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When we try to pick out anything by itself, we find it hitched
to everything else in the universe.

John Muir (1838 - 1914)





Thesis Abstract

The field of marine ecological genomics is evolving at an unprecedented pace.
The increasingly cheaper and faster sequencing technologies present new pos-
sibilities but also new challenges. The sheer amount of sequencing data re-
quires elegant solutions for storing, querying and exchanging it. Addition-
ally, sequences alone are not enough to understand the complex interactions
between microorganisms and the marine environment. Comprehensive en-
vironmental and contextual metadata are needed to put the sequences into
context. However, the integration of sequence and metadata is not a trivial
task.
The aim of this thesis was to enhance the field of marine ecological genomics
by fulfilling two tasks. Firstly, the technology necessary for data integration,
visualization and analysis was set up. Secondly, this technological platform
was used to support three ecological analyses of marine microbes. The first
task was addressed by improving the existing portal for marine ecological
genomics (http://www.megx.net). The main goal of megx.net is to integrate
sequences and their metadata based on geographic location. The focus lies
on environmental parameters such as temperature, salinity and nutrients.
As a result of this thesis, megx.net profits from a new data model, a new web
interface, improved visualization and analysis tools. For the second task, the
integrated resources offered by megx.net were used. The effect of environ-
ment stability on the transcription factors content of microbial communities
was quantified using interpolated environmental data. In a second study,
interpolations were used to give environmental context to new hypothesis for
domains of unknown function in the marine metagenomes. Last but not least,
a study of the community structures of high- and low-DNA content marine
microbes was complemented with integrated metadata.
The extended technological platform megx.net was successfully used to gain
new insights into the ecology of marine microbes.
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CHAPTER 1

INTRODUCTION

1.1 Marine Microbes

1.1.1 Ecology and impact

In the history of biological sciences, the importance of prokaryotes has

only recently been recognized. Antonie van Leeuwenhoek, the founder

of microbiology, discovered ’miniscules’ in the 17th century. It took

his successors about 200 years to realize how massive the distribution

and the impact of these microorganisms really is. Following the work

of Robert Koch, pathogenic microbes have been under close scrutiny

for over 100 years now. Once bacteria-induced diseases were under-

stood, new challenges arose. Some of them, like anthropogenic impact

on global processes (e.g. food chains, climate), are amongst the most

discussed topics of our time. In order to address these topics, we need

to understand the complex nature of microbes and how they interact

with their environment.

Largely underestimated at first, the total number of prokaryotes on

Earth is now estimated to be around 4–6 × 1030. Their carbon content

is close to that of all other living organisms combined. Despite their

miniature size, prokaryotes comprise the largest pool of organic nitro-

gen and phosphorus [Whitman et al., 1998]. The largest bacterium

known to date, Thiomargarita namibiensis, is about 750 µm in diam-

eter [Schulz et al., 1999]. The tiniest Archaea, Thermodiscus, reach

only 0.2 µm in diameter. Differences in volume cover a range of 10

orders of magnitude [Schulz and Jorgensen, 2001]. Microbes can be

found almost everywhere and the human body is no exception. It har-

bors somewhere between 10 and 100 times more bacterial cells than

the eukaryotic cells it is made of (estimated 1013) [Savage, 1977,Berg,

1996]. Microorganisms inhabit even the harshest environments: hy-
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persaline, hyperthermal, and highly acidic [Kivistö and Karp, 2010,Hu-

ber et al., 2000,Tyson et al., 2004]. The diversity of niches microorgan-

isms occupy can probably only be matched by their metabolic diversity.

Microbes are capable of using different energy sources (e.g. light, in-

organic chemicals), under various conditions (e.g. aerobic, anaerobic)

to utilize both organic and inorganic carbon sources [Madigan et al.,

2003]. They not only produce the compounds they need but can also

make them available for other micro- and macro-organisms. A promi-

nent example is nitrogen fixation, where atmospheric nitrogen (N2) is

converted to ammonia (NH3) which is essential for protein synthesis.

This process is only carried out by prokaryotes. Some of them are

free-living but many have been ’adopted’ as symbionts by eukaryotic

organisms [Fiore et al., 2010,Francis et al., 2007].

About 10 years ago, the world ocean was recognized to be one of the

biggest reservoirs of microorganisms. It harbors a total of 1029 micro-

bial cells or around 105 cells per milliliter of seawater [Whitman et al.,

1998]. Many of the important processes take place in the upper 200

meters of ocean water where approximately 3 × 1027 autotrophic mi-

crobes live. Autotrophic organisms are capable of producing organic

matter from inorganic carbon. This process is also known as primary

production. Microbial-driven primary production is essential for all life

on earth: marine prokaryotes have high nutrient turnover rates and fix

the same amount of CO2 as terrestrial plants [Field, 1998,Woodward,

2007]. The global ocean is the major reservoir of inorganic carbon,

holding 50 times more of it than the atmosphere. Atmospheric CO2

concentrations depend on the equilibrium transport to and from the

ocean. Both biotic and abiotic factors influence the solubility of in-

organic carbon in marine water. The abiotic factors are temperature,

alkalinity and salinity of the surface waters [Raven J. A. and Falkowski,

1999]. The biotic factors include the incorporation of carbon into

biomass and is more complicated. For example, carbon is constantly

being removed form the surface to the deep ocean where it is trapped

on geological scales (millions of years). This phenomenon, known as

the biological pump (BP), is based on sinking particles. Although the

BP keeps the levels of atmospheric CO2 down to half of what they would

be without it, it is not a perfect process. Cell lysis by grazers and espe-

cially by viral infection converts particulate organic matter (POC) back
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to dissolved. It is then available for re-use by living organisms or gets

transported to the atmosphere. The role of viruses in releasing the

trapped POC is known as the viral shunt [Suttle, 2005,Suttle, 2007].

Since the industrial revolution, the human input of CO2 to the atmo-

sphere has been substantial and has given grounds for much debate

and concern. Therefore, the role of the ocean as a natural sink for CO2

is of great interest. Iron fertilization experiments attempt to boost the

uptake of atmospheric CO2 by causing artificial phytoplankton blooms

in iron-limited areas of the ocean. So far the results are controver-

sial about the efficacy and large-scale applicability of such [Raven J. A.

and Falkowski, 1999,Smetacek and Naqvi, 2008]. This comes to show

that we need the thorough understanding of marine microorganisms,

before we can harvest their abilities.

Marine microorganisms have a far-reaching impact on our lives. Mi-

crobial ecologists struggle to better understand this impact, learn to re-

liably predict it and maybe, in time, to steer it. The complex nature of

microorganisms, their metabolic abilities, community structures and

interactions with the environment are far from trivial to determine. It

requires an interdisciplinary approach covering fields from biology to

informatics.

1.1.2 Towards culture-independent interrogation

of microbial communities

Unlocking the secrets of marine microbes requires the application of a

vast array of techniques and approaches. Classical microbiology deals

with cultivation and characterization of organisms. It is able to address

but a tiny portion of the microorganisms we know exist. The vast ma-

jority of them (95-99%) remain ’unseen’ in pure culture [Amann et al.,

1995]. It is very likely that specific conditions from their habitats that

cannot be mirrored in the laboratory. Symbiotic dependencies between

members of the communities are perfect examples of such conditions.

Marine surface water communities were shown to be dominated by

bacteria which are adapted to oligothrophic conditions and are less

amenable to cultivation [Lauro et al., 2009]. Instead of being discour-

aging, these facts prompt the use of different techniques to learn the

more about the unculturable majority in order to surpass the cultiva-
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tion barrier. For example, using molecular biology and genomics to

establish their community structure and metabolic capabilities. Well

established molecular techniques like Fluorescence In-Situ Hybridiza-

tion [DeLong et al., 1989,Amann et al., 1990] have proven indispens-

able in characterizing the community structure of planktonic prokary-

otes [Grossart et al., 2005,Schattenhofer et al., 2009,Simonato et al.,

2010]. Nevertheless, many molecular techniques are time- and effort-

consuming, making large-scale comparative studies hard to carry out.

Their results depend largely on the protocols used, making compar-

ison between similar studies difficult. The basic culture-independent

approach to microbial diversity was developed as far back as the 1980s

[Pace et al., 1985]. PCR technology eliminated the culturing bottle-

neck for microbial diversity studies. The uncultured majority of mi-

croorganisms were shown to be highly diverse and sometimes only dis-

tantly related to the culturable few [Rappé and Giovannoni, 2003]. The

culture-independent methods for accessing microbial diversity, despite

offering many new insights and advantages, do not invalidate culturing

efforts. On the contrary, the two complement each other. Members of

the SAR11 clade represent around a third of the prokaryotic cells in

the ocean surface waters. This discovery, based on 16S rRNA signa-

tures, prompted even more culturing efforts, in order to more properly

describe these key marine organisms [Handelsman, 2004].

Culture independent methods for diversity analysis are a major step

towards better understanding of marine microbial communities. Once

the major members of the community are identified, the next questions

is what functional repertoire they have. To give an answer, community

genomics, or metagenomics, is used.

1.2 Metagenomics

1.2.1 From single genes to community genomics

Genomics is the study of sequenced hereditary material (DNA). Its

foundations were laid in the late 1860s with the discovery of DNA

[Dahm, 2007]. However, it was not until the early 1970s before the first

RNA bases were sequenced [JOU et al., 1972], and another 20 years
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until the launch of the Human Genome Project in 1990. It took about

10 years to produce a draft of the human genome. The technologies

and experience gathered along the way benefited the whole field of ge-

nomics. Meanwhile in 1995, the first complete genome was sequenced.

The organism was Haemophilus influenzae, a pathogenic bacterium

which infects humans [Fleischmann et al., 1995]. Only 10 years later

genomics had evolved quickly from studying single genes to compar-

ing several hundred genomes. However, the culturing bias influences

greatly which complete genomes are available [Pace, 1997]. Easily cul-

turable and highly abundant species are far better represented. The

Microbial Earth Project1 aims to obtain a draft genome from all avail-

able type strains. Its pilot program, the Genomic Encyclopedia of Bac-
teria and Archaea (GEBA), showed promising results on the way to ’fill

the gaps’ in the phylogenetic tree. [Wu et al., 2009]. An alternative

approach to circumvent the culturing bias is to sequence and analyze

whole microbial communities, a technique know as metagenomics.

Metagenomics is a term coined by Handelsman and coworkers in 1998

[Handelsman et al., 1998]. It describes the sequencing and analysis of

whole microbial communities from environmental samples. Commu-

nity genomics, environmental genomics and population genomics are

often used as synonyms. Direct cloning of DNA from environmental

samples was proposed in the late 80s [Pace et al., 1985]. Metagenomics

involves DNA isolation from an environmental sample, cloning of the

DNA into a vector, and transforming the clones into a host bacterium.

Depending on the scientific questions several approaches can be taken

from here on. The transformed clones can be screened for phyloge-

netic markers (e.g. 16S rRNA) of a target organism or clade. Once

these are found, the respective clones can be completely sequenced to

reveal the functional potential of the target clade. Reversely, one could

screen for a functional gene of interest first and try to identify the re-

sponsible organisms as a next step. Since the sequencing revolution,

either random sequencing of clones or high throughput sequencing

of complete DNA libraries offer unprecedented insights into commu-

nity structure and functional potential on different scales [Riesenfeld

et al., 2004, Handelsman, 2004]. Moreover, genome reconstruction

1http://genome.jgi-psf.org/programs/bacteria-archaea/MEP/index.jsf

http://genome.jgi-psf.org/programs/bacteria-archaea/MEP/index.jsf
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from metagenomic samples can narrow down the analysis to specific

clades or single organisms in a culture-independent way [Venter et al.,

2004, Meyerdierks et al., 2010]. Such analysis might reveal key pa-

rameters necessary for the successful isolation of yet unculturable or-

ganisms. Examples of the unexpected findings in metagenomic data

are ample. In a cornerstone work, DeLong and coworkers reported

the discovery of an archaeal 16S rRNA gene in a metagenomic library

constructed from seawater [Stein et al., 1996]. Bacterial rhodopsins

were found in a uncultured γ-Proteobacterium [Béjà et al., 2000]. It

proved marine autotrophs possess a light-driven proton pump based

on other pigments than chlorophyll. Further metagenomic studies re-

vealed high diversity of bacterial proteorhodopsins [Venter et al., 2004].

As any other technique, metagenomics presents some challenges. Among

them are the library size, the detection of phylogenetic anchors and the

lack of functional confirmation [Riesenfeld et al., 2004,Warnecke and

Hugenholtz, 2007]. The size of a metagenomic library determines the

coverage of the genetic material and the likelihood to also cover the

rare species in a sample. A metagenomic library from 1 ml of sea-

water should have a size of approximately 500 Gbp to properly de-

pict the species richness, including the rare members of the commu-

nity [Riesenfeld et al., 2004]. Libraries from such sizes are costly to pre-

pare and produce enormous amounts of data. Linking the metabolic

potential of a community to the identity of its members often relies

on finding and correctly identifying a phylogenetic marker like the 16S

rRNA gene. However, the number of bacterial rRNA operons per cell

varies form 1 to 15 and is influenced by growth rate [Klappenbach

et al., 2000]. This means that slow growing, difficult to culture bac-

teria will be under-represented in 16S libraries. Ways to circumvent

such problems include increasing the sequence coverage, followed by

some level of assembly, and using several phylogenetic markers simul-

taneously. Assembling metagenomic fragments is not a trivial task,

especially for short reads (75-100bp) which are common for current

sequencing technologies (e.g. Illumina). The issue of identifying com-

munity members is being addressed in several ways. Complex commu-

nities can be separated into subsets by applying molecular techniques

such as fluorescence-activated cell sorting [Warnecke and Hugenholtz,

2007]. Such studies have already broadened our understanding of
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marine microbial communities [Kalyuzhnaya et al., 2008,Woyke et al.,

2009,Tripp et al., 2010,Schattenhofer et al., 2011]. Multiple displace-

ment amplification (MDA) is a method to amplify DNA starting with

very little template. It enables single cell genomics and allows ge-

nomic access to the rare members of microbial communities [Binga

et al., 2008]. Next-generation sequencing technologies promise faster,

cheaper, more accurate sequences with longer read length [Metzker,

2009]. This would allow better assembly and the application of estab-

lished in silico methods which are designed for longer sequences. In

the mean time, novel in silico applications make use of Self-Organizing

Maps for binning and phylogenetic classification of short sequencing

reads [Martin et al., 2008, Weber et al., 2011]. Last but not least,

metagenomic data can only describe the functional potential of micro-

bial communities. If and when this potential is realized is a question to

be answered by investigating the community’s transcriptome and pro-

teome.

Metagenomics has revolutionized marine microbial ecology. It offers

unprecedented insights into the gene pool and diversity of microbial

communities, which are inaccessible through culture-dependent ge-

nomics. Despite its limitations, metagenomics is one of the most con-

sequential techniques of our time.

1.2.2 Ecological multi-omics

Some of the basic questions in microbial ecology have been around for

a long time: What is the structure of microbial communities in the

environment? What functions can these communities perform? How

do organisms interact with one another and with their environment?

Ecological genomics tries to answer these questions by interrogating

community genomics data. However, to fully understand the ecology

of microorganisms, additional methods must be used. The suffix ’-

omics’ is often applied to different fields of molecular biology to give

the meaning of ”studying all the parts together". Besides genomics,

transcriptomics and proteomics are the most relevant techniques for

studying marine microbial ecology.

Transcriptomics studies all the transcripts present in the cell at any

time. These include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs),
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transfer RNAs (tRNAs) and small nuclear RNAs (snRNAs). Transcrip-

tomics focuses primarily on mRNAs and their relation to certain con-

ditions that influence their expression: for example which genes are

expressed during the life cycle or which genes are up/down regulated

during feast and famine. Transcriptomics is a functional analysis be-

cause it studies the expressed functions in a cell, as compared to the

potential encoded in its genome (the field of genomics). The transcrip-

tome depends on the environmental conditions, physiological state,

developmental state and many other factors. Transcriptomics gives

a more concrete picture which genes are "active" at a certain time [van

Straalen and Roelofs, 2006]. The time frame is a limiting factor: an

interesting or important function might not be active at the time the

sample was taken and will not be detected by transcriptomics. Another

major limitation is the short lifetime of mRNA. It makes RNA extraction

a difficult task where time is of the essence.

Proteomics is a study which targets the entire protein content of or-

ganisms. It was made possible by advances in the mass spectrometry

analysis. It allows to fingerprint the proteins according to their mass.

The proteome of an organism often differs significantly from its tran-

scriptome. The reason is translational control which can be dictated by

physiological adaptation. Post-translational modification of proteins is

another mechanism contributing to this difference. The proteome and

the genome are connected through a complex feedback network. Some

proteins function as DNA binding transcription factors that influence

the activation or repression of genes. Others are involved directly in

transcription or translation. Still others are structural components of

chromosomes. If the aim of molecular biology is to study the cell in

full, then combining genomics with transcriptomics and proteomics is

the minimum effort required [van Straalen and Roelofs, 2006].

Both transcriptomics and proteomics have their extensions to study

whole microbial communities. Metatranscriptomics has contributed to

the better characterization of functional and taxonomic diversity of ma-

rine microbes, their role in the carbon cycle and the discovery of novel

gene categories [Gilbert et al., 2010,Frias-Lopez et al., 2008,McCarren

et al., 2010]. Metaproteomics has been used to study the functional

response of marine prokaryotes to different nutrient conditions [Morris

et al., 2010,Sowell et al., 2011]. Further ’omics’ approaches, focusing
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on protein interactions and metabolites, are also used to study micro-

bial systems [Zhang et al., 2010].

A thorough understanding of marine microbial communities requires

an integrative approach where results form metagenomic, metatran-

scriptomic and metaproteomic studies are combined. In order to in-

terpret these results in the ecological context we are interested in, a

detailed, precise and comparable description of the environment is es-

sential.

1.3 Metadata and Metaanalysis

1.3.1 Ecological genomics as an integrative science

Science, research, technology, innovation. These terms describe dif-

ferent aspects of the same basic drive: struggle for knowledge. What

comes out of a sequencing machine is nothing more than raw data. It

has to be processed to arrive at information, which can be modeled into

knowledge. Then goals can be added to arrive at wisdom. Finally, val-

ues are included to create a vision. It is estimated that along this way,

less and less cognitive capacities are invested2. Applying this model

to ecological genomics would make data collection and initial handling

the most intellectually demanding. Indeed, any piece of data is only as

good as the information that can be extracted from it. Consequently,

in order to maximize the knowledge produced from ecogenomic data,

careful planing of its storage, querying and exchange is needed. Ad-

vanced technological platforms for data integration can provide long

term solutions to this task. This will allow us to concentrate our cog-

nitive capacities on the analysis, visualization and interpretation of

the data. Shifting the focus of our intellectual efforts is probably the

key to fully understanding microbial communities in the ocean. But

sequences alone are not enough and neither are the results of other

multi-omics approaches. Omics results should be examined in broad

ecological perspective, which is only possible after comprehensive inte-

gration with environmental and contextual metadata.

2http://www.cognitivecybernetics.com/PrimerFoU.html

http://www.cognitivecybernetics.com/PrimerFoU.html


12 Metadata and Metaanalysis

1.3.2 Meta- approach to marine microbial ecology

Metadata is best defined as data about data. The word meta is of

Greek origin (µετα) and one of its many meanings is "adjacent". Ex-

amples of metadata in genomics describe the sampling (e.g. date, time,

location, methods) and environmental conditions at the time. Metadata

is crucial to the interpretation of sequences in ecological perspective.

Metadata is usually collected according to the research plan of the sci-

entist collecting the samples. Later on, different questions might evolve

that require metadata that has not been collected. Our own experience

in megx.net project shows that only 5.3% of the completely sequenced

genomes have are georeferenced (i.e. the GPS coordinates of the sam-

pling location are known). Metadata is a prerequisite for interpreting

the ever growing metagenomic datasets. The Genomic Standards Con-

sortium (GSC) is developing a set of specifications for the minimum

information required to describe genomes, metagenomes and marker

genes [Field et al., 2008, Yilmaz et al., 2011b]. Namely, these are

the minimum information about a genome sequence (MIGS), its ex-

tension to the minimum information about a metagenome sequence

(MIMS) and the minimum information about a marker gene sequence

(MIMARKS). The standards are implemented in the form of checklists

which are based on discussions between a broad range of scientists.

Some data are considered mandatory and some are recommended. At

the moment no public sequence resource enforces the checklist, mak-

ing GSC compliance a matter of personal choice. The efforts of the

GSC are being rewarded already. The International Nucleotide Se-

quence Databases Consortium (INSDC) has begun to incorporate the

MIGS/MIMS/MIMARKS checklist as an additional structured text field

in their submission forms. The first tools for consistent contextual data

acquisition and submission are also available [Hankeln et al., 2010].

The whole process of integrating new standards into the big public re-

sources requires time and effort. In the meanwhile, samples are still

being taken, but scientists are advised to have the checklist in mind.

Currently, numerous institutions comply to the checklist but none en-

force it. The best level at which such quality control is applied is a

matter of discussion. Some believe the public databases should be re-

sponsible. However, the submitting party has the final word. On the
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other hand, metadata is most important for the interpretation of the se-

quences which is the basis of subsequent scientific publication. There-

fore, it might be better to let scientific journals require the submission

of MIGS/MIMS/MIMARKS compliant data to a public database before

publication. This scheme has the additional advantage of putting pres-

sure at the right spot: scientific output is still largely measured by

publishing units. Standardized contextual data needs to be uniform

not only in what is reported but how. A GSC project, Environment

Ontology3 (EnvO), provides a set of standardized terms to describe the

environment where samples were taken from [Hirschman et al., 2008].

The advantage of using ontologies is the increased comparability be-

tween datasets annotated with the same set of terms [Yilmaz et al.,

2011a].

Contextual metadata is of key importance for interpreting genomic se-

quences. It is often very dispersed and heterogeneous. Our own efforts

to integrate sequence data from some of the most widely used public

resources show that this is no easy task. Inconsistencies, mismatch-

ing data identifiers, different update cycles of resources are among the

most common impediments for smooth data integration. Even with the

appropriate standards in place, integration platforms have to be robust

and flexible at the same time.

1.4 Bioinformatic Challenges in Ecological Ge-

nomics

Second generation sequence technologies (e.g. pyrosequencing) drasti-

cally changed genomics. They are immensely cheaper and faster than

their predecessor, the Sanger sequencing technique, but produce sig-

nificantly shorter reads [Hugenholtz and Tyson, 2008,Shendure and Ji,

2008]. The short read length is often seen as a disadvantage in ecolog-

ical genomics. However, even 100bp sequences can sometimes suffice

for microbial community analysis [Liu et al., 2007]. Different sequenc-

ing technologies can be combined for better results. A technology with

comparatively longer read length (454 pyrosequencing) can be used

to produce reference sequences with low coverage. High-throughput,
3http://environmentontology.org/

http://environmentontology.org/
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low-read length technology (e.g. Illumina) can be then used to achieve

high coverage at low cost, by matching the short reads to the long

reference ones. Such an approach has been successfully applied to

assemble bacterial draft genomes [Croucher, 2009]. Sequence data

from current technologies offers unprecedented possibilities to study

microbial communities. However, its handling requires appropriate

bioinformatic tools [Shendure and Ji, 2008,Metzker, 2009]. The main

challenges posed by the huge amounts of second-generation sequence

data can be roughly divided into (1) storage, integration, and exchange

and (2) analysis, visualization, and interpretation. Bioinformatics ap-

plies computer science concepts to solve biological questions and helps

tackle at least the first two of these.

1.4.1 Storage, integration and exchange

In the last years, newly emerged resources and techniques facilitate the

use of high-throughput metagenomic data for exploring the ecology of

marine microbes. The Community Cyberinfrastructure for Advanced

Microbial Ecology Research and Analysis, in short CAMERA, offers

a data repository and bioinformatic tools for microbial metagenomic

data [Seshadri et al., 2007]. The Integrated Microbial Genomes (IMG)

system and its extension for metagenomes (IMG/M) combines metage-

nomic data with isolate microbial genomes [Markowitz et al., 2008].

Next to the International Nucleotide Sequence Databases Collabora-

tion (INSDC)4 they are the main repositories for microbial metagenomic

data. Data integration is of key importance for ecological genomics.

The Marine Ecological Genomics portal (www.megx.net) focuses in the

enrichment of isolate and metagenomic sequence data with metadata,

especially environmental parameters [Kottmann et al., 2010]. Data in-

tegration in genomics is a task that is complicated by the heterogeneity

of the data sources, general lack of standards for data description and

exchange [Goble and Stevens, 2008]. Data integration requires curated

data, but the way it is integrated should be curated as well [Goble et al.,

2008]. Providing a unified view of data from heterogeneous sources can

be realized in two ways. Either all data is collected in a centralized re-

source and updated regularly, or the original data providers agree on

4http://www.insdc.org/

http://www.insdc.org/
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a standardized exchange formats [Zhang et al., 2009]. The latter is

highly dependent on Internet technologies such as Web Services (WS)

and exchange formats. An extensible exchange format for MIGS/MIMS

compliant genomic data is already in place [Kottmann et al., 2008]. In-

ternet communication, offers the possibility to harvest the expertise of

a wide user community. The so called ’Wiki’ solutions are often used

for community annotation, although their design is not entirely appro-

priate for the task [Arita, 2009].

1.4.2 Analysis, visualization and interpretation

All resources mentioned above offer a selection of tools to access, vi-

sualize and analyze the data. The metagenomics RAST server is spe-

cialized resource for automatic functional and phylogenetic annotation

of metagenomic datasets [Meyer et al., 2008]. METAREP is a web 2.0

application for comparative metagenomics [Goll et al., 2010]. Diver-

sity analysis is addressed by tools like ESPRIT [Sun et al., 2009] and

the SILVA resource for quality-controlled rRNA [Pruesse et al., 2007].

These are just some prominent examples of a myriad of analysis tools

for high-throughput microbial ecology.

Processing of metagenomic data is becoming so computationally in-

tensive that the analysis is getting more expensive than the sequenc-

ing [Editorial, 2009]. The GenBank database estimates the doubling

time of sequence data is around 18 months5(Figure 1.1). Current and

upcoming large sequencing projects will significantly shorten this pe-

riod. Moreover, advanced sequencing techniques will produce more

data faster (Figure 1.2) [Metzker, 2009]. Moore’s law states that the

doubling time of CPU transistors is approximately 24 months6. How-

ever, computational power does not rely only on CPU but also on other

hardware components which do not improve with the same speed.

In other words, sequence data generation is steadily out-competing

the available computational resources and the trend seems to be ir-

reversible. Solutions to this problem lie in the development of novel

algorithms and the use of high-performance computing platforms. Ho-

mology searches have recently been accelerated up to 104 fold [Eddy,

5ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
6http://en.wikipedia.org/wiki/Moore%27s_law

ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
http://en.wikipedia.org/wiki/Moore%27s_law
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Figure 1.1: Increase of nucleotide sequence data in GenBank. Image
from http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html

http://www.ncbi.nlm.nih.gov/genbank/genbankstats.html


CHAPTER 1. INTRODUCTION 17

Figure 1.2: The capacity of sequencing technologies increases expo-
nentially. Image from [Stratton et al., 2009]

2009,Meinicke, 2009]. To efficiently increase the speed and lower the

cost of computation, such algorithms can be implemented directly in

the hardware of graphic cards [Manavski and Valle, 2008]. Cloud com-

puting can relax the computational bottleneck but cannot eliminate it

completely. The first case studies with metagenomic data are already

available [Schadt et al., 2010,Stein, 2010,Wilkening et al., 2009]. Last

but not least, analysis of large metagenomic dataset is no longer pos-

sible without appropriate statistical techniques. Statistics is essen-

tial for removing biases and making meaningful ecological interpreta-

tions [Schloss and Handelsman, 2008,Beszteri et al., 2010,Parks and

Beiko, 2010].

The low cost and high throughput of current and upcoming sequencing

technologies has transformed ecological genomics into a highly data-

intensive science. Sequence data generation clearly outpaces sequence

analysis. Therefore, innovative approaches for data handling, visual-

ization and analysis are required.
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1.5 Motivation and Research Aims

Sequence data is being generated faster than it can be processed and

the divide is getting bigger. This poses new challenges for its handling

and interpretation. Tight integration of contextual data, especially en-

vironmental parameters, is essential for improving ecological interpre-

tation of genomic data.

This work addressed the current integration needs of marine ecological

genomics in a two fold way (Figure 1.3). First, a bioinformatic plat-

form was developed to integrate sequence and contextual data (Section

2.2). Second, this platform was used for three ecogenomic analysis

of marine microbes. The adaption of microbes to fluctuations in their

environment was tested (Section 2.3). New hypotheses about protein

domains of unknown function were proposed2.4. Planktonic commu-

nities were compared using molecular methods and genomic data2.5).
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Figure 1.3: An overview of the contribution of this thesis to the ad-
vancement of marine ecological genomics.





CHAPTER 2

RESULTS AND DISCUSSION

2.1 Overview

This chapter presents the four research articles that best illustrate the

achievements of this thesis in regard to the Research Aims discussed

in section 1.5. A short overview of these publications follows.

1. Megx.net: integrated database resource for marine ecological
genomics
Authors: Renzo Kottmann, Ivalyo Kostadinov, Melissa Beth Duhaime,

Pier Luigi Buttigieg, Pelin Yilmaz, Wolfgang Hankeln, Jost Wald-

mann and Frank Oliver Glöckner

Published in: Nucleic Acids Research, 2010 Database Issue

Contribution: database, web page, Geographic-BLAST, data in-

tegration, the first two authors contributed equally to this work

Relevance: Describes the improvement of the Megx.net portal,

whose main task is to provide a geo-referenced integration of se-

quence and environmental data. The Megx.net project provides

infrastructure and analysis tools for marine ecological genomics.

2. Quantifying the Effect of Environment Stability on the Tran-
scription Factor Repertoire of Marine Microbes
Authors: Ivaylo Kostadinov, Renzo Kottmann, Alban Ramette,

Jost Waldmann, Pier Luigi Buttigieg, Frank Oliver Glöckner

Submitted to: Microbial Informatics and Experimentation

Contribution: designed the study (with RK), carried out all anal-

ysis, wrote the manuscript

Relevance: An ecological genomics study using interpolated envi-

ronmental data from megx.net. Exemplifies the use of integrated
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metadata for ecological analyses.

3. Ecological perspectives on domains of unknown function: a
marine point of view
Authors: Pier Luigi Buttigieg, Wolfgang Hankeln, Ivaylo Kostadinov,

Renzo Kottmann, Pelin Yilmaz, Melissa Beth Duhaime, and Frank

Oliver Glöckner

Submitted to: The ISME Journal

Contribution: computational protein domain frequencies using

Hidden Markov Models

Relevance: Generating hypothesis about the possible functions

of protein domains based on their co-occurrence patterns and en-

vironmental gradients.

4. Phylogenetic Characterisation of Picoplanktonic Populations
with High and Low Nucleic Acid Content in the North Atlantic
Ocean
Authors: Martha Schattenhofer, Jörg Wulf, Ivalyo Kostadinov,

Frank Oliver Glöckner, Mikhail V. Zubkov, Bernhard M. Fuchs

Published in: Systematic and Applied Microbiology, in press

Contribution: genomic data collection and integration

Relevance: A classic molecular ecology study of bacterial plank-

ton. Integrated metadata from megx.net was used.
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2.2 Megx.net: integrated database resource

for marine ecological genomics

Authors: Renzo Kottmann, Ivalyo Kostadinov, Melissa Beth Duhaime,

Pier Luigi Buttigieg, Pelin Yilmaz, Wolfgang Hankeln, Jost Waldmann

and Frank Oliver Glöckner

Published in: Nucleic Acids Research, 2010 Database Issue

Contribution: database, web page, Geographic-BLAST, data integra-

tion, the first two authors contributed equally to this work

Relevance: Describes the improvement of the Megx.net portal, whose

main taks is to provide a geo-referenced integration of sequence and

environmental data. The Megx.net project provides infrastructure and

analysis tools for marine ecological genomics.
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ABSTRACT

Megx.net is a database and portal that provides
integrated access to georeferenced marker genes,
environment data and marine genome and
metagenome projects for microbial ecological
genomics. All data are stored in the Microbial
Ecological Genomics DataBase (MegDB), which is
subdivided to hold both sequence and habitat data
and global environmental data layers. The extended
system provides access to several hundreds of
genomes and metagenomes from prokaryotes and
phages, as well as over a million small and large
subunit ribosomal RNA sequences. With the
refined Genes Mapserver, all data can be inter-
actively visualized on a world map and statistics
describing environmental parameters can be
calculated. Sequence entries have been curated to
comply with the proposed minimal standards for
genomes and metagenomes (MIGS/MIMS) of the
Genomic Standards Consortium. Access to data is
facilitated by Web Services. The updated megx.net
portal offers microbial ecologists greatly enhanced
database content, and new features and tools for
data analysis, all of which are freely accessible
from our webpage http://www.megx.net.

INTRODUCTION

Over the last years, molecular biology has undergone a
paradigm shift, moving from a single experiment science
to a high-throughput endeavour. Although the genomic
revolution is rooted in medicine and biotechnology, it is
currently the environmental sector, specifically the marine,
which delivers the greatest quantity of data. Marine
ecosystems, covering >70% of the Earth’s surface, host
the majority of biomass and significantly contribute to

global organic matter and energy cycling. Micro-
organisms are known to be the ‘gatekeepers’ of these pro-
cesses and insights into their lifestyle and fitness will
enhance our ability to monitor, model and predict future
changes.
Recent developments in sequencing technology have

made routine sequencing of whole microbial communities
from natural environments possible. Prominent examples
in the marine field are the ongoing Global Ocean Sampling
(GOS) campaign (1,2) and Gordon and Betty Moore
Foundation Marine Microbial Genome Sequencing
Project (http://www.moore.org/microgenome/). Notably,
the GOS resulted in a major input of new sequence data
with unprecedented functional diversity (3). The resulting
flood of sequence data available in public databases
is an extraordinary resource with which to explore
microbial diversity and metabolic functions at the molecu-
lar level.
These large-scale sequencing projects bring new

challenges to data management and software tools for
assembly, gene prediction and annotation—fundamental
steps in genomic analysis. Several new dedicated database
resources have recently emerged to tackle the current need
for large-scale metagenomic data management, namely
CAMERA (4), IMG/M (5) and MG-RAST (6).
Nevertheless, it is increasingly apparent that the full

potential of comparative genome and metagenome
analysis can be achieved only if the geographic and envi-
ronmental context of the sequence data is considered (7,8).
The metadata describing a sample’s geographic location
and habitat, the details of its processing, from the time
of sampling to sequencing and subsequent analyses are
important, e.g. modelling species’ responses to environ-
mental change or the spread and niche adaptation of
bacteria and viruses. This suite of metadata is collectively
referred as contextual data (9).
Megx.net is the first database to integrate curated con-

textual data with their respective genes, genomes and
metagenomes in the marine environment (10). Now, the

*To whom correspondence should be addressed. Tel: +49 421 2028974; Fax: +49 421 2028580; Email: rkottman@mpi-bremen.de
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extended megx.net database resource allows post factum
retrieval of interpolated environmental parameters, such
as temperature, nitrate, phosphate, etc. for any location
in the ocean waters based on profile and remote sensing
data. Furthermore, the content has been significantly
updated to include prokaryote and marine phage
genomes, metagenomes from the GOS project (2) and all
georeferenced small and large subunit ribosomal RNA
(rRNA) sequences from the SILVA database project (11).
The extended megx.net portal is the first resource of

its kind to offer access to this unique combination of
data, including manually curated habitat descriptors for
genomes, metagenomes and marker genes, their respective
contextual data and additionally integrated environmental
data. See the megx.net online video tutorial for a guided
introduction and overview at http://www.megx.net/portal/
tutorial.html (Supplementary Data).

NEW DATABASE STRUCTURE AND CONTENT

The Microbial Ecological Genomics DataBase (MegDB),
the backbone of megx.net, is a centralized database based
on the PostgreSQL database management system. The
georeferenced data concerning geographic coordinates
and time are managed with the PostGIS extension to
PostgreSQL. PostGIS implements the ‘Simple Features
Specification for SQL’ standard recommended by the
Open Geospatial Consortium (OGC; http://www
.opengeospatial.org/), and therefore offers hundreds of
geospatial manipulation functions.
MegDB is comprised of (i) MetaStorage, which stores

georeferenced DNA sequence data from a collection
of genomes, metagenomes and genes of molecular envi-
ronmental surveys, with their contextual data, and
(ii) OceaniaDB, which stores georeferenced quantitative
environmental data (Figure 1).

Contextual and sequence data content

Sequences in MetaStorage are retrieved from the Inter-
national Nucleotide Sequence Database Collaboration
(INSDC, http://www.insdc.org/). However, as of Septem-
ber 2009, GOLD reported 5776 genome projects,
of which, only 1095 were finished and published
(http://www.genomesonline.org/gold.cgi). As most of the
sequenced functional diversity is contained in these draft
and shotgun datasets, megx.net was extended to host draft
genomes and whole genome shotgun data. Currently,
MegDB contains 1832 prokaryote genomes (940 incom-
plete or draft) and 80 marine shotgun metagenomes from
the GOS microbial dataset. Marine viruses are a missing
link in the correlation of microbial sequence data
with contextual information to elucidate diversity and
function. Consequently, megx.net now incorporates all
sequenced marine phage genomes in MegDB, the first
step towards a community call for integration of viral
genomic and biogeochemical data (12).
In an effort towards integrating microbial diversity

with specific sampling sites, megx.net has been extended
to include georeferenced small and large subunit rRNA
sequences from the SILVA rRNA databases project

(11). Currently, only 9% (16S/18S) and 2% (23S/28S) of
over 1million sequences in SILVA SSUParc (16S/18S)
and LSUParc (23S/28S) databases are georeferenced.
With the implementation of the Minimal Information
about an Environmental Sequence (MIENS) standard
for marker gene sequences (http://gensc.org/gc_wiki
/index.php/MIENS), efforts are ongoing to significantly
improve this situation.

All genomic sequences in megx.net are supplemented
by contextual data from GOLD (13) and NCBI
Genome Projects (http://www.ncbi.nlm.nih.gov/genomes
/MICROBES/microbial_taxtree.html). The database is
designed to store all contextual data recommended
by the Genomics Standards Consortium, and is thus
compliant with the Minimum Information about a
Genome Sequence (MIGS) standard and its extension,
Minimum Information about a Metagenome Sequence
(MIMS) (7,9).

Furthermore, megx.net is the first resource to provide a
manually annotated collection of genomes using terms
from EnvO-Lite (Rev. 1.4), a subset of the Environment
Ontology (EnvO) (14). An EnvO-Lite term was assigned
to each genome project, identifying the environment
where its original sample material was obtained. The
annotation can be browsed on the megx.net portal
using, e.g. tag clouds, and may be used as a categorical
variable in comparative analyses.

Environmental data content

OceaniaDB was added to MegDB to supplement the
georeferenced molecular data of MetaStorage with
interpolated environmental parameters. When sufficient
date, depth and location measurements are provided,
any ‘on site’ contextual data taken at a sampling site can

Figure 1. General architecture of megx.net: DNA sequence data (from
INSDC) is integrated with contextual data from diverse resources (i.e.
manual literature mining and the GOLD database) and interpolated
environmental data. MegDB integrates the data conforming to OGC
standards and MIGS/MIMS specification. The core megx.net tools,
Genes Mapserver and Geographic-BLAST access the MegDB content.
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be supplemented by environmental data describing
physical, chemical, geological and biological parameters,
such as ocean water temperature and salinity, nutrient
concentrations, organic matter and chlorophyll.

The environmental data is retrieved from three sources:

(1) World Ocean Atlas: a set of objectively analysed (one
decimal degree spatial resolution) climatological
fields of in situ measurements (http://www.nodc
.noaa.gov/OC5/WOA05/pr_woa05.html);

(2) World Ocean Database: a collection of scientific,
quality-controlled ocean profiles (http://www.nodc
.noaa.gov/OC5/WOD05/pr_wod05.html); and

(3) SeaWIFS chlorophyll a data (http://seawifs.gsfc.nasa
.gov).

These data are described at 33 standard depths for
annual, seasonal and monthly intervals. Together, the
location and time data (x, y, z and t) serve as a universal
anchor, and link environmental data to the sequence and
contextual data in MetaStorage (Figure 1). As such,
megx.net integrates biologist-supplied sequence and con-
textual data (measured at the time of sampling) with
oceanographic data provided by third-party databases.
All environmental data are compatible with OGC stan-
dards (http://www.opengeospatial.org/standards) and are
described with exhaustive meta-information consistent
with the ISO 19115 standard.

Moreover, based on the integrated environmental data,
megx.net provides information to aid biologists in
grasping the ocean stability, on both global and local
scales. For all environmental parameters, the yearly
standard deviations of the monthly values can be viewed
on a world map, for easy visualization of high and low
variation sample sites. Furthermore, for each sample site,
users can view trends in numerous parameters.

USER ACCESS

Genes Mapserver

The Genes Mapserver (formerly Metagenomes
Mapserver) offers a sample-centric view of the
georeferenced MetaStorage content. Substantial
improvements to the underlying Geographic Information
System (GIS) and web view have been made. The website
is now interactive, offering user-friendly navigation and an
overlay of the OceaniaDB environmental data layers to
display sampling sites on a world map in their environ-
mental context. Sample site details and interpolated data
can be retrieved by clicking the sampling points on the
map (Figure 2).

The GIS Tools of the Genes Mapserver allow extraction
of interpolated values for several physicochemical and bio-
logical parameters, such as temperature, dissolved oxygen,
nitrate and chlorophyll concentrations, over specified
monthly, seasonally or annually intervals (Figure 2f).

Geographic-BLAST

The Geographic-BLAST tool queries the MegDB genome,
metagenome, marine phages and rRNA sequence data

using the BLAST algorithm (15). The results are
reported according to the sample locations (when
provided) of the database hits. With the updated
Geographic-BLAST, results are plotted on the Genes
Mapserver world map, where they are labeled by
number of hits per site (Figure 2). Standard BLAST
results are shown in a table, which also provides direct
access to the associated contextual data of the hits.

Software extensions to the portal

In addition to the services directly provided by megx.net,
the project serves as a portal to software for general data
analysis in microbial genomics.
MetaBar (http://www.megx.net/metabar) is a tool

developed with the aim to help investigators efficiently
capture, store and submit contextual data gathered
in the field. It is designed to support the complete
workflow from the sampling event up to the metadata-
enriched sequence submission to an INSDC database.
MicHanThi (http://www.megx.net/michanthi) is a

software tool designed to facilitate the genome annotation
process through rapid, high-quality prediction of gene
functions. It clearly out-performs the human annotator
in terms of accuracy and reproducibility.
JCoast [http://www.megx.net/jcoast; (16)] is a desktop

application primarily designed to analyze and compare
(meta)genome sequences of prokaryotes. JCoast offers a
flexible graphical user interface, as well as an application
programming interface that facilitates back-end data
access to GenDB projects (17). JCoast offers individual,
cross genome and metagenome analysis, including access
to Geographic-BLAST.

User test case

To demonstrate the interpretation of genomic content in
environmental context, consider a test case with the
marine phages. Marine phage genomes (18) and ‘viral’
classified GOS scaffolds (19) have revealed host-related
metabolic genes involved in, i.e. photosynthesis, phos-
phate stress, antibiotic resistance, nitrogen fixation and
vitamin biosynthesis. Geographic-BLAST can be used to
investigate the presence of PhoH (accession YP_214558), a
phosphate stress response gene, among the sequenced
marine phages. The search results can then be interpreted
in their environmental context, either as (i) average annual
phosphate measurements, or (ii) stability of phosphate
concentrations in terms of monthly SD (Figure 2c and
d). A closer look at a single genome sample site reveals
that in situ temperature was not originally reported
(Figure 2e), whereas the interpolated data supplements
this parameter, among others (Figure 2f).

Web Services

The newly extended version of megx.net offers program-
matic access to MegDB content via Web Services, a
powerful feature for experienced users and developers.
All geographical maps can be retrieved via simple web
requests, as specified by the Web Map Service (WMS)
standard. The base URL for WMS requests is
http://www.megx.net/wms/gms, where more detailed
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information on how to use this service can be found.
Megx.net also provides access to MIGS/MIMS reports
in Genomic Contextual Data Markup Language
(GCDML) XML files for all marine phage genomes
through similar HTTP queries, e.g. http://www.megx
.net/gcdml/Prochlorococcus_phage_P-SSP7.xml (7,9).

Other changes

The massive influx of sequence data in the last years will
out-compete the ability of scientists to analyze it (20). This
development already pushes megx.net’s capability to
provide comprehensive pre-computed data to the limit.
To better focus on integration of molecular sequence, con-
textual and environmental data, megx.net no longer offers
pre-computed analyses, especially considering that other
facilities, such as MG-RAST and CAMERA have
emerged. Furthermore, the ‘EasyGenomes Browser’ has
been replaced with links to the NCBI Genome Projects.

SUMMARY

Since its first publication (10), megx.net has undergone
extensive development. The web design has been
revamped for better user experience, and the database
content greatly enhanced, providing considerably more
genomes and metagenomes, marine phages and rRNA
sequence data.

Megx.net’s unique integration of environmental and
sequence data allows microbial ecologists and marine
scientists to better contextualize and compare biological
data, using, e.g. the Genes Mapserver and GIS Tools. The
integrated datasets facilitate a holistic approach to
understanding the complex interplay between organisms,
genes and their environment. As such, megx.net serves as a
fundamental resource in the emerging field of ecosystem
biology, and paves the road to a better understanding of
the complex responses and adaptations of organisms to
environmental change.

Figure 2. User test case: (a) BLAST sequence against the marine phage genomes to see the results on the Genes Mapserver. (b) View the BLAST hits
with underlying environmental data, such as (c) average annual phosphate values, or (d) stability of phosphate concentrations in terms of monthly
standard deviations. (e) BLAST result information can be displayed in a pop-up window, (f) where you can link out to megx.net’s GIS data
interpolator.
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Database access

The database and all described resources are freely avail-
able at http://www.megx.net/.

Continuously updated statistics of the content are avail-
able at http://www.megx.net/content. A web feed for news
related to megx.net is available at http://www.megx
.net/portal/news/. Feedback and comments, the most
effective springboard for further improvements, are
welcome at http://www.megx.net/portal/contact.html and
via email to megx@mpi-bremen.de.

Overall, it is important to note that the megx.net
website does not fully reflect the content and search
functionalities of MegDB. For any specialized data
request, contact the corresponding author.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract 

Background 

DNA-binding transcription factors (TFs) regulate cellular functions in prokaryotes, often in 

response to environmental stimuli. Thus, the environment exerts constant selective pressure on the 

TF gene content of microbial communities. Recently a study on marine Synechococcus strains 

detected differences in their genomic TF content related to environmental adaptation, but so far the 

effect of environmental parameters on the content of TFs in bacterial communities has not been 

systematically investigated. 

Results 

We quantified the effect of environment stability on the transcription factor repertoire of marine 

pelagic microbes from the Global Ocean Sampling (GOS) metagenome using interpolated physico-

chemical parameters and multivariate statistics. Thirty-five percent of the variation in total TF 

content could be explained by environment stability. Six percent was attributable to space but none 

to a combination of both space and stability. Some individual TFs showed a stronger relationship to 

environment stability and space than the total TF pool. 

Conclusions 

Environmental stability appears to have a clearly detectable effect on TF gene content in 

bacterioplanktonic communities described by the GOS metagenome. Interpolated environmental 

parameters were shown to compare well to in situ measurements and were essential for quantifying 

the effect of the environment on the TF content. It is demonstrated that comprehensive and well-

structured contextual data will strongly enhance our ability to interpret the functional potential of 

microbes from metagenomic data.  

Keywords 
transcription factors, ecological metagenomics, interpolated environmental data, multivariate 

statistics 
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Background 
Microorganisms constantly adapt to their environment to survive. An efficient response mechanism 

is the regulation of transcription, the first step in gene expression, according to environmental 

demands. Transcription factors (TFs) are the primary agents that perform transcriptional regulation 

[1]. They consist of a DNA-binding domain (DBD) that typically targets regulatory elements 

upstream of a gene and an effector domain [2]. The majority of TFs operate by influencing the 

downstream transcription process and can be classified into 10 super-families according to their 

DNA-binding mechanisms [3]. Based on the number of genes they regulate, TFs can be divided into 

'global regulators' and 'fine tuners' [4]. Both types exert targeted control over gene expression. 

Global regulators affect a larger number of genes from diverse metabolic pathways and respond to a 

wider set of stimuli [4, 5]. Conversely, fine tuners are triggered by more specific stimuli and control 

fewer genes. Up to 10% of bacterial gene products may be devoted to gene regulation [6], a 

proportion supported by in silico analysis of TF abundance in 123 bacterial and archaeal genomes 

[7]. Although the maximum number of TFs in prokaryotic genomes is bound by the degrees of 

freedom in their binding mechanisms, larger genomes tend to have more TFs [1, 3]. A greater 

number of TFs may enable more precise control of gene expression which is required by a complex 

lifestyle [6]. In general, free-living Bacteria and Archaea from dynamic environments possess more 

TFs than those from stable environments [8]. Recently, the effect of environmental factors on gene 

expression has been studied in the marine model organism Rhodopirellula baltica SH1
T 

[9]. 

Although only 2% of its gene content is dedicated to transcriptional control [10], it showed an apt 

regulation response to environmental stress. 

Palenik and co-workers (2006) reported that the gene content of two marine Synechococcus strains, 

one isolated from coastal waters and the other from the open ocean, reflect the variability of their 

respective environments [11]. The coastal strain possessed a higher number of sensors and response 

regulators when compared to the open ocean strain, allowing it to respond to its dynamic 

environment. Gianoulis and coworkers (2009) investigated the environmental adaptation of 
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metabolic pathways in the Global Ocean Sampling (GOS) metagenomes [12]. They observed no 

significant differences in the abundance of transcriptional/translational pathways between these two 

groups of samples, loosely described as open ocean and coastal. A more recent study described 

environmental adaptation in 197 marine microbial genomes and related the findings to the GOS 

metagenome [13]. The abundant cosmopolitan species which are adapted to slow growth in 

nutrient-poor conditions have a smaller genome size, lower metabolic plasticity, and fewer 

transcriptional regulators than their counterparts which are adapted to alternating periods of ‘feast 

and famine’. However, quantifying the effect of the environment on the transcription factor 

repertoire of marine microbes remains a challenge. A comprehensive set of environmental 

parameters, describing the samples at the time they were taken and the sampling location over 

monthly to yearly time scales, is a prerequisite for addressing this question. Unfortunately, 

environmental in situ measurements taken during sampling are often missing or incomplete. Even 

when they are at hand, they give only a static ‘snapshot’ of the environmental conditions. The use 

of interpolated parameters can help to overcome these shortcomings: they can replace missing 

values, describe sampling sites in different temporal scales and give indications of the stability of 

the environment. A few metagenomic studies have taken advantage of these features of interpolated 

environmental parameters. Gianoulis and coworkers (2009) validated imputed salinity values 

against extrapolations from the World Ocean Database [14]. Rusch and coworkers (2010) used 

monthly averages for nitrate and phosphate from the World Ocean Atlas (WOA) to study the 

Prochlorococcus clades detected in the GOS metagenome with respect to nutrient availability [15]. 

Here we investigated the influence of environment stability on TF gene content in the GOS 

metagenome [16, 17]. To this end, we (1) compared interpolated environmental parameters against 

on-site measurements to verify the predictive power of the interpolations used; (2) calculated a 

yearly stability measure for each environmental parameter based on 12 monthly averages; (3) 

applied an alternative method to standardize the metagenomic samples for size in order to make 
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protein domain counts comparable; (4) applied redundancy analysis (RDA) to assess the effect of 

environmental stability and space on the TF content; (5) used multiple linear regression (MLR) to 

identify possible dependencies between single TFs, combinations of stability parameters, and space. 

Results and Discussion 

Interpolated environment parameters compare well to in situ measurements 

We selected GOS samples where on-site measurements and monthly interpolated values for 

temperature (55 samples) and salinity (44 samples) were available. We calculated a linear 

regression model using interpolated monthly parameter values to predict values measured on board 

the Sorcerer II during sampling. Both interpolated temperature and salinity values proved to be 

good estimators of the measured values, with a Pearson correlation coefficient (R
2
) of 0.76 (p-value 

< 2.2e-16) and 0.6 respectively (p-value = 2.459e-10) (Figure 1). Coastal areas, however, pose a 

significant problem for interpolation due to lack of reliable data or major terrestrial influences on 

the water bodies that are hard to quantify (e.g. riverine input, anthropogenic activity). Sample 

GS033 came from a hypersaline mangrove forest, an environment that differs markedly from the 

surrounding water masses. The interpolated monthly average for this sample was 29 Practical 

Salinity Units (PSU) lower than the measured one. Considering that the area is known to be 

hypersaline, this large difference is more likely due to an insufficient number of data points 

available for interpolation rather than by a temporary event taking place at the time of sampling. 

Supporting this assumption, the interpolated monthly temperature was 12°C lower than the in situ 

measurement. Because no reliable interpolations were possible for GS033, it was excluded from the 

regression analysis of salinity and from the environment stability analysis. The combination of 

numerical data with categorical description (hypersaline) of the habitat helped to detect and explain 

differences between interpolated and in situ values. The interpolations for the remaining locations 

are based on a number of previous in situ measurements [18] and easily accessible surface waters, 

i.e. the first 30 m of the marine epipelagic zone, are well sampled in this regard. This is the probable 
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reason for the good fit between measured and interpolated monthly values. Our results suggest that 

numeric interpolation of environmental parameters can complement or, when necessary, even 

substitute parameters measured in situ. These comprehensive datasets can then be used, with a fair 

degree of confidence, in deriving more complex descriptors of the environment such as its stability. 

Variation in single-copy gene numbers 

Single-copy genes (SCGs) are genes which are assumed to appear only once per genome. Their 

total number is suggested to reflect the genome equivalents in metagenomic samples [19]. 

Therefore, they are good candidates to standardize results of sequence-based searches in samples of 

different sizes. A very basic approach would be to divide the absolute counts of a TF by the 

absolute count of an SCG (Formula 1). However, we expected significant differences in the 

occurrences of different SCGs. To test this assumption, we compared the abundance of 53 

prokaryotic SCGs in 58 GOS samples. Four overrepresented and 12 underrepresented SCGs were 

found (Figure S1.2, Table S1.1). Some of those were outliers in up to 98% of the samples. Over- 

and under-representation of SCGs was observed in all samples, although the variation dropped with 

increasing number of sequences per sample (Figure S1.1 and Figure S1.2).  

We compared the behavior of basic statistical descriptors like the mean and the median for 

producing a suitable standardization parameter (Figure S1.3). All descriptors behaved in a similar 

way, showing an increasing number of SCGs with increasing number of sequences. The 

interquartile range remained stable regardless of the sample size, showing an almost equal spread of 

the SCG counts per sample. We performed the analysis of the total TF content using two 

standardization parameters corresponding to two standard deviations above and below the mean and 

compared the results. No significant difference was detected, and even if such a difference was 

observed, using both parameters for calculations would translate into reporting results as a range 

rather than as a single value.  
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It is possible that cloning and sequencing biases in the GOS metagenome may explain over- and 

underrepresentation of certain SCGs. It is also possible that some of the SCGs appear in more than 

one copy in some genomes. The original work of [20] that identified SCGs was based on 191 

completely annotated genomes across the tree of life. At the time of our study, the ENTREZ 

Genome Project collection (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi) listed 1446 complete 

microbial genomes and another 3888 in progress. Furthermore, an EnvO-Lite [21] classification of 

complete microbial genomes available at the megx.net portal (http://www.megx.net) features 227 

marine water column isolates. Given the many-fold increase in microbial genomes, it would be 

beneficial to re-evaluate the list of SCGs, focusing on marine prokaryotes, but such analysis was 

beyond the scope of this study. According to [22], the average genome size of a sample and the 

length of an SCG influence relative counts. The SCGs used here are universally distributed, most of 

them being related to the translation machinery [20]. Therefore, their presence should be genome-

size independent. The effect of gene length on the sampling probability is neutralized by combining 

the observations from several SCGs with different lengths. Ultimately, we used the mean SCG 

count per sample as a standardization measure (Formula 2). 

The TF content significantly responds to environment stability 

We derived eight environment stability measures based on the standard deviation of interpolated 

monthly temperature, salinity, dissolved oxygen, apparent oxygen utilization (AOU), oxygen 

saturation, phosphate, nitrate, and silicate measurements over a 12-month period. This was done for 

44 of the samples used for the determination of the SCG variation. Because co-varying stability 

measures may confound statistical analyses, we only retained variables with a correlation 

coefficient below 0.6 to any other variables (Table S1.2). As expected, nitrate stability correlated 

strongly with phosphate stability. The tight connection between these two nutrients is well known 

as the Redfield Ratio [23]. Tyrell (1999) showed the strong correlation between phosphate and 

nitrogen in the WOA data [24]. Similarly, the amount of dissolved oxygen is known to depend 
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strongly on water temperature [25]. This relationship showed as a strong correlation (ρ = 0.75) 

between the two stability measures. Oxygen saturation and AOU are both derived from the 

dissolved oxygen [26] but they showed exceptionally high correlation (ρ = 0.99) to each other and 

moderate correlations to either phosphate (ρ = 0.63) or silicate (ρ = 0.61). Thus, the stability 

measures for temperature, salinity, phosphate, and silicate were used for further analysis. 

In order to evaluate the effect of the environment stability on the total TF content in 44 GOS 

samples we used RDA. Combining automatic and manual parameter selection, we found a 

statistical model in which environment stability and space best described the variation in TF 

content. The environment stability was represented by temperature stability (p-value < 0.001) and 

phosphate stability (p-value < 0.1). The environment stability alone accounted for 35% of the 

variation in TFs. As described above, for pairs of strongly correlating stability measures only one 

measure was taken; therefore, the effects of two strongly correlating parameters could not be 

differentiated. Temperature stability could either influence TF variation directly or could indicate 

the effect of dissolved oxygen stability. The same is true for phosphate stability and nitrate stability. 

Tyrrell (1999) argues that phosphate limits oceanic primary production on a short time scale, while 

nitrate limits it on a global time scale [24]. In this study, we cannot speculate on what spatial scale 

environmental changes cause genomic TF variation in prokaryotes. The space component was 

represented by one of the two axes (X2), produced by principal coordinate analysis of the Cartesian 

distances between samples and accounted for 6% of the TF variation (p-value < 0.01). Because 

many TFs perform universal house-keeping functions, spatial distance alone was expected to 

explain only a minor proportion of the TF variation. In this case, space could be considered an 

abstract proxy for the different conditions between spatially separated environments. Contrary to 

our expectations, no variation could be explained by the combined effect of environment and space 

in our model. A biplot of the RDA results reveals that the majority of TFs cluster together and the 

explanatory variables do not have enough discriminatory power (Figure 2). However, several TFs 

CHAPTER 2. RESULTS AND DISCUSSION 37



9 

like aldedh were more strongly affected by the environment stability and space. Overall, 59% of the 

variation in the TF content remained unexplained and it is clear that further factors are required to 

explain patterns of TF distribution more completely. Additional environmental parameters and 

interactions with viruses and eukaryotes are likely to feature among these.  

Gianoulis and coworkers (2009) explored the adaptation of metabolic pathways in the GOS 

metagenome to the environment [12]. They divided the samples in two groups, loosely described as 

coastal and open ocean. No significant difference in the transcription machinery between two sets 

was detected. In their estimation, fine-grained relationships between the samples and their 

environment might have been undetectable by the method used to partition the samples. Although 

generally similar, our study differs from that of Gianoulis et al. (2009) in several aspects. Their 

explorative approach was well suited for a broad range of pathways. However, more subtle patterns 

in specific pathways might remain undetected. Here we focused on one functional group (TFs) and 

adapted our methods accordingly. We performed the analysis on a six-frame translation of the raw 

GOS reads to avoid artifacts from assembly and ORF prediction. Further, we used a curated list of 

Hidden Markov Models (HMM) to detect genes of interest and used an extended set of 

environmental parameters, including nutrients. Small-scale differences along nutrient gradients are 

of importance when describing the ecology of microorganisms [27], so we kept the scale as fine-

grained as possible. Lastly, we investigated the adaptation of microbial TF repertoire in response to 

environment stability rather than temporary environmental conditions. We were able to complement 

the findings of Gianoulis et al. (2009) with a detailed quantification of the TF content adaptation to 

environmental stability.  

A more recent study detected the trend in the TF repertoire of marine microbes we quantified here 

[13]. The genomes of 197 marine isolates were compared with respect to their coverage in the GOS 

dataset resulting that only 34 marine genomes are well covered in the GOS dataset. These are very 

streamlined, having heavily reduced capacities for transcriptional regulation, environment sensing 
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and amino-acid uptake. The remaining 163 genomes were sparsely covered by the GOS dataset and 

were more adapted to changing environmental conditions. Yooseph and coworkers concluded that 

the prevailing picoplankton has a low ‘bacterial IQ’ [28] and uses alternatives to transcriptional 

control for metabolic regulation. Our findings from directly querying the metagenome concur with 

the differences based on trophic strategies observed by Yooseph et al. (2010). With 35% effect of 

environmental stability on the TF content we have shown that more dynamic environments require 

different TF repertoires than stable environments. 

Single TFs are more tightly connected to environment stability and space 

The RDA of total TF content suggested that individual TFs show stronger relationships to 

environment stability than the total TF content. Using the 44 samples we applied MLR to test the 

effect of environment stability and space on single TFs. For 19 TFs more than 30% of the variation 

could be explained by a combination of environmental stability parameters and spatial components 

(Table 1). Temperature stability was present in all MLR models. Temperature is known to be an 

important factor in determining bacterial populations and their functions in the oceans [29]. 

However, temperature might also be a proxy for other parameters. Several TFs were best explained 

by different combinations of temperature stability, salinity stability and the second spatial axis (X2). 

Since these factors are rather broad, we inspected more closely the TFs which were co-explained by 

phosphate (i.e. nutrients) stability and silicate stability. 

Nutrient stability co-explained the variability of both broad and specific TFs. Response_reg 

(PF00072) is a general receptor domain which interacts with a DNA-binding effector domain (often 

LytTR). The model representing LacI (PF00356) family of regulators is a broad-spectrum DBD. 

This particular TF was equally well explained by temperature stability and either phosphate or 

silicate stability. We speculate that this is due to the wide range of regulators belonging to this 

family. Penicillinase_R (PF03965) is responsible for the repression of the penicillinase gene. 

Availability of nutrients generally causes increased prokaryotic and eukaryotic cell density in the 
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water column. The release of beta-lactam antibiotics is a competitive measure in such a scenario 

which must be met with a well-regulated resistance. In coastal areas, terrestrial input of such 

antibiotic substances can also be expected. The HTH_6 domain (PF01418) is involved in the 

regulation of phospho-sugar metabolism, we speculate that we observed a direct link between the 

function regulated by the TF and the stability of the substrate for this function. Another TF, 

Trp_repressor (PF01371), regulates the Tryptophan operon and is a classic example for 

transcription control by attenuation. Tryptophan biosynthesis includes phosphorylated 

intermediates, so an indirect link between phosphate stability and the distribution of Tryptophan 

repressors is likely. Additionally, phosphate stability could also be a proxy for the overall nutrient 

stability, which would influence uptake of amino acids. 

Silicate stability co-explained the variation in TFs which describe a scenario where bacterial 

populations interact with eukaryotes in a dynamic environment. TFs from the HTH_3 family 

(PF01381) are involved in plasmid copy control and methylation, the latter a means to prevent the 

digestion of DNA by restriction endonucleases mechanism. TOBE (PF03459) is part of ABC 

transporters and detection of small ligands like sulphate. LytTR (PF04397) is involved in the 

control of cell autolysis. Bacterial adaptation includes complex interactions with phytoplankton. 

Bacterial assemblages mediate silicon regeneration from lysed diatoms, detritus and marine snow 

[30, 27]. Algal blooms, for example, strongly affect microbial communities [31, 32]. In a bloom 

situation, precise control over substance detection and transport, defense mechanisms and cell death 

would provide a selective advantage. Based on the TFs whose variation was co-explained by 

silicate, we speculate that we have detected a response of bacterial regulatory potential to 

oscillations in diatom communities, for example during and after an algal bloom. 

Our findings on single TFs support the trophic description of the GOS dataset [13]. Typically, 

copiotrophs are adapted to capitalize on transient nutrient availability on which the survival of their 

populations strongly depends. They are more influenced by marine eukaryotes (e.g. algal blooms) 
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and dominate the water column only sporadically [13, 33]. In contrast to microbes with oligotrophic 

adaptations, copiotrophs still possess the majority of energy uptake systems (e.g. amino acids). The 

environmental stability effect on the three TFs above supports the general idea of the distinguishing 

adaptations of copiotrophs and oligotrophs. Additionally, the functions controlled by these TFs 

might be the key to describing the relationship of copiotrophic communities to their surroundings in 

greater detail. 

Detection limits and interpretation considerations with our approach 

The Pfam HMMs [34] used in this study model only key protein domains of the TFs and sometimes 

represent whole TF families. Therefore, an absolute, one-to-one relationship between a single TF 

and a particular gene or function is sometimes impossible to infer. Although we used a set of eight 

environmental parameters, other factors (e.g. predator-prey interactions, viral infections, iron 

concentration) might significantly contribute to the patterns of TF distribution. Moreover, the 

interpolated environmental data values were monthly averages which might not reflect smaller 

temporal variations. These constraints form a certain resolution limit on our findings that is hard to 

quantify. On the other hand, the selective pressure which the environment stability exerts on 

bacterial transcription control was strong enough to leave a genomic imprint which is detectable 

despite this resolution limit. Furthermore, metagenomics provides a glimpse into the genomic 

potential of microbial communities, but not into their gene expression patterns. Therefore, any 

dependencies between the environment and the genomic repertoire have to be rather stable. In this 

study, we focused on linear relationships between TF content and the numeric stability of the 

environment, but non-linear relationships could also be possible. 

 

Conclusion 

Using interpolated environmental data, we detected and quantified an ecogenomic trend in the 

transcription factor repertoire of marine bacterial communities that depended on spatial distance and 
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environmental stability. Environment stability was responsible for 35% of the variation in total TF 

content while 6% was attributed to space. Up to 60% of the variation in single TFs could be 

attributed to combinations of environment stability factors and space. In several cases the function 

controlled by the TFs was directly related to the environmental stability measures that best 

explained their variation. Despite resolution limitations of the data, our results strongly suggest that 

the effect of environment stability on the genome composition of bacterioplankton is strong enough 

a detectable signal. Improved availability and integration of contextual data, preferably compliant 

with the checklists of the Genomics Standards Consortium [35], will make it possible to describe 

ecogenomic trends with higher resolution and better characterize the influence of the environment 

on prokaryotic metagenomes. 

Methods 

Sequence and Environmental Data 

Sequence reads and metadata for 82 samples of GOS metagenome were obtained from the 

Community Cyberinfrastructure for Advanced Microbial Ecology Research & Analysis 

(CAMERA) website [36]. These include samples from the Sargasso Sea [16], the northwest 

Atlantic, the eastern tropical Pacific [17], and the Indian Ocean transect. The interpolated 

environmental data for the GOS samples (Supplement S2.1 and S2.2) was extracted from the portal 

for Marine Ecological Genomics [37] using the geographic location (based on GPS coordinates), 

sampling date and depth. The interpolations were based on data from the World Ocean Atlas 2005 

[14]. Eight environmental parameters were available, namely temperature, salinity, dissolved 

oxygen, apparent oxygen utilization (AOU), oxygen saturation, phosphate, nitrate, and silicate. 

Ecological modeling 

Statistical analyses and plotting were performed using the free software environment for statistical 

computing and graphics, R [38] with the vegan [39], and MASS packages [40]. The R code for this 

study is available in Supplement S2 (Rcode.txt). 
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For linear regressions of environmental data, all GOS samples where interpolation for temperature 

and salinity was possible were considered (Supplement S2.1). Only one in situ measurement and 

one interpolated value per sampling site, defined by unique GPS coordinates, time and depth of 

sampling, are possible. Therefore, only one sample per sampling site was kept. Two samples 

GS000a and GS000b have the combined sequence content from two different locations (Sargasso 

Stations 11 and 13) [16]. In this comparison only, GS000a represents the environmental data from 

Sargasso Station 11 and GS000b that from Sargasso Station 13. Samples where the in situ 

measurement was missing were excluded. This left 55 samples to be compared for temperature and 

44 for salinity. The choice of samples for this experiment included no further requirements, because 

the aim was to demonstrate the accuracy of interpolated data. The interpolations were used as 

response variables and the in situ measurements as explanatory variables. The compared values 

were expressed in the same units: degrees Celsius for temperature and PSU for salinity. Hence, no 

further transformation was necessary. 

 

Protein Domain Searches with Hidden Markov Models 

The sequence reads of the GOS metagenome were translated in all six reading frames using the 

transeq tool from the EMBOSS package [41] with default parameters (version 6.1.0). Hidden 

Markov Models were selected from the Pfam database (release 24) [34]. Unless stated otherwise, 

descriptions of HMM models and corresponding TF functions were taken from the Pfam website 

[42]. Protein domain searches were done with HMMER3 in version 3.0b3 using the default 

parameters [43]. The results were imported into a relational database. Following the “HMMER3 

beta test: User's guide” (Version 3.0b3) [44], significant results were defined by the following 

criteria: 1) domain independent E-value < 0.001, 2) hmm_to-hmm_from >= 20% of model length 

and 3) the bias should be at least an order of magnitude smaller than the score. 

Single Copy Gene distribution 

Samples from GOS were selected to ensure: 1) the filter size used targeted prokaryotes (between 0.1 

µm and 0.8 µm) and 2) their origin was not a fresh water environment (based on the habitat type 

reported in the GOS metadata). Finally, the Sargasso Sea sample GS000a, which is suspected to be 

contaminated with non-marine Shewanella and Burkholderia species [45], was removed. 
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The following samples were excluded from further analysis: GS0 38, 39, 40, 41, 42, 43, 44, 45, 46 

and 50. They had extremely low SCG counts, with a maximum per sample average of 1. This was 

in line with the extremely low number of total sequences in these samples (between 626 and 759 

sequences per sample) compared to the rest of the samples (between 11,496 and 692,255 sequences 

per sample) (Supplement S2.4). A total of 58 samples remained for further analysis (Supplement 

S2.3). The list of 53 HMMs was based on Ciccarelli et al. 2006 (Table S1.3). 

 

Effect of environment stability on TF content 

WOA interpolations were possible for 44 of the 58 GOS samples from the SCG analysis. 

Additionally, the Mangrove Forest sample GS033 was removed. Environment stability measures is 

described by the standard deviation of the twelve monthly averages for each interpolated variable at 

each sampling site (Formula 3, Supplement S2.5). For GS000b, the average from Sargasso Station 

11 and 13 was taken. Stability measures were z-scored (Formula 4) to neutralize the effects of 

different scales and units [46]. Co-varying stability measures were excluded when their Spearman’s 

rank correlation coefficient (ρ) exceeded 0.6 and the test was statistically significant (p-value << 0). 

The list of TF models was compiled according to Minezaki et al. 2005 [47] (Table S1.4). The list 

contained 40 DNA-Binding Domains (DBDs) and 26 non-DBDs (Supplement S2.6). The models 

seemed to be rather stable as only one Pfam HMM model had changed since the time of publication 

in 2005 (PF02573 was merged into or replaced by PF00126). One of the TF HMMs had no 

significant hits (CtsR, PF05848) and could not be used for the analysis. The raw counts for each TF 

HMM in each sample (Supplement S2.7) was standardized using Formula 2 and the mean of the 

SCG counts for the respective sample. 

countSCGraw

countTFraw
=countsTF

 

 

( )countSCGrawf

countTFraw
=sTF

 

Formula 1: The raw count of each 

individual TF in a sample is divided by the 

 Formula 2: The raw count of each 

individual TF in a sample is divided by a 
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absolute count of a single SCG to compute 

a standardized TF (sTF) count, which is 

independent of the sample size. 

value calculated from the absolute counts 

of several SCGs  to compute a 

standardized TF (sTF) count, which is 

independent of the sample size. 

 

( )
∑

−

−N

=i

i

N

µX
=σ

1

2

1  

 

σ

µ−x
=z

 

 

Formula 3: Sample standard deviation. 

The individual values (Xi) are monthly 

interpolated values for one of the eight 

environmental parameters. In this 

study, the standard deviation (σ) was 

used as a stability measure (the lower 

the SD, the more stable an 

environment was considered).  

 

 Formula 4: Z-score transformation. 

The raw score (x) is transformed by 

subtracting the population mean (µ) 

and dividing by the standard 

deviation (σ). In this study, each 

stability measure was treated as a 

raw score across all samples (the 

population). 

Principal coordinate analysis (PCoA) was used to map the spatial components from the Cartesian 

distances between the samples back to a 2D plane (Supplement S2.8). The distances were calculated 

from their GPS coordinates, using the geographic information system module of the megx.net 

relational database MegDb [37]. For GS000b, the average of the distance between the two original 

samples it incorporates and any other sample was taken. PCoA, also known as metric 

multidimensional scaling, is an ordination method that can map multidimensional data to fewer 

dimensions to aid interpretation. In this study, the 2D coordinates of each sample (X1, X2) and 

polynomial terms (up to third-degree terms) thereof represented the spatial components. RDA, 
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which is a multivariate extension of linear regression, was used to calculate the effect of 

environment stability and space on the total TF content. The standardized TF counts were used as 

response variables and the four environment stability measures (temperature, salinity, phosphate, 

silicate), the two spatial coordinates (X1, X2) and their associated polynomial terms (X1
2
, X1

3
, X2

2
, 

X2
3
) were used as explanatory variables. We applied automatic forward and backward model 

selection to find the combination of explanatory variables that best explained the variation in the 

response variables. The combined and independent effect of environment stability and space was 

tested. The combined model and the independent environmental model both identified temperature 

stability and phosphate stability as significant explanatory variables. The independent space model 

identified spatial polynomial terms as significant rather than the X2 from the combined model. We 

tried to replace X2 in the combined model with combinations of the independent space model; 

however, no improvement in explained variation or significance levels was observed. Consequently, 

the combined model was used in further analysis. Variation partitioning was used to separate the 

effect of environment stability and space. All models and partitions were tested for significance 

using 1000 permutations of the response data. MLR was used to quantify the effect of environment 

stability and space on individual TFs. The standardized count of each individual TF per sample was 

used as a response variable. The explanatory variables were the same as for RDA. We compared 

different model selection methods based on the Akaike information criterion with 1000 steps. 

Whenever an automatically generated model explained more than 30% of the variation in a TF (R
2
 

> 0.3), we tried to manually improve it by removing explanatory variables with low significance (p-

value > 0.1). 
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Figures 

Figure 1 - Linear regression analysis of measured and interpolated environmental 
parameters. 

Temperature (A), salinity (B) and salinity with sample GS033 removed (C). The points represent 

the samples. The solid blue line is the fitted linear function and the shaded area depicts the 

confidence interval for it. 

Figure 2 - RDA biplot of TFs constrained by environment stability and space. 

The ordination of TFs (in red) constrained by the explanatory variables (blue vectors) is shown. The 

lengths of the vectors correspond to the strength of the effect of that particular variable. RDA 

scaling 2 was used (scaling the TF scores). The angle between an explanatory variable vector and a 

TF (if a vector was to be drawn from the origin of the graph to this TF) approximates their 

correlation. 
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Additional files 
Additional file 1 – Supplement_S1.pdf 

A PDF file containing figures and tables that further describe and visualize the analysis in more 

detail.  

Figures: 

Figure S1.1: Distribution of SCGs against the number of sequences per sample. 

Figure S1.2: Coefficient of variation of SCGs against the number of sequences per sample. 

Figure S1.3: Seven descriptive statistic functions of SCG counts against the number of sequences 

per sample. 

Figure S1.4: Correlation of environmental stability variables to each other. 

Tables: 

Table S1.1: A list of SCG models that were identified as outliers. 

Table S1.2: Correlation coefficients of environmental stability variables 

Table S1.3: A list of SCG HMMs based on Ciccarelli et al. (2006). 

Table S1.4: TF models after Minezaki et al. (2005). 

Additional file 2 – Supplement_S2.zip 

A zip file containing data and R code for reproducing the analysis in this study. Contents are listed 

below: 

Rcode.txt - R code used for the analysis in this publication 

Supplement_S2.1.csv - Interpolated and measured values for temperature and salinity 

Supplement_S2.2.csv - Monthly interpolations for GS041 

Supplement_S2.3.csv - SCG raw counts 

Supplement_S2.4.csv -Number of sequences per sample 

Supplement_S2.5.csv - Environmental stability measures 

Supplement_S2.6.csv - TF model categories (DBD. non-DBD) 

Supplement_S2.7.csv - TF raw counts 

Supplement_S2.8.csv - Cartesian distance between GOS samples 
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Supplement S1 

List of Figures: 
Figure S1.1: Distribution of SCGs against the number of sequences per sample. 

Figure S1.2: Coefficient of variation of SCGs against the number of sequences per sample. 

Figure S1.3: Seven descriptive statistic functions of SCG counts against the number of sequences 

per sample. 

Figure S1.4: Correlation of environmental stability variables to each other. 

 

List of Tables: 
Table S1.1 A list of SCG models that were identified as outliers. 

Table S1.2 Correlation coefficients of environmental stability variables 

Table S1.3: A list of SCG HMMs based on Ciccarelli et al. (2006). 

Table S1.4: TF models after Minezaki et al. (2005). 
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Figure S1.1: Distribution of SCGs against the number of sequences per sample. 
The absolute counts of SCGs per sample were log-transformed (Y axis). In the boxplots, the 
whiskers’ ends correspond roughly to ±2 standard deviations around the mean. More concretely, 
they denote the furthest data points still within 1.5 times the interquartile range (IQR) of the first 
(Q1) and the third quartile (Q3). The IQR is calculated as follows: IQR = Q3-Q1. The dots represent 
SCGs that lie outside these ranges and are therefore considered outliers. A list of the outliers is 
available in Supplement Table S1.1.
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Table S1.1: A list of SCG HMM models that were identified as outliers.  
The number of samples in which the model was an outlier and the percentage of all samples (58 in 
total) are presented. 
SCG model number of samples percent of all samples
Above 1.5 IQR of Q3 
usg 1 2
if_n2 4 7
reca 18 31
ruvb_n 58 98
Below 1.5 IQR of Q1 
rimm 1 2
secg 4 7
ruvc 6 10
duf150 7 12
trigger_c 9 15
exonuc_vii_s 15 25
tyr_deacylase 20 34
glutr_n 31 53
duf177 35 59
hrca 41 69
glutr_dimer 46 78
ribosomal_s20p 55 93

3 
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Figure S1.2: Coefficient of variation of SCGs against the number of sequences per sample. 
The variation within SCG numbers decreases with increasing number of sequences, supporting the 
idea that deeper sequencing delivers more stable 
data.
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Figure S1.3: Seven descriptive statistic functions of SCG counts against the number of sequences 
per sample. 
The absolute counts of SCGs per sample were log-transformed (Y axis).  

5 

CHAPTER 2. RESULTS AND DISCUSSION 63



Supplement S1 

 
Figure S1.4 Correlation of environmental stability variables. 
This is a visual representation - a roughly diagonal line in any direction would mean a considerable 
correlation.  
 
Table S1.2 Correlation coefficients of environmental stability variables. 
Variable pairs with Spearman correlation coefficient above 0.6 are shown. 

stability measures rho p-value
temperature oxygen_dissolved 0.81 3.27E-011
oxygen_utilization oxygen_saturation 0.99 2.20E-016
oxygen_utilization phosphate 0.70 1.31E-007
oxygen_saturation phosphate 0.70 1.31E-007
oxygen_utilization nitrate 0.66 9.51E-007
oxygen_saturation nitrate 0.66 8.97E-007
phosphate nitrate 0.85 2.96E-013
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Table S1.3: A list of SCG HMMs based on Ciccarelli et al. (2006). 
Accession Pfam Id Model length Average domain length 

PF00189 Ribosomal_S3_C 85 82.0 
PF00252 Ribosomal_L16 133 113.7 
PF00417 Ribosomal_S3_N 66 63.3 
PF00453 Ribosomal_L20 108 101.7 
PF00475 IGPD 145 144.3 
PF00542 Ribosomal_L12 68 67.0 
PF00584 SecE 57 56.6 
PF00745 GlutR_dimer 101 100.6 
PF00825 Ribonuclease_P 111 109.0 
PF00829 Ribosomal_L21p 96 95.0 
PF00831 Ribosomal_L29 58 57.4 
PF00886 Ribosomal_S16 62 57.7 
PF00889 EF_TS 221 180.3 
PF01016 Ribosomal_L27 81 80.7 
PF01192 RNA_pol_Rpb6 57 54.4 
PF01196 Ribosomal_L17 97 100.8 
PF01245 Ribosomal_L19 113 113.0 
PF01250 Ribosomal_S6 92 91.7 
PF01281 Ribosomal_L9_N 48 47.9 
PF00828 Ribosomal_L18e 129 118.9 
PF01628 HrcA 224 219.4 
PF01649 Ribosomal_S20p 84 82.0 
PF01668 SmpB 68 67.2 
PF01746 tRNA_m1G_MT 186 190.6 
PF01765 RRF 165 163.1 
PF01782 RimM 84 83.7 
PF02033 RBFA 104 104.9 
PF02075 RuvC 149 147.7 
PF02092 tRNA_synt_2f 549 541.7 
PF02130 UPF0054 145 142.1 
PF02132 RecR 41 41.0 
PF02357 NusG 92 98.2 
PF02410 DUF143 100 98.5 
PF02542 YgbB 157 156.4 
PF02565 RecO_C 118 151.4 
PF02576 DUF150 141 138.8 
PF02580 Tyr_Deacylase 145 142.8 
PF02609 Exonuc_VII_S 53 52.9 
PF02620 DUF177 119 114.4 
PF02686 Glu-tRNAGln 72 72.4 
PF02912 Phe_tRNA-synt_N 73 72.6 
PF02978 SRP_SPB 104 100.3 
PF03147 FDX-ACB 94 94.2 
PF03483 B3_4 174 167.7 
PF03484 B5 70 70.0 
PF03726 PNPase 83 81.9 
PF03840 SecG 74 73.3 
PF03948 Ribosomal_L9_C 87 86.9 
PF04760 IF2_N 54 52.0 
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PF05201 GlutR_N 152 148.4 
PF05496 RuvB_N 234 212.7 
PF05698 Trigger_C 162 154.7 
PF00154 RecA 323 233.9 

8 
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Table S1.4: A list of TF HMMs based on Minezaki et al. (2005).  
Accession Pfam Id  Accession Pfam Id 
PF00027 cNMP_binding  PF01965 DJ-1_PfpI 
PF00072 Response_reg  PF01978 TrmB 
PF00126 HTH_1  PF02082 Rrf2 
PF00155 Aminotran_1_2  PF02237 BPL_C 
PF00158 Sigma54_activat  PF02311 AraC_binding 
PF00165 HTH_AraC  PF02742 Fe_dep_repr_C 
PF00171 Aldedh  PF02805 Ada_Zn_binding 
PF00196 GerE  PF02863 Arg_repressor_C 
PF00325 Crp  PF02954 HTH_8 
PF00356 LacI  PF03099 BPL_LplA_LipB 
PF00376 MerR  PF03459 TOBE 
PF00392 GntR  PF03466 LysR_substrate 
PF00440 TetR_N  PF03472 Autoind_bind 
PF00480 ROK  PF03551 PadR 
PF00486 Trans_reg_C  PF03704 BTAD 
PF00532 Peripla_BP_1  PF03749 SfsA 
PF00717 Peptidase_S24  PF03965 Pencillinase_R 
PF01022 HTH_5  PF04023 FeoA 
PF01047 MarR  PF04198 Sugar-bind 
PF01316 Arg_repressor  PF04299 FMN_bind_2 
PF01325 Fe_dep_repress  PF04397 LytTR 
PF01340 MetJ  PF04967 HTH_10 
PF01371 Trp_repressor  PF05068 MtlR 
PF01380 SIS  PF05247 FlhD 
PF01381 HTH_3  PF05443 ROS_MUCR 
PF01402 RHH_1  PF05848 CtsR 
PF01418 HTH_6  PF06018 CodY 
PF01475 FUR  PF06338 ComK 
PF01590 GAF  PF06506 PrpR_N 
PF01619 Pro_dh  PF06923 GutM 
PF01722 BolA  PF06956 RtcR 
PF01726 LexA_DNA_bind  PF06988 NifT 
PF07702 UTRA  PF07417 Crl 
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Metagenomic datasets from environmental samples offer attractive opportunities to 

characterize genomic elements of unknown function. We employed graph-theoretic 

approaches to visualize correlations between protein domains of unknown function 

detected in the Global Ocean Sampling metagenomes. Functional hypotheses for groups 

of these domains were generated based on network topology and existing putative 

functional assignments. Environmental contextualization of one such hypothesis was 

carried out using indirect gradient analysis. 

 

Genomic and metagenomic sequencing projects are revealing ever-increasing numbers 

of novel genes, many of unknown function. The Pfam 23 database (Finn et al, 2008), for 

example, stored some 10 340 protein domain families derived from conserved sequence data 

with 22% dubbed “domains of unknown function” (DUFs). This proportion is predicted to 

soon overtake that of functionally characterized domains (Bateman et al, 2010), prompting 

calls for community action (Roberts, 2004). In their response, Jaroszewski et al. (2009) and 

Goonesekere et al. (2010) noted several DUFs that appeared to be variations of functionally 

characterized protein folds, most likely maintained due to an extension of an organism’s 

ecological niche. It is reasonable to expect that conserved DUFs enhance ecological 

performance; however, characterizing DUFs from an ecological perspective has yet to be 

attempted. In this communication, we present a method of functional attribution based on 

DUF correlation across the Global Ocean Sampling (GOS) metagenome collection (Rusch et 

al, 2007). Network visualizations were used in hypothesis generation followed by indirect 

gradient analysis to contextualize one hypothesis with environmental metadata. Together, 

these approaches aim to support efforts in DUF characterization using ecogenomic resources. 

CHAPTER 2. RESULTS AND DISCUSSION 69



Correlation analysis of microbial taxa and environmental parameters has previously 

been used to construct association networks (Fuhrman & Steele, 2008; Fuhrman, 2009). Just 

as the correlation of taxa-abundance may elucidate a given taxon’s ecosystem-level 

interactions and function, correlation of protein domains across environments may grant 

insight into their potential associations and roles. This approach parallels the identification of 

unknown metabolic modules whereby genomic features found to co-vary in response to 

experimental perturbations are grouped in putative metabolic modules (Breitling et al, 2008). 

To detect such associations in metagenomic datasets, we measured the Spearman rank 

correlation (ρ) between DUFs detected in the globally-distributed GOS metagenomes (473 

351 DUFs detected in 454 varieties across 79 metagenomes, see Supplementary methods 

online). We visualized these results as network graphs. Vertices (representing DUFs varieties) 

were connected if their ρ was ≥ 0.90. As abundances of 454 DUF varieties were correlated, 

we enforced a Bonferroni-corrected p-value cut-off of ~2.20 × 10-5 (0.01 / 454). We 

embedded the graph using the Fruchterman-Reingold procedure (Fruchterman & Reingold, 

1991). A minimal spanning tree was visualized after Prim’s algorithm (Prim, 1957) to aid 

visual interpretation (Fig. 1b). We assigned DUFs to putative functional categories guided by 

Pfam descriptions and linked literature, color-coding vertices accordingly.  

We observed two prominent networks, one dominated by DUFs linked to 

photosynthetic organisms (Fig. 1, II) and another comprised of more diverse members (Fig. 

1, I). Smaller networks were observed, including one associating DUFs 403, 404 and 407 

(Fig. 1, III), domains known to co-occur4. Employing a ‘guilty by association’ approach 

(Merico et al, 2009), we propagated hypotheses across closely-embedded domains. We thus 

hypothesized that DUFs in network II (Fig. 1), including unassigned DUFs, describe a 

microbial photoreactivity module. The larger network (Fig. 1, I) presented difficulty in 

interpretation due to its members’ diverse functions; however, it suggests a functional 

constellation suited to the marine epipelagic ecosystem. DUFs with putative functions in 

Respiration, Cell Division and Cell Cycle, Regulation and Cell signaling, and Membrane 

Transport are present, with the EamA domain (PF00892, formerly ‘DUF6’) at its centre. 

Although still uncharacterized, EamA occurs in the plant pathogen Erwinia chrysanthemi’s 

PecM protein, involved in pectinase, cellulase and pigment regulation (Jack et al, 2001). Such 

regulation is well-suited to varying nutrient availability, primary productivity, and irradiation 

in the water column.  

Hypotheses generated from covariation across metagenomes may be contextualized 

with environmental data to enhance interpretation. We employed indirect gradient analysis 
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after Virtanen et al.(2006) to relate DUF abundances in network II (Fig. 1; 17 DUF varieties) 

to chlorophyll concentrations at appropriate GOS sites (n=56; see Supplementary methods 

online). We standardized DUF abundances at each site by the median abundance of 22 

‘single-copy domains’ detected at that site. We then ordinated sites by non-metric 

dimensional scaling (NMDS; Fig. 2, hollow circles) using Bray-Curtis dissimilarities. Next, 

we performed a least squares, linear fit of chlorophyll data with significance (P(>R)) 

determined by permutation (n=1000). To explore non-linear relationships between 

chlorophyll concentrations and the ordination, we visualized generalized additive model 

(GAM) fits as smoothed, non-parametric isoclines (Fig. 2) with significance determined by 

ANOVA (Wood, 2008). After Virtanen et al., we interpreted coefficients of determination 

(R2) as goodness-of-fit measures for linear vectors (Rv
2) and non-parametric surfaces (Rs

2). 

Analyses were performed in R (http://www.r-project.org). We observed that these DUF 

abundances moderately, but significantly, structure GOS sites along chlorophyll concentration 

(Rv
2 ≈ 0.52, P(>R) ≈ 9.99 × 10-4; Rs

2 ≈ 0.91, p ≈ 2.00 × 10-16 ). An improved, albeit less 

significant, fit (Rv
2 ≈ 0.64, P(>R) ≈ 4.00 × 10-3

; Rs
2 ≈ 0.98, p ≈ 5.8 × 10-2) and a more even 

resolution of sites may be observed when ordinating geographically localized sample groups 

such as that along the North American East Coast (GS002, GS004-8, GS012-14; n=9, plot not 

shown). The GAM surface reveals considerable non-linear effects below chlorophyll 

concentrations of ~2.0 µg kg-1 seawater, where most sites – particularly from oligotrophic 

waters – are ordinated. Such effects may rise from the diverse functions, multi-functionality, 

and the selective interactions between elements in biological systems (Kitano, 2002). The 

global coverage of GOS, across numerous ecoregions, may also introduce unexpected 

variation. Nonetheless, if these chlorophyll measurements are understood as a proxy for 

phytoplankton abundance, our results tentatively support hypotheses linking the functional 

community structure described by these DUFs to the abundance of photoreactive plankton. 

This manner of environmental contextualization may provide useful perspectives on the 

function of microbial genomic features in their surrounding ecosystems. 

Ecogenomic datasets promise to deliver valuable insight into the roles of 

uncharacterized genes and proteins and await the application of exploratory meta-analysis. 

The prospects are greater if future ‘omics’ sampling is performed along clear environmental 

gradients and accompanied by comprehensive and standardized metadata (Field et al, 2008). 

Here, we demonstrated the use of graph theory and numerical ecology to offer new, 

contextualized hypotheses on uncharacterized targets for community investigation. Caution in 

interpretation, alongside strict detection criteria, is encouraged to reduce association fallacies 
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and hasty generalizations. Subsequently, wet-lab validation and falsification of these in silico 

results are required to establish standards for future predictions. Navigating the topology of 

ecogenomic space will be challenging; however, its immense potential in guiding biological 

enquiry warrants interdisciplinary attention.  

 

Supplementary information is available at the ISME Journal’s website 

(http://www.nature.com/ismej)  
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Figure 1: Hypothesis generation using network representations of Spearman rank 

correlations between DUF abundances across GOS metagenomes. Vertices are labelled 

with the corresponding DUF number (i.e. “59” represents DUF59). Network I includes DUFs 

with a variety of functions, possibly involved in a response to nutrient input in the marine 

epipelagic zone. Network II is dominated by DUFs linked to photosynthetic organisms and 

functions. Network III is composed of three DUFs known to co-occur. a) Fruchterman-

Reingold embedded network. Edge lengths are inversely related to correlation strength b) 

Minimum spanning tree representation of DUF correlations. Only edges describing the 

shortest path (hence, strongest correlation) between vertices are visualized. 

 

Figure 2: Hypothesis contextualization using indirect gradient analysis of GOS sites 

described by the abundances of DUFs in Network II (ref. Fig. 1) and chlorophyll 

concentration data.  Each bubble represents one GOS site and bubble size reflects the in situ 

chlorophyll concentration measured during the expedition. Bubble positions reflect the Bray-

Curtis dissimilarity between sites calculated from the per site abundance profiles of DUFs in 

Network II. The blue vector describes the linear fit of chlorophyll concentration data to the 

ordination (Rv
2 ≈ 0.52, P(>R) ≈ 9.99 × 10-4). Red isoclines describe a generalized additive 

model fit of the same chlorophyll data to the ordination (Rs
2 ≈ 0.91, p ≈ 2.00 × 10-16) and are 

labeled with the corresponding chlorophyll concentration (in μg chlorophyll per kg seawater). 

Regions where the chlorophyll isoclines and vector intersect perpendicularly suggest a 

coherent response gradient of metagenomic DUF content to chlorophyll concentrations.  

 

74
Ecological perspectives on domains of unknown function: a marine

point of view



CHAPTER 2. RESULTS AND DISCUSSION 75



NMDS stress: 9.96

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

NMDS1

N
M

D
S

2

 0 

2

 4 

4

6

8

 12 

 14 

GS002

GS004

GS005

GS006

GS007

GS008 GS012

GS036

GS037

GS013GS014

GS031
 10 

76
Ecological perspectives on domains of unknown function: a marine

point of view



CHAPTER 2. RESULTS AND DISCUSSION 77

2.5 Phylogenetic Characterisation of Picoplank-

tonic Populations with High and Low Nu-

cleic Acid Content in the North Atlantic

Ocean

Authors: Martha Schattenhofer, Jörg Wulf, Ivalyo Kostadinov, Frank

Oliver Glöckner, Mikhail V. Zubkov, Bernhard M. Fuchs

Published in: Systematic and Applied Microbiology, 2011 (in press)

Contribution: genomic data collection and integration

Relevance: A classic molecular ecology study of bacterial phytoplank-

ton. Integrated metadata from megx.net was used.



                             Elsevier Editorial System(tm) for Systematic and Applied Microbiology 
                                  Manuscript Draft 
 
 
Manuscript Number: SAM 3399R1 
 
Title: Phylogenetic Characterisation of Picoplanktonic Populations with High and Low Nucleic Acid 
Content in the North Atlantic Ocean  
 
Article Type: Full Length Papers 
 
Section/Category: Applied and Ecological Microbiology 
 
Keywords: Flow cytometry; CARD-FISH; prokaryotic picoplankton; marine; phylogenetic composition; 
genome size 
 
Corresponding Author: Dr. Bernhard Maximilian Fuchs,  
 
Corresponding Author's Institution: Max Planck Institute for Marine Microbiology 
 
First Author: Martha Schattenhofer, Dr. 
 
Order of Authors: Martha Schattenhofer, Dr.; Jörg Wulf; Ivalyo Kostadinov; Frank Oliver Glöckner, 
Prof.; Mikhail V Zubkov, Dr.; Bernhard Maximilian Fuchs 
 
Abstract: In flow cytometric analyses of marine prokaryotic picoplankton often two populations with 
distinct differences in their apparent nucleic acid content are discernable, one with a high and one with 
a low nucleic acid content (HNA and LNA, respectively). In this study we determined the phylogenetic 
composition of flow cytometrically sorted HNA and LNA populations, collected at six stations along a 
transect across three oceanic provinces from Iceland to the Azores. Catalyzed reporter deposition 
fluorescence in situ hybridization (CARD-FISH) analysis of sorted cells revealed distinct differences in 
phylogenetic composition between the LNA and HNA populations with only little overlap. At all 
stations the LNA population was dominated by the alphaproteobacterial clade SAR11 (45 - 74%). Also, 
Betaproteobacteria were always present at 2-4%. While the LNA composition was rather stable, the 
HNA populations were composed of distinct phylogenetic clades in the different oceanic provinces of 
Arctic and Tropics. For example Cyanobacteria dominated the North Atlantic Gyre HNA population (29 
- 44%) with Prochlorococcus as the major clade (34 - 44%), but were low in Arctic and Polar waters 
(1% and 5%, respectively). In contrast, Bacteroidetes accounted for the majority of HNA cells in the 
Polar and Arctic province (26% and 32%, respectively), but were low in the Gyre region (3 - 10%). The 
DNA content of the HNA population was about 3.5 times higher than that of the LNA populations. This 
reflects differences in the genome sizes of closely related cultured representatives of HNA clades (3-6 
Mbp) and LNA clades (1.3-1.5 Mbp). 
 
 
 
 

78
Phylogenetic Characterisation of Picoplanktonic Populations with

High and Low Nucleic Acid Content in the North Atlantic Ocean



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

Phylogenetic Characterisation of Picoplanktonic Populations with High and Low 1 

Nucleic Acid Content in the North Atlantic Ocean 2 

 3 

Martha Schattenhofer
1+

, Jörg Wulf
1
, Ivalyo Kostadinov

2,4
, Frank Oliver Glöckner

2,4
, 4 

Mikhail V. Zubkov
3
, Bernhard M. Fuchs

1* 
5 

 6 

 7 

1 
Department of Molecular Ecology, and  8 

2
 Microbial Genomics Group, Max Planck Institute for Marine Microbiology, 9 

Bremen, Germany 10 

3
 National Oceanography Centre, Southampton, United Kingdom 11 

4
 Jacobs University Bremen, Bremen, Germany 12 

 13 

Running head: Phylogenetic characterisation of cytometric populations 14 

+ present address:  15 

Department of Environmental Microbiology, UFZ - Helmholtz Centre for 16 

Environmental Research, Leipzig, Germany 17 

 18 

* Corresponding author: 19 

Address: Celsiusstr. 1, D-28359 Bremen, Germany 20 

Email address: bfuchs@mpi-bremen.de 21 

Telephone:       +49 421 2028 935 22 

Fax:                  +49 421 2028 790 23 

 24 

 25 

Manuscript
CHAPTER 2. RESULTS AND DISCUSSION 79



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

Abstract 26 

In flow cytometric analyses of marine prokaryotic picoplankton often two populations 27 

with distinct differences in their apparent nucleic acid content are discernable, one 28 

with a high and one with a low nucleic acid content (HNA and LNA, respectively). In 29 

this study we determined the phylogenetic composition of flow cytometrically sorted 30 

HNA and LNA populations, collected at six stations along a transect across three 31 

oceanic provinces from Iceland to the Azores. Catalyzed reporter deposition 32 

fluorescence in situ hybridization (CARD-FISH) analysis of sorted cells revealed 33 

distinct differences in phylogenetic composition between the LNA and HNA 34 

populations with only little overlap. At all stations the LNA population was 35 

dominated by the alphaproteobacterial clade SAR11 (45 – 74%). Also, 36 

Betaproteobacteria were always present at 2-4%. While the LNA composition was 37 

rather stable, the HNA populations were composed of distinct phylogenetic clades in 38 

the different oceanic provinces of Arctic and Tropics. For example Cyanobacteria 39 

dominated the North Atlantic Gyre HNA population (29 – 44%) with Prochlorococcus 40 

as the major clade (34 – 44%), but were low in Arctic and Polar waters (1% and 5%, 41 

respectively). In contrast, Bacteroidetes accounted for the majority of HNA cells in 42 

the Polar and Arctic province (26% and 32%, respectively), but were low in the Gyre 43 

region (3 – 10%). The DNA content of the HNA population was about 3.5 times 44 

higher than that of the LNA populations. This reflects differences in the genome sizes 45 

of closely related cultured representatives of HNA clades (3-6 Mbp) and LNA clades 46 

(1.3-1.5 Mbp). 47 

 48 

Key words: Flow cytometry; CARD-FISH; prokaryotic picoplankton; marine; 49 

phylogenetic composition; genome size  50 
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Introduction 51 

In the last two decades flow cytometry (FCM) has become a routine tool for reliable 52 

analysis and enumeration of picoplanktonic cells. The cells present in a water sample 53 

are often characterized by their scatter properties, the so called forward and side 54 

scatter, and their DNA content. General DNA stains are bright enough to yield high 55 

signal to noise ratios which enable the analysis of microbial cells and even viruses by 56 

flow cytometry [2, 18]. Since the first analysis of marine prokaryotic picoplankton, a 57 

conspicuous recurring pattern was visible in a scatter versus DNA fluorescence 58 

dotplot diagram. Two populations were discernable, one with a high and one with a 59 

low DNA content. The terms LDNA or LNA for 'low nucleic acid content bacteria' 60 

and HDNA or HNA for 'high nucleic acid content bacteria‟ have been coined for these 61 

cytometrically defined populations [7, 14, 16, 25]. However, the biological nature and 62 

ecological function of such populations remained poorly understood. While the HNA 63 

cells have been thought to represent the active part of the microbial community the 64 

role of the LNA cells has been controversial. Some researchers reported them either 65 

as inactive, dead or fragmented cells [14, 15, 23], but others showed that LNA cells 66 

can be as viable and active as HNA cells [33]. Several scenarios of how the LNA and 67 

HNA fractions are related to each other were proposed: (i) cells switch from one 68 

phenotype to the other i.e. start growing and develop from LNA to HNA cells, (ii) 69 

LNA cells represent dormant variants of HNA cells or (iii) LNA and HNA cells 70 

represent phylogenetically distinct groups of microorganisms with a fixed DNA 71 

content or (iv) a mixture of all of the three scenarios [1].  72 

In previous studies phylogenetic analyses of the HNA and LNA populations 73 

have shown that both, the LNA and HNA populations are mainly composed of the 74 

same clades [23, 24] favouring scenario (i) or (ii). Our own studies supported scenario 75 
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(iii) with different phylogenetic groups of bacteria in each of the populations [5, 6, 31-76 

33]. In the latter studies, the HNA population was comprised of members of the 77 

Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria - in particular of the 78 

Roseobacter clade, whereas the LNA population was often dominated by the 79 

alphaproteobacterial SAR11 clade [19] or the gammaproteobacterial clade SAR86 80 

[33]. Whether the scenarios change with changing oceanic waters is still an open 81 

question. Therefore, we analysed the phylogenetic composition of flow cytometrically 82 

sorted HNA and LNA cells from six stations in the North Atlantic Ocean with 83 

contrasting oceanographic properties between Iceland and the Azores by fluorescence 84 

in situ hybridization (FISH). Based on our earlier work, we hypothesized that (1) 85 

regardless of the sample origin there is little overlap in the phylogenetic composition 86 

between the LNA and HNA population, that (2) the phylogenetic composition is more 87 

diverse in the HNA than in the LNA population, and (3) that the phylogenetic 88 

composition of the LNA and HNA populations differs between the oceanic provinces 89 

investigated.  90 

Materials and Methods 91 

Sampling. Samples were taken onboard the research ship Maria S. Merian during the  92 

VISION (diVersIty, Structure, functION) cruise MSM03/1 from Reykjavik (Iceland) 93 

to the Azores (Portugal) along a transect at the 30°W longitude from 66°N to 34°N 94 

between 20
th

 - 29
th

 September 2006 (Fig. 1 and [11]). Seawater samples were 95 

collected from a depth of either 20 or 50 m with a sampling rosette of 20 L Niskin 96 

bottles mounted on a conductivity-temperature-depth (CTD) profiler. Replicated 1.6 97 

mL seawater subsamples were fixed with particle-free formaldehyde solution (37% 98 

w/v, Fluka, Taufkirchen, Germany; final concentration, 1% v/v) at 2°C for 12 h and 99 
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stored frozen at −80°C. Samples for fluorescence in situ analyses of total 100 

bacterioplankton were fixed with particle-free formaldehyde solution (37% w/v, 101 

Fluka, Taufkirchen, Germany; final concentration, 1% v/v) for 2 hours at room 102 

temperature. Fixed samples were filtered at low vacuum onto polycarbonate filters 103 

(type GTTP; 0.2 µm pore size; 47 mm diameter; Millipore Eschborn, Germany) and 104 

afterwards washed with MilliQ to remove the remaining formaldehyde. Typically 15 105 

– 30 ml of surface water was filtered. The filters were stored frozen at −20°C for 106 

further analyses. Total prokaryotic picoplankton and nanophytoplankton counts were 107 

taken from [11].   108 

Sorting. The formaldehyde-fixed cells were stained with SYBR Green (conc. 1 in 109 

1000) for 30 min prior to flow sorting with a MoFlo flow cytometer (Beckman 110 

Coulter). For excitation, an Argon ion laser (Innova-A300) was tuned to 488 nm with 111 

an output power of 500 mW. Sideward scatter (SSC) was analyzed through a 488 ± 10 112 

nm bandpass filter, green fluorescence (FL1) of SYBR Green-stained cells was 113 

measured through a 530 ± 20 nm bandpass filter. Online analysis was done on a 114 

bivariate dot plot diagram using the Summit software V3.1 (DakoCytomation). The 115 

dotplot diagrams were used for defining sorting gates (Fig. 2). Particle-free (<0.1 µm) 116 

and autoclaved 0.1% NaCl (w/v) solution was used as a sheath fluid for sorting. The 117 

sort mode „single one drop‟ was selected to get the highest sorting purity. The 118 

performance was evaluated by sorting a known number of beads onto microscopic 119 

slides which were subsequently enumerated under an epifluorescence microscope.  120 

Catalyzed reporter deposition (CARD)-FISH. Approximately 1 × 10
4
 cells were 121 

sorted and subsequently filtered onto 0.2 µm pore-size polycarbonate filters. CARD-122 

FISH analyses of sorted cells and unsorted samples were done as described by 123 

Schattenhofer et al. [22] with the probe set described in Table SI 1. Cells were 124 

manually enumerated under an Axioplan II microscope (Carl Zeiss, Jena, Germany) 125 

CHAPTER 2. RESULTS AND DISCUSSION 83



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
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equipped with an HBO 100-W Hg vapour lamp, appropriate filter sets for FITC and 126 

DAPI fluorescence [10] and a 100x Plan Apochromat objective. On average >500 127 

cells were counted per sample and probe-positive cells were presented as percentages 128 

of DAPI stained cells. The quantification of specific bacterioplankton groups in 129 

unsorted samples was done with CARD-FISH (Table SI 2) and automated cell 130 

counting as described previously [22]. Correlation analyses were done between 131 

bacterial abundances and physicochemical parameters (temperature, oxygen, NH4
+
, 132 

PO4
3-

, and NO3
-
 + NO2

-
), chlorophyll a fluorescence and abundance of 133 

picoeukaryotes. Chlorophyll a fluorescence and nutrient data were taken from [11]. 134 

All univariated statistic analyses were performed with the software SigmaStat 3.5 135 

(SYSTAT, California, USA).  136 

Genome sizes. Genomic information of 227 prokaryotes, classified as marine 137 

according to the EnvO-Lite ontology, was obtained from www.megx.net [13]. The 138 

154 genomes used in this study are the ones which have been completely sequenced, 139 

and therefore their exact genome sizes were known (Table SI 4). 140 

Results 141 

Environmental conditions at the sampling sites in the North Atlantic Ocean. Four 142 

major oceanographic provinces could be distinguished along the VISION cruise 143 

transect (see also [11]; Fig. 1): the Boreal Polar (BPLR), the Arctic (ARCT), the 144 

North Atlantic Drift (NADR) and the North Atlantic Subtropical East (NAST) 145 

province. Samples for the present study were derived from three of the provinces 146 

(BPLR, ARCT, NAST) and showed distinct differences in their physico-chemical and 147 

microbiological properties. Located at the boundary of BPLR and ARCT station 3 148 

(S3) was characterized by surface waster temperature below 1 °C, low salinity (<34 149 
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psu) but relatively high concentrations of chlorophyll a (1.0 µg l
-1

) and oxygen (>290 150 

µmol). Station 6 (S6) within the ARCT province had temperature, salinity and 151 

chlorophyll a values of 11 °C, 35 psu and 1.7 µg l
-1

, respectively, while oxygen 152 

concentration decreased slightly in comparison to S3 (<270 µmol). In the 4 153 

southernmost stations of the transect in the NAST province (S16 – S19) temperature 154 

ranged between 22 – 24 °C and salinity was higher than 36 psu. In addition, lowest 155 

values in oxygen (<220 µmol) and chlorophyll a (0.2 – 0.3 µg l
-1

) were detected in the 156 

NAST. The concentrations of phosphate and nitrate plus nitrite in surface waters were 157 

higher in the BPLR and ARCT with 0.4 µM and 2.9 – 5.7 µM respectively. These 158 

concentrations decreased in the NAST to values <0.6 µM while concentrations of 159 

ammonium were relatively stable between 0.2 – 0.5 µM across all stations. The total 160 

prokaryotic picoplankton was highest in surface waters of the northern stations with a 161 

maximum of 1.1 x 10
6
 ml

-1
 at S4 and declined gradually southwards to 0.4 – 0.5 x 10

6
 162 

ml
-1

 at S13 to S19 (Table SI 2).   163 

Latitudinal distribution of picoplankton groups in surface waters along the 164 

transect. The strong chemical and physical gradients along the north-south transect 165 

were also reflected in the distribution patterns of the 7 different picoplankton groups 166 

tested in surface waters. While Bacteria dominated the prokaryotic picoplankton (67 167 

± 10%, Table SI 2) at all stations (n = 19), the abundance of marine group I 168 

Crenarchaeota was expectedly low with 2 ± 2%. Within the domain of Bacteria 169 

members of the SAR11-clade comprised the most abundant fraction (27 ± 5%) 170 

followed by members of the Bacteroidetes (12 ± 5%). The distribution pattern of both 171 

clades was similar with highest values at northern stations, for SAR11 particularly at 172 

latitudes over 60°N (Table SI 2). Synechococcus were abundant in photic surface 173 

waters north of 50°N with up to 5% relative abundance, but was virtually absent 174 

further south. In contrast Prochlorococcus cells were detectable at S10 as the northern 175 
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most station and increased southwards up to 14% (Table SI 2). The uncultured clade 176 

SAR202 and the marine Actinobacteria comprised only a minor fraction of the 177 

picoplankton community in surface waters and were near the detection limit with 178 

approximately 1 ± 1% (Table SI 2). Thus these two clades were excluded from the 179 

phylogenetic analysis of flow cytometrically sorted groups of picoplankton. 180 

Phylogenetic affiliation of flow cytometrically sorted groups of prokaryotic 181 

picoplankton. The phylogenetic composition of HNA and LNA populations was 182 

determined in water samples from the surface mixed layer from six stations (S3, S6, 183 

S16 to S19) (Fig. 3). Each population represented about half of the entire 184 

bacterioplankton community at most stations (LNA: 50.4 ± 4.4%; HNA: 49.6 ± 4.4% 185 

(n = 19), respectively, at 10 m water depth). Conversely, the sum of cell numbers 186 

calculated from the HNA and LNA fraction corroborated the total cell numbers quite 187 

well (n = 24, r
2 

= 0.79). Both populations were sorted by flow cytometry and 188 

characterized by CARD-FISH to determine their phylogenetic composition (Fig. 3). 189 

Almost all sorted cells hybridised with the probe mix for Bacteria (HNA: 90 ± 3%, 190 

LNA: 78 ± 7%) whereas marine Euryarchaetoa or Crenarchaeota could be detected 191 

in neither of the cytometric populations.  192 

The phylogenetic composition within the HNA population varied between the 193 

three provinces tested (Fig. 3). Bacteroidetes dominated the sorted HNA population 194 

(with 26% and 32%) in the BPLR and ARCT, followed by Alphaproteobacteria (with 195 

19% and 25%) in which approximately half of those were represented by members of 196 

the Roseobacter cluster at S6 (10%) (Fig. 3). Likewise the Gammaproteobacteria 197 

(12% and 8%) were abundant in the BPLR and ARCT. In these two provinces only 198 

relative abundances of below 5% were detected for the uncultured Firmicutes clade 199 

SAR406 and the cyanobacterial genera Synechococcus and Prochlorococcus (Fig. 3). 200 

A quite different community composition of the HNA population was found in the 201 
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NAST (S16 to S19). Here the abundance of Bacteroidetes decreased to 3 – 10% but 202 

the majority of cells were comprised of Prochlorococcus cells (34 – 44%) (Fig. 3). In 203 

contrast to the rather stable abundance of Gammaproteobacteria (10 – 15%) the 204 

contribution of Alphaproteobacteria varied between 2 – 26% with a consistent 205 

fraction of Roseobacter (3 – 5%). Within the NAST the abundance of SAR406 206 

decreased from 9% (S16) to 1% (S19). Synechococcus comprised approximately 2% 207 

at S16 to S18 (Fig. 3) as determined with probe 405Syn. The high abundance of 208 

Prochlorococcus within the HNA population of the NAST could be partly further 209 

characterised with subcluster-specific probes (Table SI 1). The high-light adapted 210 

Prochlorococcus clade I (HLI) was highly abundant between S16 to S18 (17 – 26%) 211 

but dropped to 4% at S19 (Fig. 3). The opposite distribution was obtained for the 212 

high-light adapted Prochlorococcus clade II (HLII). HLII showed low counts (<4%) 213 

at S16 to S18 but increased to 14% at S19. The abundance of the low-light adapted 214 

Prochlorococcus clade (LL) was always <2% (Fig. 3).  215 

In contrast to the HNA population the phylogenetic composition within the 216 

LNA population was rather uniform. Alphaproteobacteria, and in particular the clade 217 

SAR11, dominated at all stations (Fig. 3). The LNA population of BPLR (S3) and 218 

ARCT (S6) contained besides SAR11 (with 72% and 62%) also small percentages of 219 

Gammaproteobacteria (<1%) and Betaproteobacteria (up to 4% at S6) including the 220 

betaproteobacterial clade OM43 (Fig. 3). Within the NAST the abundance of SAR11 221 

ranged from 45% (S17) up to 74% (S19). Betaproteobacteria decreased to 222 

approximately 2% while Gammaproteobacteria increased slightly up to 3% (S18) 223 

(Fig. 3).   224 
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10 

Discussion 225 

The CARD-FISH analyses of unsorted surface water samples of the VISION 226 

cruise showed that the picoplankton communities were distinctly different between 227 

the different provinces examined, e.g., high Bacteroidetes counts in the north and low 228 

counts in the south (see also [11]). The samples were therefore sufficiently diverse to 229 

test hypotheses on a phenotypic versus genotypic differentiation of HNA and LNA 230 

cells. Even within one province the community changed like for example indicated by 231 

the change in Prochlorococcus ecotypes in the NAST province.  232 

It is a main result of this study, that in all samples there was remarkably little 233 

overlap in the phylogenetic composition between the LNA and HNA. The detection of 234 

SAR11 exclusively in the LNA population (Fig. 3) confirmed previous reports from 235 

the subtropical and tropical gyres [19],  and the recent report on a dominant role of 236 

SAR11 in the northern provinces [30]. Resolving the LNA population further we 237 

identified Betaproteobacteria as the second bacterial group present in all LNA 238 

fractions, yet in none of the HNA populations (Fig. 3). Part of the Betaproteobacteria 239 

were members of the uncultured OM43 group which are related to Type I 240 

methylotrophs of the Methylophilaceae [20] and occur commonly more in productive 241 

coastal ecosystems then in oligotrophic ocean gyres [8]. This fits well with our 242 

observed positive correlations of Betaproteobacteria with ammonium concentration 243 

(r
2
 = 0.91; p <0.001; Table SI 3) and nitrite plus nitrate concentrations (r

2
 = 0.90; p 244 

<0.001; Table SI 3). Surprisingly, no other phylogenetic clade could be detected in 245 

LNA populations with our set of 19 specific probes. In previous studies a high 246 

abundance (>10%) of the gammaproteobacterial clade SAR86 was reported in the 247 

LNA fraction of prokaryotic picoplankton in coastal seas [33, 34]. However, in this 248 

study the SAR86 clade was found exclusively in the HNA population sorted from the 249 
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two productive provinces BPLR and ARCT, thus confirming their preference for 250 

highly productive environments like upwelling regions [26] or the coastal North Sea 251 

[4]. One possible reason for this discrepancy could be slight variations in the manual 252 

definition of sorting gates on different flow cytometers with different fluorescent 253 

DNA stains between different studies (see [33]). Another reason might be the growth 254 

stages of SAR86 cells depending on the environment they are living in [1].  Fuchs and 255 

co-workers retrieved SAR86 sequences from sorted cells of the Arabian Sea from 256 

both the LNA and HNA fraction, but their respective phylogenetic affiliation was 257 

different [5]. It can be speculated that some SAR86 sub-clades might have a small 258 

genome and are consequently detected in the LNA fraction, while others having a 259 

larger genome are falling into the HNA settings. Alternatively, the genome copy 260 

number of SAR86 might vary depending on growth conditions. This needs to be 261 

clarified in another study focussing on the SAR86 clade.  262 

Our assessment of the HNA population resulted in signals for 13 out of 19 263 

probes used for targeting clades at different phylogenetic levels (Table SI 1). In 264 

contrast, only 5 probes gave signals with sorted LNA cells thus confirming our 265 

hypothesis that the HNA fraction is more diverse than the LNA fraction [5, 31, 34]. 266 

Next to the more prominent groups like Roseobacter and Prochlorococcus, members 267 

of uncultured groups like the SAR324 (data not shown) and SAR406 were detected in 268 

the HNA fraction indicating that the genomes of these yet uncultured clades are rather 269 

large. Furthermore, the HNA community varied between the stations along the 270 

transect in the North Atlantic Ocean. The high abundance of Bacteroidetes (genome 271 

size ranges from 3 – 6 Mbp, Table SI 4) in HNA populations from the productive 272 

BPLR and ARCT provinces (Fig. 3) is likely due to their role as consumers of algae-273 

derived polymeric substances in this area of the Northern Atlantic Ocean [11]. 274 

Positive correlations of Bacteroidetes in the HNA group with e.g. chlorophyll a (r
2
 = 275 
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0.94; p = 0.001), phosphate (r
2
 = 0.98; p <0.001) or with picoeukaryotic 276 

phytoplankton (r
2
 = 0.92; p <0.003) again corroborate a preference of Bacteroidetes 277 

for nutrient-rich water masses (Table SI 3). The Roseobacter also showed a higher 278 

abundance in sorted HNA populations at one of the stations in the northern provinces 279 

(Fig. 3) coinciding with the highest values of chlorophyll a found along the transect 280 

(>1.5 µg l
-1

). The marine Roseobacter clade comprises phylogenetically diverse and 281 

physiologically versatile bacterial species [3] and is commonly found abundant in 282 

costal areas or shelf regions associated with phytoplankton blooms [29, 32]. The 283 

genome sizes of cultured Roseobacter representatives range from 3.1 to 5.5 Mbp. 284 

Flow cytometric analyses showed an almost perfect 1:1 – split of the 285 

picoplankton community into LNA and HNA populations along the entire transect. 286 

However, from there it became evident, that the CARD-FISH counts of flow 287 

cytometrically sorted populations deviate from the quantifications of the entire 288 

community. For example Cren- and Euryarchaeota could not be detected in any of the 289 

sorted populations, although they were present in up to 2% relative abundance in the 290 

unsorted sample. One reason could be a detection limit for CARD-FISH on sorted 291 

populations which lies at the level of ~1% relative abundance. Another reason could 292 

be cell loss during flow cytometric sorting. Together with subjective gating of flow 293 

cytometric populations this might account for the observed deviations of abundance of 294 

sorted and unsorted picoplankton clades.  295 

Genome size estimation of LNA and HNA populations. A simple 296 

interpretation of the conspicuous bimodal distribution pattern in DNA-scatter dotplot 297 

diagrams would be that the two flow cytometric populations consist of cells in 298 

different stages of DNA replication (n versus 2n) due to cellular division. We can 299 

exclude this explanation for our samples because the cytometric populations contain 300 

different microbial clades with almost no overlap and the average DNA content of 301 
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HNA cells is 3.5 times that of LNA. Consequently different genome sizes are the 302 

most likely reason for the bimodal distribution pattern (Fig. 2). Islas and coworkers 303 

[12] reported previously a bimodal distribution of the genome sizes of 641 free living 304 

prokaryotes. In contrast, our own analyses of the genome sizes of 153 cultivated 305 

Bacteria and 1 Archaea, manually classified as marine according to the EnvO-Lite 306 

ontology [13], show little evidence for bimodality (Fig. SI 1; Table SI 4). In our 307 

samples the bimodal distribution in DNA-scatter dotplots might rather be a function 308 

of genome sizes and of abundant clades (Fig. 2). It is well known that members of the 309 

dominant SAR11 clade have small genome sizes ranging between 1.3-1.5 Mbp [9]. 310 

Another clade with a cultured representative having a genome size around 1.3 Mbp is 311 

the OM43 clade [8]. We found OM43 in small amounts only in LNA samples from 312 

the BPLR and ARCT supporting our hypothesis. We have not yet identified the 313 

remaining 10 – 25% of Bacteria, which have similar small genomes as SAR11 and 314 

OM43. The slightly higher hybridisation rates with ALF968 over SAR11-441 suggest 315 

that there might be another - yet unknown - small genome-sized alphaproteobacterial 316 

group in the LNA population, which were not picked up by the probes used for 317 

CARD-FISH. In deeper water layers candidate organisms with small genome sizes are 318 

members of the marine group I Crenarchaeota. Nitrosopumilus maritimus, the only 319 

cultured marine group I Crenarchaeota, has a genome size of 1.6 Mbp [28]. We failed 320 

to find them in sorted fractions from surface waters (see above), but we could detect 321 

them in higher amounts in the LNA from test samples originating from deeper water 322 

layers (data not shown). 323 

Along the transect the ratio between the mean DNA fluorescence of the HNA 324 

population and the mean DNA fluorescence of the LNA population was 325 

approximately 3.5 ± 0.2 (n = 6). This value multiplied with the genome size of 1.3 326 

Mbp of the dominant cell type SAR11 results in a value of 4.6 Mbp, which lies indeed 327 
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in the range of a “standard genome size” of 3 – 6 Mbp of many of the phyla detected 328 

in the HNA population (Table SI 4). However, this hypothesis is challenged by the 329 

flow cytometric detection of Prochlorococcus spp. in the HNA fraction [35]. With a 330 

genome size range of 1.6 – 2.4 Mbp [21] Prochlorococcus spp. should theoretically 331 

be located between the LNA and HNA populations based on their DNA fluorescence. 332 

However for most of the samples analysed by flow cytometry the DNA-SYBR Green 333 

fluorescence rather suggested a genome size of around 4 Mbp for Prochlorococcus. 334 

One explanation for the detection of Prochlorococcus in the HNA population might 335 

be that the autofluorescence of photosynthetic pigments adds to the SybrGreen 336 

fluorescence of DNA. Although the main fluorescence emission is in the red, the 337 

pigments contribute considerably to the fluorescence of Prochlorococcus cells in the 338 

green channel and thus adding to the DNA conferred fluorescence and thereby 339 

potentially shifting the cells into the HNA population (see also [16]). Other 340 

phototrophic microorganisms with genome sizes below 3 Mbp, e.g. Synechococcus, 341 

might also be affected by their autofluorescence and thus shifted into the HNA 342 

population, although we could not detect such an effect in our dataset. We can also 343 

not exclude that genome copy numbers are higher in Prochlorococcus (e.g. [27]) 344 

Conclusion 345 

Of the scenarios summarised by Bouvier and coworkers [2] our results suggest that 346 

scenario (iii) – LNA and HNA populations are composed of distinct phylogenetic 347 

clades – is the dominant one in large areas of the open ocean even across strong 348 

physico-chemical gradients. In rare cases like blooming situations scenario (i) – cells 349 

start growing and develop from LNA to HNA cells – might prevail for e.g. SAR86 350 

when they change their phenotype and multiply their genomes. None of the scenarios 351 

fit adequately for Prochlorococcus and other pigmented microorganisms.  352 
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From an ecological perspective the stable distinction into two different DNA-353 

containing populations might reflect fundamentally different life strategies. Members 354 

of the HNA population with large genomes are theoretically able to cope with a wide 355 

variety of environmental conditions, while LNA populations with small streamlined 356 

genomes have a rather limited genetic repertoire and occupy narrow ecological 357 

niches. Hence, the LNA and HNA concept may remain useful in interpreting the 358 

ecological role of each population.  359 
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Figures  485 

 486 

Fig 1: VISION cruise track from Reykjavik, Iceland to the Azores, Portugal during 487 

September 2006. Boundaries and abbreviations for the individual oceanic provinces 488 

sensu Longhurst [17]: Boreal Polar (BPLR), Arctic (ARCT), North Atlantic Drift 489 

(NADR) and North Atlantic Subtropical East (NAST) province. Triangles indicate 490 

stations for flow cytometric sorting. For more details see also [11]. 491 

 492 

Fig 2: Example of a dot plot diagram of the flow cytometric analysis of a picoplankton 493 

sample from surface waters at station 18. Gates for flow cytometric sorting of HNA and 494 

LNA populations are depicted by black boxes.  495 

 496 

Fig 3: Relative abundance (% DAPI counts) of prokaryotic picoplankton groups within 497 

unsorted and sorted (HNA and LNA) samples of different oceanic provinces in the 498 

North Atlantic Ocean. 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

CHAPTER 2. RESULTS AND DISCUSSION 97



Schattenhofer et al
Fig. 1

Figure 1-3 , Suppl Fig 1

98
Phylogenetic Characterisation of Picoplanktonic Populations with

High and Low Nucleic Acid Content in the North Atlantic Ocean



F
lu

o
re

s
c

e
n

c
e

/ 
D

N
A

 

Side scatter/ cell size

Schattenhofer et al
Fig. 2

CHAPTER 2. RESULTS AND DISCUSSION 99



Not hybridized cells

remaining Bacteria

Synechococcus

Prochlorococcus (without HLI or HLII)

HLI ecotype

HLII ecotype

Bacteroidetes

Gammaproteobacteria (without SAR86)

SAR86

Alphaproteobacteria (without Roseobacter or SAR11)

Roseobacter

SAR11

Betaproteobacteria (without OM43)

OM43

SAR406

4

3

3

1110

15

4

8 32

10
7

1
9

62
17

4
1

2

13

84
13

9

15

10

26 11

6

49
29

22

2

15

124

23

6

11
7 1

17
2 19

10

45
22

2 2

25

21

4
3

14
3 9

19

2
72

22

3
3

20

15
4

19

1

10

7
14 4

5

1

74

24

2

S
ta

tio
n 

6
S

ta
tio

n 
16

S
ta

tio
n 

18
S

ta
tio

n 
19

ARCT

N

A

S

T

S
ta

tio
n 

17

HNA LNA

14

1

72

11

2

S
ta

tio
n 

3

BPLR 4

1

63
19

3

12

26

28

1

Schattenhofer et al
Fig. 3

100
Phylogenetic Characterisation of Picoplanktonic Populations with

High and Low Nucleic Acid Content in the North Atlantic Ocean



CHAPTER 3

SUMMARY OF PUBLICATIONS

The aim of this thesis was to bring the field of marine ecological ge-

nomics forward by (1) improving integration of ecological and molec-

ular data through the development of the megx.net platform and (2)

using the platform for ecogenomic analysis. The resulting scientific

publications can be divided into two sections. The first one deals with

the megx.net platform as an enabling technology for marine ecological

genomics. The second one presents three studies which make use of

the resources offered by megx.net.

3.1 Enabling Technology for Marine

Ecological Genomics: Megx.net

Considering the relatively small number of marine (meta)genomic sam-

ples at the time the megx.net portal was initiated [Lombardot et al.,

2006], the manual effort needed to gather and process the data was

manageable. With interest in marine microbes rising and sequence

data accumulating exponentially, this is no longer the case. The major

data contributions by the GOS Expedition [Venter et al., 2004, Rusch

et al., 2007] and the Marine Microbes Initiative 7 set a landmark in the

field of marine genomics. But this is by far not the peak of genomic

data coming in. In light of these rapid changes, the megx.net por-

tal was updated to meet the evolving demand for advanced integration

of environmental and genomic data from the marine realm [Kottmann

et al., 2010]. Some of the key updates include:

• A new relational data model

• A data update to all currently sequenced genomes (complete and

7http://www.moore.org/marine-micro.aspx

http://www.moore.org/marine-micro.aspx
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drafts), the GOS metagenome and sequenced marine viruses

• Integration of environmental parameters from the World Ocean

Atlas, World Ocean Database [Boyer et al., 2006] and SeaWIFS

chlorophyll α

• A manual classification of genomic samples according to EnvO-

Lite [Hirschman et al., 2008]

• MIGS/MIMS/MIMARKS compliance [Field et al., 2008,Yilmaz et al.,

2011b]

• A scalable, high-throughput implementation of Geographic-BLAST

• Web Service access

The main goal of the megx.net project is to gather data from publicly

available resources, integrate it as best as possible and bring it back

to the public domain, together with the appropriate tools to access and

analyze it. The central concept of integration is that every location on

Earth can be uniquely identified by its longitude and latitude (x, y) and

a sample from that location can be uniquely identified by adding the

depth and time of sampling (z, t). Samples are referred to as georefer-

enced if at least the longitude and latitude are known.

The megx.net portal can be generally divided into two parts. The re-

lational database back-end (MegDb) serves for storing and integrat-

ing the data. The web-based front-end provides access to it and the

appropriate analysis tools. MegDb was designed to hold data of ev-

ery major aspect of ecological genomics - from sample description and

on-site measurements of environmental parameters through sequenc-

ing procedures to bioinformatic analysis. The new data model al-

lows MegDb to scale in size and to accommodate further aspects of

sequence-centered marine ecology on demand.

Besides the comprehensive sequence data update, megx.net profits

from integration of high-quality environmental data. Nine environ-

mental parameters are available for every 1 degree grid of the ocean

in 33 standard depths and over several different time spans. For other

depths, inverse distance interpolation is employed. A numeric mea-

sure for environment stability was introduced [Kostadinov et al., ]. The
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added value of interpolated data for marine ecological genomics is dis-

cussed in section 2.3. Environmental data can be visualized directly

on the Genes Mapserver (Figure 3.1). Megx.net was the first resource

to offer classification of microbial genomes according to the EnvO-Lite

ontology [Hirschman et al., 2008]. It allows to select all genomes com-

ing from a marine environment in a single mouse-click. The megx.net

project also pioneered data compliance to the MIGS/MIMS/MIMARKS

[Field, 2008,Yilmaz et al., 2011b] standards and the use of the GCDML

exchange format [Kottmann et al., 2008].

Figure 3.1: Nitrate stability at the surface visualized with the Genes
Mapserver. The green dots are samples from the GOS Expedition. Image
from www.megx.net (modified)

The tools to access and analyze the megx.net data were improved

as well, all environmental and stability data can be directly visual-

ized on the Genes Mapserver, together with different sample types or

the results of a Geographic-BLAST. The new Geographic-BLAST im-

plementation makes use of the MegDb back-end for asynchronous job

submission and retrieval. This means a user can return at any time

to view their results. The BLAST search is performed in a cluster envi-

ronment with load balancing ensuring performance and scalability.

www.megx.net
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Programmatic access to megx.net data in the form of Web Services (WS)

is now available. WS facilitate a collective view of data from different

sources. Megx.net and the SILVA ribosomal database [Pruesse et al.,

2007] are an example for such collaboration. Georeferenced rRNA se-

quences from any given sampling site in megx.net can be pre-selected

on the SILVA web page. Vice-versa, the SILVA website provides a di-

rect link to interpolated environmental data for georeferenced rRNA

sequences. This simple mechanism alone allows multiple entry points

of research: a phylogenetic one through SILVA and an environmen-

tal one through megx.net. With the same ease, WS can be used to

directly visualize data from different resources on the same interface.

An example implementation in megx.net provides descriptors of the

MIGS/MIMS/MIMARKS terms [Field, 2008,Yilmaz et al., 2011b]. This

WS is already in use by CDinFusion, a tool for contextual data enrich-

ment of sequence FASTA files [Hankeln et al., ].

The research possibilities megx.net now offers have already been used

to study the ecology of marine microorganisms. Some of the anal-

yses address topics that were put forward by the original megx.net

project [Lombardot et al., 2006]. For example, quantifying the envi-

ronmental adaptation of microbial transcription factor repertoire (Sec-

tion 3.2.1) and gaining an ecological perspective on protein domains

of unknown function (Section 3.2.2). Integrated genomics data from

megx.net was also used to enhance the interpretation of results from

classical molecular techniques like FISH (Section 3.2.3).

In summary, megx.net was transformed into a robust and flexible plat-

form for marine ecological genomics. With its focus on environmental

data integration, it is still a unique resource for marine ecological ge-

nomics.
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3.2 Metadata-Supported Ecogenomics of Ma-

rine Microbes

3.2.1 Quantifying the Effect of Environment Stability

on the Transcription Factor Repertoire of Ma-

rine Microbes

This study is one of the first ecological genomic studies, fully utilizing

the megx.net resources. It was triggered by reports that the complex

lifestyle of microbes from dynamic coastal areas is mirrored in their

gene content, especially in the control of gene expression [Cases et al.,

2003,Palenik et al., 2006,Yooseph et al., 2010]. It represents the most

comprehensive use of interpolated data for ecological interpretation of

sequences so far. Interpolated data was shown to have statistically sig-

nificant predictive power for in situ measurements. The work builds

up on the usage of imputed data. Imputation describes the replace-

ment missing data points by a meaningful value, often calculated from

the available points. Figure 3.2 shows the long term perspective in-

terpolated data offers in comparison to single in situ measurements.

Testing the imputation quality of interpolated data revealed two im-

portant limitations. Firstly, no reliable interpolations can be made for

undersampled regions. This issue can be resolved by increasing the

integration of on-site in situ measurements. Secondly, a discrepancy

often exists between implicit and explicit knowledge. An example for

implicit knowledge is the categorical description like ’hypersaline man-

grove forest’. Explicit knowledge would be numeric data supporting

this description. A perfect example for the discrepancy between the

two is the sample GS033.

The variation in environmental parameters can influence the TF con-

tent of microbial communities significantly. Still, about 60% of the

variation in the total TF content remained unexplained. Whether the

remaining variation is due to yet untested environmental factors or

completely different causal agents remains to be seen. To address this

question one could repeat the analysis with an even more compre-

hensive set of environmental parameters and further contextual data.

Unexpected factors that influence transcription control could also be
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monthly interpolations (filled symbols) provide a basis for comparison
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better visualize the trends.
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identified this way. Furthermore, any influence of taxonomic and phy-

logenetic differences on the variation in TF content should also be in-

vestigated for completeness.

The approach used here is generally applicable to other genomic fea-

tures like sulfatase genes and glycosyl hydrolase genes. The resources

offered by megx.net and the supplemental R code from this publica-

tion allow to easily reproduce and modify the analysis. However, the

specifics of the genes, organisms, habitats, environmental parameters

and statistical methods have to be taken into account. Therefore, this

kind of analysis cannot be turned into a pipeline, which delivers a

definitive answer at the click of a button. Consequently, this study of-

fers a guideline for exploring the relationships between microbial gene

content and the environment.

3.2.2 Ecological perspectives on domains of unknown

function: a marine point of view

This study demonstrates an application of protein domain detection

in high-throughput metagenomic data, integrated environmental pa-

rameters and graph theory to generate functional hypotheses for pro-

tein domains of yet unknown function. A set of co-occurring domains

could be loosely described as a microbial photoreactivity module. Their

abundances structure the samples along the chlorophyll concentration

gradient.

The approach presented here can be adapted to investigate other sets

of protein domains. Domains with known function could be tested for

new co-occurrence patterns, which could form new hypotheses about

unknown interactions between them. The initial exploratory phase

should be followed by an in-dept analysis of a selected module. For ex-

ample, the gene-neighborhood organization of the module could be in-

vestigated in completely sequenced genomes and any conserved struc-

tures could be tested for co-occurrence in metagenomic data.

The study addresses a central theme of the megx.net project: attempt-

ing to functionally characterize genes by using their environmental

context. The importance of such approaches is rising. A large portion

of the predicted genes in prokaryotic genomes lack functional annota-
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tion based on in silico methods and wet-lab experiments are costly in

both time and resources [Karaoz et al., 2004]. The rapidly increasing

amount of sequence data magnifies this problem tremendously. Novel,

high-throughput solutions like the one presented here must be sought.

3.2.3 Phylogenetic Characterisation of Picoplanktonic

Populations with High and Low Nucleic Acid Con-

tent in the North Atlantic Ocean

This study focused on the differences in phylogenetic composition be-

tween marine prokaryotic picoplankton with high and with low nucleic

acid content. It is an example of the use of integrated metadata in

a classical study of molecular ecology. In this case the megx.net re-

sources were used to collect the genome sizes of marine bacteria. Al-

though the genome size is an easy to access statistic in many public

resources (e.g. GOLD [Liolios et al., 2010]), identifying a marine bac-

terium is no trivial task. Genomic data annotated with an appropriate

ontology like EnvO-Lite [Hirschman et al., 2008] provides an easy and

comparable solution.



CHAPTER 4

OUTLOOK

4.1 From enabling technology to enabling de-

sign

The field of genomics is a quickly evolving one. While we have strug-

gled to tackle one big piece of the data pie, the GOS Expedition8 re-

cently finished another impressive voyage. The route covered tran-

sects in the Northern Atlantic Ocean, the Mediterranean, the North

Sea and the Black Sea. The GOS Expedition is not the sole producer

of high-throughput genomic and contextual data from the marine envi-

ronment. Large-scale projects like TARA Oceans9, Malaspina 10 and the

Earth Microbiome Project 11 generate comprehensive datasets about

the marine microbial communities in their environment. This means

many more new sequences lay in store for us in the near future. The

new design of the megx.net platform allows it to tackle an ever greater

amount and complexity of data in the future. Besides accommodating

the upcoming data, the megx.net portal can offer improved analytical

tools and metadata. The quality of interpolations depends massively

on the number and quality of in situ measurements they are based

on [Kostadinov et al., ]. Integrating further environmental data and

including it into the interpolation procedure could offer a boost in the

accuracy of interpolated environmental parameters. An appropriate

candidate source for such data is for example PANGAEA12. Further, in

order for analysis to keep pace with the rising amounts of data and

its complexity, the tools to do so must evolve. The megx.net portal

was taken a step in the right direction with its new implementation
8http://www.jcvi.org/cms/research/projects/gos/overview/
9http://oceans.taraexpeditions.org

10http://www.expedicionmalaspina.es
11http://www.earthmicrobiome.org/
12http://www.pangaea.de/

http://www.jcvi.org/cms/research/projects/gos/overview/
http://oceans.taraexpeditions.org
http://www.expedicionmalaspina.es
http://www.earthmicrobiome.org/
http://www.pangaea.de/
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of Geographic-BLAST. A logical extension to that would be a tool to

detect the possible protein domains (based on Pfam) in a sequence

of interest (Geographic-HMMER). The results could be visualized on

the Genes-Mapserver as distributions of the found domains across the

ocean. Pre-computed frequencies of Pfam domains could be visualized

per sampling site. This would revive a feature of the initial megx.net

website which was in the meantime difficult to support.

The Internet plays a key role in the development of many scientific

fields. For biology, the greatest impact is the faster transfer of data

and easier communication between researchers. The megx.net project

plans to increase its data quality through community annotation. A

major downside of semi-automatic data transfer and integration is

that many errors which would be obvious to a human remain un-

known to a machine. A real-life example from the megx.net project

is a sample which was labeled as Mediterranean but according to its

coordinates was taken from the Atlantic ocean. The mistake turned

out to be a missing minus sign in the longitude value. Such an er-

ror is easy to spot when looking at a label on a map, but difficult to

identify automatically. Therefore, the megx.net would like to offer its

users an intuitive way to increase the quality and the added-value of

the data. This should be done by applying a social web feature com-

monly used in platforms like web-based video and radio platforms (e.g.

http://last.fm, http://www.youtube.com). The users will be of-

fered the possibility to add the so called ’tags’ and ’flags’ to any piece

of data which is shown on the web page. In our terminology, a tag

is a short description defined by the user. It would help the users

identify data which is of interest to them and create their own dataset.

Users will be allowed to browse the data according to tags added by

all visitors, or only by themselves (requires login facility). A flag is a

pre-defined tag which will be used to identify how good a piece of data

is. In the scenario above, any user that recognized the mistake in

the data, could mark it as wrong by setting an appropriate flag to it.

This serves two purposes. Firstly, users responsible for data manage-

ment and quality (data curators) can identify problems and deal with

them. Secondly, all users will be aware of the quality of a certain piece

of data, if it is flagged as "correct" by several people. This principle of

community annotation is gaining importance, although its efficacy and

http://last.fm
http://www.youtube.com
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quality are often questioned. Successful implementations include the

Annotathon system, which is used to annotate metagenomes as part of

the coursework of undergraduate students [Hingamp et al., 2008]. The

approach megx.net plans to use is minimalistic and intuitive, which

should prompt user acceptance. The community annotation feature

will be tested internally as an internal curation interface and in a worse

case scenario be used as such in the future. The database modules

that were already developed for that purpose are done in a way so they

can deliver the same functionality also outside the megx.net environ-

ment. Megx.net provides not only a platform for marine ecological ge-

nomics but also a template for working with next-generation biological

data.

4.2 Technology- and hypothesis-driven ma-

rine genomics

It is often argued whether the main driving force behind scientific

progress is technology or the question it serves to answer. It is how-

ever a race of constant overtaking and mutual promotion. A hypothesis

without the tools to test it will prompt their development. Technologies

that deliver new spectra of data pave the way for completely new ques-

tions to be asked.

The first GOS Expedition was mostly technologically driven. However,

the benefits of having extremely large metagenomic datasets for study-

ing marine microbial communities quickly became clear. Using con-

textual data to improve the interpretation was proven to be success-

ful [Gianoulis et al., 2009,Yooseph et al., 2010,Kostadinov et al., ]. The

lesson was obviously learned in time, because the second GOS cruise

collected more environmental data than the first. Additionally, large-

scale projects like TARA Oceans, Malaspina and the Earth Microbiome

Project try to focus their efforts on specific questions. Malaspina for ex-

ample deals mainly with the biodiversity of the deep ocean and effects

of climate change. These projects will produce not only large amounts

of metaomics data, but probably an equal or hopefully larger amount of

contextual data. The ecogenomic studies possible with megx.net were

so far limited by the lack or inconsistency of contextual data. There-
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fore, the input of TARA Oceans or of the Earth Microbiome Project will

be very welcome. Additionally, dedicated marine observation networks

like the European Marine Observation and Data Network (EMODNET)

and the Ocean Observatories Initiative (OOI) collect oceanographic data

on a fine scale over long periods of time. Such data could improve the

interpolations megx.net offers tremendously, especially in the coastal

areas. To enable innovative ecogenomic techniques, megx.net will have

to either be able to host the data and integrate it internally or exchange

it on the fly via Web Services. Having properly standardized data is a

prerequisite for success. Therefore, the activities of the GSC will most

likely have the strongest impact on megx.net and all other marine eco-

logical resources.

Marine microbial genomics is a field that entirely depends on data.

Even the most tightly focused hypothesis cannot be proven without

data. And incidentally, data taken for one purpose can sometimes

serve another. Therefore, an integration infrastructure like megx.net

offers the perfect opportunity to develop new hypothesis but also to

re-test old ones. Megx.net is a technology that helps us answer the

questions we have and to keep looking for new ones.



CHAPTER 5

CONCLUSION

Marine ecological genomics will continue to benefit greatly from im-

provements to sequencing technologies and application of multiomics

approaches. Integrating the resulting data and complementing it with

ecological metadata will remain the main challenge for the next decade.

Megx.net delivers a platform for robust environmental data integration

which can be used to investigate the interaction of microbial commu-

nities with their environment.





Appendix

Additional Scientific Publications

A list of scientific publications that resulted form the work in this thesis

but were not dicussed in detail.

1. CDinFusion - Submission-ready, on-line Integration of Sequence
and Contextual Data
Authors: Wolfgang Hankeln, Norma Wendel, Jan Gerken, Jost

Waldmann, Pier Luigi Buttigieg, Ivaylo Kostadinov, Renzo Kottmann,

Pelin Yilmaz, Frank Oliver Glöckner

Submitted to: PLoS One

Contribution: Web Services

Description: Describes a web-based tool for adding GSC compli-

ant metadata to sequence FASTA files, which can then be readily

submitted to the public databases.

2. Metagenome and mRNA expression analyses of anaerobic methan-
otrophic archaea of the ANME-1 group
Authors: Anke Meyerdierks, Michael Kube, Ivaylo Kostadinov,

Hanno Teeling, Frank Oliver Glöckner, Richard Reinhardt, Rudolf

Amann

Published in: Environmental Microbiology, (doi:10.1111/j.1462-

2920.2009.02083.x)

Contribution: estimation of genome coverage using single-copy

genes

Description: Construction and genomic analysis of a compostie

genome of methanotrophic archaea fromthe ANME-1 clade.
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