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In the shallow waters of lakes and the coastal ocean, pri-
mary productivity is strongly linked to the mineralization of
organic matter in the sediments and thus to the exchange of
organic matter, nutrients, and metabolites between sediments
and water column (Wollast 1991). The benthic boundary layer
(BBL) is the interface between the sediments and the water
column. By definition, it is the water layer that is influenced
by the friction between the sediment and the moving water
column (Dade et al. 2001). The vertical transport of solutes
and particulate matter across the BBL is of turbulent nature.
Assuming stationary conditions and neglecting the reactivity
of the solute in the BBL, the turbulent transport of solutes can
be described as quasi diffusive transport according to Fick’s
law of diffusion:

(1)

where J denotes the flux, DT is the turbulent diffusivity, and
∂C/∂z is the vertical concentration gradient. Turbulent transport
in the BBL is believed to be several orders of magnitude faster
compared with molecular diffusion in the sediments. In con-
trast to molecular diffusion, turbulent diffusion is a function of
the flow field and, therefore, varies with the flow velocity in the
BBL. There are numerous models in which turbulent diffusivity
scales as a function of boundary distance and mean current
velocity (Dade et al. 2001). The most common model is the log-
arithmic law of the wall (i.e., log-law) (von Kármán 1930), veri-
fied in various laboratory flume experiments (Pope 2000).

However, measurements of turbulent diffusivity in natural
boundary flows are scarce. Theoretical constraints from the
log-law, such as the linear increase of DT with shear velocity u*

and distance to the boundary z (DT = u*kz) suggest that the tur-
bulent transport in the BBL is too fast to limit the oxygen and
nutrient fluxes across the sediment-water interface (Boudreau
2001) and, in this respect, turbulent diffusivity may be seen as
a parameter of minor interest. We give two reasons why the
measurement of turbulent diffusivity in the BBL is of interest.
First, Sauter et al. (2005) and Holtappels et al. (2010) recently
demonstrated that nutrient and oxygen gradients in the BBL
are measureable. With the knowledge of the turbulent diffu-
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Abstract
In aquatic environments, the benthic boundary layer (BBL) is the transition zone for dissolved solutes that are

released or consumed from the sediments. The exchange of solutes between the sediment and the overlying water
column depends on the turbulent transport in the benthic boundary layer. In situ measurements of turbulent dif-
fusion in natural benthic boundary layers are scarce and are usually derived from the logarithmic law of the wall
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a period of 155 h in the BBL of Lake Constance, Germany. The calculated turbulent diffusivities agreed well with
those derived in parallel from flux-gradient measurements. In addition, turbulent diffusivities were calculated
from several established approaches, including those based on the logarithmic law of the wall. The log-law failed
to predict plausible diffusivities whenever the boundary flow exhibited decreased current velocities or stable den-
sity stratification. Under these conditions, the turbulent diffusivities calculated from the flux-gradient mea-
surement and from Taylor’s theory were as low as 10–6 m2 s–1. These decreased turbulent diffusivities have the
potential to control the solute exchange between the sediment and the water column and can result in low oxy-
gen concentrations in the bottom water. Reliable measurements of turbulent diffusivities in the BBL are therefore
important to investigate and predict hypoxia in bottom waters and sulfide efflux from the sediments.
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sivity, it becomes possible to calculate the respective solute
flux according to Fick’s law (Eq. 1). This approach would pro-
vide a new noninvasive method to determine the solute fluxes
across the sediment-water interface. Second, there is evidence
that the log-law does not apply for conditions of low current
velocities and stratified boundary layers (Brand et al. 2008;
Lorke et al. 2002), which commonly occur in natural aquatic
systems. Under these conditions, turbulent diffusivities as low
as 10–7 m2 s–1 (Lorke 2007) have been measured that poten-
tially control the solute flux between the sediment and the
water column. It is, therefore, imperative to (i) derive a con-
venient method to measure the turbulent diffusivity inde-
pendent from the log law and (ii) measure the turbulent dif-
fusivity at critical conditions such as low current velocities
and stratification.

In this article, we present a new approach for measuring tur-
bulent diffusivity. The approach is based on Taylor (1921) who
described the quasi diffusive transport by continuous move-
ments from statistical measures. We applied this theory to mea-
sure turbulent diffusivities in the benthic boundary layer of
Lake Constance, Germany. We compared the turbulent diffu-
sivities with those derived from density gradient and density
flux measurements according to Fick’s law. Furthermore, we
tested three approaches based on the log-law as well as turbu-
lent diffusivities derived from the concept of turbulent viscos-
ity and from Osborn’s (1980) equation for turbulence in strati-
fied flows. We discuss the results in the context of the
measured current velocity and density stratification in the BBL.

Materials and procedures
In this section, we present the theoretical concepts of dif-

ferent approaches that were applied to calculate turbulent dif-
fusivity in the benthic boundary layer of Lake Constance.
Turbulent diffusivity derived from Taylor’s theory

In stationary, homogenous turbulence, the mean square
displacement 〈X2〉 of a fluid parcel at elapsed time t due to its
fluctuation velocities uL is expressed according to Taylor
(1921) as

(2)

Here, and in the following, the instantaneous velocity UL is
decomposed into a mean velocity and a fluctuating veloc-
ity uL according to . Lagrangian and Eulerian veloc-
ities are denoted as UL and U, respectively. The normalized
Lagrangian autocorrelation coefficient RL is defined as

(3)

with the time interval τ. For τ = 0, RL equals 1 and for τ→∞, RL

approaches 0. The integral of RL is called the Lagrangian inte-
gral time scale

, 

which approaches a constant value for τ→∞ (Taylor 1921). TL

represents the characteristic time interval over which the
instantaneous velocity of the fluid parcel is correlated with its
previous velocities. For t>>TL, the mean square displacement
〈X2〉 in Eq. 2 is a linear function of t, thus characterizing a dif-
fusive process. The turbulent diffusion coefficient is defined as

and from Eq. 2, we obtain:

(4)

The Lagrangian integral length scale LL is defined by (Ten-
nekes and Lumley 1972)

(5)

with uL’ as the standard deviation of uL. We can write Eq. 4 as

(6)

Equation 2 was verified experimentally by Sato and
Yamamoto (1987) using Lagrangian particle tracking. However, in
the BBL, velocities are usually measured in the Eulerian reference
frame at a fixed position above the sediment. Turbulent flow is
measured as it floats past the velocity sensor with the mean flow.
A velocity sensor would have to move with the mean flow to
derive a time series of turbulent velocities within an eddy. A fixed
senor, therefore, measures a mixture of a spatial transect through
the flow and a time series. According to Taylor’s hypothesis
(1938), the rate of change of a turbulent eddy is small compared
with the velocity of the mean flow , so that the turbulence can
be considered as ‘frozen,’ as it passes by the sensor. Therefore, the
time interval τ between two consecutive velocity measurements
of the sensor can be translated into the spatial distance 
and the autocorrelation coefficient of the Eulerian velocity u
translates into the Eulerian spatial correlation coefficient

(7)

The integral of EE is called the Eulerian integral length scale
(Tennekes and Lumley 1972)

(8)

A common assumption is that LL ≈ LE, and furthermore, it
was shown that uL’ = u’ (Tennekes and Lumley 1972) so that
the turbulent diffusion coefficient can be calculated from
Eulerian velocities according to

(9)

In the benthic boundary layer, we assume a stationary bound-
ary flow in which flow characteristics vary in the vertical scale but
are homogeneous in the horizontal plane. In the following, we
denote u, v, w as the x, y, z component of the fluctuating velocity
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with the mean flow pointing toward x and the transversal and
vertical flow toward y and z (positive z in upward direction),
respectively. Because we are interested in the vertical diffusive
transport across the turbulent boundary layer, the vertical turbu-
lent diffusion coefficient was calculated according to Eq. 9:

(10)

In the following, the turbulent diffusion coefficient derived
from Taylor’s theory is denoted as DT_T. DT_T can be estimated
from single point velocity measurements with a sampling fre-
quency that is high enough to resolve turbulent motion.
Turbulent diffusivity derived from the concept of turbu-
lent viscosity

In turbulent fluid flow, the shear stress due to turbulent
fluctuations of fluid momentum is called Reynolds stress. A
definition of the Reynolds stress (τij) is derived from Reynolds
averaging of the Navier-Stokes equations (Tennekes and Lum-
ley 1972) which, in case of a boundary flow, results in:

(11)

where ρ is the fluid density and 〈uw〉 is the time averaged
covariance of the velocities in the mean flow direction (u) and
vertical direction (w). In analogy to the shear stress in laminar
flow, the Reynolds stress in turbulent shear flow is assumed to
be proportional to the mean velocity gradient (Tennekes and
Lumley 1972):

(12)

where the constant of proportionality (νT) is denoted as tur-
bulent viscosity or momentum diffusion coefficient. It is
assumed that νT equals the turbulent diffusion coefficient for
solutes (DT) (Tennekes and Lumley 1972), so that

(13)

In the following, the turbulent diffusion coefficient derived
from turbulent viscosity is denoted as DT_V. To estimate DT_V,
it needs a high frequency single point velocity measurement
together with a mean velocity profile. It should be mentioned
that DT_T and DT_V are determined without any assumption
regarding the structure of the boundary layer and are applica-
ble also for free shear flows.
Turbulent diffusivity derived from the logarithmic law of
the wall

Expressions of DT that include the boundary dimensions
are derived from the logarithmic law of the wall. In fully
developed turbulent boundary flows the average velocity pro-
file is described by the logarithmic law of the wall (von
Kármán 1930):

(14)

where k is the von Kármán’s constant (~0.41), z is the height
above the bottom, and z0 is the hydraulic roughness, a con-
stant of integration found to increase with bottom roughness.
The friction velocity u* is related to the Reynolds stress (τxz)
and the fluid density (ρ) according to . Consider-
ing Eq. 11, it follows that

(15)

The logarithmic law of the wall applies to a specific range
in the BBL defined by upper and lower boundaries. However,
the boundaries themselves depend on the flow field. The
lower boundary is set where direct effects of viscosity (ν) on
the velocity gradient are negligible. Expressed in terms of vis-
cosity and friction velocity, the lower boundary is set where

(Pope 2000). The log-law applies to about 30% of
the total boundary layer thickness, which is defined as the
value of z where equals 99% of the free flow velocity (Pope
2000). In lakes and oceans with moderate current velocities of
~0.1 m s–1 the log-layer extends from a few centimeters to a
few meters above the sediment (Wuest and Lorke 2003).

A fundamental assumption of the log-law is a constant
Reynolds stress throughout the layer and a velocity gradient
that is a reciprocal function of z:

(16)

For the log-layer, we derive a specific solution for DT by sub-
stituting Eqs. 15 and 16 into Eq. 13:

(17)

Hence in the log-layer, DT increases linearly with distance
to the sediment. A value for u* is derived either from the
Reynolds stress (Eq. 15) leading to

(18)

or from the mean velocity (Eq. 14), which leads to

(19)

Yet another assumption that applies for the log-layer is the
balance between the production rate of turbulent kinetic energy
from shear stress (P) and the rate of energy dissipation (ε) by vis-
cous shear (Kim et al. 2000; Tennekes and Lumley 1972):

(20)

Assuming the energy balance, we estimate DT from ε by
combining Eqs. 15, 16, 17, and 20:

(21)
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In the following, the turbulent diffusion coefficients in the
log-layer derived from Reynolds stress (Eq. 18), mean velocity
(Eq. 19), and energy dissipation (Eq. 21) are denoted as DT_LR,
DT_LU, and DT_LD, respectively. A high frequency single point
velocity measurement and the precise knowledge of z are suf-
ficient to determine DT_LR and DT_LD, whereas DT_LU is tied to
the flow field only by the average flow velocity . However,
for DT_LU the hydraulic roughness z0 needs to be estimated.

The assumed balance between production and dissipation
of turbulent energy no longer holds true for boundary layers
that exhibit density stratification. In this case, the energy bal-
ance needs to be reconsidered, because some energy is
required for the buoyancy flux (Osborn 1980).
Turbulent diffusivity in stratified flows

In turbulent, stratified flows the turbulent diffusion coeffi-
cient of density can be estimated from the buoyancy flux and
the density gradient according to (Osborn 1980):

(22)

with the buoyancy flux:

(23)

and the Brunt-Väisälä frequency N, defined as:

(24)

where g is the gravitational acceleration and 〈wρ〉 is the covari-
ance between the vertical velocity and the fluctuating density.
Equaation 22 can be simplified to

(25)

Here, 〈wρ〉 expresses the instantaneous density flux aver-
aged over a long time period. The flux is assumed proportional
to the respective gradient, therewith defining the constant of
proportionality as the turbulent diffusion coefficient (i.e.,
Fick’s law of diffusion). In the following, DT derived from com-
bined flux and gradient measurements. In the following, DT

derived from combined flux and gradient measurements
(Eq. 25) is denoted as DT_F. Similar to DT_T and DT_V, DT_F is not
restricted to log-law conditions.

As mentioned before, energy is required for the buoyancy
flux in stratified flows. Hence, the energy balance becomes P
= ε + Jb. The flux Richardson number R

f
is defined as the ratio

of buoyancy flux to turbulent production (R
f
= Jb/P) leading to

, (26)

which is substituted into Eq. 22 to derive

(27)

with the mixing coefficient γ = R
f 
/(1 – R

f
). Osborn (1980)

found γ ≈ 0.2, which was subsequently applied in various stud-
ies (Ivey et al. 2008; Wuest and Lorke 2003). In the following,
DT derived from Osborn’s relation is denoted as DT_O. DT_O is
only applicable in shear flows with stable stratification where
buoyancy flux is at the expense of shear production. In con-
trast, DT_F is also applicable in shear flow with density anom-
alies (i.e., unstable stratification), because both the density flux
and the density gradient would change sign. Note that the neg-
ative sign in Eq. 24 and Eq. 25 is due to the upward pointing
positive z-coordinate, which leads to a negative density gradi-
ent for a stable stratification. When the stratification is unsta-
ble the density gradient is positive and N2 becomes negative. In
this case, N cannot be interpreted as frequency anymore but
can still be understood as a stratification parameter.

In this section, we introduced several approaches to deter-
mine DT from various measurable quantities. Table 1 summa-
rizes all approaches that were used for the following compari-
son. The in situ measurement, the specific data processing,
and the results are described in the next section.

Assessment
Study site and sampling procedure

The measurements were conducted in Lake Constance, Ger-
many (47°83′99 N, 9°81’89 E) in June 2007 (Fig. 1A). Lake Con-
stance is a large (536 km2) monomictic lake that experiences a
deep convective mixing during winter (December-March) and is
thermally stratified during summer (June-October). The oscilla-
tory current regime of Lake Constance is well described by Appt
et al. (2004) and Lorke (2007). A mooring was deployed in the
northwestern sub-basin (Lake Überlingen) at 100 m depth. The
bottom slope at this depth is about 0.7°. As described in detail
by Lorke et al. (2008), the mooring was equipped with a chain
of 13 temperature loggers (TR-1050, RBR Ltd.), evenly distrib-
uted between 0.5 and 12.5 m above the bottom. Temperature
was recorded every 10 s with a resolution of 5 × 10–5°C. An
acoustic Doppler velocimeter (ADV, Vector, Nortek AS) was
mounted to the mooring with its sampling volume located 1 m
above the bottom (Fig. 1B). A fast response thermistor (PME
Inc.) was placed in the direct vicinity of the sampling volume.
The ADV was operated in burst mode, sampling temperature,
and current velocities for 256 s every 15 min with a sampling
rate of 8 Hz. In addition, the mooring was equipped with an
acoustic Doppler current profiler (ADCP, WH-600, RDI) operat-
ing in pulse coherent mode (RDI mode 5). The ADCP (Fig. 1B)
resolved the near-bottom current velocity profile within 0.89
and 8.79 m above the sediment with a vertical resolution of 0.1
m and a sampling interval of 2.5 s. For further analysis, data
from the ADCP and the temperature loggers were averaged over
the burst interval of the ADV. The data set used in this study
consisted of 620 bursts covering a time period of 155 h.
Data processing

For each burst, current velocities measured by the ADV and
by the ADCP were rotated horizontally such that the mean
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flow vector was pointing along the x-axis. Subsequently, mean
velocity and standard deviations u’, v’, w’ were calculated as
well as the covariance 〈uw〉. From the fluctuating vertical veloc-
ity (w), we derived the Eulerian spatial correlation function and
its integral, the Eulerian integral length scale (LE), according to
Eqs. 7 and 8. In detail, we used the Matlab function ‘xcorr’ to
calculate the normalized autocorrelation coefficients for time
intervals between 0 and 256 s (i.e., over the entire burst
period). An example is shown in Fig. 2. The time intervals (τ)
were translated into spatial distances , which translates
the autocorrelation coefficients into the Eulerian spatial corre-
lation coefficients (EE) (see Eq. 7). EE was integrated over the

spatial distance (r) using the Matlab function ‘cumtrapz’. The
integral length scale (LE) was defined as the first maximum of
the integrated EE, which corresponds to the first zero crossing
of the correlation coefficient. This criterion for the upper limit
of integration was tested with time series of stochastic veloci-
ties of known integral timescales, which were calculated using
the Langevin equation (Pope 2000). Integration of the auto-
correlation functions until the first zero crossing compared
well with the integral timescales used as input.

The energy dissipation rate (ε) was determined from fre-
quency spectra of the vertical velocity w as described by Lorke
and Wüest (2005). Briefly, the velocity frequency spectrum is

r U= ⋅τ

U
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Table 1. A summary of approaches determining DT in the BBL, grouped by their field of application. 

Approach Equation (Nr) Field of application

Taylor’s (10) Free shear flow

Fick’s law (25) Free shear flow

Turbulent viscosity (13) Free shear flow

Osborn’s (27) Stably, stratified free shear flow

Log-law Reynolds stress (18) Shear flow in log-layer

Log-law mean flow (19) Shear flow in log-layer

Log-law dissipation (21) Shear flow in log-layer
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Fig. 1. (A) Map of Lake Constance. The mooring was deployed in the north-western sub basin (Lake Überlingen) at 100 m water depth. (B) A small tri-
pod with upward-looking ADV and ADCP 



transferred into a wave number spectrum assuming Taylor’s
frozen turbulence hypothesis und subsequently fitted to the
universal Kolmogorov spectrum: with the
wavenumber k and the Kolmogorov constant for the vertical
velocity α = 0.68. The mean velocity gradient ( ) was cal-
culated from velocities measured by the ADCP at 0.89 and
1.09 m above the sediment. In Lake Constance, variations in
density are mainly caused by temperature variations. There-
fore, the buoyancy flux was calculated from the covariance of
temperature and vertical velocity, using the eddy correlation
technique (Berg et al. 2003). Beforehand, temperatures were
detrended by linear regression over the full burst period. The
temperature gradient was calculated from the difference of
mean temperature at 0.5 and 1.5 m above the sediment. The
mixing coefficient γ (Eq. 27) was assumed to be 0.2 (Osborn
1980). The hydraulic roughness z0 was estimated according to
(Imboden and Wüest 1995):

(28)

with u* = (ε k z)1/3 (see Eq. 21) averaged over all bursts and the
kinematic viscosity (ν) of 1.52 × 10–6 m2 s–1. From the measured
quantities all DT’s presented in Table 1 were calculated for each
burst. To compare the different approaches we chose the Fick-
ian approach (DT_F) as reference (the reasons are discussed
below). From a total of 620 bursts, we had to discard 140
bursts that showed temperature gradients below the accuracy
of the thermistors (1 × 10–3°C) and another 125 bursts with
negative (i.e., not defined) DT_F. In the following, we present
the results of 353 bursts.

Results: Current regime and density structure in the BBL
Current velocities at 1 m above the sediment varied from a

few millimeters per second up to 7 cm s–1 with an average of 2
cm s–1 (Fig. 3A). Current flow was predominantly in upslope
(260-350°) and downslope (90-180°) direction (Fig. 3B, compare
with Fig. 1A). The associated up- and downwelling caused sig-
nificant changes of the mean temperature (Fig. 3C) and stratifi-
cation (Fig. 3D). Temperatures decreased during upwelling and
increased during downwelling over a range of 0.4°C. The tem-
perature gradients at 1 m above the sediment varied from –10–2

to 10–1°C m–1 (Fig. 3D). Negative temperature gradients imply
that the water column was gravitational unstable (gray bars in
Fig. 3), whereas positive temperature gradients denote stable
stratification. Positive and negative temperature gradients were
associated with downwelling and upwelling, respectively.
Increased positive temperature gradients were found at low cur-
rent velocities (see Lorke et al. 2008 for details).
Turbulent diffusivity in the BBL

The turbulent diffusion coefficients derived from heat fluxes
and temperature gradients (Fick’s first law, DT_F) varied from 1
× 10–6 to 5 × 10–4 m2 s–1 (Fig. 4A) after smoothing with a 1 h run-
ning average (i.e., 4 bursts). At time periods of unstable strati-
fication and high current velocities (gray bars in Fig. 4) DT_F

maximized (>10–4 m2 s–1), whereas low current velocities and
stable stratification led to reduced DT_F (10–4 to 10–6 m2 s–1). Tur-
bulent diffusivity derived from Taylor’s hypothesis (DT_T in Fig.
4A) agreed well with DT_F and followed the trend of low diffu-
sivities at stable stratification and high diffusivities and unsta-
ble stratification. The overall arithmetic mean of DT_F (1.5 ×
10–4 m2 s–1) and DT_T (1.6 × 10–4 m2 s–1) were in good agreement.
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Fig. 2. Determination of LE. The autocorrelation coefficient R is calculated as a function of the time interval τ (gray line). The time interval is translated
into the spatial distance and the autocorrelation coefficient R translates into the spatial correlation coefficient EE (for this burst, = 0.0186
ms–1). EE is integrated over the spatial distance r (black line). The first maximum of the integrated EE marks the first zero crossing of the correlation coef-
ficient (arrow) and was chosen as the integral length scale LE (here 0.127 m). 

r U= ⋅τ U



A hydraulic roughness (z0) of 4 × 10–4 m was derived from
Eq. 28 and used to calculate DT_LU. All diffusivities derived
from the logarithmic law of the wall (DT_LD, DT_LU, and DT_LR in
Fig. 4B) were persistently at the upper boundary of DT_F and
did not reproduce the decrease of DT_F during time periods of
stable stratification and low current velocities (light gray bars
in Fig. 4). Consequently, the temporal variability of DT_LD,
DT_LU, and DT_LR was decreased (10–3 to 10–4 m2 s–1) and the
arithmetic mean was increased (3.9 × 10–4 to 4.8 × 10–4 m2 s–1)
when compared with DT_F and DT_T . According to Eq. 18, DT_LR

was defined only for negative 〈uw〉. Bursts with positive 〈uw〉
were discarded, reducing the fraction of usable bursts to 65%.
DT_LR was similar to DT_LD and DT_LU except for increased DT_LR

at hour 42.
Diffusivity that was derived from turbulent viscosity (DT_V)

is defined for a negative ratio of 〈uw〉 to only (see Eq.
13). DT_V was defined for 64% of all bursts showing a high vari-
ability from 4 × 10–7 to 4 × 10–2 m2 s–1 with considerable devi-
ations from DT_F (Fig. 4C). Maximized DT_V was found at low
current velocities, e.g., at hour 42, 125, and 153. Diffusivity
that was derived from Osborn’s equation (DT_O) is defined for
a positive temperature gradient only (Eq. 27 et seq.). DT_O was

calculated for 50% of all bursts and varied from 1 × 10–6 to 3 ×
10–2 m2 s–1 (Fig. 4C). DT_O strongly deviated from DT_F at
decreased temperature gradients (hours 70-80, 100, and 130),
whereas DT_O agreed well with DT_F when a stable stratification
of the BBL was measured (hours 50, 63, and 140-150).
Factors determining turbulent diffusion:

The contribution of LE and w’ to DT_T as well as the contri-
bution of Jb and N2 to DT_F are shown in Fig. 5. The fluctuation
of the vertical velocity, expressed by w’ varied little between 1
× 10–3 and 4 × 10–3 m s–1, whereas the integrated length scale
LE varied by a factor of 30 from 1 to 30 cm. Consequently, the
variability of DT_T was mainly determined by LE. The Brunt-
Väisälä frequency (׀N2

in Fig. 5 (׀Jb׀) and the buoyancy flux (׀
were expressed in absolute values. ׀N2

׀ varied over two orders
of magnitude from 10–7 to 10–5 s–2. The buoyancy flux varied
from 5 × 10–12 to 10–9 W kg–1. The variations of ׀N2

׀ and ׀Jb׀

were predominantly in phase causing little variations of DT_F.
The out of phase events at hour 10, 52, 90, and 142 resulted
in rapid decrease of DT_F. The energy dissipation rate (ε) ranged
from 1 × 10–10 to 4 × 10–8 W kg–1 and was well correlated with
the current velocity and the vertical velocity gradient but less
correlated with Reynolds stress 〈uw〉. Time periods of increased

∂ ∂U z/
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Fig. 3. (A + B) Current speed and direction measured 1 m above the sediment. Current directions were derived from north and east components of
the current velocities measured by the ADCP. Upslope and downslope directions were north-west (260-350°) and south-east (90-180°), respectively. (C
+ D) Temperature at 0.5 m above the sediment and temperature gradient between 0.5 and 1.5 m above the sediment. The dotted line denotes zero
temperature gradient. Time periods with gravitational unstable stratification (negative temperature gradients) are marked by gray bars. 



ε, , and correspond with time periods of increased LE,
DT_T, and DT_F.

Fig. 6 shows three bursts (marked by the arrows in Fig. 5)
that were analyzed in detail. Burst 97 and 167 were character-
ized by low but negative temperature gradients of –2 × 10–3

and –3 × 10–3°C m–1, respectively. The current velocity was
increased during burst 97 (2.6 cm s–1) and decreased during
burst 167 (0.5 cm s–1) (Fig. 6A). Burst 249 was characterized by
moderate velocities (1.7 cm s–1) and a strong positive temper-
ature gradient of 4 × 10–2°C m–1.

Comparing burst 97 and 167, we observed a decrease of
standard deviations of both, vertical velocity and temperature
fluctuations from 1.9 × 10–3 to 1.3 × 10–3 m s–1 and from 2.5 ×
10–5 to 1.8 × 10–5°C (Fig. 6B + C), which corresponded to a
decrease in current velocity. The temperature gradients during
burst 97 and 167 were negative, which implies that the den-

sity gradients were positive and the resulting density fluxes
negative. Comparing burst 97 and 167, the absolute density
flux decreased by a factor of 7 from 2.1 × 10–10 to 3.0 × 10–11 W
kg–1 and the resulting DT_F decreased by a factor of ~10 from 4
× 10–4 to 4 × 10–5 m2 s–1. Although the density flux was very low
during burst 167, it was consistent throughout the burst
period as shown by the steady decrease of the integrated den-
sity flux (Fig. 6D small plot). The length scale LE is presented
in Fig. 6E in form of the integral of EE plotted over the spatial
distance r (see E8). With increasing r, the integral of EE

approached the first maximum (i.e., LE). The decrease of LE

from 14 cm (burst 97) to 1 cm (burst 167) resulted in a signif-
icant decrease of DT_T.

During burst 249, the strong positive temperature gradient
stabilized the BBL causing strong temperature fluctuations (2 ×
10–4°C, Fig. 6C) and a pronounced positive density flux (6.5 ×

∂ ∂U z/U
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Fig. 4. Comparing turbulent diffusion coefficients derived from Fick’s law (DT_F) with estimates derived from (A): Taylor’s hypothesis (DT_T), from (B): the
log-law and energy dissipation (DT_LD), mean current velocities (DT_LU), and Reynolds stress (DT_LR), from (C): Osborn’s equation (DT_O) and turbulent vis-
cosity (DT_V). The lower panel (D) presents mean current velocity (U) and the temperature gradient (dT/dz) between 0.5 and 1.5 m above the sediment.
dT/dz above and below the dotted line (zero gradient) indicate stable and unstable stratification, respectively. Thin lines represent raw data and thick
lines show a running average of four bursts. The light gray areas mark episodes where DT_LD, DT_LU, and DT_LR strongly deviate from DT_F and DT_T. The red
and black bars on the time axis denote periods with a Reynolds number below 10,000 and a gradient Richardson number (Ri) above 0.25, respectively
(see discussion). 



10–10 W kg–1, Fig. 6D). DT_F during burst 249 was decreased by a
factor of 5 compared with DT_F during burst 97, when the BBL
was not stably stratified. Furthermore, LE decreased signifi-
cantly to 5 cm at burst 249, which resulted in DT_T that was
comparable with DT_F (6 × 10–5 and 8 × 10–5 m2 s–1, respectively).

Discussion
It is useful to divide the diffusivity models in our study

(Table 1) into two categories. Models that describe diffusivity
independently from boundary dimensions include the equa-
tions for DT_F, DT_T, DT_O, and DT_V. These so called free shear-
flow models are basically applicable in all shear flows that pro-
duce stationary and homogeneous turbulence. Well
established is the use of the Osborn model (DT_O) in open
ocean settings (Fennel 1995; Gregg et al. 1986) as well as in
lakes (Lorke 2007), which involves the measurement of den-

sity gradients and kinetic energy dissipation. The second cate-
gory of diffusivity models is only applicable for boundary
flow, because these models depend on boundary dimensions.
The model equations for DT_LU, DT_LD, and DT_LR were all
derived from the logarithmic law of the wall and can be sum-
marized as log-law models. They offer different solutions for
obtaining the shear velocity (u*) according to Eq. 17, but they
all scale with distance (z) to the sediment. The log-law is well
established for high Reynolds number flows from numerous
laboratory flume experiments and direct numerical simula-
tions (Pope 2000).
Log-law models of turbulent diffusion

In our study, the different log-law models yielded similar
diffusivities (Fig. 4) of which DT_LU and DT_LD agreed most while
DT_LR was less similar. This can be explained with the better
correlation of current velocity ( ) and dissipation rate (ε)U
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Fig. 5. Black and gray lines: time series of the Eulerian Lengthscale (LE) and the standard deviation of the vertical velocity (w’ ) contributing to DT_T. In
red and orange: time series of the buoyancy flux (|Jb|) and the Brunt-Väisälä frequency (|N2|) contributing to DT_F. For comparison, the dissipation rate (ε),
Reynold stress (- <u w>), mean current velocity (U), velocity gradient (dU/dz), and temperature gradient (dT/dz) are shown. The light gray areas mark
episodes where the log-law based estimates of DT strongly deviate from DT_F and DT_T. The red and black bars on the time axis denote periods with a
Reynolds number below 10,000 and a gradient Richardson number (Ri) above 0.25, respectively (see “Discussion”). Details of three individual bursts
(arrows) are presented in Fig. 6. 
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Fig. 6. From 3 bursts with distinct vertical gradients of temperature and current velocity (A), the velocity (B) and temperature (C) fluctuations as well
as the integrated density flux, Jb, (D) and LE (E) in the form of the integrated spatial correlation coefficient, EE, are presented. The dotted line in (A) marks
the height of the ADV sampling volume. The position of bursts in the time series are marked by arrows in Fig. 5. 



when compared with the Reynolds stress 〈uw〉 (Fig. 5), because
these quantities were used to determine DT_LU, DT_LD, and DT_LR,
respectively (Eq. 19 + Eq. 21 + Eq. 18). Estimates from log-law
models agreed well with DT_F at periods of no or unstable strat-
ification. However, the log-law models could not account for
a stable stratification. At transitions from unstable to stable
stratification DT_LU, DT_LD, and DT_LR stayed constant (Fig. 4),
although a stable stratification should considerably decrease
the diffusivity. In these cases, production and dissipation of
turbulent kinetic energy are out of balance (see Eq. 20) and,
thus, a condition for the log-law is no longer valid. In con-
trast, DT_F was strongly affected by a stable stratification and
decreased more than one order of magnitude. As a result, low
DT_F correlated well with high temperature gradients (Fig. 4).
For this reason, and because Fick’s law provides the most
direct approach to determine diffusivity, we assumed that the
estimates of DT_F were correct and used DT_F as reference for the
other approaches.

Independent from a stable stratification, low current veloc-
ities strongly affected the diffusivity. DT_F decreased rapidly
when current velocities fell below ~1.5 cm s–1 (see DT_F at hour
42, 85, and 125 in Fig. 4). For the critical velocity of 1.5 cm s–1,
a corresponding critical Reynolds number (Rec) of ~10,000 was
calculated according to , where z is the characteris-
tic length scale that corresponds to the measurement height
above the sediment (i.e., 1 m). For flows with Rec < 10,000 (red
bars in Fig. 4 + 5), results from the log-law models strongly
deviated from DT_F and failed to give plausible diffusivities. As
can be seen from Eq. 19, the log-law models predict diffusivi-
ties that decrease linearly with . However, the decrease of
DT_F at velocities below 1.5 cm s–1 was strongly nonlinear with
respect to (e.g., hour 42). In summary, the occasionally low
flow velocities as well as the stable stratification caused the
failure of the log-law models to predict plausible diffusivities.
Common free-shear-flow models of turbulent diffusion

Of the diffusivities from the free-shear-flow models, both,
DT_O and DT_V deviated up to two orders of magnitude from
DT_F (Fig. 4). DT_V was significantly higher than DT_F at flow
velocities with Reynolds numbers below Rec. At 42, 125, and
153 h, high DT_V coincided with the change of current direc-
tion between upwelling and downwelling (Fig. 3). As a result,
velocity gradients were close to zero and, therefore, below the
resolution of the ADCP. At periods of unstable stratification
DT_V was well below DT_F, whereas at periods of moderate sta-
ble stratification and increased current speed DT_V agreed with
DT_F. In summary, DT_V was not suitable to determine diffusiv-
ities under the present flow conditions, which in part, was due
to the problematic measurements of velocity gradients. From
the DT_O model, reasonable estimates were calculated only for
a stably stratified BBL. A useful criterion for the applicability
of DT_O was the dimensionless gradient Richardson number

, which describes the dynamic stability of a
stratified shear flow. Based on perturbation analysis of parallel
shear flow Miles (1961) deduced a critical value of Ri = 0.25,

above which a stratified shear flow is sufficiently stable. We
found that DT_O was comparable to DT_F whenever Ri was above
0.25 (black bars in Fig. 4). However, the requirement of a sta-
ble stratification for the DT_O model certainly limits its appli-
cability in boundary flows.
Taylor’s model of turbulent diffusion

Of all applied models, diffusivities derived from Taylor’s
model (DT_T) agreed best with diffusivities from Fick’s law of dif-
fusion (DT_F). At flow regimes above as well as below Rec, DT_T

was comparable with DT_F (Fig. 4). DT_T was calculated as the
product of the length scale LE and the velocity w’. LE may be
interpreted as the characteristic eddy size that contains most of
the turbulent kinetic energy. LE varied from 1 to 30 cm and cor-
related with the mean current velocity (Fig. 5). At high mean
current velocities, larger eddies were formed that contained
more kinetic energy. As eddies fell apart, their energy cascaded
down to smaller eddies until viscosity affected the flow and the
energy dissipated into viscous shear. Large LE therefore corre-
sponded with increased dissipation rates (Fig. 5).

The characteristic size (LE) of an eddy is associated with its
characteristic velocity (w’). We defined the Reynolds number
for energy containing eddies as ReT = w’LE/ν, which is eventu-
ally the ratio of turbulent diffusivity to viscosity ReT = DT/ν. At
stable stratification and decreased flow velocity (e.g., hour 50,
Fig. 5), ReT was around 10, a range where viscosity affects the
flow. At such low flow, it is questionable if diffusivities on the
basis of density flux measurements (DT_F) were reliable. How-
ever, a consistent density flux throughout the burst period was
observed for density fluxes as low as 10–11 W kg–1 (see also
Burst 167 in Fig. 6D). Comparing DT_T for high and low cur-
rent velocities at negligible stratification (Burst 97 and burst
167 in Fig. 6), we observed a significant increase of LE and a
moderate increase of w’ with increasing current velocities.
However, when the BBL was stably stratified (Burst 249 in Fig.
6) LE and w’ were reduced.
The variability of diffusivities

In this study, the diffusivities derived from Taylor’s model
and from Fick’s law varied over approximately three orders of
magnitude from 1 × 10–3 to about 1 × 10–6 m2 s–1 with loga-
rithmic means of 6.7 × 10–5 and 8 × 10–5 m2 s–1 for DT_F and
DT_T, respectively (Fig. 7). In contrast, diffusivities derived
from the log-law varied over not more than one order of mag-
nitude with logarithmic means of 4.3 × 10–4 and 3.4 × 10–4 m2

s–1 for DT_LD and DT_LU, respectively. This is because the log-law
diffusivities depend linearly on the mean current velocity,
which varied over approximately one order of magnitude (0.5-
6 cm s–1). DT_F and DT_T compared well with the highly variable
diffusivities reported previously by Lorke (2007) for a shallow
and stably stratified station in Lake Constance using Osborn’s
approach (DT_O). However, most hydrodynamic studies in the
BBL focus on estimating bottom stress (Dewey and Crawford
1988; Howarth and Souza 2005; Kim et al. 2000; Trowbridge et
al. 1999) from which diffusivities may be derived using the
log-law. Diffusivity measurements in the BBL that are not

U

U
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based on the log-law (i.e., free-shear-flow models) are scarce,
in lakes as well as in the ocean. Since the log-law does not
apply for low current velocities and stratified shear flow, the
low diffusivities that occur under these conditions are poorly
described. However, the low turbulent diffusivities are of inter-
est, because they can potentially result in bottom water
hypoxia. As a rough estimate, we calculated that a turbulent
diffusivity in the BBL of 1 × 10–6 m2 s–1 above sediments with
a moderate oxygen uptake of 20 mmol m–2 d–1 would result in
an oxygen concentration gradient of ~ 230 µM m–1. Because of
the increased gradients, hypoxic conditions in the bottom
water of lakes and the coastal ocean may occur in the first tens
of centimeters above the sediment and subsequently increase
the stress and mortality of the benthic fauna, even though suf-
ficient oxygen can be found in the upper BBL. Because most
shipboard-based measurements of oxygen concentrations can-
not resolve the lower BBL, these kinds of hypoxic events may
remain undetected. There is strong evidence that the extent
and duration of hypoxic conditions in the coastal ocean are
increasing (Diaz 2001; Diaz and Rosenberg 2008). A thorough
description of the transport processes in the BBL would be
beneficial to understand the evolution of hypoxic events in
the bottom water.

Conclusions
From Taylor’s theory (1921), we derived a new approach that

allows determining the turbulent diffusivity in the BBL from
high resolution velocity measurements. The diffusivities derived
from the new approach (DT_T) agreed well with those derived
from gradient-flux measurements (DT_F) whereas the common
log-law models failed at decreased and stratified flow conditions.
Our approach combines the broad applicability in free shear
flows with a simple set up. A simple velocity measurement suf-
fices to calculate DT_T whereas the measurement of DT_F, DT_V, and
DT_O need at least additional gradient measurements.

When combined with solute gradient measurements
(Holtappels et al. 2010), the new approach allows to deter-
mine the solute flux across the BBL according to Fick’s law.
This noninvasive flux measurement provides an alternative to
the eddy correlation approach (Berg et al. 2003), which allows
flux measurements only for a very limited number of solutes,
measurable with high temporal and spatial resolution (e.g.,
oxygen via microsensors). However, solute gradients in the
BBL decrease at high current velocities to eventually unde-
tectable values, which limits the combined application of
solute gradient and diffusivity measurements to low and mod-
erate flows.

We showed that the new approach was capable to measure
diffusivities at low current velocities as well as in stably strati-
fied boundary layers. Under these conditions, diffusivities
were much below the common estimates derived from the
log-law. The decreased diffusivities question the common view
that turbulent transport in the BBL is not affecting the flux
across the sediment-water interface. Low turbulent diffusion
in the BBL potentially controls the oxygen flux into the sedi-
ment. As result, turbulent diffusivities may not be seen as a
mere quantity to calculate vertical fluxes. In fact, the focus is
on the turbulent diffusivity itself and how it evolves during
stratified and low flow conditions. Understanding the dynam-
ics of turbulent transport in the BBL may be crucial to predict
hypoxia in bottom waters and sulfide efflux from the sedi-
ments. The response of oxygen fluxes on variable current
velocities and diffusivities, therefore, needs to be studied in
more detail.
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