Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Predicting microbial nitrogen pathways from basic principles

MPG-Autoren
/persons/resource/persons210804

Strous,  M.
Microbial Fitness Group, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

van de Leemput, I. A., Veraart, A. J., Dakos, V., de Klein, J. J. M., Strous, M., & Scheffer, M. (2011). Predicting microbial nitrogen pathways from basic principles. Environmental Microbiology, 13(6), 1477-1487.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-C981-A
Zusammenfassung
Nitrogen compounds are transformed by a complicated network of competing geochemical processes or microbial pathways, each performed by a different ecological guild of microorganisms. Complete experimental unravelling of this network requires a prohibitive experimental effort. Here we present a simple model that predicts relative rates of hypothetical nitrogen pathways, based only on the stoichiometry and energy yield of the performed redox reaction, assuming competition for resources between alternative pathways. Simulating competing pathways in hypothetical freshwater and marine sediment situations, we surprisingly found that much of the variation observed in nature can simply be predicted from these basic principles. Investigating discrepancies between observations and predictions led to two important biochemical factors that may create barriers for the viability of pathways: enzymatic costs for long pathways and high ammonium activation energy. We hypothesize that some discrepancies can be explained by non‐equilibrium dynamics. The model predicted a pathway that has not been discovered in nature yet: the dismutation of nitrite to the level of nitrate and dinitrogen gas.