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1Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical com-

puter simulations is studied. Although such systems are assumed to be isotropic by default, we show that de
facto their anisotropic permeability can give rise to significant changes in transport parameters such as perme-
ability and tortuosity. The main parameter controlling the anisotropy is a /L, being the ratio of the obstacle to
system size. Distribution of the angle � between the external force and the volumetric fluid stream is found to
be approximately normal, and the standard deviation of � is found to decay with the system size as �a /L�d/2,
where d is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical
errors in large-scale simulations and the size of the representative elementary volume. For porous media types
studied here, the anisotropy effect becomes negligible only if a /L�0.01. This constraint was apparently
violated in many previous computer simulations that need now to be recalculated.
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I. INTRODUCTION

A standard method of modeling a uniform isotropic po-
rous medium �e.g., a column of sand� is to place randomly
many identical objects that are impermeable to fluid �e.g.,
solid spheres� in an initially empty volume �1–8�. Since the
objects are placed uniformly in the whole system, one might
expect that randomness in their exact locations is irrelevant
in the sense that the bulk volumetric fluid stream will be
parallel to the external force �e.g., gravitation�. This would
be the case if the system was large enough. However, in
computer simulations and in artificial laboratory systems
�used in particle image velocimetry measurements �9��, usu-
ally relatively small systems are utilized that contain at most
a few thousands of “grains”—far less than billions of sand
grains in a typical experimental setup. Since randomly dis-
tributed grains tend to form channels of random orientations,
small porous systems are very sensitive to local fluctuations
of the grain distribution. Under such conditions the direction
of the volumetric fluid stream can differ significantly from
that of the external force. Consequently, a system that was
supposed to be isotropic may de facto be rather highly an-
isotropic. The aim of this paper is a detailed analysis of this
phenomenon in a two-dimensional �2D� flow.

A porous medium is anisotropic to flow if the permeabil-
ity tensor is anisotropic. Usually anisotropy of the permeabil-
ity tensor is either assumed explicitly �10� or it appears natu-
rally as an expected consequence of a microscopic model
�11–15�. In the former case one works entirely on a macro-
scopic level, whereas the latter approach tries to connect the
observed macroscopic anisotropy of real porous materials
with their microscopic geometry and structure. Permeability
anisotropy caused by a finite size of a model system has not
been regarded as an important factor so far although some
research techniques, e.g., numerical simulations, concentrate

on artificially small porous systems. The reason for this lies
in the fact that numerical flow simulations in complex porous
geometries are extremely tedious and require extensive com-
puter power and resources. A common strategy has been to
perform calculations for just a few systems that are as large
as possible �7,16�. In contrast to this, here we solve the flow
equations for hundreds or even thousands of different porous
systems of small to medium sizes and then extrapolate the
results to the limit of an infinitely large system. This method
was already used in �6� to detect a small systematic deviation
of the flow tortuosity from several theoretical formulas, with
an ad hoc interpretation of this phenomenon as a conse-
quence of the finite-size anisotropy. Therefore, in this paper
we present a systematic study of finite-size anisotropy in a
two-dimensional model of statistically uniform porous me-
dia.

The structure of the paper is as follows. Section II speci-
fies the model and the numerical techniques used. Main re-
sults are provided in Sec. III. Next, in Sec. IV we develop a
simple theory to account for the asymptotic behavior of the
angle between the external force and the volumetric fluid
flux. Finally, the results are discussed in Sec. V.

II. MODEL

In this study we use a model of freely overlapping squares
�2,6,17�. In essence, this is a two-dimensional lattice model
with a porous matrix modeled as a union of freely overlap-
ping identical solid squares of size a�a lattice units �l.u.�
placed uniformly at random locations in a square lattice L
�L l.u. �1�a�L�. The squares are fixed in space but free
to overlap, and their sides coincide with the underlying lat-
tice. The remaining void space is filled with a fluid. A con-
stant external force is imposed on the fluid to model the
gravity and we allow an angle ��� between the force and the
system side to be arbitrary �note that in �2,6,17� only the case
�=0 was considered�. Periodic boundary conditions are im-
posed in both directions to minimize finite-size effects. The*Corresponding author. Email: akhalili@mpi-bremen.de
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porosity �	� is calculated as the ratio of unoccupied lattice
nodes to the entire system volume �L2�. The flow equations
are solved in the creeping flow regime using the lattice Bolt-
zmann model �LBM� �18� with a single relaxation time col-
lision operator �19� �see �6� for implementation details�.

The model has three adjustable parameters: 	, a, and L.
The first one corresponds directly to the macroscopic poros-
ity. The value of a affects the percolation threshold 	c, which
is a decreasing function of a from 	c�0.5927 �the standard
site percolation threshold, a=1� �20,21� to 	c�0.3333 �the
continuous percolation threshold of aligned squares, a→
�
�22�. As the model is solved using the LBM method without
a numerical grid refinement �6�, the minimum value of a is 4
�this is the minimum length scale for the LBM method to
resolve the macroscopic Navier-Stokes equations �18��. The
value of L controls the finite-size effects through the dimen-
sionless ratio a /L, which should be as small as possible to
mimic an infinite system.

Anisotropy of fluid flow in the above-defined model will
be investigated through Darcy’s law �10�,

q = Kĝ , �1�

where q is the volumetric fluid flux, K is a symmetric tensor
of the hydraulic conductivity, and ĝ is the unit vector in the
direction of the gravitational field.

III. NUMERICAL RESULTS

A. Tests on K

The basic concept of transition from microscopic laws of
hydrodynamics to macroscopic laws of transport in porous
media is the representative elementary volume �REV�, i.e.,
the smallest volume such that a measurement over it will
yield a value representative of the whole �10�. Darcy’s law
�1� is, in principle, applicable only to systems that are larger
than an REV, whereas significant anisotropy is expected in
systems smaller than an REV. Hence, the primary question is
whether or not Eq. �1� can be used to study anisotropy in
small-size systems. To answer this we performed several
simulations on K, with its elements computed from q�ĝ� for
ĝ= x̂ and ĝ= ŷ.

First, the symmetry of K was examined by quantifying the
value of a dimensionless parameter given by

� =
�Kxy − Kyx�
Kxx + Kyy

. �2�

Furthermore, by choosing L=100 l.u., a=4 l.u., and 	
=0.7,0.9,80 different �i.e., 40 systems for each 	� statisti-
cally uniform porous systems were constructed for which �
�0.5% was found. This ensures that K is symmetric within
0.5% numerical errors in its elements. In a subsequent analy-
sis we enforced K symmetry via replacing its off-diagonal
elements �Kxy and Kyx� by their arithmetic mean, which en-
sures that K is diagonizable.

Second, the tensorial properties of K were examined by
checking whether Eq. �1� can be used for an arbitrary orien-
tation of the external force. In particular, this equation pre-
dicts that if the mean flow direction �q� is to be aligned with

the x axis, the angle � between the external force �g� and the
x axis should satisfy

tan � = −
Kxy

Kyy
. �3�

This relation was examined for several systems, of which
one is shown in Fig. 1, wherein two streamline patterns for
the same system �L=100 l.u., a=4 l.u., and 	=0.7� with
different g orientations are visualized. In the left panel, the
external force is parallel to the �horizontal� x axis �ĝ= x̂�,
resulting in an angle of ��21° between the vector of the
specific discharge �q� and the x axis. In the right panel, a
force of the same magnitude makes an angle ��−22° com-
puted from Eq. �3�; as expected, the angle between q̂ and the
x axis practically vanishes ���0.7°�.

B. Tests on �

A natural measure of anisotropy for a particular porous
system is the angle between the vectors ĝ and q. As this
angle depends on the orientation of ĝ, following standard
procedures in computer simulations, we fix ĝ= x̂. We verified
that in this case the numerical value of � �angle between q
and ĝ� satisfies ����0, which follows from symmetry argu-
ments, and then calculated


� = 	��2� . �4�

In the above equation, �¯ � denotes an average over different
random porous systems. The results for a=4 l.u., 	
=0.7,0.9, and several system lengths L are shown in Fig. 2.
For L�100 l.u. the data were fitted to


� � L−�, �5�

which yielded ��0.96�6� for 	=0.7 and ��1.00�3� for 	
=0.9. This suggests �=1, i.e.,


� � L−1, L � 1. �6�

This relation does not hold for small L �L�50 in Fig. 2� for
some realizations of such systems are likely to exhibit ex-

FIG. 1. �Color� Streamlines through the same porous system
�L=100 l.u., a=4 l.u., and 	=0.7� for two different alignments of
the external force g. The gray squares represent the solid part of the
medium, and the remaining space is open to fluid flow. Left panel:
ĝ is parallel to the x axis ��=0� and the specific discharge q makes
an angle ��21° with x̂. Right panel: ��−22° �calculated from Eq.
�3�� and the angle between the specific discharge q and the x axis is
��0.7°. For the ease of display, two selected streamlines and their
counterparts in both panels are given in color.
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treme anisotropy with � so large that sin � cannot be ap-
proximated by � �for L=50 the angle between q and ĝ can be
as large as 45°�.

Next we investigated statistical distribution of � values in
different random systems with fixed L, a, and 	. In all cases
this distribution closely resembled the normal distribution
N�0,
�

2�. Qualitative verification of this conjecture is pre-
sented in Fig. 3, which depicts the empirical CDF for two
different system sizes L �small symbols� together with the
corresponding theoretical CDFs of the normal distribution,

F��� =
1 + erf��/	2
��

2
. �7�

The numerical data are in good agreement with Eq. �7�. A
quantitative comparison of the � distribution with N�0,
�

2�
was performed using the Kolmogorov-Smirnov test �at con-
fidence level 95%�. Out of all data points shown in Fig. 2
only the one corresponding to L=50 and 	=0.7 did not pass

the test, which in part is due to extremely large number of
different samples �2000� used.

As mentioned before, the value of a determines the per-
colation threshold 	c for small porosities and can be consid-
ered as a relevant parameter independent of 	 and L. For
porosities much larger than 	c, however, the connectedness
and overlapping of individual randomly generated solid
squares become irrelevant. In this case, using scaling argu-
ments, one can expect that 	 and a /L are the only relevant
parameters. Mathematically, this can be formulated as a simi-
larity ansatz,


��a,L,	� � ��a/L,	�, 	 � 	c, L � a , �8�

where � is a similarity function. A direct numerical verifi-
cation of this conjecture is difficult, as it requires averaging
over many independent samples, which is rather a time-
consuming job for large a. Instead of this, we concentrated
on a single parameter set with 	=0.7 and a /L=0.04 that led
to results demonstrated in Fig. 4 shown as cross symbols.
These data were fitted to an ad hoc formula


��a� = c1 + c2 exp�− a/c3� �9�

with three adjustable parameters c1, c2, and c3. The best-fit
value of c3�0.6 indicates that approximation �8� can be
safely used for a�4.

Finally, we investigated the dependence of 
� on porosity.
One expects that 
� should be a decreasing function of 	,
with 
�→0 as 	→1 �empty system�. As shown in Fig. 5,
our numerical results generally agreed with this picture.
However, 
� did not converge to its expected limiting value
as 	→1. Instead, it saturated at a positive value, which is
independent of 	. Due to this rather unexpected result, we
ensured that neither discretization error nor large relaxation
time affects the numerical data obtained for large porosities.
We also verified that the system size used, L=100, is suffi-
ciently large for relation �6� to hold. This is clearly seen in
the inset of Fig. 5, which depicts the product 
�L for L
=100 and L=200. The data for different L collapsed in a
broad range of 	�0.55. Porosities less than �0.55 are in a
vicinity of the percolation critical point, at which 
� is ex-
pected to converge to a finite value as L→
, and hence the

1

10

100 1000

σ α
[d

eg
re

es
]

L [l.u.]

φ=0.7
φ=0.9

FIG. 2. 
�=	��2� as a function of L for a=4 l.u. and two
porosities 	=0.7,0.9, with error bars at 95% confidence level. The
lines represent fits to the power law 
��L−1 for L�100 l.u.
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FIG. 3. Cumulative distribution function �CDF� of � for 	
=0.7, a=4 l.u. and two system sizes L=100 and L=400 l.u. �dots�.
The empirical CDF was determined using 500 �for L=100� and 80
�L=400� numerical samples. Solid lines represent theoretical CDF
of the normal distribution �Eq. �7�� with 
�=	��2�.
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FIG. 4. 
� as a function of a for 	=0.7 and a /L=0.04 ��
symbols�. The data come from N=500 independent porous systems
for a�4 l.u. and N=200 for a�4 l.u. The error bars were calcu-
lated at the 95% confidence level. The solid line represents the best
fit to Eq. �9�.
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product 
�L should diverge at 	c. As the system size L
→
, it is possible that the porosity range, for which scaling
relation �6� does not hold, diminishes according to a power
law. This behavior is a typical finite-size effect near a critical
point �23�.

To explore the reason why 
� does not tend smoothly to 0
as 	 approaches 1, we inspected the streamlines in high-
porosity systems exhibiting large anisotropy. An extreme ex-
ample of such a system, generated with 	=0.95, is shown in
Fig. 6�a�. At this high porosity, overlapping of individual
obstacles is negligible, and the solid part of the system is
made up of separate islands �that could correspond, for ex-
ample, to a cross section of a porous medium made of par-
allel fibers �15,24��. Because the obstacles were placed uni-
formly and randomly in the whole system, their local
concentration varies, and they form several larger groups of
obstacles with relatively small distances between group

members. Since fluid flux through a 2D channel is propor-
tional to its width squared, most of the fluid flow takes place
in relatively wide “channels” between the groups. In other
words, owing to no-slip boundary conditions on the obstacle
surfaces, the fluid passes most easily in the interconnected
regions of low local obstacle concentration �high local po-
rosity�, whereas the regions of high local obstacle concentra-
tion �low local porosity�—even if occupied by separate
obstacles—act effectively as large almost impenetrable bar-
riers. This solid-fluid “repulsion” effect is not present in in-
viscid incompressible fluid or electric current flows �for the
inviscid fluid stream or current intensity is proportional to
the first power of a conductive channel width�. For this rea-
son, a high-porosity system which is highly anisotropic to
viscous fluid flow ���15° in Fig. 6�a�� exhibits a marginal
anisotropy to inviscid fluid or electric current flow ����
�1°� as depicted in Fig. 6�b�.

C. Tests on principal values

Mathematically, a porous system is anisotropic to flow if
and only if at least two of the principal values of K are
different. In the present case K has two eigenvalues �princi-
pal permeabilities� K+ and K− which can be ordered such that
K+�K−. Their ratio,

0 � r =
K−

K+ � 1, �10�

is equivalent to the ratio of the minimum to maximum per-
meabilities of a given porous system and hence is a proper
measure of its anisotropy �11�. The more r deviates from 1,
the more anisotropic the system is.

We first verified that, as expected, the angle between the
main principal axis and the x axis was distributed uniformly
in the range �−� /2,� /2� �data not shown�. Then the CDF of
r was determined for a particular case with 	=0.7, a
=4 l.u., and L=100 l.u. As can be seen in Fig. 7, the distri-
bution of r can be quite well fitted to the normal distribution
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FIG. 6. Streamlines in a high-porosity system �	=0.95� with
L=100 l.u. and a=4 l.u. for two different incompressible flow
types: �a� viscous fluid ���15°�; �b� inviscid fluid or electric cur-
rent ���0.6°�. Streamlines in panel �a� are viscosity independent.
Note that the distribution of obstacles and the orientation of an
external body force are identical in both panels.
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N�0.75,0.122�. However, this is only an approximation, as in
the present case CDF�r�
1 for r�1.

IV. DISTRIBUTION OF � FOR LARGE L

Consider a porous system of size L�L l.u. subjected to
an external force along the x axis. Assume also that the sys-
tem is sufficiently far from the percolation critical point so
that the correlation length ��	� is much smaller than L. Let
�r denote the total displacement of a fluid particle as it
passes the system between the opposite boundaries. While
the x component of �r is a constant �equal to the system size
L�, the y component �which we shall call lateral displace-
ment and denote �y� varies for different streamlines. If we
calculate the average ��y� over all fluid particles, the angle �
between the volumetric fluid flux q and the x axis will satisfy

tan � =
��y�

L
. �11�

If � is sufficiently small, this equation simplifies to

� �
��y�

L
. �12�

Let us consider a porous system of size 2L�2L l.u. As
shown in Fig. 8, it can also be regarded as two subsystems of
size 2L�L l.u. �labeled A and B� or four subsystems of size
L�L l.u. �labeled 1, 2, 3, and 4�. Each of the small sub-
systems has its own permeability tensor K j, volumetric fluid
flux q j, angle � j between the x axis and q j, and mean lateral
displacement ��yj� with j=1, . . . ,4. Since the distribution of
obstacles is uniform and the system is sufficiently far from
the percolation critical point, porosity of each small sub-
system is approximately equal to 	, and the mean lateral
displacements ��yj� can be considered as independent ran-
dom variables drawn from the same distribution. Subsystems
1 and 2 form layer A orthogonal to the external force. One
may expect that the fluid streams passing through sub-
systems 1 and 2 are approximately the same in magnitude,
and so the mean lateral displacement of the fluid, as it passes
through layer A, can be approximated by

��yA� �
��y1� + ��y2�

2
. �13�

Similarly, the mean lateral displacement in the layer B can
be approximated by ��yB�����y3�+ ��y4�� /2. The mean lat-

eral displacements of the fluid in layers A and B are practi-
cally independent of each other. This can be justified by an
example of soil made of several horizontal and anisotropic
layers—in this case the mean flow direction in a layer will
depend only on the permeability tensor of this layer. This
implies that the total lateral displacement of the fluid in the
whole system ���y�� is approximately given by

��y� � ��yA� + ��yB� �
1

2�
j=1

4

��yj� . �14�

If L is large, then � becomes sufficiently small for ap-
proximation �12� to be valid. In this case Eqs. �14� and �12�
lead to

� �
1

4�
j=1

4

� j , �15�

where � is calculated for the whole 2L�2L system. Assum-
ing that � j are independent random variables drawn from the
same distribution with mean 0, one arrives at


��2L� � 1
2
��L� , �16�

which immediately leads to Eq. �6�.
Equation �15� can be used iteratively to obtain

��2kL� �
1

4k�
j=1

4k

� j�L�, k = 1,2, . . . , �17�

where the arguments of � and � j �i.e., 2kL and L� indicate the
system size. The right-hand side of this formula is an arith-
metic mean of independent random variables with finite
mean and variance and—due to the central limit theorem—
converges to normal distribution as k→
. This explains why
the distribution of � for a sufficiently large system size L can
be approximated by a normal distribution �see Fig. 3�.

The above can be readily extended to flows in an arbitrary
space dimension d. We skip the details and report only the
final conclusions. First,


� � L−�, � = d/2 �18�

for sufficiently large L. Second, the distribution of � tends to
the normal distribution as L→
.

Equation �18� implies that anisotropy effects diminish
with system size most quickly in three-dimensional �3D� sys-
tems �
��L−3/2�. Note, however, that the most important
factor in computer simulations is the total number of lattice
nodes �or volume� V in the system. Using this quantity, Eq.
�18� can be written as


� � V−1/2 �19�

irrespective of d. Thus, anisotropy of the permeability tensor
should be equally important �and difficult to account for� in
computer simulations carried out in any space dimension.

It is important to verify Eq. �18� for space dimensions d
�2. While at the moment our software cannot be used for
d=3, the case d=1 can be tackled by studying a quasi-one-
dimensional system of size K�L with fixed K and L→
.
Note that in this case Eq. �18� should hold irrespective of

A B

1

2

3

4

(b)(a) (c)

FIG. 8. �a� A two-dimensional porous system, which can be
regarded as �b� a two-layer system perpendicular to the external
force or �c� a group of four smaller subsystems.
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whether the longer side of the system is parallel or perpen-
dicular to the external force. The results, obtained for a
=4 l.u., 	=0.7, K=100, and L ranging from 100 to 800 l.u.,
are shown in Fig. 9 and confirm the validity of Eq. �18�.

Equations �8� and �18� allow us to factorize 
��a ,L ,	�,


� = � a

L

d/2

��	� , �20�

where � is a function. This relation can be expected to hold
in general only if L�a and L��. In a general case, a is to
be interpreted as a characteristic system length �such as the
diameter of disks in case the porous matrix is made of disks
rather than squares� and � depends on the system in ques-
tion.

Note that the theory presented in this section is based on
the assumption that the system size L is much larger than the
correlation length �. Therefore it cannot be applied to small-
size porous media with highly correlated positions of ob-
stacles, such as statistically uniform systems close to 	c or
some fibrous networks �25�.

V. DISCUSSION AND CONCLUSIONS

Our results show that permeability anisotropy in statisti-
cally uniform porous systems of sizes typically used in com-
puter simulations is a significant factor. The main parameter
controlling this phenomenon, especially at high porosities, is
the ratio a /L. For the model considered here, the asymptotic
regime is observed for a /L�0.04. In this regime the distri-
bution of the angle � between the external force and the
volumetric fluid flux is very close to Gaussian, with the stan-
dard deviation diminishing as �a /L�d/2.

Although this conclusion is based on numerical results
obtained for a particular model of a two-dimensional flow, it
is expected to apply to a wide class of porous systems with
randomly distributed identical solid matrices, such as
squares, disks, or spheres. This observation can be used to

estimate the anisotropy-related statistical error in large-scale
simulations, where often only one large system is considered
for each parameter set �16�. To this end it is enough to per-
form many independent simulations in small- and medium-
size systems, verify that 
�� �a /L�d/2, and extrapolate 
��L�
to the required value of L. Next, assuming that the distribu-
tion of � is normal, one obtains the complete information
about the error related to the anisotropy of the permeability
tensor.

Magnitude of permeability anisotropy could serve as a
good indicator of how the size of a model system compares
with that of an REV. We found that even for a /L=0.04 the
angle between the external force and the volumetric fluid
flux can be as large as 20°, and the permeability can vary
with the orientation of the external force �or porous sample�
by a factor of 2. The value below which the anisotropy ef-
fects are small enough to be practically negligible is a /L
�0.01, as in this case 
��2°, i.e., ����6° with probability
p�0.99. This enables us to estimate the size of an REV in
the model considered here as �400�400 l.u.

It is interesting to note that most of the simulations carried
out so far for 2D systems do not meet the criterion of a /L
�0.01 mainly because they used models with large a. In
previous studies on two-dimensional flows in various statis-
tically uniform porous media, many researchers used a /L
values ranging from 0.02 �26� through 0.026 �4�, 0.04 �1,5�,
0.05 �6,27�, to 0.1 �2,3,17�, usually assuming their systems to
be isotropic. In view of our present findings, validity of this
assumption in some of these cases is questionable and re-
quires verification. Generally, one should expect that the
threshold value of a /L below which the permeability aniso-
tropy is negligible is not universal but depends on the geom-
etry and structure of the porous medium, especially on its
porosity and space dimensionality.

Anisotropy is a phenomenon independent of the boundary
conditions. Periodic boundary conditions used in this paper
facilitate measurement of the permeability tensor and reduce
finite-size �boundary� effects. Other boundary conditions
could mask but would not eliminate anisotropy effects. For
example, using solid walls along the fluid flow would fix the
orientation of the fluid stream, however, the system would
respond to such boundaries with an internal pressure gradient
�10�, which would change �and complicate measurement of�
the orientation of the effective force acting on the fluid.

Finite-size permeability anisotropy in three-dimensional
small porous systems remains an open problem. Typical sys-
tem sizes used in numerical 3D simulations are L
�100 l.u. The ratio a /L is thus much larger in 3D than in
2D simulations and ranges from 0.06 �8,28�, through 0.1
�27�, 0.125 �16,29�, to 0.33 �4�. The magnitude of permeabil-
ity anisotropy is usually neglected. One exception is the pa-
per by Verberg and Ladd �4�, who published the off-diagonal
elements of the permeability tensor. Their data for a single
configuration of randomly distributed spheres suggest that 
�

is a decreasing function of the porosity and varies from 
�

�3° for 	=0.464 to 
��18° for 	=0.087. This is in agree-
ment with our present findings for a 2D system and indicates
that permeability anisotropy is especially important close to
the percolation threshold.
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FIG. 9. 
� for a quasi-one-dimensional system of size K�L
with K fixed at 100 l.u. and L growing from 100 to 800 l.u. for
channel axis parallel �� � and perpendicular ��� to the external
force �a=4 l.u., 	=0.7, and error bars at 95% confidence level�.
Dashed line represents a single fit to 
��1 /	L for all data points.
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