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Zusammenfassung 
 

Mit der vorliegende Dissertation möchte ich einen Beitrag zur Aufklärung der 

Anpassung anaerober Mikroorganismen an Temperatur und des Effektes von 

Temperaturänderungen auf die Mikroorganismen in marinen Sedimenten leisten. Temperatur 

ist ein wichtiger Faktor in der Regulierung von biologischen Prozessen und hat daher einen 

kontrollierenden Einfluss auf den mikrobiellen Kohlenstoffkreislauf in den Sedimenten. 

Biogeochemische und molekulare Methoden wurden angewandt um die Reaktionen von 

Mikroorganismen aus arktischen und gemäßigten Sedimenten auf Temperaturänderungen zu 

untersuchen. Diese Ansätze erlaubten auch neue Einblicke in die physiologische Anpassung 

von Mikroorganismen aus verschiedenen geografischen Regionen an 

Temperaturmodifikationen zu gewinnen.  

In einer Studie über die Reaktionen der mikrobiellen Gemeinschaften auf wiederholte 

Frost-Tau-Bedingungen zeigten wir, dass moderate Frost-Tau-Bedingungen einen geringen 

Effekt auf den mikrobiell mediierten Abbau von organischem Material in arktischen 

Sedimenten aus der Gezeitenzone hatten. Offensichtlich konnten die in situ 

Bakteriengemeinschaften drastischen Temperaturschwankungen weitgehend überstehen und 

ohne Verzögerung reaktiviert werden.  

In einem Temperatur-Gradienten-Block verglichen wir die Temperaturreaktionen von 

Sulfatreduktionsraten (SRR) in Schelf- und Kontinentalhangsedimenten aus dem Südwest- 

und Südostatlantik mit den Reaktionen von SRR in Sedimenten aus arktischen Fjorden. Ziel 

dieser Studie war es festzustellen, ob die Reaktion der mikrobiellen Gemeinschaften auf 

Temperatur auf eine enge Anpassung an die Umgebungstemperatur zurückzuführen ist, oder 

ob sie gemischte Gemeinschaften unterschiedlicher Temperaturgruppen widerspiegelt. In den 

südatlantischen Schelfsedimenten und den Sedimenten aus der Gezeitenzone Svalbards waren 

psychrotolerante bis mesophile Sulfat-reduzierende Gemeinschaften vorhanden, wohingegen 

in den Sedimenten vom südatlantischen Kontinentalhang und den arktischen 
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Schelfsedimenten psychrophile Gemeinschaften dominierten. Das niedrige 

Temperaturoptimum (Topt) der arktischen Sedimente und der Sedimente des kalten 

südatlantischen Kontinentalhangs zeigte, wie die in situ Temperatur die vorherrschenden 

Temperaturgruppen der Sulfat-reduzierenden Gemeinschaften bestimmte. Hohe Raten bei Topt 

und ein breiter Temperaturbereich der SRR in mehreren Sedimentproben von südatlantischen 

Kontinentalhängen zeigten die zusätzliche Präsenz von mesophilen Sulfat-reduzierenden 

Bakterien (SRB). Diese sind dort vermutlich nicht in situ gewachsen, könnten jedoch mit 

Schelfsediment, indem mesophile Bakterien dominierten, den Kontinentalhang hinunter 

transportiert worden sein. 

Die Temperaturreaktion des Abbaus von organischem Kohlenstoff über  bakterielle 

Sulfatreduktion in polaren, gemäßigten und tropischen marinen Sedimenten wurde untersucht, 

um die Temperaturanpassung von SRB an die Umgebungstemperatur zu quantifizieren. 

Relative SRR und Temperaturoptima deuteten auf überwiegend mesophile SRB in wärmeren 

Breiten hin, während polare Regionen SRB mit psychrophilen Anpassungen aufwiesen. 

 Wir überprüften arktische und gemäßigte Sedimente die für ein Jahr bei erhöhter 

Temperatur inkubiert wurden auf Veränderungen der mikrobieller Gemeinschaften. 

Genetische Fingerabdruckmuster einer denaturierenden Gradientengelelektrophorese beider 

Sedimente ließen vermuten, dass langfristige Exposition mit erhöhten Temperaturen die 

Vielfalt der mikrobiellen Gemeinschaft in marinen Sedimenten beeinflusst. 

Zusammenfassend zeigte diese Studie das die Umgebungstemperatur für die Auswahl 

adaptiver Physiologien verantwortlich ist und das thermische Gruppen von Mikroorganismen 

ein globales biogeographisches Muster aufweisen. Diese Arbeit leistet einen Beitrag zum 

Verständnis des Einflusses von umweltrelevanten Temperaturszenarien (erhöhte Temperatur, 

Frost-Tau-Effekte) auf den mikrobiell mediierten organischen Kohlenstoffkreislauf. 
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Summary 
 

The aim of the present work was to investigate the adaptation and response of 

anaerobic microorganisms to temperature effects in marine sediments. Temperature is an 

important factor regulating the rate of biological processes and therefore exerts a control on 

microbial sedimentary carbon cycling. Biogeochemical and molecular methods allowed new 

insights into the response of microorganisms from Arctic and temperate sediments to 

temperature effects and into the physiological adaptations of microorganisms from different 

geographical regions to alternative temperature regimes. 

We have gained insights into the freeze-thaw effects on microbially mediated organic 

carbon mineralization in Arctic intertidal sediment. We determined that moderate freeze-thaw 

conditions have little effect on the microbially mediated organic carbon degradation in 

intertidal Arctic sediments. It is apparent that the in situ microbial communities can largely 

withstand drastic temperature fluctuations and are reactivated without delay. 

The temperature responses of sulfate reduction rates (SRR) in continental shelf and 

slope sediments from the southwest and southeast Atlantic were compared with those in 

sediments from Arctic fjords. We wanted to assess if the temperature response of the 

microbial communities indicates a narrow adaptation to ambient temperature or rather reflects 

mixed communities of different temperature groups. In the south Atlantic shelf sediments and 

in intertidal flat sediment from Svalbard, psychrotolerant to mesophilic sulfate-reducing 

community were present, whereas in south Atlantic slope sediments and Arctic shelf 

sediments psychrophilic community dominated. The low temperature optimum (Topt) in Arctic 

sediment and in cold south Atlantic slope sediments shows how the in situ temperature 

determined the predominant temperature groups of the sulfate-reducing community. High 

rates at Topt and a broad temperature range of SRR in several south Atlantic slope sediments 

indicated the additional presence of mesophilic sulfate-reducing bacteria. These had probably 
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not grown in situ but were transported down-slope with sediment from the shelf where 

mesophilic bacteria dominated. 

The temperature response of carbon mineralization via bacterial sulfate reduction of 

polar, temperate and tropical marine sediments was studied to quantify temperature adaptation 

of sulfate reducing bacteria (SRB) to ambient temperatures. In temperate and tropical 

sediments relative SRR and temperature optima indicate mostly mesophilic SRB in warmer 

latitudes while in polar regions SRB shows psychrophilic adaptations.  

We screened for changes in microbial community composition in Arctic and temperate 

sediments incubated at elevated temperature for a year. Altered denaturing gradient gel 

electrophoresis fingerprint pattern in both sediments suggests that long term exposure to 

increased temperature may affect the richness of microbial community in marine sediments. 

In summary this study demonstrated that environmental temperature selects for 

adaptive physiologies and thermal groups of microorganisms exhibit a global biogeographic 

pattern. This thesis contributes to explaining the influence of environmentally relevant 

temperature scenarios (increased temperature; freeze-thaw effects) on microbial microbially 

mediated organic carbon cycle.  
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Preface 

This study was funded by Deutsche Forschungsgemeinschaft (DFG) via the Priority 

Program 1162 ‘The impact of climate variability on aquatic ecosystems (Aquashift)’ and by 

Max Planck Society. The project has been supervised by Prof. Dr. Bo Barker Jørgensen and 

Prof. Dr. Volker Brüchert. The research was conducted at Department of Biogeochemistry, 

Max-Planck-Institute for Marine Microbiology, Bremen, from April 2007 to Mai 2011.  

This dissertation focuses on the adaptation and response of anaerobic microorganisms to 

temperature effects in marine sediments and comprises four parts. The first is an introduction 

into the topic and the aims of the study. The second is the summary and discussion of the 

results obtained during the PhD period. The third part of this thesis comprises three 

manuscripts. The first manuscript has been already published and a journal’ PDF file is 

included in the thesis.  Two other manuscripts are included as drafts close to submission. The 

third part contains also appendix, where preliminary results of a project performed during 

PhD are described and discussed. Part four is the conclusion of the thesis.  
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1. Introduction  

1.1. Marine carbon cycle  

The ocean is crucial to the global carbon cycle as the largest active carbon reservoir on 

Earth (Figure 1.1; Hedges, 1992; Schimel, 1995). Marine carbon exchanges constantly with 

atmospheric and terrestrial reservoirs of carbon over time scales ranging from hours to 

millions of years (Falkowski et al., 2000). Short-term marine carbon cycle processes include 

photosynthesis, respiration, air-sea exchange of carbon dioxide. Carbon cycling between 

ocean and rocks occurs over longer time scales (Hedges, 1992).  

    

Figure 1.1 The global carbon cycle 
Source:http://earthobservatory.nasa.gov/Library/CarbonCycle/carbon_cycle4.html 

 
Marine carbon cycling is predominantly catalyzed by microorganisms. Photosynthetic 

organisms, mainly eukaryotic phytoplankton and cyanobacteria, convert inorganic carbon 

(CO2) to organic carbon as biomass in the upper water column. This particulate organic matter 
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(POM) sinks through the water column and a large portion becomes dissolved organic matter 

(DOM). Both POM and DOM are subject to microbial mineralization, and most of the organic 

carbon is recycled to dissolved inorganic carbon (DIC) in the water column (Azam and 

Malfatti, 2007). A fraction of organic matter is not respired in the water column and reaches 

the sediments. The size of this fraction is largely dependent on the water depth (Canfield, 

1991). It is estimated that for coastal environments 25 to 50% of the carbon fixed by the 

pelagic primary producers reaches the sediment surface. With increasing distance from the 

coast, primary production decreases and organic matter is oxidized as it sinks through the 

water column such that the amount reaching the deep sea floor and sedimentary microbial 

community is low (Arnosti and Jørgensen, 2003; Kasten and Jørgensen, 2006). 

 

1.2. Carbon degradation in marine sediments  

Most of the organic carbon that reaches the sediments is degraded by sediment-

dwelling microorganisms either aerobically or anaerobically, releasing CO2 and nutrients into 

the pore water and the overlying water column (Canfield, 1994). Particulate organic matter 

comprised of carbohydrate, protein, nucleic acid and lipid molecules is remineralised in 

different steps by different microorganisms as depicted in Figure 1.2 (Arnosti, 2004; Arnosti, 

2011). Initial degradation of sedimentary POM involves microbial production of extracellular 

ezymes and occurs via extracellular hydrolysis of macromolecules. Hydrolysis begins a 

cascade of remineralization reactions and results in smaller products for direct microbial 

uptake (Arnosti and Jørgensen, 2003; Brüchert and Arnosti, 2003). The products of hydrolysis 

are mono-,di- and small oligomers, e.g. sugars, amino acids, long chain fatty acids, which are 

taken up mostly by fermentative bacteria. Fermenters oxidize these compounds further to 

volatile fatty acids (VFAs) and hydrogen, which can be taken up by terminal oxidizers.   
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Figure 1.2 Scheme showing some major processes in the sedimentary carbon cycling, including 
sulfate reduction as an example for anaerobic respiration (modified from Hubert et al., 2010).   
 

Microorganisms respire organic matter to CO2 using oxidants in the sequence 

corresponding to a gradual decrease in redox potential of the oxidant. Thus, free energy yield 

is decreasing with the different electron acceptors. Oxygen, when present, is energetically 

favored over other oxidants and is the first to be consumed. Next, nitrate, Mn/Fe oxides and 

sulfate are successively consumed in the degradation of any remaining organic matter (Schulz 

et al., 2006). Depending on the primary productivity in the overlying water column, oxygen 

can be depleted within the first upper centimeters of sediments. Oxygen is the most important 

electron acceptor in the oligotrophic seafloor of the deep ocean. In upwelling areas and 

oxygen minimum zones present at continental margins, sulfate is the main electron acceptor 

accounting for up to 50% of carbon mineralization (Jørgensen, 1982). Once sulfate is depleted, 
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terminal oxidation is performed by methanogenic archaea producing methane and/or CO2, 

depending on the substrate.  

Sulfate-reducing bacteria (SRB) consume organic carbon often in the form of volatile 

fatty acids (VFAs), such as acetic acid. Under in situ conditions, sulfate reduction and 

fermentation are usually well balanced as evidenced by low concentrations of the 

intermediates, VFAs and H2 (Finke and Jørgensen, 2008). Under steady state conditions, H2 

concentrations are kept at a minimum, controlled thermodynamically, while VFAs 

concentrations do not appear to be thermodynamically controlled but usually remain in the 

lower micromolar range (Christensen and Blackburn, 1982; Wu and Scranton, 1994; 

Wellsbury and Parkes, 1995). The actual mechanisms controlling VFA concentrations in 

marine pore waters remain poorly understood. The extent to which organic matter reaching 

the sediment is remineralised depends largely on its quality, thus if the microorganisms can 

access and degrade organic matter deposited on the seafloor (Canfield, 1994).  

 

2. Temperature influence on carbon cycling in marine sediments  

2.1. Temperature as controlling factor for sedimentary organic carbon mineralization  

Temperature is an important environmental factor influencing most biochemical 

reactions; it affects the rates of bacterial growth and respiration, and therefore exerts a 

selective pressure in the environment. Increasing the temperature usually causes a chemical 

reaction to proceed at more rapid rates while the reactions are slowed down when temperature 

decreases (Arrhenius, 1908). Field studies on temperate sediments revealed the seasonality of 

respiration rates and showed that temperature is the main controlling factor as metabolic rates 

increase in summer season and are low in winter (Moeslundi et al., 1994; Rysgaard et al., 

2004; Al-Raei et al., 2009). Decreases in respiration rates in the winter season in temperate 
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environments led to the suggestion that microbial metabolism is low in cold environments 

(Pfannkuche and Thiel, 1987). However, in polar regions during summer season, after the 

spring phytoplankton bloom when permanently cold sediments receive a large amount of 

organic matter, the efficiencies and rates of benthic mineralization can be as high as those 

measured in tropical and temperate environments (Arnosti et al., 1998; Kostka, 1999; 

Robador et al., 2009). The amount of carbon that is preserved in cold sediments through burial 

is similar to temperate coastal sediments with similar sedimentation rates (Kostka, 1999). 

Clearly, low temperature does not inhibit microbial activity in cold sediments and organic 

carbon input exerts major control on the rate of organic matter mineralization (Kostka, 1999).  

 

2.2. Thermal adaptation groups of bacteria and their adaptive strategies  

Microorganisms have responded to selective pressure imposed by temperature by 

evolving various thermal adaptations that allow them to degrade organic matter efficiently in 

different climate zones. Based on the temperature response of growth, different temperature 

groups of bacteria are defined according to their cardinal temperatures, i.e., the minimum 

temperature (Tmin) or maximum temperature (Tmax) that limits bacterial activity, and the 

optimum temperature (Topt) at which the highest rates are supported. Above Topt process rates 

drop steeply, which is due to enzymatic denaturation and other physiological malfunctioning 

of the cells and shows that this is a biologically catalyzed process (Feller and Gerday, 2003). 

According to Morita (1975), psychrophilic bacteria have Tmin<0°C, Topt 15°C, and Tmax 

20°C. Psychrotolerant bacteria have Tmin 0°C, Topt 25°C, and Tmax 35°C. Mesophilic 

bacteria have Tmin>0°C, Topt at 25-40°C, and Tmax at 35°C-40°C. 

As is typical for microbial processes, Topt for respiration and growth of 

microorganisms is generally found to be well above the in situ temperature (Isaksen and 



 

 

  
 PART I Introduction 
  16 
 

Jørgensen, 1996; Knoblauch and Jørgensen, 1999; Dunker et al., 2010). In cold environments 

the Topt for anaerobic respiration is up to 10°C higher than the Topt for growth. In temperate 

environments, dominated by mesophilic microorganisms, the discrepancy between Topt of 

microbial metabolism and the in situ temperature of the sediments is smaller. Around 

hydrothermal vents and in coastal areas with volcanic activity Topt of microbial metabolisms 

was found to be near the in situ temperature (Jørgensen et al., 1992; Stetter et al., 1993). 

These observations indicate that microbial metabolism is better adapted to the in situ 

temperature in extremely hot environments rather than permanently cold conditions.  

The influence of environmental temperatures controls the presence of thermally 

adapted, active microorganisms. The bacteria living in different climate regions evolved 

adaptations to a broad range of temperature to overcome the purely chemical effect of varying 

temperatures. Cold adapted, psychrophilic and psychrotolerant microorganisms posses 

physiological adaptations to cope with low temperature. Compared to mesophilic and 

thermophilic bacteria, psychrophilic bacteria synthesise a higher proportion of short-chained 

unsaturated fatty acids and shorten chains in the membrane lipids to increase cell membrane 

fluidity (D'Amico et al., 2006). Enzymes of psychrophilic bacteria have high specific 

activities at low temperatures, often up to an order of magnitude higher than the enzymes of 

their mesophilic counterparts (Feller, 2003). Also, the cellular transcription and translation 

apparatus in psychrophiles is modified to aid protein synthesis at low temperatures (D'Amico 

et al., 2006). The evolution of cold adaptations allow psychrophilic and psychrotolerant 

microorganisms to maintain high metabolic activity despite constraints imposed by low 

temperature or drastic temperature fluctuations that accompany freeze–thaw conditions. 

Numerous studies have reported that in soils microorganisms thrive and are capable of growth 

below freezing point, at temperatures as low as -20°C (Junge et al., 2003; Rivkina et al., 2004; 
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Gilichinsky et al., 2005). It remains unresolved, however, whether marine microorganisms are 

active when marine sediment is frozen. In Manuscript 1 of this thesis activity of sulfate-

reducing bacteria was measured in frozen sediments.  

 

2.3. Temperature sensitivity of functional groups within microbial food chains 

Microbial functional groups involved in the sequential remineralization of organic 

carbon, e.g., hydrolyzers, fermenters, terminal oxidizers have different temperature 

sensitivities. Consequently, carbohydrate hydrolysis was found to have a different temperature 

response than sulfate reduction, with similar Topt but a higher Tmax in both permanently cold 

and temperate environments (Arnosti et al., 1998). Acetate production from complex organic 

matter in coastal sediment showed a higher temperature optimum and maximum than sulfate 

reduction from comparable temperate sites (Wellsbury et al., 1997; Arnosti et al., 1998). In 

temperate environments Weston and Joye (2005) observed a greater temperature sensitivity of 

the sulfate reduction process than for the processes of hydrolysis and fermentation of complex 

organic matter. While hydrolysis and fermentation were not disturbed by low temperature, the 

activity of SRB was inhibited because they could not uptake VFAs, produced by fermenters, 

hence VFAs accumulated. In the summer season VFAs were quickly consumed by sulfate 

reducing bacteria again and SRB activity was limited by low concentrations of VFAs (Weston 

and Joye, 2005). This transient uncoupling between sulfate reduction and fermentation by a 

temperature increase remains poorly understood. Different temperature sensitivity could lead 

to altered carbon flow under increased temperature conditions. Further studies on the response 

of sequential processes involved in organic matter remineralization to environmentally 

relevant temperature scenarios will help predict the effects of climate change on sedimentary 
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carbon cycling. In the Manuscript 1 of this thesis the freeze-thaw effects on fermentation and 

sulfate reduction processes was measured. 

 

2.4. Different thermal groups of microorganisms on a global scale 

Microorganisms are able to thrive and even grow at temperatures from below freezing 

to greater than boiling (Morita, 1975; Kashefi and Lovley, 2003). In different climatic regions 

the dominance of thermally adapted groups of bacteria dictate, together with the supply of 

labile organic matter, the rate of organic matter degradation in sediments (Kostka, 1999). 

Hence, psychrophiles and psychrotolerant have been found in permanently cold sediments and 

mesophiles predominantly in warmer shelf sediments at lower latitudes (Arnosti et al., 1998; 

Kostka, 1999). However, the coexistence of microorganisms with unexpected thermal 

adaptations is often reported, e.g., in permanently cold or temperate environments which 

shows that the temperature of the habitats is not always the last factor determining the 

presence of different temperature classes of microorganisms (Isaksen et al., 1994; Hubert et 

al., 2009). Bacteria that grow effectively in temperate environments and function at 

temperatures extending into the mesophilic range can be isolated from the cold deep-sea floor 

(Finster and Bak, 1993; Chen et al., 2003; Stein and Macdonald, 2004; Aono et al., 2010). 

Interestingly, the cold Arctic sea-bed includes thermophilic bacteria that are not metabolically 

active there (Isaksen et al., 1994; Hubert et al., 2009). Hubert and colleagues suggest that 

thermophiles are delivered to the cold sediments by seabed fluid flow from warm subsurface 

petroleum reservoir and ocean crust ecosystems (Hubert et al., 2009). 

The Baas-Becking hypothesis “the environment selects” explains spatial distribution 

of microbial diversity. It can also be used when studying the distribution of thermal groups of 

microorganisms (De Wit and Bouvier, 2006). Similar to biogeography of microorganisms – 
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my studies aimed to establish the patterns of occurrence of thermal groups of microorganisms 

on a global scale. In the Manuscripts 2 and 3 the distribution of thermal adaptation groups of 

microorganisms was surveyed in sediments derived from different climatic regions. 

 3. Global change affects carbon flow and microorganisms distribution  

Physical, chemical and biological characteristics of Earth are determined mainly by 

the oceans (Falkowski et al., 2000). Climate change is altering ocean ecosystems (Hoegh-

Guldberg and Bruno, 2010). Particularly affected are high latitude environments. The Arctic 

Ocean accounts for 20% of the world’s continental shelves and burial of organic carbon in the 

Arctic Ocean may account for ca. 7 to 11% of the global budget (Stein and Macdonald, 2004; 

Rachold et al., 2005). It is suggested that a warming of Arctic surface waters by even a few 

degrees could lead to substantially more carbon and other elements being processed by the 

microbial loop resulting in lower incorporation to higher trophic levels and therefore 

decreased export to the deep sea and the benthos (Kirchman et al., 2009). In the Bering Sea 

region decreased organic carbon fluxes to the seafloor and lower benthic respiration rates 

might be observed due to diminishing ice shelves and disappearance of associated unique 

microbial ecosystems (Grebmeier et al., 2006). 

Robador et al. (2009) showed that two-year incubation at increased temperature (10°C 

and 20°C) had a pronounced effect on rates of sulfate reduction as well as on the composition 

of the sulfate-reducing community (Robador et al., 2009). Follow-up studies revealed that 

after two years of incubation at increased temperature (10°C and 20°C) DOC concentration in 

sediments increased whereas VFA levels were low and sulfate reduction rates were 

comparable to the rates measured before the incubation started. Robador and colleagues 

suggested that over time DOC becomes refractory and unavailable to microorganisms 

(Robador et al., 2010). It was hypothesized that the net accumulation of DOC in warming 
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marine sediments could be related to a change in the composition of the microbial community 

in response to the permanent temperature increase. The effects of increased temperature 

during a one-year incubation on microbial community composition in Arctic and temperate 

sediments are described in the Appendix in this thesis.  

It is predicted that not only will carbon flow be affected by global warming, but also 

spatial distributions of psychrophilic and psychrotolerant microorganisms in marine 

environments. Microbial ‘generalists’ may displace many of the resident ‘specialists’ and the 

decline in different cold habitats (ice types etc.) will limit the number of potential niches for 

them. It is likely that in the future in the presently warming regions such as the Arctic, 

psychrotolerant bacteria with broad thermal tolerances will flourish at the expense of 

psychrophiles partially due to the temperature increase, but also due to the ice decline and loss 

of niches (Vincent, 2010). In Manuscript 2 of this thesis we suggest that mesophilic sulfate-

reducing bacteria are transported along the continental slope down to the deep-sea and leave 

their signature in the temperature profile of sulfate reduction.  

 
4. Aims and outline of the present study 

 
Most climate change scenarios predict not only a general warming trend, but also an 

increased variability in weather conditions (IPCC, 2007), including alterations in precipitation 

and thawing patterns, which will lead to more variable soil and sediment conditions 

(Groffman et al., 2001). The rapid climate change causes the Arctic Ocean to shift towards 

new states, with implications for food webs and biogeochemical fluxes. The impact of rising 

temperature on microbial community composition needs to be addressed, as it is unclear 

whether altered microbial communities influence the rate of carbon remineralization. Another 

significant component of the global carbon cycle is coastal permafrost. Many Arctic 

coastlines are currently in transition as rising sea level inundates and thaws coastal permafrost 
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(Rachold et al., 2000). At present, organic matter mineralization rates in thawing permafrost 

are not well quantified, but are likely critically dependent on the reactivation and recovery of 

bacteria. The effects of freeze-thaw on the anaerobic carbon mineralization in marine 

sediments need to be investigated to quantify the rate organic matter degradation under these 

conditions.  

1) Manuscript I The purpose of this study was to examine the effect of freeze-thaw on 

anaerobic carbon mineralization processes by subjecting natural communities of marine 

bacteria in seasonally freezing arctic sediment to different freeze-thaw treatments. The study 

was based on the hypothesis that moderate freeze-thaw treatment does not affect organic 

matter degradation, whereas drastic freeze-thaw scenarios decrease rates of organic matter 

degradation.  

2) Manuscript II The second study assessed a) to which extent the temperature responses of 

the microbial communities reflect the in situ temperature and b) whether their cardinal 

temperatures are the result of a narrow adaptation to in situ temperature or rather reflect mixed 

communities of different temperature groups. The temperature dependence of 35S-sulfate 

reduction rates (SRR) in shelf and slope sediments from the South Atlantic (SA) off the coast 

of Namibia, Uruguay and Argentina were compared with those in permanently cold shelf 

sediments of Svalbard in the Arctic Ocean. The study hypothesized that a mixed microbial 

community of different temperature groups would be present in all studied sediments.  

3) Manuscript III The aim of the third study was to investigate the physiological adaptation of 

the sulfate-reducing bacterial community to environmental sediment temperatures, expressed 

in sulfate reduction rates as an important mechanism controlling ultimately, the efficiency of 

carbon cycling. In order to understand the effect that ambient temperatures may have on the 

microbial carbon cycling in marine sediments, the temperature dependencies of the SRB 
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community in sediments from different latitudes were compared using temperature gradient 

incubation experiments. It was hypothesized that the temperature response of sulfate reduction 

is correlated with the temperature of the environment.  

4) Appendix The fourth study provides preliminary results on the response of sedimentary 

microbial community composition from permanently cold and temperate sediments to one 

year exposure to increased temperature (4°C, 10°C and 20°). This study is based on the 

hypothesis that elevated temperature affects microbial community composition in Arctic 

sediment, but may have no effect on the community composition in temperate sediment.  
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5. Freeze-thaw effects  

5.1. Reactivation under freeze-thaw conditions and tolerance of different physiological groups 

to freeze-thaw cycles  

Freeze-thaw events affect the activity and population dynamics of microorganisms in 

sediments and soils because strong fluctuations in temperature can damage or destroy 

microbial cells and disrupt cell aggregates (Mountfort et al., 2003; Schimel and Mikan, 2005; 

Sharma et al., 2006; Walker et al., 2006; Yergeau and Kowalchuk, 2008; Männistö et al., 

2009). Our results demonstrate that freezing temperatures in freeze-thaw regimes temporarily 

eliminate bacterial activity, but that sulfate-reducing microorganisms can resume active 

carbon cycling shortly after thawing of the sediment (Figure 2.1 a). Several studies on soil 

bacteria have demonstrated detrimental effects of freeze-thaw event on microbial 

communities (DeLuca et al., 1992). Such a treatment killed up to 50% of the microbes in the 

first freeze-thaw cycle and irreversibly reduced the soil DNA content by 33% (Pesaro et al., 

2003). Arctic soil mesocosm studies showed that microbial respiration remained at a high 

level in multiple diurnal freeze-thaw cycles although the microbial biomass declined (Larsen 

et al., 2002). Continued activity in cyclical freeze-thaw experiments seems to be influenced by 

the ability of the microbial community to metabolize substrates released by the freeze-thaw 

treatments (Schimel and Mikan, 2005). In our experiments sulfate-reducing bacteria survived 

in the sediment that was gradually frozen and thawed, as SRR changed with each successive 

temperature shift between 4ºC and -5 ºC (Figure 2.1 a). Low concentrations of VFA during 

gradual freeze-thaw incubations (Figure 2.1 b) suggest that the coupling between fermentation 

and sulfate reduction was maintained during this experiment. These incubation conditions, 

therefore, seemed to recreate the normal situation in arctic sediment, that is, low 
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concentrations of VFAs (Figure 2.1 b) due to close coupling between fermentation and 

terminal oxidation processes (Finke and Jørgensen, 2008; Robador et al., 2009). 

Figure 2.1 a) The sulfate reduction rates (SRRs) during the gradual freeze-thaw experiment. The black 
line corresponds to different temperatures applied during the experiment. Black bars correspond to 
SRR measured every 24 h, at respective temperatures. b) Concentrations of volatile fatty acids (VFAs) 
determined in the gradual freeze-thaw experiment. The analytical error for the summed VFAs 
concentration is about 6%. The black lines correspond to different temperatures applied during the 
experiment. Black bars correspond to VFAs levels measured every 24 h, at respective temperatures.  

 

In our multiple freeze-thaw incubations, three successive freeze-thaw cycles, resulted 

in a decrease in SRR by 80%, however, those sulfate reducers which survived this treatment 

were able to resume without delay when the sediment was thawed again (Figure 2.2 a).  

During multiple freeze-thaw cycles concentrations of VFAs gradually increased during the 

experiment (Figure 2.2 b). This suggests that detrimental effects of freeze-thaw cycles may 

have been greater for sulfate reducers than for fermentative microorganisms. These effects 

suggest major changes in the pathways of carbon processing under repeated freeze-thaw 

cycles. However, the long-term fate of VFAs that accumulate after freezing periods requires 

further exploration.  
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Figure 2.2 a) The sulfate reduction rates (SRR) associated with eight successive 30-h freeze-thaw 
cycles. Closed symbols correspond to SRR values measured during 18-h thaw phases (at 10°C) that 
followed 12-h frozen phases (at -20°C). Open symbols correspond to SRR values measured at the 
same corresponding time points in a control that was constantly maintained at 10°C. b) Volatile fatty 
acids (VFA) associated with eight successive 30-h freeze-thaw cycles. Closed symbols correspond to 
concentrations of VFA measured at same times as in the control experiment. The analytical error for 
the summed VFA concentration is about 9% as described in the text.   
 
 
5.2. Microbial activity in the frozen state  
 

Various studies have reported that microorganisms are capable of growth below the 

freezing point of water down to temperatures of -20°C (Gilichinsky et al., 1995). Our studies 

showed no clear evidence that sulfate reduction remained active at -20ºC. During the gradual 

freeze-thaw experiment rates of sulfate reduction was only detected in the first freeze cycle at 

-5ºC. This suggests that part of the microbial community, active initially during the first 

freeze period, was damaged during the subsequent freeze-thaw cycle. The lack of activity of 

the fraction of microbial community that was not damaged during the freeze-thaw event could 

be also related to changes in cell structure such as stiffen of membrane lipids with a 

consequent decrease of the efficiency of embedded protein transport (Nedwell, 1999; Ponder 

et al., 2005). At Antarctic sites Mountfourt et al. (2003) observed sulfate reduction decoupled 

from acetate oxidation and a shift of the carbon flow towards methanogenesis under freezing 
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conditions. The authors suggested that freezing provides a physical barrier that prevents 

access of the microbes to sulfate or reduces the affinity of sulfate reducers for their substrate.  

 

6. Temperature response of SRR in different geographical regions 

6.1. Temperature response of SRR in shelf and slope sediments depends on in situ T°C and 

water depth 

Microorganisms adapt to local environmental temperatures. Our results demonstrate how 

the ambient temperature regime selects for different physiological temperature groups among 

the sulfate-reducing community. The temperature response of SRR in sediments from the 

shelf and slope off Argentina, Uruguay and Namibia and in Arctic intertidial flat and seafloor 

sediments was studied. The sediment temperatures of the Uruguay and Namibia shelf are 

controlled by ocean currents of different thermohaline characteristics that maintained 

sediment temperatures of 7-10°C (Hensen et al., 2003; Lass and Mohrholz, 2005; Ortega and 

Martinez, 2007). Similar temperatures were recorded during the Arctic summer for an 

intertidal mud flat of Svalbard where the air temperature during low tide may heat the surface 

sediments up to 9°C (Nørdli 2005). Accordingly, the temperature response of SRR in these 

sediments was in the psychrotolerant to mesophilic range, the Topt was 25-30ºC, and the 

activity declined above 35ºC (Figure 2.3 a, b, j).  

The in situ temperature of the South Atlantic sediments from greater water depths is 

lower compared to shelf sediments, and thus the Topt and Tmax decreases with increasing water 

depth (Figure 2.3 b, c, d, f). Temperature profiles from those deep stations indicate a 

predominance of psychrotolerant and even psychrophilic bacteria. In sediments from the 

Argentine Basin at approximately 3000 m water depth we measured a Topt of 12°C after 36 

hour incubation (Figure 2.3 e). A comparably low Topt of 12.5°C for sulfate reduction had 
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been observed in Antarctic sediments from Kap Norvegia in the Weddell Sea (Isaksen and 

Jørgensen, 1996). This temperature optimum is the lowest published temperature optimum for 

an anaerobic microbial process in nature. The authors reasoned that the temperature profile 

resembled the response of psychrophilic isolates and likely reflected also the growth rate 

optimum of a predominantly psychrophilic community (Isaksen and Jørgensen, 1996). 

The dependence of the temperature optima and temperature response on the water 

depth was not observed in the Arctic fjord sediments as the bottom water of the Svalbard 

fjords is permanently near 0°C. In our study with sediments from Smeerenburgfjorden a broad 

temperature profile was observed with Topt at 27°C after 8 hour incubation (Figure 2.3 j). In an 

earlier study of these sediments the Topt had been observed to drop with incubation time and 

was 21°C after 4.5 day incubation (Arnosti et al., 1998). A similar shift in temperature 

response was found by Finke and Jørgensen (2008) in Arctic sediment where the Topt dropped 

from 27°C after 0.3 days to 18°C after 8 days of incubation.  

The temperature characteristics of SRR imply the presence of mixed SRB 

communities composed of mesophilic, psychrotolerant and psychrophilic members in South 

Atlantic and Arctic sediments (Arnosti et al., 1998; Sahm et al., 1999; Rysgaard et al., 2004). 

In South Atlantic sediments the spatial distribution of distinct thermal groups was related to 

the in situ temperature of the sediment and consequently to the water depth. Thus, high Topt of 

SRR on the shelf indicates a predominance of mesophilic and psychrotolerant SRB, whereas 

in the deeper sediments Topt was lower and hence indicates the presence of SRB adapted to 

permanently cold conditions typical for psychrotolerant and psychrophilic microorganisms. 

Predominant temperature responses of SRR in South Atlantic sediments were psychrotolerant, 

which is consistent with earlier reports that psychrophiles do not prevail in permanently cold 

sediments (Nedwell, 1989). 
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6.2. Sediment transport effects on temperature-activity relationships 

Deposited labile organic matter from the Benguela upwelling system at the Namibia 

shelf undergoes suspension and re-deposition leading to a net down-slope transport. The shelf 

material accumulates in depo-centers at 1000-1500 m water depth where the sediment is 

consequently rich in organic matter (Inthorn et al., 2006). This down-slope transport of 

sediment material from the warm shelf may explain the relatively high SRR and the presence 

of mesophilic SRB in the cold slope sediments (Figure 2.3 a, c). Although psychrotolerant or 

psychrophilic SRB may be better adapted to live in the slope sediments at the prevailing 

temperature of 3°C, the continuous downslope transport of SRB from the shelf enables the 

mesophilic community to be maintained.  

A mesophilic signature was also observed in the temperature response of SRR from 

upper slope sediments off Argentina (Figure 2.3 d) whereas sediments from greater water 

depths had rather a psychrotolerant to psychrophilic signature (Figure 2.3 e, f). The slope 

sediments off Uruguay and Argentina are characterized by dynamic depositional conditions 

with generally high sedimentation rates, including gravity mass flows, and strong surface 

currents (Riedinger et al., 2005). Thus, these prevailing depositional conditions may be 

responsible for a redeposition of mesophilic SRB from the shelf and thus explain the 

occurrence of the microbes in the slope sediments.  

 

6.3. Correlation between environmental temperatures and cardinal temperatures of sulfate 

reduction 

 

Our results suggest a direct relationship between the ambient environmental temperature and 

sedimentary bacterial energy metabolism of sulfate-reducers reflected in the Topt (Figure 2.4 

A). Although Topt generally exceeds the in situ temperatures experienced by the microbial 
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communities, the proportional increase with the mean ambient temperatures (Figure 2.4 A) 

implies diverse temperature sensitivities of the dominant microbial community studied in 

various environments. Arctic and Antarctic sediments exhibited Topt for sulfate reduction of 

24-26°C similar to those previously reported for some psychrophilic SRB isolates (Knoblauch 

et al., 1999). The Topt observed in warmer temperate and tropical sediments, however, are in 

the range of those reported for nominal mesophiles (Isaksen and Jørgensen, 1996). Sediments 

from temperate latitudes showed broader thermal ranges than polar sediments and sulfate 

reduction could be measured from temperatures below 0°C up to the Topt at 35°C (Figure 2.4 

B). In tropical sediments Topt for sulfate reduction of 38-44°C was in the higher thermal range 

(Figure 2.4 B). The difference between environmental temperatures and Topt of bacterial 

sulfate reduction, however, varied between the sediments implying discrepancies in the 

adaptation of respiration to ambient temperatures. At in situ temperatures of 0°C in polar 

regions the difference was approximately 27°C, while at in situ temperatures of 30°C in 

tropical habitats this difference was reduced to 15°C (Figure 2.5 B). 

Larger differences in the cardinal temperatures can be explained by composition of the 

active SRB in the sediment. In addition, around hydrothermal vents and in coastal areas with 

volcanic activity Topt was found to be near the in situ temperature (Jørgensen et al., 1992; 

Stetter et al., 1990). These observations indicate that microbial metabolism may be better 

adapted to the in situ temperature in extremely hot environments rather than permanently cold 

conditions. 
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Figure 2.3 SRR measured in temperature-gradient incubation experiments of sediment slurries from 
the different sampling sites.  
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Figure 2.4 (A) Relations between average environmental temperatures and Topt for sulfate reduction in 
marine sediments grouped according to sampling latitude: Polar regions, blue line; Temperate regions, 
green line; Tropical regions, red line. The plot is based on: data presented in this study, full circles; 
data compiled from Isaksen et al. (1994), Isaksen and Jørgensen (1996), Arnosti et al. (1998) and 
Sagemann et al. (1998), open circles. The straight line passing through the origin is the theoretical 
curve if environmental temperatures and Topt for SRR were the same. The regression line indicates the 
empirical relation between environmental temperatures and Topt for SRR. (B) SRR expressed as 
percentage of maximum rates. Squares: Arctic permanently cold sediment from Svalbard fjords; 
triangles: Wadden Sea sediment from estuary system subjected to strong seasonal temperature changes; 
circles: South Chine Sea permanently warm sediment. Profiles were selected to represent the 
characteristic temperature responses of each group in panel A. 

7. The effect of increased temperature on microbial community composition in Arctic 

and temperate sediments 

Increasing temperature may cause changes in microbial community composition and thus 

strongly influence microbial carbon cycling in the Arctic Ocean. In our studies we observed 

shifts in microbial community composition as a result of prolonged incubation at elevated 

temperatures (4°C, 10°C and 20°C), both in permanently cold (annual in situ temperature, 2°C) 

and temperate sediments (average annual temperature, 15°). The disappearance of some 

species in the Arctic sediments and appearance of new ones after a year of incubation at 

elevated temperature suggest that richness of microbial community might change due to 

perturbations. Previous studies demonstrated the steady decrease of microbial cell numbers 

and specific groups of SRB to the total microbial numbers when Arctic sediment was exposed 
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to two year incubation at increased (10°C and 20°C) temperature (Robador et al., 2009). This 

implies that a large fraction of the community was negatively affected by the 10°C and 20°C 

long-term incubation temperatures. In contrast such a change was not observed in temperate 

sediment samples (Robador et al., 2009).  

It is unknown whether compositional shifts forced by increased temperature will affect 

ecosystem processes and whether the disturbed community will be functionally similar to the 

original community (Reed and Martiny, 2007; Allison and Martiny, 2008). The loss of an 

entire functional group would clearly impact the functioning of an ecosystem (Reed and 

Martiny, 2007). On the other hand, some species in a microbial community can be 

functionally redundant, thus the functioning of ecosystem might not be affected by their 

disappearance (Reed and Martiny, 2007; Allison and Martiny, 2008). To help predict carbon 

cycling under changing environmental conditions long term studies on the microbial 

community composition are needed.   

 

 

 

 

 

 

 

 

Figure 2.5 DGGE profiles for 16S rRNA gene fragments obtained from DNA extracted from Arctic 
and temperate sediment samples incubated for different times at increased temperatures. Numbers on 
the lanes are temperatures at which the sediments were incubated (4°C, 10°C, and 20°C). Circles and 
numbers mark bands for potential further analysis.
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ORIGINAL ARTICLE

Effects of freeze–thaw cycles on anaerobic microbial
processes in an Arctic intertidal mud flat

Joanna E Sawicka1, Alberto Robador1,5, Casey Hubert1,4, Bo Barker Jørgensen1,2 and
Volker Brüchert1,3
1Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany;
2Department of Biological Sciences-Microbiology Section, Center for Geomicrobiology, Department of
Biological Sciences, Aarhus University Ny Munkegade, Åarhus C, Denmark and 3Department of Geology and
Geochemistry, Stockholm University, Stockholm, Sweden

Insight into the effects of repeated freezing and thawing on microbial processes in sediments and
soils is important for understanding sediment carbon cycling at high latitudes acutely affected by
global warming. Microbial responses to repeated freeze–thaw conditions were studied in three
complementary experiments using arctic sediment collected from an intertidal flat that is exposed to
seasonal freeze–thaw conditions (Ymerbukta, Svalbard, Arctic Ocean). The sediment was subjected
to oscillating freeze–thaw incubations, either gradual, from �5 to 4 1C, or abrupt, from �20 to 10 1C.
Concentrations of low-molecular weight carboxylic acids (volatile fatty acids) were measured and
sulfate reduction was assessed by measuring 35S sulfate reduction rates (SRRs). Gradual freeze–
thaw incubation decreased microbial activity in the frozen state to 0.25 % of initial levels at 4 1C, but
activity resumed rapidly reaching 460 % of initial activity in the thawed state. Exposure of
sediments to successive large temperature changes (�20 versus 10 1C) decreased SRR by 80% of
the initial activity, suggesting that a fraction of the bacterial community recovered rapidly from
extreme temperature fluctuations. This is supported by 16S rRNA gene-based denaturing gradient
gel electrophoresis profiles that revealed persistence of the dominant microbial taxa under repeated
freeze–thaw cycles. The fast recovery of the SRRs suggests that carbon mineralization in thawing
arctic sediment can resume without delay or substantial growth of microbial populations.
The ISME Journal (2010) 4, 585–594; doi:10.1038/ismej.2009.140; published online 24 December 2009
Subject Category: microbial ecosystem impacts
Keywords: arctic sediment; freeze–thaw effects; sulfate reduction; fermentation; volatile fatty acids; DGGE

Introduction

Annual freezing and thawing are common features
of high-latitude sediments and soils. Arctic marine
coastal environments, such as intertidal mud flats,
are exposed to freeze–thaw events in spring and in
fall. Shallow-water shelf sediments cover more than
50% of the Arctic Ocean (Jakobsson et al., 2002)—a
region sensitive to temperature increases due to
climate change. It has been predicted that the
warming of arctic environments will thaw terrestrial
and drowned submarine permafrost, which may
lead to substantial activation of resident microbiota
(Schuur et al., 2009). Studies on freeze–thaw cycling

and its effects on marine microbial processes have not
been conducted for coastal marine sediments. The
Svalbard archipelago contains intertidal sediments
that freeze periodically at the turn of seasons.
Sediments from this archipelago have been the
subject of extensive microbial ecology and biogeo-
chemical studies on temperature adaptation (for
example, Arnosti et al., 1998; Sagemann et al., 1998;
Ravenschlag et al., 2000; Finke and Jørgensen, 2008);
however, the effect of freeze–thaw cycles on microbial
communities in this environment is unknown.

Freeze–thaw events affect the activity and popu-
lation dynamics of microorganisms in sediments
and soils because strong fluctuations in temperature
can damage or destroy microbial cells and disrupt
cell aggregates (for example, Schimel and Clein,
1996; Eriksson et al., 2001; Sharma et al., 2006;
Mountfort et al., 2003; Schimel and Mikan, 2005;
Walker et al., 2006; Yergeau and Kowalchuk,
2008; Männistö et al., 2009). This phenomenon has
been studied in soils, in which freezing elevates the
salinity while lowering water and nutrient avail-
ability (Eriksson et al., 2001; Sharma et al., 2006;
Yergeau and Kowalchuk, 2008). Nutrients that are
released from aggregates during thawing become
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available to microorganisms that survive freezing,
resulting in temporary stimulation of microbial
activity that had been low or negligible in the frozen
state (Schimel and Clein, 1996; Pesaro et al., 2003;
Grogan et al., 2004). Sharma et al. (2006) showed
that at the turn of winter to spring, freeze–thaw
cycles enhanced denitrification and caused a surge
in N2O and CO2 emissions from soil. However,
experiments designed to simulate the effect of inter-
mittent warm Chinook winds in western Canadian
soils indicated that repeated freeze–thaw cycles
substantially decreased the viability of micro-
organisms (Walker et al., 2006). Statistical analysis
of DNA- and RNA-based molecular fingerprinting
of Antarctic soil microbial community also showed
that frequent freeze–thaw cycles decreased the
abundance of 16S rRNA genes and changed
the microbial community diversity (Yergeau and
Kowalchuk, 2008).

The purpose of this study was to subject natural
communities of marine bacteria in seasonally freez-
ing arctic sediment to different freeze–thaw treat-
ments and to examine the effect on anaerobic carbon
mineralization processes. Incubation experiments
were conducted using sediment from an intertidal
flat in the Svalbard archipelago to measure micro-
bial sulfate reduction rates (SRRs) and concen-
trations of volatile fatty acids (VFAs). Different
temperature regimes and freeze–thaw gradients
were applied to simulate different scenarios experi-
enced by this sediment annually.

Materials and methods

Sampling site
Sediment was collected from Ymerbukta, an inter-
tidal flat in a shallow embayment in Isfjorden
(78116061N, 014102069E) on the west coast of the
Svalbard archipelago. This site freezes in the fall
when the air temperature in Isfjorden drops to as low
as �20 1C, and thaws in the following summer, when
it reaches temperatures as high as 9 1C (Nordli,
2005). Samples were collected in August 2006 and
August 2007. The temperature of the sediment at the
time of samplings was 6.5 1C and the air temperature
was 6.5 1C. For in situ measurements, 26-mm
diameter sediment cores penetrating to 16 cm depth
were sealed at both ends with rubber stoppers,
leaving air in the headspace, and stored at 4 1C.
For sediment and slurry incubation experiments,
samples were collected at low tide from the zone of
highest sulfate reduction (3–9 cm depth; Figure 1a).
Sediment was stored in gas-tight polyethylene bags
at 4 1C until further processing in the laboratory.

Freeze–thaw experiments
To simulate freeze–thaw cycles, sediment was
subjected to three different time course experiments
with different temperature amplitudes and time
periods.

Gradual freeze–thaw incubation
The purpose of this experiment was to simulate a
natural freeze–thaw process in the sediments. At the
turn of seasons, sediments are likely to experience
freeze–thaw event that happens over 24-h cycles. A
total of 150g of sediment was mixed with anoxic
seawater medium (Widdel and Hansen, 1991) in a
weight ratio of 1:2. The slurry was distributed under
N2 into 15-ml Hungate tubes (3ml) (Ochs GmBH,
Bovenden/Lenglern, Germany) and 200-ml Duran
culture bottles (100ml) (DURAN Group GmbH,
Wertheim/Main, Germany) and sealed with butyl
rubber stoppers. To simulate slow freezing and
subsequent thawing conditions, sediment slurries
were subjected to stepwise temperature changes over
20 days. The incubation temperature was consecu-
tively lowered in 24-h intervals from 4 to 2, 0, �2 and
�5 1C, and was subsequently increased from �5 to 0,
2 and 4 1C in the thawing phase. The SRR values
were determined for each time interval.

The Hungate tubes and culture bottles were
incubated in a temperature-regulated water bath
filled with dilute antifreeze liquid for convenient

Figure 1 (a) Depth profile of sulfate reduction rates (SRRs) in
Ymerbukta sediment. The SRR values were determined at 7 1C,
error bars correspond to SRR values measured in duplicate cores.
(b) Concentrations of volatile fatty acids (VFAs) in Ymerbukta
sediment.
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temperature manipulation. To determine the SRR
value, 20ml of 35S-sulfate tracer (100 kBq) was
injected into triplicate Hungate tubes that were
incubated for 24 h before the change in temperature.
The SRR value, therefore, represents the average rate
for a 24-h interval. In addition, VFA concentrations
were measured in 4-ml sub-samples removed from
the 200-ml culture bottles at the end of each 24-h
time interval.

Long-term freeze–thaw incubation
This experiment mimicked mid-winter to mid-
summer difference (frozen and thawed, respec-
tively) and explored the scale and rate of recovery
of bacteria from frozen state. Undiluted, homo-
genized sediment was incubated for 12 weeks
alternately at �20 1C for 3 weeks and at 10 1C for
3 weeks. Sediment was sub-sampled from the
polyethylene bag into 5-ml glass cylinders in a
nitrogen-filled Two-hand AtmosBag (Sigma-Aldrich,
Steinheim, Germany) to maintain anoxic conditions.
The cylinders contained ca. 3ml sediment and were
sealed at both ends with butyl rubber stoppers.
Before each sediment extraction, the bag was
homogenized for 10min by manual kneading. After
the sub-samples were taken the sediment tubes were
kept for a week at 0 1C before the start of the 12-week
incubation. This period was necessary to allow SRR
to decrease again after a temporary stimulation due
to sediment mixing—a phenomenon that has been
observed previously (Finke and Jørgensen, 2008).
After each freeze and thaw period, three tubes were
removed to determine sulfate concentration, SRR
and the total cell number by 4,6-Diaminodino-2-
phenylindole (DAPI) staining. All analyses were
determined in triplicates. Additional sub-samples
were incubated under the same conditions for
denaturing gradient gel electrophoresis (DGGE)
profiling of the bacterial community. To determine
the SRR value in this particular experiment, 5 ml of
35S-sulfate tracer containing 500 kBq was injected
into sub-samples at the start of the 12-week incuba-
tion period. Samples were incubated with tracer for
three, six, nine and twelve weeks, respectively. As a
control assay, sediment was sterilized by autoclav-
ing for 25min at 120 1C and was then incubated with
the same amount of tracer at 10 1C. Four additional
control incubation experiments were initiated with
sulfate radiotracer added to sediments that were
immediately frozen, incubated frozen for 1, 2, 5 and
10 weeks, and thawed only before fixation in zinc
acetate. Incubations were terminated by extruding
the sediment from glass tubes into centrifuge tubes
containing 10ml of 20% (w/v) zinc acetate solution,
then homogenizing it with a vortex mixer and
freezing it at �20 1C. As tracer was injected at the
beginning of the experiment, total reduced inorganic
35sulfide (35S-TRIS) represents cumulative sulfide
formed during frozen and thawed periods. Three-
week averages of SRR were then calculated as the

difference in TRIS activity between the beginning
and the end of each experimental period, as exem-
plified for the first thawed period:

SRR ¼ ½SO�2
4 � � rsed �

35TRISc �35 TRISb

atotal
� 1
t
� 1:06

� 1000

where SRR is the SRR; SO4
�2 the sulfate concen-

tration in the porewater of the sediment sample;
rsed the porosity of the sediment; 35TRIS the radio-
activity of total reduced inorganic sulfur (counts
per minute, c.p.m.); b the first frozen period (first
3 weeks, that is, the incubation time); c the sum
of frozen and thawed periods (6 weeks); atotal

the total radioactivity used (c.p.m.); and 1.06 is
the correction factor for the expected isotopic
fractionation;

The number 1000 is the factor for conversion from
nmol l�1 to nmol cm�3.

Multiple freeze–thaw incubations
The purpose of this experiment was to test the
long-term survival of bacteria under repeated
freeze–thaw conditions. This experiment consisted
of eight freeze–thaw cycles, each of which covered
a 12-h frozen phase at �20 1C and an 18-h thawed
phase at 10 1C. The SRR values were determined at
the end of each thawed phase. As a control an
additional incubation was carried out at 10 1C and
rates were determined for the same cycle intervals as
for the freeze–thaw treatments.

Sediment slurries (150ml, 1:2 v/v) were incubated
while stirring during the thawed phase. The control
slurry was constantly stirred. To measure SRR
values, sub-samples of 3ml were transferred into
N2-flushed glass Hungate tubes and sealed with
butyl rubber stoppers. A volume of 20 ml of 35S-
sulfate tracer (activity: 100 kBq) was injected into
triplicate tubes at each time point. The SRR values
were measured for the duration of each thawed
phase and at the corresponding times in the control
slurry. The VFA concentrations were measured
by sub-sampling ca. 4ml of slurry at the end of each
thawed phase and at the corresponding time points
from the control slurry.

Sulfate reduction rates
In situ SRR values were measured in two parallel
cores using a whole-core incubation method
(Jørgensen, 1978) by injecting 5ml of carrier-free,
35SO4

2� tracer solution in 4% NaCl (B100 kBq per
injection) in 1-cm intervals to a depth of 16 cm.
Incubations were carried out for 8h at 7 1C. All
samples were distilled using the low-blank cold
chromium distillation method described in the
study by Kallmeyer et al. (2004). Briefly, centrifuged
sediment was diluted with 10ml dimethylformamide
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and placed in a distillation flask. Total reduced in-
organic sulfide (TRIS) was acid-distilled under nitro-
gen at room temperature by adding 12ml 6N HCl and
12ml 1M chromium chloride to the solution. The
TRIS was recovered as zinc sulfide in traps containing
7ml of 5% zinc acetate solution and 35S was counted
in a liquid scintillation counter (Packard, Tricarb 2500
TR, Packard-Becker BV, Groningen, The Netherlands)
without luminescence correction and the high sensi-
tivity mode turned off; energy range 4—167keV. The
scintillation cocktail used was Lumasafe Plus (Lumac
BV, Groningen, The Netherlands) mixed with the ZnS
solution in a ratio of 2:1 (v/v).

Volatile fatty acid measurements
Volatile fatty acids were measured by high-perfor-
mance liquid chromatography according to the
method of Albert and Martens (1997). Measurements
of in situ VFA concentrations were carried out on
sediment core sliced at the following depths: 0–1,
1–2, 2–3, 3–4, 4–5, 5–7, 7–9, 9–10 and 11—12cm.
Sediment and slurry sub-samples were centrifuged in
Spinex tubes at 4000 r.p.m. at 4 1C for 15min and
porewater sub-samples were directly filtered into
1-ml brown borosilicate glass vials (pre-combusted
at 480 1C for 4h) to minimize possible contamination.
Acids were derivatized with p-nitrophenyl hydra-
zine, separated by high-performance liquid chroma-
tography using a LiChrosphere 80/100 (Knauer,
Berlin, Germany) column at 25 1C, and the concentra-
tions were determined by UV absorption with a
UV/VIS detector (Linear) at 400nm and quantified
with commercially available software (Chromstar,
SES GmbHAQ11, Bechenheim, Germany). Concentra-
tions were determined after calibration with standard
mixtures containing glycolate, formate, lactate,
acetate, propionate, isobutyrate, butyrate and valerate.
A standard was measured after every fifth sample.
The detection limits for the different acids were
0.2mM for glycolate and lactate, 1mM for acetate and
formate (in samples with high acetate concentrations
formate occurred as a rider peak on the acetate
shoulder; for peak integration, a vertical drop line
was used for peak separation, which led to a slight
overestimation of the formate peak), 0.5mM for pro-
pionate and isobutyrate and 2mM for butyrate, valerate
and isovalerate. Only lactate, acetate and formate
were detected in our samples; other acids were
below the detection limits. The s.d. value for replicate
analyses is less then 3% for concentrations above
5mM (Finke, 2003).

Enumeration of total cells
Total cell numbers were counted by epifluorescence
microscopy after staining with DAPI. Total cell
counts were determined in triplicate in the original
sediment bag stored at 0 1C for 1 month (time point
0) after sampling, and in samples taken after
each time point for all experiments. For DAPI

staining, sediment samples were treated as described
previously (Pernthaler et al., 2002). Sediment was
sub-sampled (0.5ml) and fixed in 4% paraformal-
dehyde (1 part 24% paraformaldehyde and 5 parts
1� phosphate-buffered saline, PBS) overnight at
4 1C. Fixed samples were washed three times with
1� PBS, with centrifugation steps at 10 000 r.p.m.
for 5min between washes, and stored in PBS/
ethanol (2:3) at �20 1C until further processing.
Samples were then diluted (1:2) in PBS/ethanol
and sonicated at minimum power for 20 s with a
sonication probe (MS73 Sonopulus HD70 Bandelin,
Berlin, Germany). Sub-samples of 10 ml of the sus-
pension were added to 8ml of PBS, filtered onto
polycarbonate membrane filters (Isopore, filter
code: GTTP; pore size: 0.2 mm; diameter: 21mm,
Millipore, Schwalbach/Ts, Germany) and stored at
�20 1C. Before staining, filters were cut into several
sections. The stain, DAPI (10 ml of a 1-mgml�1

working solution) was dropped onto the filter
sections and incubated in the dark for 5min. Filters
were then washed twice in MilliQ water, finally
embedded in Vectashield mixed with Citifluor AF1
antifadent (Plano, Wetzlar, Germany) and covered
with a cover slip. For each replicate, at least 1000
DAPI-stained cells were counted. Bacterial counts
were converted into cells per ml of sediment.

DNA extraction and PCR amplification
The extraction of DNA from the sediment was done
using the Mo Bio Power Soil Kit (Mo Bio Laboratories,
Inc., CA, USA). Amplification of 16S rRNA genes
was performed as described by Muyzer et al. (1997)
using the universal primers: 907r (50-CCGTCAATT
CCTTTRAGTTT-30) and 352f (50-CCTACGGGAGGCA
GCAG-30) carrying a GC clamp (Muyzer et al., 1997).
A PCR protocol was used as described by Muyzer
et al. (1997) except that ‘touchdown’ PCR was used to
increase the specificity of the amplification
and to reduce the formation of by-products, that is,
the annealing temperature was set 10 1C above the
expected annealing temperature and decreased by
1 1C every two cycles until an annealing temperature
of 55 1C was reached at which nine additional cycles
were performed. The program started with a hot start
at 94 1C for 5min (20 cycles in total; Muyzer et al.,
1997).

Denaturing gradient gel electrophoresis
Denaturing gradient gel electrophoresis was per-
formed using a Bio-Rad D Code system (Bio-Rad,
Munich, Germany). Polyacrylamide gel was poured
with a gradient pump (Econo Gradient Pump, Bio-
Rad) to achieve gradient ranging from 0% to 80%
acrylamide. The gel was polymerized by adding 10%
ammonium persulfate and N,N,N0,N0-tetramethyl-
ethylenediamine (Bio-Rad, Munich, Germany) before
pouring the gel. A volume of 80ml of each PCR
product was applied onto the gel and the DGGE was
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then performed at 60 1C and a constant voltage of
200V for 3.5h (Nübel et al., 1999). After electropho-
resis, the gel was incubated for 30min in an aqueous
ethidium bromide solution (0.5mg l�1) and visualized
on a UV transilluminator (LTF-Labortechnik, Wasser-
burg, Germany).

Results

Characterization of study site
The sediments were gray bioturbated muds with
water content of 40%, an average total organic carbon
concentration of 1, 5% dry weight and a C/N ratio of
16. The SRR value increased from 19nmol cm�3 day�1

at the sediment surface to 41nmol cm�3 day�1 at 3 cm
depth and decreased below this depth (Figure 1a). At
the study site, only three VFAs were detected:
acetate, lactate and formate (Figure 1b). The acetate
concentration was highest in the surface centimeter,
and decreased from 70 to 4mM at 12cm depth. The
range of lactate and formate concentrations was 8–25
and 4–16mM, respectively, and did not show clear
trends with depth.

Gradual freeze–thaw incubation
The SRR values are presented for the gradual freeze–
thaw incubations in Figure 2a. At the beginning
of the experiment at þ 4 1C, the SRR value was
12nmol cm�3 day�1, which was the highest rate
measured in this experiment. Over the next 5 days
of stepwise lowered incubation temperature (2, 0,
�2 and �5 1C), SRR dropped to 7.5, 5.0, 2.1 and
0.4 nmol cm�3 day�1, respectively. The subsequent
increase in temperature to 0 1C (that is, the 24-h
thawing period) resulted in SRR increasing 20-fold
to 7.0 nmol cm�3 day�1. During the second tempera-
ture cycle (2, 4, 2, 0 and �2 1C), SRR values were
in the range of 2.9–7.8 nmol cm�3 day�1 and did not
show any of the trends as observed during the
first cycle. Sulfate reduction was not detected
during the second freezing interval but resumed at
6.0 nmol cm�3 day�1 during the 0 1C thawing phase.
The third temperature cycle resulted in SRR pat-
terns that were similar to those observed during the
second cycle.

The VFA concentrations versus time are presented
in Figure 2b. Only acetate and lactate were detected
during the gradual freeze–thaw incubation. As
there was no significant trend for the individual
VFAs, their peak areas were summed together.
The sum analytical error is therefore about 6%. At
the beginning of the experiment, the sum VFA was
21 mM. The concentrations of VFA decreased as the
sediment was cooled down and remained between
4 and 10 mM throughout the remainder of the
experiment. The observed fluctuations after the
initial temperature decrease were within the range
of uncertainty of the method and were insensitive to
changes in temperature.

Long-term freeze–thaw incubation
The SRR results for the long-term experiment are
presented in Figure 3A. The 35S-TRIS counts after
3 weeks of incubation at �20 1C were above back-
ground level for 35S-TRIS of the sterilized control
assay and the mean rate determined for this 3-week
period was 0.06nmol cm�3 day�1 (Figure 3A). This
very low SRR value probably is due to the time
it took the sediment to cool down from 4 1C and
freeze. This is supported by a ten-week long, control
incubation experiment at �20 1C. The 35S-TRIS
counts measured in sediments incubated at �20 1C
for ten weeks were at the same level as 35S-TRIS
counts determined for the 3-week long incubation.
In the subsequent 3-week period at 10 1C, average
SRR increased to 38nmol cm�3 day�1, which was
higher than the earlier in-situ microbial activity,

Figure 2 (a) The sulfate reduction rates (SRRs) during the
gradual freeze–thaw experiment. The black line corresponds to
different temperatures applied during the experiment. Black bars
correspond to SRRs measured every 24h, at respective tempera-
tures. (b) Concentrations of volatile fatty acids (VFAs) determined
in the gradual freeze–thaw experiment. The analytical error for
the summed VFA concentration is about 6%, as described in the
text. The black line corresponds to different temperatures applied
during the experiment. Black bars correspond to VFA levels
measured every 24h, at respective temperatures.
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suggesting survival of, at least part of, the sulfate-
reducing community during the �20 1C period, and
its subsequent reactivation at 10 1C. After the second
3-week freezing period (that is, at week 9 of the
experiment), measured 35S-TRIS counts in triplicate
tubes were not significantly higher than the 35S-TRIS
counts measured at the beginning of the freeze period
(that is, at week 6). Thus, because of the high
35S-TRIS background, SRR values could not be

determined for the second freeze period. After the
second 3-week period at þ 10 1C (that is, at week 12),
35S-TRIS counts had increased further. The mean rate
for this second thaw period was 19nmol cm�3 day�1,
which indicated that sulfate-reducing micro-
organisms were reactivated after successive freeze–
thaw cycles.

Total cell numbers were determined by DAPI
staining at the end of each frozen and thawed
incubation interval (Figure 3B). The initial cell
abundance was 7.7� 108 per ml wet sediment. After
the first freeze interval, the cell numbers dropped to
5.6� 108 per ml. After the second freeze interval,
total cell numbers decreased further to 4.7� 108 per
ml and remained at this level throughout the
experiment. The DGGE profiles of PCR-amplified
rRNA gene fragments extracted after each freeze
and thaw period were similar (Figure 3C). At least,
four dominant bands were consistently detected
for each freeze and thaw period, suggesting that
several major taxa persisted under the freeze–thaw
conditions.

Multiple freeze–thaw incubation
In this experiment, the highest SRR value,
33nmol cm�3 day�1, was determined in the first of
the eight freeze–thaw intervals (Figure 4a). In the
second and third cycles, the SRR value decreased to
27 and 7nmol cm�3 day�1, respectively, and remained
low (3–5nmol cm�3 day�1) in all subsequent thawed
phases. In a control incubation that did not experi-
ence any freezing, the SRR values were higher and
gradually decreased from 40 to 17nmol cm�3 day�1

over the course of the experiment.
Three VFAs: acetate, lactate and formate were

detected during the multiple freeze–thaw incuba-
tion. As in the gradual freeze–thaw experiment, no
significant trend was apparent for the individual
VFA, therefore, summed concentrations are presen-
ted in Figure 4b (for three VFAs, the sum analytical
error is about 9%). A pronounced increase in VFAs
was measured over the course of this experiment.
Over the first six freeze–thaw cycles, concentrations
of VFAs increased from 23 to 202 mM, and then
increased more gradually up to 225mM over the final
two cycles. In the control experiments, the concen-
tration of VFAs dropped from 40 to 19 mM during the
first 30h and remained at this level for the duration
of the experiment.

Discussion

Reactivation under freeze–thaw conditions
Continued activity in cyclical freeze–thaw experi-
ments seems to be influenced by the ability of
the microbial community to metabolize substrates
released by the freeze–thaw treatment (Schimel and
Mikan, 2005). Several studies on soil bacteria have
demonstrated detrimental effects of freeze–thaw

Figure 3 (A) The sulfate reduction rates (SRRs) determined
at in situ temperature (a) followed by alternating freezing (b and
d) and thawing (c and e) conditions. During the second frozen
phase (weeks 6 to 9) sulfate reduction was not detected (nd).
(B) Total cell numbers determined for the sediment stored at
0 1C (a) and for the sediment subjected to alternating freezing
(b and d) and thawing (c and e) conditions. (C) Denaturing
gradient gel electrophoresis (DGGE) profiles for 16S rRNA gene
fragments obtained from DNA extracted after alternating
freezing (b and d) and thawing (c and e) conditions, which
was amplified by PCR using primers 338f and 907r. The
arrows indicate four dominant bands that were prominent in all
samples.
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event on microbial communities. Such a treatment
killed up to 50% of the microbial population in the
first freeze–thaw cycle (DeLuca et al., 1992) and
irreversibly reduced the soil DNA content by 33%
(Pesaro et al., 2003). Multiple freeze–thaw cycles
decreased culturable populations in soils by four
orders of magnitude and reduced morphological
diversity (Walker et al., 2006).

Our results demonstrate that freezing tempera-
tures in freeze–thaw regimes temporarily eliminate
bacterial activity, but that sulfate-reducing micro-
organisms can resume active carbon cycling shortly
after thawing of the sediment (Figures 2A and 3A).
Arctic soil mesocosm studies showed that microbial
respiration remained at a high level in multiple

diurnal freeze–thaw cycles although the microbial
biomass declined (Larsen et al., 2002). By contrast,
microbial biomass in alpine soils subjected to
moderate freeze–thaw cycles, a temperature change
between 3 1C and �5 1C, was not affected by these
temperature fluctuations (Lipson et al., 2000). In our
experiments sulfate-reducing bacteria survived in
sediment that was gradually frozen and thawed
as SRRs changed with each successive temperature
shift between 4 1C and �5 1C (Figure 2a). The most
distinct temperature response only occurred in the
early stages of the experiment, and it is noteworthy
that SRRs did not return to initial levels after
repeated freeze–thaw cycles (Figure 2a). Lower
SRR values after the first freeze–thaw cycle indicate
a decreased capacity for sulfate reduction, possibly
due to the loss of cells that could not cope
with freeze–thaw stress (Figure 3B). Psychrophilic
bacteria generally prevail in permanently cold arctic
sediments (Helmke and Weyland, 2004). These
organisms possess a broad range of cold-adaptive
strategies, such as increased membrane fluidity,
low-temperature-adapted enzymes, cold-shock and
antifreeze proteins and cryoprotectants (D’Amico
et al., 2006), which implies that psychrophiles
should be dominant community members in Arctic
sediments subjected to freeze–thaw conditions.
Similar conclusions were drawn by Walker et al.
(2006), who showed that those soil microorganisms
that could withstand multiple freeze–thaw cycles
treatment possessed cold-adaptation mechanisms.
Psychrophiles are understood to be dominant in
permanently cold environments, whereas psychro-
tolerant bacteria can adapt faster to fluctuating
temperature (Robador et al., 2009). It is not clear
whether this characteristic of psychrotolerant
bacteria extends to the temperature fluctuations
imposed by the freeze–thaw cycles used here, leav-
ing it uncertain whether psychrophilic or psychro-
tolerant bacteria were dominant in our incubated
sediments.

Multiple freeze–thaw cycles have been shown
to decrease microbial respiration by 50–70% in
a soil mesocosm (Larsen et al., 2002). In our
multiple freeze–thaw incubations, three successive
freeze–thaw cycles resulted in a decrease in SRR
value by 80%, however, those sulfate reducers
that survived this treatment were able to resume
without delay when the sediment was thawed
(Figure 4a). Similarly, in the long-term freeze–
thaw incubation sulfate reduction, which was
inhibited during frozen phase, resumed when
the temperature increased again (Figure 3A). The
DAPI counts for the long-term experiment showed
that the first freeze–thaw cycle decreased cell
number irreversibly by 30% (Figure 3B). Our
observations are in line with those of other studies
that showed a decrease in DNA content due to
cell lysis under freeze–thaw conditions, whereas
microbial respiration appeared unaffected (Pesaro
et al., 2003).

Figure 4 (a) The sulfate reduction rates (SRRs) associated
with eight successive 30-h freeze-thaw cycles. Closed symbols
correspond to SRR values measured during 18-h thaw phases
(at 10 1C) that followed 12-h frozen phases (at �20 1C). Open
symbols correspond to SRR values measured at the same
corresponding time points in a control that was constantly
maintained at 10 1C. (b) Volatile fatty acids (VFAs) associated
with eight successive 30-h freeze–thaw cycles. Closed symbols
correspond to concentrations of VFAs measured at the end of
each cycle and open symbols correspond to concentrations of
VFAs measured at the same times in the control experiment. The
analytical error for the summed VFA concentration is about 9%,
as described in the text.
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Comparative DGGE analysis of PCR products
obtained using universal bacterial 16S rRNA gene
primers showed that the microbial community
composition in the sediment did not experience
major shifts as a result of the freeze–thaw treat-
ments. Our results do not indicate that freeze–thaw
treatments selected for or enriched microbial taxa;
rather, dominant taxa were maintained throughout
the experiment. This finding is in agreement with
results of the study by Männistö et al. (2009) in
Arctic tundra soil, where only minor changes in
microbial community structure were observed after
repeated freeze–thaw cycles. Our results are also
consistent with lipid biomarker studies of high-
latitude soil samples that concluded, on the basis
of temperature gradient gel electrophoresis images,
that neither microbial community structure nor
microbial biomass was affected by freeze–thaw
stress (Koponen et al., 2006). It is very likely that
the bright bands in the DGGE gel do not necessarily
represent sulfate-reducing bacteria but include other
bacterial groups as well. In a study on the sulfate-
reducing bacterial community structure in Svalbard
marine sediments, Ravenschlag et al. (2000) deter-
mined that sulfate reducers accounted for only
16% of the total microbial community. Thus,
members of the freeze/thaw-resistant community
from Ymerbukta sediment, represented by stable
intense bands on the DGGE gel, could indicate a
broad community of freeze/thaw-resistant bacteria
that catalyzed carbon degradation and mineraliza-
tion in these sediments.

Tolerance of different physiological groups to
freeze–thaw cycles
Low concentrations of VFAs during gradual freeze–
thaw incubations (Figure 2b) suggest that the
coupling between fermentation and sulfate reduc-
tion was maintained during this experiment. These
incubation conditions, therefore, seemed to recreate
the normal situation in arctic sediment, that is, low
concentrations of VFAs (for example, Figure 1b and
4b) due to close coupling between fermentation and
terminal oxidization processes (Finke and Jørgen-
sen, 2008; Robador et al., 2009).

This pattern was not observed during multiple
freeze–thaw cycles in which concentrations of
VFAs gradually increased during the experiment
(Figure 4b). This suggests that detrimental effects of
freeze–thaw cycles may have been greater for sulfate
reducers than for fermentative microorganisms.
These effects suggest major changes in the pathways
of carbon processing under repeated freeze–thaw
cycles. The long-term fate of VFAs that accumulated
after freezing requires further exploration.

Microbial activity in the frozen state
Various studies have reported that microorganisms
are capable of growth below the freezing point of

water, down to temperatures of �20 1C (Gilichinsky
et al., 1993; Rivkina et al., 2000; Junge et al., 2004).
We find no clear evidence that sulfate reduction
remained active at �20 1C. In addition, the fact that
sulfate reduction was only detected in the first
freeze cycle of the gradual freeze–-thaw experiment
at �5 1C (Figure 2a) suggests that part of the micro-
bial community, active initially in the first freeze
period, was damaged in the subsequent freeze–thaw
cycle. Even the fraction of the microbial community
that was not damaged during freeze–thaw event was
not active when the sediment was frozen, probably
because of changes in cell structure at low tempera-
ture, for example, membrane lipids stiffen and this
decreases the efficiency of embedded transport
proteins (Nedwell and Rutter, 1994; Nedwell,
1999; Ponder et al., 2005).

At the Antarctic sites, studied by Mountfort et al.
(2003), it was shown that freezing had a strong
impact by uncoupling sulfate reduction from acetate
oxidation and shifting the carbon flow towards
methanogenesis. Mountfort et al. (2003) suggested
that freezing provides a physical barrier preventing
access of the microbes to sulfate or by reducing the
affinity of sulfate reducers for their substrate. Our
experiments demonstrate that microbial carbon
turnover through bacterial sulfate reduction was
not sustained over repeated freeze–thaw cycles in
frozen intervals.

Conclusions

Moderate freeze–thaw conditions have little effect
on microbially mediated organic carbon degradation
in these intertidal Arctic sediments. It is apparent
that the in situ microbial communities can largely
withstand drastic temperature fluctuations and are
reactivated without delay. Substantial re-growth of
microbial populations to resume carbon mineraliza-
tion is not required. Although this study considered
natural communities from intertidal sediments, the
results are relevant for considering other coastal
marine environments that are subject to temperature
fluctuations. Climate warming studies predict an
increase in the amplitude of temperature fluctua-
tions in the Arctic regions (Moritz et al., 2002).
Many Arctic coastlines are currently in transition as
rising sea level inundates and thaws coastal perma-
frost (for example, Rachold et al., 2000). Thawing
coastal permafrost is a significant component of the
changing Arctic carbon cycle (Semiletov et al.,
2007). At present, mineralization rates of organic
matter in thawing permafrost are not well quantified
but are likely critically dependent on the reactiva-
tion and recovery of bacteria.

Conflict of interest

The authors declare no conflict of interest.

Freeze–thaw effects on bacteria in sediments
JE Sawicka et al

592

The ISME Journal 53



Acknowledgements

We thank N Riedinger for fruitful discussions, and Captain
S Henningsen and first mate J Mortensen of MS FARM,
as well as the scientific party 2007 and 2008 for the
successful expeditions. We also thank the Koldewey
Station for support in Ny Alesund, Svalbard (project
KOP56; RIS ID 3298). This study is funded by the
Deutsche Forschungsgemeinschaft (DFG) Schwerpunkt-
programm ‘The impact of climate variability on aquatic
ecosystems (AQUASHIFT)’ BR 2174/1-1 and BR 2174/1-2
and Max Planck Society.

References

Albert DB, Martens CS. (1997). Determination of low-
molecular-weight organic acid concentrations in sea-
water and pore-water samples via HPLC. Mar Chem
56: 27–37.

Arnosti C, Jørgensen BB, Sagemann J, Thamdrup B. (1998).
Temperature dependence of microbial degradation of
organic matter in marine sediments: polysaccharide
hydrolysis, and sulfate reduction. Mar Ecol Prog Ser
165: 58–70.

D’Amico S, Collins T, Marx JC, Feller G, Gerday C. (2006).
Psychrophilic microorganisms: challenges for life.
EMBO Rep 7: 385–389.

Deluca TH, Keeney DR, McCarty GW. (1992). Effects of
freeze–thaw events on mineralization of soil nitrogen.
Biol Fertil Soils 14: 116–120.

Eriksson M, Ka JO, Mohn WW. (2001). Effects of low
temperature and freeze-thaw cycles on hydrocarbon
biodegradation in Arctic tundra soil. Appl Environ
Microbiol 67: 5107–5112.

Finke N. (2003). The role of volatile fatty acids and
hydrogen in the degradation of organic matter
in marine sediments, PhD Thesis, Department of
Geology, University of Bremen, Bremen.

Finke N, Jørgensen BB. (2008). Response of fermentation
and sulfate reduction to experimental temperature
changes in temperate and Arctic marine sediments.
ISME J 2: 815–829.

Gilichinsky DE, Soina VS, Petrova MA. (1993). Cryopro-
tective properties of water in the earth cryolithosphere
and its role in exobiology. Orig Life Evol Biosph 23:
65–75.

Grogan P, Michelsen A, Ambus P, Jonasson S. (2004).
Freeze–thaw regime effects on carbon and nitrogen
dynamics in subarctic heath tundra mesocosms. Soil
Biol Biochem 36: 641–654.

Helmke E, Weyland H. (2004). Psychrophilic versus
psychrotolerant bacteria. Occurrence and significance
in polar and temperate marine habitats. Cell Mol Biol
50: 553–561.

Jakobsson M, Grantz A, Kristoffersen Y, Macnab R. (2002).
Physiographic provinces of the Arctic Ocean seafloor.
Geol Soc Am Bull 115: 1443–1455.

Jørgensen BB. (1978). A comparison of methods for the
quantification of bacterial sulfate reduction in coastal
marine sediments. I. Measurement with radiotracer
techniques. Geomicrobiol J 1: 11–27.

Junge K, Eicken H, Deming JW. (2004). Bacterial activity
at �2 to �20 1C in Arctic wintertime sea ice. Appl
Environ Microbiol 70: 550–557.

Kallmeyer J, Ferdelman TG, Weber A, Fossing H,
Jørgensen BB. (2004). A cold chromium distillation

procedure for radiolabeled sulfide applied to sulfate
reduction measurements. Limnol Oceanogr Methods
2: 171–180.

Koponen H, Jaakkola T, Keinänen-Toivola MM, Kaipainen
S, Tuomainen J, Servomaa K. (2006). Microbial com-
munities, biomass, and activities in soils as affected by
freeze thaw cycles. Soil Biol Biochem 38: 1861–1871.

Larsen KS, Jonasson S, Michelsen A. (2002). Repeated freeze–
thaw cycles and their effects on biological processes in
two arctic ecosystem types. Appl Soil Ecol 21: 187–195.

Lipson AD, Schmidt KS, Monson KL. (2000). Carbon
availability and temperature control the post-snow-
melt decline in alpine soil microbial biomass. Soil Biol
Biochem 32: 441–448.
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Abstract 
 
 
The temperature responses of sulfate reduction in continental shelf and slope sediments from 

the southwest and southeast Atlantic were compared with sediment from Arctic fjords. 

Sediments were collected from water depths ranging from the intertidal zone to 4327 m where 

in situ temperatures range from 8ºC on the shelf to 1ºC on the lower slope and in the Arctic. 

Sulfate reduction rates (SRR) were measured using a 35S radiotracer technique in subsampled 

sediment incubated in a temperature gradient block. An optimum temperature (Topt) of 

between 27 and 30°C for the south Atlantic shelf sediments and for an intertidal flat sediment 

from Svalbard is indicative of psychrotolerant or mesophilic sulfate-reducing communities, 

whereas Topt 20°C in south Atlantic slope and Arctic shelf sediments suggests a 

predominantly psychrophilic community. In South Atlantic slope sediments, SRR at the in 

situ temperature were relatively high (20-50% of that measured at Topt) further supporting the 

presence of a cold-adapted community. The lower Topt in Arctic shelf and south Atlantic slope 

sediments reveals how in situ temperature may determine the predominant thermal 

physiologies within sulfate-reducing communities. High metabolic rates at Topt and a broad 

temperature range for sulfate reduction in several South Atlantic slope sediments indicated a 

contribution from mesophilic sulfate-reducing bacteria. The presence of these microorganisms 

may be due to passive dispersal down-slope via sediment movement from the warmer shelf 

where mesophilic bacteria are more predominant to the slope sediment with lower in situ 

temperature. 
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Introduction  

95% of the seafloor is permanently cold with in situ temperatures below 4°C (Levitus 

and Boyer, 1994). Bacteria carrying out carbon mineralization in the cold sea-bed must be 

adapted to operate effectively under such low temperatures. Psychrophilic bacteria with a 

suitable fluidity of the cell membrane and cold adapted enzymes are particularly abundant in 

the cold deep sea (Margesin and Miteva, 2011). As a result of such microbial adaptation to 

low temperature the rate and efficiency of organic carbon mineralization in the cold may be 

comparable to those in temperate and warm habitats (Kostka et al., 1998). However, bacteria 

that grow effectively in temperate environments and function at temperatures extending into 

the mesophilic range can also be isolated from the cold deep-sea floor (Rüger et al., 1989; 

Rüger et al., 1992; Finster and Bak 1992; Chen et al., 2003; Aono et al., 2010).  

Based on the temperature response of respiration or growth, different thermal groups 

of bacteria may be defined with different cardinal temperatures, i.e. temperature minimum 

(Tmin) and temperature maximum (Tmax) limiting bacterial activity and temperature optimum 

(Topt) indicating highest rate. Psychrophilic bacteria have minimum temperature <0°C, 

optimum 15°C, and maximum 20°C. Psychrotolerant bacteria have minimum temperature 

0°C, optimum 25°C, and maximum 35°C. Mesophilic bacteria have minimum 

temperature >0°C, optimum at 25-40°C, and maximum at 35°C-40°C (after Morita, 1975).  

Bacterial sulfate reduction is the main anaerobic carbon mineralization pathway in 

continental shelf and slope sediments (Jørgensen and Kasten, 2006) and is also detected in 

sediments of the continental rise and the abyssal plains (Ferdelman et al., 1999; D’Hondt et al., 

2003; Lee et al., 2008). Sulfate reduction rates can be quantified by incubating marine 

sediment with 35S-sulfate and measuring the rate of 35S-sulfide formation (Fossing, 1995; 

Kallmeyer et al., 2004). 35S-sulfate reduction is a method that links a direct quantification of 



 

 

 
 PART III Manuscripts 
  60 
 

organic carbon mineralization and the microorganisms responsible for the process (Lee et al., 

2008; Leloup et al., 2007). Since carbon cycling in permanently cold shelf sediments 

contributes significantly to the global carbon cycle, the temperature response of sulfate 

reducing bacteria and their respiration rate have been studied in high latitude sediments by 

incubation experiments in a temperature gradient block, by cultivation, and by DNA/RNA 

based studies (Knoblauch and Jørgensen, 1998; Karr et al., 2005; Bowman and McCuaig, 

2003). 

Incubation of sediments or of pure cultures along a temperature gradient can be used 

to determine the temperature dependence and the cardinal temperatures for growth or 

respiration of microbial communities (Battley 1964). Such incubations have shown that 

temperate sediments and permanently cold Arctic or Antarctic sediments host bacteria with 

widely different temperature adaptations (Isaksen and Jørgensen 1996; Knoblauch and 

Jørgensen 1998; Sahm et al., 1999; Brüchert et al., 2001; Hubert et al., 2009). Rates of 

metabolism at in situ temperatures compared to the rates at Topt are indicative of how well 

bacteria perform under ambient, low temperatures (Knoblauch and Jørgensen, 1998). The 

Arrhenius plot can be used for a graphical representation of the temperature dependence of 

bacterial metabolism (Arrhenius, 1908). Thereby, the logarithm of the rate of bacterial 

respiration or growth versus the inverse absolute temperature yields a linear relationship in the 

temperature range where the bacteria are well adapted. Deviations from the linear at the upper 

or lower extreme express the inability of SRB to maintain a well-controlled metabolic activity 

and may uncouple electron flow from ATP formation. The slope of the correlation can be 

used to calculate the apparent activation energy, Ea, where the Ea can be defined as the 

minimum energy required to initiate a chemical reaction. A reduction of the Ea value will 

therefore result in an increase of the reaction rate. Apparent Ea values are not activation 
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energies in the strict chemical sense, however. Sulfate reduction occurs through a series of 

enzymatic reactions and calculated Ea values therefore measure an ecological response of the 

whole SRB community to temperature changes rather than the cooperative process between 

structural elements of an enzyme or a rate-limiting chemical step. From the energy of 

activation in a given temperature interval we can calculate Q10, i.e. the factor by which the 

rate of reaction increases by a temperature increase of 10°C (Arrhenius, 1908).  

In the present study we analyzed the temperature dependence of sulfate reduction in 

shelf and slope sediments from the southwest and southeast Atlantic and compared these to 

permanently cold shelf sediments at Svalbard in the Arctic Ocean. We wanted to assess to 

which extent the temperature response of the microbial communities reflected the ambient 

temperature and whether their cardinal temperatures were the result of a narrow adaptation to 

ambient temperature or rather reflected mixed communities of different temperature groups. 

 

Material and methods 

Sediments from the South Atlantic were collected in 2008 and 2009 at six stations 

located on the shelf and slope off central Namibia and off Uruguay and Argentina, 

respectively. Sediments from four stations in the Arctic were collected in 2007 in fjords and 

from an intertidal flat on the west coast of Svalbard. Samples were taken from the zone of 

highest sulfate reduction, which was typically in the depth range of 3-10 cm (Jørgensen, 1982). 

Sediments were stored in gas-tight plastic bags at 4°C until further processing in the 

laboratory. For measurements in whole sediment cores, sediment cores of 26 mm diameter 

and ca 15 cm long were taken, sealed at both ends with rubber stoppers leaving air in the 

headspace, and stored at 4ºC. Coordinates for the study sites, in situ temperatures, and water 

depths at which sediments were collected are given in Table 1. 
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Oceanography and sedimentary setting 

Namibian shelf and slope. Two stations were sampled in the Namibian upwelling 

region, one on the shelf in 130 m water depth and one on the continental slope in 2000 m 

water depth. Sediments were collected on the RV Meteor cruise M76/1 (MARUM). 

Sediments accumulate here under the highly productive Benguela upwelling system. 

Sediment from the shelf and from the slope is characterized by a high total organic carbon 

(TOC) content of up to 10% dry weight. The Benguela upwelling system is characterized by 

seaward and downslope particle transport that maintains local high sedimentation rates in a 

depo-center at 1000-1500 m water depth (Inthorn et al., 2005). The Benguela upwelling 

system has extremely high primary productivity of 175-240 mmol C m-2 d-1 and is among the 

most productive ocean areas. Sulfate reduction rates (SRR) decrease strongly with increasing 

water depth together with the organic carbon content in the surface sediment (Table 2, 

Ferdelman et al., 1999).  

SW Atlantic margin and basin. Sediments from the SW Atlantic were collected during 

the RV Meteor cruise M78/3a/b (MARUM) on the continental shelf off Uruguay and on the 

slope off Argentina. This region is characterized by high sedimentation rates, gravity mass 

flows due to major turbidities and slides, and strong surface currents (Riedinger et al., 2005). 

We measured SRR TOC content of the same magnitude as in shelf sediments off Namibia 

(Table 2). The sediments in the study area are characterized by low carbonate concentrations 

and high concentrations of organic carbon and iron oxides (Hensen et al., 2003). The TOC 

content of Argentine slope sediments decreased with water depth from 5% to 1%. The region 

off Uruguay and Argentina has dynamic oceanographic conditions due to the confluence of 

two different water masses that cause high primary productivity and high deposition of 

organic matter (e.g., Behrenfeld and Falkowski, 1997). 
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West coast of Svalbard. Along the west coast of Svalbard primary productivity is 

controlled by light availability and ice coverage and is also related to the different water 

masses. Warm and nutrient rich Atlantic water of the west Spitsbergen current leads to early 

melting of the ice and stimulates primary production and subsequent sedimentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean annual primary production is 120 g C m-2 y-1 along the west coast (Sakshaug, 2003). 

SRR are also relatively high and comparable to rates of many temperate shelf areas. Sediment 

was collected from four stations along the west coast of the main island, Spitsbergen. Three 

stations were located centrally in fjords while the fourth was an intertidal mud flat. The fjord 

sediments were taken in July 1998 and July 1999 with a Haps corer while the intertidal flat 

was sampled in August 2008 from the shore. 

 

Table 1. Sampling site description. 

Station Coordinates Water 
depth (m) 

in situ  T°C 

1) Namibian shelf 25°0‘S14°23‘E 130 8 

2) Uruguay shelf 36°08’S53°16’W 244 8 

3) Namibian slope 25°45'S13°3'E 2000 2 

4) Argentine Basin 38°12'S54°56'W 627 4 

5) Argentine Basin 37°57’S53°50’W 3400 2 

6)  Argentine Basin 39°28'S53°42'W 4327 1 

7) Arctic intertidial flat 78°16’N14°02’E 0 6 

8) Krossfjord 79º08`N.11º39`E 80 0 

9)  Kongsfjord 79°00 N 11°40 E 110 -1 

10)  Smeerenburgfjord 79°42’N11°05’E 215   2 
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Sulfate reduction rate measurements 

Sulfate reduction rates, SRR, were measured in two parallel sediment cores using the 

whole core incubation method (Jørgensen, 1978). These data are called in situ SRR. 5μl of 

carrier-free 35SO4
2- tracer solution in 4% NaCl (~100kBq per injection) was injected at 1 cm 

intervals to a depth of 16 cm. Incubation time was 8 h at in situ temperature. All samples were 

analyzed using the low-blank cold chromium distillation method described by Kallmeyer et al. 

(2004). Briefly, centrifuged sediment was diluted with 10 ml dimethylformamide and placed 

in a distillation flask. Total reduced inorganic sulfide (TRIS) was acid-distilled under nitrogen 

at room temperature after adding 12ml 6N HCL and 12ml 1M chromium chloride. The TRIS 

was recovered as zinc sulfide in traps containing 7ml of 5% w/v zinc acetate solution and 35S 

was counted in a liquid scintillation counter (Packard, Tricarb 2500 TR). The scintillation 

cocktail was Lumasafe Plus (Lumac BV, Groningen, The Netherlands) mixed 2:1 (v/v) with 

the ZnS suspension. 

Temperature dependence of SRR 

The temperature dependence of SRR was determined in temperature gradient 

incubation experiments using a thermostated aluminum block (Isaksen and Jorgensen, 1996). 

The temperature span in the gradient block was -5°C to +40°C. The temperature increment 

between each sample was 1.5°C. Sediment slurries were prepared by 1:2 (w/v) dilution with 

anoxic artificial seawater (Widdel and Bak, 1992). Sediment slurries were made anoxic by 

bubbling with N2, and 5 ml of slurry was transferred to each Hungate tube. Hungate tubes 

were flushed with N2 (Bryant, 1972) and sealed with butyl rubber stoppers. The Hungate 

tubes were immediately placed in a temperature gradient block and pre-incubated to allow the 

sediments to reach thermal equilibrium. Then 35S-labeled carrier-free sulfate (100 kBq final 

activity) was injected and the slurries were incubated with radiotracer. Incubations were 
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stopped by transferring the sediment to 50 ml polyethylene centrifuge tubes with 20 ml 20% 

zinc acetate to stop bacterial activity and to fix sulfides. Samples were kept frozen until 

further analysis. Subsequent processing followed procedures described above (Kallmeyer et 

al., 2004). South Atlantic sediments were pre-incubation for 12 hours and then radiotracer was 

injected for 24 hours i.e., incubations lasted 36 hours. Sediments from three Arctic seafloor 

stations (Kongsfjorden, Krossfjorden and Smeerenburgfjorden) were preincubated for an hour 

and incubations with the radiotracer lasted 12 hours for Kongsfjorden and Krossfjorden and 8 

hours for Smeerenburgfjorden sediment.  

Arrhenius plot and Q10.  

Activation energies were calculated from the linear range of Arrhenius curves of the 

35S-sulfate reduction rates, k, as a function of temperature:  

TR
E

Ak 1)ln()ln( a  

where Ea is the activation energy (J mol-1), k is the rate of sulfate reduction (nmol cm-3 day-1). 

A is a constant, R is the gas constant (8.314 J K-1 mol-1), and T is the absolute temperature (K). 

Q10 values between 0°C and 10°C were calculated according to: 

)10(
10

exp10  T RT
  E

   Q a  

Solid phase analyses 

Freeze-dried and homogenized sediment was analyzed for total carbon (TC) and total 

nitrogen (TN) with a Fisons NA 1500 (Series 2) Elemental Analyzer. Total inorganic carbon 

(TIC) was measured with a CM 5240 Orbis BV coulometer. Total organic carbon (TOC) was 

calculated by subtracting TIC from TC. 
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Sulfate measurements 
 

Pore water sulfate concentrations were determined after centrifugation of sediment at 

3500 rpm in capped centrifuge tubes with nitrogen headspace at 4°C for 15 min. Supernatant 

pore water (1 ml) was preserved with 200 μl 1% (w/v) Zn-acetate solution and stored at -20°C. 

Sulfate concentrations were measured by suppressed ion chromatography at 1:100 dilution 

with 18MOhm water on a Metrohm 761 compact IC.  Sulfate standards were prepared from 

Na2SO4, with concentrations ranging from 5 to 400 μM using an eight point calibration curve. 

Quality control samples, treated as unknowns were prepared from calibrated seawater (IAPSO) 

and analyzed at the start and end of every sample run. 

 
Results 

Characterization of study sites 

The organic carbon and nitrogen content, expressed as % dry weight and molar C:N 

ratio are listed in Table 2. The highest organic carbon content was measured in Namibia (4.4 

%) and Uruguay (5.0%) shelf sediments and Namibia (6.5%) slope sediment. In the other 

sediments, TOC ranged from 1.2% to 2.3%. The TN ranged from 0.1% to 0.9%. Except for 

the Arctic intertidal flat sediments where the molar C:N ratio was 16, C:N ratios calculated for 

other sediments ranged between 8 and 10. C:N ratios of ca.10 determined for South Atlantic 

sediments are typical for sediments with high TOC content deposited under highly productive 

marine systems with associated high organic matter fluxes (Meyers, 1994). C:N ratios of 10 

generally characterize labile organic matter easily accessible for microorganisms.  

Mean rates of in situ SRR in the zone of highest sulfate reduction (top 3 to 9 cm) are 

presented in Table 2. Highest rates were found in Namibia shelf sediment, 65.8 nmol cm-3 d-1 

and Uruguay shelf sediment, 43.6 nmol cm-3 d-1. The lowest SRR, 6 nmol cm-3 d-1, were found 
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in Argentine sediments from 3300 m water depth, in the Arctic Krossfjorden, 4.29 nmol cm-

3d-1, and in Namibia slope sediment from 2000 m water depth, 3.59 nmol cm-3 d-1.  

 
 

 

 

 

 

 

 

 

 

Temperature dependence of SRR, South Atlantic 

SRR measured in slurried sediments in the temperature gradient block are not representative 

of in situ rates, yet they are clearly related to water depth and availability of organic matter. 

The temperature curves of sulfate reduction in the different sediments can be characterized in 

terms of three cardinal temperatures, Tmin, Topt, and Tmax, and the SRR at in situ temperatures 

relative to the Topt. Figure 1 shows the temperature dependence of SRR in all sediments 

studied. The corresponding Topt and other derived parameters are listed in Table 3. The in situ 

temperature of Namibia and Uruguay shelf sediments varies between 7 and 10ºC throughout 

the year and the temperature response of SRR can be characterized as mesophilic to 

psychrotolerant (Figure 1 a, b). SRR in both shelf sediments had optimum at 25-30ºC. SRR in 

Namibia slope sediments were 7 nmol cm-3 d-1 at the in situ temperature and increased to 72 

nmol cm-3 d-1 at Topt. In Uruguay sediment SRR at the in situ temperature were 3 nmol cm-3 d-1 

and increased to 16 nmol cm-3 d-1 at Topt.  

Table 2. Bulk geochemical analysis, carbon and nitrogen concentrations  
determined for Namibian, Uruguayan, Argentine and Arctic sediments.  

Station 
Organic 
carbon 
(wt %) 

Nitrogen  
(wt %) C/N SRR nmol cm-3d-1 

(SR zone mean) 

Namibia 130 m 4.4 0.5 10.5 65.8 
Namibia 2000 m 6.5 0.9 10.4 3.59 
Uruguay 244 m 5.0 0.6 10.0 43.6 
Argentina 627 m 2.3 0.3 10.3 nd 
Argentina 3400 m 1.3 0.2 9 nd 
Argentina 4327 m nd nd nd 6 
Arctic 0 m 1.4 0.1 16 11. 
Krossfjord 80 m nd nd nd 4.29 
Kongsfjord 110 m nd nd nd 12.6 
Smeerenburgfjord 215 m 1.2 0.2 8.8 19.4 
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In situ temperatures in the slope sediments off Namibia and Argentine range annually 

between 1 and 4°C. Topt of sulfate reduction was lower than in the shelf sediments and the 

temperature response of SRR can be classified as psychrotolerant. In the Namibia and 

Argentine slope sediments highest SRR were found at 22°C and 20°C, respectively (Figure 1 

c, d, f), and the Tmax was near 30°C. A Topt of only 12°C was found in sediment from the 

Argentine slope in 3400 m water depth indicating that this sediment hosted a psychrophilic 

community (Figure 1 e). The temperature profile was relatively broad between 0 and 15°C 

and SRR dropped to near detection above 20°C. SRR were 0.1 to 2 nmol cm-3 d-1 at in situ 

temperatures in slope sediments (Figure 1 c, d, e, f). Rates at Topt in Namibia slope sediment 

reached 29 nmol cm-3 d-1 (Figure 1 c) but were only 0.7 to 4.3 in Argentine slope sediments 

(Figure 1 d, e, f).  

Temperature dependence of SRR, Arctic 

In the Arctic sediments the highest rates were measured in Smeerenburgfjorden (Fig 1 

j). In this sediment the SRR at in situ temperature were at 53 nmol cm-3 d-1 and increased to 

200 nmol cm-3 d-1 at Topt. In the Arctic intertidal mud flat (Ymerbukta) and in Kongsfjorden 

sediment SRR were lower by around 40% at Topt (Figure 1 g, i). The rates increased from 4 to 

120 nmol cm-3 d-1 at Topt in the Arctic intertidial flat sediment of Ymerbukta and from 27 to 

141 nmol cm-3 d-1 in Kongsfjorden. In the other Arctic fjord sediments rates increased from 4 

to 44 nmol cm-3 d-1at Topt (Figure 1 h). 

The broad temperature profiles of SRR suggest that Arctic sediments host microbial 

communities with divergent temperature characteristics (Figure 1 g-j). In the Arctic intertidal 

mud flat summer temperatures can be as high as 6°C, but drop to -20°C during winter. SRR 

increased in the temperature range from -4°C to 30°C and dropped to near-zero at a Tmax of 

35°C (Figure 1 g). The other Arctic sediments (Kongsfjorden, Krossfjorden, 
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Smeerenburgsfjorden) have very constant temperatures throughout the year ranging from -1°C 

to +2°C.  

The temperature profile of SRR in Smeerenburgfjorden sediment was broad and increased 

from -4°C to 27°C while activity was still detected at 40°C. In Krossfjorden SRR increased 

from below 0° and Topt was in the psychrotolerant range of 23°C while activity was not 

detected above 34°C (Figure 1h). Also in Kongsfjorden SRR showed a psychrotolerant 

response as activity was detected at -4°C, reached maximum at 18°C, and was barely 

detectable above 34°C (Figure 1 i) 

Arrhenius plots and Q10 

The metabolic rates at in situ temperatures compared to Topt were between 9 and 50% 

for all the stations (Table 3, Figure 2). The activation energies calculated from the Arrhenius 

plots ranged from from 25 to 55 kJ mol-1 while the Q10 factors were in the range of 2 to 3 

(Table 3). In Namibia sediments activation energies ranged from 33 to 55 kJ mol-1 and in 

Argentine sediments from 26 to 55 kJ mol-1. 

 

Table 3. Sulfate reduction activities and Arrhenius parameters determined in the 
temperature-gradient incubation experiments for Namibian, Uruguayan, Argentine and 
Arctic sediments.  

SRR nmol cm-1 d-1 %SRR Ea 
kJmol-1

 
Q10 

Station Topt 
(ºC) 

at in situ T at  Topt    
Namibia 130 m 25 7 72 9 55 2.8 
Namibia 2000 m 22 2 29 7 38 2 
Uruguay 244 m 27 3 16 20 32 2.9 
Argentina 627 m 20 0.15 0.7 21 30 2.8 
Argentina 3400 m 12 0.1 0.2 50 52 2.7 
Argentina 4327 m 20 1.2 4.3 28 26 2.7 
Arctic 0 m 30 8 120 15 25 2.7 
Krossfjord 80 m 25 9.1 44 20 27 2.3 
Kongsfjord 110 m 18 27 141 19 31 2.1 
Smeerenburgsfjord 215 m 27 41 213 19 25 2 
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Figure 1. SRR measured in temperature-gradient incubation experiments of sediment slurries from the different 
sampling sites.  
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Discussion 

Temperature response of SRR depends on the in situ T°C and on the water depth 

Our results demonstrate how the ambient temperature regime selects for microbial 

populations with different temperature physiology. The temperature response of SRR from 

permanently cold sediments was in the psychrophilic to psychrotolerant range while in 

temperate sediments it was in the mesophilic range (cf. Isaksen et al., 1994; Sagemann et al., 

1998; Isaksen and Jørgensen, 1996). The sediment temperatures in the Uruguayan and 

Namibia shelf were determined by ocean currents of different thermohaline characteristics 

that maintained sediment temperatures of 7-10°C (e.g., Lass and Mohrholz, 2005; Hansen et 

al., 2003; Ortega et al., 2007). Similar temperatures were recorded during the Arctic summer 

for an intertidal mud flat of Svalbard where the air temperature during low tide may heat the 

surface sediments up to 9°C (Nørdli 2005). Accordingly, the temperature response of SRR in 

these sediments was in the psychrotolerant to mesophilic range, the Topt was 25-30ºC, and the 

activity declined above 35ºC (Figure 1 a, b, j). The Topt for respiration and growth of sulfate 

reducing communities is generally found to be well above the in situ temperature (Sagemann 

et al., 1998; Isaksen and Jørgensen, 1996). In cold environments the Topt for anaerobic 

respiration is up to 10°C higher than the Topt for growth (Sagemann et al., 1998; Knoblauch 

and Jørgensen, 1999). Broad temperature profiles with relatively high Topt and Tmax values 

have been reported for Arctic sediments (Arnosti et al., 1998; Sagemann et al., 1998). Thus, in 

Smeerenburgfjorden sediments, which are around 2°C year round, Topt values of 30°C have 

been demonstrated several times (Sagemann et al., 1998; Robador et al., 2009; Brüchert et al., 

2001).  The in situ temperature of the south Atlantic sediments from greater water depths was 

lower than on the shelf and the Topt and Tmax decreased with increasing water depth (Figure 1 

b, c, d, f). Temperature-activity profiles from those deep stations indicate a predominance of 



 

 

 
 PART III Manuscripts 
  72 
 

psychrotolerant and even psychrophilic bacteria.  In Argentine sediment from 3000 m depth 

we measured a Topt of 12°C after 36 hour incubation (Figure 1 e). A similarly low Topt of 

12.5°C for sulfate reduction had been observed in sediment from Antarctica from Kap 

Norvegia in the Weddell Sea (Isaksen and Jørgensen, 1996). This may be the lowest published 

temperature optimum for an anaerobic microbial process in nature. The authors reasoned that 

the temperature profile resembled the response of psychrophilic isolates and therefore likely 

reflected also the growth rate optimum of a predominantly psychrophilic community (Isaksen 

and Jørgensen, 1996). 

A relationship between the sulfate-reducing populations Topt and water depth was not 

observed in the Arctic fjord sediments as the bottom water of the Svalbard fjords is 

permanently near 0°C at all water depths. In our study with Smeerenburgfjorden sediment a 

broad temperature profile was observed with Topt at 27°C after 8 hour incubation (Figure 1 j). 

In an earlier study of Smeerenburgfjorden sediment the Topt was observed to be lower 

if the incubation period was extended, e.g., 21°C after 4.5 day incubation (Arnosti et al., 

1998). A similar shift in temperature response was found by Finke and Jørgensen (2008) in 

Arctic sediment where the Topt dropped from 27°C after 0.3 days to 18°C after 8 days of 

incubation. It is apparent that sulfate-reducing microorganisms from these cold sediments 

maintain high activity at the highest temperatures only for a limited time (Finke and Jørgensen, 

2008). It is interesting that we found a low Topt of 18°C in Svalbard sediment from 100 m 

water depth after only 12 hour incubation (Fig 1 i). The Topt of 18°C for sulfate reduction in 

Kongsfjorden sediment is comparable to the optima reported for growth of pure cultures of 

sulfate reducing bacteria isolated from cold environments (Knoblauch and Jørgensen, 1998; 

Isaksen and Jørgensen, 1996).   
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Figure 2 Arrhenius plots of data in Figure 1. 
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SRR in shelf and slope sediments fall into three temperature groups 

The temperature characteristics of SRR imply the presence of mixed SRB 

communities composed of mesophilic, psychrotolerant and psychrophilic members in south 

Atlantic and Arctic sediments (Arnosti et al., 1998; Rysgaard et al., 2004; Sahm et al., 1999). 

In south Atlantic sediments the spatial distribution of distinct thermal groups was related to 

the in situ temperature of the sediment and consequently to the water depth. Thus, high Topt of 

SRR on the shelf indicates a predominance of mesophilic and/or psychrotolerant SRB, 

whereas in the deeper sediments Topt was lower, implying the presence of SRB adapted to 

permanently cold conditions typical for psychrotolerant and psychrophilic microorganisms. 

The predominant temperature responses of SRR in south Atlantic incubations were 

psychrotolerant, which is consistent with earlier reports that psychrophiles do not prevail in 

these permanently cold sediments (Nedwell and Rutter ,1989). 

The adaptation of SRB populations to the in situ temperatures was described from 

experimentally measured temperature curves by comparing SRR at in situ temperature with 

SRR at Topt and by calculating the activation energy, Ea (Knoblauch and Jørgensen, 1999). 

The in situ SRR in the Argentine and Arctic sediments were high compared to the rates at Topt 

falling in the 20% to 50% range (Table 3). These values are comparable to those reported for 

cold-adapted Arctic SRB (Robador et al. 2009) and are consistent with similar relative growth 

rates of 24% to 41% determined for psychrophilic strains isolated from Arctic sediments 

(Knoblauch and Jørgensen, 1999). In Namibian shelf and slope sediments the in situ rates 

relative Topt were <10% (Table 3), but Ea determined for Namibian sediments suggests that 

SRB are well adapted to the ambient temperature. The Ea were similar to those measured for 

sulfate reduction, denitrification and anammox in Arctic sediments (Figure 2, Table 3) 

(Rysgaard et al., 1998; Gihring et al., 2010). Q10 values for SRR in south Atlantic sediments 
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were around 2, which is a typical for many marine environments. This low Q10 value was 

found repeatedly for metabolic processes in Arctic and Antarctic sediments and implies a 

microbial community well adapted to ambient temperature. Many biological reactions have a 

Q10 of 2 which is roughly equivalent to an activation energy of 50 kJ mol–1 at 20°C (Kirchman 

et al., 2009). Ea values reported for permanently cold sediments vary in the range of 30-50 kJ 

mol–1, depending on whether the community is more psychrotolerant or psychrophilic. 

 

Sediment transport effects on experimentally-determined temperature-activity 

relationships 

Deposited labile organic matter from the Benguela upwelling system over the Namibia 

shelf undergoes suspension and re-deposition leading to a net down-slope transport. The shelf 

material accumulates in depo-centers at 1000-1500 m water depth where the sediment is rich 

in organic matter (Inthorn et al., 2005; Inthorn et al., 2006). This down-slope transport of 

sediment material from the warm shelf may explain the relatively high SRR and a 

temperature-activity response indicative of the presence of mesophilic SRB in the cold slope 

sediments (Figure 1 a, c). Although psychrotolerant or psychrophilic SRB may be better 

adapted to live in the slope sediments at the prevailing temperature of 3°C, the down-slope 

dispersal of SRB from warmer sediments enables mesophilic community to be maintained. A 

mesophilic signature was observed also in the temperature response of SRR from upper slope 

sediments off Argentina (Figure 1d) whereas sediments from greater water depths had rather a 

psychrotolerant to psychrophilic signature (Figure 1e, f). Also the slope sediments off 

Uruguay and Argentina are characterized by dynamic depositional conditions with generally 

high sedimentation rates, gravity mass flows due to turbidities and slides, and strong surface 
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currents (Riedinger et al., 2005). Thus, also here some mesophilic SRB may be transported 

down from the shelf to the slope. 

Conclusions 

Tmin, Tmax, and Topt temperatures for SRR in the continental margin shelf and slope 

sediments indicate that all three thermal groups are present. Topt of SRR determined from 

short-term temperature experiments depended on the depth of the water column and was 

lower in the deep-sea sediments and in the cold Arctic than Topt in warmer sediments. 

Mesophilic sulfate reducing bacteria in south Atlantic slope sediments are likely transported 

with sediment from the adjacent shelf where such mesophilic bacteria dominate. 
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Summary 

Temperature is an important factor regulating the rate of biological processes and, 

therefore, is likely to exert a selective pressure in the environment. The temperature response 

of carbon mineralization via bacterial sulfate reduction of polar, temperate and tropical marine 

sediments was studied in temperature-gradient incubations experiments by measuring sulfate 

reduction rates (SRR) using 35S-sulfate. Sediment slurries were incubated in a thermal 

gradient between -10°C and +50°C to cover the physiological temperature range of the active 

sulfate-reducing bacteria (SRB) and the resulting temperature response profiles were used to 

characterize the competitiveness of SRB, in terms of relative SRR at in situ temperatures, the 

temperature dependence for energy metabolism of SRB and the correlation of cardinal 

temperatures of sulfate reduction and sediment temperatures. In polar regions, only 

temperatures close to the freezing point of the sediment limit the rates of sulfate reduction. In 

these environments SRB exhibited high metabolic rates of ca 10-17% of maximal potential 

rates at the in-situ temperature of 0°C. Similar relative SRR in temperate and tropical 

sediments were only observed at temperatures around 15-20°C. These observations imply 

psychrophilic adaptation of polar SRB and the predominance of mesophilic SRB in warmer 

latitudes. Further examination of the temperature dependency for sulfate reduction using 

Arrhenius plots in temperate sediments revealed that tropical sediments exhibited a more 

limited metabolic regulation at temperatures below 8-18°C and optimal temperature 

conditions for sulfate reduction closer to their ambient temperatures. Together, the inspection 

of the temperature responses for metabolic activity of SRB in marine sediments showed that 

temperature adaptations of SRB form a continuum with respect to their environmental latitude, 

which implies the potential of environmental temperatures for the selection of adaptive 

physiologies and for evolutionary divergence of microbiota in different latitudes.
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Introduction 

Mineralization rates of organic matter in coastal marine sediments frequently show a 

strong variability associated with seasonal changes at ambient temperatures (e.g. Middelburg 

et al., 1996; Arnosti et al., 1998; Rysgaard et al., 1998; Thamdrup and Fleischer, 1998). 

Among the different processes implicated in the anaerobic benthic degradation of organic 

carbon, bacterial sulfate reduction has the quantitatively dominant role (Jørgensen, 1982) and 

the measurement of respiratory reduction of sulfate to sulfide is one of the few available 

methods that targets a physiological defined group of bacteria. Consequently, most work on 

the environmental temperature dependence of sedimentary metabolism has involved seasonal 

studies of sulfate reduction in coastal sediments (e.g. Jørgensen, 1977; Aller and Yingst, 1980; 

Moeslund et al, 1994; Kristensen et al., 2000). Coastal environments, however, are highly 

variable and dynamic systems and the interpretation of the response of sulfate reduction rates 

to ambient temperatures is not straightforward.  

Sulfate reduction in marine sediments is constrained by factors such as the 

concentration of organic matter and its degradability which is commonly interpreted as the 

overriding limiting factor controlling the response of SRR to temperature. Westrich and 

Berner (1988) observed that the temperature dependence of SRR is more pronounced in 

sediments with lower benthic mineralization rates, and suggested that the temperature 

response of sulfate reduction may depend on the reactivity of accessible organic carbon. In 

fact, although rates of sulfate reduction are generally considered to be limited by the quantity 

and quality of available organic substrates (Westrich and Berner, 1984), the consequence of 

temperature variations is not only overall changes in turn-over rates but also qualitative, as 

well as quantitative, shifts in species composition and community structure (Robador et al. 

2009). When similar permanently cold and temperate sediments were compared over long-
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term temperature incubation experiments, Robador et al. (2009) observed that the response of 

bacterial sulfate reduction to warming was closely related to the physiological characteristics 

of the active SRB community. The microbial SRB community in Arctic sediments, in contrast 

to their temperate counterparts, exhibited a high sensitivity to increasing temperatures and a 

rapid decline of specific groups of SRB.  

The examination of the temperature characteristics for sulfate reduction of bacteria 

isolated from marine sediments has shown the coexistence of SRB populations with different 

temperature adaptations. Isaksen and Teske (1996) isolated a moderately psychrophilic 

sulfate-reducing bacterium from temperate sediments able to grow and sustain a higher 

catalytic activity at lower temperatures when compared to a mesophilic strain isolated from 

the same sediments (Isaksen and Jørgensen, 1996). Laboratory studies on the temperature 

dependence of sulfate reduction in Arctic and Antarctic marine sediments (i.e. Sagemann et 

al., 1998; Isaksen and Jørgensen, 1996) showed that the bacterial community is predominantly 

psychrophilic, while in temperate sediments the SRB were mostly mesophilic (Isaksen et al., 

1994). Together, these observations suggest the strong influence of environmental 

temperatures on microbial selection. In competition, the physiological adaptations of the 

active SRB to ambient temperatures may have an important role in the temperature response 

of the benthic mineralization of organic matter. 

The aim of the present study is to investigate the physiological adaptation to 

environmental sediment temperatures, in terms of sulfate reduction rates (SRR), as an 

important mechanism controlling competition and other microbial interactions and, ultimately, 

the efficiency of carbon cycling. In order to understand the effect that ambient temperatures 

may have on the microbial carbon cycling in marine sediments, we compared the temperature 
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dependence of the SRB community in sediments from different latitudes using temperature 

gradient incubation experiments. 

 

Material and methods 

Study sites 

Study sites for the present work were selected extending from polar regions to 

temperate and tropical latitudes in order to obtain a representative range of sediments exposed 

to different environmental temperatures. A detailed description of the study sites is provided 

in Table 1. Samples were obtained from the upper 10 cm depth of sediment from each site, 

which generally corresponds to the depth range where bacterial sulfate reduction peaks in 

95% of all sediment studies published to date. 

Index properties 

Wet-bulk density and porosity were calculated from one sediment sample, taken at 

each sampling site, from measurements of the wet and dry masses of the sample and from the 

volume using calibrated glass cylinders. 

Elemental analysis 

The elemental analyses, at each sampling site, were performed on triplicate samples of 

about 20-100 mg of freeze-dried ground sediment. 

Total carbon (TC) and nitrogen (TN) content of sediment samples were determined 

using a Fisons NA 1500 (Series 2) elemental analyzer. Freeze-dried material with vanadium 

pentoxide catalyst added is converted into elemental simple gases by combustion at 900-

1000°C in a stream of oxygen, moved through a separation column and, subsequently, 

detected by a thermal conductivity detector. 
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Inorganic carbon was measured in order to determine the amount of total organic 

carbon (TOC) in the sediments. Total inorganic carbon (TIC) was determined using a 

CM5240 TIC auto-acidification sampler module attached to a coulometer CM5014 CO2 

analyzer (UIC, Inc.) which measures automatically the absolute mass amount of CO2 evolved 

from sample acidification. The TOC contents of the sediment samples were determined by 

calculating the difference between TIC and the TC value. 

Temperature-gradient experiments 

The temperature response of microbial energy metabolism was evaluated in 

temperature-gradient incubation experiments (Battley,1964). Sediment slurries were 

incubated in Hungate tubes in an aluminum temperature-gradient block heated electrically at 

one end and cooled at the other end with a refrigerated and thermostated water bath. The 

temperature span was from 0° to +50°C to cover a large potential physiological temperature 

range of the active organisms, which was well above the optimal conditions for growth in 

some of the studied sediments. Additionally, the incubation temperature gradient for sites 3, 4 

adn 5 (Table 1) was extended to -10°C in order to explore the physiological limits of 

microorganisms at temperatures below the freezing point. Sediments slurries were prepared 

by dilution 1:1 with anoxic artificial seawater. Anoxic artificial seawater was prepared as 

described by Widdel and Bak (1992). Sediment slurries were prepared under N2 and 5 ml of 

slurry were transferred into each Hungate tube. Hungate tubes were flushed with N2 according 

to the Hungate technique (Bryant, 1972) and sealed with butyl rubber stoppers. The Hungate 

tubes were immediately placed in a temperature-gradient block and preincubated for at least 5 

hours to allow them to reach thermal equilibrium. Measurements of bacterial sulfate reduction 

were performed using 35S-sulfate according to Kallmeyer et al. (2004). In order to minimize 

bacterial growth during the experiment, the incubation time with the radiotracer was only 24 
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hours. Triplicate samples were incubated in parallel wells (at the same temperature) at several 

points along the temperature gradient block in order to investigate reproducibility of SRR. All 

data (including replicate measurements) are shown in Fig. 1. 

Temperature dependence 

Activation energy and Q10 values were calculated from the slope of the linear range in 

Arrhenius plots to characterize the temperature dependence of metabolic activity. The 

Arrhenius curves were obtained from temperature-gradient incubations and represent the 

variation of metabolic rate as a function of temperature as follows: 

TR
E

Ak 1)ln()ln( a  

where Ea is the activation energy (J mol-1), k is the rate of sulfate reduction (nmol cm-3 day-1), 

A is the Arrhenius constant, R is the gas constant (8.314 J K-1 mol-1), and T is the absolute 

temperature (K). 

Q10 values between 20°C and 30°C were calculated according to the following 

equation: 

)10(
10

exp10  T RT
  E

   Q a  

 

Results and discussion 

Rates of sulfate reduction and competitiveness of SRB in marine sediments 

Studies on the temperature response of initial and terminal steps of organic carbon 

turnover in marine sediments suggest that absolute rates of sulfate reduction are mainly 

controlled by the availability of suitable electron donors rather than by temperature (e.g. 

Arnosti et al., 1998). SRR in marine sediments increase following the amendment with 

organic carbon compounds which has been interpreted as substrate limitation under in-situ  
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Figure 1. SRR measured in temperature-gradient incubation experiments of sediment slurries from all 
sampling sites. 1) Southern Ocean (Weddell Sea), permanently cold sediment; 2) Arctic Ocean 
(Ymerbukta, Svalbard), seasonally freezing-thawing sediment; 3) Arctic Ocean (Smeerenburgfjord, 
Svalbard), permanently cold sediment; 4)Wadden Sea (German Bight, North Sea), estuary system 
subjected to strong seasonal temperature changes; 5) Baltic Sea (Arkona Basin), sediment subjected to 
mild seasonal temperature changes; 6) Andaman Sea (Phuket Island, Thailand), permanently warm 
tide-dominated mangrove forest sediment; 7) Arabian Sea (off the coast of Goa, India), permanently 
warm sediment from an upwelling system; 8) Arabian Sea (Sadeyat island, United Arab Emirates), 
permanently warm hypersaline sediment; 9) South China Sea (Hainan Island, China), permanently 
warm sediment. 
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conditions (Sagemann et al., 1998; Arnosti et al., 2005). Therefore, absolute SRR measured in 

the present study (Figure 1) likely reflect variations in the content and quality of organic 

matter in the different sediments studied here. 

In fact, the lowest SRR were measured in an oligotrophic environment, (Figure 1.1 and Table 

1) while the highest rates were observed in a habitat characterized by the high content of 

organic matter derived from decomposing macrophytes (Figure 1.2 and Table 1). The 

examination of the competitiveness of SRB, understood in terms of relative metabolic rates at 

in situ temperatures to maximum rates, may be more useful to understand the overall 

metabolic capacity of SRB. 

The SRR measured in the Arctic and Antarctic study sites at 0 °C relative to the 

maximum rates measured at the Topt, 10-17 % (Figure 1.1, 1.2 and 1.3 and Table 2), are in the 

range previously described for psychrophilic SRB communities in similar polar marine 

sediments (Isaksen and Jørgensen, 1996; Robador et al., 2009). A relatively high metabolic 

rate at low temperatures represents one of the main physiological adaptations of 

microorganisms to cold habitats (Harder and Veldkamp, 1968). Among the three polar 

environments, the Antarctic sediment exhibited the strongest psychrophilic response, with the 

lowest Topt for sulfate reduction and the highest relative rates at low temperatures. Arctic 

sediments collected from Smeerenburgfjorden and Isfjorden on the west coast of Svalbard are 

influenced by slightly warmer water currents than the Weddell Sea, which may be the reason 

for the broader temperature range of the active SRB community. In permanently, but 

moderately cold sediments from temperate regions sulfate reduction showed rather a 

mesophilic temperature response which was comparable to that of other temperate 

environments (Isaksen and Jørgensen, 1996). These observations together suggest that 
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ambient temperature is an important factor influencing the metabolic efficiency of SRB in a 

given environment. 

SRR measured at 0°C in polar sediments relative to maximal rates at the Topt were 

comparable to those of temperate sediments at an approximately 15°C higher temperature, 

close to their respective in situ temperatures (Figure 1.4, 1.5 and Table 2). This difference 

provides further indication for the adaptation of psychrophilic SRB to the permanently cold 

sediment temperatures in polar regions. Temperate sediments, however, are only seasonally 

exposed to low temperatures during winter and thus, the relative SRR, at 0 °C were only 2-5 

% of the rates at Topt (Figure 1.4 and 1.5 and Table 2). This is in agreement with previously 

published data on the temperature characteristics of SRB communities in similar temperate 

sediments (Isaksen et al., 1994; Robador et al., 2009) and suggests a suboptimal adaptation to 

low temperatures in comparison to polar regions. 

SRR were only 0.1-3 % of maximal rates at 0°C for the tropical sediments (Figure 1.6, 

1.7, 1.8 and 1.9 and Table 2). The permanently warm conditions in these environments may 

exert a strong pressure on SRB with low temperature adaptations and instead select for a 

community best adapted to permanently warm temperatures. In fact, sediments in the 

intertidal zone of the Arabian Sea can occasionally be exposed to temperatures close to 50°C 

(Al-Najjar, personal communication). At in situ temperatures at the time of collection, 

approximately 30 °C, SRR were 23-64 % (Figure 1.6, 1.7, 1.8 and 1.9) of maximal rates 

which suggests that permanently warm sediments are dominated by a mesophilic SRB 

community with an optimum temperature for metabolism close to the ambient range. 

Interestingly, several of the studied sediments, irrespective of their latitudinal position, 

showed a rapid increase in SRR above the Topt (Figure 1.1, 1.3, 1.4, 1.5, 1.6, 1.7 and 1.8). 

These rates indicated a thermophilic temperature response. In the present work, none of the 
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study sites were situated in a region supporting in situ growth at these high temperatures. Only 

the Antarctic site was located in the vicinity of a methane-venting seep, where thermophilic 

sulfate reducers could have originated from the deep subsurface through seepage transport to 

the seawater. Incubation experiments with sediments from temperate zones (Isaksen et al., 

1994) also reported SRR in the thermophilic range which were attributed to the germination 

of SRB endospores. Thermophilic spore-forming bacteria have also been detected in the high 

Arctic (Hubert et al., 2009 and 2010), but their activity was only induced after incubations for 

more than 12-16 hours at 50°C. 

 

Temperature dependency for metabolic activity of SRB in marine sediments 

Arrhenius plots are commonly used to examine the temperature dependence of 

thermally-induced process or reactions. The Arrhenius equation (Arrhenius, 1908) is generally 

applied to model the temperature dependency of the rate of a chemical reaction. The slope of 

the linear range obtained from plotting the natural logarithm of the reaction rate against the 

reciprocal of the absolute temperature is proportional to the Ea of the reaction. The Ea can be 

defined as the minimum energy required to start a chemical reaction and small Ea values will 

therefore result in an increase of the reaction rate. In the context of temperature adaptations, 

for instance the catalysis of a chemical reaction by an efficient enzyme will yield a low Ea 

(Marx et al., 2007; D’Amico, 2002). 

In the present study, chemical reaction rates have been substituted for SRR to examine 

the temperature response of sulfate reduction. The Arrhenius plots (Figure 2) presented here 

derive from the 35S-determinations of sulfate reduction in sediments (Figure 1) and are 

characterized by a range of linearity, mostly extending below and above the environmental 

temperature range. Ea estimated from the slope of the linear temperature range are only 
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apparent activation energies and reflect the temperature response of the rate-limiting step in a 

biochemical processes, i.e. membrane transport or enzymatic catalytic conversion. 

Furthermore, calculated Ea are not necessarily activation energies by a single sulfate-reducing 

population only, but reflect rather the response of a complex mixture of microbial 

communities. Despite these limitations, Knoblauch and Jørgensen (1999) found that 

calculated Ea values for pure cultures of SRB were similar to those estimated for whole 

sulfate-reducing communities in marine sediments. Coincident apparent Ea indicate that the 

response of sulfate reduction to increasing temperatures in pure cultures and natural sediments 

is comparable, and consequently, Ea may be a useful parameter to describe and evaluate the 

temperature sensitivity of SRB communities between sediments from different climate 

regimes. 

 

Figure 2. Arrhenius plots of data in Figure 1. 

Apparent Ea ranged between 41.9 kJ mol-1 and 88.4 kJ mol-1 (Q10, 1.8-3.3; Table 2, 

Figure 2). These values are within the range of apparent Ea estimated in seasonal studies of 

coastal marine sediments, 36-132 kJ mol-1 (Westrich and Berner, 1988). Westrich and Berner 

(1988) observed that deeper buried sediments with lower SRR exhibited a more pronounced 

temperature dependency, i.e. higher Ea values, and attributed this effect to variations in the 
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quantity of organic matter readily amenable to fuel sulfate reduction. However, similar 

experiments but with a higher temperature resolution showed that apparent Ea in substrate-

limited sediments, 40-75 kJ mol-1, did not change significantly after the addition of organic 

substrates (Sagemann et al., 1998). It is therefore possible that the variability of apparent Ea 

previously observed in marine sediments is not due to the reactivity of the organic matter but 

due to the different physiological adaptations of coexisting SRB populations. 

The temperature dependency of sulfate reduction in polar and temperate samples was 

constant down to approximately 0°C (Figure 2) and, when further examined (Figure 3), SRR 

were measured along temperatures between -3.4°C and -6.4°C, which are at or below the 

freezing point of the sediment slurries. Below these temperatures SRR decreased abruptly 

reflecting the physico-chemical constrains (i.e. low water activity, low nutrient content, high 

salinity) imposed by the freezing process of the sediment. These results clearly indicate that 

the polar and temperate sulfate-reducing communities are well adapted to tolerate 

temperatures down or beyond the freezing point of seawater, which may permit survival and 

recovery even after temporary freeze conditions. There is evidence, from experimental studies 

with arctic sediments, that sulfate reduction decreases sharply during freezing however, SRB 

may exhibit relatively high metabolic rates upon thawing or even after repeated freeze-thaw 

events (Sawicka et al., 2010). In addition to psychrophily, cryotolerance may be an important 

characteristic of SRB for survival in polar environments with constant low temperatures or 

even in temperate habitats exposed to extreme seasonal low temperatures. 

By contrast, in sediments from tropical latitudes, Ea remained constant over a linear 

range that extended from the Topt down to an apparent transition temperature between +8°C 

and +18°C (Figure 2C). Below these temperatures the slope changed sharply demonstrating 

higher Ea values. Apparent Ea values increased to 124.6-184.6 kJ mol-1 (Q10, 5.3-11.8), which 
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suggests that sulfate-reducing communities in permanently warm climates have a higher 

temperature dependence than communities in seasonally changing and permanently cold 

habitats. 

 

Figure 3. (A) SRR measured in temperature-gradient incubation experiments down to -10°C of 
sediment slurries from sampling sites 3, 4 and 5. (B) Arrhenius plots of data in panel A. 
 

The temperature at the intersection of the two slopes is defined as the ‘critical 

temperature’, Tcrit (Lamanna et al., 1973) and the existence of Tcrit has been described for 

psychrotolerant, mesophilic and thermophilic microorganisms (Harder and Veldkamp, 1968; 

Mohr and Krawiec, 1980; Reichardt and Morita, 1982). Reports for psychrophilic 

microorganisms are lacking, probably because growth rates of psychrophiles have not been 

examined systematically at sufficiently low temperatures (Bakermans and Nealson, 2004). 

Tcrit has been described for sulfate reduction in SRB isolates (Tarpgaard et al., 2005), although 

there are no reports in marine sediments. This is probably because most of the studies have 

investigated the psychrophilic response of SRB in low-temperature environments at minimum 

temperatures of -3.5°C (e.g. Robador et al., 2009). Based on experimental data of bacterial 

cell protein concentration, the Tcrit has been previously explained as the transition temperature 
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between optimal and sub-optimal domains for bacterial growth (Guillou and Guespin-Michel, 

1996). Although a cellular basis for Tcrit remains uncertain, this temperature is likely the result 

of the uncoupling of cellular energy metabolism at low temperatures. In addition to Ea, Tcrit 

may be a functional parameter important to explain the physiological temperature dependency 

of microorganisms. 

 

Conclusions - Correlation between environmental temperatures and cardinal 

temperatures of sulfate reduction 

Our results suggest a direct relationship between the ambient environmental 

temperature and sedimentary bacterial energy metabolism reflected in the Topt (Figure 4).  

 

Figure 4. (A) Relations between average environmental temperatures and Topt for sulfate reduction in 
marine sediments grouped according to sampling latitude: Polar regions, blue line; Temperate regions, 
green line; Tropical regions, red line. The plot is based on: data presented in this study, full circles; 
data compiled from Isaksen et al. (1994), Isaksen and Jørgensen (1996), Arnosti et al. (1998) and 
Sagemann et al. (1998), open circles; and data from seven SRB strains presented in figure 4, plus 
symbols. The straight line passing through the origin is the theoretical curve if environmental 
temperatures and Topt for SRR were the same. The regression line indicates the empirical relation 
between environmental temperatures and Topt for SRR. (B) SRR expressed as percentage of maximum 
rates, corresponding to data in panels 3, 4 and 9 of fig. 1. Profiles were selected to represent the 
characteristic temperature responses of each group in panel A 
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Although Topt generally exceeds the in situ temperatures experienced by the microbial 

communities, the proportional increase with the mean ambient temperatures (Figure 4A) 

implies diverse temperature sensitivities of the dominant microbial community in the studied 

environments. Increasing Topt for sulfate reduction reflect the diverse nature of the SRB 

involved and their temperature adaptations as shown in figure 4B. Although the composition 

of temperature response for the dominant SRB in the sediments is unknown, sediment SRR 

can be interpreted on the basis of mixed communities with different temperature response 

curves. 

Arctic and Antarctic sediments exhibited Topt for sulfate reduction of 24-26 °C (Figure 

1.1, 1.2, 1.3 and Figure 4B), similar to those previously reported for some psychrophilic SRB 

isolates (Knoblauch et al., 1999). The Topt observed in warmer temperate and tropical 

sediments, however, are in the range of those reported for nominal mesophiles (Isaksen and 

Jørgensen, 1996). Sediments from temperate latitudes showed broader thermal ranges than 

polar sediments and sulfate reduction could be measured from temperatures below 0°C up to 

the Topt at 35°C (Figure 1.4, 1.5 and Figure 4B). Tropical sediments exhibited a shift of the 

thermal range for sulfate reduction towards higher Topt, 38-44°C (Figure 1.6, 1.7, 1.8, 1.9 and 

Figure 4B). 

Figure 5 illustrates how the combination of SRR resulting from different pure SRB 

cultures (Fig. 5A) generates the type of mixed community response observed in this study for 

polar sediments (Fig. 5C). The quantitatively dominance of psychrophilic SRB strains 

translates into the relatively high activity at low temperatures (Figure 5C). Moreover, SRR of 

individual strains have characteristic temperature ranges (Figure 5B) that, when combined, 

result in a relatively broader response (Figure 5D). 
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The difference between environmental temperatures and Topt of bacterial sulfate 

reduction, however, varied between the sediments. At in-situ temperatures of 0°C in 

corresponding polar regions the difference was approximately 27°C, while at in situ 

temperatures of 30°C in tropical habitats this difference was reduced to 15°C (Figure 4A). 

The explanation for the larger difference in cardinal temperatures is likely due to composition 

of the active SRB in the sediment. Figure 4A shows how the dominance of SRB with lower 

Topt could, potentially, influence the overall response of sulfate reduction in the environment. 

In conclusion, the physiological responses described in this study demonstrate that 

psychrophilic and mesophilic SRB in polar and tropical environments, respectively, have 

evolved to adapt their energy metabolism to the stenothermal environmental conditions. 

Ambient temperatures outside the upper or lower limits of their thermal range likely result in 

functional constraints. In eurythermal habitats with strong seasonal temperature fluctuations, 

the overall rates of organic carbon mineralization are likely determined by the combined 

metabolic response of coexisting populations to the wide range of temperatures that 

characterize these environments. The heterogeneous temperature adaptations of the coexisting 

SRB in these habitats can explain the broad temperature response described above. However, 

a higher competitiveness of mesophilic SRB compared to their psychrophilic counterparts at 

their respective in situ temperatures may explain the predominance of mesophilc 

microorganisms in these habitats. 

The potential significance of environmental temperatures and habitat temperature 

variability has generally not been taken into account in the study of the temperature response 

of carbon mineralization in marine environment (Wohlers et al., 2009). Bacterial temperature 

response is generally assumed to be well described by Q10 values between 2 and 3 (Pomeroy 

and Wiebe, 2001). The present study shows that biogeographic variability, selection of 
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adaptive physiologies, and evolutionary divergence of microbiota in different latitudes need 

also be considered for an improved quantification of respiration effects in response to ocean 

warming. 

 

 

Figure 5. (A) SRR measure in temperature-gradient incubation experiments of seven sulfate-reducing 
bacteria strains. Data modified from; Isaksen and Jørgensen (1996), Knoblauch and Jørgensen (1999), 
Tarpgaard et al. (2005). (B) Arrhenius plots of data in panel A. (C) Sum of SRR of the seven strains 
from panel A at 2°C temperature intervals. (D) Arrhenius plot of data in panel C. 
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Table 1. Sampling site description            
Study 
sites 

Study sites Coordinates Sampling 
date 

Sampling 
device 

Water depth 
(m) 

Average 
environmental 

temperature (°C) 

Salinity 
(‰) 

Wet 
Density 
(g/cm3) 

Porosity C/N TOC 
(%) 

Sediment 
description 

1 Southern Ocean (Weddell 
Sea) 

65° 
26´ S 

61° 
26´ W 

Sep-07 Multi core 850 0a 34a 1.5 0.7 7 0.3 Permanently cold 
sediment situated 
in the proximity of 
a methane-venting 
cold seep, 
consisting of light-
grey colored stiff 
clay 

2 Arctic Ocean (Ymerbukta, 
Svalbard) 

78° 
16´ N 

14° 
02´ E 

Jul-05 Push core Subtidal 0a 27-30a 1.5 0.6 13 2.9 Seasonnally 
freezing-
thawing 
sediment 
located at the 
tidal-
dominated 
fringe of a 
glaciar moraine 
and consisting 
of black 
colored coarse-
grained sand 

3 Arctic Ocean 
(Smeerenburgfjord, 

Svalbard) 

79° 
42´ N 

11° 
05´ E 

Aug-07 HAPS core 215 0a 33-34a 1.7 0.6 11 1.6 Permanently 
cold sediment 
with abundant 
worm burrows, 
soft brown 
colored in 
surface 
grading to 
clayey mottled 
dark grey-
black over 
depth 
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4 Wadden Sea (German 
Bight, North Sea) 

53° 
27´ N 

08° 
07´ E 

May-07 Push core Intertidal 12b 22-30b 1.3 0.7 13 3.0 Estuary system 
subjected to 
strong 
seasonnal 
temperature 
changes with 
abundant meio- 
and 
macrofauna, 
sediment 
consisting of 
light-brown 
sandy mud 
changing to 
black mud over 
depth 

5 Baltic Sea (Arkona Basin) 54° 
46´ N 

13° 
48´ E 

Jun-07 Multi core 9 12b 8-9b 1.2 0.7 9 6.1 Sediment 
subjected to 
mild seasonnal 
temperature 
changes 
consisting of 
dark-brown 
and black 
colored mud 

6 Andaman Sea (Phuket 
Island, Thailand) 

08° 
03´ N 

98° 
25´ E 

Aug-07 Push core Intertidal 28a 28-34a 1.3 0.6 30 3.6 Permanently 
warm tide-
dominated 
mangrove 
forest, 
sediment 
consisting of 
brown colored 
coarse-grained 
sand 
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7 Arabian Sea (off the coast 
of Goa, India) 

15° 6´ 
N 

73° 
24´ E 

Apr-07 Multi core 60 26a 34-35a 1.2 0.8 14 3.0 Permanently 
warm sediment 
from an 
upwelling 
system 
consisting of 
green colored 
soft fine-
grained and 
watery mud 

8 Arabian Sea (Sadeyat 
island, United Arab 

Emirates) 

24° 
31´ N 

54° 
26´ E 

Sep-07 Push core Intertidal 30a 200a 1.4 0.7 106 1.4 Permanently 
warm 
hypersaline 
sediment 
covered by a 
0.5 cm-thick 
microbial mat 
and consisting 
of yellow with 
grey-black 
streaks fine-
grained sand 

9 South China Sea (Hainan 
Island, China) 

19° 
35´ N 

110° 
48´ E 

Sep-07 Push core Intertidal 30a 15-25a 1.8 0.4 10 0.2 Permanently 
warm sediment 
with abundant 
worm burrows, 
consisting of 
dark-brown 
colored dry 
sand 

a In-situ measurements             
b Measurements from closest automated monitoring station         
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Table 2. Summary from temperature gradient experiments of data in figure 1 

  Sulfate reduction Sulfate reduction rates (nmol cm-3 day-1)    

Study sites Topt (°C) Tcrit (°C) At 0°C  At Topt  % SRRa Range of linearityb 
(°C) 

Activation 
energy (kJ 

mol-1) 

Q10 

1  21  N/A  0.1  0.5  20  0, +21  51.2 2.0 

2  25  N/A  232  2233  10  0, +25  54.9 2.1 

3  26  N/A  15  161  9  0, +26  64.5 2.4 
4  35  N/A  12  518  2  0, +35  63.7 2.4 
5  35  N/A  13  236  5  0, +35  67.0 2.5 
6  42  13  5  316  2  +13, +42  44.6 1.8 
7  38  11  1  55  2  +11, +38  55.7 2.1 
8  40  18  0.02  21  0.1  +18, +40  97.4 3.7 
9  44  6  1  25  3  +8, +44  36.0 1.6 

a % of SRR at 0°C of max SRR at Topt          
b The term "Range of linearity" refers to the linear part of the Arrhenius plot  
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Appendix 
 

Temperature effects on the microbial community composition in 
Arctic and temperate marine sediments 

 
 
 
 
Abstract  
 

Understanding the impact of increasing temperature on microbial community in Arctic 

Ocean may help us to asses and predict the response of carbon cycling to warming in this 

sensitive region. We have used denaturing gradient gel electrophoresis (DGGE) as a 

fingerprint technique to screen sedimentary microbial community composition in Arctic and 

temperate sediments exposed to elevated temperature over a year. Changed DGGE banding 

pattern in both sediments suggest that long term exposure to increased temperature changes 

sedimentary microbial community composition.  

Introduction  
 

The Arctic Ocean is experiencing currently changes due to anthropogenic and natural 

factors that include warming, sea ice loss and ecosystem structure changes (Vincent, 2010). 

Since Arctic Ocean plays an important role in the global carbon cycle the response of 

microbial mediated carbon cycling has been currently studied in the water column and at the 

seafloor both at the in situ conditions and in the laboratory settings (Robador et al., 2009 and 

2010, Kirchman et al., 2005; Wohlers et al., 2009). To test whether microorganisms will be 

affected by increased temperature perturbation experiments are being performed in which 

experimental warming is applied. However, these short experiments might fail to incorporate 

the possibility of adaptations of extant communities over the long term or of shifts in 

community composition. Long term incubations allow for shifts in community in response to 

the manipulated environmental parameter.   
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Long term, 2-year incubation, performed on the permanently cold and temperate 

sediments has demonstrated that warming can have differential effect on sedimentary 

microbial communities (Robador et al., 2010). Studies on sulfate reducing bacteria (SRB) - 

key terminal oxidizers of organic matter in shelf sediments revealed the decline of specific 

groups of SRB and confirmed that microbial community composition of arctic sediments is 

particularly sensitive to elevated temperature, while these effect was not observed in a 

temperate sediment (Robador et al., 2009). In addition functional microbial groups in studied 

sediments reacted differently to long term warming (Robador et al., 2010).  The accumulation 

of DOC was observed suggesting that the activities of organisms and enzymes responsible for 

the solubilization/hydrolysis of POC to DOC outpaced DOC consumption by sulfate reducing 

bacteria (Robador et al., 2010). Low concentration of volatile fatty acids and temperature 

related decline in sulfate reduction rates demonstrate close coupling between sulfate reduction 

and fermentation of volatile fatty acids. It was hypothesized that the net accumulation of DOC 

in warming marine sediments could be related to a change in the composition of the microbial 

community in response to permanent temperature increases. 

Our study provides insight into the response of sedimentary microbial community 

composition to increased temperature scenario. Using DGGE technique we screened for 

changes in microbial community composition in permanently cold Arctic sediment samples 

and temperate sediment samples, incubated at increased temperatures for a year. We 

hypothesized that increased temperature would affect microbial community composition in 

Arctic sediment, but would have no effect on the community composition in temperate 

sediment.  
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Material and Methods 
 
Sampling site 

The sediments were collected, from a permanently cold region (Svalbard, Arctic 

Ocean, 79°420N, 11°050E; sediment temperature typically around 0 °C) in 2008.  The study 

site was in the central part of Smeerenburgfjord, on the west coast of Svalbard, Arctic Ocean 

(Station J; 79°42 N, 11°05 E; water depth 215 m). At the times of sampling the temperature 

was 1.6°C. Sediment was brown-coloured in the upper 2 cm, and contained numerous worm 

burrows and occasional drop stones and brittle stars. Below ca. 3 cm depth, the sediment was 

clayey and changed to a mottled dark grey-black. Sediments were collected with a haps corer.  

Sediments were also collected from a temperate region and the site was located in Aarhus Bay 

in Denmark. Samples were collected with a box corer in January 2009. The water depth is 15 

m and the sediment is silty clay (organic carbon: ca. 3% dry weight). In situ temperatures vary 

between 4 and 15° annually (Rasmussen and Jørgensen 1992). Aarhus Bay is located in the 

North Sea Baltic Sea transition, and salinity of bottom waters varies between 23 and 33 %o 

(Arnosti et al. 1998). 

Sediments from all sampling sites were transferred into 2 l gas-tight plastic bags 

(Hansen et al., 2000) without airspace and stored at in situ temperatures until further 

processing. These bags allowed the long-term incubation of anoxic sediment for the study of 

microbial and geochemical processes over time. Homogenization was performed by simple 

kneading, thus avoiding continuous stirring, introduction of a gaseous headspace or dilution 

with seawater.  

Sediments from Smeerenburgfjorden collected in 2008 and from Aarhus Bay collected 

in 2009 were incubated at 4°C, 10°C and 20°C after collection and also subsampled 

periodically. To maintain anoxic conditions, sediment was sub-sampled under nitrogen gas 

using an inflatable polyethylene glove bag (Two-hand Atmos- Bag, Aldrich). In order to 
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avoid the depletion of the electron acceptor for sulfate reduction, prior to every sub-sampling 

of sediment, incubation bags were homogenized for 10 min by manual kneading and sulfate 

concentrations in pore water were measured as previously described. Experimental bags 

contained sediment of a known volume and porosity. In order to avoid sulfate limitation of 

carbon remineralization during the 24-month incubation, sulfate was added to the bags to 

reconstitute in situ concentrations whenever concentrations decreased to 3–5 mM. 

Experimental bags were not replenished with any organic substrates as continuous 

amendments may result in the enrichment of particular microbial populations over the course 

of the experiment. 

Sediments from Smeerenburgfjorden collected in 2008 and from Aarhus Bay 2009 

were sampled periodically after 2 and 12 months and subsamples were taken for DNA 

extractions and further fingerprinting-DGGE analysis.  

DNA extraction and PCR amplification  

DNA was extracted, from the sediment using the Power Soil Kit (MolBio#12888-50). 

The 16S rRNA gene was amplified as described by Muyzer et al. (1997) with the universal 

primer 907R and the bacterial primer GM5F with a GC clamp (Muyzer et al., 1997). A PCR 

protocol was used as described by Muyzer et al. (1997) except that “touchdown” PCR was 

used to increase the specificity of the amplification and to reduce the formation of by-products, 

i.e., the annealing temperature was set 10°C above the expected annealing temperature and 

decreased by 1°C every two cycles until an annealing temperature of 55°C was reached at 

which nine additional cycles were performed. The program started with a hot start at 94°C for 

five minutes (20 cycles in total) (Muyzer et al., 1997).  

Denaturing gradient gel electrophoresis  

Denaturing Gradient Gel Electrophoresis (DGGE) was performed using a Bio-Rad 

DeCode system (BioRad, Munich, Germany). Polyacrylamide gel gradients (20-80%) were 
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poured with a gradient pump (Econo Gradient Pump, Bio-Rad, Munich, Germany). The gel 

was polymerized by adding 10% ammonium persulfate (APS) and Temed (BioRad, Munich, 

Germany) before pouring the gel. 80 μl of each PCR product was applied onto the gel and the 

DGGE was then performed at 60°C and a constant voltage of 200 V for 3.5 hours. After 

electrophoresis the gel was incubated for 30 min in an aqueous ethidium bromide solution 

(0.5 μg/L) and visualized on a UV transilluminator (LTF-Labortechnik, Wasserburg, 

Germany). The DGGE bands were then excised with a sterile scalpel and eluted in 30 μl 

sterile water for two days at 4°C. These bands were PCR reamplified using 5 μl of the eluted 

bands as PCR template. PCR product was amplified as described by Muyzer et al. (1997). A 

PCR program used was as follows: 95°C for 5 min, 94°C for 1 min, 46°C for 2 min, 72°C for 

1min. After purifying the PCR products with the QIA quick PCR purification kit, the products 

were sequenced. 

 

Results  

Smeerenburgfjorden 

DGGE analysis of bacterial 16S rRNA gene fragments showed for the Arctic samples 

revealed changes in community composition as a result of treatment. All manually scored 

bands from the DGGE image are marked with circles and bands for further analysis are 

numbered. A total of 4 bands were scored for original Arctic sediment. The number of bands 

has changed in the course of the experiment. Only two bands (1 and 3) were constant 

throughout the experiment. The band number 2 was detected in the sediment incubated at 4ºC 

and 10ºC after two months experiment. After 12 months of incubation band was visible only 

in the sediment incubated at 4ºC; marked as band number 5.  In the sediments incubated at 

higher temperatures this band was not detected suggesting that temperature affected presence 

of a species. Band number 4 was detected only in the original Arctic sediment sample it was 
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not present in the other sediments subject to treatment. Three new bands have appeared as a 

result of treatment in the Arctic sediments. Bands number 6 and 8 were detected in the 

sediment incubated for 12 months at 20ºC. Band number 7 appeared already after two months 

of incubation in sediments at all temperatures. The band was faint after two months of 

treatment, but it has become more visible after 12 month incubation at 20ºC.   

 

 

 

Figure 1. DGGE profiles for 16S rRNA gene fragments obtained from DNA extracted from Arctic 
sediment samples incubated for different times at increased temperatures. 
 

Temperate sediment Aarhus Bay  

In the Aarhus Bay sediment samples 16S rRNA DGGE profile was not resolved 

properly, however it is visible that DGGE profile varied throughout the experiment as a result 

of treatment. Only one band, numbered 1 was constant in the course of the experiment. The 

band number 2 has appeared in all sediments incubated at different temperatures after 2 

months of experiment. 
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Discussion/Outlook  

The increasing temperature may cause changes in microbial community composition 

and reshape microbial carbon cycling in the Arctic Ocean. Our study shows shifts in microbial 

community composition as a result of increased temperature treatment, both in permanently 

cold and temperate sediments. The disappearance of some species in the Arctic sediments and 

appearance of new ones after year of incubation at elevated temperature suggest that richness 

might change due to perturbations. 

 

Figure 2. DGGE profiles for 16S rRNA gene fragments obtained from DNA extracted from temperate 
sediment samples incubated for different times at increased temperatures. 
 

Previous studies demonstrated the steady decrease of the microbial cells and the relative 

contribution of Bacteria and specific groups of SRB to the total microbial numbers with 

increasing incubation time and temperature in the Arctic sediment. It implies that a large 

fraction of the community was negatively affected by the 10°C and 20°C long-term 

incubation temperatures. In contrast such change was not observed in the temperate sediment 

sample (Robador et al. 2009).  
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It is unknown whether compositional shifts will affect ecosystem processes and 

whether the disturbed community will be functionally similar to the original community 

(Reed and Martiny, 2007; Allison and Martiny, 2008). If an ecosystem lost an entire 

functional group, their absence would clearly impact the functioning of an ecosystem. On the 

other hand some species in a microbial community can be functionally redundant, thus the 

functioning of ecosystem might not be affected by their disappearance (Reed and Martiny, 

2007; Allison and Martiny, 2008).  

To help predict carbon cycling under changing environmental conditions long term 

studies on the microbial community composition are needed. It is also important to measure 

the rates of organic matter degradation to make the link between the community composition 

and sedimentary carbon cycling before and after a disturbance manipulation but before 

microbial composition changes. These measurements give some idea about the direct effect of 

the disturbance on process rates independent of community composition. 
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Concluding remarks  
 

Psychrophilic and mesophilic SRB have adapted their energy metabolism to 

environmental temperatures. Thus, thermal groups of microorganisms exhibit globally a 

biogeographic pattern. It is predicted that increasing temperatures in permanently cold 

environments (i.e. arctic) will alter biogeographic pattern of thermal groups of 

microorganisms in polar regions. Invasive microbial species from warmer environments (i.e., 

warmer latitudes / water bodies) may be generalists having broader thermal tolerances, and 

are expected to flourish at the expense of psychrophilic species (Vincent, 2010). This 

expectation is corroborated by the present study of the highly dynamic Namibian and 

Argentinean slope systems identifying the transport of allochthonous mesophilic bacteria from 

warmer to colder environments by a change in the overall temperature response profile of a 

microbial community. 

Accepting this scenario, two major questions arise; 1) Are the psychrophilic and 

psychrotolerant species displaced (i.e. do they become extinct) or maintained (i.e., less active 

community members as less active community members), and 2) Is this an environmentally 

significant question?  

The present study provides insight into these two issues and provides approaches on 

how they can be addressed. The study of the Namibian and Argentinean slope systems implies 

that the transport of mesophilic SRB to the slope sediments does not displace psychrophilic 

bacteria present at the deep sea floor. Temperature response depth profiles of sediment cores 

from these environments could give information on the temperature response of SRB, and 

thus elucidate whether allochthonous mesophiles from the surface sediment survive burial, or 

if psychrophiles prevail. Such a study, would not only reveal if the subsurface SRB 

community in deep water sediments is preferentially psychrophilic, but also explore 
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competitive advantages psychrophilic and psychrotolerant SRB may have over mesophilic 

SRB. These could include the ability to survive under low energy conditions, or to access 

non-competitive substrates.  

The finding that mesophilic SRB to the slope sediments do not displace psychrophilic 

bacteria at the deep sea floor does not disprove the possibility that the transport of warm 

adapted microorganisms will impact the present distribution of psychrophiles, 

psychrotolerants and mesophiles and will have a permanent effect on the distribution of 

thermal groups of microorganisms in permanently cold environments. This leads us to the 

second question, if such a study would have an environmental significance.  

It is not known whether the community affected by a temperature increase will be 

functionally similar to the original community (Reed and Martiny, 2007, Allison and Martiny, 

2008). It is very well possible that some species in a microbial community can be functionally 

redundant, thus the local biogeochemistry might not be affected by their disappearance (Reed 

and Martiny, 2007; Allison and Martiny, 2008). With regard to this topic, we therefore, need 

to anticipate what functionalities between psychrophiles and mesophiles may not be fully 

redundant. Experiments on freeze-thaw conditions presented here, together with the 

awareness that rapid climate change causes not only temperature increases, but also more 

variable weather conditions provide a starting point: this work demonstrates that Arctic tidal 

flat microbial communities can withstand moderate freeze–thaw conditions, which thus have 

little effect on microbially mediated organic carbon degradation. Drastic freeze-thaw 

conditions impacted the sulfate reducing community. A mesophile-dominated SRB 

community may be much more impacted by both moderate and drastic freeze-thaw conditions.  

To address these questions in detail longer-term studies on the microbial community 

composition are required. These should monitor both shifts in community composition (e.g. 

by tracking disappearing and emergent species of different functional groups by DNA/RNA 
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based methods) as well as biogeochemical process rates in response to the manipulated 

environmental parameters. Such experiments are best carried out under continuously 

maintained conditions where accumulation of metabolites can be avoided. In the rapidly 

changing Arctic, close attention will need to be paid not only to the temperature response of 

microorganisms, but also to the structure and functioning of microbial communities.  
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