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Le rôle de l'infiniment petit dans la nature est infiniment grand.  

* 

In der Natur ist die Bedeutung des unendlich Kleinen unendlich groß. 

Louis Pasteur (ca. 1880) 
 



 

Summary  

Deep-sea floors are diverse environments that range from permanently cold (desert-like 

plains) to hot systems (hydrothermal vents). In hot systems, primary productivity is performed 

by microbial communities which use chemical energy generated by geological processes 

(lithotrophy). This energy transfer from mantle to the ocean is as yet poorly understood, and 

the diversity and activity of microbes at these sites is therefore an interesting target for 

microbial ecologists. However, the vast majority of all globally distributed deep-sea 

sediments is permanently cold. The distribution of microorganisms in deep-sea floors and the 

factors controlling it at small and large scales are important for the understanding of the 

mechanisms that regulate biodiversity. 

During this thesis, hydrothermally influenced sediments of the peridotite-hosted Logatchev 

hydrothermal vent field were investigated in an interdisciplinary study to reveal the diversity 

and activity of the associated microbial communities. In situ microprofiles showed that these 

sediments were controlled by diffusive transport, instead of previously reported advective 

processes. White mats on top of these sediments resemble Beggiatoa-mats from the basalt-

hosted field in the Guaymas Basin. However, fluorescence in situ hybridization revealed that 

the overlying sulfur-mats were dominated by filamentous Epsilonproteobacteria or a vibrioid 

Arcobacter-type. The microbial community of the surface layer was predominantly composed 

of Epsilonproteobacteria (7-21%), Deltaproteobacteria (20-21%), and Bacteroidetes (19-

20%). Comparative 16S rRNA gene sequence analyses identified various bacteria related to 

those found in basaltic systems. 

The presence of an active microbial community in these sediment surface layers was 

confirmed by high oxygen consumption rates. Geochemical analyses detected metal-sulfides 

in the sediments, elemental sulfur in the mats and an intensive sulfide flux from below. Ex 

situ incubations and turnover rate experiments revealed that sulfide is consumed and that 

sulfate-reduction is performed by the surface sediment microbial community. This was 

consistent with the detection of aprA-genes and soxB-genes, which are both key genes of the 

sulfur cycle. Further metabolic capabilities such as denitrification and CO2-fixation were 

indicated by primary analysis of metagenomic data retrieved by pyrosequencing. So far, our 

analyses suggest that sulfur cycling is one of the driving forces for primary production and 

biomass formation in surface sediments of the ultramafic-hosted Logatchev hydrothermal 

vent fields. Therefore, major differences in microbial composition between basalt- and 

peridotite-hosted fields were not detected.  



 

Hydrothermally influenced sediments from the Mid-Atlantic Ridge and permanently cold 

sediments from three basins of the eastern South Atlantic Ocean were investigated to examine 

the ability of microorganisms to disperse in the deep-sea. Besides spatial distance, the 

structuring effect of the physical barrier Walvis Ridge, which separates the Cape Basin from 

the other two basins, was determined. The analysis of 16S rRNA gene sequences of the deep-

sea sediments revealed phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria 

and Acidobacteria, which were present in all three basins. The distribution of these shared 

phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water 

masses, suggesting a high dispersal capability, as also indicated by low distance–decay 

relationships. In contrast, the comparison of the total bacterial diversity of the cold sediments 

as well as of the hydrothermally influenced sediments revealed significant differences 

between the microbial communities. Within the Logatchev field and therefore for small 

distances (<10 km) microbial biogeography was primarily controlled by environmental 

heterogeneity. In contrast, the analysis of the permanently cold sediments revealed that at 

intermediate (10–3000 km) and large scales (>3000 km), both factors influenced bacterial 

diversity, indicating a complex interplay of local contemporary environmental effects and 

dispersal limitation. 



 

Zusammenfassung 

Meeresböden in der Tiefsee sind sehr vielfältig und reichen von permanent kalten Sedimenten 

(Tiefseeebenen) bis hin zu hydrothermal beeinflusstem heißem Meeresgrund. Die Primär-

produktion an Hydrothermalquellen wird von mikrobiellen Gemeinschaften übernommen, die 

in der Lage sind anorganische Verbindungen als Energiequellen zu nutzen (Lithotrophie). 

Dieser Energietransfer vom Erdmantel in den Ozean ist bisher noch wenig erforscht. Die 

Charakterisierung der an diesem Prozess beteiligten mikrobiellen Gemeinschaften und deren 

Aktivität ist daher von besonderem Interesse. Die meisten Tiefseeböden sind allerdings mit 

permanent kalten Sedimenten bedeckt. Die globale Verteilung als auch die Faktoren, die die 

Verbreitung von Mikroorganismen in der Tiefsee bestimmen, liefern wichtige Information 

über die Mechanismen, die für die Regulierung der Biodiversität verantwortlich sind.  

Im Rahmen dieser Doktorarbeit wurde die Diversität und Aktivität von mikrobiellen 

Gemeinschaften in hydrothermal beeinflussten Sedimenten des Logatchev Feldes untersucht, 

das ultramafische Gesteine als wichtige Bestandteile aufwies. In situ Mikroprofile von den 

vorhandenen Sedimenten zeigten, dass Transportprozesse in diesen Sedimenten durch 

Diffusion bestimmt sind und nicht wie bereits bekannt durch advektive Prozesse. Weiße 

Matten auf der Sedimentoberfläche ähnelten Beggiatoa-Matten, die für Sedimente im Basalt-

dominierten Guaymas Basin beschrieben wurden. Fluoreszenz in situ Hybridisierungen 

zeigten, dass filamentöse  Epsilonproteobacteria oder vibrioförmige Arcobacter Spezies diese 

weiße Mattengemeinschaft dominierten. Die mikrobielle Gemeinschaft in der 

Oberflächenschicht setzte sich aus Epsilonproteobacteria (7-21%), Deltaproteobacteria (20-

21%) und  Bacteroidetes (19-20%) zusammen. Vergleichende 16S rRNA Gen-Analysen 

zeigten, dass viele nah verwandte bakterielle Sequenzen ebenfalls in Basalt-dominierten 

Hydrothermalquellen gefunden wurden.  

Das Vorhandensein einer aktiven mikrobiellen Gemeinschaft in den hydrothermal 

beeinflussten Sedimenten wurde durch hohe Sauerstoffrespirationsraten bestätigt. 

Geochemische Analysen wiesen Metallsulfide in den Sedimenten, elementaren Schwefel in 

den Matten und eine intensiven Sulfideinfluss aus den tieferen Schichten nach. Ex situ 

Inkubationsversuche und Ratenmessungen wiesen auf Sulfid als Energiequelle, sowie auf 

dissimilatorische Sulfatreduktionsprozesse hin. Dies wurde unterstützt durch den Nachweis 

von Schlüsselgenen des Schwefelkreislaufs (aprA, soxB). Pyrosequenzierung des 

Metagenoms ergab Denitrifikation und CO2-Fixierung als weitere mögliche metabolische 

Fähigkeiten der mikrobiellen Gemeinschaften. Die bisherigen Untersuchungen weisen darauf 

hin, dass schwefelumwandelnde Mikroorganismen die wichtigsten Primärproduzenten 



 

darstellen und somit hauptsächlich für die Produktion von Biomasse in den hydrothermalen 

Sedimenten des ultramafischen Logatchev Feldes verantwortlich sind. Daher wurden keine 

bedeutenden Unterschiede in der mikrobiellen Zusammensetzung zwischen basaltischen und 

ultramafischen Systemen  festgestellt.  

Diese hydrothermal beeinflussten Sedimente des Mittelatlantischen Rückens, und 

permanent kalte Sedimente aus drei Tiefseebecken des östlichen Süd-Atlantiks wurden 

weiterhin untersucht, um die Verbreitung von Mikroorganismen in der Tiefsee zu erforschen. 

Dazu wurde der Einfluss der Entfernung wie auch der physikalischen Barriere 

“Walfischrücken“ bestimmt, der das Kapbecken von den anderen beiden Tiefseebecken 

trennt. Die Analyse der 16S rRNA Gene aus den permanent kalten Sedimenten ergab 

Sequenzen von Gammaproteobacteria, Deltaproteobacteria und Acidobacteria für alle drei 

Tiefseebecken. Die Verteilung dieser Gruppen schien somit weder vom “Walfischrücken“ 

noch von den daraus resultierenden verschiedenen Tiefenwassern beeinflusst zu sein. Dies 

wies auf eine weite Ausbreitung dieser Gruppen hin, die durch niedrige Distanz-Verteilungs-

Faktoren (distance-decay) bestätigt wurde. Im Gegensatz dazu ergab der Vergleich der 

gesamten erhaltenen bakteriellen Gemeinschaft sowohl vom hydrothermalen also auch von 

den kalten Sedimenten signifikante Unterschiede in ihrer Zusammensetzung. Die 

Biogeographie der bakteriellen Gemeinschaft des Logatchev Feldes, und somit die Verteilung 

über geringe Distanzen (<10 km), wurde hauptsächlich bestimmt durch Umweltfaktoren. 

Dagegen zeigte die Analyse der kalten Sedimente, dass die Verteilung über intermediäre 

(10-3000 km) und große Distanzen (>3000 km) von Umweltfaktoren und der Distanz 

abhängt, welches auf ein komplexes Zusammenspiel von lokalen Umweltbedingungen und 

Verbreitungsgrenzen hindeutet. 
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I Introduction 

1 Deep-sea floor  

The deep-sea floor (>1000 m water depth) covers 67% of the Earth’s surface. The seabed is a 

highly diverse and dynamic environment. Besides the vast desert-like plains of deep-sea mud 

there are also diverse landscapes of canyons, cold seeps, deep-water coral reefs, mud 

volcanoes, carbonate mounds, brine pools, gas hydrates, hot vents, seamounts, ridges, 

fractures and trenches (Figure 1).  

 

The most unique physical parameter in the deep-sea is hydrostatic pressure. The pressure 

increases by ca. 1 bar for every 10 meters, reaching a maximum of ~1100 bar at the bottom of 

Challenger Deep in the Mariana Trench. The deep-sea floor can be divided in the surface and 

subsurface seabed. The surface layer is mixed by burrowing animals at sediment-covered 

seafloors, providing exchange with the ocean water. The process in which living organism 

actively transport bottom water through the sediment and therefore through their habitat is 

known as bioirrigation (Glud et al., 1994; Hughes and Gage, 2004; Quéric and Soltwedel, 

2007). The seafloor of the deep sea is however not completely sedimented (Figure 2). Near 

ridge axes, where the crust is young, bare unsedimented rock is exposed and interacts directly 

with the seawater. Therefore, for hard grounds, such as those found at the mid-ocean ridges 

and in the central Pacific, it is more difficult to define the extension of surface versus 

subsurface seabed. In the subsurface, temperature is the only environmental variable that 

appears to set the ultimate limit for life, limiting life at a depth of 2-4 km below the seafloor 

(Wilhelms et al., 2001). 

Figure 1: Vertical section of the seabed and seafloor structures (Jørgensen and Boetius, 2007). 
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The deep-sea seabed lies in water depths where the light intensity is too low to sustain 

photosynthetic production and where water temperatures range between -1°C and 4°C 

(Svedrup et al., 1942). Benthic productivity and biomass is therefore controlled by the 

availability of organic matter from the euphotic zone or of chemical energy generated by 

geological processes. Depending on the productivity of the overlying water, organic matter 

which arrives to the ocean depths is not evenly distributed in time and space. As well as the 

sedimentation of organic material from above, plate tectonics and other geological processes 

transport chemical energy to the seafloor from below, which provides a significant fraction of 

the deep-sea energy flux.  

 

1.1 Permanently cold systems  

The deep-sea seabed which is not influenced by geological process represents permanently 

cold systems. Almost all deep-sea floors has temperatures <5°C, so that most deep-sea floors 

are covered by permanently cold sediments. Exceptions are the Mediterranean Sea which is 

13°C between 0.6 and 4 km depth and the Red Sea where the bottom temperature can be 

21.5°C at 2 km depth. The lowest temperatures found are -1.9°C in the deep waters of the 

Antarctic (Schulz and Zabel, 2006).  

The sedimentation rate decreases with increasing distance from a sediment source, which 

could either be a continent or an area of high biogenic productivity. The primary production 

Figure 2: A digital map of global sediment thickness distribution for the oceans and marginal seas of the 
world as complied by the National Geophysical Data Center 
(http://www.ngds.noaa.gov/mgg/sedthick/sedthick.html). Areas with sediment thickness >500m appear black 
while continents and areas with no data appear gray (Edwards et al., 2005). 
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in the phototrophic layer is controlled by local upwellings of nutrients into the euphotic zone, 

induced mostly by wind stress and ocean circulation patterns (vertical and horizontal) (Palter 

et al., 2005). The most oligotrophic seafloor environments are found in the central ocean 

gyres, particularly in the South Pacific (Figure 3) (Claustre and Maritorena, 2003). The 

middle of the gyre is furthest from the continents and productive ocean regions than any other 

site on Earth. The central South Pacific Gyre has been described as Earth’s largest oceanic 

desert as its area of low-chlorophyll concentration is more as twice the area of the North 

America (Dandonneau et al., 2003). In contrast to these oligotrophic seafloors, deep-sea floors 

near coastal areas have higher primary productivities (Douglas et al., 2007) resulting in very 

high sedimentation rates (1 to 2 mm/year), which are due to pelagic and terrigenous input 

(Curray et al., 1979; Weber and Jørgensen, 2002; Teske et al., 2002). The largest part of the 

ocean seafloor receives on average 1 g of organic carbon per m2 per year from sedimentation 

(Jørgensen and Boetius, 2007). 

Apart from the pelagic clays, the various clay minerals in the sediments are a function of 

their original source and the route of transportation (Petschick et al., 1996). Their transport 

into the area of deposition occurs either by eolian or volcanic transport, or by means of water 

and ice. According to their composition or origin, deep-sea sediments constituents are 

described in a three-component system as (i) biogenic carbonate, (ii) biogenic opal, and (iii) 

non-biogenic mineral (terrigenous, volcanogenic, and authigenic). The biogenic oozes mainly 

consist of shells and skeletal material from the planktonic organisms (Figure 4).  

 

Figure 3: (A) Patterns of primary production in the Pacifc and Atlantic Ocean, July 2006 (Kolber, 2007) and 
(B) a map of time-averaged sea-surface chlorophyll-a (chl-a) concentrations (Global SeaWiFS Chlorophyll) 
mean of September to December 1997. Dashed white lines delimit the area in each gyre where the sea-surface 
chl-a concentration is 0.14 mg/m3. 
 
 

A                                                                                       B                
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Figure 4: (A) Calcareous foraminifers, (B and C) 
opal/siliceous radiolarian, (D) siliceous diatom 
(Haeckel E 2006), and (E) calcareous 
coccolithophorid (Schulz and Zabel, 2006; REM, 
Lab University of Basel). 

The benthic oxygen availability and 

therefore the oxygen penetration depth ranges 

from millimeters in organic-rich and highly 

reactive sediment, to the full penetration of the 

sediment cover, which is known from 

oligotrophic sediments of the South Pacific 

gyres. Transport processes, such as advection 

and mixing, are normally limited to a few 

centimetres per year by sediment porosity and 

compaction in the sedimentary seafloor.  

 

1.1.1 The eastern South Atlantic Ocean  

The geophysical settings of the eastern South Atlantic Ocean were investigated in several 

studies, as this ocean represent an unusually productive ocean. Such a high productivity is 

only known from two other areas, which are the eastern tropical Pacific and the northern 

Indian Ocean (Berger and Wefer, 1996). High biological productivity in the eastern South 

Atlantic is induced by strong trade winds in austral winter at the equatorial upwelling zone 

(equatorial divergence) and at the centers of coastal upwelling of Namibia (17° to 30°C) 

(Figure 5B) (Peterson and Stramma, 1991). In addition, seasonal shoaling of nutrient-rich 

subsurface waters in the Angola cycling gyre area (oceanic upwelling) leads to enhanced 

oceanic productivity (Schneider et al., 1996).  

The Cape, Angola and Guinea basins comprise the abyssal plains in the eastern South 

Atlantic Ocean (Figure 5A). The circulation in the deep eastern South Atlantic is dominated 

by the interaction between the North Atlantic Deep Water (NADW) flowing towards the 

south and Circumpolar Deep Water (CPDW) flowing to the north (Figure 5C). The NADW, 

which is warmer and has a higher salinity (higher density), divides the CDW into two layers, 

above and below the NADW (Reid, 1996). The Walvis Ridge separates the Guinea and the 

Angola basins from the Cape Basin and forms a barrier to the northward and southward flow 

of water below a depth of about 3,000 km. Therefore, the deepest parts of the Angola and 

Guinea basins are filled almost by NADW, while the Cape Basin is dominated by LCPDW 

below 4,000 km (Figure 5C) (Diekmann et al., 1996).  

Clay minerals found in the deep-sea basins of the South Atlantic Ocean are mainly of 

terrigenous origin and are strongly influenced by African sources. They are transported to the 

deep sea as a result from a complex interaction of river and wind input. Their distribution is 
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controlled by ocean currents, while water advections are most effectively (Petschik et al., 

1996). Primary clay mineral input is driven by the large African river systems (Pastouret et 

al., 1978; Bremner and Willis 1993), NE- and SE-trade winds from African desert (eolian 

transport) (Bremner and Willis, 1993), and glaciogenic supply from the continental margin of 

Antarctica (Ehrmann et al., 1992; Petschik et al., 1996). Guinea and Angola basins sediments 

originate from the Central African soil transported by e.g. the Congo (Zaire) River and from 

wind-borne dust transported by NE-trades from the Sahel-Zone (Gingele and Schulz, 1993). 

Both are kaolinite-rich zones, but the Central Angola Basin is as well characterized by high 

content of poorly crystallized smectite (>30%), supplied by Southwest African rivers like the 

Figure 5: (A) The South Atlantic Ocean showing the Walvis Ridge that separates the Cape Basin from the 
Angola and Guinea basins. A part of the transect, presented in (C) (0° to 40°S) is indicated as a white line. (B) 
Surface currents (black arrows – cold; white arrows – warm; grey arrows – subsurface currents), and areas with 
high primary productivity (light gray – equatorial divergence; grey shaded area - oceanic upwelling with 
thermocline shoaling and frontal mixing; hatched area – seasonal coastal upwelling; and cross hatched area – 
permanent upwelling) in the eastern South Atlantic Ocean (Schneider et al., 1996). (C) Deep-sea water masses 
circulation showing the mixing of the northern flow NADW and southern flow CPDW. 
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Kunene and carried to the north by the Benguela Coastal Current (Table 1). The Cape Basin 

comprises an illite-rich zone, originating from Namibian and South African deserts as well as 

from South African soils, which are rich in illite (Diekmann et al., 1996).  

 

1.2 Hydrothermal systems  

Besides sedimentary deep-sea floors, young bare seafloor is formed near ridge axes, which 

represent unsedimented rock. The predominant rock substrate of the young seafloor is basaltic 

in composition, which is exposed to the seawater and undergoes seawater-rock alteration 

reactions. At these sites, active hydrothermal vents were discovered associated with 

continental fracture zones at the Galapagos Rift west of Ecuador in 1977 (Corliss and Ballard, 

1977; Lonsdale P, 1977; Francheteau et al., 1979). This hydrothermal vents represented rich 

areas of very high productivity with dense communities of unusual animals. Today, 30 years 

later, more than 100 sites of high-temperature hydrothermal venting deposits are known on 

the modern seafloor (Kesler and Hannington, 2005; Tivey 2007) (Figure 6).  

 

Table 1: Mineralogy of main lithogeneous sediment components. 

Clay mineral Composition (idealized) 

Kaolinite Al2Si2O5(OH4) 

Mica group, e.g. Illite K0.8-0.9(Al,Fe,Mg)2(Si,Al)4O10(OH)8 

Smectite group, e.g. Montmorillonite Na0.33(Al1.67Mg0.33)Si4O10(OH2!nH2O 

Figure 6: Global distribution of hydrothermal vents. Temperature and chemical anomalies hint that many 
more sites exist throughout the world’s ocean (Martin et al., 2008). 
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There are strong similarities among all seafloor vent fields in terms of the processes of heat 

and mass transfer that result in venting of hydrothermal fluids to the oceans, formation of 

mineral deposits, and creation of chemical and thermal environments conducive to biological 

activity. These processes have a major impact on the chemistry of the oceans (Edmond et al., 

1982) and have been responsible for extensive alteration of oceanic crust (Alt, 1995). It has 

been estimated that 25-30% of the earth’s total heat flux is transferred from the lithosphere to 

the hydrosphere by the circulation of seawater through oceanic spreading centers (Lowell, 

1991; Stein and Stein, 1994). Besides high-temperature venting, off-axis diffuse fluid flow 

plays an important role in transferring mass and energy from the crust and mantle to the 

oceans.  

Mid-ocean ridges are located at boundaries between tectonic plates where the ridge plates 

separate and deeper mantle rises to fill the crack created by spreading. Molten rock from deep 

in the earth fills the void between the plates and creates new seafloor and a volcanically active 

ridge. The vast majority of all Earth’s mid-ocean ridges form a single, continuous, globe-

encircling volcanic chain that is roughly 60,000 km in length and lies at around 2000 to 

5000 m depth. According to their spreading rate, mid-ocean ridges are classified in superfast-

spreading to ultralow-spreading ridges (Table 2). Spreading rates, besides melt supply rate 

and the effectiveness of hydrothermal cooling, are important in shaping ridge morphology, 

which leads to differences in their across-axis morphology (segmentation) (MacDonald et al., 

1991; Kelley et al., 2002). Fast-spreading ridges have an axial rise with a very narrow summit 

rift that is the locus for most volcanic and tectonic activity, while slow-spreading ridges have 

rugged rift mountains enclosing a broad axial valley (Figure 7) (MacDonald et al., 1991).  

 

 

 

 

Table 2:  Mid-ocean ridges and their classification according to their 
spreading rates.  
Mid-ocean riges Spreading rate 

[mm yr-1] 
Classification 

East Pacific Rise  
(27 to 32°S) 

130-170 superfast-
spreading        

East Pacific Rise 
(8 to 13°N) 

90-130 fast- 
spreading                   

Central Indian Ridge 50-90 intermediate-
spreading       

Mid-Atlantic Ridge 20-50 slow-
spreading                    

Southwest Indian and 
Arctic Gakkel Ridge 

< 20 ultraslow-
spreading              

Figure 7: Ridge morphologies of 
fast, intermediate und slow spreading 
ridges (Kelley et al., 2002). 
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At fast-spreading ridges, where magma supply is large, an axial shallow (1300 to 1600 m) 

magma chamber is present, receiving enough magma to build a magmatic crust that is 6 km 

thick on average (Chen et al., 1992). Seismic data indicate a zone of high-velocity material 

that generally occurs over a depth interval of 1-4 km below the seafloor, with faster-spreading 

systems in general having shallower magma chambers (Kelley et al., 2002). Therefore, fast-

spreading ridges tend to be dominated by volcanism, surpassing the effects of tectonics. In 

contrast, the morphology of slow-spreading ridges is more dominated by tectonic processes, 

so that the ridge axis may be offset by >30 km (MacDonald, 1998). However, the presence of 

an axial magma chamber and deep penetrating faults suggests that there is a continuous 

interplay between magmatic and tectonic processes (Singh et al., 2006a). In comparison to 

fast-spreading ridges, crustal thickness varies at slow-spreading ridges from 3 to 8 km.  

Besides mid-ocean ridges, volcanic systems are found at spreading centers in back-arc 

basins close to subduction zones. At convergent boundaries, oceanic lithosphere is consumed 

at deep-sea trenches, leading to the eruption of chains of andesitic arc volcanoes near the edge 

of the overriding plate (Martinez et al., 2007). Back-arc basins are formed behind subduction 

zones by rifting volcanic arcs and accreting new volcanic seafloor. The magmatic chamber 

may be initially close to the arc volcanic front driven by hydrous flux melting, but as they 

separate from the arc with time, magma production evolves towards mainly pressure-release 

melting. Therefore, the morphology changes from a deep, flat axis to a peaked, shallow axial 

high.  As spreading rates are decreasing by over a factor of two back-arc basins show a wide 

variety of spreading styles and lithospheric compositions (Martinez, 2007).  

 

1.2.1 Basalt- and peridotite-hosted hydrothermal systems   

At hydrothermal vent field, the composition of the rocks and the shape of the heat source 

(temperature) influence the composition of the emitted hot fluids. Hydrothermal systems are 

hosted by basalt or peridotites, which are sections of the upper mantle. During hydrothermal 

circulation, dense, cold seawater percolates downward through fractured oceanic crust, 

becomes heated and modified due to a heat source (magma chamber or newly solidified hot 

rock), and exit again at the vent field (Ramirez-Llodra et al., 2007). Chemical reactions 

between fluid and rock change the composition of both the aging ocean crust and the 

seawater.  

Most mid-ocean ridges are basalt-hosted where hydrothermal fluids deliver slightly acidic, 

anoxic, alkali-rich, Mg-poor, and transition metal-enriched (e.g. iron, zinc, copper, 

manganese) fluids (Figure 8, Table 3). In addition, close to the magma chamber when 



INTRODUCTION  

 19 

temperature and pressure exceed those of the boiling curve for seawater, volatiles (e.g. 

sulfide, hydrogen, methane, carbon dioxide) are accumulated in high concentrations. The 

mixing of these metal- and sulfide-rich, high-temperature, acidic fluids with the surrounding 

cold, alkaline seawater causes the metal sulfide to precipitate and results in the formation of 

sulfide deposits and supports unique ecosystems.  

Vent-fluid compositions can also be affected greatly by reaction with sediment. Sediment-

hosted basaltic hydrothermal vent are located near the coast. The presence of carbonate and 

organic matter buffers the pH in the vent fluid (Tivey, 2007) so that all sedimented systems 

are similar in exhibiting a higher pH (5.1-5.9 at 25°C) and lower metal contents than fluids 

formed in unsedimented settings (Table 3). Sediment-hosted ridge systems fall into two 

general classes depending on the relative importance of biogenous (Guaymas Basin, Gulf of 

California) and terrigenous deposits (Middle Valley, northern Juan de Fuca Ridge; Escanaba 

Trough, Gorda Ridge). 

 

Mantle-derived peridotite rocks occur on the seafloor at slow- and ultraslow spreading 

axes. Although the total length of ridge axis along which peridotites are exposed are 

unknown, estimation revealed that about one third of the 55,000 km global ridge system 

comprises ultraslow ridges (Dick et al., 2003) and that these are expected to be hosted in 

peridotites. In peridotite-hosted systems (=ultramafic-hosted), active carbonate chimneys are 

found besides sulfide deposits (Figure 8). The Lost City Field was the first discovered off-axis 

peridotite-hosted active vent field at the Mid-Atlantic Ridge (MAR) (Atlantis Fracture Zone 

30°N; Kelley et al., 2001). It is located tens of kilometers off-axis so that they rarely contain 

volcanic rocks and are formed by sustained fault activity that has lasted for millions of years 

(Kelley et al., 2005). The peridotites are usually intimately associated with gabbroic intrusions 

(Cannat, 1996; Escartin and Cannat, 1999). The seawater mantle peridotite interaction leads to 

exothermic serpentinization reactions, producing Mg-poor, methane- and hydrogen-rich, and 

Table 3: Fluid compositions retrieved from different venting settings (Tivey, 2007). 
 Mid-Ocean 

Ridge 
Back-Arc Rainbow Lost 

City 
sediment-

hosted 
seawater 

T (°C) 405 278-334 365 91 100-315 2 
pH (25°C) 2.8-4.5 < 1-5 2.8 10-11 5.1-5.9 8 
H2S, mmol/kg 0-19.5 1.3-13.1 1 < 0.064 1.1-5.98 - 
H2, mmol/kg 0.0005-38 0.035-0.5 13 < 1-15 - - 
CH4, mmol/kg 0.007-2.58 0.005-0.06 0.13-2.2 1-2 - - 
CO2, mmol/kg 3.56-39.9 14.4-200 - - - 2.36 
SO4, mmol/kg 0 0 0 1-4 0 53 
Fe, !mol/kg 7-18700 13-2500 24000 - 0-180 - 
Mn, !mol/kg 59-3300 12-7100 2250 - 10-236 - 
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very high pH (10-11) fluids (Table 3). The ultramafic underpinnings of the Lost City system 

have a similar chemical composition to lavas that erupted into the primordial ocean on early 

Earth (Kelley et al., 2005). Consequently this hydrothermal vent field provides insights into 

past mantle geochemistry and therefore in the physiological characteristics that resemble the 

earliest microbial ecosystems on Earth. The Lost City hydrothermal vent field is therefore a 

very interesting study concerning the origin of life. Examples of active sulfide-forming 

hydrothermal sites situated on peridotite mantle rocks at the MAR include the Rainbow field 

(German et al., 1996; Douville et al., 2002), Logatchev field (Gablina et al., 2000), Ashadze 

field (Beltenev et al., 2003), and the newly discovered Nibelungen field (Melchert et al., 

2008).  

 

1.2.2 The peridotite-hosted Logatchev hydrothermal vent field 

The Logatchev hydrothermal vent field was discovered by Russian scientists during the cruise 

of RV ‘Professor Logatchev’ in 1993-1994 (Gebruk et al., 2000). It is positioned at the Mid-

Atlantic Ridge at 14°45'N and is therefore as well known as ‘14º45’ or as ‘15ºN’. The 

hydrothermal field is located at the lower, eastern ridge-flank at about 3000 m water depth, 

close to the axial valley. The field consists of several hydrothermal structures which are 

aligned along roughly 520 m distance in NW-SE direction between the north-western 

smoking crater “Quest” and the south-eastern chimney structure of “site A” (Figure 9).  

Besides smoking craters and chimney complexes, Logatchev is covered by thick sediment 

layers (Nercessian et al., 2005; Petersen et al., 2009). They likely result from a combination of 

tectonic activity due to rifting processes (Gao, 2006), low-temperature water/rock interaction 

(Daczko et al., 2005), and high-temperature hydrothermal alteration.  

Figure 8: Currently known active hydrothermal 
vent fields along the Mid-Atlantic Ridge. White 
circles denote ultramafic-hosted and black circles 
basalt-hosted vent field. Fluids of the Nibelungen 
(gray circle) field support an ultramafic-hosted 
setting, while only basaltic rocks were so far 
recovered (Koschinsky et al., 2006). 
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The Logatchev hydrothermal vent field at the 

MAR is an active peridotite-hosted hydrothermal 

site. The fluids at the Logatchev field reach 

temperatures up to 350°C and are enriched in 

hydrogen and methane, which are produced 

during serpentinization of ultramafic rocks at 

high temperatures (Schmidt et al, 2007). As 

exothermic serpentinization cannot contribute 

significantly to the required heat, gabbroic 

intrusions and the lithospheric mantle could be 

other possible heat sources (German and Li, 

2004). The fluid geochemistry is very similar at 

all vent sites. This suggests a common source in 

the reaction zone, feeding the different vents 

(Figure 10) (Schmidt et al., 2007). The fluids exposed a temporal stability over nine years, 

which indicates a stable system with continuous serpentinization in the sub-seafloor without 

significant changes in alteration patterns and heat supply.  

Figure 9: The locations of the hydrothermal 
structures at the Logatchev hydrothermal vent 
field. 

Figure 10: Schematic profile through the Logatchev hydrothermal field showing the proposed fluid flow from an 
underlying detachment fault through a sequence of gravitational landslides and intercalated sedimentary material 
(Petersen et al., 2009). 
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2 Microbial diversity 

The microbial biomass in deep-sea surface sediments ranges from 1.6 " 107 to 1.5 " 109 cells 

per g sediment which is comparable to coastal sediments (Deming and Colwell, 1982; Harvey 

et al., 1984; Guezennec and Fiala-Medioni, 1996; Wang et al., 2004). The benthic habitat 

contains 10-10,000-fold more cells per unit volume than the pelagic habitat of productive 

ocean-surface water (Glud, 2008). Where chemical energy is transported from the subsurface 

up to the seafloor, rich and diverse microbial communities can proliferate. The highest 

biomass with up to 1012 cells per cm3 was found in methane-fuelled microbial communities in 

anoxic sediments above gas hydrates and gas vents (Michaelis et al., 2002; Treude et al., 

2007). In the beginning, these seafloor microbial communities were identified only by using 

traits that require culturing in the laboratory. Culture techniques, however, reveal only a small 

fraction of the diversity of microbial life (Table 4) (Whitman et al., 1998). The development 

of molecular methods, such as the analysis of 16S rRNA genes (Amann et al., 1995) and 

fingerprint techniques (DGGE, T-RFLP, ARISA) enable a more comprehensive view of 

microbial diversity. These genetic based methods enabled the detection of a vast amount of 

yet uncultured microbial diversity (Head et al., 1998).  

 
Table 4:  Cultivation efficiency of different habitats. 
Habitat Cultivation efficiency [%] 

 
Reference 

Marine Water  0.01 to 1 Ferguson et al., 1984  
Lake water 0.1 to 1 Staley and Konopka 1985 
Estuary 0.1 to 3 Ferguson et al., 1984  
Sediment 0.2 to 23 Köpke et al., 2005 
Soil 0.3 Torsvik et al., 1990  
 

2.1 Microbial diversity in permanently cold systems  

Microorganisms in cold deep-sea sediments mineralize 97% of the organic carbon that 

reaches the deep-sea floor from the photic zone so that only 3% is buried in the sediment. The 

oxic zone in deep-sea sediments can reach depths of many cm or dm (Reimers, 1987; 

Wenzhöfer and Glud, 2002), so that organic carbon can be mineralized completely to CO2 

through aerobic respiration. The general diversity and distribution of Bacteria and Archaea at 

the vast ocean seafloor are largely unknown.  

In 1957, Zobel and Morita (Zobel and Morita, 1957) were among the first researchers who 

attempted to isolate microorganism that were specifically adapted to high pressures. They 

called them barophilic bacteria (=piezophile) (Yayanos 1995). Since then, barophilic isolates  
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have been obtained from a variety of different deep-sea habitats by a number of different 

laboratories (DeLong et al., 1997). All of the barophilic bacteria isolated belong to the 

Gammaproteobacteria. Most isolates are related to the five genera Shewanella, 

Photobacterium, Colwellia, Moritella, and Psychromonas (Figure 11) (Margesin and Nogi, 

2004). Shewanella benthica is the most commonly isolated barophilic species, recovered from 

a variety of abyssal and hadal environments in Pacific, Atlantic, and Antarctic Oceans 

(DeLong et al., 1997). Notable exceptions are two sulfate-reducing isolates of the genus 

Desulfovibrio (Bale et al. 1997) and one Gram-positive member of genus Carnobacterium 

(Lauro et al. 2007).  

In contrast to cultivation studies, all culture-independent studies of microbial communities 

in deep-sea surface sediment of the Pacific, North Atlantic, Arctic and Antarctic Oceans and 

the Mediterranean Sea showed a high microbial diversity. This supports the hypothesis that in 

deep-sea sediments, competition is assumed to be weak and symmetrical, contributing to a 

high diversity (Grant, 2000). The microbial community of the detritus-fuelled oxic seafloor is 

dominated by Bacteria (Santelli et al., 2008). Archaea seem to comprise a small portion of the 

oxic seafloor microbial community, in contrast to the anoxic subsurface, where Archaea 

might dominate (Biddle et al., 2006). The highest richness of Bacteria was found in deep-sea 

basaltic seafloors, which were shown to be colonized by variably abundant microbial 

communities that may be as diverse as farm soils (Figure 12) (Santelli et al., 2008). The 

bacterial community identified by 16S rRNA gene sequencing, is comprised of at least 16 

Figure 11: Phylogenetic tree showing isolates 
within the Gammaproteobacteria. The tree was 
calculated by the neighbour-joining method and 
bootstrap values were calculated from 1000 trees 
(Nogi et al., 2002). 
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different taxonomic groups, including all subdivisions of the Proteobacteria. However, 

current results of Templeton et al. (2009) indicate that this basalt floors are influenced by 

external hydrothermal sources so that the seafloor biomass does not subsist only on energy 

largely derived from basalt alteration reactions. Therefore, further investigations are clearly 

necessary to determine the maximum richness in permanently cold deep-sea floors. 

 

 In all investigated deep-sea floors, sequences affiliated with Gammaproteobacteria 

represent the dominant part of the clone libraries (Ravenschlag et al., 1999; Bowman and 

McCuaig, 2003; Polymenakou et al., 2005; Hongxiang et al., 2008; Santelli et al., 2008). 

Many sequences clustered with cultivated members of the family Alteromonadaceae 

(Shewanella, Moritella, Idiomarina, and Pseudoalteromonas) that have been isolated from 

different deep-sea sediment and water column (DeLong 1997; Kato et al., 1997; 

Yanagibayashi et al., 1999; Ivanova et al., 2000). Sequences related to environmental groups 

lacking cultivated members are also found in a high frequency in clone library studies of 

seafloors from different oceans (JTB255/BD3-6; Polymenakou et al, 2005; Yanagibayashi et 

al, 1999; Li et al, 1999; Urakawa et al, 1999; Zhao and Zeng, 2005; Xu et al, 2005; Bowman 

and McCuaig, 2003; Ravenschlag et al, 1999). Other groups of so far uncultured members are 

BD7-8/MERTZ and JTB23/Sva0091, which form distinct lineages among the sulfur-oxidizing 

members of the orders Thiotricales and Chromatiales. The comparison of different clone 

library data obtained from deep-sea sediments suggests that many prokaryotic groups, taxons 

equivalent to the species to family level, were ubiquitously distributed. 

Figure 12: Relative bacterial richness from several environmental studies shown through rarefaction 
analyses. (A) Species richness of Bacteria inhabiting EPR seafloor lavas is compared with that of other 
ocean environments, such as the Sargasso Seawater, a MAR hydrothermal vent in situ growth 
chamber, an EPR hydrothermal white smoker spire, Nankai Trough deep-sea sediments, EPR deep sea 
water and a basalt-hosted community from Hawaii. (B) The bacterial richness of the EPR basalts is 
also compared and other known high-richness environments such as a farm soil, a hypersaline 
microbial mat from the Guerrero Negro (Santelli et al., 2008).  
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2.2 Microbial diversity at hydrothermal systems  

Instead of the uniform conditions present in surface sediments in cold systems, hydrothermal 

systems consist of different habitats exhibiting steep temperature and chemical gradients 

(Jørgensen and Boetius, 2007). Free-living microorganisms can establish themselves at 

hydrothermal habitats, where the hot, electron donor-rich vent fluids meet cold, electron 

acceptor-rich ocean waters (Figure 13A). The huge range of inorganic and organic 

compounds produced abiotically by magmatic degassing and subsurface rock-water reactions 

at high pressure and temperatures can be use by free-living microorganisms (Figure 13B). 

Hydrothermal fluids can either mix with cold seawater and emanate at low speed and mild 

temperatures (diffuse fluids) into the overlying seawater, or be ejected directly into the cold 

seawater. In the latter case, iron and manganese salts precipitate as black particle clouds 

reminiscent of smoke, which is known as the plume. These precipitations of dissolved 

materials can form energy-rich solid surfaces such as chimneys structures and sediments that 

can also be exploited by microorganism. Animal surfaces can also provide a substrate for 

colonization by free-living microorganisms.  

 

Figure 13: (A) Different vent-habitats exhibiting gradients of chemistry and temperature. Coloured 
arrows indicate the flow of either hot hydrothermal fluids (red) or cold seawater (blue) (Campbell et 
al., 2006). (B) Energy sources available at hydrothermal vents showing the redox couples of electron 
donors (in vent fluids) and electron acceptors (in bottom water) (Jørgensen and Boetius, 2007). 
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2.2.1 Culture-dependent studies of free-living microorganisms 

Hydrothermal fluids and the interior of chimney structures represent high-temperature 

habitats and therefore extreme environments. Cultivation approaches showed that this kind of 

habitats allow life and survival only to a few groups of specialists. Isolated microorganisms 

that grow at temperatures higher than 75°C (optima 80°C) are define as hyperthermophiles. 

The isolation of microorganism at increasing temperatures has raised the question of whether 

there is an upper limit to life and, if so, what it is. Since life needs liquid water, 

hyperthermophiles growing above 100°C are found preferentially in high-pressure 

environments where the boiling point of water is higher. As there are physicochemical 

Table 5: Representatives of metabolic groups of mostly hyperthermophiles found at marine vents. 
Isolates Tmax 

[°C] 
Metabolism Habitat Domain Reference 

Strain 121 121 Fe(II)-reduction 
heterotroph 
(formate) 

Endeavor segment of the Juan de 
Fuca Ridge, water sample from 
black smoker 

Archaea Kashefi and 
Lovely, 
2003 

Pyrolobus 
fumarii 

113 hydrogen-
oxidation 

TAG at the Mid-Atlantic Ridge 
black smoker wall 

Archaea Blöchl et al., 
1997 

Methanopyrus 
kandleri 

110 methanogen Guaymas Basin, sediment 
Mid-Atlantic Ridge of 
Kolbeinsey, north of Iceland, 
sediment and water 

Archaea Kurr et al., 
1991 

Pyrodictium 
occultum 

110 hydrogen-, sulfur-
oxidation  

Submarine solfatanic field of 
Vulcano, Italy, geothermal heated 
water and sulfurous deposits 

Archaea Stetter et al., 
1983 

Archaeoglobus 
fulgidus 

95 sulfate-reduction Vulcano, Italy and at Stufe di 
Nerone, Naples, Italy, 
geothermally heated seafloor 

Archaea Stetter, 1988 

Aquifex 
pyrophilus 

95 hydrogen- 
thiosulfate- and 
elemental sulfur-
oxiditation 

Kolbeinsey Ridge, Iceland, 
hot sediments 

Bacteria Huber et al., 
1992 

Methanococcus 
igneus 

91 methanogen Kolbeinsey Ridge, Iceland 
blackish sandy sediment and 
venting water 

Archaea Burggraf et 
al., 1990 

Methanococcus 
jannaschii 

86 methanogen East Pacific Rise 
base of white smoker chimney 

Archaea Jones et al., 
1983 

Thermus 
aquaticus 

75 heterotroph (sugar 
and organic acids) 

Yellowstone National Park, 
thermal springs water 
California, thermal spring water 

Bacteria Brock and 
Freeze, 1969 

Sulfurimonas 
autotrophica 

40 elemental sulfur-, 
sulfide- and 
thiosulfate-
oxidation 

Hatoma Knoll in the Mid-
Okinawa Trough,  
sediment 

Bacteria Inagaki et 
al., 2003 

Sulfurovum 
lithotrophicum 

40 elemental sulfur- 
or thiosulfate-
oxidation 

Iheya North hydrothermal system 
in the mid-Okinawa Trough, 
Japan, gas-bubbling sediment 

Bacteria Inagaki et 
al., 2004 

Thiomicrospira 
sp. (strain L-12) 

25 sulfur-oxidation Galapagos Rift 
Rose-garden vent, from mussel 

Bacteria Ruby and 
Jannasch, 
1982 
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limitations to biochemistry at high temperatures (e.g. for ATP and DNA), the upper limit of 

life is assumed to be between 121 and 130°C (Lengeler et al., 1999). The archaeon Pyrolobus 

fumarii and Strain 121 are two isolates holding the global record of growth at high 

temperatures (113 and 121°C, respectively) (Table 5) (Blöchl et al., 1997; Kashefi and 

Lovely, 2003). Most hyperthermophilic microorganisms known today are Archaea, and only a 

few hyperthermophiles belong to the domain Bacteria (Thermotoga, Aquifex). Environments 

with temperatures beyond 95°C appear to contain only Archaea as living inhabitant. Besides 

hyperthermophiles, different microorganisms of moderate habitats were isolated (Karl, 1995). 

To date, most enrichment culture studies of deep-sea vents were designed to isolate specific 

chemolithoautotrophic microorganisms rather than to define the total community 

composition.  

 

2.2.2 Culture-independent approaches for studying free-living microorganisms  

Most of the initial research on hydrothermal microbial life concentrated on the microbial 

diversity that is associated with vent plumes at mid-ocean ridges (Takai et al., 2006). The 

discovery of microbial corrosion structures and mineral alteration in ocean basalts, submarine 

lava, hydrothermal precipitates and vented rocks has shifted the focus from vent plumes to the 

huge undiscovered microbial realm in the seabed (Thorseth et al., 2001; Bach and Edwards, 

2003; Santelli et al., 2008). Massive biomass accumulations were observed at seawater-

substrate interfaces (Karl, 1995) forming biofilms and microbial mats which control the rates 

of redox reactions, modifying their environment. The cell numbers in these microbial mats 

reach up to 6.9 " 107 to 5.3 " 108 cells per ml (Emerson and Moyer, 2002) in comparison to 

cell numbers of 5 " 102 cells per ml in fluids (Takai et al., 2009) and 1.0 " 105 to 1.1 " 105 

cells per ml in plumes  (Sunamura et al., 2004).  

 

2.2.3 Seabed microbial diversity in basalt-hosted hydrothermal vent fields  

The seabed at hydrothermal vent fields is characterized by chimney structures. Active 

hydrothermal chimneys are habitat with steep chemical and thermal gradients (Kristall et al., 

2006) as they are locations where hot-temperature fluids are emitted to the cold surrounding 

seawater (Figure 14A). The exterior to the interior of the structure represent diverse 

environments, which provides a wide range of microhabitats for microorganisms. In the 

interior layers, representing a high-temperature environment, Archaea were found to be 

important and major components of the diversity (Schrenk et al., 2003). The uncultured group 
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named “Deep-sea hydrothermal Vent Euryarcheaota group” (DHVEG) is distributed 

throughout the global deep-sea vent system (Takai et al., 2006). Archaeal biofilms in the 

sulfide chimney Finn (Juan de Fuca Ridge) were found to be composed of members of the 

Thermococcales (Crenarchaeota) and Methanococcales (Euryarchaeota) (Schrenk et al., 

2003).  

The greatest abundance of microorganism was detected in the middle and exterior zones 

(interior=5.5 " 104 cells/g, exterior=6 " 107 cells/g; Takai et al., 2009), which reflect habitats 

with moderate temperatures (Schrenk et al., 2003). These zones are colonized by multispecies 

biofilms composed of Bacteria and Archaea (Figure 14A, and B). The detected bacterial 

community represents phylogenetically diverse bacterial populations, including diverse phyla 

(Takai et al., 2006; Takai et al., 2009). Epsilonproteobacteria were found to dominate 

microbial mats which were associated with a chimney (Southern EPR, 17°S; Longnecker and 

Reysenbach, 2001) and were highly abundant in sulfur chimney structures (TOTO caldera in 

the Mariana Volcanic Arc, Nakagawa et al., 2006).  

 

The active vents at the Loihi Seamount are characterized by high concentration of Mn and 

Fe(II) (up to 268 #M) in the fluids (Emerson and Moyer., 2002). Instead of sulfur chimney 

structures, here microbial mats are attached to the seafloor and are heavily encrusted with 

rust-colored Fe oxides (Figure 14C). These mats are dominated by Leptothrix ochracea and 

Figure 14: (A) Photographs of black smoker vents of the PACMANUS field and 
(B) of a successfully recovered chimney structure. (C) Microbial mat presents at 
the hydrothermal vent system Loihi Seamount, Hawaii. (D) Filamentous 
Beggiatoa spp. in a recovered sediment core and (E) a corresponding photograph 
of the microbial mats at the Guaymas Basin. 
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Gallionella spp. (Betaproteobacteria) and Mariprofundus ferrooxydans, which represent the 

first isolates of the new candidatus class of the Proteobacteria, the Zetaproteobacteria 

(Emerson et al., 2007). These strains were found to be most common in a variety of microbial 

mats collected at different times and locations at Loihi. Furthermore microbial mats at Loihi 

Seamount include members related to Archaea and Gammaproteoabacteria, 

Deltaproteobacteria, and Epsilonprotoebacteria. Further Fe(hydr)oxide mats were found at 

the hydrothermal environment of the Vailulu’u Seamount which is the eastern-most island of 

American Samoa (Sudek et al., 2009). In contrast to the Loihi Seamount communities, most 

sequences were related to Epsilonproteobacteria. Sequences affiliated with 

Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes and 

Planctomycetes were present in a lower frequency.  

Besides chimney and seafloor structures, sediments represent a habitat where dense 

communities are developed. The Guaymas Basin represents one of the best-investigated 

sediment-hosted hydrothermal systems to date.  This basin has a very high sedimentation rate 

(1 to 2 mm/year) due to high biological productivity in surface waters and a large terrigenous 

input. The thick layer of organic-rich, diatomaceous sediments (100 m, and up to 500 m) 

undergoes pyrolysis and thermal alteration to a wide variety of petroleum hydrocarbons, 

steranes and diasteranes, and aromatic hydrocarbons (Teske et al., 2002). This leads to a 

reduced metal content and an increased methane content (12 to 16 mM) in the vent fluids. On 

top of these sediments, massive bacterial mats of filamentous Beggiatoa spp. are found 

(Figure 14D, and E) (Nelson et al., 1989; Gundersen et al., 1992). Further common bacterial 

phylotypes include members of the Epsilonproteobacteria, Deltaproteobacteria, the 

Chloroflexi, and the Candidate Division OP11. In addition, sequences affiliated with 

anaerobic methanotrophic (ANME) archaea of the ANME-1 and ANME-2 group were for the 

first time detected in hydrothermal systems (Teske et al., 2002). 

Although all above mentioned investigated hydrothermal vent field belong to basalt-

hosted systems, different seabed structures represent different habitats for microbial 

communities. Therefore, microbial diversity differed between hydrothermal vent fields. 

Cultured-independent methods confirmed that extreme hot environemts are predominantly 

inhabited by Archaea. Besides classes of minor importance, Epsilonproteobacteria were 

dominant at sulfur structures, iron encrusted microbial mats represented favorable habitats for 

Betaproteobacteria, and microbial mats at a sedimented field consisted of 

Gammaproteobacteria.  
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2.2.4 Seabed microbial diversity in peridotite-hosted hydrothermal vent fields 

Hydrothermal systems associated with peridotite rocks were discovered around 20 years after 

basalt-hosted hydrothermal vent fields. Therefore, the microbial diversity of this system is 

less documented in comparison to microbial communities at hydrothermal systems associated 

with basaltic lava. At the peridotite-hosted field Lost City, the mixing of hot fluids and cold 

seawater leads to the formation of carbonate chimneys that rise up to 60 meters above the 

ultramafic seafloor (Figure 15A) (Kelley et al., 2001). Dense biofilms of Methanosarcinales 

were found at carbonate chimneys which emit fluids >80°C. They make up ~100% of the 

archaeal community (Brazelton et al., 2006). In chimneys that have little or no active venting, 

the Lost City Methanosarcinales (LCMS) group is replaced by a single phylotype, the clade 

ANME-1. In contrast, a diverse bacterial assemblage populates the chimney exteriors. 

Therefore, Archaea were present at high-temperature environments and Bacteria were present 

in moderate habitats, which is similar to the microbial compositions in chimneys found at 

basalt-hosted fields.  

Another ultramafic-hosted hydrothermal vent field which in contrast to Lost City emits 

high-temperature fluids (365°C, pH 2.8) is the Rainbow hydrothermal vent field on MAR 

(36°N). The active chimneys are surrounded by heterogeneous sediments contributed by a 

mixture of pelagic sediments, iron oxides and oxidized fragments of dead chimneys 

Figure 15: (A) The Lost City 10-m-tall actively venting 
carbonate chimney (Graceful) growing directly out of a 
serpentinite cliff on the eastern side of the field (Kelley 
et al., 2005). (B) Photographs of chimneys at the 
Rainbow hydrothermal vent field. (C) Scanning 
electron microscopy photographs of Rainbow sediment 
showing coccoliths and foraminifer shells (scale bars=1 
#m) and (D and E) of prokaryotic cell types observed in 
different colonization after 15 days exposure to a fluid 
source (scale bars=10 mm (López-Garcia et al., 2003a, 
and b). 
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(Figure 15B) (Nercessian et al., 2005). These sediments are primarily composed of 

carbonates, mostly by haptophyte coccoliths and foraminifer shells (Figure 15C) (López-

Garcia et al., 2003a). However, the sediments showed no apparent sign of hydrothermal 

activity. The bacterial composition revealed by 16S rRNA gene clone libraries was highly 

diverse. Most of the bacterial clones were affiliate with the Gammaproteobacteria or 

Acidobacteria. (Nercessian et al., 2005; López-Garcia et al., 2003a). The majority of archaeal 

sequences (84%) was related to the euryarchaeon Methanocaldococcus infernus. This 

methanogen was recently identified in the walls of black smokers suggesting a possible 

thermophilic lifestyle. Microcolonizers exposed to hot fluids (~365°C) showed in contrast to 

the sediment samples a highly specialized community. After 15 days of incubation, dense 

bacterial mats were detected (Figure 15D, and E). Most of the obtained sequences were 

related to Epsilonproteobacteria and clustered with the Sulfurimonas, Sulfurovum and 

Arcobacter group (López-Garcia et al., 2003a).  

 

2.2.5 Driving forces of microbial diversity at hydrothermal systems 

Most of the understanding of microbial diversity of deep-sea hydrothermal vents stems from 

research focused on mid-ocean ridges. However, recent research in the microbial diversity of 

mid-ocean ridges, back-arc basins, and volcanic arcs revealed a greater heterogeneity of 

microbial communities between vent systems than previously thought (Takai et al., 2006). All 

studies support the idea that microbial community composition will be strongly modulated by 

the geochemical structure and dynamics of local environments. The heterogeneity in 

microbial composition between different vent fields can be directly correlated to differences 

in the physical and geochemical conditions of the vent habitats. It was shown that the 

concentration and composition of the gas components in seafloor hydrothermal vent fluids 

could be one of the potential driving forces behind intra-field variability in active microbial 

communities (Takai et al., 2006).  

 

2.2.6 Symbioses at hydrothermal systems 

Deep-sea hydrothermal vents were the first habitats in which chemosynthetic primary 

production was shown to fuel large animal communities that are considered to be among the 

most productive on earth (Van Dover, 2000). Chemosynthetic symbionts can be epibionts, 

which are found to be attached to a specific part of an animal and endobionts, which can be 

extracellular (e.g. below the cuticle) or intracellular (e.g. gill, trophosome). Their role is to 
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transform the chemical energy from vent fluids into food for their host. The analyses of 16S 

rRNA gene sequences revealed Gammaproteobacteria as a common symbiont in vent animals 

(vent mussels Calyptogena magnifica, Bathymodiolus thermophilus, vent snail Alviniconcha 

sp., seep mussel Maorithyas hadalis). Phylogenetic analyses of these symbionts revealed at 

least nine phylogenetically distinct clades, most of which were interspersed with sequences 

from free-living bacteria (Dubilier et al., 2008). Symbionts detected from the seep mussel 

Bathymodiolus childressi clustered to a single clade within the Gammaproteobacteria, with 

the free-living methane oxidizers of the genera Methylobacter and Methylomicrobium (Distel 

and Cavanaugh, 1994). Some symbionts clustered with Epsilonproteobacteria (vent shrimp 

Rimicaris exoculata, Pompeii worm Alvinella). Besides the association between one animal 

and one symbiont, multiple co-occuring symbionts have been found. Until now, up to six co-

occuring bacterial symbionts were shown to exist in cold-seep mussels (Idas sp.) (Duperron et 

al., 2008).  

 

3 Microbial activity  

Microbial diversities determined by comparative 16S rRNA analysis and fluorescence in situ 

hybridization (FISH) were often used to hypothesize metabolic processes in a given habitat. 

Thereby it is assumed that the metabolic capabilities of detected taxa are similar to those of 

the closest cultivated relatives. Phylogeny may however not be reliable for predicting 

physiology. Even closely related bacteria might have very different metabolic repertoires, e.g. 

resulting from lateral gene transfer events, enabling them to occupy differing ecological 

niches (Suen et al., 2007). Therefore, attempting to identify a niche by phylogenetics alone is 

proving to be difficult as distant species sometimes share the same niche, and 

phylogenetically close species sometimes occupy very different niches. To examine what 

microorganisms are doing in their habitats, how they interact with each other and with their 

environment, genomic, in situ and ex situ approaches can be used. Until recently, most of 

what we knew about microbial activity was derived from cultured microorganisms and ex situ 

laboratory experimental investigations. 

 

3.1 Genomics and metagenomics 

Genomic and metagenomic studies increased our understanding of the genetic mechanisms 

underlying responses of organisms to their environments. Moreover, functional elements 

beyond just the protein coding regions were analyzed, providing insights into gene regulation 
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and genome evolution (Kahvejian et al., 2008). Sequencing of whole prokaryotic and 

eukaryotic genomes was facilitated by the continuous introduction of new methods based on 

DNA sequencing. This techniques follow a cyclic pattern in which new technologies are 

introduced, rapidly take up, and then undergo a slow decline in use as newer techniques are 

developed that supersede them (Figure 16).  

 

Genomics has classically focused on pure, easy-to-obtain samples, such as microbes that 

grow readily in culture or large animals and plants. Therefore, the first obtained complete 

bacterial genome sequence was of Haemophilus influenzae. On October 21th2009, a landmark 

of genome sequencing was reached with the completion of the thousandth whole genome 

sequence, that of Methanocaldococcus vulcanius M7 (Figure 17A). This microorganism is a 

hyperthermophilic methanogen archaeon isolated from a deep-sea hydrothermal chimney on 

the East Pacific Rise at a depth of 2600 m. The inventory of bacterial and archaeal isolates 

with complete or draft sequences is approaching the two thousand mark (Liolios et al., 2008). 

The complete genomes include those of many important model and reference organism, and 

multiple sequences are available for many of the key human and animal pathogens. 

Consequently, the phylogenetic distribution of the completed sequences is biased towards 

organism of specific medical or economic interest. Thus, more than 80% of the available 

sequences represent just three major lineages: Proteobacteria, Firmicutes and Actinobacteria 

Figure 16: The number of publications with keywords for nucleic acid detection and sequencing technologies. 
PubMed (http://www.ncbi.nlm.nih.gov/sites/entrez) was searched in two-year increments for key words and the 
number of hits plotted over time. For 2007–2008, results from January 1–March 31, 2008 were multiplied by 
four and added to those for 2007. Key words used were those listed in the legend except for new sequencing 
technologies (‘next-generation sequencing’ or ‘high-throughput sequencing’), ChIP (‘chromatin 
immunoprecipitation’ or ‘ChIP-Chip’ or ‘ChIP-PCR’ or ‘ChIP-Seq’), qPCR (TaqMan or qPCR or ‘real-time 
PCR’) and SNP analysis (SNPs or ‘single-nucleotide polymorphisms’ and not nitroprusside (nitroprusside is 
excluded because sodium nitroprusside is sometimes abbreviated as ‘SNP’ but is generally unrelated to genetics)) 
(Kahvejian et al., 2008). 



INTRODUCTION  

 34 

(Figure 17B). Therefore, a phylogenetic-driven pilot project called ‘Genomic Encyclopedia of 

Bacteria and Archaea (GEBA) was started in order to derive maximum knowledge from 

existing and new microbial genomes data. The analysis of the first 56 of those demonstrated 

pronounced benefits in diverse areas including the reconstruction of phylogenetic history, the 

discovery of new gene families, and the prediction of function for known genes from other 

organisms (Wu et al., 2009).  

 

However, the great majority of recognized bacterial and archaeal diversity in not 

represented by pure cultures (Table 4) (Whitman et al., 1998). As DNA can be isolated 

directly from living and dead cells in various contexts, instead of sequencing genomes of 

isolates, DNA sequences directly from the environment can be analyzed. Therefore, in 

principle, any microorganism that cannot be isolated or is difficult to grow in lab can be 

studied. This has led to the emergence of a new field, which is referred to as metagenomics. 

Improvements in cloning vectors including cosmids or fosmids (35-40 kb insert size), 

bacterial artificial chromosomes (BAC, 80-120 kb inserts), and yeast artificial chromosomes 

(YAC, 200-800 kb inserts) allowed to investigate a wide range of organisms that are 

otherwise difficult to study (Tringe and Rubin, 2005).  

Meanwhile, the progressive reduction of the time and costs of high-throughput sequencing 

by technologies such as 454 FLX Titaniium pyrosequencing (Solexa GA platform) made it 

feasible to sequence libraries that are constructed from mixtures of organisms, even those that 

are contaminated with genomes other than that of the targeted organism (Rothberg and 

Leamon, 2008). The constantly increasing read length obtained by the new high-throughput 

sequencing generation allows direct sequencing of DNA without the traditional initial cloning 

Figure 17: (A) Number of sequences available in the Genbank as of September, 2009. The biological data 
explosion in mid 90's kick-started the ‘omics’ revolution which can be easily seen with the exponential 
growth from 1995. (B) Phylogenic distribution of investigated bacterial gemome, showeing than 80% of the 
available sequences represent just three major lineages: Proteobacteria, Firmicutes and Actinobacteria 
(http://genomesonline.org/gold_statistics.htm) 

A B 
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step excluding cloning bias. This has opened the door to sequence-based studies of organism 

and environments that were previously thought to be inaccessible, including obligate 

pathogens and symbionts, environmental microbes (which cannot be grown in pure cultures), 

and ancient organisms.  

DNA-based studies do not differentiate between active and inactive microorganisms. As it 

is known that a large proportion of the cells in a given environment is inactive at any time 

(Bakken, 1997), this will affect the interpretation of diversity studies. Therefore, the 

application of new sequencing techniques will not be enough to understand underlying 

responses of living organisms to their natural environments. A deeper understanding will 

necessarily require a multidisciplinary approach, combining organismal analyses with 

molecular genetics and genomics, laboratory experiments with field studies all within an 

ecologically relevant framework (Figure 18) (Ungerer et al., 2008; Prosser et al., 2007). The 

combination of ecological and genomic approaches has led to a new interdisciplinary field 

that is called ecological genomics. 

 

 

 

Figure 18: Conceptual framework for Ecological Genomics. In the upper part, the black arrows indicate 
ecological interactions between the organism, the population and community levels and the ecosystem. The 
properties of organisms affect the functions of the other levels and vice versa. In the lower part, the black arrows 
also indicate the interactions between the levels, with organismal responses affecting and being affected by its 
genotype, which in turn affects what genes are expressed and at what levels, which in turn has effects on the 
phenotype of the organism, ultimately leading to its overall response. Ecological genomic studies seek to 
integrate these disciplines (orange arrows) through the use of functional genomics approaches (Ungerer et al., 
2008). 
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3.2 In situ and rate measurments 

Besides genomic and metagenomic studies, which examine the genetic mechanisms 

underlying responses of microorganisms to their environment, the development of new in situ 

techniques enables the detection of microbial activity in their environment. Environmental 

parameters such as high-resolution chemical gradients in sediments can be measure by a 

microprofiler (Figure 19A). These microprofiles allow the quantitative evaluation and 

therefore the calculation of different consumption rates in environments revealing steady state 

gradient concentrations. Dissolved gases and volatile organic compounds can be detected by 

in situ mass spectrometry (Figure 19B). These new in situ technology achievements were a 

step forward to detect even extremely steep, temporally and spatially variable biochemical 

and physicochemical gradients, which are essential in zones of elevated microbial activity 

such as hot-spot environments (e.g. cold seeps and hydrothermal vents). 

Furthermore, in situ respiration rates including oxygen, methane and sulfide consumption 

rates, can be determined by benthic chamber measurements (Figure 19C), providing more 

information about the exchange rates and total fluxes (Boetius and Wenzhöfer et al., 2009). 

To quantify the in situ sulfate reduction rates, an INSINC module was developed 

(Figure 19D). For this measurement, intact seafloor sediments are in situ injected with tracer 

substances (35SO4
2-). Besides in situ rate measurement, ex situ rates detection and incubation 

experiments provide information about microbial activities in their environment. 

 

Figure 19: Different in situ measurement instrument: (A) microprofiler, (B) 
 in situ mass spectrometry, (C) benthic chamber , and (D) INSINC module 
(Boetius and Wenzhöfer et al., 2009)  
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3.3  Activity of seafloor microbial communities in cold systems  

Microorganisms comprise a large fraction of total benthic biomass and dominate the turnover 

of organic matter in deep-sea sediments (Deming and Baross, 1993). Variation in biomass and 

activity of microbial communities in the deep sea can largely be explained by the regional and 

temporal variation in particulate organic carbon (POC) flux (Boetius et al., 2000). Very little 

is known about the adaptation allowing for growth and survival of microbes in the deep-sea. 

Deep-sea bacteria have been shown to possess piezo-specific adaptations in terms of 

membrane phospholipid fatty acid unsaturation (Delong and Yayanos 1985; Allen et al. 1999; 

Allen and Bartlett 2000) and cell division (Jannasch 1987; Yayanos and DeLong 1987; Bidle 

and Bartlett 1999; Ishii et al. 2004). Moreover, hydrostatic pressure has been shown in vitro to 

affect many protein-protein (Silva and Weber 1993) and protein-DNA interactions (Chilukuri 

et al. 1997; Tang et al. 1998), and in vivo to hinder essential cellular processes such as 

replication and translation (Welch et al. 1993; Ishii et al. 2005). To cope with long periods of 

starvation, studies conducted with the moderate piezophile Psychromonas sp. CNPT3 under 

low-nutrient conditions have shown that cells decreased their biovolume and membrane 

unsaturated fatty acid content and increased their ability to attach to a glass substratum, 

particularly during incubations at high pressure. Furthermore one long-term experiment, a 

batch culture of Psychromonas HS11 (Delong and Yayanos 1986) has revealed, that 

piezophiles can survive with little or no food at high pressure for over 20 years (Lauro and 

Bartlett, 2008). 

Genomic studies of first genomes of psychropiezophilic (cold and pressure-loving) 

bacterial isolates revealed a high ratio of rRNA operon copies/genome size (Lauro and 

Bartlett, 2008). Highest numbers of operons are present in bacteria that respond most rapidly 

to environmental changes (Klappenbach et al. 2000). These observations suggest that most of 

the deep bathytypes in culture have an opportunistic (r-strategy) lifestyle with a high degree 

of gene regulation. Motility is arguably the most pressure-sensitive cellular process in surface-

water prokaryotes (Meganathan and Marquis 1973; Bartlett 2002). Gene clusters for motility 

and chemotaxis are among the most divergent between different deep-sea and shallow 

environments isolates (Campanaro et al. 2005). In fact, microarray-based genome comparison 

between three strains of Photobacterium profundum has shown that the deep barophilic 

isolates (SS9 and DSJ4; Nogi et al. 1998) have an additional gene cluster that is lacking in the 

shallow type (3TCK) which resembles genes for the production of lateral flagella (Campanaro 

et al. 2005).  
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Cultivation experiments revealed that most microorganisms of the detected highly diverse 

microbial communities are heterotrophic. Because of the abundance of sulfate in the seawater, 

its bacterial reduction to sulfide represents the main terminal pathway during the anaerobic 

mineralization of organic matter in the seabed (Jørgensen, 1982). Maximal ex situ sulfate 

reduction rates in the deep sea ranged between 3.3 and 4.9 nmol cm-3 d-1 (Ferdelman et al., 

1999). In the surface sediments (0-5 cm) of the deep Arabian Sea, carbon remineralization by 

sulfate reduction was detected to comprise 40% of the total carbon input (Boetius et al., 

2000).  

  

3.4 Activity of seafloor microbial communities at hydrothermal vent fields  

Many microorganisms at hydrothermal vent fields obtain their energy from the oxidation of 

inorganic substrates and are known as chemolithotrophs. If the carbon source is also 

inorganic, the microorganisms are called chemolithoautotrophs or simply chemoautotrophs. 

This process was observed more than 100 years ago (Winogradsky 1887 in Van Dover, 2000) 

and is known as chemosynthesis or lithotrophy. Due to their modest but specific nutritional 

requirements, chemolithotrophic bacteria were the first physiological type of bacteria to be 

isolated by using selective culture methods, widely known as enrichment culture techniques 

(Lengeler et al., 1999).  

Chemosynthesis is a process that is well known but was considered to play no significant, 

quantitative role in the carbon cycle of the photosynthetically dominated Earth’s surface. As 

seafloor and subseafloor microbial processes occur in the dark, chemosynthetic microbial 

processes predominate in these environments. Given the variety of physical and chemical 

conditions at deep-sea vents, it is not surprising that chemoautotrophs inhabiting these 

environments exhibit considerable physiological diversity (Nakagawa and Takai, 2008). 

However, studies concerning the activity of microorganisms from deep-sea hydrothermal vent 

fields are rare. High-throughput sequencing methods lead to an increase of genomic and 

metagenomic approaches (Figure 20). Further interdisciplinary studies are necessary to 

understand the microbial activity and their interaction with each other and with their 

environment at hydrothermal vent sites.  
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3.4.1 Basalt- and peridotite-hosted hydrothermal vent fields 

In basalt-hosted systems the precipitations of massive mineral deposits primarily consist of 

metal sulfides (Tivey et al., 1995). The amount of energy available to support microbial 

growth based on oxidation of minerals (principally pyrite) exceeds what would be available 

based on the oxidation of aqueous chemicals (principally H2S) by nearly an order of 

magnitude per kilogram of vent fluid (McCollom, 2000). First isolates from the Galapagos 

Rift ocean floor were obtained from microbial mats covering surfaces in the immediate 

vicinity of the vents (Ruby et al., 1981). Sulfur-oxidizing bacteria of the chemolithotrophic 

genus Thiomicrospira (Gammaproteobacteria) supported the hypothesis that sulfur-oxidizing 

bacteria are the primary producers at vents with sulfide-containing hydrothermal fluids. Since 

then, sulfur-oxidizing bacteria have been obtained from a variety of different seabed 

structures from hydrothermal vent fields (Longnecker and Reysenbach, 2001; Taylor et al., 

1999; Inagaki et al., 2003; Inagaki et al., 2004).  

The sediment-hosted Guaymas Basin supports also massive bacterial mats of autotrophic, 

sulfur-oxidizing, filamentous Beggiatoa spp. (Nelson et al., 1989; Gundersen et al., 1992). 

High sulfate reduction rates in the surface sediments at pressures representing the in situ 

conditions showed that sulfate reduction represents an important metabolic pathway in these 

sediments (Elsgaard et al., 1994; Weber and Jørgensen, 2002). Anaerobic oxidation of 

Figure 20: Distribution of metagenomic and genomic studies available with the megx marine ecological 
genomics (http://www.megx.net) map server. From hydrothermal vent sites 27 prokaryotic genomes are present. 
In the GOLD database (http://www.genomesonline.org) only 4 metagenomic approaches concerning 
hydrothermal seafloor are listed. 
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methane (AOM) was also detected, but the detected rates were so low that only 1 to 5% of the 

high SR rates can be fuelled by AOM (Kallmeyer and Boetius, 2004). Therefore, high rates of 

methane-dependent SR have been found so far only in cold environments (cold seeps, gas 

hydrates, and mud volcanoes), at in situ temperatures of -1.5 to +12°C  (Wegener et al., 

2008).  

The isolation of chemolithoautotrophic Fe-oxidizing bacteria revealed that Fe is also an 

important energy source at hydrothermal vents (Karl et al., 1989; Edwards et al., 2003; 

Emerson et al., 2007). Thermodynamic and bioenergetic calculations support Fe-oxidation, 

Fe-reduction, and sulfide-oxidation as potential energy sources for rock-hosted 

chemoautotrophs at basalt-hosted fields (Bach and Edwards, 2003). In anoxic environments, 

such as hot vents, hydrogen oxidation and methanogenesis may also be favored metabolisms 

as revealed by cultivation studies (Table 5). However, genomic analyses of different 

epsilonproteobacterial isolates from oxic habitats revealed different sets of genes of 

hydrogenases. Therefore, hydrogen oxidation could occur in oxic mesophilic habitats 

(Nakagawa et al., 2007). In particular, peridotite-hosted fields, where hydrogen is the most 

dominant energy source in vent fluids, could represent a habitat for hydrogen-oxidizing 

microorganisms. As most studies to date have focused on basalt-hosted systems, little is 

known about the microbial activity of ultramafic-hosted fields. So far only culture-

independent studies revealed the microbial diversity of these systems. To date, cultivation 

experiments and rate measurements have been crucial in our understanding of the 

physiological diversity at basalt-hosted deep-sea vents. 

 

3.4.2 Potential metabolic pathways  

Metagenomic and genomic studies provided additional information about potential metabolic 

capabilities of microorganism at hydrothermal vent fields. Genome analyses of recently 

isolated mesophilic strains of Epsilonproteobacteria have led to the detailed characterization 

of their sulfur-oxidation pathway (Takai et al., 2005; Nagakawa et al., 2007). This strains use 

the Sox-dependent sulfur-oxidizing pathway consisting of sulfite:cytochrome c 

oxidoreductase (Sor), Sqr and Sox multienzyme complex (Figure 21). Most of the predicted 

sox genes formed two spatially separated gene clusters (Nakagawa et al., 2007; Sievert et al., 

2008) in comparison to the single sox gene cluster identified for Paracoccus pantotrophus 

(Friedrich et al., 2001). In addition, recent genomic analyses of the gammaproteobacterial 

endosymbionts of tubeworms, mussels and clams have identified the genes for adenylyl-

sulfate reductase (AprAB) and ATP sulfurylase (Sat), indicating that they oxidize sulfite to 
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sulfate via adenylylphosphosulfate (Nelson and 

Fisher, 1995). Furthermore additional enzymes 

are involved in the sulfur oxidation pathway, 

including the reversible dissimilatory sulfite 

reductase (Dsr), sulfide:quinone oxidoreductase 

(Sqr) and sulfur oxidation (Sox) multienzyme 

complex lacking soxCD (Figure 21; Kuwahara et 

al., 2007; Markert et al., 2007; Newton et al., 

2007). Metagenomic analysis of the sulfide-

oxidizing gammaproteobacterial endosymbiont of 

Riftia pachyptila revealed the presence of genes 

involved in the reductive tricarboxylic acid cycle 

(rTCA) and in the Calvin cycle (Markert et al., 

2007). This indicates that two pathways can be 

used for CO2 fixation. Analyses of the metagenome 

from an epsilonproteobacterial A. pompejana episymbiont, whose next relative is the vent-

associated, free-living bacterium, Sulfurovum sp. NBC37–1 (Grzymski et al., 2008), revealed 

genes encoding the complete rTCA cycle for carbon fixation, sulfur oxidation, and 

denitrification. Based on these genomic analyses, it has been hypothesize that the success of 

Epsilonproteobacteria in hydrothermal vent ecosystems is a product of their adaptive 

capabilities, broad metabolic capacity, and strain variance (Nakagawa et al., 2007; Grzymski 

et al., 2008). 

 

4 Microbial biogeography  

Microbial biogeography can be defined as the science that documents the spatial distribution 

of prokaryotic taxa in the environment at local, regional, and continental scales. In a broader 

sense, this discipline examines variation of microbial features (e.g., genetic, phenotypic, 

physiological) at different spatial scales, between distantly located sampling sites or along 

large environmental gradients (Ramette and Tiedje, 2007). Its scope also encompasses the 

understanding of the processes generating and maintaining those distribution patterns. The 

ultimate goals are to propose and evaluate theories regarding the creation and evolution of 

such diversity patterns in the environment. The current theory of prokaryotic biogeography 

and diversification proposes two factors to explain those variations (Martiny et al., 2006; 

Figure 21: Sox-dependent (shown in red) and 
Sox-independent (shown in blue) sulfur- 
oxidation pathways of deep-sea vent 
chemoautotrophs (Nakagawa and Takai, 
2008). 
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O’Malley, 2008). Contemporary environmental heterogeneity (EH) has long been considered 

a very powerful factor acting on microbial populations. On the basis of the cosmopolitan 

hypothesis, ‘everything is everywhere, but the environment selects’ (Baas-Becking, 1934), 

environmental conditions have long been considered to have a strong influence on microbial 

biogeography. Thus, niche-based explanations for the environmental variation in abundance 

and diversity of microbes have long been the paradigm among microbial ecologists. The 

effects of historical events on microbial populations have recently been proposed as another 

factor that structures microbial life (Papke et al., 2003; Whitaker et al., 2003; Ramette and 

Tiedje, 2007). Spatial distance (SD) may thus be seen as a proxy that represents differential 

community dynamics, which are themselves related to past historical events and disturbances 

(e.g. physical barrier, anthropogenic activity, dispersal history, and past heterogeneity) whose 

legacies have been maintained because of spatial isolation between populations (Borcard and 

Legendre, 1994).  

Although it is now well accepted that both EH and SD may help create and maintain 

microbial diversity in terrestrial ecosystems, little is known about their relative contribution 

and interactions on the intraspecific abundance and diversity of microbes (Martiny et al., 

2006). To answer this question, information on the current abiotic and biotic conditions and 

the spatial arrangements of the sample assemblages are necessary. Although the statistical 

partitioning of the ecological variation has sometimes been undertaken in previous microbial 

biogeography studies (Whitaker et al., 2003; Horner-Devine, 2004), it is still not clear how 

much of the microbial variation can be explained when both SD and EH are considered, 

especially at different levels of taxonomic resolution and at different spatial scales. 

 

4.1 Statistical analyses in biogeographic studies 

There are technical and conceptual reasons for the lack of understanding of the scaling of 

microbial diversity. Technically, it has been challenging to quantify microbial diversity. The 

development of molecular approaches has enabled a more comprehensive view of microbial 

diversity. However, a commonly accepted theoretical species concept for microbes is still 

lacking. This is possibly because all of the current concepts include methodological 

consideration. Microbes are currently assigned to a common species if their reciprocal, 

pairwise DNA re-association values are $70% in DNA-DNA hybridization experiments. This 

hybridization is chosen because it yields species consistent with the phenotypic (pragmatic) 

taxonomy. In addition, microbes with 16S ribosomal RNAs (rRNAs) that are %98.7% 

identical are most ofthen members of different species, because such strong differences in 
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rRNA correlate with <70% DNA–DNA similarity (Stackebrandt and Ebers, 2006). However, 

the opposite is not necessarily true, and distinct species have been occasionally described with 

16S rRNAs that are >98.7% identical. Most uncultured microbes cannot be assigned to a 

classical species because we do not know their phenotype. Therefore, other methods, such as 

multilocus sequencing analysis (MLSA) (Hanage et al., 2006), average nucleotide identity 

(ANI) of all orthologous genes in complete genome sequences (Konstantinidis and Tietje, 

2005; Richter and Rossello-Mora, 2009), and concepts, such as metapopulation lineages (de 

Queiroz, 2005), genomic-phylogenetic species concept (Staley, 2006) and ecotype-based 

population-structure (Cohan and Perry, 2007), for defining microbial species have been 

suggested.  

To answer questions concerning whether microbes are cosmopolitan or endemic, in 

practice, many studies of microbial diversity abandon species definitions entirely. They define 

instead operational taxonomic units (OTUs) based on the ribosomal gene sequences that do 

not require cultures. The first step to analyse biogeographic patterns in a microbial 

community is to estimate the microbial diversity and to detect how well a sample reflects a 

community’s “true” diversity. Measures of microbial diversity include richness (number of 

species/OTUs) and evenness (relative abundance of OTUs).  

Different statistical tools are available to estimate richness of a community from a sample. 

These estimators fall into three main classes: extrapolation from accumulation curves, 

parametric estimators, and nonparametric estimators (Hughes et al., 2001). Nonparametric 

estimators are the most promising for microbial studies. The computer program DOTUR was 

developed by Schloss et al. (2005), which assigns sequences to OTUs based on the genetic 

distance between sequences and estimates richness and diversity. This tool provides a 

community membership and structure comparison based on OTUs. Furthermore, the 

calculation of rarefaction curves provides the comparison of observed richness among sites, 

treatments or habitats that have been unequally sampled. A rarefied curve results from 

averaging randomizations of the observed accumulation curve (Heck et al., 1975). Further 

statistical tools for comparing the structure of microbial communities describing the 

abundance of each member include &-LIBSHUFF (Schloss et al., 2004), TreeClimber (Schloss 

and Handelsman, 2006b), Unifrac (Lozupone and Knight, 2005), AMOVA (Martin, 2002) 

and SONS (Schloss and Handelsman, 2006a).  

The detection of differences and similarities of microbial communities between different 

habitats leads to the understanding of the effect of special scaling and environmental 

heterogeneity in biodiversity on local and global scale. One approach to test how community 
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composition changes with geographic distance is the distance-decay relationship (Figure 22A) 

(Nekola and White, 1999; Green and Bohannan, 2006). When coupled with environmental 

data, the distance-decay relationship offers a means to assess the relative importance of both 

the environmental heterogeneity and dispersal history in controlling the spatial scaling of 

biodiversity. The taxa-area relationship detects the relationship between species richness and 

sampled area (Figure 22B). Based on biogeographic studies of macroorganisms, it has been 

suggested that cosmopolitical microorganisms should be characterized by relatively taxa-area 

curves, with z values (slopes) lower than those reported for macroorganism (0.1 to 0.3 within 

contiguous habitats, 0.25 < z < 0.35 for discrete islands) (Rosenzweig, 1995).  

 

To visualize and compare the different datasets (matrices), different clustering algorithms 

are used (e.g. non-metric multidimensional scaling (nMDS), principal component analysis 

(PCA)). The results of this analysis can be displayed as a dendrogram (Kuske et al., 2002) or 

along dimensionless axes with multidimensional scaling (Yannerell and Triplett, 2005). The 

significance of the calculated correlation of different matrices is determined by spatial 

statistics such as the Mantel test and the spatial Mantel test.  

 

Figure 22: Hypothetical spatial patterns of microbial diversity. (A) The distance-decay relationship within two 
different continents (solid and dashed lines) and the similarity in community composition between those 
continents (open square). Community similarity is equal for each continent at local scales (open circles) in the 
limit where replicate samples are completely censused from the same location. (B) The taxa-area relationships 
for two continents. A greater rate in community composition turnover results in a steeper taxa-area relationship 
slope (dashed line). The local:global richness ratio on a given continent is equal to the taxa richness estimated at 
the local scale (solid circle) divided by the taxa richness estimated at the global scale (solid square) (Green and 
Bohannan,  2006). 



INTRODUCTION  

 45 

4.2 Biogeographic pattern of microbial communities 

Studies of biogeographic patterns of free-living deep-sea microbes are so far not available. 

However, numerous studies in the 1990s began to address the question of whether microbes 

have endemic or cosmopolitan distribution. To date, only a few studies have so far 

investigated the relationship between EH and SD. At extreme environments, such as hot 

spring, endemicity has been uncovered several times amongst hyperthermophilic bacteria and 

archaea (e.g. Hudson et al., 1989; Petursdottir et al., 2000; Sompong et al., 2005). Martiny 

and colleagues found only two studies that examined distribution distance in relation to 

environmental factors (Papke et al., 2003; Whitaker et al., 2003). Both of those papers, as well 

as a study of high-mountain lake bacteria (Reche et al., 2005), concluded that the organismal 

distributions they investigated could not be adequately explained by EH, for example hot 

spring chemistry, and that the most important influence was that of SD. Furthermore, Martiny 

and colleagues observe that large distances (>3000 km) between populations overwhelm 

environmental correlations, while at very close distances (<10 km), SD has almost no 

influence when compared to environmental factors. At in-between spatial scales 

(10-3000 km), both factors appear to be important (Table 6). 

 

Table 6: Studies of the effects of spatial distance (SD) and environmental heterogeneity (EH) on microbial 
composition 

Organisms Approximate  Habitat OTU Effect of Reference 
 scale (km)   SP EH  

Synechococcus 20,000 Hot springs 16S/ITS sequence Yes No Papke et al., 2003 
Sulfolobus 12,000 Hot springs MLS of isolates Yes* No* Whitaker et al., 2003 
Bacteria 3,000 Coral 16S sequence No Yes* Rohwer et al., 2002 
Bacteria 500 Lakes ARISA Yes* Yes* Yannerell and 

Triplett, 2005 
3-CBD bacteria 500 Soil ARDRA No Yes* Mantel, 1967 
Ascomycetes 100 Soil ARISA Yes* Yes* Green et al., 2004 
Bacteria 100 Aquatic ARISA No Yes Hewson and 

Fuhrmann, 2004 
Bacteria 10 Lakes DGGE of 16S Yes* No* Reche et al., 2005 
Bacteria 0.3 Marsh 

sediment 
16S sequence No* Yes* Horner-Devine et al., 

2004 
Bacteria 0.1 Soil TRFLP No Yes* Kuske et al., 2002 

The studies are ordered by the geographical scale over which the samples were taken, reported as the 
approximate furthest distance between sampling points. *The effect was tested for statistical significance. 3-
CBD, 3-chlorobenzoate-degrading; ARDRA, amplified ribosomal DNA restriction analysis; ARISA, automated 
ribosomal intergenic spacer analysis; DGGE, denaturing gradient gel electrophoresis; ITS, intergenic transcribed 
space; MLS, multilocus sequencing; OTU, operational taxonomic unit used in the study; TRFLP, terminal 
RFLP. 
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5 Aims of this study 

Within this thesis, the diversity, function and biogeographic patterns of microbial 

communities from different deep-sea sediment were investigated. This includes sediments 

from the peridotite-hosted hydrothermal vent field on the Mid-Atlantic Ridge (Logatchev) and 

from three permanently cold deep-sea basins in the South Atlantic Ocean.  

Most investigations of microbial communities of hydrothermal systems focused on basalt-

hosted vent fields, as peridotite-hosted systems were discovered around 20 years later. 

Nevertheless, microbial diversity of hydrothermally influenced sediments was so far only 

known from the coastal near basalt-hosted hydrothermal field of the Guaymas Basin (Gulf of 

California section of the EPR) (Teske et al., 2002). Studies of the microbial diversity in 

sediments from a peridotite-hosted system were so far limited to a single study of the 

Rainbow hydrothermal vent field (Nercessian et al., 2005). However, these sediments do not 

represent hydrothermally influenced habitats. Within this thesis, in the framework of the 

German Research Foundation’s priority program on hydrothermal vents (SPP 1144 ‘From 

Mantle to Ocean: Energy-, Material-, and Life-cycles at Spreading Axes’), different sediments 

within a peridotite-hosted hydrothermal vent field were investigated.  

The first goal of this thesis was to reveal the diversity and abundance of deep-sea microbial 

communities in hydrothermally influenced sediments by 16S rRNA gene analyses and 

fluorescence in situ hybridization techniques. The detected microbial diversity should be 

compared with the microbial diversity of non-hydrothermally influenced deep-sea surface 

sediments to identify vent specific microbial groups. Furthermore the comparison with 

detected microbial diversity of basalt-hosted systems should reveal differences in the 

microbial composition due to different fluid compositions.  

Another objective of this thesis was to link phylogenetic information with biogeochemical 

processes, and the function of certain microbial groups. The potential and present activity of 

free-living microorganisms at an ultramafic-hosted hydrothermal system should be 

determined, focusing on reduced sulfur compounds, methane and hydrogen, as the 

hypothesized driving energy sources for chemosynthetic life in this vent system. In situ 

techniques should be applied to determine environmental parameters. Moreover, ex situ 

microbial turnover rate measurements should be conducted to evaluate the importance of 

hydrogen in comparison to sulfide in a peridotite-hosted field. The diversity of key genes of 

relevant chemosynthetic pathways should be determined. Metagenome analysis should be 

applied to determine the genetic context of these key genes, and to reveal more information 

on the genetic capabilities of the key microbial groups. 
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The third project within this thesis was the investigation of biogeographic pattern of deep-

sea floor microbial communities. The effect of environmental heterogeneity and spatial 

distance should be examined by testing the correlation between microbial diversity, 

environmental conditions and spatial distance. For small scale, the detected microbial 

diversity of different sediment of the Logatchev hydrothermal vent field should be used. For 

large distances, the microbial diversity of three deep-sea sediment separated by at most 

~3500 km were investigated. As spatial distribution and the factors affecting it are unknown 

for deep-sea microbial communities, the investigation of different deep-sea habitats as well as 

at different scales will help to answer the question which factors create and maintain 

microbial diversity. 
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Summary  

Surface sediments at two sites of the ultramafic Logatchev hydrothermal vent field were 

found to be covered with white mats reminiscent of those found on sulfidic sediments at 

basalt-hosted fields. To study the importance of sulfide as an energy source fueling microbial 

communities in ultramafic vent fields, we conducted an interdisciplinary study. Geochemical 

analyses detected metal-sulfides in the sediments, elemental sulfur in mats and an intensive 

sulfide flux from below. Temperature profiling of the two sulfur-mat sites revealed 

conductive heating of sediments by underlying hydrothermal fluids that differed from known 

advective heating. High oxygen consumption rates were found, indicating high biomass 

production coupled to high sulfate reduction rates. Comparative 16S rRNA gene sequence 

analyses identified various bacteria related to those found in basaltic systems. However, 

fluorescence in situ hybridization revealed that the overlying sulfur-mats were dominated by 

filamentous Epsilonproteobacteria or a vibrioid Arcobacter type instead of mat-forming 

Beggiatoa which dominate similar mats at basaltic systems. The analyses of the surface 

sediment confirmed high abundances of Epsilonproteobacteria (7-21%), Deltaproteobacteria 

(20-21%), and Bacteroidetes (19-20%). We propose that sulfur cycling is one of the driving 

forces for primary production and biomass formation in sediments of ultramafic hydrothermal 

vent fields.  

 

Introduction 

Deep-sea hydrothermal vents are highly productive ecosystems with symbiotic and free-living 

chemolithoautotrophic microorganisms as primary producers (Jannasch and Wirsen, 1979). 

The hydrothermal systems discovered to date are either hosted by ultramafic components or 

basalt. These geological differences lead to different fluid compositions (Tivey, 2007). In 

basalt-hosted systems, sulfide oxidation as well as iron oxidation and reduction are the 

principal energy sources for microbial ecosystems (Bach and Edwards, 2003). In ultramafic 

systems, peridotite-seawater reactions result in fluids which are in addition to sulfide and 

reduced metals also enriched in methane and hydrogen (Wetzel and Shock, 2000; Schmidt et 

al., 2007). Accordingly, biofilms of methane-metabolizing Archaea were identified on high-

temperature carbonate chimneys (60-100°C) in the ultramafic rock-hosted Lost City 

hydrothermal vent field at the Mid Atlantic Ridge (Kelley et al., 2005; Brazelton et al., 2006). 

Further known ultramafic vent systems on the Mid-Atlantic Ridge are Logatchev (15°N) and 

Rainbow (36°N). Both systems are characterized by high temperature fluids of >300°C and a 

low pH (Schmidt et al., 2007). Besides smoking craters and chimney complexes, these two 
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sites are of special interest as thick sediment layers were found on top of the ultramafic rocks 

(Nercessian et al., 2005; Petersen et al., 2009). These layers likely result from a combination 

of tectonic activity due to rifting processes (Gao 2006), low-temperature water/rock 

interaction (Daczko et al., 2005), and high-temperature hydrothermal alteration.  

Large patches of the sediments at Logatchev were found to be covered by white mats 

(Lackschewitz and Shipboard Scientific Party 2005) similar to those reported from basaltic 

hydrothermal systems and cold seeps (Omoregie et al., 2008; Teske at al., 2002). Previously 

reported white mats consist of sulfide-oxidizing bacteria, which store or excrete elemental 

sulfur or of amorphous silica precipitates (Wenzhöfer et al., 2000). Whitish microbial mats at 

Galapagos (Jannasch and Wirsen, 1981) and Guaymas Basin (Gundersen et al., 1992) 

contained Beggiatoa-like and  Thiothrix-like filaments. Furthermore, Epsilonproteobacteria 

represented a major group at the southern East Pacific Rise (Longnecker and Reysenbach, 

2001), Loihi Seamount (Moyer et al., 1995) and the Guaymas Basin (Teske at al., 2002). The 

epsilonproteobacterial genera Sulfurimonas (Group B) and Sulfurovum (Group F) were 

recently identified in in situ colonization experiments at the East Pacific Rise (EPR 13°N, 

Alain et al., 2002) and at the Mid-Atlantic Ridge (MAR 23°22' N, Reysenbach et al., 2000; 

MAR 23°22' N, Corre et al., 2001; MAR 37°17' N, Lopez-Garcia et al., 2003). Microbial mats 

are therefore well characterized in basaltic systems. Microbial communities in such white 

mats at ultramafic-hosted systems have not yet been investigated, despite of the radical 

difference in fluid chemistry.  

 To investigate microbial communities in white mats at the ultramafic-hosted Logatchev 

hydrothermal vent field, four sites were sampled during two research cruises (Figure 1). Two 

of these sites, “F” and Anya’s Garden, exhibited white mats on top of the sediments. We 

determined geochemical parameters, microbial turnover rates, and investigated the microbial 

communities in all four sediment surface layers (0-1 cm) as well as in the overlying white 

mats when present. Biogeochemical and molecular analyses revealed that sulfide has the most 

important influence on microbial communities in the surface sediments although ultramafic 

fluids are typically enriched in methane and hydrogen. 
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Figure 1: (A) Active black smoker and diffuse venting sites at the Logatchev hydrothermal vent field 
and (B) a more detailed map of the sampling sites in this area (Lackschewitz and Shipboard Scientific 
Party 2005). 

A 
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Results 

Geochemistry 

Sediments from four sites within the Logatchev area were analyzed (Table 1, Figure 2). Two 

mat-covered sediments were taken at site F and Anya’s Garden (AG), respectively. These 

were compared with one mat-free sediment sample from site Quest within the vent field. The 

fourth sediment was sampled 25 m outside of the hydrothermally influenced area (oceanic 

sediments) for a comparison with the hydrothermal sediments.  

 

Mineralogical analyses of the surface layers (0-1 cm) of sediment cores taken at site F, AG 

and Quest revealed a relatively high diversity in primary and secondary silicate minerals as 

well as abundant oxides and sulfides (Table 1). The mineralogy of the white-mat sediments at 

site F and AG was similar. Both contained hydrothermally generated iron- and copper-

sulfides and either plagioclase or chlorite, suggesting mainly altered mafic material (gabbro) 

in these samples. The presence of elemental sulfur on top of the AG sediment was remarkable

Figure 2: Different sediments from the Logatchev hydrothermal vent field at the Mid-Atlantic Ridge. 
Photographs of the sampling site (left), surfaces of recovered sediment cores (diameter = 6.35 cm) (middle), 
and side view of the first 0-3 cm of the sediment cores (left). (A) Sediments from site F, (B) Anya’s Garden, 
(C) site Quest, and (D) oceanic sediment.  
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Table 1: Location of the sampling sites and geochemical data of the sediments. 

Temp. 
 

Site  Latitude 
[N/S] 

 

Longitude 
[E/W] 

Water 
depth 
[m] 

Sediment mineralogy 
 

 [cm] [°C] 

S-Fract. 
[!mol/g] 

"34S-
Isotopes 

[‰] 

F 
 

14°45.134 N 
 

44°58.731 W 
 

3000 xxx : 
xx   : 
x     : 

plagioclase* 
pyrite~ 
marcasite~, hematite+, corrensite*,  smectite group*, 
quartz*, hornblende* 

0 
36 

2.3 
100 

1015 -15.7 
(± 0.011) 

Anya’s 
Garden 

14°45.174 N 44°58.768 W 
 

3038 xx   : 
x     : 

sulfur, sphalerite~, pyrite~, chlorite group*, calcite# 
chalcopyrite~, marcasite~, wurtzite~, talc*, chrysotile* 

0 
24 

2.4 
64.8 

1060 -7.2 
(± 0.092) 

Quest 14°45.179 N 
 

44°58.833 W 3224 xxx : 
xx   : 
x     : 

talc*  
wurztzite~  
hematite+ , chrysotile*, lizardite* 

0 
22 

2.4 
7.5 

125.7 -0.6 
(± 0.160) 

oceanic 
sediment 

14°45.181 N 
 

44°58.767 W 3034 xxx : 
x     : 

calcite#  
quarz* 

0 
24 

2.4 
4.8 

7.6 +4.1 
(± 0.081) 

xxx = abundant, xx = common, x = less 
mineral types: silicate*, oxide+, sulfide~, carbonate# 
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as the Logatchev hydrothermal vent (LHV) field is metal-saturated (Augustin et al., 2008). 

The white surface material at site F could not be sufficiently separated from the rest of the 

sediment for mineralogical analyses. In contrast to these two surface sediments, the 

mineralogy of the Quest sediments reflected altered ultramafic material. Talc, a typical 

alteration product of serpentine minerals (lizardite, chrysotile) was abundant as well as 

hematite. The oceanic sediment contained carbonate and quartz minerals, indicating a pelagic 

origin of this sediment. Temperature measurements revealed a steep temperature gradient of 

270-277°C m-1 in the sulfur-mat sediments at site F and AG (Figure 3A, and B). This gradient 

was tenfold steeper than at Quest and in the oceanic sediment (20-34°C m-1). The 

temperatures increased linearly with depth, indicating conductive heat transfer rather than 

venting of hot fluids. Radial temperature profiles from the center to the outside of the white 

mats at site F and AG revealed that the mats coincided with hotspots below. 

 

 

 

 

The sulfur isotope analysis of the surface layer at site F revealed a !34S value of -15.7‰ 

(Table 1). This large sulfur isotope fractionation of dissolved seawater sulfate (+20‰; 

±0.12‰; Longinelli 1989) showed that the sulfide had a biogenic origin due to intense 

microbially-mediated sulfate reduction. The heavier sulfur isotopic composition for sulfide 

Figure 3: (A) Temperature profiles (°C) in sediments covered by sulfur-mats at Anya’s Garden and 
(B) site F, showing a temperature decrease from the center of the sulfur-mats to their outside. 

B 

A 
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from AG and Quest (-0.6 to -7.2‰) revealed a lower amount of biogenic sulfide in the 

sediments but indicated as well a microbial influence. In contrast, the sulfur isotope 

composition of the oceanic sediment indicates an inorganic sulfur source. The isotopic 

composition reflects the isotopic composition of dissolved sulfide from hot vent fluids at the 

Logatchev field (+0.2 and +8.8‰) reflecting the mixing process between leached mantle 

sulfur and thermochemically reduced seawater sulfate (Peters et al., 2009).  

Sulfide-profiles of AG showed that sulfide was diffusing from deeper sediment layers 

(Figure 4B). Sulfide was depleted approximately 2 cm below the sediment-water interface. 

The concentration of reduced inorganic sulfur compounds (pyrite, elemental sulfur, acidic 

volatile monosulfides) in the surface layer was comparable for site F (1,015 !mol/g) and AG 

(1,060 !mol/g) (Table 1). Corresponding values were much lower for the Quest 

(125.7 !mol/g) and oceanic sediments (7.6 !mol/g).  

 

Fluxes and rates 

Oxygen fluxes measured with microsensors at site F and AG were 30 mmol O2 m-2 day-1, 

similar to those in eutrophic coastal, estuarine marine (Jørgensen, 2001) and cold seeps 

sediments (Niemann et al., 2006) (Figure 3). Oxygen consumption rates in the oceanic 

sediment were below the detection limit in benthic chamber experiments (Røy et al., 

unpublished). 

 

SRR 

H2

S T 

O2 

SRR 

O2 

B 

Figure 4: (A) Biogeochemical microprofiles for sulfur-mat sediments from Anya’s Garden and (B) site F, 
showing temperature (T), oxygen (circles), and sulfide profiles (only for B) as well as sulfate reduction rates 
measured by 35S-technique in the top three centimeters. 
 

A 

T 
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Maximum sulfate reduction rates (SRRs) were determined for the surface layer (0-1 cm) 

(AG = 122 nmol cm-3 day-1, site F = 136 nmol cm-3 day-1) and decreased to less than 1 nmol 

cm-3 day-1 at a depth of 5 cm (Figure 3). In contrast, SRRs were not detectable at Quest. 

Anaerobic oxidations of methane (AOM) rates were low throughout the whole sediment 

cores, with a maximum at the surface layer at site AG (11 nmol cm-3 day-1) and in a sediment 

depth of 0-3 cm at Quest (13-11 nmol cm-3 day-1). These rates are comparable to those 

measured in the sulfate methane transition zones in coastal and margin sediments (Knittel and 

Boetius, 2009). SRRs were tenfold higher than AOM rates in site F and AG surface 

sediments.  

 

Microbial diversity 

Comparative analysis of samples taken in 2005 and 2007 by denaturing gradient gel 

electrophoresis (DGGE) showed that the hydrothermally influenced sediments from AG, site 

F, and Quest were stable over a period of two years (Figure 5A). At site F, different patterns 

were observed for the 0-2 cm layer and deeper layers, showing a shift in the microbial 

community (Figure 5B).  

 

 

Figure 5: (A) DGGE fingerprints of PCR-amplified bacterial 16S rRNA sequences from the surface 
sediments (0-1 cm) of site F, Anya’s Garden and Quest in 2005 and 2007. (B) Depth profiles of site F 
sediment to a depth of 10 cm from 2007. 
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In this study, the microbial diversity in the surface layers was further examined by 

comparative 16S rRNA sequence analysis. All four sites revealed an even bacterial richness 

(Table 2). Proteobacteria represented the largest group of sequences in all bacterial libraries 

(59% to 71%) (Figure 8). Sequences related to Epsilonproteobacteria were exclusively found  

in the surface sediments from AG and site F (21% and 8% of all sequences, respectively). 

Most epsilonproteobacterial sequences from AG (15%) affiliated with the genus Sulfurovum 

(Group F) (Inagaki et al., 2004) (Figure 6). There was one particular cluster of 19 sequences 

that was most closely related to environmental sequences retrieved from hydrothermal 

sediment from the Guaymas Basin (Teske et al., 2002). Most of the epsilonproteobacterial 

sequenes from Site F were related to symbionts affiliated to the genera Sulfurimonas (Group 

B) and Sulfurovum (Group F). Sequences related to the ectosymbiont of Rimicaris exoculata 

from South MAR (Petersen et al., 2009) were retrieved exclusively from site F, while 

sequences from site F and AG were related to the endosymbiont of Alviniconcha sp. Type 2 

(Suzuki et al., 2006). These symbionts-affiliated sequences suggest that sulfur-mat sediments 

could provide a niche for the free-living forms of symbiotic bacteria. Other sequences 

recovered from both sites were affiliated with sequences retrieved from a sulfur spring (Milk 

Lake, Tawain) or to filamentous bacteria on a in situ colonizer (Rainbow, Lopez-Garcia et al., 

2003).  

 

 

 

Table 2:  Cell and CARD-FISH counts, number of 16S rRNA gene sequences, and estimated Chao1 richness 
for all four sediments. 

CARD-FISH 
[%] 

No. of 16S rRNA gene 
sequencesb 

Richness estimator 
Chao1c 

Site  Cell counts 
[cell/g] 

EUB338 
I-IIIa 

ARCH 
915 

bacterial archaeal Bacteria Archaea 

 F 4.2 ! 109 75 6 111 
74 F/37 P 

52 
46 F/6 P 

173 
 (115, 301) 

64 
 (35, 165) 

Anya’s 
Garden 

2.9 ! 109 78 2 137 
84 F/53 P 

13 
13 F/0 P 

107 
 (88, 147) 

10 
 (8, 20) 

Quest 3.6 ! 108 69 4 93 
62 F/31 P 

84 
56 F/28 P 

102 
 (74, 170) 

13 
(11,27) 

Oceanic 
sediment 

6.8 ! 107 70 8 154 
78 F/76 P 

81 
55 F/26 P 

139  
(117, 181) 

14 
(13, 21) 

a equimolar mixture of probes EUB338, EUB338-II, and EUB338–III covering about 90% of all members of   
Bacteria (Amann and Fuchs, 2008) 

b total numbers of sequences as well as number of full-length (F) and partial (P) sequences 
c Chao1 richness with lower and upper bound of 95% confidence interval 
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A second major group of sequences from site F and AG libraries was related to 

Deltaproteobacteria (16% and 19% of all sequences, respectively). All of the AG sequences 

and most of the sequences from site F were related to the sulfate-reducing families 

Desulfobulbaceae and Desulfobacteraceae (Figure 7). Similar sequences were obtained from 

a mat-covered mud volcano (Omoregie et al., 2008), gas hydrate sediment (Mills et al., 2005) 

and hydrothermal sediment from the Guaymas Basin (Teske et al., 2002). Further sequences 

from site F were related to Desulfuromonadaceae. Members of this family are capable of 

sulfur and Fe(III) reduction (Pfennig and Biebl, 1976; Roden and Lovley, 1993). In contrast, 

sequences from the Quest and oceanic sediment clone libraries were mainly affiliated with 

Nitrospinaceae and Bdellovibrionaceae as well as with 16S rRNA sequences that originated 

from other deep-sea or marine sediments. 

Figure 6: Phylogenetic tree showing the affiliation of 16S rRNA gene sequences from Epsilonproteobacteria. 
The tree was calculated by maximum-likelihood analyses with bootstrap values at the nodes showing 
percentages based on 100 replicates. Sequences obtained in this study are indicated by bold type, and the number 
of sequences with 97% identity is shown in squared brackets. The bar represents 10% estimated sequence 
divergence. Sequences that are targeted by EPSY549 or Arc94, Arc1430 probes are indicated. 
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Figure 7: Phylogenetic tree showing the affiliation of 16S rRNA gene sequences from Deltaproteobacteria.  The 
tree was calculated by maximum-likelihood analysis with bootstrap values at the nodes showing percentages based 
on 100 replicates. Sequences obtained in this study are indicated by bold type, their number of sequences with 97% 
identity is shown in squared brackets. The bar represents 10% estimated sequence divergence. Sequences that are 
targeted by the DSS658 or the DSV689 probes are indicated. 
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 Most of the sequences from the oceanic sediment site (40%), Quest (60%) and site F 

(37%) libraries and a major group of sequences from the AG library (19%) belonged to the 

Gammaproteobacteria. The largest number of sequences of the Quest (49%) and oceanic 

sediment (35%) libraries clustered with members of the group JTB255/BD3-6, which includes 

sequences of different deep-sea sediments (Schauer et al., 2009), and  permanently cold 

marine sediments (Ravenschlag et al., 1999). In contrast, most of the Gammaproteobacteria-

related sequences from site F and AG clustered with lineages among the sulfur-oxidizing 

members of the orders Chromatiales, Thiotrichales, to methanotrophic gill symbionts 

(Fujiwara and Uematsu, 2002), and with the aerobic, anoxygenic, phototrophic NOR5/OM60 

clade (Fuchs et al., 2007).  

Bacteroidetes-related sequences from site F (17%) and AG (13%) clustered with sequences 

associated with hydrothermal vent animals (Alain et al., 2002; Goffredi et al., 2004), 

Guaymas Basin hydrothermal sediments (Phelps et al., 1998), and  cold-seep sediments (Li et 

al., 1999). These sequences of Bacteroidetes were often found in environments with high 

abundance of sulfide-oxidizing or sulfate-reducing bacteria (Macalady et al., 2006).  

The archaeal sequences from site F and AG differ as well from those retrieved from Quest 

and oceanic sediments (Figure 4). Most of the site F and AG sequences were related to 

Euryarchaeota (51.9% and 92.3 %, respectively), while 89 to 100% of all sequences from 

Quest and oceanic sediment were related to Crenarchaeota. Site F and AG contained mainly 

sequences affiliated with anaerobic methane oxidizers (ANME-1; 21.2%, 30.7%, 

respectively), and with the Marine Benthic Group D, which is frequently detected in habitats 

where AOM occurs (Knittel et al., 2005). Almost all sequences derived from Quest and 

oceanic sediment affiliated with the crenarchaeotal Marine Group I, the most abundant and 

widely distributed group in the ocean (Takai et al., 2004).  
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Figure 8: Bacterial and archaeal abundances (CARD-FISH) and 16S rRNA gene based diversities (clone libraries) in the four different sediments of the Logatchev hydrothermal 
vent field. 
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Microbial community structure  

The highest total cell numbers were detected in the white-mat sediments (0-1 cm) (site 

F=4.2!109 cells/g, AG=2.9!109 cells/g), and the lowest in the oceanic sediment (6.8!107 cells/g) 

(Table 2). Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) 

revealed that all four sites were dominated by Bacteria (69 to 76% of total cells), while Archaea 

accounted for less than 8% of total cells (Table 2). Epsilonproteobacteria were only detected at 

site F and AG where they constituted 7% and 21% of the microbial communities, respectively 

(Figure 8). The probes Arc1430- and Arc94, which are specific for the genus Arcobacter, 

targeted 2% and 1% at site F and 16% and 7% at AG, respectively (Table 3). 

Deltaproteobacteria were more abundant in site F (21%) and AG (20%) surface sediments 

compared to Quest (4%) and oceanic sediments (8%) (combined counts of probe Delta495_ab 

and Delta495_c). Cells targeted by probe DSS658 made up 21% at site F and 11% at AG, 

indicating that sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade were highly 

abundant at these sites. The relative abundance of GAM42a-hybridized cells ranged from 4-5% 

at all sites. Potentially sulfide-oxidizing Gammaproteobacteria targeted by probe GAM660 were 

most abundant at site F (6%). Bacteroidetes detected by probe CF319a, accounted for 21% at site 

F and 19% at AG of the microbial community. They are ubiquitous degraders of polymers in the 

marine environment. Bacteroidetes were highly abundant in white-mat sediments and less 

abundant at Quest (4%) and in the oceanic sediment (4%). In summary, microbial communities 

from mat-covered sediments were dominated by Deltaproteobacteria, Epsilonproteobacteria and 

Bacteroidetes (site F: 48%, AG: 60%), while Gammaproteobacteria and Deltaproteobacteria 

were most abundant at Quest (9%) and in the oceanic sediment communities (12%). As all 

probes used detected only 16-24% of the total community at site Quest and in the oceanic 

sediment, the dominance of other groups cannot be excluded. Microscopic examination of the 

overlying white-mat at site F and AG showed that filamentous bacteria were present on top of 

site F but not of AG sediments (Figure 9A). The white material on top of both sediments was 

further investigated by FISH without prior sonication. The filamentous bacteria at site F were 

targeted by probes specific for Epsilonproteobacteria (EPSY549, Figure 9B and EP404). As 

different filamentous morphologies were targeted by EPSY549 and the EP404 probe, different 

filamentous Epsilonproteobacteria were most likely present. These filaments were not detected 

in the sonicated surface sediment sample from site F. Therefore, these filaments are sensitive to 

sonication, so that CARD-FISH counts of Epsilonproteobacteria did not include these filaments. 

Thus, Epsilonproteobacteria are underrepresented in the surface sediment counts of site F. In 

both white mats, Arc1430- (Figure 9C, G), CF319a- and DSS658-hybridized cells were detected. 
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GAM42a-targeted cells were large (2-4 !m diameter, Figure 9D, H) and formed aggregates. 

Archaea targeted by the ARCH915 probe were not found in the white layer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Photomicrographs of overlying mat from Anya’s Garden (A-D) and site F (E-F). Cells of different 
morphologies are shown targeted by the EPSY549- (B+F), the Arc1430- (C+G), and the GAM42a-probe (D+H). 
Scale bars: 10 !m. 
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Table 3: Oligonucleotide probes and hybridization conditions used in this study. 
Target group Probe Sequence (5’ to 3’) Label FA 

[%]a 
Hybridization 

Temp (°C) 
Reference 

Most Archaea ARCH915 GTGCTCCCCCGCCAATTCCT HRP, Cy3  35 46 Stahl and Amann, 1991 
EUB338 GCTGCCTCCCGTAGGAGT  HRP, Cy3 35 46 Amann et al., 1990 
EUB338-II GCAGCCACCCGTAGGTGT HRP, Cy3 35 46 Daims et al., 1999 

Most Bacteria 

EUB338-III GCTGCCACCCGTAGGTGT HRP, Cy3 35 46 Daims et al., 1999 
control probe complementary to 
EUB338 

NON338 ACTCCTACGGGAGGCAGC HRP, Cy3 35 46 Wallner et al., 1993 

Epsilonproteobacteria EPSY549 CAGTGATTCCGAGTAACG HRP, Cy3 35 46 Lin et al., 2006 
Epsilonproteobacteria EP404 AAAKGYGTCATCCTCCAA Cy3 30 46 Macalady et al., 2006 
Arcobacter sp.  Arc1430 TGCGCCACTTAGCTGACA HRP, Cy3 20 46 Snaidr et al., 1997 
Arcobacter sp. Arc94 TGCGCCACTTAGCTGACA HPR 20 46 Snaidr et al., 1997 
Most Deltaproteobacteria and 
Gemmatimonadetes 

Delta495ab AGTTAGCCGGTGCTTCCT HRP 35 46 Loy et al., 2002 

Some Deltaproteobacteria Delta495bb AGTTAGCCGGCGCTTCCT HRP 35 46 Loy et al., 2002 
Some Deltaproteobacteria Delta495cb AATTAGCCGGTGCTTCCT HRP 35 46 Loy et al., 2002 
Desulfosarcina-related bacteria DSS658 TCCACTTCCCTCTCCCAT HRP, Cy3 60 46 Manz et al., 1998 
Most Desulfovibrio spp.  DSV689 GTTCCTCCAGATATCTACGG HRP 40 46 Manz et al., 1998 
Methanotrophic, RuMP-metabolism, 
Gammaproteobacteria 

MOGAM GGTCCGAAGATCCCCCGCTT HRP 20 46 Tsien et al., 1990 

Gammaproteobacteria GAM42ab GCCTTCCCACATCGTTT HRP, Cy3 35 46 Manz et al., 1992 
Potential sulfur-oxidizing 
Gammaproteobacteria 

GAM660 TCCACTTCCCTCTAC HRP 35 46 Ravenschlag et al., 2001 

most Flavobacteria, some 
Bacteroidetes, some Sphingobacteria 

CF319a TGGTCCGTGTCTCAGTAC HRP, Cy3 35 46 Manz et al., 1996 

a Formamide (FA) concentration in hybridization buffer. 
b Competitor probes are required.  
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Discussion 

Diffusive transport of fluid components  

Sulfur-mats were found on top of heated sediment at AG and site F. The linear temperature 

profiles showed that the heat flux to the surface was conductive and not carried by fluid 

emission. The impression of shimmering water at AG and site F was therefore caused by 

heating of ambient seawater and subsequent rising due to decreased density. The effect can be 

observed at the bottom of a pot of water on a stove. As fluid emissions were not detected, our 

analyses do not support the description of these sites as “diffuse venting sites” (Gebruk et al., 

2000), although these sites may have exhibited diffuse venting in the past. Low 

concentrations of methane, sulfide and hydrogen measured in the shimmering water above 

these sediments (Borowski and Shipboard Scientific Party 2007) confirmed that the surface 

sediment layers were not exposed to direct vent emission. Nevertheless, the heat sources 

below the white patches are most likely conduits carrying hydrothermal fluids. The highest 

detected fluid temperature at Logatchev is around 350°C (Douville et al., 2002). Extrapolation 

of the temperature gradient of 270°C m-1 to 350°C shows that the heat source is within 1.3 m 

or even closer if the temperature of the source water is below 350°C. The hot fluids at LHV 

contain high concentrations of reduced substances (dissolved hydrogen 19 mM, methane 

3.5 mM, sulfide, 2.5 mM) (Schmidt et al., 2007). These electron donors diffuse towards the 

sediment-water interface along with the heat and fuel the chemolithoautotrophic community 

in the sulfur-mats. This is in agreement with a decrease of temperature and electron donor 

supply from the center of the mats to the outside. The upper temperature limit for microbial 

life of around 121°C (Kashefi and Lovley, 2003) is reached in only 45 cm depth. Thus, 

microbial layers controlled by the gradients of electron donors and acceptors (e.g. methane 

sulfate transition zone) must be concentrated near the surface where the temperature is 

compatible with life. Our analyses showed that regions of diffuse flow at hydrothermal vent 

fields lead as well to massive biomass accumulations at the seawater-sediment interface, 

besides previously reported regions exposed to vent fluid flow (Karl 1995).  

 

The sulfur cycle in sediments of an ultramafic vent field 

Biogeochemical profiles for sediments at AG revealed an intense sulfide flux from below. 

This sulfide flux was either generated by microbial dissimilatory sulfate reduction from a 

maximum of 45 cm depth or/and supplied by upwards diffusing hydrothermal fluids. Sulfide 

is depleted about two centimeters below the sediment surface. The slightly increasing sulfide 

concentration in the first centimeter could be due to changes in the pH or to dissimilatory 
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sulfate reduction. As corresponding pH profiles are missing, this remains unclear. Oxygen 

was already consumed after a few millimeters sediment depth. The separation of sulfide and 

oxygen prevents the direct sulfide oxidation by oxygen, resulting in a suboxic zone (upper 4-

18 mm) where neither oxygen nor sulfide is present. Consequently, sulfide cannot be directly 

oxidized with oxygen. Sulfide oxidation by oxygen requires bioirrigation by burrowing 

animals that pump oxic water down in the sulfidic sediment. High temperatures in the 

sediment probably prevent massive biorrigation by animals, so that chemical oxidation of 

sulfide to metal sulfides is more likely. The presence of various iron- and copper-sulfides in 

these sediments suggests that metal oxides constitute an efficient sulfide barrier by oxidizing 

and binding sulfide (Thamdrup et al., 1994) (Figure 10). Therefore, most sulfides precipitate 

as metal sulfides and elemental sulfur. Oxygen becomes available in the first few millimeters 

(mm), as revealed by oxygen profiles. Near the sediment-surface interface, the reduced metal-

sulfides likely react with oxidants such as oxygen or manganese oxide, and intermediates of 

pyrite oxidation such as thiosulfate and polythionates are produced (Figure 10) (Jørgensen 

and Kasten, 2006). These intermediate sulfur compounds can serve as energy sources for 

chemolithoautotrophic bacteria. High oxygen consumption rates in the first millimeters, and 

highest cell numbers in site F and AG sediments confirmed the presence of highly active 

microbial communities.  

Mat-forming Beggiaotoa and Thiothrix as well as vibrioid Arcobacter typically occur in 

sediments with high sulfide fluxes (Jannasch and Wirsen, 1981; Taylor and Wirsen, 1997). 

Arcobacter-related species were identified as one of the dominant groups at AG, which are 

Figure 10: A model of the bacterial sulfur cycle in the sulfur-mat sediments from the Logatchev 
hydrothermal vent field. Upwards diffusing components of the underlying hydrothermal fluids, 
particularly sulfide, drive the sulfur cycle. 



MANUSCRIPT 1 

 70 

known to be autotrophic sulfide-oxidizing bacteria that excrete filamentous sulfur (Wirsen et 

al., 2002; Sievert et al., 2007). Therefore, the production of filamentous sulfur by sulfide-

oxidizing Arcobacter could account for the detected sulfur-mat on top of AG sediments.  

Mat-forming Epsilonproteobacteria were identified by FISH on top of the sediment at site 

F. These Epsilonproteobacteria-mats probably provide the sediments with the whitish 

appearance, instead of mat-forming Beggiaotoa and Thiothrix, which were found in 

hydrothermal vent systems at Galapagos and Guaymas Baisn. Phylogenetic analysis of the 

total surface sediment layer (0-1 cm) indicates that these filaments are likely related to the 

genus Sulfurimonas (Group B). Indeed, one member of this genus, Sulfurimonas 

autotrophica, was isolated from deep-sea hydrothermal sediments (Inagaki et al., 2003). 

Cultivated members of this genus are chemoautotrophic, mesophilic, elemental sulfur-, 

sulfide- and thiosulfate-oxidizers. Gammaproteobacteria affiliated with Chromatiales and 

Thiotrichales, which we detected by 16S rRNA gene analyses could also contribute to sulfide-

oxidation in these sediments.  

The presence of sequences closely related to those of sulfur-disproportionating 

Desulfocapsa sulfoexigens (Finster et al., 1998), and sulfur-reducing bacteria belonging to the 

Desulfuromonadacea, are in accordance with the presence of elemental sulfur (Figure 6). 

These bacteria are important in sulfur transformation processes in aquatic sediments 

(Jørgensen, 1990) (Figure 8). The biomass produced by autotrophic bacteria thriving on 

reduced sulfur compounds probably fuels sulfate-reducing bacteria, enabling high SRRs 

(Figure 3a, b). Highly abundant Deltaproteobacteria were found in the sulfur-mat sediments, 

which grouped with sulfate-reducers of the genera Desulfosarcina, Desulfobacter, and 

Desulfobulbus. These genera were detected at cold seeps  (Omoregie et al., 2008) and in 

hydrocarbon-rich sediments of the Guaymas Basin (Teske et al., 2002). The SRRs in the 

surface layers of site F and AG were 100-times higher compared to those in deep-sea 

sediments (0.6-1.97 mmol m-2 d-1) (Weber et al., 2001) which was reflected by the sulfur 

isotope fractionation. However, detected SRRs were much lower in comparison to the highest 

SRR found at hot-spots of methane flux from cold seeps or gas hydrates (803 mmol m-2 d-1) 

(Arvidson et al., 2004). At these sites, SR is likely fueled by the oxidation of hydrocarbons 

and oil, rather than by the anaerobic oxidation of methane (AOM) (Joye et al., 2004). We 

detected sequences from AG and site F affiliated with anaerobic methane oxidizers (ANME-

1; 21.2%, 30.7%, respectively), and with the Marine Benthic Group D, which is frequently 

detected in habitats where AOM occurs (Knittel et al., 2005). Low anaerobic methane 

oxidation rates and the low abundance of Archaea in the surface sediment layer (0-1 cm) 
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indicate that sulfate reduction (SR) fuelled by methane is only of minor importance. This 

suggests that SR is coupled to organic material as known from other habitats with high SRRs 

(Kallmeyer and Boetius, 2004a; Lloyd et al., 2006; Omoregie et al., 2008; Robador et al., 

2009). The primary degradation of high molecular weight organic compounds by highly 

abundant heterotrophic Bacteroidetes (Kirchman 2002), likely provides sulfate-reducing 

bacteria with low molecular weight compounds. 

Biogeochemical and molecular analyses propose that the cycling of sulfur-compounds is 

one of the dominant processes in sediments from site F and AG (Figure 8). In non-

hydrothermally influenced marine sediments, microbial communities are typically fueled by 

deposited organic material that is oxidized by e.g. sulfate-reducing bacteria. In contrast, the 

microbial communities at site F and AG are fueled by additional electron donors supplied by 

the underlying hot fluids. Therefore, we hypothesize that chemolithoautothrophic bacteria 

produce enough biomass to support secondary sulfate reducers. Quest and the oceanic 

sediments did not reveal the electron donors supplied from below and therefore showed clear 

differences in their bacterial and archaeal diversity. These sediments revealed undetectable 

oxygen consumption, sulfate reduction rates and an inorganic origin of sulfide, and therefore 

appeared unaffected by the intense chemolithoautotrophic turnover, taking place 25 m away.  

 

Microbial community of basalt and ultramafic-hosted hydrothermal systems  

Hydrothermal vent fields hosted by ultramafic rocks emit fluids enriched in methane and 

hydrogen compared with basalt-hosted systems. As fluids are generally emitted from chimney 

structures or diffuse vent sites at high flow rates, the surrounding environments are directly 

exposed to the fluid flow (Karl 1995). In contrast to these sites, we showed that in sediments 

of the ultramafic Logatchev vent field fluids slowly pass through the sediment in a diffusive 

process until they reach the surface layer. We propose that typical ultramafic fluid 

components such as methane, hydrogen and sulfide are consumed by microorganisms or are 

oxidized to metal sulfides in deeper layers indicated by the presence of various iron- and 

copper-sulfides. Thus, we detected little influence of the hydrogen- and methane-enriched 

fluids on the composition of the microbial communities in the surface sediments. This is in 

contrast to studies of microbial communities in hot fluids at Logatchev (Perner et al., 2007) or 

at high-temperature carbonate chimneys (60-100°C) at Lost City (Brazelton et al., 2006).  

The sulfidic surface sediments were dominated by Epsilonproteobacteria and 

Deltaproteobacteria. Sequences closely related to those found in microbial mats, 

hydrothermal sediments (Moyer et al., 1995; Teske et al., 2002), and at in situ colonizers at 
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sulfidic, basaltic systems (Alain et al., 2002; Lopez-Garcia et al., 2003; Moussard et al., 2006) 

confirmed that these microbial communities showed many similarities to those from basaltic 

systems. However, CARD-FISH results revealed that filamentous and vibrioid 

Epsilonproteobacteria were highly abundant in sulfur-mat covered sediments at Logatchev, in 

contrast to gammaproteobacterial mat-forming bacteria observed at basalt-hosted fields. 

Highly abundant Epsilonproteobacteria were as well found in plume or on surfaces of sulfur 

chimneys in basalt-hosted systems (Takai et al., 2005; Nakagawa et al., 2006). This suggests a 

significant ecological importance as primary producers in ultramafic and basaltic 

hydrothermal vent systems. Further biochemical and molecular investigations are necessary to 

determine the microbial communities in deeper layers, which are most probably methane- and 

hydrogen-metabolizing microorganism acting as a sink for hydrogen and methane. 

 

Experimental Procedures 

Study sites and sampling  

Two samplings of the Logatchev hydrothermal field were performed on R/V Meteor cruise 

M64/2 (HYDROMAR II, 2005) and R/V M.S. Merian cruise MSM04-3 (HYDROMAR III, 

2007) using remotely operated vehicles (ROV; M64/2: Quest MARUM, Bremen, Germany, 

MSM04-3: Jason II, Woods Hole, USA). The Logatchev hydrothermal vent field is located at 

the lower, eastern ridge-flank close to the axial valley at 15°N on MAR in about 3,000 m 

water depth. The Logatchev area includes two known vent fields of high temperature 

hydrothermal activity (SE: Quest and Irina II; NW: site A, Anna Louise, Irina and site B) and 

white mat sediments at Anya’s Garden and site F (Gebruk et al., 2000). Four sediments were 

sampled in different areas of the Logatchev hydrothermal vent field. White mat sediments 

were taken at site F and AG, which were located about 100 m apart. The sediments were 

taken with push corers (AG) or a shovel (site F). Site F was characterized by a patchy 

distribution of white mat areas that covered more than 50 m2 and clumps of vent mussels 

scattered within the white area. The second site was a 1 m2 white patch within AG, a site with 

only dead mussels present. Shimmering water above these white mats was observed. The 

third sediment (Quest) was located a few meters from the active smoker Quest in between a 

mussel bed and a white covered area and sampled by push cores. Sediment without detectable 

hydrothermal influence was sampled 25 m from the nearest apparent hydrothermal activity.  
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In situ measurements and profiles  

Temperatures were determined using a 0.5 m long lance with 8 temperature sensors spaced at 

4 cm intervals and connected to an 8-channel logger (Brancker, Canada) close to the sampling 

sites. Temperature data reflect the measured in situ temperature after 5-10 min equilibration. 

Microprofiles were recorded with a modified version of profiling instrument described by 

Gundersen and Jørgensen (1992) and Glud et al. (1994). The sensor package consisted of two 

glass pH microelectrodes with one common Ag/AgCl reference electrode (Amman, 1986), 

two Clark type H2S microelectrodes with internal reference (Jeroschewski et al., 1996), three 

Clark-type O2 electrodes with internal reference and guard (Revsbech, 1989), as well as one 

LM-35 (National Semiconductor) temperature probe in a needle shaped casing. The tip 

diameters of the electrodes were 20-50 !m. The temperature sensor had a 3 mm thick 

cylindrical shaft and a cone-tapered tip. The spatial resolution of the temperature sensor was 

better than 0.5 mm. Positioning as well as the activation of the profiler by pressing a 

mechanical switch was performed with the ROV. Once the profiler was activated, the 

electronic cylinder holding the microsensor array was lowered in increments of 0.1 mm for a 

total distance of 130 mm.  

 

Mineralogy 

Dry surface sediment samples (0-1 cm) from all four sites were powdered and pressed to 

tablets for X-Ray diffraction measurements on a Philips PW 1710 (IFM-GEOMAR, Kiel, 

Germany) with automatic divergence slit and monochromatic CoK" radiation. Data 

processing was performed using the freeware MacDiff (Petschick, 2001). 

 

Sulfur fractionation 

Isotopic measurements were carried out on a ThermoFinnigan Mat DELTA Plus mass 

spectrometer (Bremen, Germany) coupled with an elemental analyzer (Carlo Erba). Acid-

volatile and chromium reducible sulfur from the surface layer of each sediment was extracted 

according to Canfield et al. (1986) and Newton et al. (1995). The evolved sulfide was 

precipitated as ZnS in 3% zinc-acetate solution. ZnS-preserved samples were acid distilled 

into a silver nitrate solution, and the precipitated Ag2S was dried and converted to SO2 during 

combustion with V2O5 at 1,050°C. Results are given in the common # notation as per mill 

difference to the V-CDT-reference (Vienna Canyon Diablo Troilite). On the V-CDT scale the 

standard materials IAEA-S1 and IAEA-S2 show #34S values of -0.3‰ and 21.5‰, 

respectively. All replicate analyses of standards were repeatable in ±0.3‰. 
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Measurements of sulfate reduction rates 

Sulfate concentration was determined for three subcores (1 cm diameter), which were 

sectioned in 1 cm layers, preserved in 20 ml of 20% (w/v) and frozen at -80°C until analysis. 

Thawed sediment samples were centrifuged at 4,500 r.p.m. at 4°C for 5 min. The preserved 

supernatant porewater (100 !l) was diluted 100-fold with distilled water and analyzed by non-

suppressed ion chromatography with a Waters IC-Pak anion exchange column (50 mm " 

4.6 mm) and a Waters 430 conductivity detector (Ferdelman et al., 1997). Sulfate reduction 

rates were measured in triplicates at room temperature within 5-8 hours after core recovery. In 

three subcores, 5 !l aliquots of carrier-free 35SO4
2--tracer solution in 4% NaCl (~100 kBq per 

injection) were injected at 1 cm intervals according to Jørgensen (1978). Incubation was 

terminated after 24 h by sectioning into 20 ml of 20% (w/v) zinc-acetate solution. The 

reduced 35S was separated from non-reacted tracer by single-step reduction and distillation 

(Kallmeyer et al., 2004b) and sulfate reduction rates were calculated from the fraction of 

tracer reduced and the sulfate concentration.  

 

Measurements of anaerobic oxidation of methane (AOM)  

Methane concentration was measured in sectioned subcores (1 cm diameter) preserved with 

2.5% NaOH in rubber-sealed glass vials. Methane was measured by injecting 100 !l of the 

headspace gas on a Hewlett Packard 5890A gas chromatograph with flame-ionization 

detector. Radiotracer incubations for AOM were performed in triplicates, injecting 10 !l of 
14CH4 (~0.24 kBq, dissolved in double-destilled H2O) in 1 cm intervals, respectively. The 

subcores (1 cm diameter) were incubated for 24 h at room temperature, followed by cm-wise 

sectioning and fixation in 2.5% NaOH. The rates of methane oxidation were calculated from 

concentration of the reactant, its radioactivity and the radioactivity in the reaction product 

according to Treude et al. (2003). 

 

DGGE 

DNA was extracted from 0.5 g surface sediment sample (0-1 cm) following the protocol of 

the FastDNA SPIN Kit for Soil (Q#BIOgene, CA, USA). The amplification of the bacterial 

16S rRNA genes for DGGE was performed with the primer set GM5F (GC-clamp at the 5´-

end) and 907 RM (Teske et al., 1996) using a touchdown protocol (Muyzer et al., 1995). The 

reaction mixture of 100 !l included 10-100 ng DNA, 1 !M of each primer, 100 mM of 

dNTPs, 1 x buffer (Eppendorf, Hamburg, Germany), 1 x enhancer (Eppendorf, Hamburg, 

Germany), and 1.25 U of the Eppendorf-Taq DNA Polymerase (Eppendorf, Hamburg, 
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Germany), and 1.25 U of the Eppendorf-Taq DNA Polymerase (Eppendorf, Hamburg, 

Germany). DGGE was carried out using a Bio-Rad D-Code system at 60°C and a constant 

voltage of 200 V for 3.5 h. The DGGE bands were visualized under UV light. 

 

DNA extraction, PCR reaction and 16S rRNA clone library construction  

DNA was extracted from 0.5 g surface sediment sample (0-1 cm) following the protocol of 

the FastDNA SPIN Kit for Soil (Q!BIOgene, CA, USA). Bacterial and archaeal 16S rRNA 

genes were amplified using the primer pair GM3/GM4 (Muyzer et al., 1995) and Arch21F/ 

Uni1390 (Delong, 1992; Zheng et al., 1996), respectively. The 50 "l reaction contained 

10-100 ng DNA as template, 0.5 "M of each primer, 10 mM of dNTPs, 1 x buffer, 1 x 

enhancer, and 5 U of the Eppendorf-Taq DNA Polymerase (Eppendorf, Hamburg, Germany). 

PCRs were performed in ten replicates with 20 cycles to minimize PCR-bias. After 3 min at 

94°C each cycle consists of 1 min at 94°C, 1 min at 42°C (Bacteria) or 57°C (Archaea), and 

3 min at 72°C. The amplicons were pooled, purified using a PCR purification kit (QIAGEN, 

Hilden, Germany), and cloned using TOPO TA Cloning Kit for sequencing (pCR4-TOPO) 

(Invitrogen, Karlsruhe, Germany). Clones with a correct insert size of ~1,500 bp were 

sequenced using the vector primers M13 F and M13 R. 

 

Sequence analysis 

Sequences were imported into the ARB software package (Ludwig et al., 2004), aligned using 

the ARB FastAligner to the SILVA database (SSU Ref 0207_1_4_tree_silva) (Pruesse et al., 

2007), and then refined manually. Phylogenetic trees of full-length sequences were calculated 

applying the maximum likelihood algorithm (PHYML), a 50% positional conservation 

filtering, and 100 bootstrap replicates. Partial sequences were added to the tree using the ARB 

parsimony tool. The software Distance-Based OTU and Richness was applied to ARB 

distance matrices generated with the Jukes-Cantor correction to estimate operational 

taxonomic units (Schloss and Handelsman, 2005). 

 

Light microscopy and fluorescence in situ hybridization 

Sediment samples were preserved in 4% paraformaldehyde for light microscopy and for 

FISH. Total cell numbers were determined by 4’,6-diamidino-2-phenylindole (DAPI, 

1 "g/ml) staining. Means were calculated based on a minimum of 1,000 DAPI-stained cells. 

CARD-FISH sediment samples (0.5 g) were fixed in 1.5 ml 4% paraformaldehyde for 2 h at 

4°C, washed several times with 1 # phosphate-buffered saline (137 mM NaCl, 2.7 mM KCl, 
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10 mM Na2HPO4, 2 mM KH2PO4, pH 7.6), and finally stored in 1:1 mix of PBS/Ethanol at 

-20°C. Samples were sonicated 2-5 ! 20 s at low intensity using one-second sonication pulses 

(20% intensity) (Sonopuls HD70, Bandelin, Berlin, Germany) and filtered onto polycarbonate 

membrane filters (type GTTP, pore size 0.2 "m, Sartorius, Göttingen, Germany). FISH and 

CARD-FISH were performed according to previously published protocols (Pernthaler et al., 

2001; Pernthaler et al., 2002). Probe hybridization parameters are listed in Table 3.  

 

Nucleotide Sequence Accession Numbers 

Bacterial 16S rRNA gene sequences reported in this study were deposited in the EMBL 

database under the accession numbers FN553922-553992 (F) and FN553993-554029 (F), 

FN554082-554165 (AG) and FN553519-553571 (AG), FN553585-553646 (Q) and 

FN553647-553677 (Q), FN553441-553518 (OC) and FN553762-553837 (OC) for full-length 

and partial sequences, respectively. Archaeal sequences were deposit under the accession 

numbers FN554030-554075 (F) and FN554076-554081 (F), FN553572-553584 (AG), 

FN553678-553733 (Q) and FN553734-553761 (Q), FN553838-553892 (OC) and FN553893-

553918 (OC) for full-length and partial sequences, respectively. 
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Abstract 

The ultramafic-hosted Logatchev field harbors hydrothermally influenced sediments, 

characterized by diffusion rather than advective processes. The surface sediments are sulfidic 

and are covered by dense epsilonproteobacterial white mats. Therefore, reduced sulfur 

compounds were proposed to be the dominant electron donors for primary production. In this 

study, we investigated the microbial metabolic capacity and present activity of the microbial 

communities of this surface layers by pyrosequencing, key genes detection and incubation 

experiments. The comparison between pyrosequencing and previously obtained CARD-FISH 

data of the same surface layer revealed that pyrosequencing represents a semi-quantitative 

method suitable for fast biodiversity and metabolic capacity screening. The detection of key 

genes for sulfur oxidation and sulfate reduction, such as aprA and soxB, suggested the 

presence of putative sulfur cycling microorganisms. Taxon-specific genes assigned by the tool 

PAOLA for pyrosequencing-derived sequences revealed that genes for sulfur oxidation were 

exclusively detected for Gammaproteobacteria and Epsilonproteobacteria. Furthermore, a 

higher presence of genes for denitrification affiliated to Epsilonproteobacteria, proposes that 

nitrate reduction, coupled to sulfur oxidation, could be an important process in the oxic-

anoxic interface of these sediments. The importance of sulfide for this habitat was confirmed 

by the detection of sulfide consumption rates. Higher rates in the surface sediment in 

comparison to the overlying Epsilonproteobacteria-mat supported the relevance of 

Gammaproteobacteria besides Epsilonproteobacteria as sulfur-oxidizing primary producers. 

Our study shows that pyrosequencing allows the description of microbial communities and 

provides insights into characteristic metabolic capacities of taxonomic groups. The 

combination of a metagenomic approach and incubation experiments confirmed the 

importance of sulfide as an energy source in these surface sediments and provided 

information about taxonomic groups involved in sulfur cycling.  
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Introduction 

Deep-Sea hydrothermal vents are among the most productive ecosystems on earth (Van 

Dover, 2000). Due to the lack in light, they rely almost entirely on chemolithotrophic primary 

production. A variety of electron donors can sustain chemolithotrophy at hydrothermal vent 

sites, but their availability depends on the composition of the underlying rock. Hydrothermal 

vent fields along the Mid-Atlantic Ridge are either hosted by basaltic rocks, or by ultramafic 

components, which are primarily composed of mantle-derived peridotite (Wetzel and Shock, 

2000). Fluids of basalt- and ultramafic-hosted hydrothermal vent fields vary considerable with 

respect to temperature, pH, and the presence and concentration of energy sources (H2, H2S, 

CH4, Fe(II)) as a result of seawater-rock reactions (Schmidt et al., 2007). Of these, sulfide is 

considered to be an important electron donor for primary production in both types of 

hydrothermal systems (Schauer et al., in revision). Beggiatoa- and Epsilonproteobacteria-

dominated mats at basalt- and ultramafic-hosted hydrothermal systems suggest dominance of 

sulfur-oxidizing bacteria at hydrothermal vents (Jannasch and Wirsen, 1981; Gundersen et al., 

1992; Schauer et al., in revision). Recent studies at geothermal springs have supported the 

importance of sulfide in habitats whit sulfide and hydrogen, as sulfide was the favored 

electron donor used by microbial mats (D’Imperio et al., 2008).  

Hypotheses on the relevance of metabolic processes in a given habitat are often deduced 

from the diversity of the microbial community as determined by comparative 16S rRNA gene 

analysis and fluorescence in situ hybridization (FISH). Thereby it is assumed that the 

metabolic capabilities of detected taxa are similar to those of the closest cultivated relatives. 

Phylogeny may however not be reliable for predicting physiology. Even closely related 

bacteria might have very different metabolic repertoires, e.g. resulting from horizontal gene 

transfer events, enabling them to occupy differing ecological niches (Suen et al., 2007). 

Cultivation-independent metagenomic analysis represents a useful approach to assess the 

metabolic potential of microbial communities (DeLong et al., 2006), and to identify new 

metabolic capabilities of known phylogenetic groups (Beja et al., 2000), or clusters of as yet 

uncultured species (Beja et al., 2002). Metagenomics was considered to offer the potential for 

a relatively unbiased view on microbial diversity and metabolic capacity (von Mering et al., 

2007). However, traditional metogenomic employs methods that suffer from inherent bias, 

like primer-bias when targeting specific sequences, or PCR- and cloning bias in the 

amplification process. Within the past few years, high-throughput pyrosequencing of 

metagenomic DNA (Rothberg and Leamon, 2008) has proven to provide valuable information 

on the diversity (Sogin et al., 2006; Huber et al., 2007; Roesch et al., 2007, Gaidos et al., 
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2009), gene content, and genetic variability within microbial communities (Biddle et al., 

2008; Dinsdale et al., 2008; Gaidos et al., 2009; Simon et al., 2009). The large amounts of 

sequence data in such next-generation sequencing (NGS) metagenome studies provide 

informations that allow insights in the genetic mechanisms microorganisms employ in 

response to changing environmental conditions. A key challenge for the future is the 

interpretation of such genomes and metagenomes from an ecological perspective. 

Comparative metagenomics of environments already revealed habitat-specific fingerprints, 

suggesting that environmental conditions selects for a similar genetic repertoire in microbial 

communities, in particular for microorganisms occupying similar ecological niches (Tringe et 

al., 2005; Suen et al., 2007; Poretsky et al., 2009).   

In this study, we used GS FLX Titanium technology to sequence metagenomes from a 

sulfur-rich microbial mat and the underlying sediment (0-1 cm) from the ultramafic-hosted 

Logatchev hydrothermal vent field. We validated the potential of pyrosequencing to provide 

an unbiased view on microbial diversity and metabolic capacity by a comparative analysis 

with sequences from a 16S rRNA clone library and a CARD-FISH study. As a result, the 

quantitativeness of pyrosequencing in conjunction with functional annotations allowed for the 

sulfur-mat sediments to indentify habitat- as well as taxon-specific genes for the classes 

Gamma-, Epsilon-, Deltaproteobacteria, and Bacteroidetes. Furthermore, the diversity of key 

genes such as aprA and soxB were investigated. The metabolic potential deduced from gene 

annotation of the microbial community at site F was confirmed by microbial sulfide and 

hydrogen consumption rate measurements.  

 

Material and methods 

Study site and sampling  

The Logatchev hydrothermal vent field is located at the lower, eastern ridge-flank close to the 

axial valley at 15°N on the Mid-Atlantic Ridge in about 3,000 m water depth (Gebruk et al., 

2000). The south-eastern vent field hosts two active smokers (Quest and Irina II) as well as 

sediment areas covered by sulfur-mats (Anya’s Garden, site F). During the R/V M.S. Merian 

cruise MSM04-3 (HYDROMAR III, 2007) and the R/V M.S. Merian cruise MSM10-3 

(HYDROMAR IV, 2009) sediment was sampled using remotely operated vehicles (Jason II, 

Woods Hole, USA; Kiel 6000, IFM-GEOMAR Kiel, Germany). Sediment samples were 

taken from Anya’s Garden and site F, and the oceanic sediment. Sampling was performed by 

push-corers which were sliced in 1 cm layers and frozen at -80°C. For the analyses the surface 

layer (0-1 m) was used. Site F was characterized by a patchy distribution of white mat areas 
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that covered more than 50 m2 and clumps of vent mussels scattered within the white area. In 

contrast, Anya’s Garden was a 1 m2 white patch with only dead but no living mussels. 

Oceanic sediments devoid of detectable hydrothermal influence were present 25 m apart from 

the nearest apparent hydrothermal activity. Different methods were applied to the tree 

different sediments (Table 1). 

 

 

 

Construction and analysis of aprA- and soxB-gene clone libraries 

DNA was extracted from 0.5 g of each of the three surface sediment samples (0-1 cm) 

following the protocol of the FastDNA SPIN Kit for Soil (Q!BIOgene, CA, USA). Genes for 

the alpha-subunit of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase (aprA) 

were amplified using the primers AprA-1-FW (TGGCAGATCATGATYMAYGG) and 

AprA-5-RV (GCGCCAACYGGRCCRTA) (Meyer and Kuever, 2007a). The soxB-genes 

were amplified using the primers soxB432F (GAY GGN GGN GAY ACN TGG) and 

soxB1446B (CAT GTC NCC NCC RTG YTG) (Petri R et al., 2001). The PCR reaction 

contained 10-100 ng DNA as template, 0.5 "M of each primer, 10 mM of dNTPs, 1 x buffer, 

1 x enhancer, and 5 U of the Eppendorf-Taq DNA Polymerase (Eppendorf, Hamburg, 

Germany) in a 20 "l reaction volume. After initial 3 min at 94°C each cycle consisted of 

1 min at 94°C, 1 min at 58°C (aprA) or 55°C (soxB) annealing, and 3 min elongation at 72°C. 

The amplicons were purified using a PCR purification kit (QIAGEN, Hilden, Germany), and 

cloned using TOPO TA Cloning Kit for sequencing (pCR4-TOPO) (Invitrogen, Karlsruhe, 

Germany). Clones with a correct insert size were sequenced using the vector primer M13 R 

(5’- GTTGTAAAACGACGGCCAGT -3’) or the primer pair soxB432F/soxB1446B. 

Sequences were translated and analyzed in terms of phylogeny using the ARB software 

package (Ludwig et al., 2004). Phylogenetic trees were calculated based on amino acid 

sequences using the Maximum Likelihood algorithm (PHYML) and a 25% positional 

conservation filter and 100 bootstrap replicates. 

Table 1: Overview of applied methods to the three different surface sediment microbial communities. 
Site gene clone 

library 
fosmid 
library 

insert  
end-sequencing 

pyro-
sequencing 

incubation 
experiment 

F aprA, soxB ~30 000 6773 1,152,840 H2S, H2 

Anya’s Garden aprA, soxB - - - - 

Oceanic sediment aprA - - - - 
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Fosmid library construction, screening and sequencing 

Sediment from site F (0-1 cm) was used for fosmid library construction. DNA was extracted 

as previously described (Zhou et al., 1996), followed by gel purification (Plaque GP Agarose, 

Biozym, Hess. Oldendorf, Germany) to remove humic substances. The fosmid library was 

constructed using the EpiFOS CopyControl Fosmid Library Production Kit (Epicentre, 

Madison, WI) according to the manufacturer’s instructions with the modification that the 

DNA was concentrated using MICROCON YM-100 columns (Promega, Mannheim, 

Germany). Size-selection was performed by pulsed-field gel electrophoresis (PFGE) to obtain 

appropriate DNA fragment lengths (~40 kb) for cloning. 

Of approximately 30,000 obtained fosmid clones 2,304 were screened for bacterial aprA- 

and hupL-genes. The amplification of aprA-genes was performed using the above-mentioned 

primers and PCR conditions. The primer pair HUPLX1/HUPLW2 targeting the highly 

conserved N- and C-terminal regions of the large subunit of [NiFe] hydrogenases (Csáki et 

al., 2001) was used to amplify hupL-genes. The PCR reaction mixture contained the 

components above described and PCR condition using 58°C (hupL) as annealing temperature. 

Shotgun sequencing of selected fosmids was performed using Big Dye 3.1 chemistry and 

ABI3130XL capillary. In addition 6,582 fosmid insert end-sequences were determined. Open 

reading frames (ORFs) were predicted with ‘borf’ by Hanno Teeling.  

 

ORF prediction and annotation of fosmids 

The selected fosmids were analyzed using the gene prediction programs GLIMMER 3.02 

(Delcher et al., 2007), MetaGene 1.0 (Noguchi et al., 2006), ZCURVE 1.02 (Guo et al., 

2003), and MED 2.0 (Zhu et al., 2007). ORFs were predicted based on the consensus of all 

used prediction programs. Annotation was carried out using the software package GenDB 

(Meyer et al., 2003). For each predicted ORF, similarity searches against sequence databases 

(NCBI-nr, SWISSPROT) and protein family databases (Pfam, Prosite, InterPro, COG, 

KEGG), as well as signal peptide (SignalP v2.0, Nielsen et al., 1999) and transmembrane 

helix predictions (TMHMM v2.0, (Krogh et al., 2001) were conducted. Subsequently, all 

ORFs were subjected to automatic annotation using MicHanThi (Quast, 2006), followed by 

manually refinement.  
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Pyrosequencing 

Genomic DNA was extracted from the surface sediment layer (0-1cm) of site F following the 

protocol of Zhou et al. (1996). A total of ~4 !g DNA was used for direct sequencing using the 

GS DNA Library Preparation Kit, following the instructions of the GS FLX Shotgun DNA 

Library Preparation Manual (Roche Diagnostics). Pyrosequencing resulted in 

1,152,840 reads. The SP3 processing pipeline (MPI Berlin) was used for vector and quality 

clipping. The unassembled reads were de-replicated with a CD-Hit-based 454 replicate filter 

(Gomez-Alvarez et al., 2009). Pyrosequencing derived data were assembled by Roche 

Newbler Assembler (454 Life Science) using the standard parameters for de novo assembly 

and hybrid data. 

 

ORF prediction, phylogenetic and metabolic assignment of pyrosequencing derived data 

Pyrosequencing-derived sequences underwent an ORF prediction with MetaGene by Noguchi 

et al. (2006). All ORFs exceeding 150 bp were compared with BLASTP (Altschul et al., 

1990) against the non-redundant NCBI protein database (as of October 28th, 2008) and with 

hmmpfam (Eddy 1996; Eddy 1998) against the Pfam database (release 22) (Sonnhammer et 

al., 1997; Sonnhammer et al., 1998). This leads to an over prediction of genes. Therefore, 

only a relative small part of all genes could be assigned to a metabolic function. Hits with 

good E-values (BLASTP: 10-15, hmmpfam: 10-5) were subsequently analyzed with three tools. 

BLASTP hits were processed with an adaption of the DarkHorse algorithm (Podell and 

Gaasterland 2007), as well as with the newly developed algorithm Kirsten (Kinship Re-

establishment). In brief, DarkHorse performs rank-based reasoning on the taxonomic terms 

from BLASTP hits, calculates a so-called lineage probability index (LPI) for each hit and 

assigns the ORF to the hit with the highest LPI (see Podell and Gaasterland 2007 for details). 

Kirsten analyzes the BLASTP hits from the highest taxonomic rank (superkingdom) 

downwards. On each rank, all taxonomic terms are weighted by the sum of their BLASTP bit 

scores. As long as the term with the highest weight exceeds an adjustable threshold, that term 

is kept and the process continues to the next taxonomic level only with the hits that contain 

the term from the previous level. 

CARMA infers the taxonomic affiliation of ORFs from their Pfam hits and was proposed 

by Krause et al. (2008). Here, a rewritten and improved version of the original algorithm was 

used (Huang et al., unpublished). The final taxonomic assignment for whole reads was done 

by means of a self-written logic named PAOLA (Huang et al., unpublished), which builds a 

weighted consensus of all three aforementioned tools. A self-written C++ library termed 



MANUSCRIPT 2 

 93 

phyloprint was used to map the taxonomic terms and their NCBI identifiers during the whole 

analysis (phyloprint currently contains 462,019 nodes of the NCBI taxonomy) (Waldmann, 

2008). In addition, the SILVA pipeline was used (Pruesse at al., 2007) for all reads >250 bp 

of the de-replicated dataset to extract and select 16S rRNA and 23S rRNA genes. The 

phylogenetic analyses were performed with the ARB software package (Ludwig et al., 2004). 

PAOLA was as well used for the metabolic assignment. ORFs were compared with 

BLASTP (Altschul et al., 1990) against the non-redundant NCBI database (as of October 28th, 

2008). Hits with good E-values (BLASTP: 10-15) were compared to the functional genes in 

the SEED platform (http://www.theseed.org, Overbeek et al., 2005). The descriptions of the 

best BlastP hits (E-values: 10-15) were screened for key words of the 2009 SEED platform and 

subsequently assigned to subsystems.  

 

Incubation experiments  

Glass serum vials (58 ml for hydrogen or 117 ml for sulfide incubations) were filled with ! 

sterile-filtered (0.22 "m) bottom seawater, so that the headspace always contained air. The 

surface sediment or only the overlying sulfur mat (0.5 g) was placed in the vial, closed with a 

gas-tight rubber stopper and crimped with aluminium seals. Control vials contained boiled 

sediment or solely seawater.  

For sulfide consumption experiments, a Na2S stock solution (10 mM) was added to the 

seawater to a final concentration below 20 "M. The initial concentration of dissolved sulfide 

was determined immediately after the addition (T0). All vials were incubated at 4°C on a 

slowly rotating table. Subsamples were taken at time intervals and fixed in zinc acetate (2%, 

w/v). The concentration of the resulting ZnS precipitate was measured at 663 nm by 

spectrophotometer (Trüper and Schlegel, 1964). The sulfide consumption rates reflected the 

sulfide removed from the seawater in the first hour per gram sediment (wet weight). 

 For hydrogen consumptions experiments, pure hydrogen gas (100%) was injected to the 

final concentration (15 000 ppm) in the headspace using a gas-tight syringe. All vials were 

placed up-side down and a H2 stock solution was added to the seawater to a final 

concentration of 20 "M. Subsamples were taken at given time intervals with a gas-tight 

syringe from the headspace compensated through the inflow of sterile-filtered seawater from a 

second syringe. The H2 concentration in the headspace was determined using a gas 

chromatograph (Thermo Trace GC Ultra, Thermo Scientific) equipped with two packed 

columns and a pulsed discharge detector (VICI). Recording and calculation of results was 
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performed using a PC operated integration system (Thermo Chrom Card A/D, Thermo 

Scientific). 

 

Nucleotide sequence accession numbers 

Sequences reported in this study were deposited at EMBL under the accession numbers xxx 

for xxx AprA sequences, under xxx for xxx SoxB sequences, and under xxx for fosmid 

sequences. The pyrosequencing dataset was deposited at xxx. 

 

Results 

Comparative analyses of microbial diversity and abundance retrieved by 

454-pyrosequencing, clone and fosmid library sequencing and CARD-FISH 

Pyrosequencing of the metagenome of the surface sediment layer from site F produced about 

408 Mb of sequence with an average read length of 354 bp (Table 2). Of the total dataset, 

34% were identified as technical replicates produced during emulsion PCR (Gomez-Alvarez 

et al., 2009). These replicates occurred independently of sequence lengths, as indicated by 

similar sequence length distribution profiles before and after replicates removal (Figure 1). 

The de-replicated non-assembled dataset was used for all further analysis. This dataset was 

compared with previous datasets of 16S rRNA clone library, CARD-FISH (Schauer et al., in 

revision), and insert end-sequences of a fosmid library retrieved from the same surface layer. 

  

 

Table 2: Characterization of raw data and corresponding de-replicated pyrosequencing dataset from the 
sulfur-mat at site F. 
 raw data  de-replicated data 

Total number of reads 1,152,840 757,646 
Total data, Mb  408 277,5 
Total base pairs 407,654,843 268,318,916 
Mean read, bp 354 354 
Median read, bp 391 391 
Number of predicted ORFs (metagene) 795,537 503,628 
PAOLA   
Phylogeny 
BLASTP: 10-15, hmmpfam: 10-5 

n.d. 135,250 (27%)a 

Function 
BLASTP: 10-15 

n.d 11,602 (2.3%)a 

16S rRNA gene n.d. 369 (0.05%)b 
23S rRNA gene n.d. 714 (0.09%)b 
a percentage of the total number of predicted ORFs (metagene) 
b percentage of the total number of reads 
n.d. not detected 
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The analyses of pyrosequencing-derived 16S rRNA454 (369 reads; 0.05%) and 23 rRNA454 

(714 reads; 0.09%) gene sequences revealed the dominance of Bacteria-related rRNA 

sequences (84% and 90%, respectively) (Figure 2). Archaeal rRNA454 sequences accounted 

for 12% and 7% of the respective 16S and 23S rRNA454 gene dataset, of which 93% and 

100% were related to the phylum Euryarchaeota. Of the 503,628 predicted ORFs, 27% ORFs 

were phylogenetically assigned by the PAOLA software tool. The PAOLA-derived 

phylogeny confirmed the dominance of Bacteria (Bacteria 92%, Archaea 3%). The frequency 

of bacterial (80%-92%) and archaeal (3%-12%) sequences deduced from the pyrosequencing 

dataset were consistent with PAOLA-derived phylogeny for the insert end-sequences of the 

fosmid library, (Bacteria 80%, Archaea 3%), and with CARD-FISH counts (Bacteria 75%, 

Archaea 6%) (Figure 2).  

All compared datasets revealed that most pyrosequencing-reads were related to 

Proteobacteria (51-55%), while CARD-FISH counts revealed the lowest abundance for this 

class (33%). Differences between CARD-FISH results and sequencing-based methods were 

detected for the abundance of Bacteroidetes. CARD-FISH counts revealed the highest 

abundance (21%), in contrast to 1%-5% detected by all other sequenced-based analysis, 

except for the 16S rRNA gene analysis (clone library, 14%). Further differences were 

detected for the class Gammaproteobacteria and Deltaproteobacteria. CARD-FISH counts 

revealed that Deltaproteobacteria (CARD-FISH=21%, seq. analyses=7%-11%) were the most 

abundant class, while all sequence-based analyses predicted the highest frequency for the 

Gammaproteobacteria (CARD-FISH=5%, seq. analyses=15%-28%). Moreover, CARD-FISH 

counts revealed 7% Epsilonprotobacteria compared to inconsistent results from sequence 

Figure 1: (A) Read length distribution of the pyrosequenced raw data (454 FLX Titaniium) and (B) 
the corresponding distribution of the de-replicated dataset of DNA from the surface sediment sample at 
site F (~3,000 m depth). 
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based methods (PAOLA: 0.3%-3%; 16S and 23S rRNA454 gene: 14%-20%). Therefore, 

CARD-FISH revealed distinctly different results at the phylum and class level in comparison 

to the sequence based methods. 

 

The analyses of the pyrosequencing dataset allowed a further taxonomic breakdown. All 

three analyses (16S and 23S rRNA454 gene, PAOLA454) revealed that most sequences 

assigned to Deltaproteobacteria affiliated with the order Desulfobacterales, while 

epsilonproteobacterial sequences predominantly affiliated with the order Campylobacterales 

(Figure 3). According to the 16S rRNA454 gene dataset, most epsilonproteobacterial 

sequences were related to the genera Sulfurimonas and Sulfurovum. Besides these two genera, 

Figure 2: Phylogenetic comparison of the pyrosequencing-based dataset (16S and 23S rRNA454 genes, 
PAOLA) with fosmid insert end-sequence data (PAOLA, Sanger end-sequencing) sequences from 16S rRNA 
gene clone libraries and CARD-FISH results. A phylogenetic assignment was done on the domain, phylum 
and class (only Proteobacteria) level. CARD-FISH counts were only available for Bacteroidetes and classes 
of the Proteobacteria. 
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Campylobacter was predicted as a third genus of high abundance by PAOLA. In contrast to 

the few genera of high abundance that were detected within Epsilonproteobacteria, much 

higher diversity and less consistency was observed for Deltaproteobacteria. In general, data 

from all three methods became noisier and hence less consistent with increasing phylogenetic 

resolution (order to genus). 

 
Figure 3: Phylogeny reconstruction based on total detected 16S and 23S rRNA genes as well as 
PAOLA predicted phylogeny of the 454-pyrosequenced DNA from the surface layer (0-1 cm) from 
site F. 
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Metabolic potential of the dominant microbial phyla in site F surface sediment 

PAOLA could predict functions for 11,602 ORFs (2.3%; Table 1) that were mapped onto 

SEED subsystems as of 2009 (http://www.theseed.org). Subsystems represent groups of genes 

that act together, like genes constituting dedicated metabolisms or cellular structures. Half of 

the ORFs were assigned to the subsystems Amino Acids Derivatives and Carbohydrates. 

Other abundant subsystems were Cell Wall and Capsule, Cofactors, Vitamins, Prosthetic 

Groups, Pigments and Protein Metabolism (Figure 4). A comparison of ORFs that were 

Figure 4: Mean percentage of reads similar to major metabolism of the total dataset and of reads 
phylogenetic related to Gammaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, and 
Bacteroidetes.  
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phylogenetically assigned to taxonomic bins of Bacteroidetes, Gammaproteobacteria, 

Epsilonproteobacteria, and Deltaproteobacteria exhibited similar patterns. Therefore, no 

considerable differences were detected between these classes with respect to their overall 

gene content. However, small differences were detected on a finer scale. Although Sulfur 

Metabolism genes were found in all four classes, genes for sulfur-oxidation pathways were 

restricted to Gammaproteobacteria and Epsilonproteobacteria. Further differences were 

detected for the Nitrogen Metabolism subsystem. Genes of this subsystem were only detected 

within Gammaproteobacteria and Epsilonproteobacteria, while Epsilonproteobacteria 

contained the highest number of genes for denitrification (Figure 5). Furthermore, the 

Gammaproteobacteria revealed the highest number of virulence genes. For the complete 

dataset, the Calvin-Benson cycle and the Serin-Glyoxylate cycle were the only identified 

metabolic pathways for CO2-fixation. Deltaproteobacteria- and Epsilonproteobacteria-

related genes affiliated to the Serin-Glyoxylate cycle while Gammaproteobacteria and 

Bacteroidetes exhibited genes involved in both pathways. 

Figure 5: Number of genes similar to sulfur, and nitrogen metabolism as well as carbon fixation 
pathways of total reads as well as of Gammaproteobacteria, Epsilonproteobacteria, 
Deltaproteobacteria and Bacteroidetes related reads. 
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Key genes of the sulfur and hydrogen metabolism 

The Screening of 2,304 clones of the fosmid library from the surface sediment at site F 

revealed 16 clones with an adenosine-5’-phosphosulfate reductase genes (aprA) and 20 clones 

with a [NiFe] hydrogenases (hupL). The complete sequences of three distinctly related aprA 

and four hupL carrying fosmids were determined. The genetic neighborhood of the aprA- and 

the hupL-genes on the fosmids was similar to those previously described (Mussmann et al., 

2005; Nakagawa et al., 2007).  

AprA-genes of the reductive and oxidative sulfur metabolism (Meyer and Kuever, 2007b) 

were detected by aprA-gene clone libraries constructed from the surface sediment of Anya’s 

Garden and site F (Figure 6). The AprA sequences from site F were related to those of 

Gammaproteobacteria, Betaproteobacteria, and Deltaproteobacteria. The majority of these 

Figure 6: Phylogenetic affiliation of AprA from site F, Anya’s Garden and oceanic sediment. The 
tree was calculated based on amino acid sequences (131) applying Maximum Likelihood algorithm 
with a 25% positional conservation filter !"#$%&'($)**$+,,'-'.!/$.0/1&2!'0-. Sequences identified 
on the fosmids are highlighted in grey and sequences deduced from the clone libraries in bold. Scale 
bar=0.10 estimated substitutions per site. 
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sequences affiliated with sequences of sulfur-oxidizing gammaproteobacterial symbionts (43 

sequences O. algarvensis Gamma 3 symbiont, 6 sequences O. ilvae Gamma 1 symbiont). In 

contrast, AprA sequences from Anya’s Garden clustered with Alphaproteobacteria, 

Betaproteobacteria and Deltaproteobacteria. Most sequences were related to Thiobacillus 

denitrificans (Betaproteobacteria, 20 sequences, >90% amino acid identity). While 

Alphaprotebacteria were represented by just one sequence in Anya’s Garden sediments, the 

majority of AprA sequences retrieved from oceanic sequences affiliated with the novel class 

of alphaproteobacterial sulfur-oxidizing bacteria (SOB) (Meyer and Kuever, 2007b). In 

Figure 7: Phylogenetic affiliation of SoxB from site F and Anya’s Garden. The tree was 
calculated based on amino acid sequences applying Maximum Likelihood algorithm with 
a 30% positional conservation filter !"#$ %&'($ )**$ +,,'-'.!/$ .0/1&2!'0-. Sequences 
retrieved from the clone library of the surface layer are in bold. Scale bar=0.10 estimated 
substitutions per site. 
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contrast to site F and Anya’s Garden sediments, the oceanic sediments revealed only aprA-

genes involved in sulfur oxidation. 

SoxB-genes involved in sulfur oxidation related to those of Alphaproteobaceria, 

Gammaproteobacteria, and Epsilonproteobacteria were detected in site F and Anya’s Garden 

surface sediments (Figure 7). Most sequences from both sites clustered to 

Gammaproteobacteria. Epsilonproteobacterial SoxB sequences from site F and Anya’s 

Garden were affiliated with the genera Sulfurovum and Sulfurimonas. 

 

Sulfide versus hydrogen consumption rates 

Surface sediments (0-1 cm) as well as the overlying sulfur mat from site F were used in 

incubation experiments. Both samples showed sulfide consumption after one hour of 

incubation. Thereby, the surface sediment revealed higher sulfide consumption rates 

(10.2 ± 0.5 !mol h-1(g wet weight)-1) than the overlying white mat (2.4 ± 0.9 !mol h-1(g wet 

weight)-1) (Figure 8A). The sulfide concentrations in the surface sediment sample decreased 

continuously, and 90% of the sulfide was consumed within six hours. In contrast, the sulfide 

Figure 8: (A) Sulfide uptake and consumption rates in the surface sediment layer (0-1cm) and in the 
overlying sulfur-mat at site F and (B) hydrogen incubation experiments of the same samples. Each 
incubation was performed with 3 parallels and as control boiled sediment and/or seawater was used. 
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concentration in the mat sample increased after one hour, indicating sulfide production. 

Incubation experiments with hydrogen for one and for 24 hours did not show any hydrogen 

consumption for both samples, as hydrogen consumption rates were in the range of the 

controls (Figure 8B).  

 

Discussion 

How quantitative can a microbial community be assessed by pyrosequencing? 

Microbial ecologists describe and quantify microbial diversities within given environments to 

understand how microorganisms interact with each other and with their environment to 

generate and to maintain such diversity (Xu et al., 2006). PCR-based techniques (fingerprint 

techniques; DGGE, T-RFLP, ARISA) and cloning-based techniques (e.g. 16S rRNA or 

metagenomics library) are widely used to assess diverstiy, although PCR (Polz and 

Cavanaugh, 1998; Sipos et al., 2007) and cloning (Feingersch and Beja, 2009; Temperton et 

al., 2009) are known to be biased. Likewise, hybridization techniques (FISH, micro-array) are 

used, whose accuracies are depend on the specificity and coverage of the applied probes. In 

case of FISH, this is dependent on the total number of known 16S and 23S rRNA gene 

sequences (Amann and Fuchs, 2008). High-throughput sequencing such as pyrosequencing, 

which addresses diversity across entire metagenomes, might be a complementary conceptual 

approach to assess diversity.  

In order to determine how quantitative pyrosequencing data and hence the phylogenetic 

and metabolic reconstructions derived from such data are, we compared data from 

pyrosequencing, 16S rRNA clone libraries, fosmid insert end-sequences and CARD-FISH for 

one well characterized sediment sample. All compared methods revealed that Bacteria 

dominate the surface sediment community at site F and that Archaea were less abundant. 

However, the frequency of pyrosequencing reads assigned to Bacteria and Archaea differed 

from the CARD-FISH data (3.5%-12% to 6%, respectively).  

As the group coverage of the probes used for the domain Bacteria and Archaea is very 

high (94% and 90% respectively) (Amann and Fuchs, 2008), the abundances of the detected 

and undetected parts (unclassified fraction) of the microbial community can be determined.  

However, FISH- and sequence-based studies generally miss both a part of the microbial 

community due to methodical limitations (e.g. permeabilizitaion issues or incomplete cell 

lysis). In contrast to FISH, Sequencing-based methods did not reveal the abundance of the 

undetected part. Therefore, it is likely that the abundance deduced from sequence-based 



MANUSCRIPT 2 

 104 

methods is overestimated for all levels (e.g. domain, phylum, class), as the abundances of the 

undetected part is not be taken in account.  

At the phylum level, CARD-FISH results were only available for Bacteroidetes and classes 

of the Proteobacteria. CARD-FISH and pyrosequencing revealed for both phyla considerably 

different abundances. The group-level probes that were applied exhibit a lower group-

coverage and more outgroup hits in comparison to the domain-level ones (Amann and Fuchs, 

2008). Probes targeting Bacteroides, such as CFB319a (outgroup hits=5%, Amann and Fuchs, 

2008) or the Deltaproteobacteria (DELTA495a=17%, DELTA495b=71% and 

DELTA495c=24%; Lücker et al., 2007) show many outgroup hits, indicating an 

overestimation of the corresponding abundances. In contrast, the Gammaproteobacteria-

targeting probe GAM42a has a low group coverage (76%), so that the gammaproteobacterial 

part related to the Xanthomonadaceae family were missed by the CARD-FISH study (16S 

rRNA454 reads=4%, 23S rRNA reads454=0.2%, PAOLA454=0.2%). 

Pyrosequencing and fosmid insert end-sequencing indicated a low abundance of 

Bacteroidetes, which was in contrast to the 16S rRNA clone library and CARD-FISH study. 

Lower abundances of this phylum retrieved by pyrosequencing in comparison to FISH, were 

previously detected for microbial assemblage in the anoxic bottom waters of a volcanic 

subglacial lake (Gaidos et al., 2009). Furthermore, different abundances were detected by 16S 

clone library (0.2%) and CARD-FISH counts (13%) for particle associated Bacteroidetes in 

the Namibian upwelling system (Woebken et al., 2007). This indicates that the DNA 

extraction is incomplete for this phylum. Furthermore, the low GC content of some 

Bacteroidetes can lead to an underrepresentation in cloning-based methods (Temperton et al., 

2009), which would explain the low frequency for Bacteroidetes determined for the fosmid 

insert end-sequencing data. However, as the CFB319a probe has many false negative hits and 

relative low group coverage (38%), abundances revealed by FISH techniques are likely 

overestimated. 

A rather different picture was observed for Epsilonproteobacteria. The abundances of 

Epsilonproteobacteria determined by CARD-FISH were only about half as high as what was 

indicated by rRNAs abundances in the pyrosequencing dataset. The EPSY549 probe was 

shown to have a unique behavior as it showed increasing in fluorescence intensities with 

increasing formamide concentration (Lin et al., 2006). Therefore, really high formamide 

concentrations are required to detect all Epsilonproteobacteria. Although we used the 

proposed high formamide concentration of 55%, higher concentration could be necessary in 

order to detect the total epsilonprotoebacterial community.  The rRNA genes retrieved from 
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the pyrosequencing dataset indicated much higher abundances of Epsilonproteobacteria than 

classification based on protein-coding genes with PAOLA. This indicates that for 

Epsilonproteobacteria not the extraction but the underrepresentation of this taxon in the 

public sequence databases is limiting for PAOLA classifications.  

CARD-FISH and pyrosequencing have both their strengths and their weaknesses. At the 

domain-level, probes were shown to be less problematic than group-level probes, providing 

trustful quantitative data. Therefore, the comparison of pyrosequencing and CARD-FISH data 

at the domain level revealed that pyrosequencing retrieved data are semi-quantitative. At 

lower levels the limitations of CARD-FISH are increasing so that the quantities obtained from 

pyrosequencing are comparable to CARD-FISH data. An advantage of pyrosequencing data is 

that they reveal the richness of all known domains (Bacteria, Archaea, Eukaryota, and 

Viruses), phyla, class etc. without a priori knowledge. In order to achieve this by FISH 

methods, pre-selection of probes and time-consuming experiments are required. Therefore, 

pyrosequencing is currently a well-suited technique for fast biodiversity screenings that 

provides valuable insights on the overall community composition and indicates FISH probes 

that should be used for in-depths studies. Regarding the investigated site F, it is assumed that 

the combination of all methods covered largely the diversity in the habitat and led to the 

detection of all dominant groups that could be of interest in further analyses of metabolic 

pathways and group specific metabolic fingerprints.  

 

Metabolic potential and energy sources in sulfur-mat sediments 

The ultramafic-hosted Logatchev hydrothermal vent field emits fluids enriched in hydrogen, 

sulfide and methane. The dissolved hydrogen (19 mM), sulfide (2.5 mM) and methane 

(3.5 mM) concentration are all in the micromolar range (Schmidt et al., 2007). At site F, 

direct vent emission was not detected, but in situ profiles showed that fluid components 

diffuse towards the sediment-water interface along with the heat from deeper layers (Schauer 

et al., in revision). We investigated the genes captured within the metagenomes, in order to 

detect gene profiles that are selected by this environment and therefore provide insights into 

the environment's microbial ecology (Tringe et al., 2005). 

In the surface layer of the sulfur-mat, high proportions of genes involved in amino acid 

biosynthetisis and inorganic sulfur assimilation were found. These subsystems were proposed 

to be an indicator for the presence of sulfur-utilizing microorganisms (Edwards et al., 2006). 

Hence, our metagenomic analysis is consistent with previous biogeochemical and molecular 

investigations characterizing the surface sediments as a sulfidic habitat. On the other hand, the 
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fraction of sulfur metabolism genes was not considerably higher than in non-sulfur influenced 

environments (Simon et al., 2009). That identified metabolic functional genes show little 

relevance to the geochemistry measurements has previously been reported by Biddle et al. 

(2008). One reason could be that many genes (98%) were unclassified since no close relatives 

were present in the non-redundant NCBI database. Moreover, analyses of all genes tend to 

underestimate the fraction of genes responsible for the energy metabolism, as this fraction of 

genes is much smaller in comparison to the fraction of genes used for the basic metabolism.  

Therefore, we selected genes for the sulfur-, nitrogen and carbon cycle, used PAOLA454 to 

cluster them to taxonomic bins (‘taxobins’) and determined the distribution of these selected 

subsystems for the four dominant classes - Gammaproteobacteria, Epsilonproteobacteria, 

Deltaproteobacteria, and Bacteroidetes. Similar overall gene distribution patterns were 

observed for all these classes, suggesting that at least on class-level, groups of genes relevant 

for a particular environment are enriched in all microbial groups in that environment (Tringe 

et al., 2005; Suen et al., 2009; Dinsdale et al., 2008). Genes involved in the nitrogen 

metabolism (1%) were in the range of the values determined for other metagenomes (lake in 

Antarctica, 1.5%; farm soil, 1.1%; hot springs 1.4%; glacier ice 1.3%).  

However, differences in the distribution were detected for the metabolic pathways of each 

subsystem. Epsilonproteobacteria contained the highest number of genes for denitrification. 

This confirms the important role of this class in the oxic-anoxic interface (Brettar et al., 2006, 

Grote et al., 2007). Previous studies have verified their significant role in pelagic marine 

redoxclines of the Black Sea (Vetriani et al., 2003), the Cariaco Trench (Madrid et al., 2001) 

and the Baltic Sea (Grote et al., 2007), where oxygen deficiency and sulfide accumulation 

occurs. Therefore, chemolithoautotrophic oxidation of sulfur compounds coupled to nitrate 

reduction, such as denitrification, likely play an important role in the oxic-anoxic layer of this 

sediment.  

Genes for the sulfur oxidation were exclusively found for Gammaproteobacteria and 

Epsilonproteobacteria, confirming their relevance as sulfur-oxidizing primary producers. The 

absence of genes of the reductive tricarboxylic acid (rTCA) cycle, which are generally used 

by Epsilonproteobacteria for CO2-fixation (Nakagawa and Takai, 2008) indicates that besides 

Epsilonproteobacteria other groups like Gammaproteobacteria must play an important role in 

carbon fixation in the mat. The higher frequency of virulence genes in Gammaproteobacteria 

suggests that besides free-living forms they as well occur as symbionts as they are more 

abundant in the organism-associated microbes than in free-living microbes (Disdale et al., 

2008). 
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The analysis of the selected pathways exhibit differences in the gene content for the four 

dominant groups. This suggests different responsibilities of each group in the different 

biogeochemical cycles present in the sulfur-mat microbial community. However, only for 

2.3% a functional could be assigned. This could explain the absence of genes for the rTCA, 

which represents one of the principal carbon fixation pathways in deep-sea vent ecosystems 

(Campbell and Cary, 2004). To identify all genes involved in e.g. carbon fixation further 

investigations are necessary in order to reveal habitat- as well as taxon-specific genes in this 

environment. 

 

Sulfide consumption and candidate sulfur oxidizing genes 

Recent molecular and biogeochemical investigations (Schauer et al., in revision) and the 

present metagenomic analyses suggested that sulfide can serve as one energy source for the 

microbial community of the sulfur-mat at site F. Therefore, different genes for sulfur 

oxidation were analyzed from the sulfur-mat sediments at site F and AG. The analysis of 

aprA-genes revealed that these sulfur-mats consisted predominantly of different putative 

Betaproteobacteria and Gammaproteobacteria sulfur-oxidizers and putative sulfate-reducing 

Deltaproteobacteria. The presence of different aprA-genes confirmed that in these mats 

sulfur-based communities are present (Meyer and Kuever, 2007b). In contrast, non-

hydrothermal sediment revealed putative alphaproteobacterial sulfur-oxidizing aprA-genes 

closely related to the SAR11 cluster, which forms together with the Rosebacter clade the 

dominant bacteriaplankton groups in the ocean. The reverse-acting dissimilatory APS 

reductase might be used for detoxification of sulfite, so that the product APS can be 

incorporated into the assimilatory sulfur metabolism (Meyer and Kuever, 2007b). The 

presence of soxB-genes related to Epsilonproteobacteria in the sulfur-mat sediments is 

consistent with the metagenomically retrieved data which revealed that both 

Gammaproteobacteria and Epsilonproteobacteria are capable of sulfur-oxidation. 

Incubation experiments finally confirmed that sulfide is consumed by the surface sediment 

microbial communities, as sulfide consumption rates were detected. The sulfide consumption 

rates from the surface sediment community (0-1 cm, containing the overlying microbial mat) 

were fivefold higher than those of the overlying microbial mat. This raises the question to 

which extent which groups are involved in sulfide oxidation. Based on previous studies, it 

was hypothesize that highly abundant Epsilonproteobacteria in the overlying white mat are 

mainly responsible for sulfur oxidation. The Epsilonproteobacteria-mat revealed sulfide 

consumption rates comparable to those of the endosymbionts of the hydrothermal vent mussel 
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Bathymodiolus puteoserpentis from the same hydrothermal vent field (Zielinski et al., in 

prep), indicating a highly active community. However, highest rates of sulfide consumption 

detected for the surface layer suggested that sulfur oxidation is not limited to the overlying 

Epsilonproteobacteria-mat. Detected gammaproteobacterial aprA-genes and the presence of 

genes involved in sulfur oxidation in taxonomic bins related to Epsilonprotebacteria and 

Gammaproteobacteria propose that Gammaproteobacteria play as well an important role in 

the sulfur cycle in this sediment.  

The detection of genes for uptake hydrogenases (hupL) suggested also chemolithotrophic 

primary production based on hydrogen consumption. Incubation experiment with hydrogen 

did not reveal detectable hydrogen consumption rates. Previous hydrogen consumption rates 

studies using sulfur-oxidizing symbionts showed that hydrogen consumptions rates increased 

with increasing dissolved hydrogen concentration (Zielinski et al., in prep.). However, even 

high dissolved hydrogen concentrations of 5-8 mM did not reveal any hydrogen consumption 

of sulfur-mat sediments at site F. This confirms that the deduction of metabolic capabilities 

from phylogenetic affiliation and of active metabolic processes from metabolic capablities 

always has to be evaluated by functional test such as incubations, and in situ measurements.  

 

Conclusion 

The comparison of pyrosequencing and CARD-FISH data from the same surface layer 

revealed that pyrosequencing is a well-suited technique for fast biodiversity screenings. The 

comparison of these methods at phylum and class level however revealed differences, so that 

FISH experiments should be used for in-depths studies. An advantage of pyrosequencing data 

is that the total diversity (Bacteria, Archaea, Eukaryota, and Viruses) at different taxonomic 

levels (phyla, class etc.) is investigated. Therefore, the combination of all methods covered 

largely the diversity in the habitat and led to the detection of all dominant groups that could 

be of interest for further analyses of metabolic pathways. The assignment to taxonomic bins 

by the tool PAOLA allowed the detection of taxon-specific genes. Taxonomic bins, as well as 

the detected diversity of the aprA- and soxB-genes, propose that members of 

Epsilonproteobacteria and Gammaproteobacteria represent active sulfur-oxidizing primary 

producers. In addition, metagenomic data proposed a potential importance of sulfide-

oxidizing Epsilonproteobacteria in the oxic-anoxic layer as nitrate-reducers responsible for 

denitrification. Finally, incubation experiments confirmed the revealed metabolic potential for 

sulfur cycling of the microbial community in the surface sediment at the Logatchtev field. 
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High sulfide concentrations modulate the composition of active microbial communities at 

different hydrothermal vent fields, independently of the composition of the underlying rocks. 
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Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to
disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the
Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial
communities in three basins of the eastern South Atlantic Ocean to determine diversity and
biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S
ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521
phylotypes with 98% identity in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria,
Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these
shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water
masses, suggesting a high dispersal capability, as also indicated by low distance–decay
relationships. However, the total bacterial diversity showed significant differences between the
basins, based on 16S rRNA gene sequences as well as on terminal restriction fragment length
polymorphism fingerprints. Noticeably, both geographic distance and environmental heterogeneity
influenced bacterial diversity at intermediate (10–3000 km) and large scales (43000 km), indicating a
complex interplay of local contemporary environmental effects and dispersal limitation.
The ISME Journal (2010) 4, 159–170; doi:10.1038/ismej.2009.106; published online 15 October 2009
Subject Category: microbial population and community ecology
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Introduction

Biogeographic patterns in microbial communities
are traditionally explained by two factors,
the environmental heterogeneity and historical
events (Martiny et al., 2006; O’Malley, 2008). On
the basis of the cosmopolitan hypothesis, ‘every-
thing is everywhere, but the environment selects’
(Baas-Becking, 1934), environmental conditions
have long been considered to have a strong influ-
ence on microbial biogeography. The effects of
spatial distances (historical events) have been
shown to affect microbial diversity in several
studies (Papke et al., 2003; Whitaker et al., 2003;
Martiny et al., 2006; Ramette and Tiedje, 2007). The
relative influences of environmental heterogeneity
and historical events on microbial biogeography are
still poorly understood. In marine habitats like the
deep sea, microorganisms in the surface sediment
may be assumed to disperse with oceanic currents.

Bioirrigation by the activities of larger benthic
organism as well as near-bed currents (Hughes and
Gage, 2004; Queric and Soltwedel, 2007) influence
the sediment-water interface exchange and conse-
quently lead to the dispersal of particles and
therefore of microorganism. Barriers to microbial
dispersal could be physical (topography) or physio-
logical conditions (temperature, pH or hydrostatic
pressure).

In the eastern South Atlantic Ocean, the Cape
Basin is separated from the Angola and Guinea
basins by the Walvis Ridge that forms a barrier to the
northward and southward flow of water below a
depth of about 3000m (Shannon and Chapman,
1991). Furthermore, the Cape Basin is dominated by
Lower Circumpolar Deep Water arriving from Ant-
arctica and the deepest part of the Angola and
Guinea Basins are filled with North Atlantic Deep
Water originating from the Arctic (Bickert and
Wefer, 1996). Noticeably, the Walvis Ridge has been
shown to function as a barrier for the dispersal of
some crustacean species of Peracarida (Brandt et al.,
2005), but it is not known whether this physical
barrier also affects microbial dispersal.

To analyze whether different deep water masses
associated with the physical barrier of the
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Walvis Ridge have significant structuring effects on
microbial diversity, the bacterial diversity in three
deep-sea basin surface sediments was determined
by 16S ribosomal RNA (rRNA) gene sequencing and
the community fingerprinting method terminal
restriction fragment length polymorphism (T-RFLP).
The relative contribution of environmental hetero-
geneity and of historical events on microbial
biogeography were assessed for this data set in
concert with earlier published data on basaltic lavas
in the Pacific Ocean (Santelli et al., 2008), shallow
permanently cold sediment of the Arctic Ocean
(Ravenschlag et al., 1999) and Antarctic continental
shelf sediment (Bowman and McCuaig, 2003).

Materials and methods

16S ribosomal RNA gene clone libraries construction
Sediment sampling was performed on the DIVA II
cruise by a multicorer (Barnett et al., 1984) in water
depths ranging from 5032 to 5649m. The sediment

cores were sliced on board in layers of 2 cm and the
layers were subsampled top-to-bottom by sterile
1- to 2-ml syringes at 4 1C. After storage at !80 1C,
DNA was extracted from 0.5 g of the surface sedi-
ment sample (0–2 cm) of the Cap, Angola and
Guinea I areas (Figure 1, Table 2) after the protocol
of the FastDNA SPIN Kit for Soil (Q-BIOgene,
Carlsbad, CA, USA). Bacterial 16S rRNA genes were
amplified using the primer pair GM3/GM4 (Muyzer
et al., 1995). The 100-ml reaction contained 30ng
DNA as template, 0.5 mM of each primer, 10mM of
dNTPs, 1" buffer (Eppendorf, Hamburg, Germany)
and 5 U of the Takara-Taq DNA polymerase
(TAKARA, Dalian, China). PCRs were performed in
10 replicates with 20 cycles to minimize PCR bias.
Final extension was performed 60min at 60 1C to
increase 30-A-overhang. The amplicons were pooled
and purified with a PCR purification kit (Qiagen,
Hilden, Germany). Cloning of the amplicons was
performed using TOPO TA Cloning Kit for sequen-
cing (pCR4-TOPO, Invitrogen, Karlsruhe, Germany).
Clones with a correct insert size of B1500 bp were

Figure 1 Sampling areas in the South Atlantic Ocean as well as the Walvis Ridge that separates the Cape Basin from the Angola and
Guinea basins. For the 16S ribosomal RNA (rRNA) gene approach surface sediment (0–2 cm) of the Cape, Angola and Guinea I areas were
used and for the terminal restriction fragment length polymorphism (T-RFLP) analysis 3–5 surface sediments of the Cape, Angola and
Guinea I–III areas were analyzed.
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sequenced using the vector primers M13 F (50-GGAA
ACAGCTATGACCATG-30) and M13 R (50-GTTGTAA
AACGACGGCCAGT-30).

Phylogenetic and sequence analyses
The quality of the obtained sequences was manually
checked using Sequence Analysis 5.2 (Applied
Biosystems, Weiterstadt, Germany). Full-length se-
quences were assembled with Sequencher (Gene
Code, Ann Arbor, MI, USA). No chimeras were
detected with Bellerophon (Huber et al., 2004) and
CHECK_CHIMERA (Maidak et al., 1996). Sequences
were imported into the ARB software package
(Ludwig et al., 2004) and aligned using the ARB
FastAligner, then refined manually. The ARB soft-
ware package was used to generate phylogenetic
trees of 810 full-length sequences using the max-
imum likelihood algorithm with a 50% positional
conservation filter and with 100 bootstrap repli-
cates. Sequences reported in this study were
deposited at EMBL under the accession numbers
AM997284–AM997988 for 705 full-length sequences
and under AM997989–998333 and AM997283 for 346
partial sequences.

The software distance-based OTU and richness
(DOTUR) was applied to ARB distance matrices
generated with the Jukes-Cantor correction to esti-
mate operational taxonomic units (OTU), rarefaction
curves of observed OTUs, richness estimators and
diversity indices (Schloss and Handelsman, 2005).
A sequence identity of 98% was used to define
OTUs, as this cut-off roughly corresponds to the
species level (Rossello-Mora and Amann, 2001;
Stackebrandt and Ebers, 2006). The statistical toolR
-LIBSHUFF was applied to genetic distance ma-

trices to determine whether differences in library
composition were because of chance or to biological
effects, and significances were assessed by Monte
Carlo permutations and further corrected for multi-
ple comparisons (Schloss et al., 2004). The statis-
tical tool SONS (Schloss and Handelsman, 2006)
was used on full-length 16S rRNA gene sequences to
calculate Chao1 shared richness estimates, the Jclass
index for the ratio of shared to total number of OTUs,
and yyc for the estimated similarity in community
structure between any two communities.

Terminal restriction fragment length polymorphism
Terminal restriction fragment length polymorphism
analyses included three to five samples of surface
sediments (0–2 cm) from several cores of each area,
Cape, Angola and Guinea I–III (Figure 1, Table 2).
Genomic DNA was extracted from 0.5 g sediment
samples using the FastDNA Spin Kit for Soil
(Q-Biogene, Irvine, CA, USA). PCR amplification of the
16S rRNA gene was carried out using the fluores-
cently labelled primers 27F (FAM, 50-AGAGTTTGA
TCCTGGCTCAG-30) and 907R (HEX, 50-CCGTCAAT
TCCTTTRAGTTT-30), targeting all bacteria as well

as 558F (FAM, 50-ATTGGGTTTAAAGGGTCCG-30)
(Abell and Bowman, 2005a, b) and 1390R (HEX,
50-GACGGGCGGTGTGTACAA-30) (Zheng et al., 1996),
targeting the class Flavobacteria. Undigested and
digested amplicons were identified by capillary
electrophoresis to verify the absence of false-posi-
tive fragments in the undigested control and the
completeness of the digestion. PCRs were carried
out in a total volume of 25ml, including 12.5 ml PCR
Master Mix (Promega GmbH, Mannheim, Germany),
1mM forward and reverse primer, and 5–24ng DNA
template. PCR reactions were carried out in tripli-
cates and purified on Sephadex columns (Sephadex
G-50 Superfine, Amersham Biosciences AB, Uppsa-
la, Sweden). PCR amplicons (70-120ng) were
digested in a total volume of 10ml at 37 1C for 3 h
using 5 U of the restriction enzyme AluI (Fermentas,
Burlington, Canada) for bacterial amplicons and 5 U
of the enzyme MspI (Fermentas) for Flavobacteria
amplicons. The two restriction enzymes were
chosen based on high numbers of unique terminal
restriction fragments assessed with in silico analyses
using enzyme restriction power analysis (http://
mica.ibest.uidaho.edu/) as well as on best perfor-
mance in laboratory experiments (that is, producing
maximum numbers of terminal restriction fragments
(TRFs)). After heat inactivation (65 1C, 25min) and
purification on Sephadex columns, detection of
TRFs was performed on a ABI Prism 3130 XL
Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA) equipped with a 80-cm capillary, a POP-7
polymer and the filter set DS-30. The ROX-labelled
MapMarker 1000 (Eurogentec, Seraing, Belgium)
served as a size standard between 50 and 1000 bp.
The fragment profiles were visualized and automa-
tically analyzed with GeneMapper v. 3.7 Software
(Applied Biosystems), using standardized settings
with a peak detection cut-off set to 30 fluorescence
units. The 50-end labelled TRFs were used as they
produced a higher number of fragments in compar-
ison with 30-end TRFs (Suzuki et al., 1998; Osborn
et al., 2000).

A binning procedure was applied to the Gene-
Mapper output to compensate for slight peak shifts
between runs and for TRF size calling imprecision,
in order to avoid artificial, technically derived
differences between profiles (Hewson and Fuhrman,
2006). The technical variability of peak size calling
in different replicates including runs conducted on
different days was determined as of±0.25 bp (win-
dow size of 0.5 bp). The binning function included
two different starting points (50 and 50.25 bp) and
the binning strategy yielding higher correlation
between all samples was selected for further
statistical analyses. The binning window was
adjusted to 1 bp for samples amplified with Flavo-
bacteria primers, because a window frame of 0.5 bp
did not yield higher resolution. The computation
was carried out with the Interactive Binner function
(Ramette, 2009 http://www.ecology-research.com).
The output consisted of a table of TRFs with
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corresponding relative fluorescence intensities,
which are the individual peak area divided by the
total area of peaks in a given profile. Master profiles
were generated by building a consensus table of the
binned TRF profiles for all samples from one basin,
averaging the respective relative fluorescence in-
tensities values of all samples. A TRF was consid-
ered present if it appeared in one or more PCR
parallels, therefore including all natural and tech-
nical variability at this level of analysis.

Statistical analyses
Non-metric multidimensional scaling (nMDS) and
analysis of similarity (ANOSIM) were carried out
with the program PAST (Paleontological Statistics,
ver. 1.47, http://folk.uio.no/ohammer/past). Simple
and partial Mantel tests were used to determine the
significance and correlation coefficients between
genetic-, spatial- and environmental distance matri-
ces, using the R package vegan (http://vegan.r-forge.
r-project.org/) (Legendre and Legendre, 1998;
Mantel, 1967). Spatial dissimilarities based on
geographic distances between sites and environ-
mental dissimilarities (temperature, salinity, pH, Eh,
TOC, Chl a and grain size; Table 1) were used to
explain genetic dissimilarity. To determine the
strength of the relationship between genetic and
geographic distance linear models were fitted and
slope coefficients were calculated with their 95%
confidence intervals.

Results and discussion

Bacterial biomass and richness in sediments of the
South Atlantic Ocean
The cell numbers of the suboxic surface sediments
(0–2 cm) in three eastern South Atlantic Ocean
basins were 3.4–3.7! 109 cells g–1 sediment
(Table 1). The abundances were in the range found
in other deep-sea sediments (9.2! 108 cells g–1 (Dem-
ing and Colwell, 1982), 1.5! 109 cells g–1 (Guezen-
nec and Fiala-Medioni, 1996) and 5! 108 cells g–1

(Harvey et al., 1984)). The 16S rRNA gene libraries
showed a high diversity with up to 20 different
phyla in the Cape Basin and 17 phyla in the Angola
and Guinea basins (Figure 1). Earlier described

deep-sea (Bowman and McCuaig, 2003; Polymena-
kou et al., 2005, 2009; Xu et al., 2005) and shallow
sediments (Ravenschlag et al., 1999) had also found
a large diversity, which may be based on a weak and
symmetric competition (Grant, 2000). The reciprocal
Simpson’s indices for all sites were above 50
(Table 2), suggesting evenly distributed diversity
profiles as typical dominance profiles show 1/D
values below approximately 50 (Zhou et al., 2002).
Total richness estimates (Chao1) (Table 2) and
rarefaction curves (Supplementary Figure S1) based
on a 98% sequence identity showed that Cape,
Angola and Guinea basin surface sediments con-
tained an equal bacterial richness at a significance
level of 0.05.

Both analyses predicted a lower richness for the
South Atlantic sediments in comparison to the
Antarctic sediments and a higher richness in
comparison to the Arctic sediment. The library-
based equality of richness was supported by the
T-RFLP analysis, as basin-specific master profiles
showed a comparable OTU richness (167, 190 and
182 TRFs for the Cape, Angola and Guinea Basin,
respectively) (Figure 4a).

Bacterial diversity of the 16S ribosomal RNA genes
The clone libraries contained 521 phylotypes with
98% identity in 1051 sequences, containing 705
full-length sequences. Applying a 100% identity
threshold revealed 230 sequences, which were
present at least twice, with a majority of 176
sequences (18 OTUs) present in all deep-sea sedi-
ments. The bacterial communities were dominated
by Proteobacteria, which accounted for 64, 58 and
63% of all sequences in the Cape, Angola and
Guinea Basin, respectively, with the class Gamma-
proteobacteria representing 45, 37 and 40% of all
sequences in the respective basins (Figure 2). The
class Gammaproteobacteria comprised 116 phylo-
types (98% identity, 427 sequences), of which 39
phylotypes (138 sequences) were related to known
cultivated species. These belonged mainly to fa-
milies of psychrophilic microorganisms including
Enterobacteriaceae, Alteromonadaceae, Oceanos-
pirillaceae and Legionellaceae (Figure 3a). Among

Table 1 Sediment data (Türkey and Kröncke, in preparation) and cell numbers of microbial communities in the South Atlantic Ocean

Basin Depth
(mbsl)a

Temp.
(1C)

Salinity
(%)

pH Eh
(mV)

TOC
(%)

Chl a
(mg g"1)

Grain size (%) Cell counts
(cell g"1)

MPN
(cells ml"1)

o63mm 463 mm

Cape 5032 1.14 34.6 7.74 177 0.83 0.017 92.89 6.87 3.5! 109 1.22!104

Angola 5649 ND ND 7.72 96 0.9 0.069 83.84 16.4 3.4! 109 2.67!105

Guinea I 5063 2.1 34.9 7.77 183 0.72 0.264 84.23 15.23 3.7! 109 2.67!104

Guinea II 5225 ND ND 7.76 132 0.77 0.301 84.99 14.46 ND ND
Guinea III 5525 2.1 34.5 ND ND 0.76 0.152 86.45 13.34 ND ND

Abbreviation: ND, not detected.
aMeters below sea level.
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these phylotypes 11 OTUs (12 sequences) clustered
with the NOR5/OM60 clade that includes ‘Congregi-
bacter litoralis’ strain KT71, the first marine aerobic
anoxygenic phototrophic Gammaproteobacteria
in culture (Fuchs et al., 2007; Yan et al., 2009).
Three phylotypes (5 sequences) were related to free
living (Thiothrix) and endosymbiotic sulfur oxi-
‘dizers and methylotrophic bacteria. A large por-
tion of 77 phylotypes (289 sequences) clustered
distinctly from cultured species to JTB255/BD3-6
(38 phylotypes, 192 sequences), BD7-8/MERTZ
(10 OTUs, 36 sequences), JTB23/Sva0091 (18 OTUs,
34 sequences) (Figures 3a and b) and to Cret-1F,
BD1-1, PWP and South Ionian groups (11 OUT,
27 sequences). These groups included only 16S
rRNA gene sequences that originated from other
deep-sea or permanent cold marine habitats (Kato
et al., 1999; Li et al., 1999; Ravenschlag et al., 1999;
Urakawa et al., 1999; Bowman and McCuaig, 2003;
Polymenakou et al., 2005; Xu et al., 2005; Zhao and
Zeng, 2005).

The Alpha-, Beta- and Deltaproteobacteria ac-
counted together for 18 to 23% of all sequences in
the libraries. Deltaproteobacteria (11 to 14%) out-
numbered Alphaproteobacteria (6 to 8%) and
Betaproteobacteria (1 to 3%) (Figure 2). Other
groups with a sequence abundance of over 5%,
which occurred in all three basins, were the

phyla Chloroflexi (1, 10 and 4% for Cape, Angola
and Guinea basins, respectively), Planctomycetes (6,
4 and 10%), Acidobacteria (4, 7 and 5%) and
Bacteroidetes (10, 4 and 6%).

Bacterial diversity comparison
The proportion of bacteria present in two or three
basins was high in the 16S rRNA gene sequences
analyses (23%) and in the T-RFLP analyses (58%)
(Figure 4a). A third of the fragments (93 TRFs) was
detected in the sediments of all basins and repre-
sented 82% of the total relative fluorescence
intensities. Among the 16S rRNA gene sequences,
a shared membership of 19 OTUs (98% identity)
was found in all three basins with the statistical tool
SONS. The manual assignment in ARB confirmed
the small fraction of OTUs detected in all three
basins (29 OTUs, 347 sequences), but provided
additional information regarding the sequence
abundance and identity of each OTU. These
were dominated by Gammaproteobacteria (76%;
Figure 4b). In this class, the common members were
related to marine heterotrophic aerobic and faculta-
tive anaerobic microorganisms (Alteromonadaceae
and Oceanospirillaceae), photoheterotrophic aero-
bic bacteria (NOR5/OM60 clade) (Fuchs et al., 2007),
and to groups consisting of uncultivated bacteria

Table 2 Sampling sites of sediments used for 16S rRNA gene sequencing or for T-RFLP analysis with corresponding richness and
diversity indices for bacteria

Sampling
area

Latitude Longitude Depth
(mbsl)a

Stationsb

T-RFLP
Stationsb

16S
No. of
clonesc

OTU
DOTUR

Richness
estimator

Simpson
1/D

Study

rRNA
gene
seq.

0.02 Chao1d

Cape 281060420 0 S 71 200480 0 E 5032 33, 34, 37, 38 33 342 FP 202 466 (369, 620) 77 This study
228 F 145 508 (351, 785) 53

Angola 91560000 0 S 01 530480 0 E 5649 46, 48, 50 46 354 FP 183 256 (227, 305) 77 This study
219 F 126 369 (259, 570) 59

Guinea I 01000000 0 S 21250060 0 W 5063 56, 58, 59, 60, 61 60 355 FP 203 369 (308, 465) 125 This study
258 F 155 489 (348, 735) 91

Guinea II 01500000 0 N 51 350000 0 W 5225 74, 75, 76, 77, 79 — — This study

Guinea III 01370120 0 N 61 280060 0 W 5525 95, 97, 99 — — This study

Antarctic
continental

661310860 0 S 1431380300 0 E 761 — MERTZ
0–2cm

590 P 322 899 (713, 1175) 125 Bowman and
McCuaig, 2003

shelf
Arctic ocean
Svalbard

791420810 0 N 111050180 0 E 218 — Station J 123 P 84 125 (104, 167) 167 Ravenschlag
et al., 1999

East Pacific 91280480 0 N 1041130480 0 W 2516 — EPR 370 F 239 601 (475, 796) 200 Santelli et al.,
2008

Rise !91500380 0 N !1041170860 0 W !2674
Hawaii 181520170 0 N 1551140530 0 W 888 — PV 472 F 276 764 (597, 1017) 167 Santelli et al.,

2008
!181580310 0 N !1551530420 0 W !1714

Abbreviations: DOTUR, distance-based OTU and richness; OTU, operational taxonomic units; rRNA, ribosomal RNA; T-RFLP, terminal restriction
fragment length polymorphism.
aMeters below sea level.
bFor details see cruise report DIVA II (M63/2).
cNumber of full-length (F) and partial (P) sequences, full-length sequences and values calculated from them are presented in bold.
dChao1 richness with lower and upper bound of 95% confidence interval.
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(JTB255/BD3-6, JTB23/Sva0091/BD3-1, BD7-8/MERTZ,
Gret-1F and South Ionian).

Phylotypes present in two of three basins be-
longed to the Gamma- and Deltaproteobacteria and
to the Chloroflexi. A major group of Chloroflexi-
OTUs were restricted to Angola and Guinea basin
sediments (7 OTUs, 21 sequences). The

R
-LIB-

SHUFF analyses revealed no significant difference
between the Angola and Guinea libraries as well as
Cape and Guinea libraries (using a minimum
P-value of 0.0012) (Supplementary Table S1). Thus,
common phylotypes dominate the communities of
these basins. The largest number of TRFs covered by
two basins was found for the Angola and Guinea
basins (30 TRFs, 30.5 relative fluorescence inten-
sity) (Figure 4a). High chlorophyll a contents were
detected in the Angola and Guinea surface sedi-
ments indicating a large fraction of fresh, recently
arrived organic carbon (Table 1, Türkay and
Kröncke, in preparation). This probably originated
from a primary productivity in the surface waters
that can be linked to the discharge of nutrients from
the Congo and the Niger Rivers into the Angola and
Guinea basins, respectively (Schefuss et al., 2004).

Angola and Cape basins showed significantly
different communities (

R
-LIBSHUFF test, P¼ 0.008)

and significantly different Flavobacteria T-RFLP
profiles (Figure 5b) (analysis of similarity, R values
0.869, Po0.001) (Supplementary Table S2). These
differences were consistent with a different
chlorophyll a content as well as a different sediment
particle size in the Cape Basin (Table 1) (Etter
and Grassle, 1992), indicating that environmental
factors seem to influence bacterial communities
in deep-sea sediments of the eastern South Atlantic
Ocean. It is, however, needed to also take spatial
parameters into account in this analysis to
strengthen our interpretation concerning environ-
mental or spatial effects on the observed community
shifts.

Biogeography: environmental and historical factors
In the eastern South Atlantic Ocean the Walvis
Ridge separates the Cape Basin from the Angola
and Guinea basins below a depth of about 3000m
and causes different deep water masses in these
basins. The dominance of common phylotypes in
the 16S rRNA gene libraries and T-RFLP master
profiles suggested that microbial dispersal may
not be influenced by the Walvis Ridge or by the
presence of different water masses. This was
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Figure 2 Bacterial diversity in the Cape Basin (342 sequences), Angola Basin (354 sequences) and Guinea Basin (355 sequences).
All detected classes in the domain Bacteria are shown.
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supported by the significantly similar distance–decay
relationships of the TRFs in the pairwise comparison
(Cape/Angola, slope coefficient 6.9! 10–5 and 95%
confidence interval (3.4! 10–5, 10.3! 10–5); Angola/
Guinea, slope coefficient 8.7! 10–5 and 95% confi-
dence interval (1.5! 10–5, 15.9! 10–5)). Phylotypes
common in the communities of the South Atlantic
Ocean and the Pacific, Antarctic and Arctic Oceans
sediments (Supplementary Table S1) indicated that
some microorganisms disperse effectively over a huge
distance and therefore are cosmopolitan, at least at
the resolution of 16S rRNA genes that is insufficient
for the classification of microorganisms into species
(Konstantinidis and Tiedje, 2005).

To get more information regarding the amount
of spatial structure present, we analyzed the rela-
tive relationships between genetic diversity and
geographic distances. The 16S rRNA gene and
TRFs based distance–decay relationships for the
South Atlantic Ocean and for all sites were all

very low (0.003 to 0.07) (Table 3), as also found
in taxa-area relationships for soil and salt marsh
communities (0.03 to 0.074) (Green et al., 2004;
Horner-Devine et al., 2004; Fierer and Jackson,
2006), suggesting high dispersal rates and low
extinction rates because of vast population sizes
(Connor and McCoy, 1979).

From the clustering of TRF profiles by basins, as
shown by non-metric multidimensional scaling
(Figure 5a) associated with large, significant
R values for all pairwise comparisons between
the deep-sea basins (analysis of similarity, 0.586
to 0.999, Po0.001) (Supplementary Table S2), and
from significant differences between the South
Atlantic Ocean communities to all other commu-
nities (

R
-LIBSHUFF tests, Supplementary Table S1),

it seemed obvious that communities were structured
either by the contemporary environment, spatial
distances (historical events) or by a combination of
both (Martiny et al., 2006; Ramette and Tiedje 2007).

Figure 3 Phylogenetic tree based on 16S ribosomal RNA (rRNA) gene sequences of the class Gammaproteobacteria showing position of
(a) marine heterotrophic aerobic and facultative anaerobic microorganisms and photoheterotrophic aerobic (NOR5/OM60 clade) bacteria
and (b) potential auto- or mixotrophic sulfur oxidizers and bacteria that inhabit various geographic regions (JTB255/BD3-6). The tree was
calculated using the maximum-likelihood algorithm with a 50% positional conservation filter and with 100 bootstrap replicates. The bar
represents 10% estimated sequence divergence. Full-length sequences (Ca, An and Gu), partial sequences (cap, ang and gui), the number
of OTUs in a cluster and the corresponding number of sequences (squared bracket) are shown.
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To disentangle the relative influence of environ-
mental heterogeneity and spatial distance on the
distribution of microbial deep-sea sediment com-
munities, we used a combination of simple and
partial Mantel tests. For distances of 0–1200 km
T-RFLP results showed a comparable influence
of both factors (environment r¼ 0.636, Po0.001,
geography r¼ 0.651, Po0.001) (Table 2) (Figure 6b).

But environment (r¼ 0.588, Po0.001) overwhelmed
any effect of geographic factors (r¼ 0.278, P¼ 0.009)
for intermediate distances (1200–3500 km), as
also supported by significant partial Mantel tests
(Table 3). A higher correlation between spatial and
genetic distance for small spatial scales (o200m)
was reported for other microbial groups in soil
(Cho and Tiedje, 2000), suggesting the existence of
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endemic taxa, as genetic distance increases with
spatial distances.

Mantel tests for 16S rRNA gene sequences
revealed that both environment and geography
(r¼ 0.008, P¼ 0.006 and r¼ 0.024, P¼ 0.001, respec-
tively) had an influence on the bacterial diversity of
the South Atlantic. Significant correlations between
genetic and geographic distances (Mantel’s coeffi-
cient r¼ 0.013, P¼ 0.001) (Table 3, Figure 6a) were
as well observed for all deep-sea and coastal
sediments.

When compared in more detail, the two methods
showed different results for the relative influence of
both factors on microbial biogeography. These
detected differences reflect different levels of simi-
larity, saturation and resolution of each method and
sampling effort, for example, the T-RFLP analyses
including Guinea I versus Guinea I+II+III (Table 3).
Indeed, the analysis of 16S rRNA gene sequences

Cape
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Guinea III

Cape

Angola

Guinea I

Guinea II

Guinea III

Figure 5 (a) Non-metric multidimensional scaling (nMDS) plot
using Bray–Curtis distance for the data set derived from
amplification with bacterial primers 27F and 907R and subse-
quent digestion with AluI. Stress: 0.15. (b) nMDS plot using Bray–
Curtis distance for the data set derived from amplification with
Flavobacteria-specific primers 517F and 1457R and digestion
with MspI. Stress: 0.07.
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provides information regarding randomly chosen
phylotypes (‘sampling communities’) where the
finding of an OTU is proportional to its abundance
in the clone library (Bent and Forney, 2008). In
contrast, the fingerprinting method T-RFLP screens
for all OTUs present above the detection threshold
of the method (‘screening’ communities; Bent and
Forney 2008), typically 46! 102–103 DNA fragment
copies per ml samples (Ramette 2009), but does not
provide clear taxonomic distinction (Dunbar et al.,
2001).

Although high dispersal rates were detected for
some groups in deep-sea sediments, both T-RFLP
and 16S rRNA-based analyses suggest barriers for
the dispersal of microorganisms in the deep sea.

The influence of both factors at intermediate scales
was already shown by other studies (Green et al.,
2004; Reche et al., 2005; Yannarell and Triplett,
2005), but our study suggest an effect of both factors
for large scales as well, as shown for soil microbial
communities (Fierer and Jackson, 2006). Although
the small size, high dispersal rates, large population
size and low extinction rates of microorganisms sug-
gest a low effect of geographic barriers on micro-
organisms (Staley and Gosink, 1999; Beja et al.,
2002; Finlay, 2002; Ramette and Tiedje, 2007), our
study shows that the distribution of microorganisms
in deep-sea sediments is limited at intermediate
(10–3000km) and large scales (43000 km).
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III General conclusions  

1 Discussion 

1.1 Microbial diversity 

Most deep-sea floors are covered with permanently cold sediments. Microorganisms in these 

sediments are responsible for the mineralization of the organic carbon that reaches the deep-

sea floor from the photic zone. The eastern South Atlantic Ocean is known for its high 

productivity (Berger and Wefer, 1996). However, the microbial diversity in the sediments of 

the three abyssal plains (Cape, Angola and Guinea basins) in the eastern South Atlantic Ocean 

was so far not investigated.  

Phylogenetical analyses of 16S rRNA gene sequences revealed a highly diverse bacterial 

community for all three deep-sea basins and therefore confirmed previously described rich 

diversities of other marine and deep-sea sediments (Ravenschlag et al., 1999; Bowman and 

McCuaig, 2003; Polymenakou et al., 2005; Hongxiang et al., 2008). The analysis of the 

microbial community structures within the South Atlantic Ocean revealed shared phylotypes 

in all three deep-sea basins. Most sequences belonging to this shared community were 

affiliated with Gammaproteobacteria. In this class, the common-to-all basin members were 

related to marine heterotrophic aerobic and facultative anaerobic microorganisms 

(Alteromonadaceae and Oceanospirillaceae) and photoheterotrophic aerobic (NOR5/OM60 

clade) bacteria. These microorganisms utilize a broad range of organic compounds (Fuchs et 

al, 2007). Acidobacteria represented another common-to-all basin phylum that inhabits a 

large variety of habitats (soil, freshwater habitats, marine sediments, marine sponges, acidic 

mining lakes, hot springs). Their broad distribution suggests an important ecological role 

(Quaiser et al., 2003). They have great metabolic versatility (Quaiser et al, 2003) and, 

according to metagenomic analyses, they are capable to degrade aged organic matter like 

recalcitrant organics (Quaiser et al, 2008). These heterotrophic microorganisms of the 

families Alteromonadaceae and Oceanospirillaceae and of the class Acidobacteria could be 

involved in the first step of aerobic remineralization of complex organic carbon in deep-sea 

sediments. Dissimilatory sulfate reduction (DSR) is responsible for the anaerobic degradation 

of organic matter in marine sediments, which forms the basis of the biological sulfur cycle 

(Heinrichs and Reeburgh, 1987; Jørgensen 1982, Widdel 1988). Sequences affiliated with 

sulfate-reducing heterotrophic Deltaproteobacteria were detected in all three basins. This 

group could use the first fermentation products for further anaerobic remineralization. In 
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addition to heterotrophic bacteria, members related to the group JTB23/Sva0091/BD3-1 and 

BD7-8/MERTZ, which are potential auto- or mixotrophic sulfur oxidizers were present. 

Reduced sulfur compounds are end products of the sulfate reduction. Therefore, 

chemolithoautotrophic bacteria are likely able to oxidize reduced sulfur compounds for the 

fixation of CO2. 

Significant differences in bacterial composition were only detected between the Angola 

and Cape basins (Table 7). In the Angola and Guinea basins, high frequencies of Chloroflexi-

related sequences were found, in contrast to the Cape Basin. The detected chlorophyll a 

contents for the Angola and Guinea basins revealed fresher organic carbon and therefore a 

higher macromolecular fraction in these sediments compared to the Cape Basin. Furthermore, 

the supply of terrigenous materials by the rivers could transport human organic solvents and 

degreasing agents like tetrachloroethenes (PCE) and trichloroethene (TCE) to the deep-sea 

surface sediments of the Angola and Guinea basins. Members of the genus Dehalococcoides 

of the phylum Chloroflexi can utilize chloroethenes as substrates by a dehalorespiration, 

where chloroethenes are transformed to nontoxic products (Hendrickson et al., 2002).  

Therefore, presence of Chloroflexi-related sequences in these two basins can be linked to a 

Table 7: Comparison of bacterial community structures of different deep-sea floors by the statistical tool 
!-LIBSHUFF (P-value of significance=0.0005). 
    Cape  

 
Angola 

 
Guinea 

 I 
OC Quest AG 

 
site F  EPR Hawaii Arctic 

Angola  0* 
0.0015 

-         

Guinea I 0.002 
0.4134 

0.0328 
0.1096 

-        

OC 0* 
0.647 

0* 
0.7984 

0* 
0.4752 

-       

Quest  0.0003* 
0.262 

0* 
0.368 

0* 
0.4317 

0.012 
0.0006 

-    
 

  

AG 0* 
0* 

0* 
0* 

0* 
0* 

0* 
0* 

0* 
0* 

-     

site F 0* 
0.002 

0* 
0* 

0* 
0.0002* 

0* 
0* 

0* 
0* 

0* 
0.0212 

-    

EPR 0* 
0* 

0* 
0* 

0* 
0* 

0* 
0* 

0* 
0.0668 

0* 
0* 

0* 
0* 

 -   

Hawaii 0* 
0* 

0* 
0* 

0* 
0* 

0* 
0* 

0* 
0.6739 

0* 
0* 

0* 
0* 

0* 
0* 

 -     

Arctic 0* 
0.062 

0* 
0.0254 

0* 
0.0352 

0* 
0* 

0* 
0.008 

0* 
0* 

0* 
0* 

0* 
0* 

0* 
0* 

- 

Antarctic 0* 
0.4082 

0* 
0* 

0* 
0.0006 

0.8679 
0.7868 

0* 
0.7736 

0.0084 
0.6524 

0* 
0.5874 

0* 
0* 

0* 
0* 

4640 

0.4637 
0.4640 

significant P-level are indicated by an asterisk (*) 
both P-values representing not significant differences are indicated in bold 
OC=oceanic sediment 
AG=Anya’s Garden  
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higher primary productivity in the surface waters due to the nutrient supply from the Congo 

and the Niger Rivers (Schefuss et al, 2004). 

This phylogenetic analysis provided first insights into the bacterial diversity and 

distribution of bacterial communities in the three eastern South Atlantic deep-sea basins. The 

proposed roles of the bacterial groups in the mineralization process of organic carbon have to 

be further investigated, as phylogenetic studies are not reliable for predicting physiology. 

However, the detected phylogenetic groups provided hypotheses, helping to design further 

experimental setups and studies. 

In contrast to permanently cold sediments, hydrothermal vents represent rich areas of very 

high productivity with dense communities of unusual animals. Chemolithoautotrophic 

microorganisms represent the primary producers in these systems. Most discovered 

hydrothermal systems are located far from continents, where sedimentation rates due to 

photosynthetic productivity are very low. Therefore, seabed focused investigation of 

microbial diversity concentrated mostly on solid surfaces such as hydrothermal precipitates 

(chimney structures) and vented rocks (Takai et al., 2006). Studies of microbial diversity in 

sediments of hydrothermal systems far from continents were so far limited to one study of the 

peridotite-hosted Rainbow hydrothermal vent field (Nercessian et al., 2005). Although these 

heterogeneous sediments represent a mixture of pelagic sediments, iron oxides and oxidized 

fragments of the dead chimneys, no apparent sign of hydrothermal activity was detected. 

Hydrothermally influenced sediments were so far only investigated from the coastal near 

basalt-hosted hydrothermal field of the Guaymas Basin (Gulf of California section of the 

EPR) (Teske et al., 2002).  

The present thesis represents the first investigation of the microbial diversity in 

hydrothermally influenced sediments of a peridotite-hosted hydrothermal vent field 

(Logatchev). The white mats on top of the sediments at site F and Anya’s Garden resemble 

those at the Guaymas Basin and therefore clearly differ from the surrounding pelagic 

sediments. Our analysis of the hydrothermally influenced sediments covered by white mats 

showed that Epsilonproteobacteria and Deltaproteobacteria dominated the microbial 

communities of the surface layers. We found many sequences which were closely related to 

those, found in microbial mats, hydrothermal sediments (Moyer et al., 1995; Teske et al., 

2002), and on in situ colonizers in sulfidic, basaltic systems (Alain et al., 2002; López-Garcia 

et al., 2003a; Moussard et al., 2006). Therefore, the investigated microbial communities of the 

peridotite-hosted Logatchev field showed many similarities to those of basalt-hosted systems. 

The detected high abundance of Epsilonproteobacteria is consistent with previous studies, 
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where Epsilonproteobacteria were found in different deep-sea hydrothermal vent habitats 

such as mats on the surface of chimneys (Longnecker and Reysenbach, 2001; Brazelton et al., 

2006; Nakagawa et al., 2006), colonizers and animals, vent fluids, plume, and symbiotic 

associations with vent animals (Reysenbach et al., 2000; Corre et al., 2001; López-Garcia et 

al., 2003a, Alain et al., 2002; Petersen et al., 2009; Takai et al., 2005). Therefore our study 

supports the hypothesis that Epsilonproteobacteria establish themselves as the primary 

colonizers at hydrothermal vent systems (Campbell et al., 2006). 

However, so far only filamentous Gammaproteobacteria (e.g. Beggiatoa, Thiothrix) were 

known to appear in such dense populations, forming white mats on top of sediments. We 

detected filamentous and vibrioid mat-forming Epsilonproteobacteria dominating white mat 

communities. The mat at site F was dominated by filamentous, while the mat at Anya’s 

Garden was dominated by vibrioid Epsilonproteobacteria. Therefore, each site exhibited their 

specific epsilonproteobacterial community. The statistical comparison of the microbial 

communities from site F and AG confirmed that these two microbial community structures 

differ significantly from each other (Table 7).   

As expected, the bacterial community structures of the hydrothermally influenced sediment 

differ significantly from those of the permanently cold sediments of the South Atlantic Ocean 

(Table 7). However, the bacterial communities from permanently cold sediments from the 

South Atlantic Ocean were also significant different from the bacterial communities of cold 

sediments at the Mid-Atlantic Ridge (OC=oceanic sediments). The comparison of microbial 

communities from the oceanic sediment and Quest did not show significant differences. This 

confirmed that sediments without a white mat at the Logatchev field were not hydrothermally 

influenced and resembled more oceanic, pelagic sediments. This analysis confirmed that 

white mat sediments harbor vent specific bacterial groups that differ significantly to those 

found in non-hydrothermally influenced sediments. 

When we compared our investigated bacterial communities with bacterial communities of 

other deep-sea floor studies, most comparisons revealed significant differences in the 

structure of the microbial community between the sites. However, significant differences 

were not observed between the microbial community from the surface sediments from an 

Antarctic continental shelf area (761 m depth) (Bowman and McCuaig, 2003), the microbial 

communities from Arctic sediments (Svalbard, 218 m depth; Ravenschlag et al., 1999), and 

the bacterial communities in the oceanic sediment at the Logatchev hydrothermal vent field. 

Surprisingly, the bacterial communities from the cold adapted sediments from an Antarctic 

continental shelf area showed as well no significant differences to those from the 
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hydrothermally influenced sediments at Anya’s Garden (Table 7). The comparison of the 

estimated richness for all investigated site as well as other studies showed, that the highest 

bacterial richness was found for this Antarctic sediment community (Figure 23). This high 

bacterial richness could explain that this bacterial community showed the most similarities to 

other investigated microbial communities.   

 

Estimated bacterial richness in permanently cold sediments was always higher than that in 

hydrothermally influenced sediments. The archaeal community showed the lowest estimated 

richness of all studies. This indicates that habitat condition (environmental heterogeneity) and 

domain affiliation lead to different richness patterns. Previous studies showed that major 

environmental variables have an influence on microbial composition (Ward et al., 1998; 

Broughton and Gross, 2000). Some major environmental variables influencing the microbial 

composition of the investigated habitats are likely nutrient status and predation. Temperature 

can be assumed to have a minor influence on the microbial composition as temperatures of 

2.4°C in the hydrothermally influenced surface layer are in the range of those found in typical 

permanently cold deep-sea sediments. Furthermore, our results support the assumption that a 

higher environmental heterogeneity potentially allows for higher microbial diversity by 

allowing the coexistence of a larger number of bacterial taxa and produce a more uniform 

Figure 23: Rarefaction analyses of the relative bacterial richness of different communities compared 
at a genetic distance of 0.02. 
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community composition (Zhou et al., 2002). Permanently cold deep-sea floors, in contrast to 

hydrothermal systems, are suggested to exhibit habitat variability and patchy disturbance 

leading to heterogeneous conditions (Snelgrove and Smith, 2002). In heterogeneous 

environments, intermediate disturbance has been shown to result in a diversity peak (Buckling 

et al., 2000). The amount of energy available in an ecological system is thought to be the key 

determinant of diversity (Jessup et al., 2004; Kassen et al., 2000). Whereby, primary 

productivity was as well shown to have both an increasing and decreasing effect on bacterial 

richness depending on the different taxonomic groups of bacteria (Horner-Devine et al. 2003). 

Our results suggest that increasing energy decreases diversity and that this affects more 

archaeal affiliated taxa than bacterial taxa.  

The ecologist John Lawton (1999) has argued that, although the details of individual 

organisms and ecological systems matter, ecologists would profit most from trying to uncover 

underlying patterns, rules and laws. The comparison of microbial diversities of different deep-

sea floors revealed habitat and taxon related patterns. Findings of previously conducted 

microbial model system experiments give good explanations for the detected patterns (Jessup 

et al., 2004). However, a good fit of species diversity to a theoretical model does not 

distinguish pattern from process (Alonso et al., 2006). Rapidly increasing information about 

the genetic pool provides the opportunity to understand ecological processes at all scales of 

biological organization. Understanding the mechanisms underlying detected patterns will 

improve our understanding on the different mechanisms controlling species diversity from 

ecological to evolutionary spatio-temporal scales.  

 

1.2 Microbial activity 

At hydrothermal vent fields, due to venting of hydrothermal fluids to the ocean, heat and mass 

is transferred from the mantle to the ocean. It has been estimated that 25-30% of the earth’s 

total heat flux is transferred from the lithosphere to the hydrosphere by the circulation of 

seawater through oceanic spreading centers (Lowell, 1991; Stein and Stein, 1994). Besides 

high-temperature venting, off-axis diffuse fluid flow plays an important role in transferring 

energy from the crust and mantle to the oceans. The emerging chemical and thermal 

environments are inhabited by dense communities. Previous studies revealed that 

chemolithoautotrophic microorganisms use this chemical energy and are therefore responsible 

for the high primary production at these sites (Van Dover et al., 2002). However, little is 

known about what kind of pathways are used and how these microorganisms interact with 
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their environments. Furthermore, total fluxes and turnover rates are so far unknown which are 

necessary to reveal the energy transfer from the mantle to the microorganisms.  

During this thesis, a combination of in situ rate measurements, ex situ laboratory 

experiments as well as metagenomic analyses was performed to gain more information about 

the potential and present activity of free-living microbes at the ultramafic-hosted Logatchev 

hydrothermal field. Before this study, in situ measurements of hydrothermally influenced 

sediment were not available. However, it was assumed that hydrothermally influenced 

sediments are heated by diffuse outflow of active flowing fluids and are therefore heated as a 

result of advective processes (Karl, 1995). Temperature and microprofiles obtained during 

this study revealed a conductive heating of the sediments likely by underlying hydrothermal 

fluids. Therefore, fluids slowly pass through the sediments in a diffusive process until they 

reach the surface layer. Hydrothermally influenced habitats controlled by diffusive processes 

were so far unknown, as previous studies only reported environments which are directly 

exposed to the fluid flow. Therefore, our study provides first insights on hydrothermal vent 

environments controlled by diffusive transport of fluid components. 

Systems controlled by diffusion exhibit nearly constant concentration gradients between 

the sediment surface and the reactive layer so that everywhere the same diffusive flux is 

present. Such a concentration gradient is referred to as being in steady state, allowing 

quantitative evaluation of steady state concentration profiles. Therefore, the detected oxygen 

profiles in sediments controlled by diffusion at the Logatchev field enable us to calculate 

oxygen consumption rates for these surface sediments. Both mat covered sediments revealed 

oxygen consumption rates similar to those in eutrophic coastal, estuarine marine (Jørgensen, 

2001) and cold seeps sediments (Niemann et al., 2006). These high oxygen consumption rates 

confirmed the presence of an active microbial community in the first centimeter of these 

sediments. 

Furthermore, in situ microprofiles revealed that only sulfide was present in the upper 

sediment layers of the typical ultramafic fluid components such as methane, hydrogen and 

sulfide. This indicates that the other components are consumed in deeper layers. Ex situ 

laboratory rate experiments revealed for the white-covered surface layers high sulfate-

reduction rates (SRRs), comparable to those measured in the sulfate methane transition zones 

in coastal and margin sediments (Knittel and Boetius, 2009). Therefore, sulfate reduction 

represented an important metabolic pathway in these Epsilonproteobacteria-mat covered 

sediments, as previously detected for Beggioatoa-mat covered hydrothermal locations. 

Measured rates of sulfate reduction (SR) were tenfold higher than rates of anaerobic oxidation 
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of methane (AOM). Thus, SR rates found in the surface layer cannot be completely fuelled by 

AOM, which is again similar to the detected processes present at basalt-hosted sedimented 

hydrothermal sites in the Guaymas Basin (Kallmeyer and Boetius, 2004). Consequently, 

sulfate-reducing bacteria are a dominant part of the active microbial communities in anoxic 

marine sediments independent of the origin of the sediments. Although sulfate is not the 

energetically most favourable electron acceptor for anoxic sediments, the high concentration 

of sulfate in seawater (29 mM) makes it a dominant electron acceptor for marine sediments 

(Schulz and Zabel, 2006). 

In contrast to the near coastal Guaymas Basin, Logatchev did not show high sedimentation 

rates due to high biological productivity in surface waters and a large terrigenous input. 

Therefore, the active sulfate-reducing microbial community cannot be fuelled by deposited 

organic material. We propose that instead chemolithoautothrophic bacteria produce enough 

biomass to support secondary sulfate reducers. The detected availability of sulfide in the 

surface layer and the presence of aprA-genes related to putative sulfur-oxidizers 

Betaproteobacteria and Gammaproteobacteria as well as soxB-genes affiliated with 

Epsilonproteobacteria which can be used for sulfur oxidation indicate that sulfide-oxidizing 

bacteria represent another part of the active microbial communities in these sediments. Ex situ 

incubation experiments finally confirmed that sulfide is consumed by the microbial 

community in the surface layer. The measured sulfide consumption rates were comparable to 

those of the endosymbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis 

from the same hydrothermal vent field (Zielinski et al., in prep), indicating a highly active 

community. As sulfur oxidation was not limited to the overlying Epsilonproteobacteria-mat, 

it is likely that besides Epsilonprotebacteria other groups are responsible for sulfur oxidation. 

As aprA-genes affiliated with Gammaproteobacteria and Betaproteobacteria were detected in 

the surface sediments, it is likely that these groups are also involved in sulfur oxidation. 

Pyrosequencing represents another well-suited technique for fast biodiversity and metabolic 

capacity screenings, as revealed by a compararive analysis of pyrosequencing data and data 

from 16S rRNA clone libraries, fosmid insert end-sequences and CARD-FISH for one well 

characterized sediment sample. Pyrosequencing based metagenomic analysis supported that 

several groups are involved in sulfur oxidation as genes for sulfur-oxidation pathways were 

found for Gammaproteobacteria and Epsilonproteobacteria. The detection of genes for 

denitrification proposes that this may be another potential important pathway in the oxic-

anoxic interface of this sediment. Epsilonproteobacteria contained the highest number of 

genes for denitrification (Brettar et al., 2006; Grote et al., 2007). Previous studies have 
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verified the significant role of Epsilonproteobacteria in pelagic marine redoxclines of the 

Black Sea (Vetriani et al., 2003), the Cariaco Trench (Madrid et al., 2001) and the Baltic Sea 

(Grote et al., 2007), where oxygen deficiency and sulfide accumulation occurs. Therefore, 

Epsilonproteobacteria are likely potentially important chemolithoautotrophic sulfide oxidizer 

and nitrate reducer responsible for denitrification processes at the oxic-anoxic interface in the 

hydrothermally influenced sediment. 

So far our analysis of the active microbial community revealed highly active sulfate-

reducing and sulfur-oxidizing bacteria in the surface sediment of the ultramafic-hosted 

Logatchev field. As sulfide is available in the surface layer of these sediments, it is not 

surprising to find active sulfur cycling bacteria as previously found in basalt-hosted systems. 

The present sulfide in the surface layer originated from hydrothermal fluids which were 

located below the sediment layer in conduits carrying these fluids. Besides sulfide, fluids at 

the Logatchev field are enriched in methane and hydrogen. Therefore, the question remains 

how methane and hydrogen influence microbial compositions in peridotite-hosted 

hydrothermal systems. Further investigations of deeper layers are necessary in order to detect 

active microbial communities which are acting as a sink for hydrogen and methane. 

Furthermore, comparative metagenomics could be used to identify genetic patterns typical for 

this habitat, which were selected by the evolutionary pressure of this ecological niche. The 

combination of environmental niche specific conditions and functional attributes would 

provide biological information in an ecological context and therefore improve our 

understanding of the responses of living organisms to their natural environments. 

 

1.3 Microbial biogeography  

The distribution of microorganisms and the factor controlling it at different scales are 

important for the understanding of the vast microbial diversity and for niche specific 

interaction of microorgasnims with their environment. The biogeography of macro- and 

microorganisms can be determined by two factors, the environmental heterogeneity (EH) and 

spatial distance (SD). The geographical impact on the biogeography via barriers is more 

accepted for macro- than for microorganisms (Richardson, 1981). The small size, 

dispensability, population size and low extinction rates of microorganisms make the presence 

of geographical barrier and therefore geographical restriction questionable (Staley and 

Gosink`s, 1999, Finlay, 2002). Most of the studies searching for the geographical isolation of 

prokaryotic populations and their divergence have been directed toward genetic characters 

(Whitaker et al., 2003; Green and Bohannan, 2006; Martiny et al., 2006; Ramette and Tiedje, 
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2007). Ribosomal RNA-based approaches (Amann et al., 1995), genomics, and currently 

metagenomics are the major sources of information for understanding microbial diversity.  

Present studies of microbes inhabiting extreme environments, such as hot springs 

(hyperthermophilic archaeon Sulfolobus, and thermophilic Synechococcus, Cyanobacteria) or 

salt lakes (halophilic Salinibacter ruber, and haloalkaliphilic Thioakalivibrio) revealed that 

spatial distance has a significant influence on the microbial composition for intermediate (10-

3000 km) and large scales (>3000 km) (Whitaker et al., 2003; Papke et al., 2003; Pagaling et 

al., 2009; Rosello-Mora et al., 2008). We investigated microbial community compositions of 

the Logatchev hydrothermal vent field in order to determine the influence of EH and SD on 

microbial communities in an extreme environment for small scales (>10 km). In contrast to 

the present studies regarding large scale biogeography, our study showed that SD was not a 

significant factor effecting microbial composition on small scales. At small scales microbial 

biogeography was primarily controlled by EH (Table 8). This is consistent with studies of salt 

marsh sediments and grassland soils, where microbial compositions were exclusively 

influenced by EH at small scales (Horner-Devine et al., 2004; Kuske et al., 2002). Therefore, 

microbial communities do not seem to be dispersal limited at small scales, not even 

extremophiles which are adapted to extreme physical or geochemical conditions.  

In contrast to hydrothermal systems, the uniform conditions of the permanently cold deep-

sea suggest that the distribution of deep-sea microbes is as well determined by EH for small, 

intermediate, and large distances. Fierer and colleagues (2006) revealed that soil bacteria 

across North and South America (large, continental-scale) were largely attributed to soil pH, 

with higher diversity observed in neutral soils. This study indicates that in contrast to extreme 

environments, microbial compositions of moderate environments are controlled by EH. Thus, 

microbial biogeography in moderate environments differs fundamentally from the 

biogeography of eukaryotes. To test which effect EH and SD have on the biogeographic 

patterns of deep-sea microbes, we investigated microbial communities of surface deep-sea 

sediments from the South Atlantic Ocean, which were separated by intermediate and by large 

distances. Our results revealed an effect of both factors for intermediate and large scales 

(>3000 km) (Table 8). Therefore, in contrast to the habitat soil, there seem to be dispersal 

barriers in the deep sea for microbial communities. Other studies as well showed an influence 

of both factors at intermediate scales (10-3000 km), but our analysis revealed for the first time 

that EH and SD have an effect on microbial biogeography for large scales (>3000 km). 

In summary, an effect of SD on the microbial diversity of the Logatchev hydrothermal vent 

field and therefore for small distances was not detected, but the investigation of permanently 
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cold sediment microbial communities revealed that at intermediate and large scales both 

factors (EH and SD) influence the microbial distribution of deep-sea floors communities. 

Therefore, our results are in contrast to previous findings of extreme and moderate habitats, 

which were either affected by SD or EH (Martiny 2006; Fierer et al., 2006). We suggest that 

deep-sea floors represent environments which harbor a mixture of microbes present at 

extreme and moderate environments. The cultivation of obligate barophilic microbes of deep-

sea habitats (Kato und Bartlett, 1997) supported that extremophiles are one part of deep-sea 

populations. Pressure likely represents a barrier for their dispersal, so that SD likely has an 

influence on their distribution. This part of a deep-sea community can be geographically 

isolated from other populations leading to divergent evolution and to an evolvement of 

specific, divergent species (allopatric origin) (Whitaker, 2006).  

The distribution of the part of the population which is not dispersal limited depends on 

their rate of dispersal and their capability to adapt to new environments (migration-selection 

balance) (Whitaker et al., 2006). Sloan and colleagues (2007) have shown that the bigger the 

population size, the higher the migration rate is. Adaptations are introduced through random 

mutation, genetic exchange among individuals of the same population (recombination), 

horizontal gene transfer (HGT) of genetic material from other species in the environment and 

rare migration in microbial populations. It has been suggested that HGT is the primary 

mechanism through which Bacteria and Archaea acquire adaptive alleles (Konstantinidis and 

Tietje, 2005; Coleman et al., 2006). Therefore, HGT can provide the capability for the 

microorganism to adapt to different conditions (Thomas and Nielsen, 2005). Goddard and 

colleagues (2005) revealed that microbial species that recombine frequently have a greater 

rate of adaptation over clonal population in harsh environments where selection is strong. 

Differences in the rate of adaption would explain why some extreme hyperthermophilic 

Archaea are dispersal limited (Whitaker et al., 2003; Papke et al., 2003) while other Archaea 

show no influence of spatial distance on their distribution (Pagaling et al., 2009). 

Understanding the environmental factors that promote or limit HGT events will provide a 

better understanding of bacterial barriers and their biogeography. The general use of slowly 

evolving 16S rRNA genes makes it difficult to recognize such events in the evolutionary 

history of a species (incipient speciation) (Stackebrandt et al., 2002).  

Therefore, it is preferable to use whole genome information to get a better understanding 

of the structure and rearrangement of the microbial genomes in a community (Konstantinidis 

et al., 2006). New sequencing technologies as pyrosequencing allow the study of cultured 

microbes and of microbial communities in their natural contexts without necessarily requiring 
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the culturing of the individual organisms. Further genomic information will increase our 

understanding of evolutionary parameters that lead to geographical barriers in some microbial 

species, but not in others. Comparative genomics will identify differences in microbial 

biochemical pathways, energetics, and the mechanisms of metabolic regulation and therefore 

the identification of trait-based biogeography (Green et al., 2008). In a second step, functional 

transcriptomics and proteomics may be considered, representing the real interaction of the 

microbes with its environment (Singh and Nagaraj, 2006b; Rossello-Mora et al., 2008). As 

microbes represent more than two-thirds of the metabolic and genetic diversity of the planet, 

there is no reason to expect a single concept or definition to apply to all microbes and 

therefore a clear-cut microbial biogeography.  
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Table 8: Slope coefficients and Mantel r statistic for genetic distance matrices derived from 16S rRNA sequences or T-RFLP.  

Slope coefficient 
 (genetic and geographic distance) 

 

Mantel  Partial Mantel  

SD+ 

 

!10-5 log10  transformed 
  log10 transf. 

EH~ 
 

SD+ 
 

EH~ 
 

No. of 
samples 

Logatchev, 0-200m distance         

16S rRNA -1379.63 

(-2160.33, -590.93)a 

-0.031 

(-0.050, -0.011)a 

-0.010 

(0.692) 

-0.009 

(0.699) 

0.063 

(<0.001)* 

-0.059 

(0.999) 

0.085 

(<0.001)* 

4 

South Atlantic, 0-1200 km distance         

T-RFLP 28.28 

(21.34, 35.22)a 

0.074 

(0.053, 0.095)a 

0.651 

(<0.001)* 

0.593  

(<0.001)* 

0.657 

(<0.001)* 

0.054  

(0.306) 

0.131  

(0.134) 

14 

South Atlantic, 0-3500 km distance         

16S rRNA 0.19  

(0.17, 0.22)a 

0.0036 

(0.0028, 0.0044)a 

0.024 

(0.001)* 

0.012 

(0.001)* 

0.008  

(0.006)* 

0.031  

(0.002)* 

- 0.021  

(0.981) 

3 

T-RFLP (Guinea I) 7.5  

(5.38, 9.62)a 

0.076 

(0.063, 0.090)a 

0.698 

(0.004)* 

0.841 

(0.001)* 

0.886 

(0.001)* 

-0.138  

(0.86) 

0.768  

(<0.001)* 

11 

T-RFLP (Guinea I+II+III) 2.6  

(1.24, 3.96)a 

0.055 

(0.042, 0.068)a 

0.278 

(0.009)* 

0.532 

(0.001)* 

0.599 

(<0.001)* 

-0.227  

(0.992) 

0.573 

(<0.001)* 

19 

All sites, 0-18000 km distance          

16S rRNA 0.02  

(0.019, 0.022)a 

0.0030 

(0.0027, 0.0032)a 

0.013 

(0.001)* 

0.013 

(0.001)* 

n.a. n.a. n.a. 7 

+ spatial distance; ~ environmetnal heterogeneity  
* P < 0.05 for Bonferroni corrected P-level of significance for 1000 permutations 
a  lower and upper bound of 95% confidence interval, n.a. .no environmental parameters available  
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2 Outlook 

In 1987 Carls Woese wrote ‘A revolution is occurring in biology’, referring to the impact of 

the increasing capacity to sequence nucleic acids. This revolution allowed a new phylogenetic 

classification of prokaryotes based on the 16S rRNA gene. Furthermore, it enabled the 

detection of the uncultured part of the microbial community. Consequently, microbial studies 

began to focus on microbial diversity, evolution, abundance and distribution leading to an 

increase in microbial ecology focused studies. Thereby, species is used as the fundamental 

unit of biological classification and is critical for describing, understanding and comparing 

biological diversities at different levels among ecological niches (Xu et al., 2006). However, 

what constitutes a species remains controversial, as there is not a widely accepted theoretical 

species concept for microbes in contrast to animals and plants.  

About 20 years later, microbial ecology is again undergoing a revolution due to sequencing 

improvements (next-generation technologies; Rothberg and Leamon, 2008; Prosser et al., 

2007). Instead of investigating the diversity of a single gene within microbial communities, 

whole genomes and metagenomes are now accessible within a reasonable time. However, this 

sequencing revolution brings again new challenges to the scientific field, which resembles 

those 20 years ago. Woese already reported that ‘Microbiology is consequently being 

inundated with sequence information, which accumulates so rapidly that the reading and 

entering of data are becoming major concerns’. Today again, automated DNA sequencing 

technology is so rapid that analysis has become the rate-limited step (Suen et al., 2007). The 

potential of the ongoing revolution will just be realized if scientists learn from the previous 

revolution. Therefore, to gain more information about the microbial communities’ interaction 

with the environment, microbial studies have to be interpreted from an ecological perspective. 

Thus, data about the environmental conditions (metadata) are of equal importance. As 

proposed by Woese, more studies should ‘be conceptualized more in a comparative way’ and 

‘lead to a close relationship between geologist and the evolutionist’ or between ecologists and 

the bioinformatic scientists. Thereby, sequencing derived information ‘have to be accepted for 

what they minimally are: hypotheses, to be tested and either strengthened or rejected on the 

basis of other kinds of data’ (Woese, 1987).  

Taking this into account, sequencing based studies will increase our understanding of 

traditionally microbial ecology areas like diversity, activity and biogeography. A 

metagenomically focused study is particularly favourable in habitats which are difficult to 

achieve so that sampling of the habitat is limited. The investigated deep-sea environments 
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(Logatcehv field on the MAR, deep-sea basins of the South Atalantic Ocean) in this thesis 

represent such environments. The presented 16S rRNA gene based investigation already 

provided first insights into microbial diversity, potential activity, and biogeography in 

different deep-sea habitats. Further metagenomic studies will provide higher resolution 

analyses, which can be used to test hypotheses obtained from the present study.  

Moreover, the capability to analyse whole genomes and therefore the evolutionary history 

will provide more information about processes such as the horizontal gene transfer (HGT). 

Understanding HGT as well as the interactions of microbes with viruses will lead to an 

understanding of microbes as predominantly cooperative instead of organisms dominated by 

individual characteristics (Goldenfeld and Woese, 2007). In this way, a prokaryotic 

community can be thought of as a single evolving genome assemblage, with the environment, 

rather than the species, defining the organisms that inhabit the assemblage (trait-based 

diversity, ecotype; Cohan et al., 2007). Therefore, metagenomic approaches allow answering 

of traditional microbial ecology questions from a niche-adapting genomic (ecotype) 

perspective. To identify ecotypes, metagenomic data have to be broken down into 

fundamental units such as protein domains to identify niche specific patterns (Suen et al., 

2007). Furthermore these units can be used for a correlation to environmental heterogeneity 

and spatial distance to gain more information about the biogeographic patterns of functional 

instead of phylogenetic groups.  

As this kind of data can be used for comparative analyses, sampling at different time points 

and different scales will reveal temporal and spatial variability. The identification of niche 

specific pattern and therefore typical protein domain in the white mat covered sediments from 

the Logatchev field will reveal typical genetic patterns for sulfidic influenced hydrothermal 

sediments. A comparative metagenomic study with deeper layers, which are likely influenced 

by methane and hydrogen, will provide further information about the vertical distribution of 

ecotypes in these sediments. This detected pattern will support present hypotheses or lead to 

new hypotheses. Therefore, comparative metagenomic studies should be seen as the first step 

of understanding the relationship between microbes and environment which provides 

hypotheses, which have to be validated (Woese, 1987). This allows a fruitful interplay 

between quantitative predictions and experimental tests. Further in situ and ex situ 

experiments should be used to verify the hypotheses and ideally reveal total fluxes and 

turnover rates. These rates can be used for the calculation of the dynamics of energy and 

carbon transport through different trophic levels. The metagenomic dataset generated in this 

study has to be further analysed to get new insights into the role of the microbial community 
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in the different biogeochemical cycles that are relevant at the Logatchev field. Furthermore, 

revealing habitat specific patterns in an ecological context in comparison to other studies will 

lead to a better understanding of the relationship between microbial diversity, environmental 

heterogeneity and spatial distance providing further information about the factors controlling 

microbial diversity and distribution.  
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Abstract 

Limonene, a widespread monoterpene, served as organic carbon and electron donor source for 

methanogenic enrichment cultures. For the first time a methanogenic community involved in 

the degradation of an abundant monoterpene was characterized by sequencing and cloning of 

Bacteria and Archaea 16S rRNA gene sequences. The Bacteria were represented by 

Deltaproteobacteria, Bacteroidetes, Firmicutes and Candidate Division OP3, and the Archaea 

by Methanoculleus and Methanosaeta. The composition was determined with phylotype 

specific probes in catalyzed reporter deposition – fluorescence in situ hybridization 

experiments (CARD-FISH). The Bacteria in the enrichment cultures were dominated by 

members of Deltaproteobacteria and Candidate Division OP3. The probe specific for 

Candidate Division OP3 hybridized to small cocci encountered either solitary or attached to 

larger cells. Our study is the first visualization and quantification of cells of this candidate 

phylum in a well defined, stable enrichment culture.   

 

Introduction 

Limonene, like other monoterpenes, is produced in the plastids of plants by fusion of two 

isoprene units to form geranyl-diphosphate and a cyclization reaction, catalyzed by a 

limonene-synthase (Kreuzwieser et al., 1999; Hyatt et al., 2007). Limonene, like other mono-, 

di- and sesqui-terpenoids, is a secondary metabolite (Newman & Chappell 1999). Secondary 

metabolites are non-essential for the basic metabolic functions of plants, but they help 

establish complex ecological interactions, from symbiotic to pathogenic, between plants and 

microorganisms, fungi, insects or humans (Singer et al., 2003).  

The main natural pools of terpenes including limonene are forest soils and freshwater 

sediments where dead vegetation is transported and deposited. Limonene has an enantiomer 

specific orange or herbal odour, which lead to its extensive use as scenting agent in cleaning 

and sterilizing products and as food flavour. Today, besides toluene, limonene is the major 

indoor volatile organic carbon and it was proposed as biomarker for modern sewage recharge 

in urban groundwater (Barrett et al., 1999).  

In anaerobic environments, such as underground waters, anoxic soils or anaerobic wastewater 

treatment plants, limonene is degraded in the absence of oxygen. The two well described 

facultative anaerobes Thauera terpenica and Castellaniella defragrans can utilize limonene as 

sole energy source under denitrifying conditions (Foss & Harder 1998; Foss et al., 1998). 

However, limonene degradation in the presence of other electron acceptors besides oxygen 

and nitrate has not been demonstrated yet.  
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In this study we used monoterpene-utilizing methanogenic enrichment cultures (Harder and 

Foss, 1999) to establish and investigate the methanogenic degradation of limonene. The 

methanogenic community was studied by 16S rRNA gene libraries and fluorescence in situ 

hybridization (Amann et al., 1995). Unforeseen was the discovery of members of Candidate 

Division OP3, a phylum without any cultivated representatives (Hugenholtz et al., 1998).  For 

the first time, we visualized and quantified members of this candidate phylum in a stable 

enrichment culture.  

 

Materials and Methods 

Source of organisms and cultivation  

Limonene degrading enrichments were initiated from methanogenic enrichment cultures 

established on R-(-)-alpha-phellandrene, (+)-2-carene, (-)-alpha-pinene, or (+)-sabinene 

(Harder & Foss, 1999). All resulting methanogenic, sediment-free enrichment cultures were 

grown on 2-5% limonene in 30 ml 2,2,4,6,8,8-heptamethylnonane (HMN) and 300 ml 

aqueous medium as previously described (Harder & Foss, 1999). Cell density increase was 

determined by optical density measurements at 660 nm.  

 

Chemical analysis  

All samples for chemical analysis were taken with N2-flushed hypodermic needles and 

syringes. Limonene concentrations were measured by gas-chromatographic head-space 

analysis on a Shimadzu 14B gas chromatograph (200°C, isothermal) adapted from Rotaru et 

al. (2010). Methane was measured by head-space analysis on the same instrument at an 

isothermal temperature of 110°C. Fatty acids were detected by high performance liquid 

chromatography as previously described (Rotaru et al., 2010). The standards consisted of the 

following fatty acids (detection limit - 0.1 mM): succinate, lactate, formate, acetate, 

propionate and butyrate. 

 

Clone library construction and sequence analysis  

The genomic DNA of 5 ml cell culture was extracted with the QIAGEN genomic kit (Qiagen, 

Germany). 25 ng of high-molecular weight DNA were used to amplify the 16S rRNA gene 

with bacterial primers 8F and 1492R (Hicks et al., 1992; Kane et al., 1993) and with archaeal 

primer pairs 21F-958R and 21F-1492R (Stahl et al., 1988; DeLong, 1992). The reaction mix 

consisted of 2 µM of each primer, 0.2 mM dNTPs, 0.04 U Red-Taq polymerase (Sigma, 

Germany) and 1!PCR buffer in 50 µl. After an initial denaturing step of 4 minutes at 94°C, 
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the polymerase was added at 80°C. The 32 cycles involved a denaturing step for 1 minute at 

94°C, 1 min primer annealing at 42°C for Bacteria and 58°C for Archaea, and 1 min 

elongation at 72°C. The A-overhang for cloning was introduced by a final elongation at 60°C 

for 60 min. The amplicons were purified and cloned into the pGEM-T Easy vector (Promega, 

USA) for Bacteria and the pCR4-TOPO vector (Invitrogen, Germany) for Archaea. The 

recombinant plasmids were transformed into E. coli DH5! and E. coli TOP10 for Bacteria or 

Archaea, respectively. Inserted genes were amplified with the vector primers M13F (5’-

GGAAACAGCTATGACCATG-3’) and M13R (5’-GTTGTAAAACGACGGCCAGT-3’). 

We analyzed the diversity of clones by amplified rDNA restriction analysis (ARDRA). PCR 

products were purified, and aliquots of 1 µg of the amplified insert were digested with 7.5U of 

the restriction endonucleases BsuRI and RsaI (Fermentas) for 3 hours at 37°C. The resulting 

fragments were analyzed on a 3% agarose gels, and restriction patterns within each group 

were manually compared. Amplicons of 16S rRNA genes were sequenced using the BigDye 

3.0 chemistry and analyzed on a 3130 XL Genetic Analyser (Applied Biosystems, Germany). 

Sequences were cleaned of vector data with Sequence Analysis 5.2 (Applied Biosystems) and 

assembled into contigs with the Sequencer software (Gene Codes, USA). The nearly complete 

16S rRNA gene sequences were aligned with the ARB-Silva software package (Ludwig et al., 

2004; Pruesse et al., 2007). A maximum parsimony phylogenetic tree was calculated 

excluding the influence of highly variable positions. The Bacteria tree was reconstructed 

using sequences longer than 1300 bp, whereas the Archaea tree was reconstructed with 

sequences longer than 800 bp. 

 

Probe design and visualization of cells by CARD-FISH 

Probes Eub-338(VI) (5’ - GCAGCCTCCCGTAGGAGT - 3’) and OP3-565 (5’ - 

TACCTGCCCTTTACACCC - 3’) were designed for a group of 16S rRNA sequences within 

the Candidate Division OP3 using the ProbeDesign tool of the ARB software (Ludwig et al., 

2004; Pruesse et al., 2007). Probes were tested in silico against the RDP II database vs.9.48 

(http://rdp.cme.msu.edu/probematch/search.jsp). Probe OP3-565 showed 1.2 weighted 

mismatches to Thialkalivibrio halophylus (DSM 15791) and Marinitoga piezophila (DSM 

14283). These two microorganisms served as control for hybridization experiments. Probes 

were synthesized with a horse radish peroxidase (HRP) modification at the 5’-end and used 

for hybridization experiments performed by as previously described (Pernthaler et al. 2002). 

We applied the following probes: Eub-338(I) (Amman et al., 1990) in equimolar mix with the 

newly designed probe Eub-338(VI) specific for the 16S rRNA of Candidate Division OP3 
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clones; Arch-916 (Stahl & Amann, 1991); CF-319a (Manz et al., 1996); Delta-495a in 

equimolar mix with its competitor (Loy et al., 2002); Pla-46 (Neef et al., 1998) MX-825 

(Raskin et al., 1994) and OP3-565 (this study). All samples were counterstained with 4’,6-6 

diamidino-2-phenylindole (DAPI), 1 µg/ml, as reference for relative cell counts. As control 

probe we used Non-338 (Wallner et al., 1993), which gave one signal for 300 DAPI stained 

cells. 

 

Nucleotide sequence accession numbers 

The EMBL-EBI accession numbers of 16S rRNA gene sequences retrieved from our 

methanogenic enrichment culture thriving on limonene are FN646432 to FN646495. 

 

Results and discussions 

Cultivation on limonene under methanogenic conditions 

We initiated limonene utilization by the methanogenic enrichment cultures (Harder & Foss, 

1999) by transfers on limonene as primary organic carbon and energy source in 1999. Small 

amounts of acetate (2 mM) and cysteine (1 mM) were supplemented to sustain the 

methanogenic community during the initial growth phase. Cultures produced methane for up 

to three years. With 5% limonene in HMN (v/v) and 10% inoculum (v/v) and one transfer per 

year, we obtained stable enrichment cultures thriving on limonene. The cultures finally 

approached a maximum cell density in six months, whereas control cultures incubated only 

with acetate and cysteine showed no growth during incubation (Fig. 1A). Limonene 

consumption was observed after four months in all enrichment cultures, whereas sterile 

controls did not show any limonene loss during incubation (Fig. 1B). As expected, methane 

production in cultures with supplementary acetate (Fig. 1C) showed a steady methane 

increase during cultivation. In these cultures, acetate was no longer detected at the end of the 

incubation (data not shown). On the other hand, cultures incubated solely with limonene, in 

the absence of acetate, started methane production with a delay of 3 months (Fig. 1C). In 

these cultures we detected internal acetate build-up within the first two months followed by a 

sudden decrease during the third month of incubation (Fig. 1D).  

The stoichiometry was calculated for culture duplicates (Table 1) incubated with different 

amounts of monoterpene in the presence or absence of 2 mM acetate. Control cultures 

supplemented with acetate in the absence of limonene produced one-tenth of the methane 

formed in the least active enrichment culture. The enrichment cultures showed a high carbon 

recovery as methane, which was 45% to 75% of the expected methane produced by complete 
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mineralization of the limonene consumed (Table 1). In addition to limonene degradation to 

methane gas, the absence of acetate or other organic acids as final fermentation products 

suggest the following stoichiometry: C10H16 + 6 H2O ! 7 CH4 + 3 CO2. This is an overall 

exergonic process, with a free energy change of "G0’= -348 kJ mol#1 limonene (calculated 

after Mavrovouniotis, 1991).  

Limonene degradation is likely initiated by fermenting bacteria. The transient acetate 

produced advocates for a syntrophic interaction initiated by the acetate and H2 releasing 

reaction: C10H16 + 10 H2O ! 5 C2H4O2 + 8 H2 ("G0’= + 156 kJ mol#1). Since the process is 

endergonic it can only take place if the metabolic products are used to fuel the metabolism of 

other microorganism (Schink & Stams, 2006). Hence, both acetate and H2 may be consumed 

in methanogenic reactions: (1) C2H4O2 ! CH4 + CO2 ("G0’= - 49 kJ mol#1) and (2) 4 H2 + 

CO2 ! CH4 + 2 H2O ("G0’= - 131 kJ mol#1). The transient acetate accumulation in cultures 

incubated without additional acetate points to a less active methanogenic population at the 

beginning of the cultivation which correlates well to the 3 months of lag phase in methane 

production (Fig. 1C). 

 

Microbial community composition  

Different metabolic groups are expected to be involved in the methanogenic degradation of 

limonene in these syntrophic enrichment cultures. Yet it was unknown which microorganisms 

are involved (Widdel et al., 2006; Grossi et al., 2008), thus we investigated the community 

composition with molecular tools.  

Microscopic observations showed the presence of numerous morphotypes, from small cocci 

and vibrios to thin and long, thick filaments (Figure 1D - inset). Using the 16S rRNA gene we 

could identify the phylogeny of the microorganisms. Amplified rRNA gene restriction 

analysis on 327 Bacteria clones and 141 Archaea clones and partial sequencing of 100 

randomly selected clones directed the full sequence analyses of representative 16S rRNA 

genes. Phylogenetic analyses were performed on 35 Bacteria and 28 Archaea 16S rRNA gene 

sequences (Fig. 2 and 3). 16S rRNA gene sequences with more than 98.5% identity were 

regarded as one operational taxonomic unit (OTU). The microbial community composition 

was evaluated during mid-exponential growth on limonene by CARD-FISH.  

 

Bacterial microbial community  

Bacterial 16S rRNA gene sequences affiliated to Deltaproteobacteria, Candidate Division 

OP3, Bacteroidetes and Firmicutes (Fig. 2). The Bacteria general probe Eub-338 (I) matched 
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in silico all sequences from our Bacteria clone library, except the Candidate Division OP3 

phylotype. Application of the Bacteria probes Eub-338 II & III did not increase the Bacteria 

abundance (data not shown). Moreover, none of these probes matched the 16S rRNA gene 

sequence of the Candidate Division OP3 phylotype. Therefore we designed a novel Bacteria 

probe, Eub-338 (VI), which matches positions 338-355 on the 16S rRNA gene of Candidate 

Division OP3 sequences. In equimolar amounts together with probe Eub-338, they targeted 

40% of all DAPI stained cells (Fig. 4). 

The Deltaproteobacteria phylotypes had as close relative (92%) the sulfate reducer 

Desulfovirga adipica (Fig. 2) (Tanaka et al., 2000). The Deltaproteobacteria cells were 

curved rods and highly represented in the enrichment cultures (12%). They likely play a role 

as syntroph in the complex degradation. 

The Candidate Division OP3 phylotype showed 84% sequence identity (Fig. 2) to uncultured 

bacteria from pinyon juniper forest soil samples collected form a depth of 10-15 cm (Dunbar 

et al., 2002). Candidate Division OP3 16S rRNA gene sequences have been solely recovered 

from anoxic habitats such as anoxic sediments of Yellowstone Hot Spring (Hugenholtz et al., 

1998), anoxic water body of the Cariaco basin (Madrid et al., 2001), or 700 m deep in the 

Antarctic continental shelf (Bowman & McCuaig, 2003). Two recent studies retrieved 

Candidate Division OP3 16S rRNA gene sequences from mesophilic and anoxic chemostats 

thriving on propionate and butyrate (Shigematsu et al., 2006; Tang et al., 2007). In this study, 

we visualized for the first time Candidate Division OP3 cells in a stable enrichment culture 

with the help of the newly designed probe OP3-565. It is specific for the OP3-phylotype 

found in our Bacteria 16S rRNA gene clone library. This specific probe detected 18 % of all 

DAPI-stained cells. The cells of Candidate Division OP3 were small and round-shaped (Fig. 

4E). They were found either as single cells or attached to larger cells. The same cell 

morphology was revealed by probe Pla-46 which targets in silico the OP3 phylotype as well. 

It detected 13% of all DAPI-stained cells. The high abundance of Candidate Division  OP3 

members during exponential growth on limonene suggests that they play an important role in 

the degradation of this monoterpene, either by breaking down limonene and/or utilizing the 

primary degradation products. Probes Delta-495a and OP3-565 together detected almost the 

entire bacterial population as defined by the general Bacteria probes. 

Another surprising finding in the Bacteria 16S rRNA gene library was the presence of 

Bacteroidetes, a phylum which contains numerous uncultured microorganisms. The six 

phylotypes identified were distantly related to Prolixibacter bellariivorans (81 to 89% 

identity) and Alistipes putredinis (84.1%). The genus Prolixibacter is represented by 
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facultative anaerobes which ferment sugars by mixed-acid fermentation (Holmes et al., 2007), 

whereas genus Alistipes includes strictly anaerobic microorganisms that form succinate as 

major metabolic product (Rautio et al., 2003). All Bacteroidetes sequences were targeted in 

silico by probe CF-319a, but we observed only a small population of Bacteroidetes (1%) in 

the enrichment cultures. The high abundance of Bacteroidetes in the 16S rRNA gene library 

and the low percentage of detected Bacteroidetes could be explained by a selective 

amplification of their 16S rRNA (Suzuki & Giovannoni, 1996). This group most likely 

scavenges residual organic material from dead cells.  

 

Archaeal microbial community 

The Archaea 16S rRNA gene sequences revealed Euryarchaeota affiliating with the orders 

Methanomicrobiales and Methanosarcinalles (Fig. 3). The general Archaea probe Arch-915 

targeted Methanosaeta-like filaments and rods with flat ends. Staining of the Methanosaeta-

like filaments was heterogeneous with Arch-915 as well as with MX-825: the probe signal 

was visible on particular parts of the filaments (Fig. 4C and 4D). Kubota et al. (2008) reported 

the same phenomenom: hybridization of Methanosaeta concilii filaments with Arch-915 was 

heterogeneous and incomplete, independent of the permeabilization procedures used. Arch-

915 hybridized to 33% of the limonene-degrading microbial community. including an 

underestimation of the abundance of filamentous Archaea. 

Methanosarcinales phylotypes (Fig. 3) were either related to to Methanosaeta sp. AMPB-Zg 

(>99% identity) or to Methanosaeta concilii (89% to 100% identity). Genus Methanosaeta 

comprises slowly growing acetoclastic methanogens with high affinity to acetate (Jetten et al, 

1990). The transient formation of acetate and the detection of Methanosaeta species (1%), 

demonstrates the role of acetate as transfer metabolite during syntrophic limonene 

degradation. The second methanogenic group encountered in the Archaea clone library 

belongs to Methanomicrobiales. Their 16S rRNA gene affiliated with Methanoculleus (91.6% 

identity) (Zellner et al., 1998) a hydrogenotrophic methanogen with complex nutritional 

requirements (Zellner et al., 1998; Whitman et al., 2006). Its presence is an indication for 

hydrogen as intermediate in limonene degradation. 

 

Conclusions 

This is the first depiction of a syntrophic community thriving under methanogenic conditions 

on a naturally abundant monoterpene - limonene. The microbial community was represented 

by microorganisms spanning through the kingdoms of Bacteria and Archaea. Bearing in mind 
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the phylotypes encountered, limonene was most likely degraded by Bacteria to acetate and H2 

which were ultimately consumed by methanogenic Archaea. A significant portion of the 

microbial community consists of cells of the so far uncultured phylum, Candidate Division 

OP3. These small round cells were often attached to other bacteria and their high abundance 

implies they have an important role in limonene degradation under methanogenic conditions. 
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Tables 

Table 1 Limonene consumption and methane production in cultures thriving on limonene in the presence or absence of acetate (2 mM).  
 

 
 

Methane (theoretical) formed from: 
Cultures and conditions1 Initial limonene 

added (mmol) 
Final limonene 

(mmol) 
Methane 

produced (mmol) Limonene2 Acetate2 Cysteine2 

Methane 
recovery 

1a) Cells (limonene)  4.6 2.6 9.7 14.0 - 0.3 65% 

1b) Cells ( limonene)  4.6 2.4 8.2 15.4 - 0.3 50% 

1c) Cells (no limonene) - - 0.1 - - 0.3 - 

1d) Sterile control ( limonene) 4.2 4.2 - - - - - 

2a) Cells (limonene, acetate) 10 7.8 12.3 15.4 0.6 0.3 75% 

2b) Cells (limonene, acetate ) 10 6.3 12.0 25.9 0.6 0.3 45% 

2c) Cells (no limonene, acetate) - - 0.9 - 0.6 0.3 - 

2d) Sterile control (limonene, acetate) 12.6 10.7 - - - - - 

1 In cultures 1a to 1c, the inoculum was 1.3% of a concentrated cell suspension (20!) whereas in cultures 2a to 2c was 10%. 2 The theoretical methane formed from limonene was 
calculated according to the reaction C10H16 + 6 H2O " 7 CH4 + 3 CO2, whereas the methane formed from acetate and cysteine was calculated from the equations: C2H4O2 " CH4 
+ CO2 and C3H7NO2S + H2O " 5 CH4 + 7 CO2 + 4 NH3 + 4 H2S. 
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Figure legends 

Figure 1: Limonene degradation in methanogenic enrichment cultures. Black filled symbols 
show duplicate enrichment cultures incubated with 10 mmol limonene in a media 
supplemented with 0.6 mmol acetate and 0.3 mmol cysteine. The gray symbols show 
duplicate cultures incubated with 4.6 mmol limonene in the absence of acetate. (A) Cell 
densities increased in cultures supplied with different amounts of limonene (!,!). Inoculated 
controls did not grow in the absence of the hydrocarbon (empty symbols). (B) Consumption 
of limonene in cultures incubated with different amounts of monoterpene (",") in contrast to 
physical loss in sterile controls (#,#). (C) Methane production in cultures incubated with 
different amounts of limonene (!,!) versus a control enrichment culture (") incubated in 
the absence of the monoterpene to determine the background methane production induced by 
the components of the media (2 mM acetate and 1 mM cysteine). The control enrichment in 
the absence of limonene, in media without acetate, did not produce methane (data not shown). 
(D) The transient development of acetate was observed in duplicate cultures incubated with 
limonene as sole organic electron acceptor. In cultures augmented with 0.6 mmol acetate 
complete consummation of this fatty acid was detected at the end of the incubation (data not 
shown). D-inset is a phase contrast micrograph of an enrichment culture. The scale bar = 5 
!m. 
 
Figure 2: Maximum parsimony tree of Bacteria 16S rRNA gene sequences retrieved from 
limonene degrading enrichment cultures. Crenarchaeota was used as outgroup. The 
phylotypes obtained in this study are emphasized in bold, and in paranthesis is shown the 
number of full 16S rRNA gene sequences with an identity above 98.5%. Related sequences of 
representative microorganisms can be acessed at NCBI using the tags given in parenthesis. 
The scale bar is 10 substitutions per 100 nuclotides. 
 
Figure 3: Maximum parsimony tree of Archaea 16S rRNA gene sequences retrieved from 
limonene degrading enrichment cultures. Crenarchaeota was used as outgroup. The 
phylotypes obtained in this study are emphasized in bold, and in paranthesis is shown the 
number of full 16S rRNA gene sequences with an identity above 98.5%. Related sequences of 
representative microorganisms can be acessed at NCBI using the tags given in parenthesis. 
The scale bar is 10 substitutions per 100 nuclotides. 
 
Figure 4: Microscopic immages of samples from limonene degrading enrichment cultures. 
The left pannels represent samples stained by HRP-labeled probes, which catalyze the 
deposition of Alexa-594 tyramides. The right pannels are the corresponding microscopic 
fields as visualized in blue by a DNA stain, DAPI. (A) Bacteria cells stained with Eub-338 (I 
and VI) and (B) the cells stained with DAPI. (C) Archaea cells stained with Arch-915, and 
(D) the corresponding DAPI signals. (E) Cells stained with a Candidate Division OP3 specific 
probe, OP3-565 and (F) the cells stained by DAPI. In the magnified field is an superimposed 
image of signals obtained with OP3-565 and DAPI, which resulted in a pink signal for cells 
that were stained by both dyes. 
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Figures 
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Forschung ist immer ein Spiel gegen die Zeit. 

Richard Powers (2009) 


