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INTRODUCTION
The Black Sea is the largest permanently 

euxinic  recent water body on Earth and is the 
type system for euxinia in the geological past 
(e.g., Ross and Degens, 1974). Exchange of 
water between the modern Black Sea and the 
global ocean system is restricted by the Bosporus  
sill between the Mediterranean and the Black 
Sea. The development of anoxic conditions 
below the chemocline, at ~100 m water depth, 
results from limited ventilation due to water 
column stratifi cation. This is a consequence of 
higher salinity waters entering the Black Sea 
from the Mediterranean and less dense surface 
waters fl owing out of the Black Sea (Konovalov 
et al., 1999). The surface water is oxygenated, 
with a salinity of ~18 psu (practical salinity unit; 
1 psu = 1 g salt in 1 kg of seawater), which is 
infl uenced by the river water infl ow (Murray 
et al., 1991). The water column below ~150 m 
is permanently devoid of oxygen, with a salin-
ity of ~22 psu (Murray et al., 1991). The sulfi de 
concentration increases with water depth, reach-
ing ~400 µmol L–1 near the seafl oor (Konovalov 
et al., 1999; Neretin et al., 2001). Sediments 
that accumulate under sulfi dic bottom waters 
have been shown to have enhanced Mo contents 
(Crusius et al., 1996; Nägler et al., 2005).

Molybdenum isotope fractionation is a prom-
ising proxy for paleo-redox conditions of the 
Earth’s oceanic system and atmosphere. Oxic 
seawater contains Mo as the stable oxyanion 
molybdate (MoO

4
2–) with concentrations of 

~0.11 µmol L–1 (Emerson and Huested, 1991) 
and a homogeneous isotopic composition of 
δ98/95Mo +2.3‰ (mean ocean molybdenum, 
MOMo; Siebert et al., 2003). Its low chemical 
reactivity results in a relatively long residence 
time of ~800 ka (Colodner et al., 1995; Emerson  
and Huested, 1991). Under sulfi dic condi-
tions, however, Mo is thought to be effi ciently 
removed from the water column (Erickson and 
Helz, 2000; Helz et al., 1996).

The use of black shales as archives of Mo 
isotope signatures of coeval ocean water is a 
fi rst-order approach based on the assumption 
of an almost complete molybdate scavenging 
that eliminates potential fractionation effects 
between the different pools. The mass balance 
between oxic and euxinic Mo sedimentation 
is then refl ected in the Mo isotopic compo-
sition of ocean water, as these sedimentary 
environments show distinct Mo isotopic com-
positions. Thus, the relative proportion of oxic 
and euxinic  environments governs the isotopic 
composition of the Mo remaining in solution 
(Barling et al., 2001; Siebert et al., 2003). This 
balance is complicated by the varying impor-
tance of suboxic sinks during geological time 
(Siebert  et al., 2006). Black shales, formed 
under euxinic  conditions, have been used to 
quantify paleo-redox conditions in the Neo-
proterozoic (Arnold et al., 2004) and the Early 
Cambrian (Lehmann et al., 2007), and to trace 
the initial rise of oxygen in the Archean (Siebert 
et al., 2003; Wille et al., 2007). These publica-

tions demonstrated the general potential of Mo 
isotopes to approach fi rst-order problems from 
the history of oxygen during important global 
environmental changes in the evolution of the 
Earth and the consequent evolution of life.

On the other hand, the redox-dependent Mo 
isotope signatures naturally lend themselves to 
the study of the evolution of recent euxinic seas 
and lakes. Those studies need a much higher 
resolution of both time and redox conditions 
and thus a more detailed understanding of the 
complex processes in the natural molybdenum 
cycle. In particular, various recent studies from 
different marine settings worldwide indicate 
the need for a better understanding of Mo scav-
enging mechanisms under reducing conditions 
(McManus et al., 2002; Poulson et al., 2006; 
Siebert et al., 2003, 2006). The transforma-
tion from chemically unreactive molybdate to 
highly reactive thiomolybdate under enhanced 
levels of dissolved sulfi de has been proposed to 
be the prime reason for authigenic Mo enrich-
ment in euxinic sediments (Erickson and Helz, 
2000; Helz et al., 1996). The extent to which 
Mo scavenging occurs within the sediments 
as opposed to within the sulfi dic water col-
umn, however, is still a matter of debate, as 
is the direct infl uence of organic matter (total 
organic carbon, TOC) supply to euxinic basins. 
In addition, the concentration of dissolved Mo 
in the bottom water may be a prominent factor 
for variable Mo concentrations in euxinic sedi-
ments (Algeo and Lyons, 2006).

Here we introduce molybdenum isotope 
compositions of surface sediments as a proxy 
for minimum water column sulfi de concentra-
tions based on results from the modern Black 
Sea and present an application of this approach 
to euxinic basins of the Baltic Sea.

SAMPLES AND METHODS
This study discusses results obtained from 

surface sediments in the Black Sea taken with 
multicoring devices in 2001 and 2007 dur-
ing R/V METEOR cruises M51/4 and M72/5 
(Fig. 1). Station 6 samples were obtained in 
1997 during a cruise with R/V Petr Kottsov and 
results were taken from Nägler et al. (2005). 
Additional samples from the Baltic Sea (Got-
land and Landsort Deep), were collected dur-
ing the fi rst scientifi c MS MERIAN cruise. All 
Mo isotopic compositions and concentrations 
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were measured by multicollector–inductively 
coupled plasma–mass spectrometry (MC-ICP-
MS) (Nu instruments). The δ98/95Mo values are 
given as per mil deviations from an in-house 
standard solution (Siebert et al., 2001). The 
external reproducibility is better than ±0.1‰ 
(2 standard deviations). A detailed description of 
the analytical techniques was given in Siebert 
et al. (2001). Dissolved sulfi de concentrations 
were measured spectrophotometrically (Cline, 
1969). Bulk aluminum and manganese contents 
were measured after microwave or complete 
multiacid digestion using Varian or Thermo 
Electron ICP–optical emission spectrometry 
(OES) systems. TOC was calculated as the dif-
ference between total carbon and total inorganic 
carbon contents, measured using a CE elemen-
tal analyzer and a C-S Multi EA 2000 (Analytik 
Jena), respectively.

RESULTS AND DISCUSSION
All Mo data are presented in GSA Data 

Repository Table DR11 and in Figure 2. The 
sediment samples in this study represent a 
deep transect from the shelf break at ~80 m 
water depth to the deep basin at ~2100 m water 
depth. The surface sediments represent the fi rst 
0–1 cm below surface, while some deep-sea 
samples reach a few centimeters below surface 

(Table DR1). The main observation is the dif-
ference between Mo data of shallower sedi-
ments (83 m to 396 m water depth), deposited 
under oxic to anoxic to slightly euxinic condi-
tions and deeper, strongly euxinic sediments. 
This change in the Mo isotopic ratios is also 
refl ected in the Mo concentrations. Results 
for the different regions of the Black Sea are 
consistent (Table DR1), and therefore all Mo 
data are discussed together. The deep euxinic 
sediments >410 m water depth have a heavy 
Mo isotopic composition (2‰–2.4‰, 1.6‰ 
at 400 m) close to the modern seawater signal. 
Mo concentrations are highest at ~400–500 m, 
but decrease at greater depth, most probably 
due to concurrent water column depletion. 
Mo concentrations and isotopic compositions 
are thus not directly correlated (Fig. DR2; see 

footnote 1). In contrast, the shallower samples 
(<272 m water depths) are signifi cantly lighter 
in their isotopic composition, with δ98/95Mo 
values from −0.6‰ to +0.9‰ and much lower 
concentrations. All data were corrected for 
detrital contribution, assuming detritus to have 
[Al] = 8% (upper crust; Taylor and McLennan, 
1995), [Mo] = 1 ppm, and δ98/95Mo = 0.3‰. 
The detrital contributions are very low for all 
samples (3% of total Mo; Table DR1), except 
for one sample at 91 m water depth with 5% 
and two below the chemocline (Fig. 2; black 
and white dots) that are infl uenced by rela-
tively high detrital contributions of 11% and 
36%. While the latter are still dominated by 
authigenic Mo, the uncertainties involved in 
the detritus correction are signifi cant.

Several authors have shown fi eld evidence 
for Mo isotope fractionation processes in 
reducing sedimentary environments (McManus 
et al., 2002; Nägler et al., 2005; Poulson et al., 
2006; Siebert et al., 2006). Furthermore, theo-
retical calculations by Tossell (2005) showed 
that signifi cant equilibrium Mo isotope frac-
tionation is expected between different aqueous 
species, in particular between dissolved molyb-
date and thiomolybdates. As a consequence, the 
refl ected seawater Mo isotopic compositions in 
the strong euxinic sediments (below 400 m) is 
interpreted to refl ect complete Mo scavenging 
from the water column and deposition in the 
surface sediments. Under these conditions, any 
process-related fractionation would be erased 
because of complete Mo removal in an effec-
tively closed system, and the isotopic composi-
tion of the source is recorded. The lighter Mo 
isotopic compositions found in the shallower 
sediments, on the other hand, refl ect incom-
plete removal of Mo from the water column, 
accompanied by bulk Mo isotope fractionation 
yielding enrichment of the lighter isotopes in 
this particulate fraction.
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Figure 1. Map of Black Sea region showing sample locations (black dots). Inset shows Mo 
concentrations (open circles; Colodner et al. 1995) and dissolved sulfi de concentration in 
the water column (black circles; after Neretin et al., 2001).

1GSA Data Repository item 2008201, Table DR 1 
(elemental and isotope data), Figure DR1 (compari-
son of H2S water column profi le and bottom water 
H2S at various sites from cruises M51/4 and M72/5), 
and Figure DR2 (plotted Mo isotopic composition 
against the Mo concentration), is available online at 
www. geosociety.org/pubs/ft2008.htm, or on request 
from editing@geosociety.org or Documents Secre-
tary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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Figure 2. Left graph 
shows Mo concentrations 
in sediments along a deep 
transect. In middle graph, 
black circles are δ98/95Mo 
isotopic composition of 
recent (0–10 cm below 
surface) sediments cor-
related with bottom water 
sulfide concentrations 
(right graph; diamonds 
based on Neretin et al. 
[2001], recalculated as 
H2Saq following Almgren 
et al. [1976]). The two 
black and white dots are 
infl uenced by a detrital 
component (Table DR1; 
see footnote 1).
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An important question focuses now on the 
parameters controlling Mo scavenging in the 
Black Sea water column. Nägler et al. (2005) 
fi rst presented Mo isotope evidence from a Black 
Sea sediment core recovered from 396 m water 
depth, containing sediments deposited under 
limnic (oxic) and marine (oxic and anoxic) con-
ditions. Nägler et al. (2005) observed that Mo 
isotope fractionation is still preserved in the 
youngest samples (Unit I, Mo isotope values 
lighter than seawater at water depth of 396 m 
and euxinic conditions), in contrast to results 
reported by Arnold et al. (2004) from Black 
Sea sediments taken at a water depth exceed-
ing 2000 m. Nägler et al. (2005) put forward 
the hypothesis that Mo removal from the water 
column, and thus observable Mo isotope frac-
tionation, depends on the aqueous H

2
S (H

2
Saq) 

concentration. As a result, even under euxinic 
conditions an overall Mo isotope fractionation 
can occur if the sulfi dity is low. Wille et al. 
(2008) successfully used this assumption of a 
light Mo isotopic sink under weak euxinic con-
ditions to model an observed transient Mo iso-
topic signal across the Precambrian-Cambrian 
boundary. Erickson and Helz (2000) defi ned the 
action point of switch (APS), where water col-
umn H

2
Saq concentrations must exceed 11 µmol 

L–1 for thiomolybdate to dominate over molyb-
date (MoS

4
2– >> MoO

4
2–). Note that at pH val-

ues of ~8, the H
2
Saq content of 11 µmol L–1 is 

~100 µmol L–1 H
2
Stot. In the water column of the 

Black Sea the concentration of sulfi de increases 
with water depth and reaches the APS at ~400 m 
depth (Fry et al., 1991; Neretin et al., 2001) 
(Fig. 3A). The same H

2
S profi le is refl ected in 

the bottom-water samples taken during cruises 
M51/4 and M72/5 at various depth (Fig. DR1).

Thus, at shallower depths molybdate co exists 
with thiomolybdate. This causes Mo isotope 
fractionation between the water column and 
a particulate reservoir, even if conditions are 
euxinic. In agreement with this model, the sedi-
ments deposited in <400 m of water show Mo 
isotope fractionation and are depleted in the 
heavier Mo isotopes. Furthermore, the observed 
ratios can be reconciled with the theoretical 
calculations of Tossell (2005) for equilibrium 
fractionation between molybdate and thio-
molyb date. At water depths <200 m the most 
abundant species are MoO

3
S2– and MoO

2
S

2
2–, 

and at depths >400 m MoOS
3
2– and MoS

4
2– 

dominate (Fig. 3). The increasing Mo isotopic 
composition of MoO

4
2– through depth (Fig. 3B) 

refl ects the preferential incorporation of lighter 
Mo isotopes in the thiomolybdate species that 
are surface reactive and leads to the removal 
of the lighter isotope into the solid phase. Thus 
the data set presented here clearly supports the 
hypothesis of water column H

2
Saq control of the 

Mo isotopic composition recorded in euxinic 
organic-rich sediments. In particular, a mini-
mum H

2
Saq concentration above the APS of 

11 µmol L–1 is required for a complete fi xation of 
water column molybdate in the sediments. Note 
that suboxic continental shelf sediments gen-
erally have δ98/95Mo isotopic compositions 
between the minimum and maximum values of 
the Black Sea euxinic sediments (Siebert et al., 
2006, Poulson et al., 2006). The conclusion is 
that the seawater Mo isotopic composition does 
not just refl ect the balance between oxic and 

anoxic sedimentation. Rather, the Mo isotopic 
composition acts as a proxy for more stringent 
conditions, namely the balance between strongly 
euxinic sedimentation with sulfi dity above the 
APS, and all other environments having lower 
sulfi dity, from weakly euxinic to anoxic to 
oxic. This must be considered in models of past 
ocean anoxia reconstruction.

In addition to the dependence of Mo removal 
from H

2
Saq, we have to consider the possible 

infl uence of organic matter accumulation on 
total Mo accumulation (Algeo and Lyons, 
2006). A broad positive correlation between 
Mo isotope values and TOC in the sediments 
as well as H

2
Saq in the water column (Figs. 4A 

and 4B) is seen above the APS (188–410 m). It 
is likely to be a secondary consequence of bot-
tom water H

2
Saq broadly correlating with TOC 

in euxinic surface sediments. We argue, in line 
with the work of Erickson and Helz (2000) and 
Tossell (2005), that the closer correlation of 
Mo with H

2
Saq rather than TOC argues for a 
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primary control by the minimum sulfi de con-
centration in the water column (Fig. 4).

As additional modern examples, the results 
from surface sediments deposited in two 
euxinic  basins of the Baltic Sea are presented 
in Table DR1. The critical APS is not reached 
in the water columns of these basins (<3.1 µmol 
L–1 H

2
Saq). As a result, Mo is not completely 

removed from the water column, and the Mo 
isotopic ratio in the sediments is low relative 
to the seawater ratio. The overall fractionation, 
however, is smaller than in oxic Black Sea set-
tings, as expected from the trends in Figure 2 
and the low sulfi de concentrations in the Baltic 
water columns.

CONCLUSION
The complete Mo geochemical and isotopic 

shelf–deep-sea profi le of Black Sea surface sedi-
ments mirrors complete fi xation of Mo below 
a water depth of ~400 m and leads to a proxy 
transfer function, where complete Mo fi xation 
can only occur at water column aquatic sulfi de 
concentrations above the APS of 11 µmol L–1 
H

2
Saq. Below the APS, low sulfi de concentra-

tions in the water column cause fractionation 
in surface sediments. Consequently, reconstruc-
tions of past ocean anoxia should account for the 
balance between strong euxinic Mo sedimenta-
tion (i.e., with sulfi dity above the APS) relative 
to all other environments, from oxic to anoxic to 
weakly euxinic, not just by the balance between 
oxic and anoxic sedimentation.
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