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Thesis Abstract 

 

Classical community ecology concepts are just beginning to poke microbial ecology. 

Indeed, the development of high-throughput molecular techniques coupled with 

community ecology theories offers promising opportunities to understand the ecology of 

microbes. However, we are only starting to cope with the colossal work of explaining the 

structuring and the ecology of microbial communities. Further analyses are yet to be done 

to decipher processes structuring communities such as speciation, selection, ecological 

drift or passive dispersal. Hence, this requires the comprehension of the effect of time, 

space and the environment on the structuring of microbial communities. The 

understanding of microbial community ecology first requires the development of time- 

and cost-effective tools, and pipelines that should be available to most microbial 

ecologists. These tools must also lead to a high resolution description of microbial 

communities and variations of their ecological patterns. In the present thesis, patterns of 

diversity, community structure and ecology were investigated on temperate coastal sandy 

sediment. Samples taken over a two-year period were obtained from a previous study 

where changes in bacterial community composition linked to ecosystem dynamics were 

previously observed (Böer et al. 2009). Automated rRNA intergenic spacer analysis 

(ARISA) and high-throughput 454 massively tag sequencing (MTPS) were applied on 

these samples.  

Despite being known as a consistent descriptor of microbial community patterns, 

ARISA may appear obsolete in comparison to emergent high-throughput sequencing 

technologies. We thus compared ARISA and 454 MPTS to check whether each approach 

could be better adapted to a specific type of question. Whereas observing high differences 

in community turnover, both techniques presented similar patterns in community 

structure. Additionally, the same combination of biogeochemical parameters could 

explain the resulting microbial ecological patterns. This study validated ARISA as a 

consistent technique to describe microbial community patterns and also suggested to 

couple community fingerprinting and high-throughput sequencing techniques for (i) a 
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broad and rapid overview of diversity patterns in many samples as well as (ii) a detailed 

description of microbial community composition and dynamics.  

As next-generation sequencing techniques are emerging, a massive amount of data is 

accumulating and a more thorough interpretation of high-throughput data sets is needed. 

By implementing new user-friendly statistical tools (MultiCoLA, www.ecology-

research.com), we tested the effect of applying successive definitions of rare and 

abundant types in complex community data sets on the resulting ecological interpretation. 

Similar ecological patterns could be observed even after removing a high proportion of 

the data set (35-40%). This study confirmed the importance of defining different fractions 

of the microbial community for a consistent ecological interpretation of large community 

data sets.  

Some recent studies using 454 MPTS showed an unprecedented diversity and 

allowed preliminary conclusions on the distribution patterns of different subsets of 

microbial communities. For more insights into microbial ecological patterns, we applied 

454 MPTS on temperate coastal sands, a highly dynamic marine environment 

characterized by strong physical mixing and seasonal variation. There were remarkable 

shifts in community composition over a few centimeters of sediment depth or between 

any two consecutive sampling times, with up to 70-80% of community turnover. These 

drastic shifts were not random as most of the variation could be attributed to a 

combination of biogeochemical parameters (e.g. temperature, nutrients, pigments, 

production of extracellular enzymes), and to specific shifts of the large majority of rare 

bacterial types. This study thus demonstrates how dynamic microbial diversity may be in 

coastal sandy sediments. Many microbial niches may be created by strong vertical shifts 

in nutrient, organic matter and oxygen availability, which may support a high turnover of 

bacterial types in sandy sediments.  

The accomplishments of this PhD thesis allowed improvements to extract the 

deeper meaning out of complex community data sets. This work shed light on main 

processes shaping microbial communities, by constructing robust bases in microbial 

community ecology. 
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1 Introduction 
 

1.1 Global Biodiversity 
 

1.1.1 Importance of Studying Biodiversity 

 

Global warming is currently changing environmental conditions on Earth at an 

unprecedented rate, inducing dramatic shifts in structure, species composition, and 

functioning of ecosystems. Such variations may lead to biodiversity loss, or habitat 

destruction (Sala et al. 2000). Biodiversity is currently being lost at an accelerating rate, 

with an estimated 50% of all species, including mammals, birds, and reptiles, to be lost in 

the next 300–400 years (Mace 1995). Such a reduction in biodiversity is of public 

concern, as it directly affects ecosystem services, and may therefore have significant 

socio-economical consequences (e.g. health, agriculture or economy). An example of 

how species invasion can directly influence our everyday-life, is the invasive zebra 

mussel, which induced the extermination of native mussel populations into the Great 

Lakes. This invasion led to shut down electrical utilities by clogging water intake pipes, 

costing about 5 billion dollars, according to the U.S. Fish and Wildlife Service (Wilson 

2000).  

Despite observing high extinction rates [50 to 100 times the average expected 

natural rate, (Hawksworth & Kalin-Arroyo 1995)], Wilson stated that the whole extent of 

biological diversity remains far from being completely described [Fig. 1.1., (Wilson 

2000)]. Indeed, there is a very wide range of estimation of the biodiversity on Earth (13-

14 millions estimated species), and it seems that only about 13% has been scientifically 

described [Fig. 1.1., (Hawksworth & Kalin-Arroyo 1995)]. In the big picture, Bacteria 

seem to remain as a real black hole, especially considering the relatively small area they 

occupy in the pie [Fig. 1.1. (Wilson 1992, 2000)]. This confirms the need to thoroughly 

study biodiversity to engender a better understanding of current environmental changes 

and its consequences on ecosystem services.  
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Figure 1.1. Species richness in major groups of organisms. The main 'pie' shows the species estimated to 

exist in each group; the smaller area within each slice shows the described proportion. Figure from (Purvis 

& Hector 2000), with data from (Hawksworth & Kalin-Arroyo 1995). 

 

1.1.2 Evaluating the Role of Microbes on Earth 

 

Over the last few decades, compared to macroorganisms, we now know that 

microorganisms are extremely more diverse than hitherto presumed (Fig. 1.1.) and may 

actually represent most of Earth‟s biodiversity (Pace 1997, Torsvik et al. 2002, Venter et 

al. 2004). For instance, bacterial diversity was estimated to reach 2.10
6
 species in the 

global ocean (Curtis et al. 2002). Microbes may thus be the key to understanding drastic 

shifts in environmental processes. Although most of them are invisible to the human eye, 

microbes constitute an essential component of Earth‟s biosphere and can be found in all 

types of habitats, including marine sediments, aquatic systems and living organisms. The 

impressive microbial world has been estimated to 4-6.10
30

 cells on Earth (Whitman et al. 

1998), which represent about 10
9
 times the number of stars in the universe (Curtis & 

Sloan 2004). Their importance can be underlined by the total amount of prokaryotic 

biomass they represent, which is about 60–100% of the estimated total plant biomass [i.e. 
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350–550 Pg of C, with 1 Pg = 10
15

 g, (Whitman et al. 1998)]. Also, microbes represent 

the largest living reservoir of nutrients, and contribute to major ecosystem processes by 

recycling elements (Whitman et al. 1998, Azam & Worden 2004, Falkowski et al. 2008). 

Hence, determining the extent of microbial diversity, together with the factors shaping it, 

is of prime concern. Considerable efforts are thus required toward characterizing 

microbial diversity patterns, which may be enlightened by applying community ecology 

concepts (Box 1, § 1.3.1). 

In this introduction, some of the classical concepts used in community ecology are 

reviewed, followed by a state of the art of the current knowledge on microbial diversity 

patterns. The applications of community ecology concepts in microbial ecology as well as 

their efficiency to unveil microbial ecological patterns are also reviewed. 
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Box 1. Brief Historic of Some Community Ecology Terms. 
 
“-Oecologie…der Wissenschaft von der Oeconomie, von der Lebensweise, von der äusseren 
Lebensbeziehungen der Organismem zu einander etc." Haeckel, 1866.  
 
Ecology. The term Ecology was first introduced in 1866 by the theoretical morphologist and 
field naturalist Ernst Haeckel in his book Generelle Morphologie der Organismen (Stauffer 
1957). Haeckel originally defined Ecology as a restraint of the term „biology“ which would be 
the science of the economy, of nature, the external relationships between organisms, etc. 
Haeckel’s enthusiasm to Darwin’s Origin of species directly influenced his original definition of 
Ecology, which then evolved through Haeckel’s successive statements (Stauffer 1957). 
According to Begon, a more precise definition of Ecology would be “the scientific study of the 
distribution and abundance of organisms and the interactions that determine distribution and 
abundance” (Begon et al. 2006). In other words, Ecology should allow the understanding of 
the abundance and distribution of organisms in the environment, their succession in 
ecosystems, their adaptations, and the processes of energy transfers through the living 
communities.  
 
Community. Concepts of community were first laid within plant Ecology. At first, no 
consensus definition of community existed, but several definitions were in use. For instance, in 
the 1920-1930’s, Gleason centered the community rather on the species needs, while 
Clements based it on the species interactions. Nowadays, an agreed definition of the 
community would be the patterns in comparison and diversity of species living close enough to 
interact in a specified place and time (Whittaker 1975). A community can be defined by its 
richness, its evenness, its composition and its functional characteristics. 
 
Biological diversity and biodiversity. In Measuring Biological Diversity, Magurran reviewed 
the historic and successive usages of the term “biological diversity” and could trace it back to 
1955 (Gerbilskii & Petrunkevitch 1955), in the context of intraspecific variation in behavior and 
life history of sturgeons. In 1986, biological diversity was divided into three terms: genetic 
diversity (within-species diversity), species diversity (number of species) and ecological 
diversity [diversity of communities, (Norse 1986, Harper & Hawksworth 1995)]. The term 
“biodiversity” was then introduced by Rosen in 1986 (Harper & Hawksworth 1995). In The 
Unified Neutral Theory of Biodiversity and Biogeography, Hubbell proposed the term 
biodiversity to be considered as a “synonymous with species richness and relative species 
abundance in space and time” (Hubbell 2001). Also, it seems that both terms biological 
diversity and biodiversity are commonly used as synonyms by most authors (Harper & 
Hawksworth 1995, Magurran 2004). 
 
When studying community Ecology, scientists often describe the species diversity 
within a context of community and seek to identify the principal processes structuring 
the community, i.e. the factors determining the species diversity, composition and 
abundance in the community. 
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1.2 Measuring Microbial Diversity 
 

1.2.1 Species Concept 

 

In microbial ecology, one of the biggest issues in measuring biological diversity is not a 

methodological or algorithmic one, it is simply coming to an agreement on what a 

microbial “species” actually is. What “unit” should these tests of diversity measure? For 

macroorganisms, species are most commonly defined according to Mayr‟s biological 

species concept (Mayr 1942). According to this definition, a species is a group of 

interbreeding individuals isolated from other groups by barriers of recombination (Mayr 

1942). This is a genetic definition of species, implying that members of the same species 

should have genetic exchange sufficiently extensive, thus being genetically homogeneous 

among themselves and distinct from other species.  

However, this species concept cannot be applied to microorganisms. Indeed, the 

short generation time and clonal reproduction of microbes result in the absence of clear 

genetic isolation (Acinas et al. 2004). On the other hand, their generally short generation 

time enhances their genetic mutation rate, and causes a high variability in microbial 

genomes. This variability is increased by horizontal gene transfer (Ochman et al. 2000), a 

mechanism allowing microbes to acquire genes from surrounding organisms, genetically 

related or not. This genetic variability provides microbes with a high adaptability to ever-

changing and complex environments (Rosenzweig et al. 1994). Subsequently, some 

microbiologist even believe that the species concept cannot be applied to microbes [see 

(Achtman & Wagner 2008)]. Hence, a common agreement among microbial ecologists is 

to use an arbitrary unit to describe bacterial diversity, by referring to “operational 

taxonomic units” (OTU), rather than species (Box 2).  
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1.2.2 Classical Community Ecology Tools Applied to Microbial 

Community Ecology 

 

Measuring alpha-diversity (Box 3). There are several approaches to deal with the 

daunting task of predicting microbial richness. Among them, rarefaction curves allow an 

estimation of the expected sampling effort to cover the whole diversity by plotting types, 

or “units”, against individuals (Gotelli & Colwell 2001). Microbial ecologists commonly 

use rarefaction curves to estimate whether their sampling effort is sufficient to accurately 

estimate microbial diversity from 16S rRNA clone libraries [Fig. 1.2.A and (Kemp & 

Aller 2004)]. Unfortunately, the required number of clones needed to fully represent the 

community diversity (i.e. to reach an asymptote with the rarefaction curve) is usually 

quite high, and additional sampling effort is thus necessary [Fig. 1.2.A, (Kemp & Aller 

2004)]. Interestingly, whereas next-generation sequencing techniques might appear as an 

alternative to the limitations of clone library-based studies (Box 2), it is becoming 

obvious that these high-throughput sequencing methods are still usually far from 

unveiling the full diversity of bacterial communities [Fig. 1.2.B, (Sogin et al. 2006)]. For 

instance, further calculations of diversity estimates have shown that even the better-

sampled site from Sogin‟s study would need a sample size 280 times larger, requiring 120 

million reads, just to reach 90% of the bacterial diversity (Quince et al. 2008). However, 

these methods do seem to encompass a more representative portion of the taxa-poor 

archaeal diversity [Fig. 1.2.C, (Galand et al. 2009a, Brazelton et al. 2010)].  
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Figure 1.2. Rarefaction curves. (A) Clone library-based sequencing on several example of environments, 

modified from (Kemp & Aller 2004), and (B, C) 454 massively parallel tag sequencing (MPTS) on water 

column from the Arctic ocean. (B) Rarefaction curves of Bacteria (Galand et al. 2010), (C) Rarefaction 

curves of Archaea (Galand et al. 2009b). ACB, surface waters, DAO, deep water masses. Numbers indicate 

sample identification. 

 

The rank-abundance curve is another option to estimate microbial diversity. It 

allows an approximation of the frequency distribution of the sampled species and an 

estimation of the unsampled ones [ see § 1.3.2. and (Curtis et al. 2002, Magurran 2004)]. 
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An additional way to estimate the species richness of a community is by using 

coverage-based nonparametric estimators, such as Chao or ACE estimators (Chao 1984, 

Chao & Lee 1992). For a reliable estimation of diversity, Chao and ACE estimators 

should be applied to large community data sets, with a good coverage of the total 

diversity (Chao & Bunge 2002). These estimators are often used to estimate microbial 

species richness (Curtis et al. 2002), but they may not be appropriate for all microbial 

studies. In the case of 16S rRNA-based libraries and high-throughput sequencing 

technologies, when data is limiting, these robust estimators may underestimate the true 

microbial diversity (Hong et al. 2006, Quince et al. 2008).  

 

Measures of beta-diversity (Box 3). In the case of 16S rRNA-and PCR-based 

technologies, alpha-diversity estimates may not be adequate [see § 1.2.3 and (Bent & 

Forney 2008, Reeder & Knight 2010)]. Studying patterns of the community structure may 

be better suited to analyze such species data sets (see § 1.2.3). For a better understanding 

of microbial community ecology (see § 1.3.1.), methods traditionally used in community 

ecology may allow a better investigation of relationships between the observed microbial 

diversity and their environment (Ramette 2007). To measure beta-diversity, i.e. compare 

the diversity between two sites or along an environmental gradient, the similarity or 

dissimilarity between the sites, or samples, has to be calculated. Many indices are 

available to compare samples, amongst them, asymmetrical coefficients are preferable to 

deal with the double zero problem (Legendre & Legendre 1998). These types of 

coefficient do not treat double absence of a species in two samples similarly as a species 

can be absent for different reasons [e.g. it can be because of sampling resolution, 

(Legendre & Legendre 1998)]. When dealing with abundance data, the Bray-Curtis index 

[see equation (1), (Bray & Curtis 1957)] may be used.  

 

(1) 

 

Where i, j are each sample; S the richness in each sample; C is the number of species common to both 

samples. 
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It represents the total number of unique species to each sites (or turnover) divided by the 

total number of species over the two sites. When dealing with presence-absence (binary) 

data, one may choose the Jaccard similarity coefficient [see equation (2), (Jaccard 1901)], 

which measures similarity between samples, and is defined as the size of the intersection 

divided by the size of the union of the samples. 

 

(2) 

 

Where A and B are each sample. 

Such indices may be applied to compare samples in the species data set before using 

multivariate analyses [see all chapters of the thesis and (Ramette 2007)]. 

Also, the advance of sequencing technologies lead to a massive accumulation of 

microbiological information, along with the accumulation of contextual environmental 

parameters. There is still a need to systematically study beta-diversity of microbes by 

interpreting the massive data output and making such pipelines available to a larger range 

of scientists [(Rothberg & Leamon 2008), (Chapters 1 and 2)]. 

 

1.2.3 Resolution and Biases of the Techniques 

 

Sampling design. It is important to note that sampling has a major role in the future 

description of communities. For instance, scientists should make sure to sample as 

randomly as possible and to take replicates of each similar type of sample (Magurran 

2004). First, the sample strategy (i.e. where to sample, the number of replicates) is 

extremely important for robust ecological interpretation (Horner-Devine et al. 2004, 

Green & Bohannan 2006). In microbial ecology, a common solution to these problems is 

to work on pooled samples, by mixing extracted DNA from spatial replicates 

(Schwarzenbach et al. 2007). However, this solution may not apply in the case of spatial 

studies, where sample pooling would remove spatial variability (Prosser 2010). Also, 

sample size is an important factor to take into account. Indeed, the number of species 

observed increases with the sampling effort until the total richness is sampled. As such, 
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the larger the sampling effort, the greater the chance is to obtain the total diversity in the 

community, especially considering the highly diverse microbial world (Curtis et al. 

2002). This has been observed when filtering large volume of water column, a large 

sample representing a great number of different microbial species (Venter et al. 2004). 

These sampling issues are similar to those encountered for animals and plants studies but, 

for molecular-based studies, there are additional technical issues that may induce biases. 

 

Technical limitations in molecular ecology. In molecular-based studies such as the 

“rRNA approach” (Box 2), several biases (here not exhaustively listed) can inflate 

estimates of microbial diversity. Among them, the PCR-step can be critical. The DNA 

polymerase enzyme can make copy errors, hop from one fragment to the other and create 

chimeras (Qiu et al. 2001) but can be corrected by sequence clustering [e.g. 99% 

sequence similarity, (Acinas et al. 2005)]. Also, formation of chimeras or heteroduplex 

molecules (Qiu et al. 2001) can be avoided by changing PCR conditions (Acinas et al. 

2005). It is also known that PCR skew the distribution of PCR products as it amplifies 

inequally DNA fragments (Acinas et al. 2005). The choice of primers can also greatly 

influence the observed microbial diversity (Huber et al. 2009). Data output deriving from 

PCR-based techniques must then be interpreted carefully. In the rRNA approach, the 

cloning step also presents some bias as heteroduplex molecules may be subjected to 

E.coli DNA repair mechanisms, which result in hybrid plasmid inserts (Parker & Marinus 

1992).  

 The development of high-throughput molecular techniques such as automated 

rRNA intergenic spacer analysis (ARISA) or 454 massively parallel tag sequencing 

(MPTS) allows to avoid biases depending on cloning and allows a rapid processing of 

many samples (see box 2 and Chapter 1). However, other type of biases should be taken 

into account. For instance, ARISA permits a rapid identification of bacterial types by 

identifying the size of the ITS region of the 16S rRNA gene. As it does not allow the 

identification of the composition in nucleotide of the ITS fragment but only gives 

fluorescence profiles, each identified peak may represent several taxa with the same 

phylotype size (Crosby & Criddle 2003, Yannarell & Triplett 2005). Consequently, 

ARISA may not be well suited to estimate bacterial alpha-diversity in the sample (Bent & 
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Forney 2008). For a taxonomic identification, ARISA needs to be coupled with 

sequencing techniques (Fisher & Triplett 1999, Brown et al. 2005). 

As 454 MPTS (for a detailed description of the technique, see § 1.4.2.2.) is 

becoming of common use, concerns about data reliability are emerging. The accuracy of 

the massive data output is highly discussed as this technique may be affected by PCR and 

pyrosequencing errors and may produce chimeric types (Quinlan et al. 2008). Several 

studies have proposed ways of handling these issues. For instance, tag sequences can be 

clustered by following 97% sequence similarity (Kunin et al. 2010), or the 454 MPTS 

output can be corrected at the pre-clustering level, based on the electrophoregram 

(Quince et al. 2009). The data can also be denoised based on the prefixes of tag 

sequences, resulting in a lower estimation of alpha-diversity (Reeder & Knight 2010). 

However, the reliability of 454 MPTS sequences may not be that of an important issue, if 

the scientific question does not depend on estimating the diversity. Actually, the above 

sequencing errors may inflate alpha-diversity (Box 3) estimates but not the beta-diversity 

interpretation (Gobet et al. 2010, Reeder & Knight 2010). 

Finally, an important point is that many studies compare communities based on no 

further than the phylum or class level. Even though constantly increasing, the general 

taxonomic knowledge is obviously limited, and current high-throughput sequencing 

studies confirm the enormous lack of knowledge considering the amount of microbes not 

yet identified (e.g. in the data set processed for this thesis, 20% of the tag sequences were 

identified from the phylum to the genus level). 

To conclude, in the case of high-throughput molecular techniques (e.g. ARISA & 

454), the effect of such technical biases on the resulting ecological interpretation is still 

not well studied. Consequently, there is a need (i) to confirm the consistency of data 

output from fingerprinting techniques with that of high-throughput sequencing techniques 

(Chapter 1), (ii) to analyze the effect of correcting or truncating 454 MPTS data sets on 

microbial ecological patterns and see whether the correction of such data sets indeed 

matters for the ecological interpretation (Chapter 2), and to test for the consistency of 

ecological patterns at different taxonomic levels (Chapters 1 and 2). 
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Box 2. Overview of Microbial Ecology Tools. 

 
Operational taxonomic unit (OTU). OTU are most of the time based on the 16S rRNA 
gene and can be defined by clustering sequences according to a chosen percentage of 
sequence similarity (Rossello-Mora & Amann 2001). 
 
Traditional molecular approaches. As cultivation is a labor-intensive way to identify 
microorganisms, the “ribosomal RNA approach”, including culture-independent molecular 
techniques [PCR, 16S rRNA-based clone libraries and Sanger sequencing (Sanger et al. 
1977)], was proposed in the 1980’s, to rapidly describe microbial diversity (Olsen et al. 
1986). This set of molecular biology tools enables the description of microbial diversity by 
targeting nucleic acids, a record of microbes’ evolution and functional processes (Olsen et 
al. 1986, Woese 1987). For a good resolution of the microbial community description and 
estimation of the bacterial diversity, many clones need to be screened (Hughes et al. 
2001), thus sequence-library based approaches appear relatively time-consuming and 
expensive. To cope with those central problems, molecular fingerprinting techniques allow 
a better resolution of microbial diversity from many samples (Fisher & Triplett 1999). 
Reproducible patterns can be obtained by separating DNA phylotypes either according to 
their nucleic acid content [e.g. denaturing gradient gel electrophoresis (DGGE), (Muyzer 
et al. 1993)] or to their size [e.g. terminal restriction fragment length polymorphism (T-
RFLP), (Avaniss-Aghajani et al. 1994), automated rRNA intergenic spacer analysis 
(ARISA), (Fisher & Triplett 1999)].  
 
New high-throughput opportunities to describe microbial diversity. The quest to 
describe microbial communities is currently ongoing via the development of high-
throughput sequencing techniques, leading toward a high resolution description of the 
microbial world. Indeed, many studies are currently being held using 454 massively 
parallel tag sequencing [MPTS, (Margulies et al. 2005)] in a wide range of fields [e.g. soils 
(Lauber et al. 2009), water column (Galand et al. 2009a, Gilbert et al. 2009), deep sea 
vents (Sogin et al. 2006, Huber et al. 2007), human gut (Zhang et al. 2009) and hand 
surface (Fierer et al. 2008)]. However, as 454 MPTS becomes cheaper, an increasing 
number of samples can be processed simultaneously. Consequently, the data output is 
growing at an unprecedented rate and new issues are emerging. For instance, the 
accuracy of the huge data output and the handling of data are still limiting factors (Quinlan 
et al. 2008, Quince et al. 2009, Reeder & Knight 2009, Kunin et al. 2010, Reeder & Knight 
2010). Moreover, there is a need to make these new technologies available to a larger 
range of scientists (Rothberg & Leamon 2008). 
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1.3 Applying Community Ecology Concepts to Microbes 
 

1.3.1 Basic Concepts in Community Ecology 

 

„„Community ecology in particular is about to emerge as one of the most significant intellectual frontiers of 

the 21
st
 century.‟‟ (Wilson 2000). 

 

Community Ecology typically consists of studying composition, diversity, and abundance 

of species in the community, variations in patterns of community structure, as well as 

functional interactions between species [e.g. (Konopka 2009)]. The community structure 

depends on environmental and historical processes, i.e. the combination of local abiotic 

dynamics and ecological succession of species in the community. Four main classes of 

processes are involved in shaping community assemblages, namely selection, drift, 

speciation and dispersal (Vellend 2010). For instance, local abiotic and biotic conditions 

can lead to the adaptation or even speciation of a given population or set of populations 

and new species may arise. Additionally, species may migrate into a given ecosystem via 

passive or active dispersal. Some individuals may become extinct due to stochastic 

changes in species abundances (i.e. ecological drift) or due to deterministic processes (i.e. 

selection), as some species have a fitness advantage over other species for a given niche 

(Vellend 2010). Notably, all these processes are induced by abiotic (environmental 

conditions, time and space) and biotic (ecological interactions between populations: 

coevolution, predation, competition
1
, symbiosis; and species intrinsic characteristics: 

reproduction, niche preferences) factors.  

 

                                                           
1
 Life is a jungle, one must fight to succeed, from the original “La vie c’est la jungle il faut se battre pour y 

arriver”, 1992, Les Inconnus. 
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Box 3. Community Ecology Definitions. 
 
Alpha-diversity. a component of diversity that considers the total number of species present 
within a particular area, community or ecosystem, it is usually Species richness [Fig. B.1.1., 
(Whittaker 1972)]. 
Species evenness. a component of diversity that considers how individuals are distributed 
among species (Fig. B.1.1.). Its estimation permits to complement information obtained from 
species richness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Beta-diversity. Scientists usually compare habitat biodiversity (i.e. beta-diversity, box 1) to 
garner insights into organism distribution. Beta-diversity compares the difference in diversity or 
the species turnover between two given locations. Hence, it informs about the dynamics of the 
community (Magurran 2004). Studying beta-diversity also consists in deciphering the extent of 
change of community composition in relation to variations in environmental factors (Whittaker 
1960).  
 
Niche’s most widely accepted definition is: "The niche is the set of biotic and abiotic conditions in 
which a species is able to persist and maintain stable population sizes." (Hutchinson, 1957). 
 
Habitat of a species is a related but distinct concept to the Niche and describes the environment 
over which a species is known to occur and the type of community that is formed as a result 
(Whittaker et al. 1973).  
 
Biogeography. In classical community ecology, it has been shown that species turnover along 
spatial gradients has an effect on species-area relationships and total species richness (Hubbell 
2001). Species biogeography describes patterns of distribution across geographical areas, and 
can be explained or predicted through knowledge and understanding of species traits and niche 
requirements (Pearman et al. 2008). For instance, biogeography can be due to either (i) 
sympatric speciation (i.e. the creation of new species due to a strong influence of 
contemporary environmental parameters, Fig. B.1.2.A), implying multiple habitats with different 
environmental conditions within one province, or to (ii) allopatric speciation (i.e. the creation of 
new species due to geographic barriers, with historical influences and a lack of dispersal), 
implying multiple provinces and one habitat (Martiny et al. 2006). 
 
 

Figure B.1.1. Illustration of species 
richness and species evenness. 
These are two samples of insects 
from different locations. With three 
species, sample A present a higher 
species richness than sample B. 
However, species are more evenly 
distributed in sample B. Sample B 
may thus be considered more diverse 
as there is less chance to pick 
randomly two individuals of the same 
species than in sample A (Purvis & 
Hector 2000). 

Figure B.1.2. Two types of speciation 
that can explain biogeography. (A) 
Sympatric speciation, (B) Allopatric 
speciation. Samples are indicated in circles, 
their colors (pink vs. white) indicate the 
location and a letter A, B or C indicates their 
habitat types. Axes have no dimension, 
samples closer to another have a more 
similar species composition than other 
samples situated further. Modified from 
(Martiny et al. 2006). 

http://en.wikipedia.org/wiki/Trait_%28biology%29
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1.3.2 On the Commonness and Rarity of Microbes 

 

One of the most basics and intuitive way to understand biodiversity patterns is to count 

the species inhabiting various environments. Indeed, when a community is considered at 

an equilibrium, individuals are often partitioned among few abundant species, moderately 

common species, and many rare species (Putman 1994, Pachepsky et al. 2001). These 

observations suggest that diversity should be described by taking into account species 

richness and evenness (Box 3), which can be represented on a species rank-abundance 

curve (Magurran 2004). This curve forms by plotting species ordered from most to least 

abundant on the x axis, and the abundance of each type observed on the y axis [Fig. 1.3., 

(Magurran 2004)].  

Considering the massive extent of microbial diversity (Curtis et al. 2002), 

assessing organisms‟ richness may be insufficient for understanding microbial diversity. 

Likewise, as for macroorganisms, microbial species abundances are not evenly 

distributed in the community. For instance, similar patterns emerged from the comparison 

of species abundance distribution of tropical moth communities with that of temperate 

soil bacteria (Hughes et al. 2001). Few abundant species were observed in the 

community, while most types were rare, producing a long right-handed tail on the rank-

abundance curve [Fig. 1.3., (Hughes et al. 2001, Pedrós-Alió 2006)]. This typical hollow 

curve can thus be used to estimate the total number of microbial species from the total 

number of individuals and the abundance of the most abundant type. Curtis et al. (2002) 

applied this method by assuming that the prokaryotic species-abundance distribution was 

in equilibrium, following a log-normal species abundance curve, with many rare species 

and relatively few common ones (Curtis et al. 2002). This was further confirmed by 

several observations, which reported a huge number of rare species, representing most of 

the total diversity of the community [e.g. 63% of the total richness in clone libraries, 

(Pommier et al. 2007)]. This brought forth the possibility to apply an established, 

traditional ecological method to microbial communities, paving the road towards 

addressing questions pertaining to the rare microbial communities (Hughes et al. 2001).  
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Figure 1.3. (A) Rank-abundance curve representing biodiversity and composed of two sections: (i) in red, 

diversity of the most abundant taxa, (ii) the blue section of the curve corresponds to rare taxa. Modified 

from (Pedrós-Alió 2006). 

 

1.3.3 Distribution of Rare and Dominant Microbes 

 

In a 21-year survey of estuarine fishes, species were distinguished according to their 

abundance on the rank-abundance curve. Dominant species identified every year were 

described as the “core” species, with an active role in carbon and energy flow. In parallel, 

rarer species were defined as “occasional”, and referred to the transient fish that would 

stay until their limit of tolerance and disappear again (Magurran & Henderson 2003). 

Since microbes display a long right-handed tail on their rank-abundance curve 

[Fig. 1.3., (Curtis et al. 2002, Pedrós-Alió 2006)], Pedrós-Alió attempted to identify the 

same two entities, “core” and “occasional”, as seen among the estuarine fishes. He 

hypothesized that the “core” species are defined as the dominant, active, and persistent 

microbes that maintain ecosystem functions and induce carbon and energy flow (Cottrell 

& Kirchman 2003), e.g. through predation and viral lysis [Fig. 1.3., (Pedrós-Alió 2006)]. 

On the other hand, “occasional” species, or rare microbial types, represent many small, 

slow growing microbes (Fenchel & Finlay 2004), perhaps persisting only in a dormancy 

stage, or as a spore, representing a “seed-bank” (Finlay 2002, Pedrós-Alió 2006). This 

seed-bank represents the many rare taxa which may become part of the dominant core 

zone if appropriate environmental conditions are met. Also, these rare species may result 

from the easy dispersal of microorganisms, leading to high migration rates (Finlay 2002, 
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Pedrós-Alió 2006). Accordingly, a dominant member from the core zone can be grazed 

down below a certain threshold, and become a rare taxon [Fig. 1.3., (Pedrós-Alió 2006)]. 

Furthermore, differential top-down influences emerge between the “core” and 

“occasional” members of a community. For instance, viruses infect their hosts in a 

density dependent manner, following a “kill the winner” strategy (Thingstad 2000), and 

bacterivores mostly seek the largest (Pernthaler 2005) and most active bacteria 

(Kjelleberg et al. 1987). Accordingly, rare microbial types are likely less affected by viral 

lysis or predation and a lower loss rate is thus expected. The low extinction rate and the 

high migration rate of this “rare biosphere” (Sogin et al. 2006, Pedrós-Alió 2007) may 

thus explain the long right-handed tail of a microbial rank-abundance curve, in which 

most microbial diversity is contained (Curtis & Sloan 2005, Pedrós-Alió 2006).  

However, this is merely an emerging field, ripe with hypotheses. Much work is 

yet to be done (i) to define dominant and rare microbes in the ecosystem (Chapters 2 

and 3), (ii) to learn their influence on the structuring of the community (Chapters 2 and 

3), and (iii) to understand whether their fluctuations are random or driven by time, space 

and environmental parameters (Chapter 3). 

 

1.3.4 Patterns of the “Rare Biosphere” 

 

“The present is a key to the past”, early 1830‟s, Lyell‟s Principles of Geology 

 

Due to methodological limitations, microbial research has until recently mainly focused 

on the dominant microbial types. Molecular techniques using universal primers, such as 

clone libraries, most easily amplify DNA from microbes with an abundance of more than 

1% of the total community (Casamayor et al. 2000, Pedrós-Alió 2006). More recently, 

next-generation sequencing techniques, such as pyrosequencing, have allowed the first 

glimpse of this microbial “rare biosphere”, e.g. in the deep ocean (Sogin et al. 2006, 

Huber et al. 2007, Brazelton et al. 2010) and the Arctic Ocean [(Galand et al. 2009a, 

Kirchman et al. 2010), box 2]. 
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More than a decade ago, some marine microbial studies reintroduced the first part 

of Baas-Becking‟s dictum saying "everything is everywhere, but, the environment 

selects" (Baas-Becking 1934), and supporting the ubiquity of microbes due to high 

dispersal, thus leading to the colonization of new habitats. This statement would then 

imply that microbial communities should not present any spatial differentiation (Finlay 

2002, Fenchel & Finlay 2004). However, a library-based study of bacterioplankton 

biogeography have shown that only few abundant operational taxonomic units (OTU) are 

cosmopolitan, while numerous rare bacteria are endemic in the global ocean (Pommier et 

al. 2007). Accordingly, a pyrosequencing-based study describing the microbial 

community composition in different water masses of the Arctic ocean lead to similar 

conclusions (Galand et al. 2009a). Distinct distributions of the abundant and rare 

fractions of the community could be observed: the dominant microbes followed a log-

normal distribution, while the rare microbes followed a log-series distribution, as already 

observed in the case of fishes (Magurran & Henderson 2003). Also, rare microbes were 

found to have a biogeography, thus implying that they do not follow a cosmopolitan 

distribution governed by stochastic immigration (passive dispersal), refuting what has 

been proposed earlier (Finlay 2002, Pedrós-Alió 2006). Marine microbes may thus 

exhibit low dispersal rates, possibly due to existing barriers of dispersal, and rare 

microbial communities may suffer from active loss (due to predation or viral lysis). The 

latter study indicated that the “rare biosphere” may be subjected to selection, speciation 

and extinction (Galand et al. 2009a). 

Hypotheses based on the rank-abundance curve suggested that members of the 

seed bank may become abundant and inversely (Pedrós-Alió 2006). Subsequently, studies 

conducted in the Arctic ocean over one year showed that most rare organisms were 

always rare, even during extreme contrasts in environmental conditions [winter vs. 

summer, (Galand et al. 2009a, Kirchman et al. 2010)]. Indeed, 1% of the rare OTU were 

found to be abundant in other samples [some OTU abundant in surface waters were rare 

in deep waters, and inversely (Galand et al. 2009a)]. In addition, high-throughput 

sequencing of hydrothermal vent microbial communities, with ages of the chimneys 

differing by thousands of years, supported the above hypothesis proposing that rare 

microbial types may become abundant when appropriate conditions are occurring 
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(Brazelton et al. 2010). Indeed, the rare microbial types observed in young chimneys 

were more abundant in chimneys thousands of years older. Rare types may stay rare for a 

long period until environmental conditions change and outcompete the once abundant 

types. Some have hypothesized that rare microbial types may be preadapted to 

environmental conditions that already occurred in the past and may occur in the future 

(Brazelton et al. 2010). The second part of Baas-Becking‟s dictum saying " but, the 

environment selects" (Baas-Becking 1934), often forgotten or misused (de Wit & Bouvier 

2006), may apply here, as the environment seems to be a main factor influencing 

microbes‟ fluctuations. Likewise, a selection process would rather occur than new 

speciation events, as dominant favorably selected traits already existed as rare types at an 

earlier time, before the environment changes. 

The heterogeneity of these studies [i.e. differences in time scale (seasons vs. 

thousand years) and in extreme environmental conditions (cold water masses vs. 

hydrothermal environment)] have allowed preliminary insights into the processes shaping 

microbial communities, but preclude to generalize these observations to the global rare 

biodiversity due to the particularity of those environments. Indeed, further understanding 

of dominant vs. rare microbial patterns in, milder, temperate environments and a short 

time-period, may be of interest (Chapter 3). The impact of dominant and rare microbes‟ 

fluctuations on the overall community structure, along with the abiotic parameters 

shaping it, still need deeper insights (Chapters 2 and 3). 
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1.4 Study Site and Methods 

 

1.4.1 Study Site 

 

The Wadden Sea is situated in the southeastern part of the North Sea and stretches from 

Den Helder in the Netherlands in the southwest, to Blavands Huk in Denkmark. It is one 

of the largest coherent tidal flat systems of the world and covers an area of roughly 

13,000 km² (van Beusekom & de Jonge 2002). Wadden Sea‟s tidal flats are characterized 

by a semi-diurnal tidal cycle (ranging up to 3.5 m) and strong seasonal changes in 

temperature, light availability and phytoplankton biomass (van Beusekom 2005).  

 

In the Wadden Sea, the German Frisian island Sylt (Fig. 1.4.), together with the 

Danish island Romo, define the boundaries of List tidal basin. Its waters are also confined 

between two causeways connecting both islands with the mainland (Reise & Gatje 1997).  

 

The Hausstrand site is a subtidal sandflat of the List tidal basin, at the eastern side 

of Sylt (Fig. 1.4.). The site is characterized by strong hydrodynamic forces (tides and 

wind-induced waves) with water depth ranging between 0.5 and 2.5 m. Sediments consist 

of well to moderately well sorted silicate sand [average grain size ~350 μm, permeability 

in the upper 15 cm = 1-3.10
-11

 m², (Böer 2008)]. 

 

 Sediment cores were collected at the exposed Hausstrand site, in February, April, 

July and November 2005 and at the beginning and end of March 2006 (Fig. 1.4.). 

Sediment was then stored or processed for DNA extraction and environmental 

measurements. 
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Figure 1.4. Study site. (A) The North Sea island Sylt, the white lines indicate the Hausstrand site. "Sylt." 

Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Sylt&oldid=299809341, 

July, 2
nd

 2009, 02:01 UTC, (B) seashore from the North Sea island Sylt, Gobet, A., (C) collected sediment 

core from the North Sea island Sylt (Böer 2008). 

 

 

All chapters of this PhD thesis are based on the same set of samples, coming from 

Simone Böer’s PhD thesis (Böer 2008) where she gives a detailed description of the 

study sites, sampling procedures and measurements, see also (Böer et al. 2008, Böer 

et al. 2009). 

 

 

 

 

 



Microbial Community Ecology of Temperate Coastal Sands 

 

 32 

1.4.2 Molecular Techniques 

 

The bacterial community structure of the North Sea island Sylt was assessed by applying 

the two following molecular techniques: 

1.4.2.1 Automated rRNA Intergenic Spacer Analysis (ARISA) 
 

ARISA is a time- and cost-effective technique permitting to process many samples and to 

still obtain robust reproducible patterns (Fisher & Triplett 1999). This fingerprinting 

technique allows the rapid assessment of microbial diversity and community structure by 

targeting the Intergenic Transcribed Spacer (ITS), highly variable in nucleotide sequence 

and length and located between the 16S and the 23S rRNA regions (Fisher & Triplett 

1999). Notably, ARISA uses only the length heterogeneity of the ITS and gives hundreds 

ITS phylotypes of 400-1,200 bp per sample (Fisher & Triplett 1999). 

 

 

Figure. 1.5. Steps of the automated rRNA intergenic spacer analysis, (Böer 2008). 
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In a few words, the genomic DNA is amplified in triplicates by polymerase chain reaction 

(PCR) with an universal primer set, flanking the ITS region of the rRNA amplicon, one 

of the primers being fluorescently tagged. The amplified DNA is then cleaned and 

analyzed via capillary electrophoresis for detection of fluorescent DNA fragments. 

Fragment sizes are discriminated by comparison with a base standard and each peak of 

the electropherogram corresponds to one or several phylotypes of equal length [(Crosby 

& Criddle 2003, Yannarell & Triplett 2005), (Fig. 1.5.]. ARISA profiles are then 

analyzed and the obtained data are then formatted and binned before further ecological 

interpretation (Cardinale et al. 2004, Hewson & Fuhrman 2006, Böer et al. 2009). For 

more details on the technique and data processing, see (Böer 2008, Böer et al. 2009) and 

Chapter 1.  

 

ARISA was applied during a previous PhD work (Böer 2008) and the data output 

was also used for the first chapter of this thesis. 
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1.4.2.2 454 Massively Parallel Tag Sequencing (MPTS) 
 

454 massively parallel tag sequencing is a high-throughput technique allowing the 

sequencing of a significantly great amount of bases in a short time and for low cost. In 

2005, Margulies and colleagues announced the sequencing of 25 million bases, with a 

high accuracy, in a four-hour run. The output resulted in about 100 fold increase over 

state-of-the-art Sanger sequencing (Margulies et al. 2005). 

 

 

Figure 1.6. V6 variable region of the 16S rRNA gene. The V6 variable region of the 16S rRNA gene is 

situated between the highlighted parts on the figure (modified from www.rna.ccb.utexas.edu) 

 

Creation of a V6 amplicon library. The same genomic DNA used as for ARISA was 

amplified to create an amplicon library based on the V6 hypervariable region of the 16S 

rRNA gene (Fig. 1.6.). Bacterial-specific primers that flank the 16S rRNA-V6 region 

were ligated with the 454 life sciences adapters A and B (Fig. 1.7.A).  

 

454 MPTS steps. The latter primer-adapter complexes were then used to amplify the V6 

rRNA region. Single stranded assemblies were annealed onto a bead presenting an 

immobilized primer which is complimentary to either the A or B adapter. Beads are then 

emulsified in droplets of a water-in-oil solution containing PCR reagents. The PCR 
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occurs within each droplet and generates about ten million copies of the initial captured 

DNA template onto the bead (Fig. 1.7.B). After breaking the emulsion, DNA strands are 

denatured, and beads carrying single-stranded DNA templates are deposited into wells of 

a fiber-optic PicoTiter plate (Fig. 1.7.C). Smaller beads carrying immobilized enzymes 

required for a solid phase pyrophosphate sequencing reaction are also included into each 

well (Fig. 1.7.D). The pyrosequencing consists in each base (A, T, G, C) flowed at a 

time, and the incorporation of a base to the sequence induces the release of light (Fig. 

1.7.E). For more details, see (Margulies et al. 2005). 

 

The sequencing machine. The 454 sequencing instrument consists of three main parts 

(Fig. 1.7.E): a fluidic assembly (1), a flow cell that includes the well-containing PicoTiter 

plate (2), a CCD camera-based imaging assembly with its own fiber-optic bundle used to 

image the PicoTiter plate (3), and a computer that provides the necessary user interface 

and instrument control [3, (Rothberg & Leamon 2008)].   

 

 

 

Figure 1.7. Overview of the 454 MPTS sequencing steps. (A) Creation of a V6 (variable region of the 

16S rRNA gene) amplicon library by ligation of adapters to the V6 region, (B) the V6-adapters assembly is 

attached to a bead which is incorporated in a water-in-oil emulsion with PCR reagents to be amplified on 

the bead, (C) the bead with the amplified V6-adapters assembly is deposited into a well of a PicoTiter plate, 

(D) sequencing enzymes are deposited into each well, (E) each base (A, T, G, C) is flowed at a time, and 

the incorporation of a base to the sequence induces the release of light. Figure modified from www.roche-

applied-science.com. 
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The genomic DNA was sent to the Josephine Bay Paul Center, at the Marine Biological 

Laboratory at Woods Hole, MA, USA, and was sequenced in Mitchell L. Sogin‟s 

laboratory facilities. For details about primers, or data processing, see the Visualization 

and Analysis of Microbial Population Structures website (http://vamps.mbl.edu/). 

 

The data output obtained from 454 MPTS was used for the analyses of all three 

chapters of the thesis. 
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1.5 Thesis Aims and Content Overview 
 

1.5.1  Aims 

 

Only we are starting to unveil microbial community ecology by using high-throughput 

molecular techniques coupled with community ecology theories. The use of these 

techniques still needs some adjustments regarding the processing of large amount of data 

and the interpretation of such output. This PhD work seeks to improve the field of 

microbial community ecology by (i) comparing ARISA with 454 MPTS for an in-depth 

comprehension of microbial ecological patterns, (ii) making available new user-friendly 

statistical pipeline to analyze complex community data sets (e.g. 454 MPTS data sets), 

(iii) seeking for consistent ecological patterns at successive taxonomic levels. 

These technologies offer promising advances into a better comprehension of 

microbial community ecology and should help us answering questions regarding (iv) the 

processes responsible for variations in the microbial community in space and time (e.g. 

selection, speciation), (v) fluctuations of dominant and rare microbes and their impact on 

the structuring of microbial communities, (vi) the characterization microbial community 

ecology in temperate coastal sands. 

 

1.5.2 Thesis Content 

 

As high-throughput molecular techniques are emerging, there is a need (i) to evaluate 

their accuracy and potential bias and (ii) to improve the way to analyze the colossal data 

output. The first part of this PhD thesis is rather technical, with a first chapter comparing 

ARISA, a traditional fingerprinting techniques in parallel with 454 MPTS, a recent next-

generation sequencing techniques to study microbial communities in temperate coastal 

sands. Despite significant differences in community turnover (i.e. 50% with ARISA and 

70-80% with 454 MPTS), variations in microbial community structure described by both 

techniques indicated similar patterns. The same combination of environmental parameters 
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could also explain a similar amount of biological variation for ARISA data, 454 MPTS 

data at the phylum level and the data set containing resident OTU, present at all sampling 

times. Also, similar combinations of biogeochemical parameters could explain the 

biological variation from the latter data sets. This study validates the robustness of 

applying ARISA together with 454 MPTS for a high resolution in describing microbial 

ecology. The second chapter proposes a pipeline to analyze consequent data output from 

high-throughput sequencing techniques. It consists in a systematic truncation of 

proportions of rare or dominant bacterial types from large bacterial community data sets 

to test for the effect of the truncation on the resulting ecological interpretation. About 

40% of the rare bacterial types could be removed from the original data set and a similar 

ecological signal was still obtained. 

The second part of the thesis describes the ecology of dominant and rare types of 

the microbial community in temperate coastal sands. The second chapter already gives 

insights about the impact of removing either abundant or rare bacterial types on microbial 

ecological patterns. The third chapter gives a more thorough interpretation of each 

fraction of the bacterial community. Dominant and resident (i.e. present at all times) 

types presented similar ecological patterns as that of the overall community while rare 

types‟ patterns were different. Actually, rare types‟ fluctuations were driving the really 

high turnover of the microbial community through depth and time. Notably, rare 

microbial types were not randomly fluctuating as biogeochemical parameters could 

explain their variation. 
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1.5.3 Outline 

 

Chapter I: Comparison of the consistency of molecular fingerprinting techniques 

for the description of microbial ecological patterns 

 

Authors: Angélique Gobet, Antje Boetius and Alban Ramette. 

 

In preparation for Applied and Environmental Microbiology.  

 

Personal contribution: designed study together with Alban Ramette and Antje Boetius, 

conducted all analyses on available data sets, and wrote the first draft of the manuscript. 

 

Brief overview: Comparison of two high-throughput molecular techniques, ARISA and 

454 MPTS to interpret ecological patterns in bacterial communities and to give 

recommendation as for the suitability of each method for specific applications. 

 

Chapter II: Multivariate Cutoff Level Analysis (MultiCoLA) of Large Community 

Datasets 

 

Authors: Angélique Gobet, Christopher Quince and Alban Ramette. 

 

Published in Nucleic Acids Research in June 2010.  

 

Personal contribution: designed study together with Alban Ramette, wrote the R 

programs and conducted all data analyses except a subset by Christopher Quince, wrote 

the first draft of the manuscript, and finalized the submitted version with Alban Ramette 

and Christopher Quince. 

 

Brief overview: Exploration of the effects of removing successive proportions of rare 

bacterial types from large bacterial community data sets on the resulting ecological 

interpretation. 
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Chapter III: Diversity and dynamics of the rare and resident bacterial biosphere in 

coastal sands 

 

Authors: Angélique Gobet, Simone I. Böer, Susan M. Huse, Justus E.E. van Beusekom, 

Christopher Quince, Mitchell L. Sogin, Antje Boetius and Alban Ramette. 

 

Submission to Proceedings of the National Academy of Science planned by December, 5
th

 

2010.  

 

Personal contribution: designed study with Alban Ramette, Simone I. Böer, Justus E.E. 

van Beusekom and Antje Boetius, conducted most of the data analyses except two 

smaller subsets provided by Alban Ramette and Christopher Quince, and wrote the core 

manuscript with Antje Boetius and Alban Ramette. The 454 MPTS data were provided 

by Susan M. Huse, Mitchell L. Sogin, all authors commented on the final version of the 

manuscript. 

 

Brief overview: High resolution description of the bacterial diversity patterns in coastal 

sandy habitats through time and sediment depth by applying 454 MPTS. This study 

highlighted the very high turnover of the bacterial community and then deciphered the 

main drivers of such high community dynamics. 
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2 Chapter I. 
 

Comparison of the consistency of 

molecular fingerprinting techniques 

for the description of microbial 

ecological patterns 
 

Angélique Gobet, Antje Boetius and Alban Ramette 

 

In preparation for Applied and Environmental Microbiology.  

 

Keywords: Bacterial diversity, ARISA, fingerprinting, 454 pyrosequencing, multivariate 

analyses, sand, coastal environment 

 

Abstract. As fast method to describe microbial community structures, cost-effective 

fingerprinting techniques such as automated rRNA intergenic spacer analysis (ARISA), 

are nowadays often preferred to labor-intensive molecular techniques such as 16S rRNA 

library-based approaches. Since high-throughput sequencing is becoming more available 

and enables a high resolution description of the taxonomic composition of microbial 

communities, information based on traditional fingerprinting techniques may now appear 

limited. Yet, it may be more convenient to process data output from fingerprinting 

techniques as compared with the complex data flood derived from high-throughput 

techniques. Indeed, each approach may be well suited for a specific type of question. We 

thus compared bacterial community structure in coastal sands as obtained by ARISA and 

454 massively parallel tag sequencing (MPTS), at several levels of taxonomic resolution 

or data set truncation, so as to account for the effects of the number of taxa considered by 

the two approaches. Despite revealing different microbial community turnover between 

sediment depth layers or sampling times (i.e. 50% with ARISA and 70-80% with 454 

MPTS), variations in community structure were similar with both approaches. Also, 

similar combinations of biogeochemical parameters could explain the biological variation 

from ARISA and broad taxonomic levels from 454 MPTS, and this probably reflected the 

ecology of main microbial players in the ecosystem. This study first confirms ARISA as a 

valid technique to describe microbial community patterns and further suggests combining 

community fingerprinting and high-throughput sequencing techniques to obtain both a 

broad and quick overview of diversity patterns in many samples and a detailed 

description of community composition and dynamics for specific samples.  
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2.1 Introduction 
 

Microbes represent the largest pool of global biomass and contribute to ecosystem 

processes by recycling carbon and nutrients (Whitman et al. 1998, Azam & Worden 

2004). Deciphering the complexity of the microbial world is thus essential to understand 

structure and function of different habitats and ecosystems, despite the large range of 

stochastic and deterministic environmental conditions that may shape microbial 

communities (Curtis & Sloan 2004). Whereas traditional sequence-library based 

approaches are time consuming to process the many samples required for a good 

description of microbial communities, molecular fingerprinting techniques [e.g. 

denaturing gradient gel electrophoresis [DGGE, (Muyzer et al. 1993)], terminal 

restriction fragment length polymorphism [T-RFLP, (Avaniss-Aghajani et al. 1994)], 

automated rRNA intergenic spacer analysis [ARISA, (Fisher & Triplett 1999)]] allow a 

rapid processing of many samples with consistent reproducible patterns (Fisher & Triplett 

1999). ARISA targets the Intergenic Transcribed Spacer (ITS) between the 16S and the 

23S rRNA regions (Fisher & Triplett 1999), highly variable in nucleotide sequence and 

length [e.g. from 60 bp to 1529 bp (Gürtler & Stanisich 1996)], and gives hundreds ITS 

phylotypes of 400-1,200 bp per sample (Fisher & Triplett 1999). ARISA renders 

fluorescence profiles where each peak corresponds to one or several phylotypes of equal 

length (Crosby & Criddle 2003, Yannarell & Triplett 2005). Consequently, although 

suitable to study community changes, this approach does not allow the assessment of the 

number of species in a given sample (Bent & Forney 2008), as well as their taxonomy 

(Fisher & Triplett 1999, Brown et al. 2005).  

Although traditional sequence-library based techniques have already described a 

large fraction of microbial diversity, the major part of it escapes our sampling efforts and 

even large 16S rRNA clone libraries highly underestimate microbial diversity (Curtis & 

Sloan 2005, Quince et al. 2008). For instance, Sanger sequencing on coastal waters 

retrieved 516 unique OTU while the estimated richness reached 1,633 OTU (Acinas et al. 

2004). The advent of high-throughput sequencing techniques has revolutionized the 

microbial ecology field by giving a high resolution description of microbial diversity. 

Indeed, 454 massively parallel tag sequencing (MPTS) gives thousands to tens of 
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thousands short variable regions of the 16S rRNA [~60 bp, (Sogin et al. 2006)] per 

sample, which can be further taxonomically annotated. Using this method 4,000 OTU 

were obtained from a deep sea sample with a total estimated diversity of 11,296 OTU 

(Sogin et al. 2006). Despite offering a deeper coverage of microbial diversity, 454 MPTS 

data output has to be analyzed with care due to the presence of PCR and sequencing 

artifacts such as chimera and homopolymer formation, which inflate microbial diversity 

estimates (Kunin et al. 2010). Consequently, several studies have provided various ways 

to trim and correct sequences (Quince et al. 2009, Gobet et al. 2010, Kunin et al. 2010). 

High-throughput sequencing techniques are increasingly used to complement 

methods describing microbial communities with lower resolution such as Sanger 

sequencing or fingerprinting techniques (e.g. DGGE, T-RFLP, ARISA). Most of these 

studies have shown the efficiency of 454 MPTS for giving a higher resolution of the 

microbial community description than the latter techniques. For example, 454 MPTS 

sequences were included in a Sanger sequencing-based phylogenetic tree and revealed 

greater depth coverage to potentially describe new taxonomic groups (Gillevet et al. 

2009, Roh et al. 2010). Other studies indicated an estimated richness from pyrosequenced 

OTU much higher than that from T-RFLP and ARISA-ITS fragments (Roesch et al. 

2009, Koopman et al. 2010). Also, a study showed that T-RFLP data did not follow 

similar cyclic or seasonal microbial community patterns as with 454 MPTS (Gilbert et al. 

2009). Overall, these studies provide evidence of the high resolution of 454 MPTS for 

describing microbial diversity, whereas the consistency to describe microbial ecological 

patterns as with traditional molecular approaches remains unknown. 

This study resorts to 454 MPTS and ARISA data from bacteria communities in 

coastal North Sea sands. ARISA analyses indicated that variations in bacterial 

community composition were strongly related to vertical changes in biogeochemical 

gradients. Within a period of two years, the turnover of the microbial community based 

on ARISA data was about ~50% (Böer et al. 2009) while a selection of pyrosequenced 

DNA templates from the latter study revealed even higher turnover (~70-80% new OTU) 

of the bacterial community (Gobet et al. Submitted). Additional multivariate analyses 

indicated the importance of vertical and temporal variations in biogeochemical gradients 

on the structuring of the bacterial community. These two approaches already gave deep 
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insights into the description of microbial ecology in temperate coastal sands. However, 

these two molecular techniques target different parts of the rRNA gene and offer a 

different level of resolution of the microbial community description. The ecological 

interpretations from both ARISA and 454 MTPS applied on temperate coastal sands were 

thus compared to assess whether similar conclusions could be obtained or whether each 

technique may be better suited to address specific microbial ecological questions. The 

application of multivariate analyses on the ARISA data set, and of successive taxonomic 

levels and corrections of the 454 MPTS data set [i.e. using PyroNoise (Quince et al. 

2009) and MultiCoLA (Gobet et al. 2010)] allows for the comparison of diversity 

patterns and of the effects of the environment on the structuring of bacterial communities 

from different angles of the data set.  
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2.2 Materials and Methods 
 

Sampling procedures and contextual parameters.  

In February, April, July and November 2005, beginning and end of March 2006, 

sediment push cores were collected at low tide on the shallow subtidal sandy area of the 

island Sylt (55° 00‟47.7‟‟N, 8° 25‟59.3‟‟E, North Sea, Germany). Cores were sectioned 

every 5 cm down to 15 cm and the sections were directly processed (e.g. measurements 

of extracellular enzymatic activities) or stored at -4°C and -20°C until further analyses 

[DNA extraction or measurements of nutrients, pigments, carbohydrates, bacterial cell 

counts; (Böer et al. 2009, Gobet et al. Submitted)]. Other environmental parameters (wind 

speed and water column data: chlorophyll a, pH and water temperature) were added to the 

data set as described earlier (Böer et al. 2009, Gobet et al. Submitted). 

 

Community structure analysis. 

DNA extraction. DNA from the 16 sandy samples was extracted and purified using an 

UltraClean Soil DNA Isolation Kit (MoBio Laboratories Inc. Carlsbad, CA) following 

the manufacturer‟s protocol, as described earlier (Böer et al. 2009, Gobet et al. 

Submitted). The same DNA templates were used to analyze the bacterial community 

structure samples by automated rRNA intergenic spacer analysis (Fisher & Triplett 1999) 

and 454 massively parallel tag sequencing (MPTS). 

 

Automated rRNA intergenic spacer analysis. Extracted DNA was amplified in triplicates 

using bacteria-specific primers and normalized DNA quantities of 25 ng per reaction. The 

resulting amplified fragments were purified with Sephadex G-50 Superfine (Sigma 

Aldrich, Munich, Germany) and identified by capillary electrophoresis on an ABI PRISM 

3130xl Genetic Analyzer (Applied Biosystems). For details of the ARISA protocol, see 

Böer et al. (Böer et al. 2009). The obtained ARISA profiles were analyzed using the 

GeneMapper Software v 3.7 (Applied Biosystems, Carlsbad, CA, USA) and further data 

formatting and binning were done as described elsewhere (Cardinale et al. 2004, Hewson 

& Fuhrman 2006, Böer et al. 2009).  
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454 massively parallel tag sequencing. The V6 region of the bacterial 16S rRNA gene 

was amplified by using a mixture of five forward (967F) and four reverse (1046R) primer 

sets including 454 Life Science‟s A or B sequencing adapter (Huber et al. 2007). The V6 

fragments were pyrosequenced on a Genome Sequencer 20 system (Roche, Basel, 

Switzerland) at 454 Life Sciences (Branford, CT) by primer extension (Margulies et al. 

2005). Sequences were first trimmed and corrected (Huse et al. 2007) and then, annotated 

by an automatic annotation pipeline using several known databases (Entrez Genome, 

RDP, SILVA), following the approach of Sogin et al. (Sogin et al. 2006). All 454 MPTS 

sequences are publicly available at the Visualization and Analysis of Microbial 

Populations Structure (VAMPS) website (http://vamps.mbl.edu/). 

 

Data analyses.  

Data sets. In this study, analyses were performed by defining OTU (Operational 

Taxonomic Units) either as ITS phylotype [hereafter, OTUARISA correspond to binned 

ARISA peaks (Böer et al. 2009)], or as unique 454 MPTS sequences (hereafter, two 

sequences are considered as two different OTUunique when they differ by at least one base 

pair). For the 454 MPTS data sets, the following subsets were considered: 1) all un-

annotated sequences that we referred to as OTUall, 2) the fully annotated sequences (i.e. 

from phylum to genus levels and the corresponding OTUannotated level, each data set 

representing 20% of the original OTUall data set), 3) the PyroNoise-corrected data 

clustered at different percentages of sequence dissimilarity (0%, 3%, 5% and 10% 

sequence dissimilarity) 4) the MultiCoLA-truncated data sets, consisting in the original 

OTUall data set without successive proportions of low occurring OTUunique; i.e. OTUunique 

with lowest number of sequences than a given threshold are removed (Gobet et al. 2010).  

 

Variations in bacterial community structure and ecological patterns. OTU numbers were 

compared by pairwise Student t-tests. The amount of shared OTU between either two 

sampling dates or two depth layers was calculated for all community matrices [ARISA 

data, OTUall, the fully annotated sequences, the PyroNoise-corrected and the truncated 

data sets; (Gobet et al. Submitted)]. 
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Pairwise distance matrices were calculated from the relative abundance data 

(ARISA and 454 MPTS data sets) using the Bray-Curtis dissimilarity index (Bray & 

Curtis 1957). The resulting dissimilarity matrices were compared to one another using 

Mantel‟s test with Pearson's product moment correlation coefficient (Pearson 1901). For 

the comparison of dissimilarity matrices from MultiCoLA-truncated data sets, simple 

Pearson‟s correlations were calculated without Mantel‟s test. In this case, the significance 

of each pairwise comparison (i.e. each Pearson‟s correlation) cannot be calculated as the 

matrices depend on one another and testing correlations would only make sense in case of 

data set independence (Legendre & Legendre 1998, Legendre et al. 2005). 

 Non-metric multidimensional scaling [NMDS (Gower 1966)] was applied to the 

distance matrices to explore the variation in the main axes of extracted variation in 

community structure. The similarity between NMDS ordination results from the ARISA 

and 454 MPTS data sets was then calculated by applying Procrustes rotation (Gower 

1966). The Procrustes approach permits a quantification of the agreement between two 

NMDS ordinations, producing R values ranging from 0 to 1 [a score closer to 1 indicates 

highest similarities between the NMDS results (Shepard 1966)]. The microbial 

community composition from the three depth layers was compared and tested by using 

the analysis of similarity [ANOSIM, (Clarke 1993)].  

 

Relationships between the structuring of the microbial community and the environment. 

In a previous related study (Gobet et al. Submitted), multivariate regression approaches 

(Legendre & Legendre 1998) were applied to test the relationships between the variation 

of time (with sampling dates set as ranks), depth and measured environmental parameters 

(pH, water temperature, wind speed, salinity, pigments, nutrients, extra-cellular 

enzymatic activities and cell properties). As time and depth were found to significantly 

covary with most biogeochemical factors, they were discarded from the environmental 

data set for further analyses (Gobet et al. Submitted). Some explanatory variables of the 

remaining data set (pigments, nutrients, extra-cellular enzymatic activities and cell 

properties) were log10-transformed before describing the microbial community 

distribution in the relative abundance matrices (ARISA data, OTUall, the fully annotated 

sequences, the PyroNoise-corrected data and the MultiCoLA-trimmed data). As the 
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inclusion of all environmental parameters for explaining the community variation may 

distort the ecological interpretation (multicollinearity of the environmental variables), a 

forward selection [based on 999 Monte Carlo permutation tests and Akaike Information 

Criterion (AIC)] of the environmental parameters was applied. Consequently, we 

obtained the best-fitting models that could significantly explain the variation in the 

Hellinger-transformed (Legendre & Legendre 1998, Legendre & Gallagher 2001) 

community tables. The effect of pure environmental variables (pigments, nutrients, extra-

cellular enzymatic activities, cell abundance) selected previously and their covariation on 

microbial community structure was then tested by canonical variation partitioning. 

The forward selection was performed with the software package CANOCO for 

Windows 4.5 (ter Braak & Šmilauer 2002). Other statistical analyses were carried out 

using the R statistical environment [R version 2.10.0 (R_Development_Core_Team 

2009)], using the vegan package (Oksanen et al. 2009) and custom R scripts.  
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2.3 Results & Discussion 
 

2.3.1 Alpha-diversity of the bacterial community in temperate coastal 

sands as described by the data output from ARISA and 454 

MPTS.  

 

A total of 16 coastal sandy samples were analyzed in parallel by ARISA (Böer et al. 

2009) and 454 MPTS (Gobet et al. Submitted). From the application of ARISA, 306 

different OTUARISA were detected in the whole data set, with 100-202 OTUARISA per 

sample (in 5 cm sediment layer at a given sampling time). We obtained 88 OTUARISA 

(29% of the total number of OTUARISA in the whole data set) that were resident, i.e. 

present at all sampling times, while 15% OTUARISA were present only once in the data set 

(Table S2.1.). The application of 454 MPTS on the same extracted DNA generated 

197,684 sequences in total, which correspond to 27,630 OTUunique in the OTUall data set, 

with a range of 1,042 to 5,577 OTUunique identified per sample (Gobet et al. Submitted). 

About 5% of the total number of OTUunique were resident while 74.7% (20,640 OTUunique) 

were present only once in the OTUall data set (Gobet et al. Submitted). These observations 

first indicate the large difference in the amount of data output obtained by the two 

molecular methods. 

As high-throughput techniques potentially induce biases due to pyrosequencing 

errors, some solutions were proposed such as correcting by pre-clustering 

electrophoregram output (Quince et al. 2009) or by clustering the tag sequences (Kunin et 

al. 2010). We first studied the distribution of OTU numbers over time and through depth 

for each approach and after correction of the 454 MPTS data set (PyroNoise at 3% 

sequence dissimilarity, [OTU3%], Fig. S2.1.). It seemed that the number of OTU 

increased with sediment depth in all cases (Fig. S2.1. A-C), as previously observed when 

more samples were considered in the previous ARISA study (Böer et al. 2009) and in 

other coastal sediments by using T-RFLP (Urakawa et al. 2000). This was confirmed by 

significant differences in OTU number between depths (Student t-tests, P < 0.05). The 

top 5 cm layer was clearly different from the deeper layer with both molecular 
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techniques. Notably, the mid 5-10 cm layer behaved differently according to each 

technique (Figs. S2.1. A-C) and these differences might be due to the different levels of 

resolution of each technique. For instance, some of the OTUARISA may represent several 

bacterial types (Crosby & Criddle 2003) and ARISA data output may not reflect rare 

bacterial types (Bent & Forney 2008), especially depending on the way the data output 

was processed. Here, the ARISA data output considered only fragments above a 

threshold of 50 fluorescence units and between 100–1000 bp length (Böer et al. 2009). 

Also, both techniques induced no significant changes in OTU number through time (Fig. 

S2.1. D-F), as shown in the previous study where OTU were temporally stable between 

April 2005 and March 2006 (Böer et al. 2009). 

 

2.3.2 Comparison of beta-diversity patterns obtained from ARISA and 

from different resolution levels of the 454 MPTS output. 

 

Microbial community turnover. Microbial communities can be described according to 

various levels of resolution; either by using different techniques (here, ARISA or 454 

MPTS) or by transforming the output (i.e. taxonomic levels, PyroNoise correction, rare 

OTUunique removal). The resulting data sets were compared with each other to see whether 

similar ecological information could be obtained from each of them. Depth-related and 

temporal microbial community turnovers from ARISA and 454 MPTS were mostly 

similar. Indeed, the previous ARISA study indicated about 50% shared OTUARISA in the 

sand over two years (Böer et al. 2009) while the previous 454 MPTS study showed 20-

30% shared OTUunique in the bacterial community between two depth layers or any two 

sampling dates [(Gobet et al. Submitted) and Figs. 2.1., S2.2.]. When analyzing the 

turnover of the bacterial community on 16 ARISA-samples from the previous study 

(Böer et al. 2009), the turnover of the bacterial community was much lower, with 66-78% 

shared OTUARISA between two depth layers and 70-91% shared OTUARISA between 

sampling times. 

As OTUunique were annotated by using the GAST taxonomic pipeline (Sogin et al. 

2006), it was interesting to explore the amount of shared OTUunique at successive 
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taxonomic levels. Indeed, when performing the analyses from the genus to the phylum 

levels, there were 63% to 97% shared OTUunique over sediment depth, respectively (Figs. 

2.1., S2.3.). Interestingly, a relatively constant proportion of turnover with time was also 

observed at all taxonomic levels investigated. The ratio of shared taxa increased from 

OTUall to phylum levels from 18 to 100% between two sampling times, respectively 

(Figs. 2.1., S2.2.-S2.3.). The OTUannotated data set, consisting only of sequences with a full 

taxonomic annotation from genus to phylum, showed similar patterns as the OTUall data 

set (Fig. S2.3.), suggesting that ecologically meaningful patterns can still be obtained 

from the taxonomically identified fraction of the community. 

 

 

Figure 2.1. Turnover of the bacterial community between two consecutive (A) depth layers or (B) 

sampling times. The percentage of OTU shared between two successive sampling depth layers (or 

sampling dates) was calculated. The turnover of the community was compared between different 454 

MPTS data sets (at the Phylum, Genus and OTUall levels) and the ARISA data set. Bars correspond to 

standard deviation calculated (A) over 4-6 sampling dates and (B) over three depth layers, except for July 

and November 2005 where 2 depth layers were considered. The first depth layer and sampling date 

(February 2005) are indicated by the grey point as 100% of common OTU. OTUall represents the original 

data set with all OTU, used here as a reference to study the effects of the taxonomic classification of OTU 

on the interpretation of the dynamics of the bacterial community. 

 

However, the observed high turnover at the OTUall level might overestimate real 

dynamics of the bacterial community as it might result from pyrosequencing artifacts 

(Quinlan et al. 2008). Even though we applied the PyroNoise algorithm (Quince et al. 

2009) and different levels of clustering, only about 20-40% of shared OTU in the 

bacterial community could still be observed over depth or time (Fig. S2.2.). If we 

consider that 3% sequence similarity thresholds for OTU correspond roughly to cutoff 

levels defining bacterial species level (Schloss & Handelsman 2005), patterns observed 
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with PyroNoise-corrected data seem to present a continuum with the taxonomic 

resolution up to the genus level (Fig. S2.2.-2.3.). Hence, the observed large community 

turnover may not be due to technical biases and may reflect real dynamics of the bacterial 

community in marine sandy sediments. 

As a large part of pyrosequencing data sets represent low abundant OTUunique 

(Gobet et al. 2010), we also studied the effect of removing successive proportions of rare 

OTUunique on the turnover of the microbial community [Fig. S2.4., (Gobet et al. 

Submitted)]. As observed previously, removal of rare OTUunique leads to a decrease in 

community turnover, and would be supported by the low fraction of abundant types in the 

community (Gobet et al. Submitted). Interestingly, when comparing the turnover at 

successive taxonomic levels or percentages of rare OTUunique removed, some patterns 

were found to be similar (Figs. S2.3.-S2.4.). For instance, it seemed that the turnover 

after removal of 15% rare OTUunique corresponds to the genus level or that the removal of 

30% rare OTUunique would lead to a similar turnover as the class or phylum levels (Figs. 

S2.3.-S2.4.). This may be explained by the loss of community resolution at broader 

taxonomic levels where the patterns of many different types are lumped together and by 

the fact that most rare OTUunique were not identified from the genus to the phylum level. 

Also, this indicates the high consistency of the ecological information obtained at various 

taxonomic levels, as also observed in global benthic and pelagic marine realms (Zinger et 

al. In preparation). 

Interestingly, the amount of shared OTUARISA over depth or through time seemed 

to reveal similar information for the description of the microbial community turnover as 

obtained at the family level or when removing 20-25% of low abundant OTUunique in the 

OTUall data set (Figs. 2.1., S2.2.-S2.4.). These observations confirm the consistency of 

the community turnover observed with ARISA and at successive taxonomic and 

corrected levels of the 454 MPTS data set. This also highlights the importance of the 

degree of resolution to describe bacterial community patterns.  

 

Structure of the data sets and resulting microbial ecological interpretation. We thus 

evaluated changes in data structure after creating sample-by-sample dissimilarity matrices 

from the relative abundances (i.e. by using the Bray-Curtis dissimilarity index to 
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calculate the dissimilarity between samples) and those matrices were then compared with 

each other by using Pearson‟s correlations (Fig. 2.2.).  

Overall, the comparison of the community structure between the relative abundance-

data sets showed little variation at different taxonomic levels, after correcting for 

pyrosequencing noise, or truncating the data sets (Fig. 2.2.). This indicated how the main 

community patterns stayed consistent regardless of the chosen level of resolution. The 

ARISA data set structure was slightly more different than most of the other data sets, but 

was quite similar to data sets truncated from 25-50% of their rarer OTUunique (Fig. 2.2.). 

 

 

Figure 2.2. Comparison of the structure of modified data sets. Pearson‟s correlation coefficient was 

used to compare the ARISA and the OTUall data sets with (A) various levels of taxonomic annotation, (B) 

successive removal of the rare OTU and (C) successive clustering of the PyroNoise-corrected data to define 

OTU. The correlation coefficient was calculated from the distance matrices resulting from the relative 

sequence abundances. Significances of the correlation were tested using Mantel tests. For (B) values in 

italic indicate simple Pearson correlations of the truncated matrices, but without a test of significance as the 

truncated matrices are not statistically independent from each other (see Materials and Methods). Only 

significant values (after Bonferroni correction) are shown. 

 

When the amount of extracted ecological variation was analyzed by non-metric 

multidimensional scaling (NMDS), similar depth-related patterns of the microbial 

community were obtained, regardless of the chosen taxonomic or correction levels (Fig. 

2.3.). These observations were confirmed after testing for differences between sampling 

depth layers by analysis of similarities (Fig. 2.3.). When comparing the obtained NMDS 

ordinations by Procrustes rotation (i.e. a measure of the correlation between two 

ordination solutions), a similar picture emerged. For instance, the comparison of NMDS 

axes from ARISA with those from OTUall data set or PyroNoise-corrected data set after 
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3% clustering were highly similar, with a R value reaching 0.88 and 0.74, respectively 

(Fig. S2.5.). Together with the turnover results, all these observations indicate that our 

ARISA data may represent the most dominant types in the community (e.g. without 25% 

of rare types, Fig. S2.5.). Indeed, a Mantel test between ARISA data and resident 

OTUunique (OTUunique present at all times) reached 0.43 and a Procrustes rotation between 

the resulting NMDS axes reached 0.79, indicating significant similar patterns, even after 

Bonferroni correction. ARISA could thus mimic the effect of the resident types which 

may shape the microbial community structure, and play a major role in the main 

functions of the ecosystem (Gobet et al. Submitted). These similar microbial ecological 

patterns obtained confirm the reproducibility and the consistency of both molecular 

techniques. 

 

 

Figure 2.3. Examples and comparison of extracted variation from the ARISA and 454 MPTS data 

sets. Non-metric multidimensional scaling (NMDS) ordination (Bray-Curtis distance matrix) of the relative 

abundance data sets from ARISA (stress = 6.2%), the original OTUall data set (stress = 8.1%), the OTUall 

data set with 50% of rare OTU removed (stress = 9.5%), the PyroNoise-corrected data at 10% sequence 

dissimilarities (stress = 8.3%) and, at the Phylum level (stress = 4.7%). Analyses of similarities (ANOSIM) 

indicated significant differences between samples grouped per sediment depth (R > 0.3, P value ≤ 0.01). 
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2.3.3 Ecological modeling of beta-diversity patterns.  

 

Microbial ecology in temperate coastal sediments from the North Sea island Sylt has 

already been studied using several types of molecular methods. 16S rRNA-based libraries 

and fluorescence in situ hybridization allowed the description of the main bacterial 

groups present in the sand (Musat et al. 2006). The application of ARISA allowed further 

details about depth-related and ecological patterns (Böer et al. 2009) and 454 MPTS 

permitted a high resolution description of the fluctuations of rare and resident OTU in the 

sand (Gobet et al. Submitted). By studying relationships of the bacterial community and 

the surrounding environment, these studies allowed a deep comprehension of bacterial 

ecology in temperate coastal sands. 

We applied a multivariate variation partitioning approach to analyze the impact of 

time, sediment depth, cell abundance and biogeochemical gradients (i.e. pigments, 

nutrients and extra-cellular enzymes), and of their combined effects on the structure of 

the bacterial community (Legendre & Gallagher 2001, Ramette & Tiedje 2007b). In order 

to avoid collinearity in the analyses, the factors time and depth, which were significantly 

covarying with most environmental factors, were removed from the data set (Gobet et al. 

Submitted). The remaining factors, cell abundance and biogeochemical gradients, and 

their covariation were then linked to the variations in community structure in the ARISA 

and the 454 MPTS data sets. Interestingly, the same combinations of significant 

biogeochemical variables could explain data sets that had a similar degree of resolution. 

For instance, a model containing salinity, pigments, the same nutrients and extra-cellular 

enzymes as well as cell abundance, could explain 51-75% of the biological variation from 

the genus to the phylum level in sandy sediments (Fig. 2.4., Table S2.2.). Also, almost 

the same environmental model as for the taxonomic annotated data set could explain the 

biological variation in the ARISA data set (Table S2.2.).  

For more complex data sets (i.e. more levels of variation are present), a similar 

environmental model (i.e. chlorophyll a, extra-cellular phosphatase activity, cell 

abundance, Table S2.2.) could explain 14-20% of biological variation in the OTUannotated, 

the raw OTUall and after PyroNoise-correction and clustering at 0% and 3% sequence 

dissimilarity (Fig. 2.4.). Notably, the same environmental factors could explain a similar 
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amount of the microbial community variation for the OTUall and the OTUannotated data 

sets. This observation follows our previous assumption that the annotated subset of the 

data set consists of an unbiased subset of the whole data set, and that the taxonomically 

identified OTU may be used to describe overall patterns in microbial communities in 

temperate coastal sandy sediments. Also, when 1-5% rare OTUunique were removed from 

the OTUall data set, similar models were obtained as with the original OTUall data set (18-

20% explained variation, Fig. S6, Table S2.3.). Interestingly, some truncated data sets 

followed similar environmental models as that of data sets defined at specific taxonomic 

levels. The same combination of environmental parameters could explain the OTUall data 

set without 30% rare OTUunique as the data set at the genus level, while the OTUall data set 

without 35-50% rare OTUunique followed similar ecological patterns as that of the family 

to phylum levels (Figs. 2.4., S2.6., and Tables S2.2.-2.3.). 

 

 

Figure 2.4. Partitioning of the biological variation in the bacterial community structure based on the 

ARISA and 454 MPTS. Environmental parameters accounted for include pigments (chlorophyll a and 

pheophytin), nutrients (silicate, phosphate, nitrite, nitrate, ammonium), extra-cellular enzyme activities 

(chitinase, α-glucosidase, β-glucosidase, lipase, aminopeptidase, phosphatase), cell abundance and their 

combined effects. The black line in each panel separates the pure factor effects from their covariations. 

Covariation of any of the 4 environmental factors is represented under the category “covariation”. Negative 

values, unexplained variation and non-significant (NS) multivariate models are not shown. Here, the 

OTUannot. level represents sequences with a complete annotation from the phylum to the genus level (i.e. 

20% of the total number of sequences in the original data set), while the OTUall level includes also 

sequences without complete annotation. PyroN.0%, PyroN.3% represent the PyroNoise-corrected OTUall data 

set, clustered at 0% and 3% of sequence dissimilarity, respectively. Numbers in parentheses represent the 

total number of sequences in each data set. White stars indicate pure factors that significantly explain the 

biological variation (P value ≤ 0.05) after 1000 Monte Carlo permutations. 
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As previously observed (Gobet et al. Submitted), our results confirm that a greater 

amount of biological variation in the microbial community can be explained as data sets 

become less complex. Also, consistent ecological patterns were obtained with data sets 

with lower resolution such as that from ARISA or from the 454 MPTS taxonomic 

annotation or truncation. These patterns may be driven by the main bacterial types, e.g. 

the resident bacterial types, present at all times that probably maintain the general 

functions of the ecosystem. This follows a recent assumption regarding the ecological 

coherence of high bacterial taxonomic ranks (i.e. phylum to the genus level) which 

suggests that members of a same taxon would share the same main functions in the 

ecosystem (Philippot et al. 2010). Whereas ARISA would permit to understand the 

ecology of the main bacterial types in the ecosystem, the 454 MPTS data sets, with higher 

resolution of the microbial community, would give more details on the ecology of the 

community, also influenced by the large fraction of rare types in the microbial 

community. Finally, the pre-clustering and clustering corrections of the 454 MPTS data 

set confirmed the robustness of the ecological trends, as the conclusions were the same as 

without correction of the original OTUall data set. 

In summary, the above analyses showed how each molecular approach can not 

only answer specific questions, but also lead to the same ecological conclusions. ARISA 

may be better suited for a general overview of the bacterial community structure, and the 

data output may be easier to process than large data sets from high-throughput 

sequencing techniques. Highly similar ecological patterns obtained from ARISA and 

different taxonomic levels, PyroNoise-corrected or truncated 454 MPTS data sets 

indicated how both molecular approaches in fact produce a fingerprint of the bacterial 

community. Our study thus confirms ARISA as a valuable technique for a rapid and 

consistent evaluation of bacterial ecological patterns. In addition, the knowledge gained 

from previous studies based on ARISA or classical community fingerprinting techniques 

is not obsolete and may be fruitfully extended by using new molecular techniques. 
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2.4 Supplementary Information 
 

2.4.1 Supplementary Figures  

 

Fig. S2.1. Total OTU numbers from all depths over time for (A) ARISA, (B) OTUall, 

and (C) PyroNoise3%. 

 

Fig. S2.2. Turnover of the bacterial community between sediment depth layers or 

sampling dates after correction and OTU clustering of the 454 MPTS data set and of 

the ARISA data set.  

 

Fig. S2.3. Turnover of the bacterial community between sediment depth layers or 

sampling dates at successive taxonomic levels.  

 

Fig. S2.4. Turnover of the bacterial community between sediment depth layers or 

sampling dates after applying MultiCoLA. 

 

Fig. S2.5. Comparison of most important axes of extracted variation from the 

different categories of data sets. 

 

Fig. S2.6. Partitioning of the biological variation in the bacterial community 

structure. 



Microbial Community Ecology of Temperate Coastal Sands 

 

 62 

 

 
 

Figure S2.1. Total OTU numbers along sediment depth or over time for (A, D) ARISA, (B, E) OTUall, 

and (C, F) PyroNoise3% data sets. Horizontal lines outside of the box represent the smallest and the 

largest observations in the data set. The first and third quartiles are indicated by the lowest and highest 

limits of the box, respectively. The median is indicated by the thick bar in the middle of each box. (A, B, C) 

boxplots were calculated at all sampling times along the three depth layers. A different letter (a, b) 

indicates a significant mean difference in OTU number between the selected depth layer and the other(s) 

(Student t-test, P value ≤ 0.05). There were 6 sampling dates considered for the upper 10 cm layers and 4 

sampling times for the 10-15 cm layer. In (A), the circle represents an outlier: a data point inferior or 

superior to the first or third quartile, respectively, by 1.5 times the interquartile range. (D, E, F) boxplots 

were calculated at all depths over time. The 3 depth layers were considered except for July and November 

2005 where 2 upper depth layers were available. There was no significant mean difference in OTU number 

between sampling times after Student t-testing.  
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Figure S2.2. Turnover of the bacterial community between sediment depth layers or sampling dates 

after correction and OTU clustering of the 454 MPTS data set and of the ARISA data set. (A) OTUall, 

(B) PyroNoise unique, (C) PyroNoise 3%, (D) PyroNoise 5%, (E) PyroNoise 10%, and (F) ARISA. The 

percentage of OTU shared between a sampling depth (or date) and the previous one was calculated and 

values were represented by heatmap matrices. OTUall represents the original data set with all OTUunique. 

Figure modified from (Gobet et al. Submitted).  
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Figure S2.3. Turnover of the bacterial community between sediment depth layers or sampling dates 

at successive taxonomic levels. (A) OTUannotated, (B) Genus, (C) Family, (D) Order, (E) Class, and (F) 

Phylum levels. OTUannotated represents OTUunique that are completely annotated (phylum to genus levels). 

See Fig. S2 for further details. 
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Figure S2.4. Turnover of the bacterial community between sediment depth layers or sampling dates 

after applying MultiCoLA. Successive percentages of rare OTU were removed from the OTUall data set: 

(A) 1%, (B) 5%, (C) 15%, (D) 20%, (E) 25%, and (F) 30%. See Fig. S2 for further details. Figure modified 

from (Gobet et al. Submitted). 
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Figure S2.5. Comparison of extracted variation from the different categories of data sets. The 

Procrustes‟ correlation coefficient was used to compare the ARISA and the OTUall extracted variation with 

(A) various levels of taxonomic annotation, (B) successive removal of the rare OTU and (C) successive 

clustering of the PyroNoise-corrected data to define OTU. The Procrustes‟ correlation coefficient was 

calculated from the variation in the main axes of extracted variation via non-metric multidimensional 

scaling [NMDS], based on the distance matrices resulting from the relative sequence abundances. For (B) 

values in italic indicate no test of significance as the truncated matrices are not statistically independent 

from each other (see Materials and Methods). Only significant values (after Bonferroni correction) are 

shown. 
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Figure S2.6. Partitioning of the biological variation in the bacterial community structure based on the 

removal of successive percentages (here 0 to 85%) of rare OTU from the OTUall data set by using 

MultiCoLA. Environmental parameters accounted for include pigments (chlorophyll a and pheophytin), 

nutrients (silicate, phosphate, nitrite, nitrate, ammonium), extra-cellular enzyme activities (chitinase, α-

glucosidase, β-glucosidase, lipase, aminopeptidase, phosphatase), cell abundance and their combined 

effects. The black line in each panel separates the pure factor effects from their covariations. Covariation of 

any of the 4 environmental factors is represented under the category “covariation”. Negative values, 

unexplained variation and non significant (NS) multivariate models are not shown. 

 

N.B: A non significant (NS) model appears when trying to explain the biological variation from data sets 

without 55-60% of rare OTU. This is probably not an artifact. Indeed, as an increasing amount of rare OTU 

is removed, the original structure of the data set may be disorganized. Hence, as rare OTU are removed 

from the data set, the amount of explained variation likely varies. Additionally, when OTU are removed 

from the data set, the data set structure may vary. The interesting point here is that similar patterns can be 

kept after a consequent amount of OTU removed.  
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2.4.2 Supplementary Tables 

 

Table S2.1. Summary of OTU abundances in the ARISA data set for all samples at 

three different sediment depths at different sampling times 

 

Table S2.2. Contribution of environmental parameters to the variation in the data 

sets at successive taxonomic levels. 

 

Table S2.3. Contribution of environmental parameters to the variation in truncated 

data sets [by applying MultiCoLA, (Gobet et al. 2010)], at the OTU level for all 

sequences available. 
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ABSTRACT

High-throughput sequencing techniques are
becoming attractive to molecular biologists and
ecologists as they provide a time- and cost-effective
way to explore diversity patterns in environmental
samples at an unprecedented resolution. An issue
common to many studies is the definition of what
fractions of a data set should be considered as
rare or dominant. Yet this question has neither
been satisfactorily addressed, nor is the impact of
such definition on data set structure and interpret-
ation been fully evaluated. Here we propose a
strategy, MultiCoLA (Multivariate Cutoff Level
Analysis), to systematically assess the impact of
various abundance or rarity cutoff levels on the re-
sulting data set structure and on the consistency of
the further ecological interpretation. We applied
MultiCoLA to a 454 massively parallel tag
sequencing data set of V6 ribosomal sequences
from marine microbes in temperate coastal sands.
Consistent ecological patterns were maintained
after removing up to 35–40% rare sequences and
similar patterns of beta diversity were observed
after denoising the data set by using a preclustering
algorithm of 454 flowgrams. This example validates
the importance of exploring the impact of the defin-
ition of rarity in large community data sets. Future
applications can be foreseen for data sets from dif-
ferent types of habitats, e.g. other marine environ-
ments, soil and human microbiota.

INTRODUCTION

Community ecologists traditionally deal with data sets
consisting of large tables of samples by ‘species’ (hereafter
referred to as ‘types’). The scientific community has yet

not reached a general agreement on the optimal way to
deal with rare types (1): for some, rare types are noise in
data sets which may originate from sampling artifacts and
thus do not represent the whole community. Rare types
are often removed so as to decrease the large amount of
zeros stored in data sets, and to reduce the challenging
task of their taxonomic identification (1). For others,
rare types are valuable as they may provide critical
insights into the functioning of ecosystems such as resist-
ance against invasive species or into the likely existence of
multiple niches (1). It is thus left at the discretion of the
authors to define their own concept of rarity: rare plants
and animals may be defined according to their restricted
geographical distribution (2) or to their low proportions in
data sets (3).
In microbial ecology, the current revolution in high-

throughput DNA sequencing technology has revealed
the existence of a ‘rare biosphere’, consisting of the
many microbial types displaying long distribution tails
in rank-abundance curves (4,5). Because sequencing arti-
facts may produce chimeric types (6), several studies have
put into doubt the true existence of rare types in the
high-throughput sequencing data sets and have provided
various ways to trim and correct sequences: for instance,
clustering threshold at 97% sequence identity (7) on 454
massively parallel tag sequencing (MPTS) data or a
flowgram-based preclustering algorithm (8) may be
applied. When rare types are not considered as artifacts,
they can be defined by applying arbitrary abundance
cutoffs to the original data set (9). However, the effects
of the definition of rare organisms on the stability of the
data structure and ecological conclusions that derive from
the resulting, truncated data sets have not been examined
so far.
We propose a new approach, Multivariate Cutoff Level

Analysis (MultiCoLA), to systematically explore how large
community data sets are affected by different definitions of
rarity. First, MultiCoLA truncates the original data set by
discarding rare types according to successive increasing
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abundance cutoffs. The effects of removing rare types are
then measured at the levels of (i) variation of data set struc-
ture, (ii) amounts of extracted variation between the
original and the truncated data sets and (iii) the ecological
interpretation of the original and each truncated data sets
when environmental parameters are available.

MATERIALS AND METHODS

Data set

In this study, the analyses were performed on a data set
consisting of hyper-variable V6 sequences of the 16S
rRNA gene, which were obtained from the application
of 454 MPTS on temperate subtidal sandy samples at
three sediment depth layers (0–15 cm depth, with a 5-cm
interval) taken over 2 years (2005–2006). Detailed sample
processing and DNA extraction has been described earlier
(10) and the 454 MPTS of the extracted DNA was pro-
cessed as described previously (5). The output from
454 MPTS was retrieved from the publicly available
Visualization and Analysis of Microbial Populations
Structure (VAMPS) web site (http://vamps.mbl.edu/).
An automatic annotation pipeline [Global Alignment for
Sequence Taxonomy (GAST) (5)] using several known
databases (Entrez Genome, RDP and SILVA) allowed
the taxonomic assignment of the sequences. Despite the
limitations of current databases, only 6% of sequences
from this data set were not taxonomically identified at
all. However, about 20% of sequences were annotated
from the phylum to the genus level. In this study, the
analyses were performed by defining OTUs (operational
taxonomic units) as unique sequences (i.e. sequences dif-
fering by at least one base were considered as different
OTUs. Note, however, that MultiCoLA could also have
been applied to sequence subsets based on another OTU
definition) and the following subsets were considered:
(i) all, unannotated sequences that we referred to as
‘OTU whole data set (DS)’, (ii) on the 20% fully
annotated sequences (i.e. from phylum to genus levels
and the corresponding OTU level) and (iii) on
PyroNoise-corrected data defined at different percentages
of sequence similarity.

Data analyses

Truncated tables. Data sets were analyzed by applying
two types of cutoff abundance levels (Figure 1):
(i) Whole-data set-based cutoffs: truncated matrices were
obtained by removing chosen proportions (0, 1, 5–95
and 99%) of rare OTUs from the total sum of sequences
in the data set (Figure 1A). The original data set was first
sorted according to the decreasing number of sequences
per OTU. Then low-abundance OTUs were removed ac-
cording to the given cutoff levels. (ii) Sample-based
cutoffs: a total of 15 cutoffs were selected from 1 to 208
total number of sequences per OTU per sample (because
certain samples did not contain any more OTUs for cutoff
levels higher than 208 sequences, i.e. 208 was the lowest
number of the maximum OTU occurrences per sample), in
order to select OTUs with more sequences than the
applied cutoff (Figure 1B). This number is obviously
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Figure 1. Two ways of assigning rarity cutoffs to the original data set.
(A) In the data set-based approach, cutoff levels are assigned to the
original data set according to several percentages (0, 1, 5–95 and 99%)
of the total number of sequences in the data set. The data set was
sorted according to the decreasing total sum of OTU sequences
(columns, here) before selecting out rare OTUs. For instance, a
cutoff assignment of 1% removes 1% of the low-abundant OTUs.
(B) In the sample-based approach, cutoff levels are assigned to the
original data set according to the occurrence (1–208 sequences) of
each OTU in each sample. The maximum cutoff (here, 208) was
chosen according to the lowest number of the maximum OTU occur-
rences in all samples; this is the limit when some samples did not
contain any more OTUs. For example, the assignment of a cutoff
level of 3 removes OTUs occurring less than three times in each sample.
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specific to each data set and should be taken into consid-
eration if one wants to consider the same number of
samples in all comparative analyses.

Analyses of changes in bacterial community structure and in
main patterns of community variation. Pairwise distance
matrices were calculated from the data (original and
truncated matrices) using the Bray–Curtis dissimilarity
index (11). The resulting dissimilarity matrices were
compared with one another using the non-parametric
Spearman rho correlation coefficient (12), which ranges
from 0 to 1 (a score closer to 1 indicates higher correl-
ations between dissimilarity matrices).

Variations in the main axes of extracted variation in
community structure were explored via non-metric multi-
dimensional scaling [NMDS (13)], a method commonly
used to identify diversity patterns from molecular finger-
printing results (14). The Procrustes method (15) was then
used to compare the NMDS ordination results from the
original distance matrix with those from the truncated
distance matrices. Procrustes rotation produces an
R value that ranges from 0 to 1 [a score closer to 1 indi-
cates highest similarities between the NMDS results (16)].

In other words, this approach enables to quantify the
agreement between the most important axes of extracted
variation from the original versus truncated data sets. This
is particularly relevant because multivariate analyses that
are typically applied to such data sets generally focus on
the first few axes of main biological variation in the data.
In both profiles of data structure and extracted vari-

ation, a limitation is that one cannot calculate either the
confidence interval or the significance of each pairwise
comparison (i.e. for each single point). This is because
the truncated matrices depend on the original matrix
and testing correlations would only make sense in the
case of data set independence (17,18). Yet, those limita-
tions are not critical to our approach because we are more
interested in overall changes in profiles rather than
single-point variation or estimation. Indeed, the
emphasis here is to measure (such as an index would do)
the deviation from the signals in the original data set
under the various hypothetical scenarios, i.e. when
applying various cutoff levels.

Relationships between community structure and
environment. For illustration purposes, four major
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Figure 2. MultiCoLA steps. After truncating the original table according to various abundance cutoff levels, the effects of specific rarity definitions
are tested by applying three types of analyses: (1) Variations in data set structure are established based on non-parametric correlations of pairwise
distance matrices (e.g. calculated with the Bray–Curtis coefficient). (2) The amounts of extracted community variation (using NMDS) from the
original data and the truncated data sets are compared by Procrustes correlations. (3) When additional parameters are available, the biological
variation that can be explained by environmental parameters in the original and in the truncated data sets are then systematically compared. D,
dominant OTUs; R, rare OTUs.
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Figure 3. MultiCoLA profiles for data set structure, most important axes of extracted variation and interpretation of biological variation based on
the data set-based (A–D) and sample-based (E–H) approaches. (A, E) Abundance of dominant OTUs in each truncated data set at the phylum, class,
order, family, genus and OTU levels. A black solid line indicates comparisons at the OTU level for the data set with a complete annotation and a
black dashed line indicates the OTU level with the whole data set (OTU whole DS). (B, F) Non-parametric Spearman correlations comparing the
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contextual parameters [silicate, phosphate, ammonium
and cell abundance from Böer et al. (10), which were
log10-transformed prior to analyses] were used to investi-
gate the relationships between the bacterial community
structure (at successive assigned cutoffs and taxonomic
levels) and environmental parameters. Each response
community data set was Hellinger-transformed as recom-
mended when dealing with data sets to be analyzed via
linear multivariate models (19). Canonical variation par-
titioning (19,20) was then applied to the community data
to test for the effects of each environmental variable
(silicate, phosphate, ammonium and cell abundance) and
their covariation on microbial community structure (21).
Significances of the global and partial regression models
were determined by using 1000 data permutations.

Creation of the MultiCoLA scripts. All statistical analyses
were carried out using the R statistical environment (22),
and specific routines in the vegan (23) and MASS (24)
packages. The resulting MultiCoLA scripts are available
at http://www.ecology-research.com. Some MultiCoLA
scripts require some time and a certain computing
power (10min of calculations for an example matrix
with 1000 OTUs on an Intel Pentium 4), but this may
vary as a function of data set size and complexity, and
choice of the analyses (i.e. Spearman correlations,
Procrustes correlation or variation partitioning at
multiple cutoff levels).

RESULTS AND DISCUSSION

Two approaches may be applied to truncate the original
data set when removing an increasing proportion of rare
types: either the whole data set is considered or each
sample is considered individually (Figure 1). Because
there is no reason to a priori choose a given threshold
value, various cutoffs need to be systematically applied
to explore their effects. The resulting, truncated data sets
are then evaluated at three levels: first, the data sets are
converted to sample-by-sample dissimilarity matrices (e.g.
here we used the Bray–Curtis coefficient to calculate the
dissimilarity between samples but other dissimilarity coef-
ficients may be used) and those matrices are compared
with the matrix produced by the whole dataset using
non-parametric Spearman correlations (Figure 2), so as
to assess changes in data structure. Second, the amounts
of extracted ecological variation, obtained by the applica-
tion of the NMDS ordination, in the truncated and
original data sets are compared by Procrustes rotation
(i.e. a measure of the correlation between two ordination
solutions). Third, when contextual parameters (e.g. space,
time or environment) are available, it is possible to

systematically compare the ecological interpretation of
each truncated data set with that of the original data
set. This is achieved by partitioning the biological vari-
ation from the different truncated data sets as a function
of explanatory variables (Materials and Methods section).
We applied MultiCoLA to a large 454 MPTS data set

representing a case of high microbial diversity retrieved
from temperate coastal sediments (10), which included a
considerable amount of singletons (68% unique OTUs
with a single sequence and 10% unique sequences in the
whole data set) and low-abundant types. Another level of
interest came from the fact that many sequences could also
be taxonomically classified by applying the GAST taxo-
nomic pipeline (5). It was thus possible to systematically
explore the effects of rarity definition on the structure and
interpretation of a data set at different taxonomic levels.
The systematic truncation of the whole data set

produced a quasi linear decrease in sequence number as
a function of increasing cutoff levels, and a similar trend
was observed for the taxonomically annotated OTUs
(Figure 3A). When the structure of community tables
were compared between the truncated and the original
matrices (Figure 3B), little variation in data structure
was observed up to a removal threshold of 40% of the
rare parts of the data set, indicating robustness in the
signal far beyond the usual removal of singletons.
Beyond the 40% threshold, the correlation coefficients
greatly varied in a non-linear and non-predictive
fashion, with higher taxonomic levels mostly associated
with higher correlation values. When the most important
patterns of extracted variation were compared between the
various truncated and the original data sets (Figure 3C), a
similar picture emerged with 40% representing a cutoff
level up to which very little change in extracted variation
could be observed. Beyond this threshold, Procrustes co-
efficients also greatly varied in a non-predictable and
non-linear way, again regardless of the taxonomic level
of the analysis.
When the truncated data sets were further analyzed as a

function of environmental parameters, a surprising picture
emerged (Figure 3D): nutrients (phosphate, silicate and
ammonium) and total cell abundance seemed to consist-
ently affect community variation at different cutoff levels.
Not surprisingly, more explained variation was obtained
overall when data complexity was reduced via the appli-
cation of increasing cutoff levels or at higher taxonomic
levels (Supplementary Figure S1). Noticeably, different
multivariate models could be retained at each cutoff
level or at each taxonomic level of the analyses, indicating
that each truncated data set may be explained by slightly
different combinations or covariations of environmental
factors (Supplementary Tables S1–S7). It seemed overall

deviation in complete data structure between the original matrix and truncated matrices. (C, G) Comparison of most important axes of extracted
variation between the original and truncated data sets. (D, H) Partitioning of the biological variation at the OTU level (all OTUs) into the respective
effects of environmental factors (nutrients and cell abundance). Negative values, unexplained variation and non-significant models are not shown.
SiO2, silicate; PO4, phosphate; NH4, ammonium; covariation of any of the four environmental factors is represented under the same category.
Asterisk indicates a significant effect of the pure factors (P< 5%), whereas ‘NS’ indicates non-significant models. A cross indicates non-significant
Bonferroni corrected models. Lacking points or bars are due to sample loss by applying a given cutoff to the original data set. In (E–H), the upper
x-axis corresponds to cutoff levels defined as a function of the sample-based approach, and the lower x-axis represents the corresponding proportion
of removed sequences in the OTU data set (all OTUs). This enables the comparison of the data set-based approach with the sample-based approach.
Note that (D and H) have a different legend than (A–C) and (E–G).
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that the rather broad taxonomic classification of the se-
quences was sufficient to describe general ecological
patterns and that the interpretation of the effects of the
structuring factors was robust and would not be affected
by the removal of a large fraction of the rare types.
When applying the sample-based approach to the data

to reveal changes in data structure and extracted variation
(Figure 3F and G, respectively), changes in data structure
varied in a narrower range (Spearman correlation coeffi-
cient from 0.8 to 1), while changes in extracted ecological
variation varied over a larger range (Procrustes

correlations from 0.5 to 1) and less predictably, as
compared with their counterparts from the whole-data
set approach (Figure 3B and C, respectively). A similar
critical threshold of 35–40% for which profiles became
more dissimilar from each other was also observed. For
instance, by removing sequences occurring less than five
times in the data set (i.e. removing 32% of all sequences),
only a small drop in Spearman correlation coefficient to
0.98 would be observed, as compared with the original
data set matrix, regardless of the taxonomic affiliation of
the sequences (Figure 3F). Yet, the explained variations in
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community structure as explained by nutrients and cell
abundance (Figure 3D and H) were qualitatively similar
to those based on the data set approach. More variation
was again explained at higher taxonomic levels
(Supplementary Figure S2 and Tables S8–S14).
Therefore, choosing the sample- or data set- based
approach would lead to the same ecological conclusions,
despite their contrasting effects on data structure and
amount of extracted ecological variation.

Because sequencing and PCR noise may generate
spurious, low-abundance types, especially in high-
throughput sequencing data sets (6), two strategies have
been proposed to correct for sequence artifacts: a cluster-
ing threshold at 97% sequence identity (7) or a
flowgram-based preclustering algorithm (8). A central
question is therefore whether the afore-described variation
observed in MultiCoLA profiles could be due to the
presence of sequence artifacts. When MultiCoLA was
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applied to PyroNoise-corrected data (Supplementary
Table S15), both the data set-based (Figure 4A–C) and
sample-based (Figure 4D–F) approaches produced very
similar profiles as those obtained with uncorrected data.
The main differences consisted of generally less fluctu-
ations in the profiles and of higher cutoff levels of
55–60% (i.e. 30–55 individual sequence abundance in the
data set) that should be reached to drastically deviate from
the signal in the original data set. Explanation of the com-
munity variation by additional environmental parameters
yielded the same conclusions as with uncorrected data
(Supplementary Figure S3). Therefore, we can conclude
that the observed variations in profiles at different cutoff
and taxonomic levels were mostly due to non-technical
fluctuations in the data, i.e. to real structural and ecologic-
al characteristics of the studied data sets.
In this study, the original data set was used as reference

for the MultiCoLA profiles, because usually one wants to
remove only a small fraction of the data. Yet, it is also
possible to choose the table of the most abundant types as
reference for comparisons, so as to assess the effects of an
increasing amount of rare types in the data set. By doing
so (Figure 5), different profiles and fluctuation patterns
could be observed, indicating a significant impact of the
addition of rare types on data structure and ecological
interpretation. Another possibility of analysis is to
systematically remove the abundant fraction from each
truncated data set and thus only retain the rare types
(Supplementary Figure S4). This approach mimics the
addition of an increasing amount of dominant types in
the data set, and would enable a characterization of the
data structure and ecological patterns, or lack of, present
within the rare fraction of any data set. The resulting
profiles and patterns (Supplementary Figure S4) were dif-
ferent from those obtained by systematically keeping the
dominant fractions (Figure 3), suggesting that the rare
fraction has a different structure and ecological signal
than the more dominant fraction of the community.
This observation opens the door to many new questions,
but their exploration would go beyond the scope of the
current study. In any case, these observations exemplify
the usefulness of MultiCoLA to generate new knowledge
about the nature of rarity in data sets.
In conclusion, MultiCoLA enables a systematic and

data-driven exploration of the impact of rarity or domin-
ance of specific fractions of large community data sets and
on their further ecological interpretations. This would be
especially useful for data sets containing a large fraction of
singletons, as found in previous high-throughput Sanger
sequencing data sets [e.g. from clone libraries (25) or
shotgun sequencing libraries (26)], and in ongoing,
high-throughput 16S rRNA-based pyrosequencing
projects [e.g. the International Census of Marine
Microbes (ICoMM) (5,9), http://icomm.mbl.edu], and
high-throughput metagenomic projects [e.g. the
International Soil Metagenome Sequencing Consortium
(Terragenome) (27), http://www.terragenome.org/; or the
International Human Microbiome Consortium (IHMC)
(28), http://www.human-microbiome.org/] where the rare
sequence issue is generally addressed arbitrarily [e.g. a
threshold of two reads was chosen to identify a gene in

a human microbiome metagenomic data set (28)]. This
analytical approach will also help scientists to move
beyond the debate of sequence accuracy and in the
future, it would be particularly interesting to determine
how the threshold range of profile stability varies as a
function of sequencing strategy, data set sizes, samples
or habitat types.

The MultiCoLA software with its respective manual
and examples are available at: http://www
.ecology-research.com.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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3.2 Supplementary Information 
 

3.2.1 Supplementary Figures 

 

Supplementary Figure 1. MultiCoLA profiles of biological variation with the dataset-

based cutoff approach. 

 

Supplementary Figure 2. MultiCoLA profiles of biological variation with the sample-

based cutoff approach. 

 

Supplementary Figure 3. MultiCoLA profiles of biological variation with the dataset-

based and sample-based approaches on PyroNoise corrected data. 

 

Supplementary Figure 4. MultiCoLA profiles based on the dataset- (A, B, C) and sample-

based (D, E, F) cutoff approaches only retaining the rare OTU in each truncated dataset. 

(A, D) Abundance of rare OTU in each truncated dataset at the phylum, class, order, 

family, genus and OTU levels. A black solid line indicates comparisons at the OTU level 

for the dataset with a complete annotation and a black dashed line indicates the OTU 

level for the whole dataset (OTU whole DS). (B, E) Non-parametric Spearman 

correlations comparing the deviation in complete data structure between the original 

matrix and truncated matrices. (C, F) Comparison of most important axes of extracted 

variation between the original and truncated datasets. Lacking points are due to sample 

loss by applying a given cutoff to the original dataset. In the panels D, E, F, the upper x-

axis corresponds to cutoff levels defined as a function of the sample-based approach, and 

the lower x-axis represents the corresponding proportion of removed sequences in the 

OTU dataset (all OTU). This enables the comparison of the dataset-based approach with 

the sample-based approach. ODS, original dataset. 
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Supplementary Figure 1. MultiCoLA profiles of biological variation with the dataset-based cutoff 

approach.. Partitioning of the biological variation at the (A) phylum, (B) class, (C) order, (D) family, (E) 

genus and (F) OTU levels for the dataset with a complete annotation, into the respective effects of 

environmental factors (nutrients and cell abundance). Negative values, unexplained variation and non-

significant models are not shown. SiO2, silicate; PO4, phosphate; NH4, ammonium; Covariation of any of 

the 4 environmental factors is represented under the same category. A star indicates a significant effect of 

the pure factors (P<5%), whereas “NS” indicates non-significant models. A cross indicates non-significant 

Bonferroni corrected models. Absence of data (lacking bar) is due to sample loss by applying a given cutoff 

to the original dataset.  
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Supplementary Figure 2. MultiCoLA profiles of biological variation with the sample-based cutoff 

approach. See Supplementary Figure 1 for details. 
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Supplementary Figure 3. MultiCoLA profiles of biological variation with the dataset-based (A, B, C, D) 

and sample-based (E, F, G, H) approaches for PyroNoise corrected data. For the sample-based approach 

panel H, the upper x-axis corresponds to cutoff levels defined as a function of the sample-based approach 

(as for panels E, F, G), and the lower x-axis represents the corresponding proportion of removed sequences 

in the OTU dataset (all OTU). This enables the comparison of the sample-based with dataset-based 

approach. Each panel consists of PyroNoise-corrected datasets whose sequences were clustered at various 

sequence dissimilarity levels (0-10%). See Supplementary Figure 1 for further details. 
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Supplementary Figure 4. MultiCoLA profiles based on the dataset- (A, B, C) and sample-based (D, E, 

F) cutoff approaches only retaining the rare OTU in each truncated dataset. (A, D) Abundance of rare 

OTU in each truncated dataset at the phylum, class, order, family, genus and OTU levels. A black solid line 

indicates comparisons at the OTU level for the dataset with a complete annotation and a black dashed line 

indicates the OTU level for the whole dataset (OTU whole DS). (B, E) Non-parametric Spearman 

correlations comparing the deviation in complete data structure between the original matrix and truncated 

matrices. (C, F) Comparison of most important axes of extracted variation between the original and 

truncated datasets. Lacking points are due to sample loss by applying a given cutoff to the original dataset. 

In the panels D, E, F, the upper x-axis corresponds to cutoff levels defined as a function of the sample-

based approach, and the lower x-axis represents the corresponding proportion of removed sequences in the 

OTU dataset (all OTU). This enables the comparison of the dataset-based approach with the sample-based 

approach. ODS, original dataset. 
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3.2.2 Supplementary Tables 

 

 

Supplementary Table 1. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the OTU level for all sequences available. 

Supplementary Table 2. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the OTU level for the dataset with a complete annotation. 

Supplementary Table 3. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the Genus level. 

Supplementary Table 4. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the Family level. 

Supplementary Table 5. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the Order level. 

Supplementary Table 6. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the Class level. 

Supplementary Table 7. Contribution of environmental parameters to the variation in truncated datasets 

(dataset-based approach), at the Phylum level. 

Supplementary Table 8. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the OTU level for all sequences available. 

Supplementary Table 9. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the OTU level for the dataset with a complete annotation. 

Supplementary Table 10. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the Genus level. 

Supplementary Table 11. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the Family level. 

Supplementary Table 12. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the Order level. 

Supplementary Table 13. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the Class level. 

Supplementary Table 14. Contribution of environmental parameters to the variation in truncated datasets 

(sample-based approach), at the Phylum level. 

Supplementary Table 15. Summary of OTU numbers after PyroNoise correction of the 454 MPTS dataset. 
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4 Chapter III. 
 

Diversity and Dynamics of the Rare 

and Resident Bacterial Biosphere in 

Coastal Sands 
 

 

Angélique Gobet, Simone I. Böer, Susan M. Huse, Justus E.E. van Beusekom, 

Christopher Quince, Mitchell L. Sogin, Antje Boetius and Alban Ramette 

 

Submission to Proceedings of the National Academy of Science planned by December, 5
th

 

2010.  

 

Keywords: Bacterial diversity, 454 pyrosequencing, multivariate analysis, coastal seas, 

rare biosphere 

 

Abstract. The use of pyrosequencing as a fingerprinting technique for environmental 

microbial communities has expanded our knowledge of the enormous diversity of 

Bacteria in the ocean, especially regarding the dominance of rare types (Sogin et al. 

2006), and revealed non-random patterns (Galand et al. 2009a). Using 454 massively 

parallel tag sequencing, we have investigated fluctuations of both rare and resident 

bacterial types in temperate coastal sands, which represent a highly dynamic marine 

environment characterized by strong physical mixing and seasonal variation. About 60-

70% of the bacterial types consisted of tag sequences occurring only once over a period 

of 1 year. Most members of the rare biosphere did not become abundant at any time or at 

any sediment depth, but varied significantly with environmental parameters associated 

with nutritional stress. Only 3-5% of all bacterial types of a given depth zone were 

present at all times, but 50-80% of them belonged to the most abundant types in the data 

set. Despite the large proportion and turnover of rare organisms, overall community 

patterns were driven by deterministic relationships associated with seasonal fluctuations 

in key biogeochemical parameters related to primary productivity. The maintenance of 

major biogeochemical functions throughout the observation period suggests that the small 

proportion of resident bacterial types in sands perform the key biogeochemical processes, 

while the majority of rare taxa are transient. 



Microbial Community Ecology of Temperate Coastal Sands 

 

 110 

4.1 Introduction 
 

 Marine coastal areas represent highly dynamic ecosystems where the atmosphere, 

continents and the ocean interact. Permeable sands constitute the dominant sediment type 

on continental shelves (Emery 1968, Boudreau et al. 2001) and play a central role for 

global carbon and nutrient cycles. They act as biocatalytic filters for various types of 

materials advected by currents and winds, including dissolved and particulate organic 

matter derived from living and dead biomass of terrestrial or marine origin (de Beer et al. 

2005). Sandy sediments are also constantly subjected to biotic (e.g. bioturbation) and 

abiotic disturbances [e.g. mixing by currents, seasonal and tidal temperature fluctuations, 

anoxia; (Boudreau et al. 2001)]. They may also host human pathogens, depending on 

human impact by e.g. recreational use of beaches, and temperature anomalies (Ruppert et 

al. 2004, Dinsdale et al. 2008).  

Microorganisms produce extracellular polymeric substances (EPS) to attach to 

surfaces such as those of sand grains, forming a biofilm together with other organisms. In 

the physically dynamic environment of sands, a biofilm provides an ideal environment 

for microorganisms to thrive; e.g. it enables cell adhesion, cell protection from 

dehydration and gives an external digestive system containing extracellular enzymes and 

particles from various origins (Flemming & Wingender 2010). The pore volume between 

the sand grains represents a place of constant particle exchange due to turbulent flow of 

currents and pore water advection which may induce significant fluxes of particulate 

organic matter (Stoodley et al. 2005). It remains yet unknown whether sand grain-

associated biofilms trap microbes from the water column flushing through the sand, or 

whether cells are carried away from the biofilms with the pore water. Indeed, it is known 

that bacterial cells need a strong ultrasonic treatment to be dislodged from sand grains 

(Epstein et al. 1997) and that less than 0.2% of total bacterial cells in the sand can be 

found in the pore water (Rusch et al. 2003). 

Consequently, the high diversity of niches provided in sands could support a rich 

community of bacteria fluctuating with environmental variations. The dynamics of 

environmental parameters in coastal sands could still be a challenge to many microbial 

populations, selecting for few, but tolerant and well-adapted resident types. Nevertheless, 
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the rapid transport of materials through those niches may support a high bacterial richness 

of transient rare types, characterized by high temporal fluctuation. One of the principal 

aims of this study was to test these different hypotheses. 

So far, few studies have provided insights into the structuring and the ecology of 

microbial communities in coastal sediments, and these were mostly based on traditional 

culture-independent community fingerprinting approaches (Urakawa et al. 2000, Bertics 

& Ziebis 2009, Böer et al. 2009). While those molecular techniques have permitted a first 

description of the diversity of abundant populations, they generally fail to describe low 

abundance, rare populations that might represent considerable diversity (Acinas et al. 

2004). High-throughput sequencing strategies such as shotgun sequencing (Venter et al. 

2004) or pyrosequencing (Sogin et al. 2006) allow a higher resolution of the description 

of microbial diversity. The latter technique has already permitted the exploration of the 

rare microbial biosphere in several types of ecosystems such as surface and deep-sea 

water (Sogin et al. 2006), extreme environments (Huber et al. 2007, Brazelton et al. 

2010), or the human hand surface (Fierer et al. 2008). Patterns of the rare biosphere in the 

Arctic Ocean have been related to differences in water masses and attributed to dispersal 

limitation (Galand et al. 2009a). Investigating patterns in the rare microbial biosphere is, 

however, difficult, because of technical noise in pyrosequencing data (Quince et al. 2009, 

Kunin et al. 2010) that may lead to the description of spurious patterns. Beyond 

correcting the raw data (Quince et al. 2009), a systematic analysis of the effects of rarity 

on community structure and ecological interpretation was recently proposed to test 

whether non-stochastic ecological signals were present for different definitions of the rare 

biosphere in a given data set (Gobet et al. 2010).  

Here, a high-resolution description of the bacterial diversity of resident and rare 

types in temperate, marine sandy sediments was obtained over six sampling dates within 

a year (2005-2006) by applying 454 massively parallel tag sequencing (MPTS) targeting 

the V6 region of the 16S rRNA gene. Patterns of bacterial diversity were correlated with 

contextual environmental parameters to quantify the structuring effects of time, sediment 

depth and biogeochemical conditions on microbial community composition and turnover 

for the whole community as well as for fractions of different tag abundance and 

taxonomic resolution.  
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4.2 Materials and Methods 
 

Study site, sampling procedures, contextual parameters.  

Detailed sample processing and environmental measurements have been published 

elsewhere (Böer et al. 2009). Briefly, sediment samples were collected on a shallow 

subtidal sand flat off the “Hausstrand” beach on the North Sea island Sylt (55° 

00‟47.7‟‟N, 8° 25‟59.3‟‟E) in February, April, July and November 2005, beginning and 

end of March 2006. Sandy sediment cores were sectioned right after collection in three 5 

cm layers down to 15 cm. Subsamples were then stored at -20°C for DNA extraction or 

used for diverse environmental measurements (extracellular enzymatic activities, 

nutrients, pigments, carbohydrates, bacterial cell counts; Tables S3 and S4). Other 

contextual data were added to the environmental data set: data from the water column 

consisting of chlorophyll a, pH and water temperature that were obtained from the Sylt 

time series (van Beusekom et al. 2009) and data on wind speed that were obtained from 

the German Weather Service (Deutsche Wetterdienst) and measured at the weather 

station of List on Sylt.  

 

DNA extraction and 454 MPTS.  

The same DNA extract from sixteen of the samples previously used in Böer et al. 2009 

(6) was used here for 454 pyrosequencing. The DNA was extracted using an UltraClean 

Soil DNA Isolation Kit (MoBio Laboratories Inc. Carlsbad, CA) and further stored in a 

final volume of 50 to 100 µL of Tris-EDTA buffer. At each step of the molecular 

protocols, the DNA quantities were spectrophotometrically adjusted using a NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies, Inc. Wilmington, DE). Extracted 

DNA from sandy samples was amplified using primers targeting the V6 region of the 

bacterial 16S rRNA gene and including 454 Life Science‟s A or B sequencing adapter 

according to (Sogin et al. 2006). Fragments were sequenced by pyrosequencing on a 

Genome Sequencer 20 system (Roche, Basel, Switzerland) at 454 Life Sciences 

(Branford, CT) by primer extension (Margulies et al. 2005).  

 



4 Bacterial Biosphere of Coastal Sands 

 113 

Data analyses.  

Output from the application of the 454 MPTS on sandy samples. Data from the 454 

MPTS were retrieved from the publicly available “Visualization and Analysis of 

Microbial Populations Structure (VAMPS)” website (http://vamps.mbl.edu/). The 

taxonomic assignment of the sequences was performed by an automatic annotation 

pipeline (Sogin et al. 2006) using several known databases (Entrez Genome, RDP, 

SILVA). Although current databases are still sequence-limited, only 6% of sequences 

from the whole data set were not annotated at all. In our study, analyses were based on a 

definition of Operational Taxonomic Units (OTU) as unique (i.e. two sequences are 

considered as to belong to two different OTUunique when they differ by at least one base) 

so as to keep a consistent definition throughout. Additional subsets were also considered 

and are indicated when necessary using a subscript notation: all, un-annotated sequences 

that we referred to as [OTUall], the PyroNoise-corrected data sets (Quince et al. 2009), 

[PyroNoise0%, PyroNoise3%] defined at different percentages of sequence similarity, and 

the truncated OTUall data set, without successive percentages (1-50%) of rare OTUunique 

as proposed in a previous study (Gobet et al. 2010).  

 

Taxa-environment relationships. As time and depth effects on biological variation may be 

confounded by the covariation with other measured parameters (pH, water temperature, 

wind speed, salinity, pigments, nutrients, extra-cellular enzymatic activities and cell 

properties), we first tested by using multiple regression how much the response variable 

time or depth could be explained by explanatory environmental variables. Thus, this 

analysis helps decide whether time and depth should be included or removed from further 

analyses to reduce collinearity in the ecological models.  

To investigate taxa-environment relationships, most of the parameters (except pH, 

water temperature, wind speed and salinity) were log10-transformed while the community 

matrices [OTUall data set, the resident and SSOrel data sets or the (potential) pathogen 

abundance matrix (including the genera Parachlamydia, Arcobacter, Francisella, 

Acinetobacter, Rickettsiella, Pseudomonas, and Ralstonia)] were Hellinger transformed 

(Legendre & Gallagher 2001). A forward selection (based on a canonical redundancy 

analysis (RDA) algorithm and 999 Monte Carlo permutation tests) of the environmental 
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factors was done to find the set of parameters that could significantly explain the 

variation in the community table. The best-fitting models were chosen using the Akaike 

Information Criterion (AIC). Canonical variation partitioning (Borcard et al. 1992, 

Ramette & Tiedje 2007b) was then applied on the community data to test for the effects 

of pure environmental variables (pigments, nutrients, extra-cellular enzymatic activities, 

cell abundance) selected previously and their covariation on microbial community 

structure. Statistical analyses were carried out using the R statistical environment [R 

version 2.10.0, R Development Core Team 2009], using the vegan (Oksanen et al. 2009) 

and gplots (Bolker et al. 2009) packages and custom R scripts. 
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4.3 Results and Discussion 
 

4.3.1 Dominant bacterial phyla of coastal marine sands 

 

 The three compartments sand, pore water, and the overlying water column may be 

expected to share a large proportion of the same microbial assemblages because the pore 

space of permeable sands is constantly flushed by the overlying water, trapping detritus 

and living cells from the water column (Boudreau et al. 2001). Microscopic observations 

of sand grains (Fig. 4.1.A), show that they are covered by a biofilm consisting of cells 

embedded in extracellular polymeric substances, with potentially little exchange with 

cells flowing through the sediment (Rusch et al. 2001). At any time, the porewater 

contains less than 0.2% of the cell abundance associated with the sand grains (Rusch et 

al. 2003). In addition, the exchange of bacterial populations between the sand and the 

water column is rather low, at the level of both community composition and evenness 

(Figs. 4.1.B-C, S4.1.). Here, only 2-3% of all OTUunique (sequences from the original 

OTUall data set that have at least one nucleotide difference are considered as OTUunique 

here) were shared between the three compartments, confirming previous findings (Llobet-

Brossa et al. 1998).  

The Sylt (North Sea) water column was mainly dominated by Bacteroidetes and 

by the Alpha- and Gamma- subdivisions of the Proteobacteria, as described previously 

by fluorescence in situ hybridization (FISH) and 16S rRNA gene-based clone libraries 

(Glöckner et al. 1999, Eilers et al. 2000, Zubkov et al. 2002). Sequences of the phyla 

Verrucomicrobia and Actinobacteria were also abundant (Fig. 4.1.B). The phyla 

dominating the top 5 cm of Sylt sand were Bacteroidetes, Gammaproteobacteria, 

Deltaproteobacteria, and Planctomycetes, as previously shown with FISH and 16S rRNA 

libraries (Llobet-Brossa et al. 1998, Musat et al. 2006). Acidobacteria sequences were 

also abundant in the sand microbial community (Fig. 4.1.B, S4.2.). At the phylum level, 

the pore water microbial composition resembled the sand community with a dominance 

of Bacteroidetes, Gammaproteobacteria, Deltaproteobacteria, Acidobacteria (Fig. 

4.1.B). However, only a small number of OTU were shared with the sand-associated 
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bacterial community or the water column, indicating a distinct ecological community in 

the pore water (Fig. S4.3.). For a complete analysis of temporal and spatial changes in 

bacterial communities of coastal sands, the sand-associated biofilm and pore water were 

not further distinguished. 

Six sampling dates of coastal sands at the island of Sylt (North Sea) generated a 

total of 197,684 sequences, corresponding to 27,630 unique Operational Taxonomic 

Units (OTUunique). Per sample, sequences ranged from about 5,000-19,000, corresponding 

to 496-2,993 OTU3% (OTU3% represent V6 sequences that were corrected by PyroNoise 

and clustered at 3% sequence dissimilarity, Table S1). Bacterial richness estimates 

reached high values as previously reported for soils, sediments and crusts which were 

also analyzed using 454 MPTS (Sogin et al. 2006, Huber et al. 2007, Roesch et al. 2007, 

Brazelton et al. 2010).  

Gammaproteobacteria and Deltaproteobacteria were the dominant groups, 

representing 25-30 and 16-23%, respectively, of the total sequences from 0-15 cm 

sediment depth. Previous studies of coastal sediments from the North Sea also recognized 

Bacteroidetes, Planctomycetes, Betaproteobacteria and Deltaproteobacteria as the most 

abundant groups associated with sand grains, comprising more than 17% of the total cell 

number in the sands (Llobet-Brossa et al. 1998, Musat et al. 2006). Interestingly, total 

sequence abundance and OTU numbers systematically increased with depth from 0-15 

cm at most of the sampling dates (Table S1). A positive relation between sediment depth 

and bacterial diversity was previously observed using different fingerprinting techniques 

(Urakawa et al. 2000, Böer et al. 2009), and explained by increasing physico-chemical 

stability of the habitat. The Delta- and Beta-subdivisions of the Proteobacteria, the 

Deferribacteres, Spirochaetes and Nitrospira showed an increasing OTU richness with 

depth. Cyanobacteria and Bacteroidetes were among the most represented phyla in the 

upper layers and decreased with depth (Fig. S4.2.). 
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Figure 4.1. Microbial community distribution in the sand and the water column. (A) From top to 

bottom: acridine orange staining of bacteria in the water column, the porewater and on the surface of a sand 

grain (scale bar = 50 µm). (B) Relative number of sequences in different compartments for the top 5-cm 

sand layer and in the overlying water column in April 2008. Here the phylum level was chosen for 

illustrative purposes. (C) Sequence distribution in the sand over time where each bar represents an 

OTUunique (only OTUunique occurring more than 100 times in the whole data set are shown). The 

Proteobacteria phylum was further split into its corresponding classes e.g. Alpha, Gamma, Delta; Cy, 

Cyanobacteria; Ba, Bacteroidetes; Aci, Acidobacteria; Others: Actinobacteria, NA (not annotated)-

Proteobacteria, Planctomycetes, Chloroflexi, Verrucomicrobia, WS3, Firmicutes, Lentisphaerae, 

Deferribacteres, Gemmatimonadetes. See SI for Materials and Methods for Fig. 4.1. A-B. 
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4.3.2 High turnover of bacterial diversity with sediment depth and time  

 

 From the phylum to the class level of taxonomic resolution, which are commonly 

used to explore the diversity of microbial communities based on whole cell fluorescence 

in situ hybridization or 16S-based clone libraries (Llobet-Brossa et al. 1998, Musat et al. 

2006), microbial community patterns were mostly unchanged over time and sediment 

depth (Fig. S4.2.). However, drastic changes in bacterial community structure and 

composition were observed when a higher taxonomic resolution was used: Overall, only 

152 OTUunique (0.55% of the total number of 27,630 OTUunique) were present in all sample 

depths at all times, and their sequence abundance ranged from 54 to 6,550. Also, only 3-

5% of all OTUunique within a sampling depth layer were present at all times (Table 4.1.). 

The majority, some 77%, of these OTUunique, which we define as resident OTU, consisted 

of the phyla Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Alpha-, Delta- 

and Gammaproteobacteria and Verrucomicrobia. For the OTUall data set (i.e. data set 

with all OTUunique), a low percentage of OTUunique were shared between sediment layers 

or any two sampling dates. Only about 20% of sequences were shared between the deeper 

layers and the upper layer (Fig. S4.4.A), the communities of the two deeper layers were 

slightly more similar (Fig. 4.2.A). Interestingly, resident OTU seemed to be characterized 

by a high and relatively stable number of sequences (Figs. 4.3.B, S4.5.). About 70% of 

the resident OTU had abundances of more than 10 sequences per sample; (Table 4.1., 

Fig. 4.3.B), suggesting that they represented the common sand microbial communities. 

When time was considered alone, only 18 to 37% of the OTUunique were found to 

be shared between any two sampling times (Fig. 4.2.B, Fig. S4.4.). This indicates that a 

very large fraction of the community may be constantly replaced. Yet the fact that the 

turnover rate did not increase with sampling time suggests that some populations 

vanished and reappeared during the investigated time period (Fig. S4.4.). Some of the 

most sequence-abundant groups were found to be positively correlated with time (Fig. 

4.4.); e.g. Gammaproteobacteria and Planctomycetes, following the seasonal fluctuations 

of cell abundances observed in Sylt sediment as previously described by FISH (Musat et 

al. 2006). Most interestingly, the fluctuation within a month (March 1 and 2 2006) was 
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almost as high as within a year. This is explained by the large environmental variations 

occurring within March 2006, from the end of the winter with cold temperatures and high 

nutrient levels (March 1), to the spring bloom and stormy conditions (March 2).  

 

 

Figure 4.2. Turnover of the bacterial community between two consecutive (A, C) depth layers or (B, 

D) sampling times. The percentage of OTU shared between a sampling depth (or date) and the previous 

one was calculated (A, B) after PyroNoise correction and OTU clustering of the 454 MPTS data set at 

several levels of sequence dissimilarity and, (C, D) after removing successive percentages (here 5%, 10%, 

25% and 50%) of rare OTUunique from the OTUall data set. Bars correspond to standard deviation calculated 

over 4-6 sampling dates (A, C) or three depth layers (B, D) except for July and November 2005 where 2 

depth layers were considered. The first depth layer and sampling date (February 2005) are indicated by the 

grey point as 100% of OTU. OTUall represents the original data set with all OTUunique, used here as a 

reference to study the effects of the various attempts to correct the data set on the dynamics of the bacterial 

community. Note that the panels have different legends.  

 

Observing a high turnover for a substantial fraction of the bacterial community in 

marine sands raises several questions about the ecological significance of these dynamics. 

An interesting question is as to the abundance and role of the resident, potentially sand-

biofilm associated populations vs. rare populations getting advected through the sands. 

Indeed, in our data set, more than 50% of the OTUunique present at all times in the three 
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depth layers were members of the Gammaproteobacteria and Deltaproteobacteria, two 

classes that were also previously found to be dominating Sylt sands, representing 

respectively up to 23% and up to 10% of the total cell counts, as determined by FISH 

(Musat et al. 2006). But also 40% of all OTUunique appearing only once in a given sample 

or in the whole OTUall data set, in the investigated time period belonged to these classes. 

The rare members of dominant classes never became abundant at any sampling time, 

confirming the conclusion of a previous study in Arctic waters (14). Among the rare 

bacteria in coastal sands were also potential pathogens (including Parachlamydia, 

Arcobacter, Francisella, Acinetobacter, Rickettsiella, Pseudomonas, Ralstonia) with a 

total of 16-88 sequences corresponding to 2-54 OTUunique in the OTUall data set (0.22% of 

all sequences in OTUall).  

Large turnover in community composition could be due to various phenomena, 

which are not mutually exclusive, such as: 1) Migration of non-resident bacterial 

populations into and out of an ecosystem due to the rapid physical transport processes 

prevailing in sands (Sloan et al. 2006). 2) High adaptability of microbial communities to 

ever-changing and complex environments, as previously observed in the laboratory 

(Rosenzweig et al. 1994). 3) Emergence of latent “rare” prokaryotic stages (Finlay 2002, 

Pedrós-Alió 2006) that may become dominant when appropriate conditions are met. This 

fluctuation from rare to dominant types will be supported by the “seed bank” hypothesis 

(Finlay 2002). 4) Finally, the hypothesis that free-floating DNA from seawater was also 

retrieved by our approach cannot be excluded, since sands are known to act as natural 

filters that concentrate particles and DNA in suspension (Naviaux et al. 2005). However, 

the dissimilarity between water column and sand OTUunique described above does not 

support Hypothesis 4. To test hypotheses 1-3, we further investigated the contribution of 

the rare biosphere to the overall community turnover.  
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4.3.3 Impact of the rare biosphere on community turnover 

 

The rare biosphere has been postulated to consist of low-abundance microbial 

organisms that would not be subjected to predation or viral lysis, and would likely 

represent a huge proportion of microbial communities, as generally indicated by long 

distribution tails in rank-abundance curves (Pedrós-Alió 2007). In order to understand 

which fraction of the community may be associated with the large diversity turnover 

observed in the sands, we gradually removed increasing fractions of the rare sequences in 

the data set starting from the rarest ones (Gobet et al. 2010): interestingly, when up to 

50% of the rare sequences were removed, the large turnover previously described for the 

complete data set over both sediment depth and time (Figs. 4.2.C, 4.2.D, S4.6.) was no 

longer observed, indicating that most of the community turnover was due to changes in 

the rare tail of the data set. The rare biosphere could be identified as OTU appearing only 

once in a given sample (i.e. Single Sequence OTU relative [SSOrel], representing about 

20% of all PyroNoise-corrected OTU0%), or as OTU appearing only once in the whole 

data set (i.e. Single Sequence OTU absolute [SSOabs], representing about 58% of the 

OTU0%), as compared to the 3-5% of the OTU0% that were resident (Table 4.1.). 

Moreover, when only the SSOrel fraction of the data set was retained, very similar 

fractions of total explained biological variation were identified as for the total data set 

(Fig. S4.7.). This study is the first to report that such a large fraction of the community 

consists of rare types, which undergo substantial replacement over few months of time or 

few centimeters of sediment depth. In conclusion, both the presence of this large 

proportion of singleton OTU0% in sandy sediments, and the large turnover in community 

composition could be explained by the dispersal of OTU from other sand locations by 

advective transport and physical mixing (Boudreau et al. 2001). Further research would 

be needed to examine the biogeography of rare and resident bacterial types of coastal 

sands. 
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Figure 4.3. Distribution of the maximum abundance of (A) SSOrel (i.e. OTU0% that, at least in one 

sample, consisted of only one sequence) and (B) resident OTU0% (i.e. OTU0% present at all times) in 

the top 10 cm layer. In (A), panels 1, 2, 3 are examples of cases where particular high fluctuations from 

the single sequence case (white arrow) to higher sequence abundances were observed. In (B), panels 1, 2, 3 

are examples of cases where particular high fluctuations of relative abundance were observed. No absolute 

abundances were calculated in this case. All data were initially processed to remove pyrosequencing noise. 

Rel. abundance, relative abundance to the total of sequences per sampling time: February 2005 (13,285), 

April 2005 (7,902), July 2005 (10,910), November 2005 (21,931), March1 2006 (17,302), March2 2006 

(17,897). 

 

4.3.4 Ecological interpretation of overall microbial diversity patterns 

 

The next question was to determine whether observed temporal patterns may be 

attributed to either deterministic (niche-based) or stochastic processes, or both (Ramette 

& Tiedje 2007a). We used the previously published contextual data (Tables S4.4. and 

S4.5, Böer et al. 2009) for the investigated samples, to test the effects of time, sediment 

depth, cell abundance and biogeochemical gradients (i.e. pigments, nutrients and extra-

cellular enzymes,Fig. 4.4.), and their combined effects on bacterial community structure. 

A multiple regression analysis indicated that the factors time and depth significantly 

covaried with most biogeochemical factors. Temporal variation significantly explained 

70% of nutrients‟ variation while depth significantly explained the variation of pigments, 

nutrients, extra-cellular enzymes as well as cell abundances [93%, 74%, 80% and 79% of 

the variation explained, respectively, using multiple regression analyses (data not 

shown)], which overall confirms previous observations (Böer et al. 2009). Thus, in the 
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next step, time and depth were removed from the pool of independent factors to 

investigate the role of other environmental factors.  

 

Figure 4.4. Impact of the environment on the community structure in the sand for all phyla. Pearson‟s 

ρ indicates correlations between phyla distribution and several environmental parameters. For example, a 

red square between sediment depth and Chloroflexi indicates a higher number of sequences with increasing 

depth. The Proteobacteria phylum level was separated into its corresponding classes for higher resolution. 

NA-Proteobacteria are Proteobacteria with missing class annotation. The total number of sequences in 

each phylum is indicated in brackets. SiO2, silicate; PO4, phosphate; NO2, nitrite; NO3, nitrate; NH4, 

ammonium; Chl a, chlorophyll a; Pheo, pheophytin; BCC, Bacterial abundance; Bprod, Bacterial Carbon 

production; Chit, chitinase; α-glu, α-glucosidase; β-glu, β-glucosidase; Lip, lipase; Amin, aminopeptidase; 

Phos, phosphatase. 

 

A multivariate variation partitioning approach (Borcard et al. 1992, Ramette & 

Tiedje 2007b) showed that biogeochemical (pigments, nutrients and extra-cellular 

enzymes) gradients, cell abundance and their covariation were directly related to the 

major changes in community structure (Fig. S4.7.). Yet, the significant biogeochemical 

variables included in the most parsimonious multivariate models were qualitatively 

almost the same for the resident OTU, the phylum, OTUall and SSOrel levels (Fig. S4.7., 

Table S4.2.). Also, a greater amount of biological variation (R
2
) could be explained when 

a lower taxonomic resolution was used. When data sets become less complex, it is easier 

to explain the biological variation present in the community (Gobet et al. 2010). 
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Depending on the research question, this can be achieved by removal of the rare members 

of the biosphere from the data set to be analyzed, or by decreasing taxonomic resolution. 

Furthermore, that environmental selection acts directly on the phylum level can be best 

explained in the case of taxonomic groups with distinct environmental functions or 

niches, such as the Cyanobacteria or the Deltaproteobacteria (see discussion below).  

The main parameters significantly influencing the variation for several OTU 

definition levels were chlorophyll a, activity of the extracellular enzyme phosphatase and 

cell abundance (Table S4.2.), with all three parameters highly correlated with sediment 

depth. Cell abundance was also identified as an important factor influencing the variation 

in the different OTU data sets (Table S4.2.). Measuring chlorophyll a from coastal sands 

allows the biomass of the microphytobenthos to be quantified (Lorenzen 1967). 

Microphytobenthos contains mostly cyanobacteria and diatoms and produces labile 

exudates enhancing bacterial growth. It secretes extracellular polymeric substances 

forming biofilms around sand grains to avoid desiccation and to capture particles and 

organic matter (Stal 2003). The phosphatase enzyme activity also correlates positively 

with bacterial cell growth (Böer et al. 2009), and may be relevant in times of nutrient 

limitation by cleaving inorganic phosphate from organophosphate complexes (Kloeke et 

al. 1999). It is important to notice that vertical gradients of microbial functions (e.g. 

biomass, benthic oxygen consumption and extra-cellular enzymatic activities) in Sylt 

sandy sediments varied to different extents, but usually much less than community 

diversity and composition. This suggests that the few abundant, resident microbes 

perform the main microbial functions in sandy ecosystems, and that the rare types being 

replaced at high rates may have little effects on bulk functions. An alternative hypothesis 

is that a substantial level of functional redundancy exists in microbial communities, 

regardless of them being resident or transient organisms. However, a large amount (58%) 

of OTU0% in Sylt sands occurred as a single sequence, this hypothesis seems unlikely to 

explain the observed functional stability.  

It is interesting that the temporal dynamics of bacterial communities in sandy 

sediments were clearly distinct from the seasonally reoccurring, cyclic bacterial patterns 

that were observed in water column samples offshore Southern California (Fuhrman et al. 

2006), in the English channel (Gilbert et al. 2009) and in the Baltic Sea (Andersson et al. 
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2010). In contrast, a study of the bacterioplankton in the Arctic has highlighted the 

stability of the community through seasons (Kirchman et al. 2010), indicating that 

patterns of temporal variation may differ between different microbial habitats and oceanic 

regions.  

Deeper ecological insights may also be gained by the detailed analysis of the 

correlations between sequence abundances of distinct bacterial groups and specific 

environmental parameters (Fig. 4.4.). Although the environmental interpretation of 

whole-community patterns was overall straightforward, more contrasting patterns were 

obtained when phyla were examined individually, with some of them being strongly, but 

not necessarily identically influenced by depth and related environmental parameters 

(such as pigments, bacterial properties and some enzymes; Fig. 4.4.). For example, some 

of the most abundant phyla showed different response patterns with changes in 

environmental conditions: Deltaproteobacteria sequence abundance was positively 

correlated with depth and negatively correlated with chlorophyll a, bacterial abundance, 

alpha-glucosidase, bacterial productivity and aminopeptidase. About 67% of the 

Deltaproteobacteria was composed of Desulfobacterales, an order representing sulfate-

reducing bacteria that thrive in anoxic North Sea sand (de Beer et al. 2005). The 

cyanobacterial group was found to be positively correlated with salinity and negatively 

correlated with silicate, a factor significantly correlating with depth. The order 

Oscillatoriales accounted for 47% of the Cyanobacteria and the main genera represented 

here was Oscillatoria, which can grow in harsh environmental conditions with high 

seasonal fluctuations of salinity and temperature, and which may play a role in 

degradation of different hydrocarbon compounds in intertidal oil-polluted sediment (Al-

Thukair et al. 2007). In contrast, variations in sequence abundance for other prominent 

phyla, such as Bacteroidetes or Alphaproteobacteria, were not significantly correlated 

with the environmental parameters analyzed here (Fig. 4.4.). Certainly, other 

environmental parameters such as biological interaction with other bacteria or other 

organisms, grazing, organic matter composition, etc. are also important factors in 

structuring the diversity of bacterial communities in sand. 
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4.3.5 The rare biosphere responds to environmental drivers  

 

The biogeography (Galand et al. 2009a) and the dynamics over a thousand-year 

period (Brazelton et al. 2010) of rare microbial biospheres of different marine habitats 

have previously been described, but an ecological explanation of the rare microbial 

biosphere in its environmental context has not been undertaken yet. In order to better 

understand whether patterns in the rare fraction were random or environmentally-driven, 

the proportion of SSOrel (Table S3) in each sample was correlated with environmental 

parameters. Interestingly, fluctuations in SSOrel were not random (as determined by 

model selection using Monte Carlo permutation test and by selecting the lowest Akaike-

Information-Criterion model values; data not shown), and seemed to be negatively 

correlated with pigments (chlorophyll a, phaeopigments) and bacterial carbon production 

in the sediments (Fig. S4.8.). For OTU0%, the corresponding Pearson correlation 

coefficients between the proportions of SSOrel and chlorophyll a, phaeopigments and 

bacterial carbon production were -0.730, -0.695, and -0.626, respectively, and were all 

highly significant. However, neither sediment depth nor sampling time could 

significantly explain the variation in the proportion of rare types. Because pigment 

concentration and bacterial carbon production may indicate the food availability status in 

sand ecosystems (Rusch et al. 2003), an increased proportion of rare types that is 

concomitant with a decrease of those parameters would indicate that rarity becomes more 

prevalent when the environmental conditions become harsher for microbial life. This is 

when primary and secondary production in Sylt sands reaches a minimum in late winter, 

at temperatures close to the freezing point, and high wind forces.  

In summary, the high turnover of bacterial community composition observed was 

explained by high fluctuations of rare bacterial types, which made up 60% of all OTU0%. 

Although less than 5% of all OTU0% were present at all times and sampling depths, they 

mostly comprised the abundant types represented by high biomass in sands. Accordingly, 

the main environmental functions were maintained in the sandy coastal ecosystem despite 

the turnover of a high proportion of all sequences. Fluctuations in the bacterial 

community were related to those of biogeochemical gradients at all levels of taxonomic 
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resolution, including the phylum level. The rare biosphere presented contrasting 

ecological patterns associated with low productivity phases in winter. Future functional 

analyses are needed to examine whether the large proportion of single OTU are 

commonplace also in other sandy habitats, including those of tropical seas characterized 

by lesser environmental fluctuations, and hence typical for this microbial realm 

dominated by physical transport.  
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4.4 Supplementary Information 

 

4.4.1 Supplementary Text 

 

4.4.1.1 Materials and Methods for Fig. 4.1.A-B 

 

Study site and sampling procedures. Sandy sediment cores (55° 2‟ 28‟‟ N, 8° 24‟ 

26‟‟E) and seawater (55° 1‟41‟‟N, 8° 26‟10‟‟E) were collected at the “Königshafen” 

intertidal in April 2008. 1l seawater was successively filtered through 10 µm and 0.2 µm 

(filters type GTTP; diameter, 47 mm) before further DNA extraction. Pore water of the 

upper 5 cm of the sediment was separated from the sand grains (with bacterial biofilms) 

through GF-C filters (47 mm) by low speed centrifugation (10 min at 1801 rcf and 4°C). 

We fabricated centrifuge tubes according to the following experimental set-up: 1) the 

upper part of a 50 ml Falcon tube was cut up to the 20 ml indication and the conic bottom 

of the tube was pierced with 16 holes in a circular way, in staggered rows, 2) a GF-C 

filters was put inside the latter Falcon tube so as to retain the sediment during the 

centrifugation, 3) the whole assembly was then taped on top of another Falcon tube and 

finally, 4) 10 g of sand was put in the assembly before centrifugation (Fig. S4.9.). The 

resulting 8 g of “dry” sediment were put aside and the resulting 2 ml pore water was 

filtered through 0.2 µm (filters type GTTP; diameter, 47 mm) before further DNA 

extraction. 

 

DNA extraction, 454 MPTS and taxonomic annotation. DNA was extracted from 1) 

the 8 g sediment and, 2) the 0.2 µm filters (pore water and water column) cut into pieces 

with a sterilized cutter, using an UltraClean Soil DNA Isolation Kit (MoBio Laboratories 

Inc. Carlsbad, CA) and further stored in a final volume of 50 to 100 µL of Tris-EDTA 

buffer. 454 MPTS and taxonomic annotation of the sequences were performed as for the 

other sixteen samples. 
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Acridine Orange staining. The water column and pore water samples were fixed with 

1:10 seawater-diluted sterile-filtered (0.2 μm disposable syringe filter) 37% formaldehyde 

(methanol stabilized) solution. 1 ml of sand was fixed in 9 ml of a particle-free 2% 

formaldehyde/seawater solution. Pictures of the bacteria in the different samples were 

done by epifluorescence microscopy after staining with Acridine Orange. The samples of 

porewater and water column were non-diluted while some sand grains were directly 

applied onto 0.2 μm black polycarbonate filters, stained with Acridine Orange solution 

for 3 min and rinsed with 1 ml citrate buffer.  

 

4.4.1.2 Results and Discussion 

 

Turnover of the overall microbial community with sediment depth and time: testing 

the data reliability (§ 4.3.2) 

 

Several studies have questioned the accuracy of high-throughput sequencing data due to 

the likely existence of chimeric sequences originating from sequencing or PCR 

amplification artifacts [e.g. (Quinlan et al. 2008)]. This issue was of particular importance 

for our study because it may have erroneously inflated the observed community turnover 

rates. Yet, even after applying the PyroNoise algorithm (Quince et al. 2009) to remove 

pyrosequencing and amplification noise from the data and reclustering of the sequences 

at different levels of sequence similarity, a very large turnover (i.e. 40-70% of sequence 

replacement) of the bacterial community over depth or time could still be observed at 

various sequence dissimilarity levels used to cluster the data (Figs. 4.2.A-B, S4.4.). If we 

consider the PyroNoised-corrected data clustered at 3% sequence dissimilarity, turnover 

patterns were still really high, as observed at the OTUall level (Figs. 4.2.A-B, S4.4.). It 

may therefore be concluded that the large community turnover present in marine sandy 

sediments is not due to technical artifacts and is consistently observed at different 

taxonomic levels, yet to different extent depending on taxonomic resolution. 
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Impact of the rare biosphere on community turnover (§ 4.3.3) 

 

We tested several scenarios for temporal fluctuations of the rare biosphere investigating 

OTU0% and SSOrel occurrence for the top 10 cm sediment layer over the six sampling 

times (Table 4.1.). For example, less than 1% of the OTU0% appeared at either the first or 

last three sampling dates only, or had patterns that would skip one sampling date each 

time. Noticeably, 6-17% of the OTU0% per sample appeared only at one sampling date 

and mostly consisted of SSOabs, i.e. OTU that occurred only in one sample with a 

sequence abundance of one. The fluctuation in sequence abundance of noise-corrected 

SSOrel was also explored (Fig. 4.3.): altogether, 94% of SSOrel had a maximum 

abundance below 10 sequences when all samples were considered, indicating that when 

an OTU0% was rare it remained rare and was not likely to become abundant within a year, 

as already observed through a seasonal survey in the Arctic water column (Kirchman et 

al. 2010). Few SSOrel displayed very high fluctuation in abundance (Fig. 4.3.A-C), which 

further supports the idea that blindly removing SSOrel or SSOabs from the data set would 

also remove meaningful patterns of OTU variation (Huse et al. 2010).  

 

The rare biosphere responds to environmental drivers (§ 4.3.5) 

 

The presence of pathogenic bacteria in the environment is of great interest for public 

health and for fisheries, and further research concerning regulative factors of pathogen 

distribution may be of prime importance especially for coastal ecosystems (Stewart et al. 

2008). Both the survival and proliferation of pathogens can be influenced by the variation 

of environmental factors. Potential pathogenic genera in our data set were selected 

according to the literature. A combination of environmental parameters could explain 

55% of their overall biological variation (Table S4.6., Fig. S4.10.). Noticeably, such 

pathogens are not usually observed in marine sediments and occurred at low sequence 

abundance in our samples, thus they could be dispersed by various ways of human 

interaction with coastal habitats, and occur in a latent stage in sands, further supporting 

the idea of a “seed bank” of rare organisms as previously proposed by several authors 

(Finlay 2002, Pedrós-Alió 2006). 
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4.4.2 Supplementary Figures 

 

Fig. S4.1. Bacterial phylum composition and distribution in different sand-

associated compartments and in the water column.  

 

Fig. S4.2. Relative sequence abundance of phyla in the sand through depth and time.  

 

Fig. S4.3. Total number of shared OTU between the three compartments: Sand 

grain-associated biofilm, sand porewater, and overlying water column.  

 

Fig. S4.4. Turnover of the bacterial community between sediment depth layers or 

sampling dates after PyroNoise correction and successive OTU clustering of the 454 

MPTS data.  

 

Fig. S4.5. Variation in minimum sequence abundance among resident OTU0% (i.e. 

OTU0% present at all times) in the top 10 cm sediment layer. 

 

Fig. S4.6. Turnover of the bacterial community between sediment layers or 

sampling dates after applying MultiCoLA.  

 

Fig. S4.7. Partitioning of the biological variation in the bacterial community 

structure as a function of explanatory variables.  

 

Fig. S4.8. Effects of environmental conditions on the proportion of SSOrel per 

sample. 

 

Fig. S4.9. Experimental set-up to separate the pore water from sand grains.  

 

Fig. S4.10. Partitioning of the biological variation in the bacterial community 

structure of potential pathogens. 
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Fig. S4.1. Bacterial phylum composition and distribution in different sand-associated compartments 

and in the water column. (A) Rarefaction curves in different compartments of the sand and in the water 

column at the unique, 3%, 6% and 10% dissimilarities to define OTU. (B) Sequence distribution in 

different compartments of the sand and in the water column in April 2008. Each bar represents an OTUunique 

(only OTUunique occurring more than 10 times in the OTUall data set are shown on the skyline plot). The 

Proteobacteria phylum was separated into its corresponding classes for higher resolution. Gamma, 

Gammaproteobacteria; Delta, Deltaproteobacteria; Cy, Cyanobacteria; Ba, Bacteroidetes; Alpha, 

Alphaproteobacteria; Aci, Acidobacteria; Others: Actinobacteria, NA-Proteobacteria (Proteobacteria with 

class annotation missing), Planctomycetes, Chloroflexi, Verrucomicrobia, WS3, Firmicutes, Lentisphaerae, 

Deferribacteres, Epsilonproteobacteria, Gemmatimonadetes.  
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Fig. S4.2. Relative sequence abundance of phyla in the sand through depth and time. Some of the 

most abundant phyla were indicated on the first pie chart and in bold in the legend: Gamma, 

Gammaproteobacteria; Delta, Deltaproteobacteria; Cy, Cyanobacteria; Ba, Bacteroidetes; Alpha, 

Alphaproteobacteria; Aci, Acidobacteria. The Proteobacteria phylum was separated into its corresponding 

classes for higher resolution. Unassigned OTUunique were grouped as one phylum in this figure (NA). nd, 

missing samples. The total number of phyla (including the Proteobacteria divided as classes) is indicated 

under each pie chart. The legend indicates the phyla color code of the pie charts. Phyla with too few 

sequences to be visible on the pie charts were removed from the legend: Aquificae, Deinococcus-Thermus, 

Fibrobacteres, Fusobacteria, Tenericutes, Thermodesulfobacteria and, the candidate divisions: BRC1, JS1, 

OP10, OP11, OP3, OP5, OPB7, TG1, TM6 and, WS1. 
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Fig. S4.3 Total number of shared OTU between the three compartments: Sand grain-associated 

biofilm, sand porewater, and overlying water column. (A) OTUunique, (B) PyroNoise-corrected OTU3%. 

Each entire circle represents the total number of OTU in a given compartment (here, one sample). 
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Fig. S4.4. Turnover of the bacterial community between sediment depth layers or sampling dates 
after PyroNoise correction and successive OTU clustering of the 454 MPTS data. (A) OTUall, (B) 

PyroNoise0%, (C) PyroNoise3%. The percentage of OTU shared between a sampling depth (or date) and the 

previous one was calculated and values were represented according to heatmap matrices. OTUall represents 

the original data set with all OTUunique, used here as a reference to test for the effects of correction and 

clustering on the resolution of bacterial community dynamics. 
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Fig. S4.5. Variation in minimum sequence abundance among resident OTU0% (i.e. OTU0% present at 
all times) in the top 10 cm sediment layer. All data were initially processed to remove pyrosequencing 

noise 
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Fig. S4.6. Turnover of the bacterial community between sediment depth layers or sampling dates 
after applying MultiCoLA. Successive percentages of rare OTUunique were removed from the OTUall data 

set: (A) 1%, (B) 5%, (C) 10%, (D) 15%, (E) 20%, (F) 25%, (G) 30%, (H) 35%, (I) 40%, (J) 45% and (K) 

50%. See Fig. S4 for further details.  
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Fig. S4.7. Partitioning of the biological variation in the bacterial community structure as a function 

of explanatory parameters based on the Phylum level, OTUall, resident OTU and SSOrel data sets. 

Environmental parameters accounted for included pigments (chlorophyll a and pheophytin), nutrients 

(silicate, phosphate, nitrite, nitrate, ammonium), extra-cellular enzyme activities (chitinase, α-glucosidase, 

β-glucosidase, lipase, aminopeptidase, phosphatase), cell abundance and their combined effects. The black 

line in each panel separates the pure factor effects from their covariations. Covariation of any of the 4 

environmental factors is represented under one category “Covariation”. Here, the OTUall level includes also 

sequences without complete annotation. The total number of sequences in each data set is indicated in 

parentheses. 
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Fig. S4.8. Effects of environmental conditions on the proportion of SSOrel per sample. PyroNoise-

corrected data were clustered to define OTU at (A, B) 0% and (C, D) 3% sequence dissimilarity levels. The 

red line in each plot represents the best local fitting regression line between the variables.  
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Fig. S4.9. Experimental set-up to separate the pore water from sand grains.  10 g of the upper 5 cm of 

the sediment were put in a Falcon assembly before low speed centrifugation. 8 g of sand grains were 

separated from 2 ml of pore water.  
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Fig. S4.10. Partitioning of the biological variation in the bacterial community structure of potential 

pathogens (including Parachlamydia, Arcobacter, Francisella, Acinetobacter, Rickettsiella, Pseudomonas, 

Ralstonia). Environmental parameters accounted for include pigments (chlorophyll a), nutrients (silicate, 

phosphate, nitrate, ammonium), extra-cellular enzyme activities (α-glucosidase, lipase, phosphatase), cell 

abundance and their combined effects. Unexplained variation is not shown.  
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4.4.3 Supplementary Tables 

 

Table S4.1. Summary of diversity estimators of richness for all samples at three different 

sediment depths and in the water column at different sampling times. 

 

Table S4.2. Contribution of environmental parameters to the variation in the Phylum 

level, OTUall, resident OTU and SSOrel data sets. 

 

Table S4.3. Percentages of SSOrel in each sample at different levels of OTU definition 

(PyroNoise-corrected data). 

 

Table S4.4. Average values of environmental parameters for 5-cm sediment intervals in 

Sylt water column and sandy sediment. 

 

Table S4.5. Cell-specific extracellular enzymatic activities, bacterial abundances and 

bacterial carbon production rates in Sylt sandy sediment. 

 

Table S4.6. Contribution of environmental parameters to the variation in sequences 

potentially affiliated with pathogens. 
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Table S4.1. Total OTU number for all samples at three different sediment depths and in the water column at 

different sampling times, for the raw OTUall and the PyroNoise-corrected data sets at different percentages 

of sequence clustering (OTU0% and OTU3%). 
 

0-5 cm Average 

over time 

February 

2005 

April 2005 July 2005 November 

2005 

March1 

2006 

March2 

2006 

Total number of V6 

sequences 

8,827 

±2,398 
8,527 4,722 9,035 12,153 8,856 9,667 

Total OTUunique 2,029 

±613 
1,660 1,042 2,081 2,747 2,518 2,126 

Total OTU0%  1,071±400 784 505 1,068 1,539 1,492 1,035 

Total OTU3%  1,036±384 763 496 1,036 1,487 1,442 994 

        

 

Total OTU0%  1,962±528 1,639 1,487 1,402 2,469 2,643 2,133 

        

 

10-15 cm        

Total number of V6 

sequences 

14,078 

±5,118 
7,132 13,593 nd nd 16,672 18,914 

Total OTUunique 4,279 

±1,369 
2,408 4,194 nd nd 4,935 5,577 

Total OTU0%  2,370±840 1,207 2,476 nd nd 2,586 3,210 

Total OTU3%  2,235±761 1,179 2,341 nd nd 2,426 2,993 

 

 

 Sand (0-5 cm)     

April 2008 Sediment Pore water  Water 

column 

  

Total number of V6 

sequences 
18,157 9,726 

 
10,557   

Total OTUunique 3,806 1,940  1,788   

Total OTU0%  2,830 1,376  1,336   

Total OTU3%  2,697 1,189  1,213   

 

5-10 cm        

Total number of V6 

sequences 

14,736 

±4,717 
16,197 9,648 8,044 18,948 16,770 18,806 

Total OTUunique 3,648 

±988 
3,228 2,606 2,521 4,605 4,694 4,231 

Total OTU3% 1,865±470 1,568 1,436 1,373 2,301 2,473 2,036 
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Table S4.4. Percentages of SSOrel in each sample at different levels of OTU 

definition (PyroNoise-corrected data). 

 

Sampling date 

 

Sediment 

layer 

[cm] 

0% 3% 5% 10% 

February 2005 0-5 1 0.8 0.6 0.5 

 5-10 2.9 2.4 1.7 1.2 

 10-15 2.1 1.9 1.6 1.2 

April 2005 0-5 0.6 0.5 0.4 0.3 

 5-10 2.9 2.6 2.4 1.8 

 10-15 6 5.6 4.9 3.9 

July 2005 0-5 1.8 1.7 1.1 0.8 

 5-10 2.4 2.3 1.9 1.7 

November 2005 0-5 3.5 3.3 2.7 2.4 

 5-10 5.8 4.6 4.3 3.1 

March1 2006 0-5 2.9 2.4 2.2 1.9 

 5-10 6 4.9 4.1 3.4 

 10-15 5.9 4.9 4.4 3.3 

March2 2006 0-5 1.7 1.6 1.2 1 

 5-10 4.1 3.5 2.8 2 

 10-15 8.3 7.3 6.3 5.2 
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5 General Discussion 
 

As introduced earlier, community ecology concepts started with plant and animals 

studies, without considering microorganisms. Microbial community ecology is thus a 

recent field of study and the processes shaping the microbial community structure are still 

not well understood. Studying microbial community ecology requires the comprehension 

of interactions between microorganisms, as well as the impact of time, space and the 

environment on it. This PhD thesis focused on explaining the processes shaping microbial 

community structure by studying temperate subtidal coastal sands, a highly dynamic 

ecosystem constantly influenced by the overlying water column where environmental 

conditions are well characterized, as a case study. 
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5.1 Towards the Complementary Use of Classical and Next-

Generation Molecular Ecology Tools 
 
 

5.1.1 Consistency of Molecular Tools 

 

One important aim of this thesis work was to allow a better use and comprehension of the 

possibilities made available through emergent molecular tools. The parallel application of 

two time- and cost-effective techniques: the traditional fingerprinting technique ARISA 

and the high-throughput 454 MPTS, led to similar ecological patterns (Chapter 1) with 

still some differences in targeting certain fractions of the microbial community. ARISA 

may describe patterns of resident bacterial types, which are present in the community at 

all times (Chapter 1), while 454 massively parallel tag sequencing (MPTS) may allow 

higher resolution into identifying dominant, resident and rare microbes (Chapters 1 and 

2).  

5.1.2 Towards a More Thorough Interpretation of High-Throughput 

Data Sets 

 

High-throughput molecular tools are being developed at an unprecedented rate, and the 

data output is accumulating without any clear pipeline available to extract the deeper 

meaning
2
 from it. A systematic way to analyze the impressive 454 MPTS data output was 

made available to microbial ecologists through the implementation of a software user-

friendly (MultiCoLA, Chapter 2).  

5.1.3 Consistency of the Available Taxonomy 

 

When comparing ARISA data with 454 MPTS taxonomy or successive truncated data 

sets, similar ecological patterns could be observed for all taxonomic levels (phylum to the 

                                                           
2
 « En extraire la substantifique moelle », Rabelais. 
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genus level), and ARISA data (Chapter 1). This indicated first the consistency of 

ecological patterns obtained with ARISA and, second, it validated the ecological meaning 

resulting from the available taxonomic annotation. In addition, the taxonomic annotation 

available may represent the dominant part of the bacterial community (Chapters 1 and 

2). This also follows a recent statement regarding the ecological coherence of high 

bacterial taxonomic ranks (i.e. phylum to the genus level), suggesting that members of a 

same taxon share the same main functions in the ecosystem (Philippot et al. 2010). 
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5.2 On the Commonness and Rarity of Microbes: 

Identification, Distribution and Ecological Patterns 
 
 

5.2.1 Defining Rare and Dominant Types in the Microbial Community 

 

Whereas dominant types are usually distinguished from rare types in most community 

ecology studies, there is no clear definition of each of these fractions of the microbial 

community. In a recent 454 MPTS study (Galand et al. 2009a), rare (<0.01% within a 

sample) or abundant types (>1% within a sample) in the community were defined by 

applying the arbitrary cutoff proposed by (Pedrós-Alió 2006). Another 454 MPTS study 

does not even give any definitions, rare bacterial types are discriminated from the 

abundant ones only depending on the large variations in sequence proportion within a 

sample (Brazelton et al. 2010). The systematic truncation of defined proportions of 454 

MPTS data sets permitted to distinguish rare from dominant bacterial types (Chapter 2). 

The microbial community was composed of few dominant, few resident (about 5% 

microbial types present at all times) and many rare types (e.g. about 30% of OTU 

appearing only once in a given sample, SSOrel and 50% of OTU appearing only once in 

the whole data set, SSOabs, Chapter 3). Interestingly, most rare bacterial types stayed rare 

and most abundant stayed abundant over the 2-year period (2005-2006), as observed over 

6 years in the Arctic ocean, where 99% of the rare bacterial OTU were always rare 

(Galand et al. 2009a, Kirchman et al. 2010).  

5.2.2 Diversity Patterns of Rare and Dominant Types in the Microbial 

Community 

 

Comparisons between the original 454 MPTS data set and the truncated ones allowed the 

assessment of its impact on the resulting ecological interpretation in the microbial 

community (Chapter 2). Consistent ecological patterns could be kept until a truncation 

of up to 40% of rare types in the data set and this indicated that dominant bacterial types 
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may maintain the function in the community (Chapter 2). Accordingly, despite 

representing less than 5% of bacterial types in the data set, resident types seemed to 

maintain the community structure as similar combinations of biogeochemical parameters 

could explain their distribution and that of the whole community (Chapter 3). Despite 

presenting different ecological patterns than that of resident types, the distribution of rare 

bacterial types was not random as it could be explained by biogeochemical parameters 

(Chapter 3). Indeed, rare types had a major role in the really high turnover of the 

microbial community across sediment depth and through sampling time (Chapter 3). The 

ecological meaning of such fluctuations has yet to be determined. 

5.2.3 Potential Processes Influencing the Structuring of the Rare 

Biosphere 

 

If we refer to community ecology concepts to explain the structuring of a community, not 

all of the four major processes (Vellend 2010) may apply in the current study.  

In chapter 3, we could observe that rare bacterial types always stayed rare and 

abundant types always stayed abundant through a two-year period. However, a recent 454 

MPTS study in hydrothermal vents indicated that rare may become abundant over a 

longer period (i.e. a thousand years), due to changing conditions of the chimneys 

(Brazelton et al. 2010). The hypothesis of the seed-bank in dormancy waiting for 

appropriate conditions to develop may thus apply in this study. 

Also, we observed that the distribution of abundant, resident and rare bacterial 

types were not random as specific combinations of biogeochemical parameters could 

explain it (Chapters 2 and 3). This agrees with the Brazelton‟s hypothesis stating that 

environmental conditions influence the distribution of microbes on the chimneys 

(Brazelton et al. 2010). Consequently, this does not follow the hypothesis of an 

ecological drift (stochastic changes in species abundance) but rather events of selection 

(e.g. bottom-up or top-down influences). Notably, a high turnover of bacterial types was 

observed with time and across depth, and this may be due to high migration events due to 

dispersal. However, as temperate coastal sands represent highly dynamic ecosystems 

with lots of mixing, the concept of speciation may not apply here. 
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To conclude, it seems that deterministic processes (e.g. competition) could also 

explain the structuring of microbial communities. Also, as proposed by Sloan and 

colleagues (2006), Hubbel‟s neutral community model may apply here to explain 

microbial community structuring (Sloan et al. 2006). Indeed, microbial community 

structure may be influenced by stochastic immigration and birth-death processes. Chance 

and immigration may thus be important factors to shape microbial communities. 
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5.3 Spatial Study of Microbial Communities in Temperate 

Coastal Sediments 
 

Microbial community ecology in temperate coastal sands of the North Sea island Sylt is 

still not well understood. Two molecular studies have shown the diversity and abundance 

of main bacterial groups (Musat et al. 2006), and the fluctuations of the community 

structure through time and depth (Böer et al. 2009).  

This whole PhD thesis is based on a sampling design consisting of a single area, 

where sandy cores were pooled together for a better chance of recovering the diversity, 

sampled over a two-year period. To complement this thesis work and further study the 

biogeography of microbial communities in temperate coastal sediments, an additional 

sampling was carried out at several locations of Sylt‟s coastal environment. Samples were 

taken by following gradients depending on: 

(i) the location on the shore: samples may be taken on the intertidal, 

perpendicular and parallel to the tide, so as to study the effect of, for instance, 

the waves or desiccation on the microbial communities, 

(ii) grain size, which may be an important factor in structuring microbial 

communities as each sediment type may offer a specific microbial habitat, 

from biofilm-dominated porous sands, to diffusion-limited organic rich muds, 

and 

(iii) sampling depth, as oxic and anoxic conditions may vary depending on the 

distance to the sea as well as grain size. 

DNA was extracted from three compartments defined from the coastal environment: 

sediment grains‟ biofilms, pore water and the overlying water column. ARISA and 454 

MPTS were conducted on these samples and several contextual environmental 

parameters were measured (e.g. salinity, pigments, nutrients, extra-cellular enzyme 

activities, porosity, permeability, grain size). As observed in the third chapter, 

preliminary ARISA results indicated gradients in microbial communities from smaller to 

bigger grain sizes (i.e. mud, mix of mud and sand, sand), which may also reflect gradients 

or distances to the shore (Fig. 5.1.A). Notably, NMDS analysis indicated that sediment 

containing a mix of mud and sand had a similar microbial community structure as in the 
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sand while the mud‟s microbial community was significantly different. Also, there were 

clear differences between the sediment (dry sediment, without pore water and wet 

sediment, representing dry sediment and pore water), the pore water and the water 

column (Fig. 5.1.B). The pore water‟s microbial community was significantly different 

from that of the sediment but shared 32% similarity with water column, as tested with 

ANOSIM.  

 

 

Figure 5.1. Comparison of sediment samples similarities. Samples were grouped according to (A) their 

grain type, or (B) their compartment. Analyses of similarities (ANOSIM) tested for differences between 

samples grouped per (A) grain type, or (B) compartment (P < 0.05). 
 

When studying the effect of environmental parameters on the structuring of the microbial 

community, the factors space and depth indicated the importance of spatial location in 

structuring the community and grain sizes indicated the significant effect of habitat 

structure (Fig. 5.2.). As observed earlier (Chapter 3), the pure effect of compartments 

[e.g. the separation of pore water from dry sediment (containing microbial-associated 

biofilms)] was explaining most of the biological variation (Fig. 5.2.). Clearly, variations 

in the microbial community structure are mainly influenced by sediment type together 

with spatial coordinates – which may correspond to hydrodynamic influences – and may 

represent specific microbial habitats (Fig. 5.2.).  
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Figure 5.2. Partitioning of the biological variation in the bacterial community structure. 

Environmental parameters accounted for include compartments (dry and wet sediment, pore water, water 

column), grain size (mud, mix of mud and sand, sand), space and depth (0-5, 5-10, 10-15 cm). Unexplained 

variation is not shown (stars indicate P < 0.001). 
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5.4 Conclusion 

 

As high-throughput molecular techniques allow the accumulation of data, it became clear 

that improvements were needed to extract the most information out of such data. A 

deeper understanding of the ecology of dominant and rare fractions of microbial 

communities in temperate coastal sands was made possible by:  

 

(i) validating classical molecular tools to describe microbial community structure 

and comprehend microbial ecological patterns (Chapter 1), 

 

(ii) implementing new user-friendly statistical tools to analyze complex 

community data sets (MultiCoLA, www.ecology-research.com), such as high-

throughput 454 MPTS data sets (Chapter 2), 

 

(iii) testing the reliability of the known taxonomy on the resulting ecological 

interpretation (Chapters 1 and 2), 

 

(iv) determining different fractions (rare, dominant and resident members) of the 

microbial community and seeking their effect on the overall microbial 

community structure (Chapters 2 and 3), 

 

(v) studying the impact of the environment in shaping the microbial community 

structure and its different fractions (Chapters 2 and 3), and 

 

(vi) improving the characterization of temperate coastal sands and its microbial 

community ecology (Chapter 3). 
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6 Perspectives 
 

This thesis work shed light on some of the processes that may shape microbial 

communities but other processes should also be of interest. To complete this study of 

microbial community ecology, some remaining concepts to investigate are (i) the 

biogeography of microbial communities and of its different fractions (dominant, resident 

or rare bacteria), and (ii) the functional redundancy of microbial communities. 

 

6.1 Towards a Better Characterization of Microbial 

Communities in Temperate Coastal Sediments 
 

All work of this PhD thesis is based on one location and one sediment type, sampled at 

six irregular sampling times. This study may be improved by higher temporal resolution 

of the sampling scheme, especially as we observed a high turnover of the community 

within one month, when stormy conditions were observed (March 2006, Chapter 3). It 

may thus be of interest to sample at higher frequencies, for instance, before, during and 

after stormy conditions. This may allow an estimation of the impact of rapid changes in 

environmental conditions on the microbial ecology of sands.  

As described in § 5.3., coastal samples of several sediment types were taken at several 

locations of the North Sea island Sylt. ARISA results indicated interesting patterns linked 

to sediment type, compartment type and space. These preliminary analyses coupled with 

further analyses on the 454 MPTS data set should give promising results to better 

understand the biogeography of microbial communities in temperate coastal sediments.  

 

6.2 Function of Microbial Communities 
 

The work of this PhD thesis allowed more insights into microbial community ecology, by 

explaining structuring patterns of microbial communities. However, the understanding of 

microbial community ecology could be completed if the function of the ecosystem would 

be further studied (Konopka 2009). To analyze microbial community ecology and 
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ecosystem functioning, determining functional diversity is of great importance. Several 

possibilities to study functional diversity may be possible. First, one can relate ecological 

functions to taxonomic groups. However, phylogeny may not be always appropriate as 

some groups may reflect several biological functions and a single function may also be 

common to different taxa (Konopka 2009). Fingerprinting techniques targeting a specific 

functional gene may also be used (Santillano et al. 2010) to assess functional diversity. 

The limit of such rapid and cost-effective techniques being that the targeted gene should 

be conserved enough to be representative, and that there are no way to confirm whether 

the gene of interest is active. Another option would be to make experiments, inducing 

perturbations to an ecosystem and check for the fluctuations of the gene in correlation 

with the perturbations (Konopka 2009). This hypothesis may also be biased as, as said 

earlier, several microbes may present the same functions. A last alternative would be to 

apply metatranscriptomics or metaproteomics, describing all active genes or proteins 

from the microbial community, and allowing to relate functions to organisms.  

 In the case of Sylt‟s temperate coastal sediments, some interesting functions to 

study would be sulfate reduction or degradation of complex macromolecules. Sulfate-

reduction may be interesting to study as sulfate reduction ranges were found to vary 

widely (de Beer et al. 2005) and fluorescence in situ hybridization [FISH, (Musat et al. 

2006)], indicated that sulfate-reducing bacteria represent a dominant group of the 

community. 
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7 Annexes 
 

7.1 MultiCoLA Manual (Chapter II) 
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Angélique Gobet & Alban Ramette, July 2010 
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MultiCoLA Manual 
Angélique Gobet, Alban Ramette, July 2010 

Version 1.2 
 

 
Table of contents 

1. Prepare the input file.......................................................................................................................................... 2 

2. Start the R interface (freely available at: http://www.r-project.org/) and install vegan and MASS packages ... 2 

3. Load the data into the R workspace................................................................................................................... 4 

4. Load and run the scripts: community structure.................................................................................................. 5 

4.1. To obtain a matrix for each taxonomic level (when the taxonomic annotation is available only): ............... 5 

4.2. Application of successive cutoffs on each original matrices ......................................................................... 6 

4.3. Calculation of Spearman (or Pearson, Kendall) correlations and Procrustes correlations between the 

original dataset and the truncated ones ...................................................................................................................... 6 

4.4. In order to obtain similar figures as Fig. 1 in the article, another script is needed:....................................... 8 

5. Load and run the scripts: ecological patterns..................................................................................................... 9 

5.1. Variation partitioning at several cutoff levels for all taxonomic levels......................................................... 9 

5.2. Calculation of correlation coefficients for the environmental parameters (for the first RDA axis) ............ 11 

5.3. Calculation of the significance of the whole variation partitioning model and the impact of the pure 

environmental parameters........................................................................................................................................ 12 

6. Save your R workspace.................................................................................................................................... 13 

 

 



 2

1. Prepare the input file 
Abundance table with the according taxonomy (e.g. output from the application of 454 massively parallel pyro-
tag sequencing (MPTS)): Sample by [OTUs and taxonomy] (abundance matrix) to save as a .txt file, e.g. 
“input.txt”. In case there is no taxonomic annotation available, the input file can also be an abundance table (e.g. 
sample by OTUs). 
You will find as an example “input.txt” in the .zip file which consists of a simplified 454 MPTS dataset with OTUs 
abundances and the according taxonomy. 
 
Example: 

 
 

2. Start the R interface (freely available at: http://www.r-project.org/) and install vegan and MASS 
packages 

 

- Go to “Packages/Install packages”: 
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- Select a CRAN mirror closer to the place where you work: 
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- Select the package you would like to install (e.g. vegan): 
 

 
 

3. Load the data into the R workspace 
First, set the directory where you want to work, i.e. where your input file and the series of scripts should be, and 
where you will find the several outputs from these scripts. The directory should be created beforehand and the 
name should not contain spaces to be readable by the software R (e.g. use underscore to separate words). The path 
to the working directory (e.g. “454_MPTS”) may be indicated as followed: 
setwd("C:\\R\\454_MPTS") 
 
The data can then be stored into the object M in the workspace: 
M<-read.table("input.txt",header=TRUE,row.names=1) 
 
The scripts can now be used on the sample by OTUs (or taxonomy) matrix M according to the different steps: 
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4. Load and run the scripts: community structure 

4.1. To obtain a matrix for each taxonomic level (when the taxonomic annotation is available only): 
 
source("taxa.pooler.1.2.r") 
 
Some explanations about the function are then appearing. To execute the script, the output can be stored in the R 
workspace under a name of your choice, for instance: 
all_taxa_pooled<-taxa.pooler(M) 
 
Some questions will then appear: 

 

 
 
 

The output is a list of matrices for each taxonomic level and two other matrices describing the occurrence of each 
OTU: one for only OTUs with a complete annotation and another one with all the OTUs. 
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4.2. Application of successive cutoffs on each original matrices 
 
source("COtables.1.2.r") 
 
The truncated datasets can be stored as follows: 
truncated.DS.i<-COtables(all_taxa_pooled[[i]], Type="ADS",typem="dominant") 
With: 
- The input: “all_taxa_pooled[[i]]”, representing one of the matrix obtained from the taxa.pooler(), with i from 1 
(phylum level here) to the total number of taxonomic levels (here, 7), for example: 
truncated.DS.phylum<-COtables(all_taxa_pooled[[1]], Type="ADS",typem="dominant") 
truncated.DS.class<-COtables(all_taxa_pooled[[2]], Type="ADS",typem="dominant") 

. 

. 

. 
truncated.DS.OTUwholeDS<-COtables(all_taxa_pooled[[7]], Type="ADS",typem="dominant") 
 
- Type = Type of cutoff: all dataset-,”ADS”, or sample-,”SAM”, based; 
- typem = choice of the fraction of the matrix to work on: “dominant” types or “rare” types. 
 

 

4.3. Calculation of Spearman (or Pearson, Kendall) correlations and Procrustes correlations between the 
original dataset and the truncated ones  

In this script, the truncated datasets are automatically calculated. 
 
source("cutoff.impact.1.2.r") 
 
Some explanations about the function are then appearing. Store the output in the R workspace under a name of 
your choice, for instance: 
corr.all<-cutoff.impact(all_taxa_pooled,Type="ADS",corcoef="spearman",typem="dominant") 
 
With: 
- The input, “all_taxa_pooled” here, should be a list (e.g. the output from the taxa.pooler); 
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- Type = Type of cutoff: all dataset-,”ADS”, or sample-,”SAM”, based; 
- corcoef = the chosen non-parametric correlation coefficient: “spearman” ( “pearson” for a linear coefficient). 
- typem = choice of the fraction of the matrix to work on: “dominant” types or “rare” types. 
 
Also, if one does not need to see the details of the NMDS calculations, some computing time might be saved by 
answering no (“n”) to the following question: 
Details of the NMDS calculations? (y/n)... 
 

 
 
If sample-based cutoff chosen, the following question will appear:  
If SAM-based only, maximum cutoff value? (e.g. 208)... 
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The output is a list of tables with the different assigned cutoffs (all dataset- or sample-based) by the sum of each 
truncated table, the correlation value between the original table and the truncated table, and the Procrustes value 
between the non-metric multidimensional scaling (NMDS) from the original table and the truncated table for all 
taxonomic levels. 
 
!!! This script requires some time and a certain computing power (10 min of calculations for the example 
matrix with 1,000 OTUs on an Intel Pentium 4) 

In order to obtain similar figures as Fig. 3 in the article, another script is needed: 
 
source("cutoff.impact.fig.1.2.r") 
output.all<-cutoff.impact.fig(corr.all) 
 
With the input, “corr.all” here, as a list (e.g. the output from the cutoff.impact) and you can choose to have the 
output as a text file: 
Output as text files? (y/n)... 
 
Then three files will appear in the directory:  
- "abundance.txt" 
- "non-par.correlation.txt" 
- "procrustes.txt" 
And they can be further used to produce figures with Microsoft Excel for example. 
 
Or you can also choose if you want to directly plot the data: 
Plot the results? (y/n)... 
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5. Load and run the scripts: ecological patterns 

5.1. Variation partitioning at several cutoff levels for all taxonomic levels 
 
Load the environmental table with samples as rows and environmental parameters as columns (here the script is 
written for an environmental table with 4 columns) and the script: 
ENV<-read.table("env.txt",header=TRUE,row.names=1) 
source("VP.COL.1.2.r") 
 
Some explanations about the function are then appearing. Store the output in the R workspace under a name of 
your choice, for instance: 
VP.1.taxa<-VP.COL(all_taxa_pooled,ENV,Type="ADS") 
 
With: 
- The input, “all_taxa_pooled” here, is the output from the taxa.pooler; 
- ENV = the environmental table; 
- Type = Type of cutoff: all dataset-,”ADS”, or sample-,”SAM”, based. 
 

 
 
The output is a list of two tables, for each taxonomic level: 
- one with the partition of the variation by the different assigned cutoffs (all dataset- or sample-based); 
- one with the different assigned cutoffs by the sum of each truncated table, and the adjusted R square. 
 
You can choose if you want the output as a text file: 
Output as text files? (y/n)... 
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Then two files x the number of taxonomic level will appear in the directory:  
- "taxonomiclevel.VarPart.txt" 
- "taxonomiclevel.sum.adjRsq.txt" 
And then can be further used to produce figures with Microsoft Excel for example. 
 
Or you can also choose if you want to plot the data: 
Plot the results? (y/n)... 
 
If sample-based cutoff chosen, the following question will appear:  
If SAM-based only, maximum cutoff value? (e.g. 208)... 
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5.2. Calculation of correlation coefficients for the environmental parameters (for the first RDA axis) 
 
Load the following script: 
source("corrcoeff.ENV.1.2.r") 
 
However, a whole “automatic” script could not be realized as the R software can present some scoping problems. 
Instead, you may copy and paste the following lines (here an example for the original table at the OTU level with 
the whole dataset; we work here on the 7th element of the VP.1.taxa output): 
 
- for all dataset-based cutoffs: 
 
#create a matrix to store corrcoeff output at all 21 cutoffs 
corrcoeff.table.ADS<-matrix(NA,21,5) 
row.names(corrcoeff.table.ADS)<-c(paste("CO_",c(0.01,seq(0.05,0.95,by=0.05),0.99),sep="")) 
colnames(corrcoeff.table.ADS)<-c("Sum",paste("RDA1.",colnames(ENV),sep="")) 
 
#store the original matrix 
#7: whole dataset at the OTU level 
#3: where the cutoff matrices are 
OTU.ADS<-VP.1.taxa[[c(7,3)]] 
 
#application of corrcoeff at all cutoffs 
SPE<-OTU.ADS[[1]];corrcoeff.table.ADS[1,]<-corrcoeff(SPE,ENV);rm(SPE) 
SPE<-OTU.ADS[[2]];corrcoeff.table.ADS[2,]<-corrcoeff(SPE,ENV);rm(SPE) 

. 

. 

. 
SPE<-OTU.ADS[[21]];corrcoeff.table.ADS[21,]<-corrcoeff(SPE,ENV);rm(SPE) 
 
#application of corrcoeff on the original table with no cutoff 
SPE<-all_taxa_pooled[[7]] 
corrcoeff.table.ADS.orig<-corrcoeff(SPE,ENV) 
row.names(corrcoeff.table.ADS.orig)<-c("CO_1") 
corrcoeff.table.ADS<-rbind(corrcoeff.table.ADS,corrcoeff.table.ADS.orig) 
 
#output as a text file 
write.table(corrcoeff.table.ADS,"corrcoeff.table.ADS.txt",quote=FALSE) 
 
- for sample-based cutoffs: 
 
#create a matrix to store corrcoeff output at all 15 cutoffs 
corrcoeff.table.SAM<-matrix(NA,15,5) 
row.names(corrcoeff.table.SAM)<-
c(paste("CO_",c(1,2,3,5,10,15,20,30,55,80,105,130,155,180,208),sep="")) 
colnames(corrcoeff.table.SAM)<-c("Sum",paste("RDA1.",colnames(ENV),sep="")) 
 
#store the original matrix 
#7: whole dataset at the OTU level 
#3: where the cutoff matrices are 
OTU.SAM<-VP.1.taxa[[c(7,3)]] 
 
#application of corrcoeff at all cutoffs 
SPE<-OTU.SAM[[1]];corrcoeff.table.SAM[1,]<-corrcoeff(SPE,ENV);rm(SPE) 
SPE<-OTU.SAM[[2]];corrcoeff.table.SAM[2,]<-corrcoeff(SPE,ENV);rm(SPE) 

. 

. 

. 
SPE<-OTU.SAM[[15]];corrcoeff.table.SAM[15,]<-corrcoeff(SPE,ENV);rm(SPE) 
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#output as a text file 
write.table(corrcoeff.table.SAM,"corrcoeff.table.SAM.txt",quote=FALSE) 
 

5.3. Calculation of the significance of the whole variation partitioning model and the impact of the pure 
environmental parameters 

 
Load the following script: 
source("signif.1.2.r") 
 
However, a whole “automatic” script could not be realized as the R software can present some scoping problems. 
Instead, you may copy and paste the following lines (here an example for the original table at the OTU level with 
the whole dataset; we work here on the 7th element of the VP.1.taxa output): 
 
- for all dataset-based cutoffs: 
 
#create a matrix to store signif output at all 21 cutoffs 
signif.table.ADS<-matrix(NA,21,5) 
row.names(signif.table.ADS)<-c(paste("CO_",c(0.01,seq(0.05,0.95,by=0.05),0.99),sep="")) 
colnames(signif.table.ADS)<- c("whole.sig","ENV1.sig","ENV2.sig","ENV3.sig","ENV4.sig") 
 
#store the original matrix 
#7: whole dataset at the OTU level 
#3: where the cutoff matrices are 
OTU.ADS<-VP.1.taxa[[c(7,3)]] 
 
#application of signif at all cutoffs 
SPE<-OTU.ADS[[1]];signif.table.ADS[1,]<-signif(SPE,ENV);rm(SPE) 
SPE<-OTU.ADS[[2]];signif.table.ADS[2,]<-signif(SPE,ENV);rm(SPE) 

. 

. 

. 
SPE<-OTU.ADS[[21]];signif.table.ADS[21,]<-signif(SPE,ENV);rm(SPE) 
 
#application of signif on the original table with no cutoff 
SPE<-all_taxa_pooled[[7]] 
signif.table.ADS.orig<-signif(SPE,ENV) 
row.names(signif.table.ADS.orig)<-c("CO_1") 
signif.table.ADS<-rbind(signif.table.ADS, signif.table.ADS.orig) 
 
#output as a text file 
write.table(signif.table.ADS,"signif.table.ADS.txt",quote=FALSE) 
 
- for sample-based cutoffs: 
 
#create a matrix to store signif output at all 15 cutoffs 
signif.table.SAM<-matrix(NA,15,5) 
row.names(signif.table.SAM)<- 
c(paste("CO_",c(1,2,3,5,10,15,20,30,55,80,105,130,155,180,208),sep="")) 
colnames(signif.table.SAM)<- c("whole.sig","ENV1.sig","ENV2.sig","ENV3.sig","ENV4.sig") 
 
#store the original matrix 
#7: whole dataset at the OTU level 
#3: where the cutoff matrices are 
OTU.SAM<-VP.1.taxa[[c(7,3)]] 
 
#application of signif at all cutoffs 
SPE<-OTU.SAM[[1]];signif.table.SAM[1,]<-signif(SPE,ENV);rm(SPE) 
SPE<-OTU.SAM[[2]];signif.table.SAM[2,]<-signif(SPE,ENV);rm(SPE) 
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. 
. 
. 

SPE<-OTU.SAM[[15]];signif.table.SAM[15,]<-signif(SPE,ENV);rm(SPE) 
 
#output as a text file 
write.table(signif.table.SAM,"signif.table.SAM.txt",quote=FALSE) 
 

6. Save your R workspace 
 
save.image("MultiCoLA.RData") 
 
All variables will then be saved and then available to work on them without running all the scripts again. 
 
How to cite the script? 
Gobet, A., Quince, C., and Ramette, A. 2010. Multivariate Cutoff Level Analysis (MultiCoLA) of Large 
Community Datasets. Nucl. Acids Res. 
 
Comments and corrections are always welcome. Please address email correspondence to: 
Angélique Gobet: agobet@mpi-bremen.de 
or 
Alban Ramette: aramette@mpi-bremen.de 
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7.2 MultiCoLA R scripts (Chapter II) 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

cat("~~~~~~~~~~~Taxa Pooler~~~~~~~~~~~\n") 

cat('Use the function as follows:\n') 

cat('        storing_name<-taxa.pooler(M)\n') 

cat('        M=read.table("input.txt",header=TRUE,row.names=1),\n')  

cat('        OTUs as rows\n') 

cat('        samples followed by taxonomy as columns (e.g. sample1,sample2,...,phylum,class...)\n\n') 

cat('--->type of output:\n')  

cat('     list of new tables with the samples as rows & taxa\n') 

cat('     with sum of tags for each sample as columns\n') 

cat('     for each taxonomic level with complete annotation+whole dataset OTUs\n\n\n') 

 

taxa.pooler<-function(M1){ 

sa=as.numeric(readline("\nNumber of samples? (e.g. 16)...\t")) 

ta=as.numeric(readline("\nNumber of taxonomic levels? (e.g. phylum+class+order+family+genus=5)...\t")) 

OUTP=readline("\nOutput as text files? (y/n)...\t") 

 

M<-M1[-which(apply(M1,1,function(x)any(is.na(x)))),] 

  

pool.1.level<-function(M,j){ 

 N<-matrix(NA,length(unique(M[,sa+j])),sa) 

 row.names(N)<-sort(unique.default(M[,sa+j]))  #name of unique taxa 

  colnames(N)<-colnames(M[,1:sa]) #name of samples 

 for (i in 1:sa){ 

    N[,i]<-by(M[,i],factor(M[,sa+j]),sum) 

  } #end for i 

 return(t(N)) 

} #end pool.1.level() 

 

 

taxa_res<-vector("list",ta+2) 

names(taxa_res)<-c(colnames(M[,(sa+1):(sa+ta)]),"OTUs_completeDS","OTUs_wholeDS") 

 

#loop to apply the function pool.1.level at all taxonomic levels 

for (k in 1:ta){  

 taxa_res[[k]]<-pool.1.level(M,k) 

 } #end for k 

 

#table at the OTU level with only OTUs with a complete annotation 

taxa_res[[ta+1]]<-t(M[,1:sa]) 

 

#table at the OTU level with all the OTUs 

taxa_res[[ta+2]]<-t(M1[,1:sa]) 

 

  if(OUTP=="y"){ 

  for(j in 1:(ta+2)){ 
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    write.table(taxa_res[[j]],paste(names(taxa_res[j]),".matrix.txt",sep=""),quote=FALSE) 

    } 

  } #end if 

 

return(taxa_res)             

 

} #end taxa.pooler 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

COtables<-function(ODS,Type="ADS",typem="dominant"){                                        

 COP<-function(ODS,z,Type,typem){################### 

        #to remove all the lines in the matrix for which the sum of the line is 0 

        CLrow<-function(m) { 

          #to create a column of 0 in the last column 

          m=cbind(m,matrix(0,nrow(m),1)) 

          m[,ncol(m)]=apply(m,1,sum) 

          #to keep only the lines without 0 

          mclean=subset(m,m[,ncol(m)]!=0) 

          mclean=mclean[,-ncol(mclean)] 

          return (mclean) 

         } 

         ######################## 

        CLcol<-function(m) { 

          #transpose the matrix and apply the same function as before 

          #then transpose back 

          m=t(m) 

          #to create a column of 0 in the last column 

          m=cbind(m,matrix(0,nrow(m),1)) 

          m[,ncol(m)]=apply(m,1,sum) 

          #to keep only the lines without 0 

          mclean=subset(m,m[,ncol(m)]!=0) 

          mclean=mclean[,-ncol(mclean)] 

          mclean=t(mclean) 

          return (mclean) 

         } 

 

   #Application of a percentage cut-off to the original dataset to obtain abundant 

dataset 

   ##all dataset-based cutoff 

   if(Type=="ADS"){                    

    M<-rbind(ODS,apply(ODS,2,sum)) #add the column sum as a last row 

of the matrix M 

    if(typem=="dominant"){N<-

M[,order(M[nrow(M),],decreasing=TRUE)]} #order the columns of M by their decreasing sum 

      if(typem=="rare"){N<-M[,order(M[nrow(M),])]}  #order the columns of M by their 

increasing sum 

       Q<-N[1:(nrow(N)-1),] #remove the last row (with the sum of the 

columns) 

       L<-ncol(Q) 

       K<-nrow(Q) 

      M1<-t(matrix(NA,L)) #create a vector to store sum of successive 

matrices 

      Q1<-matrix(NA,K,L) #create a matrix to store new data 

      perc<-z*sum(ODS) 
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      for (i in 1:L){ ###for #1 

       M1[,i]<-sum(Q[,1:i])  

        if (M1[,i]<=perc) {Q1[,1:i]=Q[,1:i]}  

         row.names(Q1)=row.names(Q) 

          colnames(Q1)=colnames(Q) 

       if (M1[,i]>perc) {Q1[,1:i]==0} 

      }#end for #1 

    Q3<-Q1[,-which(apply(Q1,2,function(x)all(is.na(x))))] 

    Q3<-CLcol(CLrow(as.data.frame(Q3))) #remove rows and 

columns whose sum=0 

   } #end"ADS" 

    

   ##sample-based cutoff 

   if(Type=="SAM"){   

    Q1<-ODS 

    if(typem=="dominant"){Q1[Q1<z]<-0} # all species presents less 

than j times =0 

    if(typem=="rare"){Q1[Q1>z]<-0} # all species presents more than j 

times =0 

    Q3<-CLcol(CLrow(Q1)) #remove rows and columns whose sum=0 

   } #end "SAM"                         

return(Q3) 

} #end COP 

 

 if(Type=="ADS"){ 

    #create a matrix to store VPvalues for each CO 

    LISTRES<-vector("list",21) 

      names(LISTRES)<-c(0.01,seq(0.05,0.95,by=0.05),0.99) 

   for(i in 1:21){ 

       LISTRES[[i]]=COP(ODS,z=as.numeric(names(LISTRES)[i]),Type,typem)    

    } 

 } #end if "ADS" 

  

 if(Type=="SAM"){ 

      #create a matrix to store VPvalues for each CO 

    LISTRES<-vector("list",15) 

      names(LISTRES)<-c(1,2,3,5,10,15,20,30,55,80,105,130,155,180,208) 

   for(i in 1:15){ 

       LISTRES[[i]]=COP(ODS,z=as.numeric(names(LISTRES)[i]),Type,typem)    

    } 

 } #end if "SAM" 

 return(LISTRES) 

} #end of VP.COL 

################################################################################### 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

cat("~~~~~~~~~~~Cutoff impact~~~~~~~~~~~\n") 

cat('Use the function as follows:\n') 

cat('        storing_name<-

cutoff.impact(all_taxa_pooled,Type="ADS",corcoef="spearman",typem="dominant")\n\n') 

cat('        M=output from taxa.pooler,\n') 

cat('        Type of cutoff? (all dataset-,"ADS", or sample-,"SAM", based)\n') 

cat('        Correlation? ("spearman", "kendall", "pearson")\n') 

cat('        Which matrix type? ("dominant" or "rare"?)\n') 

cat('--->type of output:\n')  

cat('     list with: total sum of pyro-tags, correlation coefficient,\n') 

cat('     procrustes R value for each cutoff and all taxonomic levels\n') 

 

cutoff.impact<-function(MM,Type="ADS",corcoef="spearman",typem="dominant"){ 

require(MASS) 

require(vegan) 

details=readline("\nDetails of the NMDS calculations? (y/n)...\t") 

#calculation of the cut-off matrices, correlation coefficient, procrustes R value 

CoCalc<-function(ODS,z,Type,corcoef){ 

 res1<-matrix(NA,1,3) #create a matrix to store mantel and procrustes data 

 colnames(res1)<-c("Sum","corrcoeff","R Procrustes") 

     

        #to remove all the lines in the matrix for which the sum of the line is 0 

        CLrow<-function(m) { 

          #to create a column of 0 in the last column 

          m=cbind(m,matrix(0,nrow(m),1)) 

          m[,ncol(m)]=apply(m,1,sum) 

          #to keep only the lines without 0 

          mclean=subset(m,m[,ncol(m)]!=0) 

          mclean=mclean[,-ncol(mclean)] 

          return (mclean) 

         } 

         ######################## 

        CLcol<-function(m) { 

          #transpose the matrix and apply the same function as before 

          #then transpose back 

          m=t(m) 

          #to create a column of 0 in the last column 

          m=cbind(m,matrix(0,nrow(m),1)) 

          m[,ncol(m)]=apply(m,1,sum) 

          #to keep only the lines without 0 

          mclean=subset(m,m[,ncol(m)]!=0) 

          mclean=mclean[,-ncol(mclean)] 

          mclean=t(mclean) 

          return (mclean) 

         } 
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   #Application of a percentage cut-off to the original dataset to obtain abundant 

dataset 

   ##all dataset-based cutoff 

   if(Type=="ADS"){                    

    M<-rbind(ODS,apply(ODS,2,sum)) #add the column sum as a last row 

of the matrix M 

    if(typem=="dominant"){N<-

M[,order(M[nrow(M),],decreasing=TRUE)]} #order the columns of M by their decreasing sum 

      if(typem=="rare"){N<-M[,order(M[nrow(M),])]}  #order the columns of M by their 

increasing sum 

       Q<-N[1:(nrow(N)-1),] #remove the last row (with the sum of the 

columns) 

       L<-ncol(Q) 

       K<-nrow(Q) 

      M1<-t(matrix(NA,L)) #create a vector to store sum of successive 

matrices 

      Q1<-matrix(NA,K,L) #create a matrix to store new data 

      perc<-z*sum(ODS) 

      for (i in 1:L){ ###for #1 

       M1[,i]<-sum(Q[,1:i])  

        if (M1[,i]<=perc) {Q1[,1:i]=Q[,1:i]}  

         row.names(Q1)=row.names(Q) 

          colnames(Q1)=colnames(Q) 

       if (M1[,i]>perc) {Q1[,1:i]==0} 

      }#end for #1 

    Q2<-Q1[,-which(apply(Q1,2,function(x)all(is.na(x))))] 

    Q2<-CLcol(CLrow(as.data.frame(Q2))) #remove rows and 

columns whose sum=0 

    res1[1,1]<-sum(Q2) 

      } #end "ADS" 

    

   ##sample-based cutoff 

   if(Type=="SAM"){   

    Q1<-ODS 

    if(typem=="dominant"){Q1[Q1<z]<-0} # all species presents less 

than j times =0 

    if(typem=="rare"){Q1[Q1>z]<-0} # all species presents more than j 

times =0 

    Q2<-CLcol(CLrow(Q1)) #remove rows and columns whose sum=0 

    res1[1,1]<-sum(Q2) 

    } #end "SAM"           

 

 if (res1[1,1]==0){res1[1,2:3]<-cbind(NA,NA)} # to avoid conflicts when comparing original 

dataset to NA 

 else { if (length(Q2)<=nrow(ODS)){res1[1,2:3]<-cbind(NA,NA)} ###else #1 

  else { if (nrow(Q2)<nrow(ODS)) {res1[1,2:3]<-cbind(NA,NA)} 

   else { ###else #2 

##################################### 

 #Correlation and Procrustes calculations 

  ODSdist<-vegdist(ODS,method="bray") #distance matrix of the original dataset 

  Q2dist<-vegdist(Q2,distance="bray") #distance matrix of the truncated dataset 

  ODSQ2cor<-cor.test(ODSdist,Q2dist,method=corcoef) #correlation between matrices 

  ODSdist2<-ODSdist 

  ODSdist2[ODSdist2==0]<-10e-20 #replace 0 by 10e-20 for original dataset 

  Q2dist2<-Q2dist 
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  Q2dist2[Q2dist2==0]<-10e-20 #replace 0 by 10e-20 for truncated dataset 

  if(details=="y"){ 

    ODSNMDS<-isoMDS(ODSdist2) #NMDS for original dataset 

    Q2NMDS<-isoMDS(Q2dist2)  #NMDS for truncated dataset 

    } 

    else{if(details=="n"){     ###else #3 

    ODSNMDS<-isoMDS(ODSdist2,trace=0) #NMDS for original dataset 

    Q2NMDS<-isoMDS(Q2dist2,trace=0)  #NMDS for truncated dataset 

    }}       

  ODSQ2procrustes<-protest(ODSNMDS,Q2NMDS) #procrustes 

  res1[1,2]<-cbind(ODSQ2cor$estimate) 

  res1[1,3]<-cbind(ODSQ2procrustes$t0) 

  } #end else #2 

 } #end else #1 

 } 

##################################### 

return(res1) 

}#end function CoCalc 

 

################################################################ 

#application of the function COP at different all dataset-based cutoffs 

 if(Type=="ADS"){    

    ecol.ext.all<-function(MM,Type,corcoef){    

    allcorr<-function(ODS,Type,corcoef){    

        ADS_perc<-c(0.01,seq(0.05,0.95,by=0.05),0.99) 

        table_taxa<-matrix(NA,length(ADS_perc),3) 

        row.names(table_taxa)<-ADS_perc 

        colnames(table_taxa)<-c("Sum","corrcoeff","R Procrustes") 

        for(i in 1:length(ADS_perc)){ 

      table_taxa[((length(ADS_perc)+1)-i),]<-

CoCalc(ODS,z=as.numeric(ADS_perc[i]),Type,corcoef) 

      } 

      #ROW<-row.names(table_taxa) 

        #table_taxa<-table_taxa[order(as.numeric(row.names(table_taxa)),decreasing=TRUE),] 

        #row.names(table_taxa)<-ROW 

      return(table_taxa) 

    } #end allcorr 

 

  list.ecol<-vector("list",length(MM)) 

  names(list.ecol)<-names(MM) 

             

  for(j in 1:length(MM)){   

    list.ecol[[j]]<-allcorr(MM[[j]],Type,corcoef) 

  } 

  return(list.ecol) 

  } #end ecol.ext.all 

 }#end if "ADS" 

 

#application of the function COP at different sample-based cutoffs 

 if(Type=="SAM"){ 

    ecol.ext.all<-function(MM,Type,corcoef){    

      limSAMco=as.numeric(readline("\nIf SAM-based only, maximum cutoff value? (e.g. 208)...\t")) 

    allcorr<-function(ODS,Type,corcoef){   

        SAM_perc<-limSAMco*c(0.005,0.01,0.015,0.025,0.05,0.075,0.1,0.15,0.25,0.4,0.5,0.6,0.75,0.85,1) 

        table_taxa<-matrix(NA,length(SAM_perc),3) 

        row.names(table_taxa)<-round(SAM_perc,0) 
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        colnames(table_taxa)<-c("Sum","corrcoeff","R Procrustes") 

        for(i in 1:length(SAM_perc)){ 

      table_taxa[i,]<-

CoCalc(ODS,z=as.numeric(SAM_perc[i]),Type,corcoef) 

        } 

      return(table_taxa) 

    } #end allcorr 

 

  list.ecol<-vector("list",length(MM)) 

  names(list.ecol)<-names(MM) 

  

  for(j in 1:length(MM)){   

    list.ecol[[j]]<-allcorr(MM[[j]],Type,corcoef) 

  } 

  return(list.ecol) 

  } #end ecol.ext.all 

 }#end if "SAM" 

 

result.allcorr<-ecol.ext.all(MM,Type,corcoef) 

return(result.allcorr) 

             

} #end cutoff.impact 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

cat("~~~~~~~~~~~Abundance, Correlation and Procrustes~~~~~~~~~~~\n") 

cat("~~~~~~~~~~~To obtain a suitable output for figures~~~~~~~~~~~\n") 

cat('Use the function as follows:\n') 

cat('        output.all<-cutoff.impact.fig(M)\n') 

cat('        M=output from ecology.extractor,\n') 

cat('--->type of output:\n') 

cat('     vector with: total sum of pyro-tags, correlation coefficient,\n') 

cat('     procrustes R value\n') 

 

cutoff.impact.fig<-function(M){ 

  OUTP=readline("\nOutput as text files? (y/n)...\t") 

  PLOT=readline("\nPlot the results? (y/n)...\t") 

  list.all<-vector("list",3) 

  names(list.all)<-c("Abundance","Non-par.correlation","Procrustes") 

  list.all[[1]]<-matrix(NA,nrow(M[[1]]),length(M)) 

  list.all[[2]]<-matrix(NA,nrow(M[[1]]),length(M)) 

  list.all[[3]]<-matrix(NA,nrow(M[[1]]),length(M)) 

  colnames(list.all[[1]])<-names(M) 

  colnames(list.all[[2]])<-names(M) 

  colnames(list.all[[3]])<-names(M) 

  row.names(list.all[[1]])<-row.names(M[[1]]) 

  row.names(list.all[[2]])<-row.names(M[[1]]) 

  row.names(list.all[[3]])<-row.names(M[[1]]) 

   

  for(i in 1:length(M)){ 

    list.all[[1]][,i]<-cbind(M[[i]][,1]) 

    list.all[[2]][,i]<-cbind(M[[i]][,2]) 

    list.all[[3]][,i]<-cbind(M[[i]][,3]) 

  } #end for 

 

  if(OUTP=="y"){ 

  write.table(list.all[[1]],"abundance.txt",quote=FALSE) 

  write.table(list.all[[2]],"non-par.correlation.txt",quote=FALSE) 

  write.table(list.all[[3]],"procrustes.txt",quote=FALSE) 

  } #end if 

   

  if(PLOT=="y"){ 

    par(mfrow=c(3,1)) 

    plot(row.names(list.all[[1]]),list.all[[1]][,1],type="l",xlab=c("%cutoff removed"),ylab=c("Abundance in 

each matrix")) 

    for(i in 1:length(M)){ 

      lines(row.names(list.all[[1]]),list.all[[1]][,i],col=i) 

    } 

    plot(row.names(list.all[[2]]),list.all[[2]][,1],type="l",ylim=c(0,1),xlab=c("%cutoff 

removed"),ylab=c("Non-par.correlation")) 
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    for(i in 1:length(M)){ 

      lines(row.names(list.all[[2]]),list.all[[2]][,i],col=i) 

    } 

    plot(row.names(list.all[[3]]),list.all[[3]][,1],type="l",ylim=c(0,1),xlab=c("%cutoff 

removed"),ylab=c("Procrustes correlation")) 

    for(i in 1:length(M)){ 

      lines(row.names(list.all[[3]]),list.all[[3]][,i],col=i) 

      legend(0,0.8,colnames(as.data.frame(list.all[[1]])),col=seq(1:length(M)),lty=1,y.intersp=0.7) 

    } 

  } #end if 

   

return(list.all) 

} #end cutoff.impact.fig 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

 

cat("~~~~~~~~~~~Variation partitioning~~~~~~~~~~~\n") 

cat('Use the function as follows:\n') 

cat('        VP.1.taxa<-VP.COL(M,ENV,Type)\n\n') 

cat('        M=output from taxa.pooler,\n') 

cat('        ENV = sample by 4 env par (=columns) table,\n') 

cat('        Type of cutoff? (all dataset-,"ADS", or sample-,"SAM", based)\n') 

cat('--->type of output:\n')  

cat('     list with: sum truncated matrix+AdjRsquare\n') 

cat('     VP values\n') 

 

 

VP.COL<-function(MM,ENV,Type){ 

require(vegan) 

  OUTP=readline("\nOutput as text files? (y/n)...\t") 

  PLOT=readline("\nPlot the results? (y/n)...\t") 

                        

 COP<-function(ODS,z,ENV,Type){################### 

   #vector to store sum,adjRsq  

   res1<-matrix(NA,1,2) 

   #Application of a percentage cut-off to the original dataset to obtain abundant 

dataset 

   ##all dataset-based cutoff 

   if(Type=="ADS"){ 

    M<-rbind(ODS,apply(ODS,2,sum)) #add the column sum as a last row 

of the matrix M 

    N<-M[,order(M[nrow(M),],decreasing=TRUE)] #order the 

columns of M by their decreasing sum 

    Q<-N[1:(nrow(N)-1),] #remove the last row (with the sum of the 

columns) 

    L<-ncol(Q) 

    K<-nrow(Q) 

    M1<-t(matrix(NA,L)) #create a vector to store sum of successive 

matrices 

    Q1<-matrix(NA,K,L) #create a matrix to store new data 

    perc<-z*sum(ODS) 

    for (i in 1:L){ ###for #1 

     M1[,i]<-sum(Q[,1:i])  

     if (M1[,i]<=perc) {Q1[,1:i]=Q[,1:i]}  

     row.names(Q1)=row.names(Q) 

     colnames(Q1)=colnames(Q) 

     if (M1[,i]>perc) {Q1[,1:i]==0} 

    }#end for #1 

    Q3<-Q1[,-which(apply(Q1,2,function(x)all(is.na(x))))] 

    res1[,1]<-sum(Q3) 
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   } #end"ADS" 

    

   ##sample-based cutoff   

   if(Type=="SAM"){ 

           #to remove all the lines in the matrix for which the sum of the line is 0 

        CLrow= function(m) { 

          #to create a column of 0 in the last column 

          m=cbind(m,matrix(0,nrow(m),1)) 

          m[,ncol(m)]=apply(m,1,sum) 

          #to keep only the lines without 0 

          mclean=subset(m,m[,ncol(m)]!=0) 

          mclean=mclean[,-ncol(mclean)] 

          return (mclean) 

         } #end CLrow 

         ######################## 

        CLcol= function(m) { 

          #transpose the matrix and apply the same function as before 

          #then transpose back 

          m=t(m) 

          #to create a column of 0 in the last column 

          m=cbind(m,matrix(0,nrow(m),1)) 

          m[,ncol(m)]=apply(m,1,sum) 

          #to keep only the lines without 0 

          mclean=subset(m,m[,ncol(m)]!=0) 

          mclean=mclean[,-ncol(mclean)] 

          mclean=t(mclean) 

          return (mclean) 

         } #end CLcol  

    Q1<-ODS 

    Q1[Q1<z]<-0 # all species presents less than j times =0 

    Q3<-CLcol(CLrow(Q1)) #remove rows and columns whose sum=0 

    res1[1,1]<-sum(Q3) 

   } #end "SAM"           

                 

########################## 

   if (res1[,1]==0){ 

    res1[,2]<-NA 

    VP_Rsq<-matrix(NA,nrow(ODS),1) 

    List=list(res1,VP_Rsq,Q3) 

    names(List)=c("res1","VP_Rsq","cutoff.table") 

   } #end if 

      # to avoid conflicts comparing original dataset/NA 

   else {   ###else #1 

        if (length(Q3)<=nrow(ODS)){ 

     res1[,2]<-NA 

     VP_Rsq<-matrix(NA,nrow(ODS),1) 

     List=list(res1,VP_Rsq,Q3) 

     names(List)=c("res1","VP_Rsq","cutoff.table") 

    } #end if  

   else {    ###else #2 

        if (nrow(Q3)<nrow(ENV)) { 

     res1[,2]<-NA 

     VP_Rsq<-matrix(NA,nrow(ODS),1) 

     List=list(res1,VP_Rsq,Q3) 

     names(List)=c("res1","VP_Rsq","cutoff.table") 

    } 
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    else { ###else #3 

     Q2<-decostand(Q3,"hel")[1:nrow(Q3),1:ncol(Q3)] 

     ##################################### 

     #Variation partitioning 

     ###Transform input as model matrices 

     ENV1<-model.matrix(~.,as.data.frame(ENV[,1]))[,-1] 

     ENV2<-model.matrix(~.,as.data.frame(ENV[,2]))[,-1] 

     ENV3<-model.matrix(~.,as.data.frame(ENV[,3]))[,-1] 

     ENV4<-model.matrix(~.,as.data.frame(ENV[,4]))[,-1] 

     Q2mod<-model.matrix(~.,as.data.frame(Q2))[,-1] 

  

     ###Variation partitioning with 4 variables  

     VP_Q2mod<-varpart(Q2mod,ENV1,ENV2,ENV3,ENV4) 

     VP_Rsq<-

as.data.frame(VP_Q2mod$part$indfract$Adj.R.square) 

     res1[,2]<-VP_Q2mod$part$fract[c("[abcdefghijklmno] = 

All"),c("Adj.R.square")] 

     List<-list(res1,VP_Rsq,Q3) 

     names(List)<-c("res1","VP_Rsq","cutoff.table") 

    } #end else #3 

   } #end else #2 

     } #end else #1   

return(List) 

} #end COP 

 

 

 if(Type=="ADS"){ 

 VP.taxa<-function(MM,ENV,Type){ 

  VPcutoff<-function(ODS,ENV,Type){ 

    #create a matrix to store VPvalues for each CO 

    result1<-matrix(NA,nrow(ODS),21)  

    a<-colnames(ENV)[1] 

    b<-colnames(ENV)[2] 

    d<-colnames(ENV)[3] 

    e<-colnames(ENV)[4] 

    row.names(result1)<-

c(a,b,d,e,paste(a,b,sep="+"),paste(a,d,sep="+"),paste(a,e,sep="+"),paste(b,d,sep="+"),paste(b,e,sep="+"),pa

ste(d,e,sep="+"),paste(a,b,d,sep="+"),paste(a,b,e,sep="+"),paste(a,d,e,sep="+"),paste(b,d,e,sep="+"),"All","

Unexplained") 

    colnames(result1)<-c(0.01,seq(0.05,0.95,by=0.05),0.99) 

    #create a matrix to store sum,adjRsq,envAIC of all cutoffs 

    result2<-matrix(NA,21,2)  

    colnames(result2)<-c("Sum","Adj.R.square") 

    row.names(result2)<-c(0.01,seq(0.05,0.95,by=0.05),0.99) 

    LISTRES<-vector("list",21) 

    names(LISTRES)=c(0.01,seq(0.05,0.95,by=0.05),0.99) 

  result3<-vector("list",21) 

   names(result3)=c(0.01,seq(0.05,0.95,by=0.05),0.99) 

   for(i in 1:21){ 

       LISTRES[[i]]=COP(ODS,z=as.numeric(names(LISTRES)[i]),ENV,Type)    

    result1[,(22-i)]<-LISTRES[[c(i,2)]][1:nrow(ODS),] 

    result1[,i][result1[,i]<0]<-0 

    result2[(22-i),]<-LISTRES[[c(i,1)]] 

    result3[[i]]<-LISTRES[[c(i,3)]] 

    } 

   LIST2<-list(result1,result2,result3) 
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   names(LIST2)<-c("VP_Rsq","res1","cutoff.tables") 

  return(LIST2) 

  } #end VPcutoff 

   

  list.ecol<-vector("list",length(MM)) 

  names(list.ecol)<-names(MM)   

  for(j in 1:length(MM)){   

    list.ecol[[j]]<-VPcutoff(MM[[j]],ENV,Type) 

  } #end for 

  return(list.ecol) 

 } #end VP.taxa 

} #end if "ADS" 

  

 if(Type=="SAM"){ 

 VP.taxa<-function(MM,ENV,Type){ 

    limSAMco=as.numeric(readline("\nIf SAM-based only, maximum cutoff value? (e.g. 208)...\t")) 

  VPcutoff<-function(ODS,ENV,Type){ 

      SAM_perc<-limSAMco*c(0.005,0.01,0.015,0.025,0.05,0.075,0.1,0.15,0.25,0.4,0.5,0.6,0.75,0.85,1) 

    #create a matrix to store VPvalues for each CO 

    result1<-matrix(NA,nrow(ODS),length(SAM_perc))  

    a<-colnames(ENV)[1] 

    b<-colnames(ENV)[2] 

    d<-colnames(ENV)[3] 

    e<-colnames(ENV)[4] 

    row.names(result1)<-

c(a,b,d,e,paste(a,b,sep="+"),paste(a,d,sep="+"),paste(a,e,sep="+"),paste(b,d,sep="+"),paste(b,e,sep="+"),pa

ste(d,e,sep="+"),paste(a,b,d,sep="+"),paste(a,b,e,sep="+"),paste(a,d,e,sep="+"),paste(b,d,e,sep="+"),"All","

Unexplained") 

      colnames(result1)<-round(SAM_perc,0) 

    #create a matrix to store sum,adjRsq,envAIC of all cutoffs 

    result2<-matrix(NA,length(SAM_perc),2)  

    colnames(result2)<-c("Sum","Adj.R.square") 

      row.names(result2)<-round(SAM_perc,0) 

    LISTRES<-vector("list",length(SAM_perc)) 

    names(LISTRES)<-SAM_perc 

  result3<-vector("list",15) 

   names(result3)<-round(SAM_perc,0) 

   for(i in 1:length(SAM_perc)){ 

       LISTRES[[i]]=COP(ODS,z=as.numeric(names(LISTRES)[i]),ENV,Type)    

    result1[,i]<-LISTRES[[c(i,2)]][1:nrow(ODS),] 

    result1[,i][result1[,i]<0]<-0 

    result2[i,]<-LISTRES[[c(i,1)]] 

   result3[[i]]<-LISTRES[[c(i,3)]] 

    } #end for 

     

   LIST2<-list(result1,result2,result3) 

   names(LIST2)<-c("VP_Rsq","res1","cutoff.tables") 

  return(LIST2) 

  } #end VPcutoff 

   

  list.ecol<-vector("list",length(MM)) 

  names(list.ecol)<-names(MM)   

  for(j in 1:length(MM)){   

    list.ecol[[j]]<-VPcutoff(MM[[j]],ENV,Type) 

  } #end for                  

  return(list.ecol) 
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 } #end VP.taxa 

} #end if "SAM" 

         

result.VP<-VP.taxa(MM,ENV,Type) 

 

  if(OUTP=="y"){ 

      for(i in 1:length(MM)){ 

        write.table(result.VP[[c(i,2)]],paste(names(MM[i]),".sum.adjRsq.txt",sep=""),quote=FALSE) 

        write.table(result.VP[[c(i,1)]],paste(names(MM[i]),".VarPart.txt",sep=""),quote=FALSE) 

      } 

  } #end if 

   

  if(PLOT=="y"){ 

    par(mfrow=c(round(length(MM)/2,0),2)) 

    for(i in 1:length(MM)){ 

      barplot(result.VP[[c(i,1)]][1:15,],ylim=c(0,1),col=seq(1:15),xlab=c("%cutoff 

removed"),ylab=paste("VarPart_",names(MM[i]),sep="")) 

    } 

  legend(0.1,1,row.names(result.VP[[c(1,1)]][1:15,]),fill=seq(1:15),y.intersp=0.7) 

  } #end if     

           

return(result.VP) 

 

} #end of VP.COL 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

 

regcoeff<-function(SPE,ENV){ 

require(vegan) 

res2<-matrix(NA,1,5) 

colnames(res2)<-c("Sum",paste("RDA1.",colnames(ENV),sep="")) 

 res2[,1]<-sum(SPE) 

 if (nrow(SPE)<nrow(SPE)){ 

   res2[,2:5]<-c(NA,NA,NA,NA) 

  } # to avoid conflicts comparing original dataset/NA 

  else { 

  ENV1<-model.matrix(~.,as.data.frame(ENV[,1]))[,-1] 

  ENV2<-model.matrix(~.,as.data.frame(ENV[,2]))[,-1] 

  ENV3<-model.matrix(~.,as.data.frame(ENV[,3]))[,-1] 

  ENV4<-model.matrix(~.,as.data.frame(ENV[,4]))[,-1] 

  Q2<-decostand(SPE,"hel")[1:nrow(SPE),1:ncol(SPE)] 

  #RDA1 axis values for each env par 

  R1=rda(Q2~ENV1+ENV2+ENV3+ENV4) 

  res2[,2:5]=summary(R1)$biplot[,"RDA1"]   

  }  

return(res2) 

} 
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# Copyright (C) 2010 Angelique Gobet & Alban Ramette 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation; either version 2 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

 

signif<-function(SPE,ENV){ 

require(vegan) 

result3<-matrix(NA,1,5) 

colnames(result3)<-c("Pw","Pe1","Pe2","Pe3","Pe4") 

#colnames(result3)<-c("whole.sig","ENV1.sig","ENV2.sig","ENV3.sig","ENV4.sig") 

 

 ###Transform input as model matrices 

 if (length(SPE)<=nrow(SPE)){ 

  result3<-c("NA","NA","NA","NA")             

 } # to avoid conflicts comparing original dataset/NA 

 else { 

  ENV1<-model.matrix(~.,as.data.frame(ENV[,1]))[,-1] 

  ENV2<-model.matrix(~.,as.data.frame(ENV[,2]))[,-1] 

  ENV3<-model.matrix(~.,as.data.frame(ENV[,3]))[,-1] 

  ENV4<-model.matrix(~.,as.data.frame(ENV[,4]))[,-1] 

  Q2<-decostand(SPE,"hel")[1:nrow(SPE),1:ncol(SPE)] 

  #significance 

  ###significance of whole model 

  whole<-permutest.cca(rda(Q2~ENV1+ENV2+ENV3+ENV4),permutations=1000) 

  Sw<-sort(whole$F.perm) 

  if(length(Sw[Sw>whole$F.0])==0){ 

   result3[,1]<-c("<0.001") 

  } 

  else{ 

   result3[,1]<-length(Sw[Sw>whole$F.0])/length(whole$F.perm) 

  }   

  ###significance of each environmental parameter 

  ENV1.sig<-

permutest.cca(rda(Q2~ENV1+Condition(ENV2)+Condition(ENV3)+Condition(ENV4)),permutation=1000

,model="full") 

  Se1<-sort(ENV1.sig$F.perm) 

  if(length(Se1[Se1>ENV1.sig$F.0])==0){ 

   result3[,2]<-c("<0.001") 

  } 

  else{   

   result3[,2]<-length(Se1[Se1>ENV1.sig$F.0])/length(ENV1.sig$F.perm) 

  

  } 

  ENV2.sig<-

permutest.cca(rda(Q2~ENV2+Condition(ENV1)+Condition(ENV3)+Condition(ENV4)),permutation=1000

,model="full") 

  Se2<-sort(ENV2.sig$F.perm) 

  if(length(Se2[Se2>ENV2.sig$F.0])==0){ 

   result3[,3]<-c("<0.001") 

  } 
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  else{  

   result3[,3]<-length(Se2[Se2>ENV2.sig$F.0])/length(ENV2.sig$F.perm) 

  

  } 

  ENV3.sig<-

permutest.cca(rda(Q2~ENV3+Condition(ENV2)+Condition(ENV1)+Condition(ENV4)),permutation=1000

,model="full") 

  Se3<-sort(ENV3.sig$F.perm) 

  if(length(Se3[Se3>ENV3.sig$F.0])==0){ 

   result3[,4]<-c("<0.001") 

  } 

  else{  

   result3[,4]<-length(Se3[Se3>ENV3.sig$F.0])/length(ENV3.sig$F.perm) 

  

  }  

  ENV4.sig<-

permutest.cca(rda(Q2~ENV4+Condition(ENV2)+Condition(ENV3)+Condition(ENV1)),permutation=1000

,model="full") 

  Se4<-sort(ENV4.sig$F.perm) 

  if(length(Se4[Se4>ENV4.sig$F.0])==0){ 

   result3[,5]<-c("<0.001") 

  } 

  else{  

   result3[,5]<-length(Se4[Se4>ENV4.sig$F.0])/length(ENV4.sig$F.perm) 

  

  } 

  #result3<-list(Pw,Pe1,Pe2,Pe3,Pe4) 

  #names(result3)<-c("whole.sig","ENV1.sig","ENV2.sig","ENV3.sig","ENV4.sig") 

 } 

 

return(result3) 

} 

 

###################################################################### 
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