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Abstract

Background: The potential to adapt to a changing climate depends in part upon the standing genetic variation present in
wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval
survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.

Methodology/Principal Findings: To test the hypothesis that larval transcription profiles reflect location-specific responses
to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were
collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2uC above summer mean)
temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation
of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays,
allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results
show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and
development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.

Conclusions/Significance: These results provide first insights into location-specific variation in gene expression in the face
of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with
changing environmental conditions.
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Introduction

Coral populations are declining worldwide due to rising sea

surface temperatures (SSTs), overfishing, coastal development, and

pollution [1]. This population reduction has been exacerbated in

Caribbean reefs by declining juvenile recruitment, reduced

growth, and increased mortality [2,3,4]. Successful sexual

reproduction is necessary for recovery and persistence of these

ecosystems because it maintains genetic diversity within, and

connectivity among, benthic adult populations. Because larvae

have limited energetic reserves, the impact of temperature stress

on these early stages of development may differ significantly from

that seen in adult coral colonies [5,6]. As such, changing

temperature regimes are likely to have profound effects on

larval-mediated ecological processes including dispersal, connec-

tivity, and population dynamics of reef-building corals [5,6,7,8].

These effects will ultimately have consequences on coral

populations’ ability to adapt to a changing climate.

Determining the effects of thermal stress on corals has been a

major focus of research since the observation that elevated

temperatures, such as those caused by El Niño events, can result in

bleaching and subsequent high mortality on affected reefs [9,10].

A complex interplay among the animal host, its symbiotic algae

[11,12,13], and the microbial community inhabiting the mucus

layer [14,15,16] enable the holobiont (the coral animal with its

algal and bacterial symbionts) to respond to changing conditions.

The ability to respond and ultimately adapt to thermal stress will

be vital for the continued survival of corals in the face of global

climate change [1,17].

There has been much debate regarding the adaptive potential of

coral hosts. Because it is widely accepted that corals exist near their

thermal maxima throughout much of their range [18], their ability

to adapt to changing climate conditions has been questioned [1].

However, local adaptation, once thought to be minimal due to

long distance gene flow among marine populations, has since been

reconsidered in light of small scale population structure in multiple
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coral species [7]. Recent models of coral survival have incorpo-

rated parameters that consider adaptive potential (such as

increased thermotolerance), resulting in considerably different

outcomes depending on the strength of the adaptive response

[19,20,21]. Past studies have explored the mechanisms by which

corals may acclimate and/or adapt to elevated temperatures

[22,23], but empirical tests of coral performance in response to

thermal stress have been limited to studies of bleaching and

mortality in adult corals [18,24,25,26], until recently [27,28,29].

Each member of the holobiont contributes to the fitness of a

coral colony, and distinguishing among the fitness contributions of

each is vital to our understanding of the adaptive potential

inherent to coral populations. The most direct method for

investigating the host response in isolation is to work with coral

larvae, as many species do not take up algal, and possibly

microbial, symbionts until late in their larval development. Thus,

utilizing aposymbiotic larvae (without symbionts) allows for

isolation of symbiont-free genetic material, so any indicators of

stress can be confidently assigned to the host animal.

Effects of environmental stress on coral larvae include altered

developmental rates, abnormal morphologies, changes in settle-

ment behavior and reduced survival [30,31,32,33,34,35]. Mea-

surements on larvae of the Elkhorn Coral (Acropora palmata) show

that increases in temperature of only 2 degrees can decrease

survivorship, accelerate developmental rates, and increase swim-

ming speed, suggesting a host of accompanying physiological and

metabolic changes with consequences for important ecological

processes including recruitment, dispersal and connectivity [35,

Baums et al., unpublished data]. While larvae are expected to

react to environmental stress differently than adults, an under-

standing of the molecular stress response in this vulnerable and

critically important life stage is warranted. Additionally, identifi-

cation of differentially expressed genes in larvae may offer a first

clue to important stress tolerance genes in adults.

Larval response to stress has previously been measured using the

limited amount of phenotypic characters (morphological, behav-

ioral, survival) currently available for coral larvae. These are

restricted to the few clearly identifiable embryonic developmental

stages, and obvious pathological malformations that are observed

at high temperatures [31,33]. By treating gene expression levels as

molecular phenotypes, microarray technology greatly increases the

number of phenotypic traits available for assessing the effect of

stress on corals because we are able to survey the expression of

thousands of transcripts simultaneously [27,28,36,37]. Addition-

ally, with ever advancing functional annotation of genes and

genomes in many organisms, results can be interpreted to better

understand the mechanisms underlying key processes such as the

thermal stress response.

Examination of the molecular response of cnidarians to high

temperatures has revealed a wide range of variation in molecular

phenotypes. These include changes in expression levels of the

ubiquitous families of heat shock proteins (HSPs) [38], and

multiple genes involved in defense from oxygen radicals

[36,39,40,41]. Gene expression studies on larval and juvenile

corals have identified differential regulation of genes involved in

thermal and oxidative stress response, apoptosis, and cytoskeletal

structuring, among others [27,28,29]. Assessing gene expression

levels can reveal stress prior to the onset of obvious pathologies

and gives an immediate snapshot of the organism’s health faster

than many traditional metrics such as changes in growth rate,

mortality, or fertility [42,43].

In this study we compare gene expression profiles of embryos of

the common Caribbean coral Montastraea faveolata. Adult colonies

of this species are hermaphroditic and reproduce annually during

the late summer when seawater temperatures are maximal, by

spawning gametes into the water column where fertilization occurs

[44]. After fertilization, embryos develop into larvae and drift with

the currents for up to two weeks before settling onto the benthos

where they metamorphose into a primary polyp. Embryos of M.

faveolata raised from spawn collected from Florida and Mexico

were reared under elevated temperatures (1 to 2uC over local

summer means) and less stressful control temperatures based on

the year round means, to test the hypothesis that transcription

profiles reflect location-specific responses to thermal stress. We

expected that the thermal stress response would include differential

expression of genes for previously identified markers of stress, such

as those coding for HSPs, and oxidative stress proteins.

Additionally, we anticipated differential expression of genes

involved in cell structure and development that may play a role

in the irregular morphology observed in embryos reared at high

temperatures [31,35].

The results presented here expand our understanding of the

effect of temperature stress on gene expression during embryonic

development in M. faveolata as described in Voolstra et al. [27], by

extending the analysis from 12 to 24 hours of development. This

enables a more continuous view of embryonic development over

the first two days because the 48 hour samples from Mexico used

here are the same as those used in Voolstra et al. [27].

Materials and Methods

Gametes from multiple parent colonies of M. faveolata were

collected during mass spawning events at two locations: Puerto

Morelos, Mexico (20u52928.770N, 86u51904.530W) and Key

Largo, Florida (25u6942.660N, 80u18918.720W) (Fig. 1). Parent

genotypes were reconstructed using 5 previously published

polymorphic microsatellite loci [45] and estimates of allelic

diversity across all five loci were similar in both sample populations

(Mexico 14 alleles, Florida 19 alleles). This corresponded to three

to four parental genotypes contributing to the gene pool of each

batch and captured around 25% of the local allelic diversity

(unpublished data). STRUCTURE analysis of five polymorphic

microsatellite loci (unpublished) and previous population genetic

analyses [46] showed that these populations exchange larvae

frequently enough to prevent significant differentiation.

Sperm and eggs from multiple parents were pooled and

incubated for one hour to allow for fertilization, resulting in one

batch with multiple parents for each location. Fertilized eggs were

washed and transferred to temperature-controlled aquaria. In

Florida, larvae were raised in 1 L plastic containers with mesh

sides to allow for water exchange, suspended in 6 separate 45 L

polycarbonate bins containing filtered sea water (3 at each

treatment temperature). Water was circulated with an aquarium

pump and changed daily with filtered sea water preheated to the

target temperature. Target temperatures were maintained within

60.6uC with aquarium heaters and chiller units, and were

monitored with HOBO temperature data loggers (Onset Com-

puter Corp., MA) in each bin. The temperature exposure system

used for the Mexico embryos maintained target temperatures

within 60.2uC and is described in detail in [35]. Briefly, embryos

were cultured in three 500 mL plastic containers suspended in

each of two temperature controlled 12 L polycarbonate bins at

treatment and control temperatures. Water in the containers was

changed twice daily with water preheated to the desired

temperature by siphoning out the old sea water through a sieve

made of PVC pipe and 120 um mesh. This removed many of the

smaller particles and dying embryos that were smaller than the

mesh. Respective annual and summer mean temperatures from
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2005 to 2008, calculated by averaging monthly means of hourly

data, are 26.4uC and 29.3uC in Florida and 28.3uC and 29.5uC in

Mexico. Control temperatures were near the annual mean for

both locations (27uC Florida and 27.5uC Mexico; ‘‘mean’’). High

treatment temperatures were 1 to 2uC above the summer means

(30uC Florida and 31.5uC Mexico; ‘‘high’’) (Fig. 2).

Embryos for the microarray analysis were preserved in

RNAlater (Ambion, TX) after approximately one full day (22 to

24 hours; ‘‘24 hours’’) and two full days (46 to 48 hours;

‘‘48 hours’’) of development and stored at 280uC until RNA

extraction was performed. Each sample consisted of ca. 1500

genetically diverse embryos. In Florida, one sample was taken

from each of the three replicate bins at each time and temperature

(with the exception of the 48 hour sample at the high temperature

where there were only enough embryos remaining in two of the

three replicates). Biological replicates from Florida were used to

interrogate a single microarray slide each. Sampling in Mexico

was as described in [27], where embryos from each of the three

containers in the two replicate bins at a given temperature were

combined into a single composite biological replicate at both time

points. Three technical replicate arrays were run using RNA from

each composite biological sample from both temperatures and

time points.

Changes in water temperature can modify embryonic develop-

mental rates and thereby alter gene expression patterns. To verify

that expression differences among temperatures for a given

sampling time were not simply due to developmental differences

among samples, embryos from both treatment temperatures were

preserved in formalin or glutaraldehyde after 22 and 46 hours in

Florida, and 21.5, 28, and 50.5 hours in Mexico and viewed under

a dissecting microscope for classification by developmental stage

(Table 1). Visual assignment to any developmental stage is

approximate given that classification is based solely on external

morphology. By the time of blastula formation, the embryos are

too opaque to distinguish gradual internal changes associated with

gastrulation and development into planulae. Embryos reach a

blastula-like stage by ca. 6–8 hours after fertilization, and take ca.

20 more hours to transition from blastulae to full gastrulae

(invagination fully accomplished). It takes a further 40 hours to

reach the planula stage [47]. Since fertilization occurred over a

one hour period, there was often more than one identifiable stage

present at a given time point during early cleavage and

Figure 1. Map of the western Atlantic and northern Caribbean with study locations indicated by black circles.
doi:10.1371/journal.pone.0011221.g001

Figure 2. Mean monthly sea surface temperatures from 2005 to
2008 for the two study locations (Mexico and Florida).
Horizontal lines represent annual means. Area within the vertical lines
delineates the spawning season for M. faveolata. Error bars indicate 61
standard deviation. Grey lines represent monthly maxima and minima.
Data from NOAA weather buoys MLRF1 and 42056.
doi:10.1371/journal.pone.0011221.g002
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development, but we were not able to distinguish between subtle

differences during later embryonic stages.

RNA was extracted from approximately 1,500 embryos from each

sample and was used to interrogate a 2,620 feature (1,310 double

spotted unigenes) custom array [36,48]. Microarray protocols were

those of the Center for Advanced Technology at the University of

California, San Francisco (http://cat.ucsf.edu/). Total RNA was

extracted using the RNeasy Mini Kit (QIAGEN, CA). Concentra-

tion and quality of RNA extracts were quantified on a NanoDrop

ND-1000 spectrophotometer, and an Agilent 2100 Bioanalyzer. To

prepare RNA for microarray hybridization 1 mg of total RNA was

amplified with the MessageAmp II aRNA Kit (Ambion, TX). Bias

associated with this process is considered negligible [49]. To prime

the reverse transcription (RT) reaction 3 mg of aRNA was incubated

with 2 mL of 5 mg/mL random nonamers for 10 minutes at 70uC.

RT was carried out for 2 hours at 50uC using a master mix with a

4:1 ratio of aminoallyl-dUTP to TTP. Products of the RT reaction

were hydrolyzed by incubating the cDNA in 10 mL of 0.5M EDTA

and 10 mL of 1M NaOH for 15 minutes at 65uC. Following

hydrolysis, RT products were purified using MinElute columns

(Qiagen, CA), and cDNA synthesis was checked on a NanoDrop

spectrophotometer. Dye coupling reactions were performed using

Cy3 and Cy5 dyes (GE Healthcare, PA) diluted in 18 mL of dimethyl

sulphoxide. The coupling reactions were run in the dark for 2 hours

at room temperature. A final cleanup was performed using the

MinElute Cleanup Kit, and dye coupling was confirmed on a

NanoDrop spectrophotometer. Before hybridization microarray

slides were post-processed by UV crosslinking at 60 mJ; ‘‘shampoo-

ing’’ with 36SSC and 0.2% SDS at 65uC; blocking with 5.5g

succinic anhydride in 335 mL 1-methyl-2-pyrrilildinone and 15ml

sodium borate; and drying via centrifugation. Dye coupled cDNAs

were then mixed together in a hybridization buffer consisting of

0.25% SDS, 25 mM HEPES, and 36SSC. Hybridization mixtures

were boiled at 99uC for 2 minutes then allowed to cool at room

temperature for 5 minutes. Cooled hybridization mixtures were

pipetted under an mSeries Lifterslip (Erie Scientific, NH) and slides

were incubated overnight at 63uC in a custom hybridization

chamber. Hybridized microarray slides were then washed twice in

0.66SSC and 0.01% SDS, rinsed in 0.066SSC, and dried via

centrifugation. Microarrays were scanned using an Axon 4000B slide

scanner (MDS, CA).

As cluster analysis was the major goal of this study the

microarray experiment followed a reference design, where all

samples were hybridized against a common reference sample. The

pooled reference sample consisted of equal amounts of RNA from

all Mexico samples only, due to the fact that the Mexico samples

were processed in advance of the Florida samples. Reference

samples were labeled with Cy3, and temperature treatment

samples were labeled with Cy5. Because multiple factors were

targeted (time, temperature, and location), and the reference

sample was of no biological interest, dye swaps were not

performed [50].Three replicates were run for each temperature

treatment (except for the 48 hour high temperature sample from

Florida). Data from the microarrays are available from the Gene

Expression Omnibus Database (NCBI; GSE19998).

Spot intensities were extracted and background was subtracted

using GenePix Pro 6.0. GPR files were read into the Bioconductor

package LIMMA for further analysis in R [51,52]. Normalization

was performed using print-tip specific LOWESS to normalize

within arrays and the quantile normalization method to normalize

between arrays [53]. LIMMA uses linear regression models to

incorporate the power of replicated experimental design into gene

expression analysis. P-values were adjusted using an empirical

Bayes shrinkage of standard error, and false discovery rate was

corrected using the method of Benjamini and Hochberg [54].

Finally, a log fold change cutoff of 1.5 and a p-value threshold of

0.05 were used to filter significant results.

Significant DEGs were categorized based on cellular function

according to GO (Gene Ontology) and KEGG data (Kyoto

Encyclopedia of Genes and Genomes). Clone sequences are

available at http://sequoia.ucmerced.edu/SymBioSys/index.php.

Lists of differentially expressed genes (DEGs) were generated and

the overlap among the lists was visualized in Venn diagrams

constructed with Limma. Hierarchical clustering of transcriptome

profiles from model fitted results and computation of associated p-

values via bootstrap resampling was performed using the R

package pvclust [55]. The tree was visualized with FigTree 1.2.3

(http://tree.bio.ed.ac.uk/software/figtree/).

Unsupervised dimension reduction via principle components

analysis (PCA) was also carried out in R. PCA was used to identify

basic patterns among the highly dimensional gene expression

profiles. Briefly, PCA transforms possibly correlated variables into

Table 1. Percentages of M. faveolata embryos in various stages of development at control and treatment temperatures from
Mexico and Florida.

Location
Age
[hours]

Temperature
[uC]

Total
Embryos

Irregular
Embryos [%]

Normal Embryos
as Blastulae [%]

Normal Embryos as
Invaginated Blastulae [%]

Normal Embryos
as Gastrulae [%]

Normal Embryos
as Planulae [%]

Florida 22 27 141 6 4 96 0 0

22 30 57 7 2 98 0 0

46 27 66 0 0 3 95 2

46 30 34 50 0 0 100 0

Mexico 21.5 27.5 100 4 6 94 0 0

21.5 31.5 101 8 1 99 0 0

28 27.5 100 9 0 100 0 0

28 31.5 100 20 0 0 100 0

50.5 27.5 100 11 0 0 99 1

50.5 31.5 101 4 0 0 100 0

The percentage of irregular embryos is taken from the total number observed. Age is given in hours after fertilization. The percentage of normal embryos was calculated
after subtracting the irregular embryos which could not be scored for developmental stage. Mexico data for 50.5 hours are modified from Voolstra et al. [27].
doi:10.1371/journal.pone.0011221.t001
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a smaller number of uncorrelated variables called principle

components. Expression profile data from each treatment was

transformed to extract the principle components responsible for

the greatest amount of variance. The principle components were

then plotted in order of their contribution to the overall variance.

Results

Larval Development Patterns
In Mexico, developmental samples were collected just before

(21.5 hours) and just after (28 and 50.5 hours) the microarray

samples (24 and 48 hours). At 21.5 hours of development the

embryos were predominantly blastulae in the process of gastrulation.

By 28 hours, all of the embryos at the high temperature were in the

gastrula stage, while those at lower temperature still had large

invaginations. These data suggest that the embryos at 24 hours were

in the process of gastrulation, and that some proportion of the

embryos at the high temperature were more developmentally

advanced than those at the lower temperature (Table 1). By

50.5 hours, embryos at both temperatures were in the late gastrula

stage, but had not begun to swim or elongate into planulae. Florida

embryos collected at 22 hours were also predominantly in the

process of gastrulation. By 46 hours they were fully formed gastrulae,

indicating that embryos used for the microarray experiment from a

single time point were predominantly at the same developmental

stage across temperature treatments and locations.

Interestingly, cultures reared at the higher temperature in Mexico

and Florida included numerous misshapen embryos, confirming

similar observations in other studies of coral development at

elevated temperatures [30,33,35]. In Florida, embryos raised at the

higher temperature were most strongly affected, where 21% and

50% (22 and 46 hours respectively) were malformed.

Gene Expression Patterns
Hierarchical gene clustering. To visualize the pattern of

relationships among experimental treatments, a radial tree of

hierarchically clustered gene expression profiles was constructed

using 1,310 unigenes. Hierarchical clustering of gene expression

data indicated that all three factors of time, location, and

temperature had an effect on transcription profiles (Fig. 3). For

24 hour samples, the primary driver of gene expression profiles

was geographic location, regardless of the treatment temperature

at which they were raised. By 48 hours, however, the effect of

thermal stress became the dominant factor, leading samples from

Florida and Mexico to cluster together according to the treatment

temperature experienced. Additionally, the cluster of high

temperature samples after 48 hours of development was the

most distant branch of the tree, implying a divergence from

normal development to a signature profile resulting from a

common response to thermal stress.

Principal component analysis. PCA supported the patterns

detected by the hierarchical clustering. The first three principal

components (PC) explained the majority (85%) of the variance

inherent in the data, with PCs one and two already explaining

over 76% (Fig. S1A). Plotting the treatments on the first two

principal components showed that PC1 captured variation due to

developmental time, while PC2 captured variation arising from

geographic origin and water temperature (Fig. S1B).

Differential expression by developmental time. Consis-

tent with Grasso et al. [56], the effect of developmental time drove

the majority of changes in gene expression patterns overall

(Fig. 4A; Time). The list of genes that were differentially expressed

due to changes in developmental time was divided between sites to

identify general and location-specific components (results not

shown). While about 25% of DEGs responding to developmental

time were shared between locations (n = 108), a large number of

genes were differentially regulated in Mexico (n = 245) or Florida

(n = 105) alone, providing a major component of the clear

differentiation between locations observed in the hierarchical

clustering (Fig. 3; left panel).

Differential expression by temperature treatment. DEGs

responding to the temperature treatment were divided by location

and developmental time to identify shared and location-specific

components of stress response. Samples from both time points

showed similar numbers of DEGs responding to the temperature

treatment (Fig. 4C & 4D). Samples from 24 hours showed

numerous DEGs responding to differences in temperature that

are specific to Mexico (n = 108) and Florida (n = 118). However

there was almost no overlap in genes responding to temperature

between the sites. By 48 hours, the proportion of overlapping DEGs

had risen (n = 52; 21% of all DEGs), while the number of location-

specific DEGs remained similar to that observed at 24 hours

(n = 113 in Mexico; n = 81 in Florida). DEGs responding to the

temperature treatment that are common to both Mexico and

Florida represent the component of stress response in M. faveolata

that is shared between locations (Table S1). Temperature sensitive

DEGs observed in only one of the two locations may represent

location-specific strategies for coping with thermal stress (Table S2).

Differential expression by location under control

temperatures. Genes that were differentially expressed

between the locations under mean temperatures were examined

Figure 3. Radial tree of hierarchically clustered gene expres-
sion profiles for M. faveolata embryos collected from Florida
and Mexico after 24 and 48 hours of development. All three
factors of time, location, and temperature played a role in shaping gene
expression profiles. Note that clustering of day one samples was
according to location (M and F), while clustering of day two samples
was according to temperature treatment (m and h). Values along
branches indicate approximately unbiased p-values of Suzuki and
Shimodaira [55] based on 1000 bootstrap replicates. Abbreviations: M -
Mexico; F - Florida, 1 - 24 hours; 2 - 48 hours; m - mean temperature; h -
high temperature.
doi:10.1371/journal.pone.0011221.g003
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to detect location-specific expression under non-stressful conditions

(Fig. 4B). The greatest number of DEGs that varied by location at

control temperature were observed in the 24 hour samples

(n = 294). These are likely to represent variation in developmental

processes between the locations that exist under normal conditions.

By 48 hours, the number of genes that differed by location at

control temperatures dropped dramatically to only 39 with very few

transcripts (n = 16) carried over from 24 hours (Table S3).

Functional Response
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) annotation information was used to classify

DEGs into functional groups when possible, based on the

categories of Voolstra et al. [27]. Categories included: apoptosis;

cell proliferation, growth and development; cytoskeleton and cell

adhesion; DNA; electron transport and oxidative phosphorylation;

metabolism; proteolysis and protein degradation; regulation of

transcription; response to oxidative stress; response to stress; RNA;

signaling; translation and protein biosynthesis; and transport.

Detailed investigation of gene function was performed on DEGs

that represent the shared and location-specific components of the

thermal stress response. Under the shared component of the

temperature sensitive DEGs the functional category with the

greatest number of transcripts was cell proliferation, growth and

Figure 4. Overlap among differentially expressed genes in M. faveolata embryos from Florida and Mexico. (A) Differentially expressed
genes (DEGs) responding to all three main effects of location, time and temperature were identified (note the large number of genes responding to the
effect of developmental time). (B) When raised at control water temperatures the number of genes that were differentially expressed between the two
locations was high at 24 hours, but dropped sharply by 48 hours. (C) DEGs responding to temperature differences show almost no overlap between
locations at 24 hours (0 up, 1 down), but (D) considerable overlap by 48 hours. In B, upper and lower values indicate higher expression in Mexico relative
to Florida. In C and D, upper and lower values indicate higher and lower expression levels respectively, under thermal stress conditions.
doi:10.1371/journal.pone.0011221.g004
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development (n = 5). Multiple transcripts (n$3) were also involved

in the processes of apoptosis; cytoskeleton and cell adhesion; DNA;

proteolysis and protein degradation; and translation and protein

biosynthesis. Location-specific components in Florida included

cytoskeleton and cell adhesion (n = 7); proteolysis and protein

degradation (n = 6); and translation and protein biosynthesis

(n = 8). Other processes with multiple transcripts (n$5) included

apoptosis; cell proliferation, growth and development; cytoskele-

ton; metabolism; regulation of transcription; and transport. In

Mexico, processes that were enriched for transcripts included

translation and protein biosynthesis (n = 27), electron transport

(n = 11), proteolysis and protein degradation (n = 7), transport

(n = 7) and metabolism (n = 6). Enrichment of transcripts (n$5)

was also observed for the processes of cell proliferation, growth

and development and response to oxidative stress.

Discussion

The ability of corals to deal with changing climate conditions

will depend upon the adaptive potential of the host as well as its

symbionts. The results presented here expand upon our

understanding of the effect of temperature stress on embryonic

development in M. faveolata as described in Voolstra et al. [27], by

extending the early developmental analysis from 12 to 24 hours,

and adding a geographic component to the analysis. Variation in

gene expression profiles of coral embryos was evident in the

response to thermal stress at two locations within a species’ range.

We attributed these differences to variation in the host response

alone because only aposymbiotic embryos were studied. The

genetic response of adult corals is likely to differ somewhat from

that of larvae due to symbiont interactions and changes in

metabolic demands, however the observation of variation in these

early life stages points toward the potential presence of adaptively

significant variation upon which selection may be able to act. If

this is the case, post-dispersal adult populations carry the signature

of such early selection. While the limited biological replication in

this study limits the extent to which they can be generalized, our

results provide intriguing first insights into potential spatial

variation in stress response of coral larvae in the absence of

population differentiation.

A comparison of the genes that showed differential expression at

the elevated treatment temperatures at 48 hours in the Voolstra

et al. [27] study with those observed here reveals that multiple

stress response genes including ferredoxin (AOSC403) calmodulin

(AOSF573) and the proapoptotic caspase adapter protein

(AOSF761) behaved consistently at high temperatures in both

locations (Table S1). As did the histone proteins (AOSF1219 and

AOSF622) and several other genes involved in cell proliferation,

growth and development (AOSB596, AOSF1434, AOSF912),

cytoskeleton and cell adhesion (AOSF1012, AOSF634), and

translation and protein biosynthesis (AOSC1120, AOSF620,

CAOO902). Peroxidasin (AOSF997) was also upregulated at both

locations at 48 hours, but not significantly so in Florida. These

genes represent a suite of transcripts that are likely to play an

important role in the thermal stress response of corals from both

locations.

There were also many stress response genes identified in

Voolstra et al. [27] that differed between locations at the control

temperatures in this study (Table S3). The stress response genes

recombination repair protein 1 (AOSB392) and soma ferritin

(CAON1101) showed differences between the two locations at

control temperatures. The same was true for the cytoskeleton

related gene dynein light chain roadblock - type 2 (AOSF651), and

the system maintenance genes GTP-binding nuclear protein

Ran -1 (AOSF912) and Nuclear hormone receptor - 6 (AOSB596),

among several others involved in metabolism (CAON1380),

signaling (AOSC876), DNA (AOSF622), and RNA modification

(AOSF1077). Interestingly both populations showed differential

expression of ribosomal proteins, although the specific protein

homologs that showed differential regulation were not the same

across locations, nor was the direction of change (up in Florida and

down in Mexico). Variation in expression levels between sampling

sites indicates location-specific molecular responses to environ-

mental stress.

Phenotypic Variation across Time and Space
The observation of malformed embryos provides a clear

indication of the detrimental effect of elevated temperatures on

larval development, especially in Florida. However, this is only one

measureable phenotype of stress. The power of this study lies in

the thirteen hundred transcripts that were measured simulta-

neously on the microarrays, revealing distinct patterns of gene

expression by time, location and temperature (Fig. 3 & S1). Gene

expression patterns indicated location-specific signatures of gene

expression under average temperatures, as well as location-specific

and conserved components of the response to elevated tempera-

ture as illustrated in the hierarchical tree (Fig. 3).

Gene expression levels measured by microarrays represent

molecular phenotypes and will require additional research to

identify the underlying genetic changes driving variation in

expression levels [57]. Because variation in gene expression can

reflect both heritable variation (i.e. changes in gene sequence or

changes in transcript abundance due to differences in regulatory

elements) and non heritable variation (arising from plasticity in

response to environmental conditions, immune status, stress level,

or physiological acclimatization to native habitats) only a subset of

this variation can be expected to have true adaptive significance

[58,59]. However in studies where taxonomic divergence between

groups has been taken into account, many transcripts exhibit

changes in expression levels beyond what would be expected

under genetic drift alone. This suggests that natural selection can

play a role in changing expression levels in at least some loci [59].

Additionally, when heritability has been assessed, a large

proportion of variation in gene expression is heritable and often

involves changes in regulatory elements [57].

Development. The large number of transcripts that differ

significantly in their expression level according to developmental

time appears to be the primary factor driving the location-specific

clustering observed in the hierarchical tree (Fig. 3; left panel). This

result is in line with the results of Grasso et al. [56] where a large

proportion of transcripts (21% of all surveyed) are differentially

regulated with changing developmental time.

While studies of transcriptome profiles from larval invertebrates

are limited, findings in polychaetes and ascidians suggest extensive

variation in gene expression with development and onset of

metamorphosis [60,61]. Additionally, larval transcription profiles

in abalone show that the expression of many transcripts are

affected by interactions with exogenous cues such as settlement

substrate [62], and in urchins, may be the target of extensive

selective pressure [63].

Location. Distinct clustering of 24 hour embryos by location

provides an indication that M. faveolata might show location-

specific gene expression despite a lack of population differentiation

[46].

Multiple taxa including killifish, yeast, Drosophila and humans

have all shown high levels of intra-population variation in gene

expression ranging from 18 to 83% [58,64,65,66]. Evidence from

the killifish, Fundulus hereroclitus, along a temperature cline suggests
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that variation in gene expression among populations is a positive

function of within population variation. Following from neutral

theory, divergence in gene expression patterns is expected to be

proportional to taxonomic divergence between groups [59], and a

large proportion of this variation must be due to genetic drift [67].

Considering the lack of divergence observed using neutral

markers between the study sites in Florida and Mexico [46], it is

unlikely that genetic drift would be strong enough to drive all of

the observed transcriptional differences. Patterns of this sort have

been observed in long lived trees, where low variation among

populations according to neutral markers is accompanied by

strong genetic clines in quantitative trait loci related to local

climate adaptation [68,69]. Alternatively, local acclimatization of

mother colonies to annual mean temperature differences might

affect larval development patterns [70].

Although thousands of larvae were analyzed in this study,

increased replication over time and space will be necessary to

provide confirmation of the patterns observed. This is a

challenging task due to the vagaries of Caribbean coral spawning,

difficult field conditions, and permitting constraints. Often, only

some colonies/genets spawn on a given night. Consequently, the

creation of genetically diverse larval pools with sufficient numbers

of larvae to allow for a well replicated experimental design is

difficult. We did not address the heritability of the putative

location-specific stress response. Appropriate data would require

rearing an F2 generation, a task that might be achievable in the

future with further progress in coral husbandry [71]. Regardless of

the mechanism, if substantiated, location-specific stress responses

would have implications for both restoration planning and the

study of coral evolution. This result supports the growing body of

evidence indicating the potential for local variation in coral

populations despite gene flow [7].

Temperature. The clustering of 48 hour samples into groups

defined by stress treatment (Fig. 3) incorporates both a conserved

response to thermal stress across locations, and location-specific

components (Fig. 4C & 4D, Table S1 & S2). The observation of a

common stress response only after 48 hours of development could

be explained either by a true absence, or a failure to detect

differential regulation in the 24 hour samples. Failure to detect

early differential expression of some genes responding to

temperature stress could be due either to changes in expression

levels of a large number of genes related to development, or

because sampling occurred long enough after the onset of the

stress treatment that differential expression had ceased, as would

be expected based on the results of Rodriguez-Lanetty [28], where

HSPs were upregulated within 3 hours of exposure to thermal

stress but not after 10 hours.

Embryogenesis of coral larvae is dominated by transcription of

genes involved in cell replication and proliferation [56]. This

dominance (see factor Time in Fig. 4A) may mask a functional

response to thermal stress in early stages of development. Also,

because stressful temperatures for this study were chosen based on

local summer maxima and were intended to be permissive enough

to allow for continued development without excessive mortality,

the treatments may reflect expression of genes as a response to

chronic high temperatures rather than a response to acute heat

shock. This seems unlikely however, given the high mortality and

number of misshapen embryos observed at the high temperatures.

The higher proportion of misshapen embryos could be a

confounding factor for some of the location-specific DEGs unique

to Florida at 48 hours, but not at 24 hours (Fig 4D &Table S2).

Morphological anomalies were not apparent at 24 hours and we

identified an even larger number of location-specific DEGs

responding to temperature at this time point (Fig. 4C). Indeed,

differential gene expression in response to temperature stress was

likely the cause rather than the consequence of the abnormal

morphologies observed at 48 hours. Nevertheless, Florida and

Mexico samples from the high temperature treatments clustered

tightly at 48 hours despite the higher proportion of visibly

irregular larvae in Florida.

Previous studies of thermal stress tolerance in adult M. faveolata

have observed expression of HSPs only after short term exposure

to temperatures higher than 33uC [72,73]. Our results provide

additional evidence that the response of coral larvae to stress

depends not only on the degree of stress, but the duration and

timing of onset of the stress exposure [27].

Functional Stress Response
The clear effect of thermal stress on embryonic transcription

profiles supports the idea that the host plays an important role in

coral thermotolerance [29,74,75,76], though the fitness implica-

tions of this response are not yet known. Among the DEGs

observed in response to thermal stress in both populations, a large

proportion was categorized into the processes of cell proliferation,

growth and development. Genes in this category were generally

downregulated and it is hypothesized that this downregulation

relates to the mechanisms underlying the abnormal morphology

observed when larvae are grown at high temperatures (Table 1).

Other abundant categories were those of cytoskeleton and cell

adhesion; electron transport and oxidative phosphorylation;

metabolism; protein and proteolysis degradation; translation and

protein biosynthesis; and transport. Genes related to translation

and protein biosynthesis; proteolysis and protein degradation,

electron transport and oxidative phosphorylation, were generally

downregulated, while cytoskeleton and cell adhesion; metabolism;

transport; response to stress; and response to oxidative stress genes

were both up and downregulated. Together these results support

previous models of stress response in corals and other taxa where

an overall change in metabolic activity is associated with reduced

protein biosynthesis, and oxidative phosphorylation [28,36,77].

Although there was substantial overlap in the functional categories

of location-specific genes, many DEGs involved in the response to

stress were unique to each location. This may represent locally

differing strategies for dealing with thermal stress, but a thorough

comparison of differences in molecular function across locations

would require a larger, more representative microarray and a

more complete functional annotation of cnidarian genes than is

currently available.

Heat shock protein (hsp 90a) is downregulated. The

conserved downregulation in both locations of the heat shock

protein hsp90a (AOSC617; Fig. S2) was unexpected in light of its

principle role as a molecular chaperone involved in response to

thermal stress. This result is contrary to expectations based on

previous studies that found HSPs were upregulated at high

temperatures in adult M. faveolata [36,72], 10 day old larval A.

millepora [28], and other adult cnidarians [38]. The analysis of

Voolstra et al. [27] did not show significant differential expression

of hsp90a at 12 or 48 hours, but a slight upregulation was evident

after 12 hours. Slight upregulation was also observed in the

24 hour sample here, but after 48 hours the pattern is strongly

reversed such that the differential expression between mean and

high temperature treatments over samples from both locations was

statistically significant (Fig. S2).

Although the expression of HSPs in response to thermal stress

appears to be universal [78], alternative forms of these proteins

may be utilized in even closely related organisms [79], and a wide

range of HSPs have been observed within the Scleractinia [38].

Since the microarray used here contains only homologs of hsp90a
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and hsp97 it is possible that other HSPs were expressed but not

detected.

Investigation of the cellular function of HSPs reveals that their

role in the cell is not limited to protection from thermal stress

however, and that they may be involved in a number of processes

important to development including cell proliferation, cell cycle

control, hormone receptor binding, microtubule formation and

immune response [80,81,82]. Additionally, prolonged expression

of HSPs 70 and 104 result in deleterious effects, representing a

trade-off between thermotolerance and optimal growth and

development in Drosophila and yeast [83,84,85].

The complex role of hsp90a suggests different functions for

HSPs depending on the life stage of the organism and the

environmental conditions experienced. Here, hsp90a was strongly

downregulated in M. faveolata embryos that had been exposed to

high temperatures for 46 to 48 hours, even though adult M.

faveolata show an upregulation of hsp90a in response to stress after

10 days of exposure to high temperatures [36]. Similarly, 10-day

old A. millepora larvae also showed upregulation of hsp70, hsp90a
and gp96 after up to 3 hours of exposure to thermal stress [28].

However, after 10 hours of exposure the difference was no longer

significant, suggesting that the upregulation of HSPs may occur

only immediately following exposure to stress. In light of this

functional complexity and the strong downregulation of hsp90a
observed in this experiment, it is proposed that hsp90a plays a

developmental role in early stages of coral embryogenesis, and that

upregulation of this transcript is no longer evident after several

hours of chronic thermal stress.

Oxidative stress response. The response of corals to

elevated temperatures is closely tied to their response to oxidative

stress. Symbiotic cnidarians respond to high temperature with

upregulation of numerous oxidative stress genes [36,42,86,87].

Signals of the oxidative stress response can originate from the

symbiotic algae as well as the animal host as a response to increased

production of radical oxygen species in the mitochondria or

chloroplasts during stress. Thus, the origin of the oxidative stress

response in corals has been debated [88].

Our findings suggest that some of the oxidative stress genes that

show differential regulation in response to temperature are indeed

of animal origin. Two genes involved in the oxidative stress

response; ferredoxin (AOSC403) and peroxidasin (AOSF997) were

found to be significantly differentially regulated at high temper-

atures in both populations (Fig. S2). Other DEGs involved in the

response to oxidative stress, included soma ferritin (CAON1101),

malate dehydrogenase (AOSF1222), glutathione s-transferase m
(AOSF1447), and catalase (AOSF550). In contrast, the oxidative

stress response of 10 day old A. millepora larvae was minimal after

3 hours but showed a slight, though statistically insignificant,

increase in some transcripts after 10 hours [28]. This again

suggests that developmental stage and/or timing of the onset of

stress influences regulation of stress response genes. In light of the

complexity of the oxidative stress response, it is difficult to say how

differential regulation of these proteins will affect the cell, but

downregulation of key enzymes, such as glutathione s-transferase

m, can change intracellular conditions leading to an overall

enhancement of the oxidative stress response [89].

Conclusions
Corals’ ability to adapt to climate change depends upon their

capacity to exploit functional genetic variation inherent to

populations. In the current experiment, heritability of the detected

variation was not assessed. While the genes that underlie

differences among transcription profiles may differ in terms of

sequence, copy number, or transcriptional regulators, observed

differences could also be due to maternal effects and as such, gene

expression profiles must be treated only as phenotypic variants.

Further work is needed to establish the fitness consequences and

heritability of observed changes in larval gene expression to

determine the ecological and evolutionary significance this

variation may have on the adaptive potential of corals’ in the

face of environmental change.

Our results add to a growing body of evidence that suggest

considerable plasticity of coral gene expression profiles in the face

of various stressors including high SSTs, predation, and turbidity

[27,36,90,91]. We provide support for location-specific signatures

of gene expression in embryos of a reef-building coral from

different parts of its geographic range. Moreover, we observe both

location-specific and general components of stress response during

later stages of development. Additional testing of the hypotheses

presented in this work in combination with improved larval

rearing techniques will help elucidate functional variation in

natural coral populations and enhance conservation and restora-

tion efforts by allowing managers to consider geographic variation

in traits of importance to coral survival. Should further studies

confirm the existence of ecotypes in corals in the face of gene-flow,

ecological studies and management strategies would need to re-

focus on micro-habitat characterization and conservation [69].

Supporting Information

Table S1 Transcripts of M. faveolata embryos differentially

expressed between the two treatment temperatures at both study

locations. Up and downregulation is in relation to a common

reference sample. Log2 fold change values in bold indicate

significant results. Gene ID: NCBI EST database access number.

Found at: doi:10.1371/journal.pone.0011221.s001 (0.04 MB

XLS)

Table S2 Transcripts of M. faveolata embryos differentially

expressed between the two treatment temperatures at only one

study location. Up and downregulation is in relation to a common

reference sample. Log2 fold change values presented for significant

differences only. Gene ID: NCBI EST database access number.

Found at: doi:10.1371/journal.pone.0011221.s002 (0.08 MB

XLS)

Table S3 Transcripts of M. faveolata embryos differentially

expressed between study locations at the control temperature. Up

and downregulation is in relation to a common reference sample.

Log2 fold change values presented for significant differences only.

Gene ID: NCBI EST database access number.

Found at: doi:10.1371/journal.pone.0011221.s003 (0.07 MB

XLS)

Figure S1 Principal component (PC) analysis by treatment of

transcription profiles from 24 and 48 hour M. faveolata larvae

collected from Florida and Mexico illustrating the high explana-

tory power of the first two PCs (A). Plotting the treatments on the

first two PCs shows that PC1 captures variation due to

developmental time, while PC2 captures variation arising from

both geographic origin in day one samples and temperature

treatment in day two samples (B). Plotting against the 3rd PC (not

shown) does not reveal any additional patterning. Symbols: M -

Mexico (squares); F - Florida (circles), 1 - 24 hours (filled); 2 -

48 hours (open); m - mean temperature; h - high temperature.

Found at: doi:10.1371/journal.pone.0011221.s004 (2.27 MB TIF)

Figure S2 Gene expression levels (log2 fold change) across all 8

treatments for stress response genes (Heat shock protein 90a;

Transcription factor hes-1) and oxidative stress response genes

(Ferredoxin; Peroxidasin) shared between Florida and Mexico.
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Abbreviations: M - Mexico; F - Florida; 1 - 24 hours; 2 - 48 hours;

m - mean temperature; h - high temperature.

Found at: doi:10.1371/journal.pone.0011221.s005 (6.64 MB TIF)
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69. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in

trees. Annual Review of Ecology, Evolution and Systematics 38: 595–619.

70. Räsänen K, Kruuk LEB (2007) Maternal effects and evolution at ecological
time-scales. Ecology 21: 408–421.

71. Petersen D, Carl M, Borneman E, Brittsan M, Hagedorn M, et al. (2008) Noah’s
Ark for the threatened Elkhorn coral Acropora palmata. Coral Reefs 27: 715.

72. Sharp VA, Brown BE, Miller D (1997) Heat shock protein (hsp 70) expression in

the tropical reef coral Goniopora djiboutiensis. Journal of Thermal Biology 22:
11–19.

73. Black NA, Voellmy R, Szmant AM (1995) Heat shock protein induction in

Montastraea faveolata and Aiptasia pallida exposed to elevated temperatures.

The Biological Bulletin 188: 234.

74. Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH (2008) Species–specific

interactions between algal endosymbionts and coral hosts define their bleaching

response to heat and light stress. Proceedings of the Royal Society B: Biological

Sciences 275: 2273.

75. Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of

thermotolerance in the reef coral Goniastrea aspera. Marine Ecology Progress

Series 242: 119–129.

76. Baird AH, Gilmour JP, Kamiki TM, Nonaka M, Pratchett MS, et al. (2006)

Temperature tolerance of symbiotic and non-symbiotic coral larvae. Proc 10th

Int Coral Reef Symp 1: 38–42.

77. Kammenga JE, Herman MA, Ouborg NJ, Johnson L, Breitling R (2007)

Microarray challenges in ecology. Trends in Ecology & Evolution 22: 273–279.

78. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones,

and the stress response: evolutionary and ecological physiology. Annual Review

of Physiology 61: 243–282.

79. Bosch TC, Krylow SM, Bode HR, Steele RE (1988) Thermotolerance and

synthesis of heat shock proteins: these responses are present in Hydra attenuata

but absent in Hydra oligactis. Proceedings of the National Academy of Sciences

85: 7927.

80. Kaufmann SH (1990) Heat shock proteins and the immune response.

Immunology today 11: 129.

81. Perret E, Moudjou M, Geraud ML, Derancourt J, Soyer-Gobillard MO, et al.

(1995) Identification of an HSP70-related protein associated with the centrosome

from dinoflagellates to human cells. Journal of Cell Science 108: 711.

82. Lindquist S, Craig EA (1988) The heat-shock proteins. Annual Review of

Genetics 22: 631–677.

83. Feder JH, Rossi JM, Solomon J, Solomon N, Lindquist S (1992) The

consequences of expressing hsp70 in Drosophila cells at normal temperatures.

Genes & development 6: 1402.

84. Krebs RA, Feder ME (1997) Natural variation in the expression of the heat-

shock protein Hsp70 in a population of Drosophila melanogaster and its

correlation with tolerance of ecologically relevant thermal stress. Evolution. pp

173–179.

85. Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for

tolerance to many forms of stress. The EMBO journal 11: 2357.

86. Sunagawa S, Choi J, Forman HJ, Medina M (2008) Hyperthermic stress-

induced increase in the expression of glutamate-cysteine ligase and glutathione

levels in the symbiotic sea anemone Aiptasia pallida. Comparative Biochemistry

and Physiology, Part B 151: 133–138.

87. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to

elevated temperatures. Coral Reefs 16: 187–192.

88. Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, Pringle JR

(2008) Cell biology in model systems as the key to understanding corals. Trends

in Ecology & Evolution 23: 369–376.

89. Dorion S, Lambert H, Landry J (2002) Activation of the p38 signaling pathway

by heat shock involves the dissociation of glutathione S-transferase Mu from

Ask1. Journal of Biological Chemistry 277: 30792.

90. Hoover CA, Slattery M, Targett NM, Marsh AG (2008) Transcriptome and

Metabolite Responses to Predation in a South Pacific Soft Coral. The Biological

Bulletin 214: 319.

91. Bay LK, Ulstrup KE, Nielsen H, Jarmer H, Goffard N, et al. (2009) Microarray

analysis reveals transcriptional plasticity in the reef building coral Acropora

millepora. Molecular ecology 18: 3062–3075.

Coral Stress Response

PLoS ONE | www.plosone.org 11 June 2010 | Volume 5 | Issue 6 | e11221


