73 *** 0.78 ** 

Family 163 0.77 *** 0.79 ** 

Genus 381 0.73 *** 0.81 ** 

Tags (only up 

to genus) 
7,819 0.91 *** 0.93 ** 

Co
m

pa
re

d 
to

 A
RI

SA
 

Tags (all) 38,581 0.91 *** 0.917 ** 

Phylum 36 /19 0.70 *** 0.87 ** 

Class 36 /31  0.79 *** 0.91 ** 

Order 79 / 75 0.94 *** 0.91 ** 

Family 176 / 16  0.97 *** 0.91 ** 

Genus 381 / 381  0.98 *** 0.99 ** 

A
ll 

as
sig

nm
en

ts
 /

 o
nl

y 

as
sig

nm
en

ts
 u

p 
to

 

ge
nu

s 

Tags 38,581 / 7,819 0.99 *** 0.99 ** 

 

 
 
Table S2 Proportion of variation in different community datasets that is explained by pigment concentrations, as 
determined by redundancy analysis and 999 Monte Carlo permutations.  
  Relative abundance Presence / Absence 

Taxonomic level 
Proportion 

explained 
p 

Proportion 

explained 
p 

Phylum 50 0.005 25 0.01 

Class 48 0.005 26 0.01 

Order 43 0.005 19 0.01 

Family 45 0.005 19 0.01 

Genus 39 0.005 19 0.005 

OTUs (3%) 37 0.005 21 0.005 

Tags (genus) 27 0.005 17 0.005 

Tags (all) 30 0.005 17 0.005 

ARISA reduced 32 0.005 22 0.005 

ARISA full 20 0.005 13 0.005 
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Table S3 Linear correlations of taxa with phaeopigments. Shaded area for phyla and classes indicate significant 
relationships at p<0.05. For families and genera only significant relationships at p<0.05 are shown. Taxa are ordered 
by decreasing adjusted R2.  
  Taxa Adj. R2 p Sign 

Proteobacteria 0.81 0.000 + 

Acidobacteria 0.80 0.000 - 

Verrucomicrobia 0.63 0.004 + 

Gemmatimonadetes 0.61 0.004 - 

Deinococcus-Thermus 0.58 0.006 + 

Actinobacteria 0.23 0.092  

Bacteroidetes 0.21 0.103  

Planctomycetes 0.19 0.114  

Nitrospira 0.14 0.154  

Spirochaetes 0.10 0.200  

Tenericutes 0.02 0.309  

Deferribacteres 0.02 0.313  

Thermotogae 0.00 0.345  

Chlamydiae -0.05 0.467  

Lentisphaerae -0.09 0.608  

Chloroflexi -0.09 0.641  

Firmicutes -0.10 0.701  

Cyanobacteria -0.11 0.782  

Ph
ylu

m
 

Fusobacteria -0.12 0.810  

Verrucomicrobiae 0.80 0.000 + 

Acidobacteria 0.80 0.000 - 

Flavobacteria 0.77 0.001 + 

Gemmatimonadetes 0.61 0.004 - 

Deinococci 0.58 0.006 + 

Gammaproteobacteria 0.56 0.008 + 

Alphaproteobacteria 0.39 0.031 - 

Deltaproteobacteria 0.28 0.066 + 

Actinobacteria 0.23 0.092  

Erysipelotrichi 0.20 0.108  

Epsilonproteobacteria 0.19 0.113  

Planctomycetacia 0.19 0.114  

Caldilineae 0.15 0.148  

Nitrospira 0.14 0.154  

Bacteroidia 0.12 0.174  

Betaproteobacteria 0.11 0.186  

Spirochaetes 0.10 0.200  

Mollicutes 0.02 0.309  

Deferribacteres 0.02 0.313  

Anaerolineae 0.01 0.331  

Thermotogae 0.00 0.345  

Chlamydiae -0.05 0.467  

Sphingobacteria -0.06 0.503  

Chloroflexi -0.06 0.515  

Dehalococcoidetes -0.08 0.563  

Bacilli -0.08 0.593  

Lentisphaeria -0.09 0.608  

True_Cyanobacteria -0.11 0.782  

Fusobacteria -0.12 0.810  

Cl
as

s 

Opitutae -0.12 0.990  

110



Chapter III – Energy-diversity relationships Arctic 
   

  Taxa Adj. R2 p Sign 

Clostridia -0.12 0.995  

Flavobacteriaceae 0.85 0.000 + 

Desulfuromonadaceae 0.84 0.000 + 

Rubritaleaceae 0.80 0.000 + 

Acidobacteriaceae 0.80 0.000 - 

Cyclobacteriaceae 0.77 0.001 + 

Alteromonadaceae 0.69 0.002 + 

Rhodobacteraceae 0.67 0.002 + 

Trueperaceae 0.62 0.004 + 

Gemmatimonadaceae 0.61 0.004 - 

Psychromonadaceae 0.58 0.006 + 

Ectothiorhodospiraceae 0.56 0.007 - 

Kordiimonadaceae 0.54 0.010 + 

Coxiellaceae 0.52 0.011 - 

Desulfurellaceae 0.50 0.013 + 

Enterococcaceae 0.50 0.013 + 

Family_II 0.50 0.013 + 

Methylophilaceae 0.50 0.013 + 

Litoricolaceae 0.50 0.014 + 

Nitrospinaceae 0.48 0.016 - 

Francisellaceae 0.48 0.016 + 

Clostridiaceae 0.46 0.019 + 

Desulfohalobiaceae 0.43 0.023 + 

Desulfobulbaceae 0.43 0.024 + 

Campylobacteraceae 0.42 0.025 + 

Halomonadaceae 0.41 0.027 - 

Cytophagaceae 0.40 0.030 + 

Colwelliaceae 0.39 0.031 + 

Phyllobacteriaceae 0.38 0.034 - 

Aerococcaceae 0.36 0.038 + 

Desulfonatronaceae 0.36 0.038 + 

Leptospiraceae 0.36 0.038 + 

Fa
m

ily
 

Rhodothermaceae 0.34 0.046 - 

Maribacter 0.80 0.000 + 

Rubritalea 0.80 0.000 + 

Desulfuromonas 0.79 0.000 + 

Marinobacterium 0.76 0.001 + 

Desulfosarcina 0.74 0.001 + 

Algoriphagus 0.74 0.001 + 

Desulfobacula 0.71 0.001 + 

Lutibacter 0.71 0.001 + 

Gp10 0.70 0.002 - 

Tenacibaculum 0.65 0.003 + 

Desulfuromusa 0.65 0.003 + 

Truepera 0.62 0.004 + 

Gemmatimonas 0.61 0.004 - 

Ulvibacter 0.61 0.005 + 

Desulfofaba 0.59 0.006 + 

Jannaschia 0.59 0.006 + 

Psychromonas 0.58 0.006 + 

G
en

us
 

Coxiella 0.55 0.008 - 
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  Taxa Adj. R2 p Sign 

Kordiimonas 0.54 0.010 + 

Halobacillus 0.53 0.010 + 

Octadecabacter 0.53 0.010 + 

Gp26 0.52 0.012 - 

GpIIa 0.50 0.013 + 

Hippea 0.50 0.013 + 

Methylophilus 0.50 0.013 + 

Litoricola 0.50 0.014 + 

Nitrospina 0.48 0.016 - 

Francisella 0.48 0.016 + 

Loktanella 0.47 0.018 + 

Clostridium 0.46 0.019 + 

Reinekea 0.45 0.020 + 

Desulfocapsa 0.45 0.020 + 

Polaribacter 0.45 0.021 + 

Glaciecola 0.44 0.022 + 

Desulfonauticus 0.43 0.023 + 

Leptospira 0.43 0.023 + 

Gp4 0.43 0.024 + 

Mesorhizobium 0.42 0.025 - 

Halomonas 0.41 0.027 - 

Gp6 0.40 0.029 - 

Desulfobulbus 0.40 0.029 + 

Arcobacter 0.40 0.029 + 

Colwellia 0.39 0.032 + 

Thiobacillus 0.39 0.032 + 

Laceyella 0.38 0.033 + 

Thalassomonas 0.38 0.034 + 

Gp22 0.37 0.037 - 

Aerococcus 0.36 0.038 + 

Agarivorans 0.36 0.038 + 

Arenibacter 0.36 0.038 + 

Balneola 0.36 0.038 + 

Belliella 0.36 0.038 + 

Cellulophaga 0.36 0.038 + 

Desulfacinum 0.36 0.038 + 

Desulfonatronum 0.36 0.038 + 

Dokdonia 0.36 0.038 + 

Enterobacter 0.36 0.038 + 

Enterococcus 0.36 0.038 + 

Hydrogenophaga 0.36 0.038 + 

Myroides 0.36 0.038 + 

Oceanisphaera 0.36 0.038 + 

Pleurocapsa 0.36 0.038 + 

Pontibacter 0.36 0.038 + 

Pseudonocardia 0.36 0.038 + 

Thermosediminibacter 0.36 0.038 + 

Nitrospira 0.36 0.039 - 

Salinibacter 0.34 0.046 - 

Aminobacterium 0.34 0.046 + 

Caedibacter 0.33 0.050 + 
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  Chapter IV – Wood colonization experiments 

Abstract  

Large organic food falls to the deep sea such as whale carcasses and wood logs support the 

development of reduced, sulfidic habitats in an otherwise oxygenated, oligotrophic deep-sea 

environment. These transient hot spot ecosystems may serve the dispersal of highly adapted 

chemosynthetic organisms such as thiotrophic bivalves and siboglinid worms. Here we 

investigated the biogeochemical and microbiological processes leading to the development of 

sulfidic niches colonized by chemosynthetic organisms, on wood falls deployed at a depth of 

1690 m at the Nile deep sea fan (Eastern Mediterranean). Wood-boring bivalves of the genus 

Xylophaga played a key role in the degradation of the wood logs and the provision of organic 

matter to anaerobic microorganisms such as sulfate-reducing Deltaproteobacteria. The macrofaunal 

organisms and bacterial communities associated with the wood included types reported from 

other chemosynthetic deep-sea habitats, confirming the potential role of large organic food falls 

as stepping stones for vent and seep communities. However, also heterotrophic organisms such 

as polychaetes, crabs and heterotrophic bacteria were attracted to the wood falls, underlining the 

importance of large food falls as biological hotspots in the deep sea.  
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1. Introduction  

 

Most of the deep seafloor receives very little supply of energy and nutrients, leading to 

extremely oligotrophic conditions in large parts of the ocean [1]. Sunken wood, whale carcasses, 

kelp and other food falls present locally and temporally restricted inputs of organic material to 

the deep sea that may be quickly localized and exploited by opportunistic fauna [e.g. 2,3,4], and 

can develop into hotspots of diversity [5]. Locally enhanced degradation processes at these 

organic falls can lead to reducing conditions and high sulfide concentrations [6], attracting 

chemoautotrophic bacteria, both free-living and as symbionts of chemosynthetic fauna [e.g. 6,7]. 

Observations of shared or similar phylogenetic species between wood falls, whale carcasses, 

hydrothermal vents and cold seeps have led to the hypothesis that organic falls may present 

stepping stones in the evolution and dispersal of chemoautotrophic communities in the deep sea, 

which are constrained to sulfide- and methane-rich niches for their energy supply [8,9,10,11]. The 

chemosynthetic mussel Idas sp. which has been collected from active chemosynthetic ecosystems 

such as pockmarks and mud volcanoes of the Nile Deep Sea Fan [12], has recently been shown 

to also colonize experimental wood depositions [4]. However, how sulfidic habitats develop at 

wood falls to attract chemosynthetic organisms is not well understood. It is also largely unknown 

which bacteria colonize deep-sea wood falls or how the deposition of wood affects surrounding 

benthic communities [13]. Hence, the aim of this study was to contribute to a better 

understanding of the microbial ecology and biogeochemistry of wood fall ecosystems and their 

role as biological and biochemical hotspots in the deep sea.  

To reach these objectives, we deployed and revisited three replicate wood parcels at different 

distances to an active cold seep of the Central Nile deep sea fan (Eastern Mediterranean) [14,15], 

to observe colonization of the wood and the development of biogeochemical gradients. The 

main objectives of this study were to observe: I) which organisms colonize the wood and what 

their potential role may be in the process of wood degradation, II) how sulfidic environments 

develop, III) which bacterial communities colonize the wood, and IV) how the presence of wood 

affects bacterial communities in surrounding sediments.  
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2. Material and Methods  

 

2.1 Description of wood colonization experiments 

Each wood colonization experiment consisted of one large Douglas fir log (length: 200 cm, 

diameter: 30 cm) to which several smaller logs (length: 30-50 cm, diameter: 10-15 cm) were 

attached, as well as cement stones serving as weights. The large log served as attraction for wood 

colonizing megafauna, while the smaller logs could easily be collected by an ROV. The wood 

parcels were deployed at the Central Province Site 2A in the Eastern Mediterranean Sea [14,15] at 

water depths of about 1690 m during the BIONIL cruise (RV Meteor M76/2b) with ROV Quest 

4000 (Marum, Bremen, Germany) in November 2006. Characteristic features of the Central 

Province are pockmark structures (subcircular depressions a few meter in diameter and about one 

meter deep) associated with active methane seepage and the occurrence of large flat authigenic 

carbonate crusts above reduced sediments [14,15,16,17]. Recovery of sub-samples with ROV 

Victor 6000 (IFREMER, Toulouse, France) and deposition of an additional wood experiment 

took place during the MEDECO-2 cruise (RV Pourquoi Pas?) in November 2007. Available 

metadata of both cruises are stored in the PANGAEA database 

(http://www.pangaea.de/PHP/CruiseReports.php?b=HERMES) and PANGAEA references 

for the samples are cited accordingly (Table 1).  

 

 
Table 1 Locations of the four wood colonization experiments and PANGAEA references for deployment and 
recovery of the experiments.  

Wood 
experiment 

Location Position Date PANGAEA event label 

Wood#1 Close to carbonate 
crusts 

N 32°32.0496 
E 30°21.1248 

Deployment: 19 Nov 2006  
Recovery:      11 Nov 2007 

M70/2b_841_WOOD-1 
MEDECO2-D338-PANIER-1

     
Wood#2 On carbonate crust N 32°31.9626 

E 30°21.1752 
Deployment: 19 Nov 2006  
Recovery:      11 Nov 2007 

M70/2b_841_WOOD-2 
MEDECO2-D338-Wood2-1 

     
Wood#5 On sediments N 32°32.0790  

E 30°21.3840 
Deployment: 20 Nov 2006  
Recovery:      13 Nov 2007 

M70/2b_846_WOOD-1 
MEDECO2-D339-BOX-4, 
MEDECO2-D339-BOX-5, 
MEDECO2-D339-BOX-6 

     
Wood#6 Reference, sampled 

after 1 d at seafloor 
N 32°32.0124  
E 30°21.1920 

Deployment: 10 Nov 2007  
Recovery:      11 Nov 2007 

MEDECO2-Wood5-1 
Not available   
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Wood experiment #2 was deployed on carbonate crust, wood#1 in close proximity to 

carbonate crusts, and wood#5 was located on fully oxygenated sediments over 350 m away from 

the other two wood experiments with no indications for past or present gas venting or fluid flow. 

No methane degassing into the water column was detected at any of the locations. Wood 

experiment #6 served as a reference sample after less than one day of submersion and was also 

deployed close to carbonate crusts. Distances between the wood experiments ranged between   

31 m between wood#2 and wood#6 and 410 m between wood#1 and wood#5 (Figure 1).  

 

 
Figure 1 The Pockmark area in the 
Central Province of the Nile Deep Sea 
Fan in the Eastern Mediterranean with 
locations of the four DIWOOD wood 
colonization experiments: Wood#1 close 
to carbonate crust, wood#2 on carbonate 
crust, wood#5 on sediment, wood#6 
close to carbonate crust, sampled after 
less than 1 day of submersion. 
The maps were generated in ArcMap 
(ArcGIS Desktop 9.3) with continental 
margins provided by ESRI (Kranzberg, 
Germany) and bathymetry obtained from 
the 2-minute Gridded Global Relief Data 
ETOPO2v2 (2006, 
http://www.ngdc.noaa.gov/mgg/fliers/0
6mgg01.html). The bathymetry of the 
Pockmark Area was obtained during 
Meteor expedition M70/2 (BIONIL) 
using AUV Asterx equipped with EM120 
multibeam (IFREMER/Geosciences 
Azur).  

 

 

2.2 Visual observation and sampling of wood experiments 

To monitor the overall condition of the wood experiments after one year at the seafloor we 

used high quality video and photo surveys by the ROV. Wood logs were sampled for analyses of 

the bacterial and macrofaunal wood-colonizing communities, and adjacent sediments were 

sampled for analyses of wood degradation effects on benthic bacterial communities and 

biogeochemistry. To avoid loss of organisms, each wood log was put by the ROV manipulator 

into a separate box closed with a lid. Sampling of the wood logs and handling after retrieval took 

place at in situ temperature of 13°C. From each of the wood experiments wood#1, wood#2, and 

wood#5, three replicate small logs were collected one year after deployment; for the reference 

wood#6 one small wood log was collected after less than 1 day of submersion. From each small 
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wood log 2x3 subsamples of the surface (0-2 cm) and the subsurface (2-4 cm) were obtained, 

cutting 4x4 cm areas on the sides and the middle of the wood log, resulting in 18 subsamples for 

each wood experiment, and 6 subsamples for wood#6. Any visible organisms (macrofauna) were 

removed from the wood pieces and samples were preserved for DNA extraction (-20°C) and 

bacterial cell counts (4% Formalin/Seawater). Macrofauna was collected and preserved for 

taxonomic analyses.   

Sediment cores of up to 28 cm length were taken at distances of 0.5 m and 10 m from the 

wood experiments. Cores were sub-sampled in 1 cm intervals and fixed for DNA extraction       

(-20°C) and bacterial cell counts (4% Formalin/Seawater). Porewater was extracted for 

measurements of sulfate, nutrients and dissolved organic carbon (DOC). Additional cores were 

used for ex situ measurements of sulfide, oxygen and pH as well as sulfate reduction rates (SRR). 

Sediment cores could not be obtained for wood experiment #2 as the carbonate crusts covering 

the sea floor could not be penetrated with push cores.  

 

2.3 Biogeochemical measurements  

2.3.1 In situ total oxygen uptake (TOU) with benthic chamber 

In situ total oxygen uptake (TOU) was measured at (0.5 m) and away (10 m) wood#1 using 

a ROV benthic chamber module [6,18]. The centrally stirred chamber encloses 284 cm2 of 

sediment with 10–15 cm of overlying bottom water, the latter determined visually with the help 

of the ROV camera system. At the seafloor, the benthic chamber was operated by the ROV – 

positioning the chamber at the desired location, gentle insertion of the module into the sediment 

and starting the measurement. 

Mounted oxygen electrodes were used to continuously measure the oxygen concentration in 

the enclosed water body and the TOU flux (mmol m-2 d-1) was calculated from the initial linear 

decrease in O2 concentration versus time [18,19].  

 

2.3.2 Ex situ microsensor measurements of sulfide, oxygen and pH  

Concentration microprofiles of O2, H2S and pH were determined ex situ (laboratory) on 

retrieved push cores, at (0.5 m) and away (10 m) wood#1 and wood#5. Immediately after 

retrieval, the cores were transferred into an aquarium cooled to in situ temperature (13 °C). The 

sediment cores were fully immersed, and the overlying bottom water was gently stirred by an 

aquarium pump to create a diffusive boundary layer (DBL) thickness close to in situ conditions 

[20,21]. O2, H2S and pH microsensors were mounted on a micromanipulator, which allowed 
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measuring of concentration profiles with 1 mm resolution. A Clark-type O2 microelectrode, an 

amperometric H2S microelectrode and a pH electrode were used for all ex situ measurements 

[22,23,24]. The sensors were calibrated as described previously [25,26]. Due to a change of 

pressure and temperature during ascend the cores could to certain extent be disturbed when 

brought on board, thus microsensor measurements were only started once the overlying water in 

the core was clear. Three replicate profiles of oxygen, sulfide and pH were measured for every 

investigated core within approximately 12 h of the core retrieval.  

Fluxes were calculated from the steepest porewater gradients in the sediment, according to 

Fick’s first law of diffusion: 

 
where Jdiff = diffusive flux [mmol m-2 d-1], � = porosity, Dsed = diffusion coefficient in the 

sediment [m2 s-1] and dc/dz = concentration gradient. Dsed for oxygen and sulfide is 8.9 x  10-10 

and 6.4 x 10-10 m2s-1, respectively.  

 

2.3.3 Sulfate concentration  

Sediment cores were subsampled in 1 cm depth intervals and transferred into plastic 

centrifuge vials and centrifuged at 3500 x g for 10 min to extract porewater. Subsequently, 500 μl 

Zincacetate was added to 1 ml porewater and samples were stored at 4°C. Porewater sulfate 

concentrations were measured in the fixed samples using non-suppressed anion exchange 

chromatography (Waters IC-Pak anion exchange column, Waters 430 Conductivity detector). As 

eluent, isophthalic acid (1mmol L21, pH 4.6) containing 10%v/v methanol with a constant flow 

rate of 1 mL min-1 was used. Sulfate concentrations were used for calculations of SR rates.  

  

2.3.4 Porosity  

Sediments were sampled in 5 cm depth resolution and stored at 4°C. Porosity was 

determined as the difference in weight of a defined volume of sediment before and after drying at 

60°C until constant weight, and data were used for recalculating solid phase wet weight to units 

of sediment volume in the SR rate calculations.  
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2.3.5 Ex situ measurements of sulfate reduction (SR) and anaerobic oxidation of methane 

(AOM) rates  

Push cores were sub-sampled in triplicate with smaller subcores (diameter: 2.8 cm) 

immediately after recovery. Radiotracer labelled substrates 35SO4
2- (SR) and 14CH4 (AOM) were 

injected in 1 cm intervals following the whole core injection method [27]. Experiments were 

incubated for 10-12 hours at in situ temperature and the reactions were stopped by transferring 1 

cm slices of the cores into 20 ml 20% Zincacetate for SR or 25 ml NaOH (2.5% w/v) for AOM. 

Detailed description of the measurements of methane concentration and radioactivity as well as 

the calculations of the AOM rates can be found in [28]. Sulfate reduction rates were determined 

using the cold-chromium distillation method [29]. Calculations of the SR turnover rates were 

done according to [19].  

 

2.3.5. Nutrients  

Nutrients (nitrate, phosphate, silicate, ammonium) were measured from the porewater 

samples with a Skalar Continous-Flow Analyzer according to the method of Grasshoff et al.  [30].   

 

2.3.6 Measurements of dissolved organic carbon and total dissolved nitrogen 

After extraction of porewater by centrifugation (3500 x g, 10 Min), porewater was filtered 

through 0.22 μm cellulose-acetate filters. Dissolved organic carbon (DOC) and total dissolved 

nitrogen (TDN) were analyzed with a Shimadzu TOC-VCPH total organic carbon analyzer 

equipped with a TNM-1 total nitrogen measuring unit. To remove cells prior to analysis, samples 

were filtered through GHP Acrodisc 25 mm syringe filters with a 0.2 μm GHP membrane (Pall 

Life Sciences, USA). Samples were injected manually (100 μL) in order to minimize the amount 

of required sample volume. Each sample was injected five times and average values of these 

injections are reported. Outliers were removed. Before analysis, samples were acidified to pH=2 

with HCl (10 M, p.a.) and purged with synthetic air for 5 minutes to remove inorganic carbon. 

Detection limits were 5μM for DOC and TDN (0.06 g C L-1 and 0.07 g N L-1). Analytical errors 

based on the standard deviations for replicated measurements (at least three measurements per 

sample) were within 5% for DOC and TDN. Analytical precision and accuracy was tested in each 

run against deep Atlantic seawater reference material and low carbon water provided by the 

consensus reference materials program (D.A. Hansell, University of Miami, FL, USA). Procedural 

blanks, including the filtration step, were obtained with ultrapure water. 
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2.4 Characterization of bacterial communities 

2.4.1 Bacterial cell numbers  

Total bacterial cell numbers in sediment samples were determined using acridine orange 

direct counts (AODC) based on previously described methods [31,32]. Single cell numbers were 

determined for two replicate filters by randomly counting at least 30 grids per filter. For samples 

containing wood chips (upper layers next to wood experiments), the duration of sonication (at 

power: 72/D and a cycle: 30%) was increased from 1 Min 40 sec for sediments to 2x5 Min. Due 

to the strong fluorescence of wood pieces in acridine orange stained samples, cell numbers for 

samples containing lots of wood pieces, were verified with cell counts based on the DNA-

targeting fluorescent stain 4�,6-diamidino-2-phenylindole (DAPI) [33], which gave much less 

background fluorescence of wood particles. Pure wood samples (0.3 g) were sonicated in 5 ml 

4% Formalin/Seawater (FA/SW) for 3x5 Minutes to detach as many cells as possible without 

breaking them. After each 5 Minute interval, the FA/SW solution was exchanged after wood 

pieces had settled for about 1 Minute. Supernatants from the different sonication steps were 

combined and volumes for filtering were adjusted to obtain an even distribution of cells on the 

filters. Additionally wood pieces remaining after 3x5 minutes of sonication, were again sonicated 

for 5 minute intervals up to 30 minutes (6x5 Minutes), and the complete volumes filtered, to 

quantify remaining cells. All samples were kept on ice during sonication. Cell counts for pure 

wood samples were performed with DAPI staining.  

 

2.4.1 DNA extraction 

Total community DNA was extracted from 0.3–0.4 g of wood material that had been cut 

into very small pieces or from 1 g of sediment using UltraClean Soil DNA Isolation Kits (MoBio 

Laboratories Inc., Carlsbad, CA) and stored in a final volume of 100 μl Tris-EDTA buffer. DNA 

quantities were spectrophotometrically determined with a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE) and adjusted for each step 

of the molecular protocol. 

 

2.4.3 Automated ribosomal intergenic spacer analysis (ARISA)  

Standardized amounts of 10 ng DNA were amplified in triplicate using bacteria specific 

ARISA primers ITSF and ITSReub, the latter labeled with the phosphoramidite dye HEX [34]. A 

standardized amount of PCR product (100 ng DNA) was used for separation of fragments by 

capillary electrophoresis with the internal size standard MapMarker 1000 ROX (BioVentures Inc., 

Wahsington DC, USA). Using a standard ARISA protocol, a “fixed window” binning strategy 
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with a bin size of 2 bp was applied to the ARISA generated data to compensate for slight peak 

shifts between runs and for TRF size calling imprecision [35] (Interactive Binner function, 

http://www.ecology-research.com). An OTU was considered present if it appeared in one of the 

three PCR replicates. Relative fluroscence intensities were calculated by dividing each individual 

peak area by the total area of peaks in a given profile.  

 

2.4.4 454 massively parallel tag sequencing (454 MPTS)  

One sample from each wood experiment and surface sediment samples at (0.5 m) and away 

(10 m) from wood#1 and #5 were selected for 454 MPTS. For cores covered with wood chips 

(0.5 m), sediment samples were obtained from the previous sediment surface, below the wood 

chips, for direct comparison with the surface samples from reference cores 10 m away from the 

wood experiments. Extracted DNA was amplified using primers targeting the V6 region of the 

bacterial 16S rRNA gene as published on http://vamps.mbl.edu. Fragments were sequenced by 

pyrosequencing on a Genome Sequencer FLX system (Roche, Basel, Switzerland) at the Marine 

Biological Laboratory in Woods Hole, MA, USA. Taxonomic assignments were performed with 

the Global Alignment for Sequence Taxonomy tool (GAST) [36,37,38]. All data were retrieved 

from the website VAMPS (Visualization and Analyses of Micbrobial Population Structures, 

http://vamps.mbl.edu).  

 

2.4.5 Statistical analyses  

Overall patterns in bacterial community structure were detected with non-metric 

multidimensional scaling (nMDS) based on ARISA OTU tables with Bray-Curtis distance as 

implemented in the R package vegan. Analysis of similarity (ANOSIM) was used to assess 

significant differences between a posteriori groupings of samples. All statistical analyses were 

performed in R (v. 2.9.1) (R Development Core Team 2009, http://www.R-project.org) using 

vegan and custom R scripts.  
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3. Results  
 

3.1 Visual observations of wood experiments  

The in situ observations after one year of immersion showed that the wood had been heavily 

degraded by the activity of wood-boring animals, e.g., indicated by the presence of burrows in the 

wood (Figures 2 and 3). In an area of about 0.5–1 m around the wood experiments a layer of fine 

wood chips had accumulated of up to 5 cm thickness. The state of degradation and colonization 

differed between wood logs but also between different positions on one log. Those sides of the 

wood logs lying in the sediments appeared to be less colonized and degraded by wood-boring 

animals than those exposed to the bottom waters. 

 

Figure 2 Wood experiments deployed in the Eastern Mediterranean deep sea during the BIONIL cruise in 2006 (RV 
Meteor) and recovered during the Medeco-2 cruise (RV Pourquoi Pas?) in 2007. a, b) Wood#1 close to carbonate 
crust, c, d) Wood#2 on carbonate crust, e, f) Wood#5 on sediment  
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3.2 Faunal diversity at wood falls 

3.2.1 Wood-boring bivalves 

Observations on board confirmed that a strong degradation of the wood logs had occurred 

during one year at the seafloor for all wood experiments and large numbers of animals had 

colonized the wood (Figure 3). The degradation of the wood was mainly due to the activity of 

wood-boring bivalves, identified as Xylophaga dorsalis, Turton, 1819 (T. Haga, National Museum 

of Nature and Science, Tokyo, pers. information); these organisms made up the main biomass of 

macrofaunal colonizers (Figure 3a). The size of the specimen ranged between 1–10 mm in shell 

size. X. dorsalis were able to colonize the wood from all sides, especially from the cut ends of the 

wood logs, but also from the sides and through the bark, indicated by lots of small holes and 

burrows on the sides of the wood. Even the most inner core (heartwood) showed burrows and 

individuals of Xylophaga in some logs.  
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Figure 3 Macrofauna colonizing the wood experiments after one year at the sea floor. a) Xylophaga dorsalis, b) Idas sp., 
c) Glycera noelae sp. nov. d) Cryptonome gen. nov. conclava, n. sp., e) Phascolosoma turnerae, f) Asterechinus elegans, g) 
Bathynectes piperitus, h) unidentified deep-sea fish, i, k) unidentified species of amphipods, l) unidentified species of 
Leptostracea.  
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3.2.2 Chemosynthetic fauna 

Small mussels of the chemosynthetic genus Idas were found on all wood experiments 

submerged for a year, in, on and directly underneath the bark (Figure 3b). Their shell lengths 

measured between 1 and 6 mm. Based on subsampling of wood log slices, we extrapolated that 

up to 150 individuals of Idas may have occurred on one small wood log of wood#1 and 30-90 

individuals on a small wood log of wood#5.  

 

3.2.3 Other fauna  

Sea urchins, identified as Asterechinus elegans (N. Ameziane, Museum of Natural History, Paris, 

pers. communication), seemed to be chemically attracted to the wood, as their densities increased 

with decreasing distance to the wood experiments, e.g., for wood#2 at least 20 sea urchins were 

counted on and in the close vicinity of the wood (Figure 3f). In addition, crabs (Portunidae; 

Bathynectes piperitus Manning & Holthuis, 1981; B. Richer de Forges, Institut de recherche pour le 

développement (IRD), New Caledonia, pers. communication) were often observed on and under 

the wood (Figure 3g), which they probably used as shelter and source of food (e.g., by grazing on 

polychaetes). Other colonizing macrofauna included Glycera noelae sp. nov. [39], sipunculids 

identified as Phascolosoma turnerae, Rice 1985 (G.Y. Kawauchi, Department of Organismic and 

Evolutionary Biology, Harvard University, pers. communication), amphinomids being described 

as a new genus and species of Amphinomidae, Cryptonome gen. nov. conclava, n. sp. [40] and at least 

three groups of unidentified species of small crustaceans (Figure 3). There were no qualitative 

differences in the macrofaunal colonization of the three wood experiments that had been 

submerged for one year related to distance from the seep. No macrofauna was associated with 

the control wood#6 after less than 1 day of submergence.  

 

3.3 Biogeochemical characterization  

Sediment cores retrieved at (0.5 m) the wood experiments revealed a several centimetre (2–4 

cm) thick layer of wood chips. The sediment surface below the wood chips was blackened (0–1 

cm depth), indicating sulfide production and precipitation with iron. The subsurface sediments 

showed a brown to grey color (1–5 cm depth) (Figure 4). Control sediment cores (10 m away 

from wood) differed between experiment#1 and experiment#5: for experiment#1 cores were 

beige down to max. 4 cm, followed by light gray sediment, changing into dark gray at the bottom 

6–8 cm of the cores. For experiment#5 sediments were brown down to 7 cm, then changing in 

to gray/dark gray sediments. These differences probably reflect biogeochemical differences in the 

two regions, with experiment#1 being located close to carbonate crusts, indicating an influence 
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of methane seepage in the past, and experiment#5 being located on pelagic sediments. Several 

biogeochemical measurements were conducted in situ and ex situ to describe the influence of the 

wood on surrounding sediments 

 
Figure 4 Ex situ microsensor measurements of oxygen, sulfide and pH at (0.5 m) and away (10 m) from wood 
experiments #1 and #5.  

 

 

3.3.1 Sulfide, oxygen and pH measurements (ex situ) in the sediments  

At both wood experiments (0.5 m) oxygen penetrated not more than 5–10 mm into the 

wood chip-covered seafloor (Figure 4, Table 2). Elevated concentrations of sulfide were detected 

at both sites, approximately coinciding with the black layer that was observed visually (3–4 cm 

depth below surface, former 0–1 sediment surface layer). Measured sulfide concentrations at 

these depths reached up to 200 μM at wood#1 and up to 80 μM at wood#5. In coherence with 

their proximity to the active seep, reference cores (10 m away from wood#1 and #5) displayed 

different profiles. Oxygen penetrated up to 5 mm deep in sediments from the reference of 

wood#1, whereas sediments away from wood#5 were fully oxygenated down to at least 32 mm. 

Sulfide concentrations reached a maximum of nearly 800 μM at about 3 cm sediment depth at the 
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wood#1 reference, and no sulfide was present in control sediments away from wood#5. 

Diffusive oxygen uptake calculated from oxygen microprofiles was higher at the wood 

experiments when compared to measurements away from the experiments and was lowest at the 

reference site away from wood#5 (Table 2).  

 
Table 2 Summary of biogeochemical measurements at the wood experiments and at selected seep and reference sites. 
TOU: total oxygen uptake, DOU: diffusive oxygen uptake, OPD: oxygen penetration depth, H2S flux: sulfide flux, 
SRR: sulfate reduction rate.  

 TOU 
(mmol m-2 d-1) 

DOU 
(mmol m-2 d-1) 

OPD 
(mm) 

H2S flux 
(mmol m-2 d-1) 

SRR 
(mmol m-2 d-1) 

At wood#1                     
(0.5 m, ~ 4cm wood chips) 

25 4.3 6.7 2.1 1.3 

Away wood#1 (10 m) 1 2.3 6.7 2.7 2.5 
      

At wood#5                      
(0.5 m, ~ 2 cm wood chips) 

n.d. 4.4 5.0 1.0 1.9 

Away wood#5 (10 m)  n.d. 1.0 > 32 0 0.1 1 

 

      
Arcobacter mat (Pockmark)  712 27 ± 16 2 1.75 2 27 ± 16 2 9 – 112 2 

Reference 1 2 0.5 ±  0.4 2 > 10 2 0 2 0.14 ± 0.04 2 

1 Felden, unpubl. data (reference measurement during Bionil cruise 2006, approximately 400 m from wood#5) 
2 Grünke et al., in press 
 

 

3.3.2 Sulfate reduction and anaerobic oxidation of methane  

Depth integrated sulfate reduction (SR) rates across 10 cm were 1.3 m-2 d-1 (at wood#1), 2.5 

mmol m-2 d-1 (away wood#1) and 1.9 mmol m-2 d-1 (at wood#5), respectively. No samples were 

available for away wood#5. No anaerobic oxidation of methane (AOM) was detected at any of 

the sites, hence sulfide production was related to organoclastic sulfate reduction at all sites.  

 

3.3.3 Total oxygen uptake (in situ)  

Benthic chamber measurements were conducted at (0.5 m) and away (10 m) from wood#1. 

Total oxygen uptake (TOU) was higher at the wood (25 mmol m-2 d-1), as opposed to 10 m away 

(1 mmol m-2 d-1), evidencing a strongly increased activity of sedimentary communities close to the 

wood experiment.  

 

3.3.4 Dissolved organic carbon and nutrient concentrations  

Non-wood influenced pore waters showed dissolved organic carbon (DOC) concentrations 

around 300 μM. The wood chip – sediment boundary layer showed elevated DOC 

128



  Chapter IV – Wood colonization experiments 

concentrations of 2100 μM at wood#1 and 3000 μM at wood#5. There was no influence of the 

wood deposition on phosphate, silicate and nitrate concentrations, but ammonium showed 

elevated concentrations at the wood chip-sediment boundary layer (3.3–10.6 μM). Ammonium 

concentrations were similar away from wood#1 (1.9–11.3 μM) and there was no ammonium 

detected away from wood#5.  

 

3.4 Characterization of bacterial communities 

3.4.1 Bacterial cell numbers   

Bacterial cell numbers of pure wood samples ranged between 2.8*108 cells/g wood for 

wood#1 and #2 and 7.7*108 cells/g wood for wood#1, and were considerably lower for the 

freshly submerged wood #6 (5.6*106 cells/g wood). The wood chips next to the experiments 

showed even higher cell numbers than the submerged wood with 1.2*109 cells/g at wood#1 and 

9.3*108 at wood#5. Close to the seep area, integrated cell numbers across 10 cm sediment depth 

showed no significant difference between the wood#1 site and its 10 m reference, with 1.1*1010 

cells/cm2 and 1.2*1010 cells/cm2, respectively (Figure 5). Cell numbers were an order of 

magnitude lower for wood experiment #5, with substantially higher cell numbers at the wood 

(5.8*109 cells/cm2) compared to the reference (4.7*109 cells/cm2). Cell numbers decreased with 

sediment depth in all cores.  
 

 

 
Figure 5 Total bacterial 
cell numbers of wood 
and surrounding 
sediment samples. 
 

 

 

 

 

 

 

 

 

 

single  cells  x 109 cm-3 sediment
0.0 0.5 1.0 1.5 2.0 2.5

single  cells  x 109 cm-3 sediment single  cells  x 109 cm-3 sediment

�2

0

2

4

6

8

10

12

14

16

�2

0

2

4

6

8

10

12

14

16
Away wood#1

single  cells  x 109 cm-3 sediment
0.0 0.5 1.0 1.5 2.0 2.5

At wood#1

0.0 0.5 1.0 1.5 2.0 2.5
�2

0

2

4

6

8

10

12

14

16
At wood#5

0.0 0.5 1.0 1.5 2.0 2.5
�2

0

2

4

6

8

10

12

14

16
Away wood#5

de
pt

h 
(c

m
)

de
pt

h 
(c

m
)

de
pt

h 
(c

m
)

de
pt

h 
(c

m
)

single  cells  x 109 cm-3 sediment
0.0 0.5 1.0 1.5 2.0 2.5

single  cells  x 109 cm-3 sediment single  cells  x 109 cm-3 sediment

�2

0

2

4

6

8

10

12

14

16

�2

0

2

4

6

8

10

12

14

16
Away wood#1

single  cells  x 109 cm-3 sediment
0.0 0.5 1.0 1.5 2.0 2.5

At wood#1

0.0 0.5 1.0 1.5 2.0 2.5
�2

0

2

4

6

8

10

12

14

16
At wood#5

0.0 0.5 1.0 1.5 2.0 2.5
�2

0

2

4

6

8

10

12

14

16
Away wood#5

de
pt

h 
(c

m
)

de
pt

h 
(c

m
)

de
pt

h 
(c

m
)

de
pt

h 
(c

m
)

129



Chapter IV – Wood colonization experiments 
   

3.4.2 Bacterial community structure  

Bacterial community structure determined with ARISA fingerprints showed significant 

differences between individual wood experiments and between wood compared with sediment 

samples (Figure 6, Table S1), indicating highly specialized assemblages colonizing the wood falls. 

The large number of replicate samples enabled us to differentiate between heterogeneity within a 

single wood experiment and differences between wood experiments from different locations. 

The most prominent differences were observed between wood experiments that had been 

submerged for one year when compared to the freshly deployed wood#6, indicating the 

development of autochthonous communities. Statistically significant differences were also 

observed between the community structures on the three wood experiments deployed in 

different locations in the Central Nile Deep Sea Fan. No consistent differences could be 

observed for wood samples from the surface or the inner part of the wood samples.  

 

 

Figure 6 Non-metric multidimensional scaling (nMDS) ordination with Bray-Curtis distance. Each point represents 
the consensus of 2-3 replicate ARISA profiles. Colors and groupings indicate the origin of the samples. a includes a 
comparison only of the wood experiments, while b and c show bacterial community structure on the wood 
experiments in comparison to surrounding sediments at distances of 0.5 m and 10 m from the wood experiments. 
Asterisks (*) indicate the presence of wood chips in a sample.  
 

 

3.4.3 Response of specific bacterial taxa to wood input  

To identify taxa specifically colonizing and responding to the deposition of wood at the 

seafloor, we applied 454 massively parallel tag sequencing (MPTS) which enables sequencing of 

samples at a very high resolution as well as taxonomic classification of sequences [36,37]. Patterns 

of the relative contributions (relative sequence abundances) of phyla and classes to the overall 

community clearly differed between the “fresh” control wood and the woods submerged for one 

year, as well as between woods and sediments (Figure 7, Figure S1). Proteobacteria-affiliated 

sequences dominated in all woods and sediments. The phyla Actinobacteria, Bacteroidetes and 
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Firmicutes showed higher relative sequence-abundances at the woods submerged for a year. At the 

taxonomic resolution of class, the fresh wood (#6) was dominated by Gammaproteobacteria, which 

accounted for most of the proteobacterial sequences (Figure 7, Table 3). In the woods 

submerged for one year, Alphaproteobacteria, Flavobacteria, Gammaproteobacteria, Actinobacteria, and 

Clostridia were present in higher relative abundances. Among the ten most common genera in the 

freshly submerged wood#6, sequences affiliated to Pseudoalteromonas, Vibrio, Burkholderia, 

Pseudomonas, Erwinia and Ralstonia were observed. In contrast, woods submerged for one year 

were dominated by sequences affiliated to the genera Demequina, Conchiformibius, Blastopirellula, 

Desulforhopalus, Thalassobacter, and Iamia. Wood-chip covered sediments were dominated by 

Clostridia, Gammaproteobacteria, Planctomycetacia and Deltaproteobacteria (Table 3). The most common 

genera of the active wood-chip-sediment boundary layer included Coxiella, Ralstonia, 

Methylobacterium, Reichenbachiella and Desulfobacula.  

 

 

Figure 7 Bacterial community composition of the wood experiments at the class level.  
 

 

As to the comparison between wood influenced sites and reference sediments, the latter 

showed a high proportion of Acidobacteria and Actinobacteria. Bacteroidetes and Firmicutes were 

present with higher relative abundances at and on the woods. The reference sediments showed 

differences in composition between the oxygen-limited location (Deltaproteobacteria, Holophagae and 

Epsilonproteobacteria) and the oxic sediments (Actinobacteria and Alphaproteobacteria) (Table 3, Figure 

S1). On the class level it was mostly Clostridia, Alphaproteobacteria and Planctomycetacia that showed 

higher relative abundances at wood#1, and Flavobacteria, Alphaproteobacteria and Deltaproteobacteria 

that showed higher relative abundances at wood#5. 

1 day submerged 
(wood#6) 

1 year submerged 
(wood#1)

1 year submerged 
(wood#2)

1 year submerged 
(wood#5)

Flavobacteria

Flavobacteria ActinobacteriaGammaproteobacteria

Alphaproteobacteria
Bacteroidetes 
classNAClostridia

Deltaproteobacteria

Flavobacteria

1 day submerged 
(wood#6) 

1 year submerged 
(wood#1)

1 year submerged 
(wood#2)

1 year submerged 
(wood#5)

Flavobacteria

Flavobacteria ActinobacteriaGammaproteobacteria

Alphaproteobacteria
Bacteroidetes 
classNAClostridia

Deltaproteobacteria

Flavobacteria
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Table 3 Most common bacterial classes in decreasing order of their relative sequence abundances in wood 
experiments submerged for 1 day or 1 year, and in wood-influenced or non-wood influenced sediments.   

 

 

4. Discussion   

 

4.1 Faunal diversity at wood falls  

4.1.1 Wood-boring bivalves  

Wood-boring bivalves (Xylophaga dorsalis) had colonized the wood in large numbers after one 

year and apparently played a key role in the microbial ecology and biogeochemistry of sunken 

woods (Figure 3a). They were responsible for the rapid degradation and dispersal of wood chips 

around the wood log, which lead to the emergence of sulfidic zones. In addition, X. dorsalis 

provided colonization surfaces for other organisms that were attracted to the wood, such as 

polychaetes and sipunculids. Neither one was yet considered to bore into wood or use wood as a 

nutritional source. Wood-boring bivalves may therefore be considered a keystone species in 

wood fall habitats, as they transform the energy stored in the wood into nutrients that can be 

digested by other animals, either in the form of fecal pellets that are used by detritus-feeders or as 

flesh or carrion used by predators and scavengers [2]. Xylophaga depend on wood and they must 

be able to quickly localize and exploit small specific habitats that are widely scattered on the 

ocean floor [2]. Tyler and colleagues [41] have described the settlement, growth and population 

dynamics of X. depalmai, but it remains unclear how Xylophaga larvae and/or adults detect the 

presence of wood in the deep sea. A similar wood colonization experiment at the Logatchev vent 

field (Mid-Atlantic ridge) showed massive population growth of Xylophaga and suggested the 

presence of larvae ~2000 km away from the nearest coast (C. Borowski, pers. communication). 

From our experiments we can deduce that strong colonization and growth took place within one 

Wood, 1 day 

submerged (wood#6) 

Woods, 1 year 

submerged 

(wood#1, #2, #5) 

Sediments at wood 

experiments (0.5 m) 

Sediments 

(oxygen-limited) 

Sediments 

(oxic) 

Gammaproteobacteria Alphaproteobacteria Clostridia Gammaproteobacteria Gammaproteobacteria 

Alphaproteobacteria Flavobacteria Gammaproteobacteria Deltaproteobacteria Acidobacteria 

Betaproteobacteria Gammaproteobacteria Planctomycetacia Acidobacteria  Actinobacteria 

Actinobacteria Actinobacteria Deltaproteobacteria Holophagae Alphaproteobacteria 

Deltaproteobacteria Clostridia Alphaproteobacteria Epsilonproteobacteria Holophagae 

Flavobacteria Sphingobacteria Actinobacteria Actinobacteria Deltaproteobacteria 

Clostridia Deltaproteobacteria Acidobacteria Clostridia Planctomycetacia 

Sphingobacteria Bacteroidia Betaproteobacteria Betaproteobacteria Betaproteobacteria 

Acidobacteria Planctomycetacia Holophagae Acidobacteria Gemmatimonadetes 

Bacteroidia Verrucomicrobia Sphingobacteria Alphaproteobacteria Bacilli 
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year. Based on earlier observations, it is likely that colonization by wood-borers occurs within a 

few months of wood deposition [2,41,42].  

The genus Xylophaga (family Pholadidae) is known to include opportunistic species that 

colonize wood at depths greater than 150 m [43]. They are the deep-water counterparts of 

bivalves of the family Teredinidae (also known as “shipworms”) that colonize and ingest wood in 

shallow waters. Teredinidae and Xylophaga both have endosymbiotic bacteria in specialized cells 

located in the gills [43,44]. For shallow water Teredinidae, symbionts have been characterized as 

cellulolytic and nitrogen-fixing Gammaproteobacteria [45,46] but little is known about the deep-sea 

Xylophaga and their symbionts. Our 454 MPTS dataset revealed sequences affiliated to the 16S 

rRNA sequence of Teredinibacter turnerae that has been isolated from the gills of teredinid species 

and that has been cultured and described as a cellulolytic nitrogen fixing gammaproteobacterium 

[46]. These sequences occurred in higher relative abundances in woods submerged for one year 

while they were virtually absent in wood#6 and in sediment samples away from the wood 

experiments. Teredinibacter turnerae lives as an intracellular endosymbiont in the gills of wood-

boring bivalves of the family Teredinidae [47]. It probably possesses cellulases and nitrogenase to 

convert the cellulose in the wood into digestible carbon and supplement the nitrogen-deficient 

wood-diet of its host. An initial phylogenetic characterization based on 16S rRNA gene clone 

libraries of bacterial symbionts associated with Xylophaga from this study, showed that a majority 

of clone sequences clustered with those of Teredinidae symbionts (C. Borowski, pers. 

communication), suggesting a close phylogenetic relationship between symbionts of the shallow 

and deep-sea wood-boring bivalves. It is not clear however whether sequences obtained by 454 

MPTS analysis originated from free-living bacteria in the wood or from bacteria associated with 

Xylophaga or other macrofauna that may have been crushed during sampling.  

 

4.1.2 Chemosynthetic organisms  

Small chemosynthetic mussels of the genus Idas were mainly found on or underneath the 

bark of wood pieces (Figure 3b). The same genus has been collected from carbonate crusts at 

active seeps as well as from other wood colonization experiments in the same study area [4,12]. It 

is known to harbour a variety of bacterial symbionts including sulfide oxidizers [12,48]; these 

mussels may therefore serve as indicators of sulfidic conditions in their environment. The higher 

number of Idas individuals found on wood#1 (located close to carbonate structures) may indicate 

that mussels colonize the wood from carbonate crusts in the Pockmark area, but this remains 

speculative due to the limited number of experiments. Members of the genus Idas have also been 

found on wood falls in other oceanic regions [49,50], as well as in association with whale 
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carcasses [5,51], and hydrothermal vents [52], and therefore seem to be cosmopolitan among 

chemosynthetic ecosystems in the deep sea.  

 

4.1.3 Other fauna  

Sea urchins (Asterechinus elegans) seemed to be attracted to the wood (Figure 3f) and have also 

been reported from wood falls in the West-Pacific region [53]. Earlier observations of their gut 

content have indicated that they are a wood-feeding species and that they might have a microbial 

community associated with their gut content that would be able to support a digestion of wood 

[53]. In our specimen we also observed wood particles associated with the gut content. Only few 

amphinomids have yet been recorded from the deep sea  [54,55], but they have been found at 

hydrothermal vents [56,57] and seeps [58]. To our knowledge this is the first record from wood 

falls (Figure 3d). The sipunculid species Phascolosoma turnerae was originally described as a deep-

water species found in association with submerged wood, occupying burrows in the wood [59]. 

Members of this genus have also been reported from seeps [60] and whale carcasses [3,61]. It is 

not clear, whether the sipunculans enter Xylophaga burrows or whether they are able to produce 

their own burrows [59], but sipunculans have been described to bore into other structures like 

calcareous rock [62]. In our experiments we could not find indications that sipunculids were able 

to bore into the wood. It is most likely that Phascolosoma used the burrows produced by the wood-

boring bivalves as shelter, because neither a mechanism for burrowing into wood nor the ability 

to utilize wood as a food source is known for sipunculans (Figure 3e). It is likely that also the 

other macrofaunal organisms, e.g. the polychaete Glycera noelae sp. nov. (Figure 3c) and the 

amphinomid Cryptonome gen. nov. conclava, n. sp. (Figure 3d) used the burrows of the wood-boring 

bivalves to enter the wood.  

 

While Xylophaga are likely endemic to wood falls in the deeper ocean, several of the 

macrofaunal organisms recovered from our experiments are shared with whale falls, seeps and/or 

hydrothermal vents, indicating that these ecosystems may share a close evolutionary history for 

part of their faunal component [3]. Wood falls present hotspots of diversity in the deep sea, 

attracting a variety of fauna utilizing the wood for different purposes (nutrition, shelter, grazing). 

It is yet unclear how organisms localize wood falls in the vast deep-sea environment (e.g., 

chemical cues like presence of organic matter, degradation products) and what their reproductive 

and dispersal strategies are.  
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4.2 Development of sulfidic niches at wood falls  

Very few organisms can degrade wood and use it as energy and carbon source. Furthermore, 

it is known that sunken ships preserve well in cold, salty, anoxic environments [63]. In our 

experiments, the degradation activity of wood-boring bivalves of the genus Xylophaga led to the 

accumulation of a several centimeter (2–4 cm) thick layer of wood chips in the immediate vicinity 

of the wood logs, facilitating the microbial production of sulfide. Diffusive and total oxygen 

uptake rates indicated an increased respiratory activity of sedimentary communities due to the 

degradation of organic matter derived from the wood falls. The development of anoxic zones 

subsequently enabled sulfide production by sulfate reducing bacteria, and enhanced sulfide fluxes 

around the wood experiments. This process could best be observed at wood#5 which was 

located on pelagic sediments, where oxygen penetrated several centimeters into the sediment and 

no sulfide was present at the reference location (Figure 4). Wood#1 in contrast was located in an 

oxygen-limited location, where sulfide was present in control sediments 10 m away from wood#1. 

Nevertheless, the addition of wood changed the sedimentary environment in that the sulfide 

maximum shifted from about 4 cm sediment depth to the surface, into the transition zone 

between wood chips and sediment. Interestingly, the strongly elevated concentrations of 

dissolved organic carbon at the wood-chip sediment contact zone indicated that cellulose 

degradation was highest under anoxic conditions and hence enabled by anaerobic benthic 

bacteria, e.g., fermenters and sulfate reducers. This was confirmed by measurements of sulfate 

reduction, which also peaked at the wood chip-sediment contact zone. These observations 

demonstrate that, after one year, the presence of wood at the seafloor has led to the creation of 

sulfidic niches, comparable to what has been observed at whale falls [6,51].  

 

4.3 Comparison with other chemosynthetic ecosystems 

 The higher total oxygen uptake at wood#1 (0.5 m) when compared to the reference site 

10 m away from the wood, indicated an increased activity of sedimentary communities around 

the wood falls. In comparison to other sites in the Nile Deep Sea Fan, these values were in the 

range of those at cold seeps at the rim of the Amon mud volcano [64], or on the border of 

bacterial mats in the studied Pockmark area [65] (Table 2). Total oxygen uptake rates at the wood 

experiments were similar to values reported for a whale fall in the Santa Cruz Basin, California, 

that, in contrast to our wood falls had been submerged for 6–7 years [6].  

Sulfide fluxes were elevated at both wood experiments when compared to reference 

measurements, but were an order of magnitude lower than values measured in a bacterial mat 

[65]. The measured rates of sulfate reduction (SR) at the wood experiments were higher 
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compared to reference measurements in the Pockmark area performed during an earlier 

expedition (Meteor M 70/2 Bionil 2006, 0.1 mmol m-2 d-1). Sulfide concentrations at the wood 

experiments were higher than concentrations measured 1 m away from a whale fall, but an order 

of magnitude lower than values reported from below a bacterial mat located directly at a whale 

fall [6]. Sulfide fluxes and sulfate reduction rates reported from other chemosynthetic habitats at 

cold seeps vary widely, and the rates measured here would fall into the lower range of sulfate 

reduction rates previously observed [19,65,66,67]. No measurements of oxygen and sulfide were 

conducted on the wood itself, but also here microoxic/anoxic conditions may develop [7], and 

the presence of the chemosynthetic mussel Idas sp. may be an indicator for this. Hence, our 

measurements demonstrate that over a period of one year, wood falls in the deep sea can lead to 

the development of biogeochemical conditions similar to those of other chemosynthetic habitats.  

 

4.4 Bacterial communities  

The degradation of submerged woods as a source of energy and carbon requires complex 

enzymatic transformation of the macromolecular matter by adapted microbial communities 

[63,68]. Little is yet known about the microbial degradation of cellulose - the second most 

abundant carbohydrate in the sea and the most abundant on land. In the context of cellulose 

degradation for biofuels, the potential discovery of novel bacterial types and enzymes adapted to 

high salinity may even be of interest for industrial applications [69].  In our case, wood 

degradation appeared to be substantially aided by the activities of wood boring Xylophaga, 

dispersing the wood logs into small chips offering a large surface for further microbial 

degradation. Accordingly, we observed a substantial increase in cell numbers in the wood within a 

year, from the freshly submerged woods with low numbers of 5.6*106 cells/g to the wood chip 

layer with 9.3*108–1.2*109 cells/g. Next we attempted to identify the most abundant taxa 

associated with the submerged wood and especially the reactive contact zone between wood 

chips and the sediments. 

The freshly deployed wood (1 day submerged) was dominated by sequences affiliated to 

Gammaproteobacteria (Figure 7). The most common genera indicated both a marine signature, with 

Pseudoalteromonas (strains of which have been shown to produce cellulase) and Moritella among the 

five most common genera, but also a terrestrial signature with typical plant-associated genera like 

Burkholderia (Betaproteobacteria), Erwinia (Gammaproteobacteria) and Ralstonia (Betaproteobacteria). In 

woods submerged for one year, Alphaproteobacteria, Flavobacteria, Actinobacteria, and Clostridia 

showed higher relative abundances when compared with the fresh wood. These groups comprise 

several cellulolytic taxa: currently, the highest proportion of isolated cellulolytic bacteria are 

136



  Chapter IV – Wood colonization experiments 

found within the Firmicutes (which include Clostridia) and Actinobacteria [69]. Clostridia are obligate 

anaerobes and may indicate the presence of anoxic conditions in parts of the wood logs and 

chips that have developed due to wood degradation. The most common genus in woods 

submerged for one year was Demequina (Actinobacteria), for which an isolate (Demequina aestuarii) 

was shown to be closely related to Cellulomonas fermentans [70], allowing speculations that 

Demequina might play a role in wood degradation in the deep sea. Other observations of distinct 

genera included the recovery of sequences affiliated with Teredinibacter (see Xylophaga section), as 

well as sequences affiliated with the genera Cellulophaga (Flavobacteria) [71,72] and Phycisphaera 

(Planctomycetes) [73]. Both genera have been previously isolated from marine algae, and were found 

in high relative abundances in the submerged woods, but barely in the reference wood and 

sediments, indicating that they may play a role in the degradation of woody material in the deep 

sea. Furthermore, Bacteroidetes and Firmicutes had higher relative abundances at and in the wood, 

whereas relative sequence abundances of Acidobacteria and Actinobacteria were highest in reference 

sediments away from wood experiments (Table 3, Figure S1). Bacteroidetes may be responsible for 

the breakdown of a major fraction of complex organic matter [74,75] and both Bacteroidetes and 

Firmicutes have been recovered from whale-fall influenced sediments [76]. Deltaproteobacteria 

belonged to the five most common taxa both at the wood experiments as well as at the oxygen-

limited site away from wood#1, and included sulfate reducing members of the families 

Desulfobacteraceae and Desulfobulbacea, which were also previously shown to be abundant at a whale 

fall and cold seeps [76,77,78]. Acidobacteria and Actinobacteria are typical representatives of deep-

sea sediments and Acidobacteria are known to prefer oligotrophic conditions [79,80,81] which is 

consistent with their presence in undisturbed reference sediments. The relative importance of 

Epsilonproteobacteria at the oxygen-limited site #1 close to carbonate crusts, is consistent with their 

dominance at seep and vent ecosystems [82,83,84]. Though Epsilonproteobacteria have also been 

found in association with whale falls [76], we could not confirm their relative importance at wood 

falls.  

Previous studies on natural and experimental wood falls have reported high similarities 

between bacterial communities on woods at geographically distant sites and have identified the 

type of wood and duration of immersion as the most important factors structuring sunken wood 

bacterial communities [13]. Our results showed that even the same type of wood, deployed for 

the same amount of time selects for differently structured bacterial communities. It remains 

unknown, whether bacterial colonization takes place from the sediments and/or from the water 

column. Further studies are required to decipher the factors determining the temporal succession 

of bacterial communities at wood falls in the deep sea, and to identify the most abundant 
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functional groups in enzymatic cellulose degradation, fermentation and reduction of sulfate to 

sulfide, supporting chemosynthetic life.  
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Supplementary information 

 

 

Figure S1 Bacterial community composition of wood experiments and sediments around the wood experiment at 
the phylum and class level.   
 

 

 

Table S1 Analysis of similarity (ANOSIM), testing for significant differences in bacterial community structures 
between the wood experiments as well as sediments around the wood experiments. *p<0.05, **p<0.01, ***p<0.001 
after Bonferroni correction; (*) only significant without Bonferroni correction.  

 
Wood#1 Wood#2 Wood#5 Wood#6 

At 
wood#1 

Away 
wood#1 

At 
wood#5 

Wood#1        
Wood#2 0.48***       
Wood#5 0.2 *** 0.47***      
Wood#6 1*** 1*** 1***     
At wood#1 0.94** 0.98** 0.90** 0.98(*)    
Away wood#1  0.99** 0.99*** 0.94** 1(*) 0.63   
At wood#5 0.96*** 0.97** 0.85** 0.81(*) 0.21 0.42  
Away wood#5 1** 1** 1** 1(*) 0.79 (*) 0.52 (*) 0.27 
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  Discussion & Perspectives 

 

The deep sea presents the largest ecosystem on Earth and bacterial communities play a 

crucial role in the recycling of carbon and nutrients at the seafloor, linking the deep-sea 

ecosystem to the global biosphere. The remoteness of the deep sea has long hindered its 

exploration, and still makes research at the deep seafloor technologically challenging and 

expensive. Owing to these difficulties and to the lack of appropriate molecular techniques until 

two decades ago, little was known about bacterial diversity and its distribution at the seafloor 

when I started this thesis. For the thesis it was possible to use an existing deep-sea sample 

repository covering major oceanic regions, with contextual information available for many of the 

samples. Furthermore, the latest underwater technology was used to sample and document wood 

colonization experiments in the deep sea. The application of ARISA fingerprinting and state-of-

the-art next-generation sequencing enabled a high throughput and deep sequencing of samples, 

in order to characterize bacterial community patterns in deep-sea sediments. The implementation 

of ecological multivariate statistics allowed the subsequent interpretation of bacterial community 

data in conjunction with contextual parameters. The combination of these techniques could be 

successfully applied to address ecological questions and may continue to advance our knowledge 

on microbial community ecology in the future. The results presented in the chapters of this thesis 

demonstrate that benthic bacterial communities are not randomly distributed across the seafloor. 

They were rather structured across geographic distance, indicating dispersal limitation, and were 

strongly influenced by energy availability in the form of phytodetritus or large organic food falls 

at the seafloor. Furthermore, bacterial functions such as extracellular enzyme activities and 

carbon remineralization rates varied with energy availability and were correlated to community 

structure, suggesting a tight coupling between community structure and functions.  

 

3.1 Dispersal limitation  

The high endemism of bacterial types (OTUs defined at 3% sequence difference) and the 

strong distance-decay relationship, i.e., the decrease in shared bacterial types with increasing 

distance, observed in Chapter I may be due to a lack of physical mixing in the benthic deep-sea 

environment. However, the observed relationships with geographic distance may to some extent 

also be caused by spatially structured environmental parameters. In a first approach to 

incorporate environmental parameters in our global-scale assessment of bacterial biogeography, I 

tested the effects of surface productivity and total organic carbon concentration at the seafloor 

on variations in bacterial diversity (Figure 8). As proxies for these parameters, I used productivity 

indices based on biogeochemical provinces defined by Longhurst et al. (1995) 

(http://www.vliz.be/vmdcdata/ vlimar/downloads.php), and oceanographic regions based on 

149



Discussion & Perspectives 
   

total organic carbon measurements (Seiter et al., 2004). A partitioning of the biological variation 

between geographic distance, water depth, surface productivity and total organic carbon content 

confirmed a significant effect of geographic distance on bacterial community structure and 

composition, even when taking the other environmental parameters into account (Figure 8). 

However, especially differences in total organic carbon concentration (food availability) at the 

seafloor were evidenced to play an important role in shaping bacterial communities. Surface 

productivity could not explain any of the variation in bacterial community composition and 

structure. Discrepancies between surface productivity and total organic carbon availability at the 

seafloor may be explained by biological processes or hydrographic features that would influence 

particle flux or by a lateral input of organic material, for example. The result is in agreement with 

general trends in the deep sea that have identified the availability of organic material as a major 

determinant for the diversity and biomass of different benthic size classes in the deep sea (Levin 

et al., 2001; Rex and Etter, 2010; Smith et al., 2008) and is further confirmed at the regional scale 

(7-500 km) in Chapter III. In general, the influence of both space and environmental conditions 

on bacterial communities is also suggested for intermediate scales (10–3000 km) in the ocean-

wide analysis of bacterial communities in three deep-sea basins of the South Atlantic (Chapter II), 

and has as well been proposed in other studies of microbial biogeography (Ramette and Tiedje, 

2007).  

 

 

Figure 8 Partitioning of the biological variation in bacterial community composition (a) and structure (b) at the 
OTU0.03 level (OTUs defined at 3% sequence difference) between several contextual parameters: geographic distance 
between samples, water depth, TOC availability (TOC regions based on Seiter et al. 1994) and surface productivity 
(Longhurst productivity index based on Longhurst et al. 1995). *** p = 0.001, ** p = 0.01.  
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The spatial distribution of bacterial and other benthic organisms in the deep sea may be 

influenced by a number of other factors (e.g., geographic barriers, geological history, deep-water 

currents) that will require further investigation. Geological structures, for instance, have been 

shown to limit the dispersal of macrofaunal organisms (Brandt et al., 2005). However, this 

observation could not be confirmed for bacterial communities where the Walvis Ridge in the 

South Atlantic was tested as a potential biogeographic barrier (Chapter II). Nevertheless, other, 

larger topographic features such as the Mid-Atlantic Ridge, or hydrographic features may restrict 

bacterial distribution. The global-scale study (Chapter I) provided first indications that deep-

water currents and water masses may to some extent influence the distribution of bacterial 

communities in the deep sea. This has also been proposed for larger benthic fauna, many of 

which have larval stages, which may facilitate dispersal with deep-water currents (Levin et al., 

2001; McClain and Hardy, 2010). This assumption would have to be systematically tested by 

accounting for the strength and direction of deep-water currents that may lead to a directional 

transport of cells (McClain and Hardy, 2010). Also, the geological history of deep-sea basins may 

offer clues about possible historical effects on the evolution of different bacterial deep-sea 

populations (McClain and Hardy, 2010). In the future, a better coverage of deep-sea sediment 

samples will be needed to improve our ability to statistically test distribution patterns at the global 

scale.  

 

3.2 Energy availability at the seafloor 

Energy availability has been identified as a major structuring factor for benthic organisms, 

e.g., megafauna and macrofauna, in the deep sea. Here, we show that distinct patterns could also 

be observed for bacterial alpha- and beta-diversity along gradients of phytodetritus input, as an 

important source of energy in the deep sea (Chapter III). This emphasizes the general 

significance of organic matter input for the structuring of benthic deep-sea communities. Our 

study extends observations of bacterial energy-diversity relationships, primarily obtained from 

experimental studies (Eiler et al., 2003; Horner-Devine et al., 2003; Riemann et al., 2000), to 

complex natural bacterial communities in deep-sea sediments. Noticeably, different taxa showed 

specific responses to changes in phytodetritus input. Some appeared to be opportunistic showing 

high relative sequence abundances at high levels of phytodetritus availability (e.g., 

Gammaproteobacteria), while others seemed to be adapted to low levels of energy supply (e.g., 

Acidobacteria), which may imply differing ecological strategies of these bacterial groups. Distinct 

adaptations would have to be confirmed on the genetic and physiological level. Eventually, it 
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could lead to the definition of indicator taxa for different environmental states, which may be 

helpful in environmental monitoring studies.  

Furthermore, the observed relationship of bacterial alpha-diversity with energy availability, 

i.e., increasing or hump-shaped curves (Chapter III), indicate that bacteria may exhibit patterns 

similar to the ones observed for larger benthic size classes in the deep sea (Rex, 1981; Rex and 

Etter, 2010). Hence, some ecological concepts may universally apply to different domains of life 

(Martiny et al., 2006; Smith, 2007). However, direct comparisons between bacterial and 

macrofaunal diversity patterns are restricted by fundamental conceptual differences such as the 

“species” definitions for animals and bacteria, with that of bacteria being much broader than the 

one for animals and moreover still a matter of debate (Cohan, 2002; Fraser et al., 2009; Rossello-

Mora and Amann, 2001; Staley, 2006). Instead, it may be more important to investigate possible 

relationships between bacterial and animal communities in the future. Distributions of bacterial 

and macro- and meiofaunal organisms may be linked through direct or indirect interactions, such 

as macrofaunal bioturbation, bioirrigation, and defecation. Other effects that may significantly 

influence bacterial community structure are grazing by nanoflagellates (Danovaro et al., 1998; 

Lebaron et al., 1999; Lindstrom, 2000), or viral infection (Danovaro and Serresi, 2000; 

Schwalbach et al., 2004). In the latter cases, simplified and controlled laboratory experiments 

might be more helpful to yield insights into such kinds of interactions.  

Functions such as extracellular enzyme activity and carbon remineralization rates were also 

highly correlated to changes in phytodetritus availability and bacterial community structure. A 

close association between community structure and functional patterns has also recently been 

reported elsewhere (Teske et al., 2011), and implies that community structure may to a certain 

extent predict functionality. However, further studies of natural and experimental systems will be 

needed to describe and understand relationships between community composition/structure and 

associated ecosystem functions (e.g. Gravel et al., 2010). This will be key to a better 

understanding of how ecosystems will change in response to global environmental changes, 

which may have profound impacts on the world’s marine ecosystems (Hoegh-Guldberg and 

Bruno, 2010). For example, the projected overall decrease in surface productivity (Behrenfeld et 

al., 2006; Steinacher et al., 2010) will supposedly lead to changes in particle flux and organic 

matter availability at the deep seafloor. Based on our results, we would predict that these changes 

will likely affect bacterial community structure and function which could in turn affect key 

processes such as carbon cycling (Deming and Baross, 1993; Klages et al., 2003). Most deep-sea 

sampling campaigns provide snapshots of the investigated locations at a given point in time. 

Changes in organic matter availability, for example, may also occur on temporal scales, and have 
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been shown to cause seasonal and interannual variations in benthic bacterial communities (e.g. 

Boetius et al., 2000; Pfannkuche et al., 1999). Only few long-term observations are available for 

the deep seafloor, e.g., the HAUSGARTEN in the Arctic (Soltwedel et al., 2005) and Station M 

in the North Pacific (e.g. Ruhl et al., 2008), but time-series studies will be an essential tool to 

better assess the potential effects of future climate scenarios (Glover et al., 2010).  

 

3.3 Wood falls as a special energy source in the deep sea 

The deposition of wood at the seafloor attracted a variety of organisms, some of which may 

be endemic to this habitat, e.g., wood-boring bivalves of the genus Xylophaga (Chapter IV). The 

degradation activity of wood-boring bivalves led to the accumulation of wood chips around the 

wood log, promoting the establishment of anoxic zones and the subsequent production of sulfide 

by the activity of sulfate-reducing bacteria, eventually leading to the creation of sulfidic niches. 

Bacteria are also likely responsible for a major part of the decomposition of the wood. Alongside 

fungi, some bacterial groups are known to be capable of degrading cellulose and lignin (El-

Hanafy et al., 2007; Lynd et al., 2002; Nishimura et al., 2006; Pometto and Crawford, 1986), in 

contrast to animals that can only utilize wood in association with symbiotic partners. Although 

fungi have been reported from a variety of habitats in the deep sea, e.g., sediments, hydrothermal 

vents, and the subsurface biosphere (Burgaud et al., 2009; Edgcomb et al., 2011; Nagano et al., 

2010; Raghukumar et al., 2010), it is likely that in marine environments bacteria play a larger role 

for the degradation of wood than fungi (Huisman et al., 2008; Landy et al., 2008). This will have 

to be further confirmed in future studies of fungal diversity and their metabolic potential on 

wood falls in the deep sea.  

The development of sulfidic niches at the wood falls attracted chemosynthetic fauna, e.g., 

the chemosynthetic mussel Idas sp., and thus supports ideas of the role of food falls as stepping 

stones for organisms between chemosynthetic habitats in the deep sea. Also, some of the other 

faunal and bacterial types on the wood have been reported from a variety of chemosynthetic 

habitats, i.e., whale falls, vents and seeps (Chapter IV). Little is known on what might attract 

organisms to these specialized habitats, and what their reproductive and dispersal strategies are, 

as the occurrence of food falls is unpredictable in time and space. The presence of organic matter 

and degradation products are examples of chemical cues that may enable organisms to detect 

these habitats.  

Furthermore, it remains unclear from where bacteria colonize the wood. Part of the 

community may be allochthonous and be brought down with the wood itself, but it is unlikely 

that terrestrial, plant-associated bacteria would be able to survive or stay active in marine water, 
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under high pressure and cold temperatures. This was also indicated by a low proportion of shared 

OTUs between the control wood (submerged for 1 day), and the wood experiments (submerged 

for 1 year), i.e., only 1–2% of OTUs defined at 3% sequence difference were shared between the 

control and the experiments (data not shown). Colonization may take place from the water 

column and/or the sediment. In the future detailed analyses of shared bacterial types between 

wood, sediments and water column may give information about the origin of wood-colonizing 

bacteria.  

As yet, the further succession of colonization and biogeochemical gradients at the wood fall 

experiments remains unknown, but will be investigated in the future. First observations of our 

wood colonization experiments after three years at the seafloor indicated a strong decline in the 

Xylophaga population (C. Bienhold, pers. observation). Nevertheless, the slow degradation of the 

wood may continue to influence the area for several years to come, changing biogeochemical 

properties and local diversity. For example, depending on the size of the whale, whale-fall 

ecosystems can persist as a distinct habitat for several decades (Smith and Baco, 2003). The 

frequency of wood falls to the deep seafloor remains largely unknown. Considering that they 

have been recovered from all oceans (Wolff, 1979), they may as a whole significantly add to 

overall diversity in the deep sea by providing specialized niches. In addition, they may serve as 

“playgrounds” for the discovery of new organisms (see additional contributions to publications: 

Böggemann et al. 2011, Borda et al. in preparation). Also novel enzymes may be discovered that 

would be able to perform under high pressure and/or anoxic conditions in these specialized 

habitats. Here, the application and further development of novel tools such as metaproteomics 

(Wilmes and Bond, 2006) will aid our ability to detect proteins and pathways that may also be of 

interest for biotechnological applications (Carere et al., 2008).  

 

3.4 Comparison of bacterial communities in the deep-sea sediments and other 

environments  

The major bacterial taxonomic groups observed in our global comparison of deep-sea 

sediments, were Gammaproteobacteria, Deltaproteobacteria, Actinobacteria, Alphaproteobacteria, 

Planctomycetacia, and Acidobacteria (Figure 9a). Overall, this is in agreement with previous studies of 

deep-sea sediments (Table 1, Orcutt et al., 2011). Nonetheless, differences in relative sequence 

abundances were observed within and between oceanic regions at the broad taxonomic 

resolution of class, and became even more pronounced at high taxonomic resolution (OTUs 

defined at 3% sequence difference) where a high amount of endemism was observed (Chapter I). 

In contrast to these oligotrophic settings, sediments next to wood fall experiments were 
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dominated by Clostridia (Figure 9b), which comprise obligate anaerobes, being consistent with the 

anoxic conditions that had developed around the wood falls (Chapter IV).  

 

Figure 9 Average bacterial taxonomic composition in a) deep-sea surface sediments (� 1000 m water depth), n = 41 
samples (Bienhold et al. in preparation, Chapter I), b) deep-sea sediments at a large wood fall (~ 1700 m water 
depth), n = 2 samples (Bienhold et al. in preparation, Chapter IV), c) deep oceanic waters (� 1000 m water depth), n 
= 24 samples (Zinger et al. submitted).  

 

 

The average benthic deep-sea community differs from deep-water communities in that 

Alphaproteobacteria are the dominant group observed in deep-water masses (Eloe et al., 2011; 

Galand et al., 2009; Zinger et al., submitted) (Figure 9c). In addition, deep-water communities 

also show high proportions of sequences affiliated with Gammaproteobacteria, Actinobacteria, 

Deltaproteobacteria, and Flavobacteria (Galand et al., 2009; Zinger et al., submitted). Oceanic surface 

waters are as well dominated by sequences affiliated with Alphaproteobacteria, but show higher 

proportions of Cyanobacteria and Flavobacteria (Giovannoni and Stingl, 2005; Zinger et al., 

submitted). The marine subsurface biosphere is dominated by Gammaproteobacteria and usually 

shows high proportions of Chloroflexi and the candidate division JS1 (Fry et al., 2008; Inagaki et 

al., 2006; Teske, 2006; Webster et al., 2006), differentiating it from surface deep-sea sediments. 

Similar to deep-sea surface sediments, coastal sediments are dominated by sequences affiliated 

with Gammaproteobacteria; in addition they may show high proportions of Planctomycetes and 

Deltaproteobacteria (Gobet et al., submitted; Llobet-Brossa et al., 1998; Musat et al., 2006). Also 

Cyanobacteria, Bacteroidetes, and Alphaproteobacteria have been detected in coastal sands in 

considerable proportions (Gobet et al., submitted). Studies of terrestrial soils commonly report 

Alphaproteobacteria, Acidobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes as dominant 

members (Fierer et al., 2005; Janssen, 2006; Roesch et al., 2007; Torsvik and Ovreas, 2002), but 
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have also shown Gammaproteobacteria to be abundant in some locations (Torsvik and Ovreas, 

2002).  

This broad comparison demonstrates that at broad taxonomic resolution (i.e., class), 

bacterial taxa (e.g., Gammaproteobacteria) may occur in a large number of different habitats, from 

the marine pelagic realm over marine sediments and the deep subsurface biosphere to terrestrial 

soils. However, despite overall similarities in taxonomic composition, some distinct differences 

can be observed in bacterial community composition and structure (relative abundance) between 

different environments. This probably reflects the different life styles and environmental 

pressures in these habitats which may have led to the evolution of distinct bacterial populations. 

Widely distributed groups like the Gammaproteobacteria may be opportunistic and metabolically 

versatile. Yet, the cosmopolitanism of these bacterial taxa may be due to a few bacterial types 

(e.g., OTUs at 3% sequence difference) that are highly sequence abundant and wide-spread (see 

Chapter I). These specific types likely differ between habitats, and comparative analyses between 

different habitats will need to be refined at higher taxonomic resolution, e.g., with full-length 

sequencing of the 16S rRNA genes of specific groups.  

 

Concluding remarks   

Bacterial communities are not randomly distributed across the deep seafloor. They rather 

show distinct patterns of community structure and activity in response to changes in energy 

availability in the form of phytodetritus or large organic food falls and are structured across space 

both at small (local/regional) and at large (global) spatial scales, indicating limited dispersal ability. 

In the context of microbial community ecology, we demonstrate that both contemporary 

environmental conditions as well as isolation by distance effects shape bacterial communities in 

deep-sea sediments. Some common observations that seem to be emerging for bacterial 

communities in a variety of habitats include the significance of energy-diversity relationships, 

effects of dispersal limitation (endemism), and the existence of positive range-abundance 

relationships (i.e., a positive relationship between the range of occupation and the sequence 

abundance of a bacterial type, Chapter I). The results of this thesis present a step forward in the 

endeavor of microbial ecologists to understand and in the long-run predict changes in bacterial 

diversity and function in response to changing environmental conditions. This ability will be of 

particular importance for the deep sea that represents the largest ecosystem on Earth. The thesis 

marks important progress because it presents a comprehensive description of bacterial diversity 

in pelagic deep-sea sediments and sheds light on the processes shaping bacterial communities at 

the deep seafloor.  
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3.5 Perspectives 

 

Functional diversity  

The assessment of functional diversity and functional redundancy is important for 

estimating the resilience and stability of an ecosystem (e.g. Allison and Martiny, 2008; Naeem, 

1998). As we have demonstrated, changes in bacterial community structure may be linked to 

bacterial functions (Chapter III), and it has been suggested previously that microbial community 

composition may have functional significance (Strickland et al., 2009). However, the specific 

interrelations between community structure and function will need further investigation. In 

certain cases, phylogenetic information may be used to predict physiology, but often phylogeny 

may not be a good predictor of functional traits, e.g., one group may carry out several functions 

and many functions may be carried out by different taxa (Achenbach and Coates, 2000; 

Konopka, 2009; Konstantinidis and Tiedje, 2005). Therefore, investigations of functional 

diversity will be important to be able to better estimate the effects of environmental changes on 

ecosystem functioning. The metabolic potential and functional diversity of microbial 

communities may be determined with microarray-based methods (e.g. Wu et al., 2008), in 

metagenomic studies (e.g. Eloe et al., 2011; Martin-Cuadrado et al., 2007; Quaiser et al., 2011), or 

by targeting conserved functional genes in fingerprinting assays (Santillano et al., 2010). 

Metatranscriptomics and metaproteomics offer more extensive approaches for studying 

functional gene expression of microbial communities and determining microbial functions in the 

environment (e.g. Gilbert et al., 2008; Wilmes and Bond, 2006). Genes/proteins of interest may 

be those involved in organic carbon degradation, at wood falls specifically cellulases and 

ligninases.  

 

Bacteria on sinking particles  

For deep-sea sediments, another largely unresolved question is how many of the bacterial 

types at the seafloor may originate from sinking particles. Although, sedimentation rates across 

abyssal plains may be as low as a few cm per 1000 years (e.g. Stein and Fahl, 2000), a considerable 

amount of particle-associated bacteria may be transported to the deep sea with sedimenting 

particles (Lochte and Turley, 1988; Thiel et al., 1988). These communities have been shown to 

clearly differ from free-living populations in the water column (Kellogg and Deming, 2009). 

However, it is largely unknown which proportion of bacteria in deep-sea sediments originate 

from sinking particles and how many of these bacteria may remain active under deep-sea 

conditions and contribute to the degradation of organic matter at the seafloor. This would 
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require comparative studies of microbial communities in the water column, attached to particles 

and associated with the sediment matrix, and would need to include rRNA-based methods 

targeting active parts of the population (e.g. Gremion et al., 2003; Logue and Lindstrom, 2008).  

 

Linking bacterial diversity patterns with those of other deep-sea organisms  

To better understand co-occurrence and/or avoidance patterns, not only among bacteria, 

but also in conjunction with meio- and macrofaunal patterns at the deep seafloor, would be 

another important step toward a more complete picture of the deep-sea ecosystem. First steps 

toward this goal could be achieved by incorporating existing data on larger benthic fauna, e.g., in 

collaboration with the Alfred Wegener Institute for the Arctic dataset (Chapter III), or from 

existing databases such as the ones generated in the Census of Marine Life project CEDAMAR 

(Census of the Diversity of Abyssal Marine life). Together with the bacterial datasets obtained 

during this thesis, these data could be used to search for co-occurrence patterns of bacterial and 

faunal taxa, and would add another important (biological) dimension to the set of contextual 

parameters tested.  

 

Toward a definition of biogeographic provinces in the deep sea  

A long-term perspective in deep-sea ecology would be the classification of biogeographic 

provinces. This means a delineation of oceanic deep-sea regions based on environmental features 

such as geology and physico-chemical parameters, but also in respect to biological community 

characteristics, e.g., community composition. A classification like this could aid ecosystem 

management strategies in their efforts to regulate human interventions in the deep sea such as the 

use of deep-sea resources (e.g., oil and gas extraction, deep-sea fishing) and the proposed 

application of carbon capture and storage (CCS) in the deep sea to mitigate climate change.  

First recommendations for a biogeographic classification of benthic deep-sea areas have 

been proposed in a report of the Intergovernmental Oceanographic Commission (UNESCO, 

2009). The areas defined in the report are mainly based on bathymetric and topographic features, 

but the authors also tried to incorporate information on benthic community composition where 

possible, although data are limited even for larger benthic organisms. As in most environmental 

assessments and ecosystem models, bacterial communities were not considered (e.g. Allison and 

Martiny, 2008). On the long run it would be desirable to incorporate biological information on all 

benthic size classes to describe ecological biomes in the deep sea. However, corresponding data 

on benthic community composition are largely missing and it will be impossible to conduct 

comprehensive biological surveys. Instead, we may have to rely on extrapolations from 
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relationships between biota and their physical or chemical environment. Information about 

bacterial communities at the deep seafloor are extremely limited and do not allow for such 

extrapolations yet. Thus, sampling efforts will need to be further increased in order to delineate 

effects of environmental parameters on the distribution of bacterial communities at the deep 

seafloor. For example, results presented in this thesis suggest that the availability of organic 

matter at the seafloor may be an important predictor of bacterial community composition, and 

this parameter may be estimated from surface productivity and knowledge on particle flux rates. 

Furthermore, the proposed classification of biogeographic provinces for the deep seabed 

(UNESCO, 2009) may serve as a starting point to test the designated areas using community 

data. Based on the classified provinces and existing information on benthic fauna and bacterial 

communities, missing data would have to be identified and future sampling efforts directed so as 

to fill in the gaps.  
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175



  

Linopherus) and are here tentatively considered insertae sedis, warranting further investigation. 

Finally, Eurythoe turcica and Eurythoe parvecarunculata are transferred to Cryptonome as new 

combinations.  A revised key to rectilinear (Clade II) amphinomid genera (relevant to this study) 

is presented. 

 

 

Boetius A, Bienhold C, Schöttner S, Ufkes J, Ramette A (2009) Fingerabdrücke mikrobieller 

Gemeinschaften im Meer. BIOspektrum 07/2009: 726-729 

 

Die weitgehend unbekannten mikrobiellen Gemeinschaften im Meeresboden können durch den 

Vergleich von molekularen Fingerabdrücken in ihrer Wechselwirkung mit der Umwelt und dem 

globalen Wandel untersucht werden. 

(Molecular fingerprinting tools allow an assessment of environmental controls of marine 

microbial community structure, including those related to global change.)  

 

 

176



 

Poster and Oral Presentations 

 

 

Bienhold C, Wenzhöfer F, Le Bris N, Ramette A and Boetius, A (2008). Wood colonization experiments 

in the Eastern Mediterranean deep sea. EGU General Meeting, Vienna. Poster presentation.  

 

Bienhold C, Wenzhöfer F, Le Bris N, Boetius A (2008) Wood colonization experiments in the Eastern 

Mediterranean deep sea. CHEMECO/ DIWOOD Meeting, Paris. Oral presentation.  

 

Bienhold C, Boetius A and Ramette, A (2009). Spatial gradients in microbial biodiversity of Arctic Ocean 

sediments: from shelf to deep sea. ASLO Conference, Nice. Oral presentation.  

 

Bienhold C, Sogin, M L, Boetius A, Ramette A (2009). Analysis and ecological interpretation of microbial 

community patterns derived from ARISA fingerprinting and 454 tag sequencing. ICoMM 454 User 

Meeting, Woods Hole. Poster presentation.  

 

Bienhold C, Boetius A, Sogin M, Ramette A (2009). Contextual interpretation of bacterial diversity in 

Arctic Ocean sediments. MARUM/GLOMAR PhD student day, Bremen. Oral presentation.  

 

Bienhold C (2009). Deep-sea wood falls – Cities of life in the dark. GLOMAR Retreat, Etelsen. Oral 

presentation.  

 

Bienhold C, Schulz I, Ufkes J, Wang T, Hubert A-M, Assmy P (2010). Geo-engineering the climate – 

from science to governance. GLOMAR/MARUM PhD Days, Bremen. Oral group presentation.  

 

Bienhold C, Boetius A, Ramette A (2010) Environmental drivers of benthic bacterial diversity along the 

Arctic continental slope. ISME-13 Conference, Seattle. Poster presentation.  

 

Bienhold C, Boetius A, Ramette A (2010). A baseline for assessing the impact of global environmental 

change on bacterial communities in the Arctic. PhD Student Conference “Integrated climate and earth 

system sciences in Northern Germany”, Hamburg. Oral presentation.  

 

Bienhold C, Boetius A, Ramette A (2011). Response of complex bacterial communities to changing energy 

availability in Arctic deep-sea sediments. Bremen PhD Days in Marine Science 2011, Bremen. Poster 

presentation.  

 

177



  

Cruise Participations 

 

RV Pourquoi Pas?, MEDECO-2, Eastern Mediterranean, Nile deep sea fan (wood experiments, 

cold seeps). 2 - 29 November 2007.  

 

RV Meteor, M 76/3B, Congo fan (cold seeps, wood experiments). 17 July - 24 August 2008.  

 

RV Maria S. Merian, MSM 13-3, Eastern Mediterranean, Nile deep sea fan (wood experiments, 

cold seeps). 25 October - 18 November 2009.  

178



 

 

 

Erklärung 

 

 

 

Hiermit erkläre ich, Christina Bienhold, dass ich 

 

1. die Arbeit ohne unerlaubte fremde Hilfe angefertigt habe,  

 

2. keine anderen als die von mir angegebenen Quellen  

und Hilfsmittel benutzt habe und  

 

3. die den benutzten Werken wörtlich oder inhaltlich  

entnommenen Stellen als solche kenntlich gemacht habe.  

 


