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In this paper we propose a highly efficient and stable lattice Boltzmann method for solving low Reynolds
number exterior flows using a preconditioning technique. The present method is based on replacing the
constant preconditioning parameter ��� within uniform grids �Guo et al., Phys. Rev. E 70, 066706 �2004�� by
a space- and time-dependent one in a nested mesh-refined domain. To do this, for the transition from a fine to
the neighboring coarser grid, � has been divided by a factor K, which is large initially and anneals stepwise to
a small value after some iterations. With this technique, more than one order of magnitude larger convergence
rate can be achieved, and several orders of magnitude larger system size can be treated.
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I. INTRODUCTION

Low Reynolds number exterior flows play an increasingly
important role in applications, such as marine aggregates
�1–4� and sedimentation of small particles in the context of
climate prediction �5,6�. In some of these applications, e.g.,
in marine aggregates, often very accurate force computations
are required to mimic the real sinking process. Because of
the high computational cost involved in the numerical simu-
lation of such flows, schemes providing rapid convergence
are highly demanded. The accurate and efficient treatment of
these types of flows significantly depends on two issues, be-
ing the implementation of far-field conditions and no-slip
boundary conditions on the obstacle surface.

To tackle the first issue, Latt et al. �7� and Liu and Khalili
�8� showed, respectively, the applicability of the far-field
boundary conditions �9� coupled with grid refinement tech-
niques in lattice Boltzmann model �LBM�. However, there
exists a limit to the number of the refinement level due to the
numerical instability associated with LBM, which is set to
eight for Bhatnagar-Gross-Krook �or BGK� model. With this
limited number, of course, an infinite domain cannot be cap-
tured accurately. A remedy to this was provided by tedious
extrapolations that lead to rather rough results �8�.

As far as the second issue is concerned, the accuracy of
the no-slip boundary condition depends on the grid reso-
lution, defined as the number of lattice nodes �A� used to
discretize the obstacle height. The higher the value of A be-
comes, the more accurate will be the solution. In order to
maintain a flow at a constant Reynolds number, A can be
increased by either enhancing the kinematic viscosity or de-
creasing the far-field velocity. The first method �Latt et al.
�7�� increased the relaxation time, �, and was found inappro-
priate because of the strong viscosity-dependent location of
the boundary in BGK model, which leads to large errors in
under-relaxed situations ���1� �8,10�. The second method
�8� reduced the Mach number, leading to very slow conver-
gence rates. The reason for this has been known as the con-
sequence of a large disparity between the acoustic wave and

the fluid speed �11�. As a response to the low convergence
rate, several acceleration techniques were suggested, includ-
ing the addition of a false forcing term �12�, the implicit
discretization of the Boltzmann equation �13�, direct solution
of linear or nonlinear algebraic systems �14�, Mach number
annealing method �15�, viscosity annealing �16�, multigrid
method �17,18�, and the preconditioned technique �19,20�.
Among the methods mentioned, only in the preconditioned
techniques the simplicity of the standard LBM is maintained.
However, both presently available preconditioned methods
depart from uniform grids, which are not optimal for external
flows.

To overcome both shortcomings, here we propose an ef-
ficient method for computation of exterior flows based on an
adjustable preconditioned technique for LBM, in which the
grid refinement technique is combined with the second-order
accurate treatment of the far-field boundary condition. The
distinctive feature of the model is that the preconditioned
parameter is no longer constant, and varies not only with
respect to grid refinement level but also with respect to time.

In contrast to our previous paper �8� where BGK model
was used, here we employed the so-called regularized lattice
Boltzmann �RLB� proposed by Latt and Chopard �21�. The
reason for this choice is as follows. In the D2Q9 lattice, there
exists a nine-dimensional moment space, from which six ��,
u, and �� are physically relevant, whereas the other three are
not, and termed as “ghost modes” �22�. In BGK, all nine
modes are relaxed at the same rate ���. However, as shown
by Latt and Chopard �21�, in RLB it is possible to filter out
the ghost modes from the collision operator, and relax them
all at the rate “unity.” Due to this difference, RLB models
gain improved accuracy and numerical stability �21�. The
accuracy improvement of RLB has been demonstrated for
the Kovasznay flows �23� as well as Womersley flows �24�.
A significant improvement of stability by the RLB method
was shown for a two-dimensional �2D� cavity flow by Latt
and Chopard �23�. Some theoretical background for the du-
ality between hydrodynamic and ghost modes has been re-
cently discussed by Adhikari and Succi �25�. Based on these
facts, we preferred the RLB. However, to quantify the differ-
ences for the present flow, both models were employed.

The reminder of the manuscript is organized as follows:
Section II briefly describes the regularized and precondi-*Corresponding author; akhalili@mpi-bremen.de
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tioned lattice Boltzmann model. The numerical implementa-
tion including the refinement technique and boundary-
condition treatment are brought in Sec. III. Following this, in
Sec. IV first, the validation of the model is made, followed
by a comparison between BGK and RLB. Second, the crite-
ria for the choice of the preconditioning parameter with re-
spect to space and time are discussed. Here, also a compari-
son is made between different treatments of the no-slip
boundary condition at the obstacle surfaces. Finally some
concluding remarks follow in Sec. V.

II. LATTICE BOLTZMANN MODEL

A. Regularized lattice Boltzmann model (RLM)

The lattice Boltzmann dynamics is expressed �21� as

f i�x + ei�t,t + �t� − f i�x,t� = − �i„f�x,t�… , �1�

where f i�x , t� is the single-particle distribution function at
position x and time t along the direction represented by the
subscript i. Furthermore, �t is the time increment and �i
denotes the collision operator. For the sake of simplicity, we
will restrict ourselves to nine-velocities model in two dimen-
sions �D2Q9 model�. The discrete velocities are given by
e0=0 and ei=�i�cos 	i , sin 	i�c, with �i=1 and 	i= �i
−1�
 /2 for i=1–4, and �i=�2 and 	i= �i−5�
 /2+
 /4 for
i=5–8.

To reduce round-off errors, we use the density fluctuation
�� and assume the mean density �0=1. The total density is
therefore �=�0+��. In addition, we use flow moment j
=�0u to reduce effects of compressibility �22,26,27�. The
hydrodynamic variables mass density ���, momentum �j� and
flux tensor ��� are computed by

�� = �
i

f i, �2�

j = �0u = �
i

ei f i, �3�

� = �
i

eiei f i, �4�

The BGK variant of the lattice Boltzmann dynamics ex-
presses the collision as a relaxation toward a local equilib-
rium, �i=− 1

� �f i− f i
eq�, where � is the nondimensional relax-

ation time directly related to the kinematic fluid viscosity �
=cs

2��− 1
2 ��t and f i

�eq� is the equilibrium distribution function
�22,26,27�

f i
�eq� = �i��� + �0� ei · u

cs
2 +

uu:�eiei − cs
2I�

2cs
2 	
 , �5�

in which �i is the weight, cs is the speed of sound �set as
cs

2=1 /3�, and I is the unit tensor. The weights are given by
�0=4 /9 and �i=1 /9 for i=1–4, and �i=1 /36 for i=5–8.

The key to the regularized procedure is to use an approxi-
mation of the nonequilibrium part of the distribution func-
tions f i

neq and momentum flux tensor �neq as

f i
neq = f i − f i

eq � f i
1 = −

�i�

cs
2 Qi:S , �6�

�neq = � − �
i

eiei f i
eq � �1 = �

i

eiei f i
1 = − 2�0cs

2�S , �7�

where the symmetric tensors Qi are defined as Qi=eiei−cs
2I

and strain tensor S= 1
2 ��u+ ��u�T�. Combining Eqs. �6� and

�7�, f i
1 is obtained from

f i
1 =

�i

2cs
4Qi:�

neq, �8�

and the RLM dynamics can be expressed as

f i�x + ei�t,t + �t� = f i
eq�x,t� + �1 −

1

�
	 �i

2cs
4Qi:�

j

eiei�f j�x,t�

− f j
eq�x,t�� , �9�

More details on the regularized lattice Boltzmann model and
a discussion of its relation to two or multirelaxation-time
models �28–30� can be found elsewhere �21,25�

B. Preconditioned lattice Boltzmann model

In the classic preconditioned LBM �19�, the equilibrium
distribution is defined by

f i
�eq� = �i��� + �0� ei · u

cs
2 +

uu:�eiei − cs
2I�

2�cs
2 	
 , �10�

with 0��1 as the preconditioning parameter. Through the
Chapman-Enskog procedure, we can derive the macroscopic
equations as

��

�t
+ � · ��0u� = 0, �11�

���0u�
�t

+
1

�
� · ��0uu� = −

1

�
� p� +

1

�
� · �2�0��S� ,

�12�

where the effective pressure and viscosity can be given �19�
by

p� = �cs
2�� , �13�

�� = �cs
2�� −

1

2
	�t. �14�

In the presently available preconditioning techniques, uni-
form grids and a constant preconditioning parameter were
used. However, for the treatment of the far-field boundary-
conditions nested grids become necessary �8�, and constant
preconditioning parameter cannot be used over the entire
grids any more. The method suggested here is an extension
of the previous models in the sense that the preconditioning
parameter varies over both the space as well as time. The
details are explained in Sec. IV.

C. Intergrid transformation

To ensure the continuity of pressure, velocity, and also of
their derivatives at the interface between coarse and fine
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grids, the missing distributions on one refinement level have
to be computed from the adjacent grids. In the usual BGK
procedure the distribution functions �feq� and �fneq� are inter-
polated �31–34�. Alternatively, the missing distribution func-
tions can also be obtained by interpolation of density, veloc-
ity, and flux tensor, combined with appropriate asymptotic
relations �35�. However, the use of RLB is more convenient
as the interpolation acts on density, velocity, and flux tensor
directly by

�c��c = � f�� f , �15�

uc = u f , �16�

�c
1/��t

c�c� = � f
1/��t

f� f� , �17�

with c and f denoting the coarser and finer grids, respec-
tively. In addition, a cubic spline interpolation in space and a
local time-stepping scheme have been used as described else-
where �8�.

III. NUMERICAL IMPLEMENTATION

The geometry studied here is a rectangular solid block
shown in Fig. 1. The details of the parameters influencing the
flow are identical to those in previous literature �7,8�, and are
given by height to width ratio �5/1� and Reynolds number

Re = Au�/� , �18�

set to unity.
A grid refinement technique is applied with a hierarchy of

nested grids that have a successively finer resolution as they

approach the system center. In the finest grid, the spatial and
temporal step sizes ��x and �t� have been set to unity, while
they are multiplied by two as we move from finer to coarser
grids. This choice makes the velocity u to be the same from
one refinement level to another, known as convective scaling
��t��x�. Although the diffusive scaling ��t��x2� leads to
the second-order accurate time interpolation while the con-
vective scaling leads to a first-order one �35�, the accuracy of
the time interpolation is not crucial when a stationary flow is
considered. More importantly, the velocity u has to be kept
small, reflecting a low Mach number flow in LBM. In a
diffusive scaling the velocity u is doubled with every grid-
coarsening step. Due to implementation of the far-field
boundary condition, a large number of grid-coarsening levels
�Ng� has to be implemented. The implementation of a diffu-
sive scaling would have led to large velocities u=2Ng−1u0 in
the coarsest grids �u0: velocity in the finest grid level�, which
would have violated the low Mach number assumption. All
simulations were run on rectangular domains of varying re-
finement levels. In each refinement level, the system sizes
were 129�129, 257�257, 257�513, and 257�1025 cor-
responding to A=80,160,320,640, respectively. The relax-
ation time � in the finest grid was set to unity.

As the boundary conditions at the obstacle surface we
have compared the implementation of eight popular
schemes, namely full-way bounce back �FBBC�, half-way
bounce back �HBBC�, equilibrium method �EM� �8�, Ina-
muro �36�, Zou-He �37�, Halliday �38�, Hollis �39�, and
Latt’s regularized method �40�. At the infinity, the second-
order accurate far-field boundary condition �9� was imple-
mented using nonlocal regularized schemes Latt et al. �40�.
The momentum-exchange method was employed to evaluate
the force on the obstacle.

IV. RESULTS AND DISCUSSION

A. Model validation

In order to demonstrate the correctness and the continuity
of the interpolation method �Eqs. �15�–�17��, the contours of
pressure, the vertical velocity component �uy�, and strains Sxx
and Sxy have been plotted in Fig. 2. The three dashed boxes
around the obstacle �gray rectangle� shown in the figure de-
note interfaces of different grid refinement levels. As can be
depicted in the figure, all contours display perfect continuity
properties. The input parameters for this case were A=640, a
system size of 257�1025, a total grid-coarsening level of
15. As our main concern was the demonstration of the con-
tinuous behavior of p, uy, Sxx, and Sxy, the values of the
contour lines were not shown.

Using the velocity gradients and the pressure, we have
obtained the drag coefficient d, which was used to compare
the accuracy of our computations versus existing reference
values �9�. Compared to the reference value d=2.5145 we
computed d=2.514 51, leading to a negligible relative error.

As mentioned in Sec. I, there have been some works dem-
onstrating the superiority of RLB over BGK in terms of ac-
curacy and stability for some flow types. In the context of
this study, we employed both models to have a quantitative
evaluation of this issue. The results showed that the accuracy

FIG. 1. Structure of the numerical grid close to a rectangular
obstacle �black vertical box�. The empty boxes from center outward
denote the coarsening levels. The flow direction is from left to right.
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gain of RLB was minor compared to that of BGK. However,
as far as the stability is concerned, RLB had an increased
performance. Consequently, in RLB, one grid refinement
level more than in BGK could be implemented.

B. Criterion for the choice of the preconditioning parameter �

The acceleration rate of preconditioned LBM depends on
the preconditioning parameter �. Here, the selection criterion
for � has been adopted from Guo et al. �19�, and is given by
�= �M /M��2 with the effective Mach number M� being
larger than the standard Mach number M. In order to obtain
faster convergence rate, a large M� is preferred. However,
from linear stability analysis �19�, it follows that there exits a
critical value Mc

�, above which the preconditioned lattice
Boltzmann equation becomes unstable. Therefore, M� can be
chosen as the value just below Mc

�, which can be obtained
numerically. When uniform grids are chosen, constant � val-
ues �slightly larger than �c= �M /Mc

��2� are preferred in order
to accelerate the convergence rate. However, as mentioned
above for problems involving a grid refinement procedure,
the preconditioning factor � cannot be kept constant for all
grid levels. Here, a gradual variation in � from finest �upper
� limit� to coarsest grid level �lower � limit�, respectively, is
necessary. In the finest grid level no preconditioning is re-
quired, i.e., �=1, which corresponds to the upper limit of �.
This implies ���=�=1�, providing best accuracy for no-slip
boundary condition �8�. However, in the coarsest refinement
level, the lower � limit was chosen slightly larger than �c.
The transition from fine to coarse refinement levels is made
through dividing � by an annealing factor K �K=�i /�i+1 with
i denoting the coarsening level� until the lower � limit has
been reached. In order to compare the results under other-
wise similar conditions, only eight refinement levels were
taken. This corresponds to the maximum possible refinement
level in the absence of preconditioning �8�. Note that in each
refinement level, 257�257 square nodes were used for A
=160. As demonstrated in Fig. 3, the convergence rate of the

preconditioned method is almost one order of magnitude
faster than that of the standard method.

Another advantage of preconditioning technique is that an
increase in the effective viscosity �19� leads to an improve-
ment of the stability of LBM and, subsequently, to an in-
crease in the maximum number of the refinement levels re-
quired when a highly accurate computation is in demand.
The vertical dotted line in Fig. 4 corresponds to a grid re-
finement level of eight without preconditioning in previous
studies. As shown in the figure, rather large relative errors in
the drag coefficients are made, which range from 9.9%,
1.4%, and 0.69% corresponding, respectively, to the zeroth,
first- and second-order treatment of the far-field boundaries.
By contrast, when our preconditioning is used, the relative
errors can be reduced to 6.1�10−4, 1.3�10−5, and 1.3
�10−6, when 15 refinement levels have been employed �Fig.
4�b��. Note that in each refinement level a total node number
of 257�1025 were implemented.

(b)(a) (c) (d)

FIG. 2. From left to right, the contours of P, y velocity �uy�, and strain �Sxx and Sxy� near the obstacle �four grids refinement level�. The
dotted lines represent the interfaces of different grids for A=640, a system size of 257�1025, and a total refinement level of 15.
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FIG. 3. Convergence histories of the drag coefficients d using
standard and preconditioned LBM with K=2. The refinement level
was fixed to 8. In each refinement level, 257�257 square nodes
were used for A=160; equilibrium method for no-slip boundary
condition on the obstacle surface was used. The figure shows
clearly that much less iteration numbers are required by precondi-
tioned LBM.
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C. Annealing factor K

In addition to the preconditioning with respect to space
�mentioned above�, here a preconditioning with respect to
time is introduced. As can be seen from Fig. 5, constant K’s
either lead to more accurate results at the cost of more itera-
tion numbers �K=2� or less iteration number sacrificing the
accuracy �K=8�. In the case of K=2, namely, a constant �
=1 for all subsequent coarsening levels can be reached �a
consequence of � f =�c=1 from Eq. �14��, and has been
known to result in best accuracies in BGK-type methods.
Furthermore, in the case of K=8 less iteration numbers are
required due to larger effective Mach number for coarser grid
levels �resulting from lower preconditioning parameter, ��.
Note that a further decrease in K from 2 to K=1.5 does not
lead to a significant accuracy change, and requires rather

more computational time. In order to maintain both the effi-
ciency and accuracy simultaneously, a variable K is imple-
mented here. By taking a large K �i.e., K=8� initially and
annealing it stepwise, e.g., to 4 and then to 2 after some
iterations, best performance can be achieved �Fig. 5� as dem-
onstrated by the dotted line.

Since the reference solution is usually not known a priori,
a K annealing can be applied when a certain error bound, �,
has been reached within two subsequent time steps. It is
obvious that extremely small and large �’s lead to poor con-
vergence rates. In the lack of any theoretical base for the
choice of the annealing criterion, � can be chosen by numeri-
cal approximation. Here, we have set a residual bound of 1
�10−5. In Fig. 5 three examples are given with �=4�10−5,
2�10−5, and 1�10−5, respectively, corresponding to the
points A, B, and C. As can be seen from the figure, the
performance of the annealing procedure is superior to those
with constant K’s. Rigorous numerical tests showed that the
results did not depend significantly on the choice of the po-
sition �A, B, or C�, from which the annealing process was
introduced.

V. TREATMENT OF NO-SLIP BOUNDARY CONDITIONS

For the treatment of the no-slip boundary condition at the
surface of a solid obstacle two different methods can be em-
ployed. The first one is the so-called bounce-back rule and its
modified version �41–44�. However, all these schemes re-
duce to HBBC once the solid wall is located in the middle of
two subsequent grid points, which is the case in the present
study. Therefore, we need to consider the HBBC FBBC rule
here. In the second method, one sets equilibrium distribution
functions �EM� and its modifications suggested by Inamuro
�36�, Zou-He �37�, Halliday �38�, Hollis �39�, and Latt �40�.
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FIG. 4. Drag coefficient d �a� and its relative error �b� as a
function of the system size with asymptotic far-field boundary con-
ditions of the zeroth, first, and second order. A total of 257�1025
nodes in each refinement level with A=640 and the equilibrium
method for no-slip boundary condition on the obstacle surface were
used. The vertical dotted line in the figure denotes eight refinement
levels. All symbols right to this line correspond to higher levels
which minimize the relative errors. The horizontal dashed line in
panel �a� denotes the reference solution d=2.5145 of Bönisch et al.
�9�.
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A summary of the comparison of these different possibilities
can be found elsewhere �8�.

Here we employ all these schemes to compare their im-
pact on the accuracy of drag calculations. The implementa-
tion of the no-slip boundary conditions on the obstacle sur-
face depends strongly on the relaxation time �. It was found
that for �=1 the methods in the second category reduce to
EM, which has a better accuracy when compared to HBBC
and FBBC. For ��1, Zou-He method showed a better accu-
racy among all others. All these results, however, depend on
A �equivalent to the domain extend�, which was rather insuf-
ficient and limited to a maximum of A=160 in previous stud-
ies. A further increase in A was found to be difficult due to
the known effects mentioned in the introduction.

Using the preconditioning technique explained above, it is
possible to increase the extend of A beyond this limit and to
enhance the accuracy of the computations. This effect has
been shown in Fig. 6 for two different grid resolutions of the
obstacle height �A=160 and 640�. As can be clearly seen, an
increase of A results in drag coefficients being much closer

to the reference value when A is enhanced. Although, for all
methods �except FBBC� the optimal relaxation time is ap-
proximately unity, the improvement obtained by increasing A
holds for all values of �.

It is also visible from the results that all methods �except
FBBC and HBBC� reduce to the equilibrium method �EM�
when �=1. As can be confirmed by the results, the
equilibrium-based methods do not differ for �1, whereas
for ��1 Zou-He method performs best. In this case a quan-
titative evidence can be found when plotting the relative er-
ror of the drag coefficient versus A for different values of
relaxation time.

Figure 7 indicates clearly that the relative error of the drag
coefficient increases as � moves away from unity. Also, the
relative error of the drag coefficient, e.g., for �=1, reduces
approximately one order of magnitude when A is increased
from 160 to 640, showing the A dependency of the accuracy
of the solutions obtained. Finally, the figure also shows that
changing � from 4.5 to 1.0 decreases the relative error almost
two orders of magnitude.

VI. CONCLUSIONS

In the present study, an improved preconditioned lattice
Boltzmann method has been introduced. The suggestion is
based on a space- and time-dependent preconditioning pa-
rameter ���. Unlike previous studies, here � has been divided
by a factor K for the transition from each fine grid to the
neighboring coarser one. The investigation showed that large
values of K �e.g., 8� result in a rapid convergence whereas
small values of K �e.g., 2� lead to an increased accuracy.
Therefore, to keep both advantages simultaneously, K has
been annealed stepwise from an initially large value to a
small one at the final stage.

The comparison between the nonpreconditioned and pre-
conditioned LBM has shown that the latter one provides a
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FIG. 6. Drag coefficient d as a function of relaxation time � with
A=160 �a� and A=640 �b�. The FBBC, HBBC, EM, Halliday, Hol-
lis, Inamuro, Latt, and Zou-He schemes were implemented for the
treatment of the no-slip boundary condition at the obstacle surface.
The horizontal dashed line represents the reference solution with
d=2.5145.
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significant increase of efficiency and stability. Furthermore,
the annealing procedure has proved to be superior to a no-
nannealing method. The improved stability enables us to
handle much larger system sizes than possible in nonprecon-
ditioned methods, which were limited to eight coarsening
levels. The accurate drag coefficient obtained with this
method allows us to evaluate the performance of different
techniques for treating the no-slip boundary conditions at

obstacle surfaces. The results showed that Zou-He’s method
performed best among eight different methods compared
here.

Finally, we should note the following: although we used a
simple benchmark example �flow past a solid rectangular
obstacle� here, the method can directly be applied to other
complex obstacle geometries and extended to multi-
relaxation-time methods.
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