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Introduction

In enzyme-catalyzed processes, the reaction 
pathway is defi ned by the enzyme and its com-
plex with the substrate. The active site of an en-
zyme structure determines the interaction with 
the substrate which often results in high stere-
ospecifi city. Classical examples are the reduction 
of nicotinamide-adenine-dinucleotides (NAD+ 
and NADP+) and of aldehydes, the hydration of 
fumarate, and aldose-ketose isomerase reactions 
(Fersht, 1998). Fumarase reversibly catalyzes the 
formation of (S)-malate. The crystal structure 
reveals a tetrameric protein and the presence 
of two binding sites for dicarboxylic acids per 
monomer. One site also contains a water mole-
cule (Weaver and Banaszak, 1996; Weaver, 2005). 
Enoyl-CoA-hydratases, which act stereospecifi c 
on α,β-unsaturated acyl-CoA thiolesters, contain 
also a water molecule in the active site (Wu et al., 
2000; Bahnson et al., 2002).

We discovered recently a novel enzyme in the 
anaerobic biodegradation pathway of monoter-
penes, a linalool dehydratase-isomerase (LDI) 
(Brodkorb et al., 2010). In contrast to well-char-
acterized enzymes acting on alkenes with ad-
jacent polar groups, e.g. fumarate, the substrate 
β-myrcene has no polar group that may serve as 
anchor to bind the substrate and direct the re-

action pathway. Hence, we explored whether the 
LDI catalyzes its reaction in a stereospecifi c man-
ner.

Material and Methods

Escherichia coli BL21 Star™ (Invitrogen, 
Darmstadt, Germany) containing the plasmids 
pET-42a(+)ldi or, as control, pET-42a(+) were 
grown in batch culture on lysogeny broth and in-
duced with isopropyl-β-D-thiogalactopyranoside 
(Brodkorb et al., 2010). Soluble enzyme fractions 
were obtained by cell disruption (French pressure 
cell press at 10.3 MPa), centrifugation for 90 min 
at 150000 x g and dialysis against 80 mM Tris-HCl, 
pH 9.0. Assays contained two phases, 500 μl solu-
ble extract and 500 μl β-myrcene (~ 90%; Fluka, 
Neu-Ulm, Germany), and were performed un-
der anoxic conditions and by horizontal shaking 
at 25 rpm and 37 °C. The protein content was 
10 mg/ml as determined in a 200-μl aliquot by 
the method of Bradford (1976) with bovine se-
rum albumine as standard protein; concentrations 
were corrected for the unusual high binding of 
the Coomassie stain to albumin (Biorad, 1994).

Chiral analyses of the β-myrcene phase were 
performed using a gas chromatograph (Perkin 
Elmer Auto System XL; Überlingen, Germany) 
equipped with a fl ame ionization detector. Sepa-
ration was achieved on a Hydrodex-β-6TBDM-
column (25 m x 0.25 mm ID; Macherey-Nagel, 
Düren, Germany) by the following temperature 
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program: injection port temperature, 200 °C; col-
umn separation, 100 °C for 1 min, increasing to 
116 °C at a rate of 2 °C/min, 116 °C for 0.5 min, 
increasing to 230 °C at a rate of 20 °C/min, 230 °C 
for 2.5 min; detection temperature, 250 °C. The 
split ratio was set to 1:30. Retention times were 
6.5 min for (R)-(–)-linalool, 6.5 and 6.7 min for 
(R,S)-()-linalool (Fig. 2) and 11.6 min for geran-
iol.

In all analyses an 1-μl sample from the β-myrcene 
phase was injected directly into the gas chromato-
graph. The enantiomerspecifi c assays were meas-
ured as biological triplicates with 5 mM 3-pentanol 
as internal standard.

Results

Biotransformation of the acyclic monoterpene 
β-myrcene (Fig. 1) was studied with the linalool 
dehydratase-isomerase (LDI) produced in E. 
coli (Brodkorb et al., 2010). The thermodynami-
cally favoured direction is the isomerization of 
geraniol to linalool and the dehydration reac-
tion to β-myrcene. To enforce the thermodynami-
cally unfavoured direction, we applied a pure 
β-myrcene phase in a two-phase system. In addi-
tion, the organic phase served as solvent for the 
monoterpenoids (R)-(–)-linalool, (S)-(+)-linalool, 
and geraniol. These were sampled dissolved in 
β-myrcene and identifi ed by chiral gas chroma-
tography (Figs. 2 and 3). The sensitivity of detec-
tion in aqueous samples was reduced for geraniol, 
likely due to reactions of water with the monoter-

penoids in the injector of the gas chromatograph 
(data not shown). Detection limits were 0.013 mM 
for both linalool enantiomers and 0.007 mM for 
geraniol in β-myrcene as solvent.

(S)-(+)-Linalool and geraniol were formed 
in the incubation experiment (Fig. 3), but (R)-
(–)- linalool was not detectable. (S)-(+)-Linalool 
became visible after 1 h of incubation. The con-
centration reached a steady state of 1.8 mM and 
increased after 24 h to a level of 11 mM. Based on 
the detection limit, the enantiomeric excess (ee) 
of the formation of (S)-(+)-linalool was 95.4% ee. 
The geraniol concentrations changed accordingly 
to an early steady state concentration of 0.1 mM 
and increased after 24 h to 0.5 mM. Protein dena-

Fig. 2. Separation of linalool enantiomers using chiral chromatography. (1) (R,S)-()-Linalool in β-myrcene phase; 
(2) (S)-(+)-linalool formation after 12 h incubation.

Fig. 1. Chemical structures of β-myrcene (1), (R)-(–)-
linalool (2), (S)-(+)-linalool (3), and geraniol (4).

Brought to you by | MPI fuer marine Mikrobiologie
Authenticated

Download Date | 1/28/20 4:21 PM



F. Lüddeke and J. Harder · Enantioselectivity of Linalool Dehydratase-Isomerase 411

turation became visible as turbidity in the aque-
ous phase after 24 h of incubation. Thus, a release 
of linalool and geraniol that were bound to hy-
drophobic patches of proteins into the β-myrcene 
phase may explain the late increase in the con-
centrations of (S)-(+)-linalool and geraniol. The 
observed ratio of geraniol to linalool of 1:18 in 
the early phase is close to the equilibrium value 
of 1:10 that was reported for another geraniol 
isomerase activity (Foss and Harder, 1997). The 
experiment showed a myrcene to linalool ratio 
of 8616:1 in the fi rst 10 h of the experiment and 
of 1410:1 in the late phase. β-Myrcene is known 
to polymerize at room temperature resulting in 
a higher viscosity (Behr and Johnen, 2009). To 
take account of this reaction and other poten-
tial  linalool-forming sources, control reactions 
with 80 mM Tris-HCl, pH 9.0, as aqueous phase 
and soluble extracts of E. coli pET-42a(+) in the 
aforementioned buffer were performed. Neither 
in the abiotic nor in the biotic control the con-
version of β-myrcene to linalool and subsequent 
isomerization to geraniol was detectable.

The chemical isomerization of (R)-(–)-linalool 
within 144 h under assay conditions yielded less 
than 1% (S)-(+)-linalool. Thus, the possibility of 
an unnoticed (R)-(–)-linalool formation followed 
by rapid chemical isomerization to the (S)-(+)-
enantiomer can be excluded (data not shown).

Discussion

The LDI catalyzes in the absence of oxygen the 
hydration of an alkene. The addition of the wa-
ter molecule can occur on one or on both sides 
of the alkene. This study revealed a reaction on 
the si-face of the prochiral β-myrcene resulting in 
a high enantiospecifi c hydration reaction to (S)-
(+)-linalool, with an ee-value of at least 95.4%. 
Previous experiments already exhibited a high 
substrate specifi city of the enzyme: no other acy-
clic monoterpene or monoterpenoid was trans-
formed (Brodkorb et al., 2010).

Enantioselectivity is often observed in alkene 
hydrations that are in general activated by a po-
larization through an electron-withdrawing, ad-
jacent carbonyl group, e.g. coenzyme A or acyl 
carrier protein thioesters (Schwab and Hender-
son, 1990; Leesong et al., 1996; Wu et al., 2000; 
Buckel et al., 2005). However, the double bonds 
in β-myrcene are only slightly polarized by hy-
perconjugation. Furthermore the C-H bonds con-
tribute electron density to the methylene carbon 
atom by an inductive effect. The resulting po-
larity is measurable by 13C NMR spectroscopy. 
The methylene C atom has a chemical shift of 
116 ppm. The ternary C3 atom features a chemi-
cal shift of 146 ppm indicating a low electron 
density at the carbon atom (Honda, 1990). This 

Fig. 3. Time course of LDI activity. Monoterpenes were measured in β-myrcene phase with a chiral GC column. 
(A) (S)-(+)-Linalool (▲) and (R)-(–)-linalool (▼▼) in β-myrcene; (B) geraniol in β-myrcene. Standard deviations 
are calculated from triplicate measurements.
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difference may direct the water addition accord-
ing to Markovnikov´s rule.

The formation of linalool has never before 
been reported for biological β-myrcene utiliza-
tion (Busmann and Berger, 1994; Iurescia et al., 
1999; Farooq et al., 2004; Broudiscou et al., 2007; 
Thompson et al., 2010). The presented enantio-
specifi c reaction may have potential applications, 
since (S)-(+)-linalool, also known as coriandrol, 
is commercially not available. So far, a selective 
biological synthesis has only been described with 

geranyl diphosphate and plant (S)-(+)-linalool 
synthases, with ee-values ranging from 85% to 
99% (Pichersky et al., 1995; Sitrit et al., 2004; 
Chen et al., 2010). For a biotechnological appli-
cation, a detailed characterization of the LDI is 
highly desirable.
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