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Instabilities and patterns in horizontally oscillating particulate suspension
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The mean flow and the linear stability characteristics of a two-dimensional particulate suspension, driven
horizontally via harmonic oscillation, are analyzed. A constitutive model based on the kinetic theory of granu-
lar materials, which takes into account the dissipative collisional interactions among particles as well as their
interactions with the interstitial fluid, is used; the effects of the interstitial fluid are incorporated in the balance
equations for the particle phase. Assuming that the suspension is thin along the vertical direction, the effects of
driving are incorporated into the governing equations in a mean-field manner. Using Floquet theory, a linear
stability analysis of the time-periodic mean flow indicates that the oscillatory suspension supports stationary-
and traveling-wave instabilities which correspond to particle banding patterns that are aligned parallel or
orthogonal or at an oblique angle to the driving direction. The effects of external driving parameters and
various system control parameters on the phase diagram of instabilities are studied. The fluid-particle interac-

tion is shown to be responsible for the emergence of traveling instabilities in this flow.
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I. INTRODUCTION

Granular materials, collections of macroscopic particles,
are ubiquitous in our daily lives and industrial processes.
There exist close analogies between dry granular flows and
liquid flows [1,2]. For example, recent experiments [3] have
confirmed that the patterns in Martian gullies can be repro-
duced by performing experiments with dry granular materi-
als. However, the presence of interstitial fluid significantly
complicates the dynamics of granular materials. Hydrody-
namic interactions lead to viscous drag and anisotropic long-
range interactions among particles [4] which are responsible
for the emergence of patterns in many flows. The fluid-
particle interaction also plays an important role in many geo-
physical problems such as sedimentation, erosion, and wind-
and water-driven granular flows. The former is the cause of
dune and shore-line formation as well as their migration
[5-8]. In the case of water currents over flat sand beds, the
ripples are seen to form if the flow rate exceeds a certain
threshold value [5,9]. Such underwater sand ripples also
form due to oscillatory flows, which are induced by the sur-
face waves in shallow water [10-13]. One of the most tech-
nologically important examples of particle-laden flows is a
fluidized bed. A uniform fluidization, the most desirable re-
gime for most industrial applications [14], turns out to be
prone to bubbling instability. Instabilities in fluidized beds
belong to an active area of research in the engineering com-
munity [14]. Recently, there have been a series of experi-
ments [15] to unveil the important role of air in various types
of granular flows. In this regard, one can try to understand
the role of air by incorporating the effect of air in a mean-
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field manner into the standard continuum equations for dry
granular flows.

To make progress in understanding the mechanisms re-
sponsible for pattern formation in a driven particle-fluid mix-
ture, one needs to understand the physics of fluid-particle
interactions from the viewpoint of predicting dynamical fea-
tures in particulate suspensions using macroscopic balance
equations. It would be worthwhile to investigate the flow and
stability characteristics of a fluid-particle mixture via linear
stability analysis. As a first step toward this goal, we have
focused on a model problem of a harmonically driven
particle-fluid mixture. The suspension is shaken horizontally
via a sinusoidal vibrator, representing a bulk forcing of the
suspension, i.e., the energy is pumped into the system uni-
formly. Since there are many unsettled issues regarding
boundary conditions in particulate flows [2], we assume that
the suspension is of infinite extent (in the horizontal plane),
and the effects of the oscillating bottom plate are incorpo-
rated into the governing equations in a mean-field manner.
The goal is to probe and understand the possible pattern
formation scenario in such a simple setup. It may be pointed
out that there are many linear stability works (see [2,4] for
reviews) on particulate flows with steady base states; how-
ever, the present effort is directed toward analyzing instabili-
ties in a time-dependent base state.

Drawing an analogy with recent works on rapid granular
flows [2,16] and suspensions [17,18], an effective continuum
model for a suspension of particle-fluid mixture is outlined in
Sec. II. Along with the standard mass and momentum bal-
ance equations for the particle phase, we consider an addi-
tional balance equation for the fluctuation kinetic energy of
the particles. The effects of fluid are taken into account in the
momentum equation for the particle phase as well as in the
fluctuation energy equation. Based on this coarse-grained
model, we analyze the mean flow and the linear stability
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characteristics of a harmonically driven suspension. The on-
set of instabilities is tied to the emergence of bandlike pat-
terns of particles that are aligned parallel and/or orthogonal
to the driving direction. The phase diagram for instabilities is
studied as a function of external driving parameters and vari-
ous system parameters. We close by discussing the limita-
tions of the present hydrodynamic model.

II. GOVERNING EQUATIONS FOR PARTICULATE
SUSPENSION

As mentioned before, the governing equations are moti-
vated by the theories of dry granular flows [2] which have
been successful in explaining pattern formations in different
prototypical flows [2,4]. We assume that the particle-fluid
mixture can be modeled as an effective continuum of the
particle phase, and the effect of fluid is taken into account via
certain interaction terms in the balance equations for the par-
ticle phase.

The balance equations for the mass, momentum, and fluc-
tuation energy of the particle phase are

(i v)— v (1)
19[+u. pP=—p -u,

J
p((9—t+u-V)u=—V-E+pg+Fd, (2)

d]—mp<£+u'V>T=—V~q—E:Vu+E—D—DU, (3)
2 "\t
respectively. Here p=p,¢ is the mass density of particles,
with p, being the material density of particles and ¢ their
volume fraction (i.e., the fraction of volume occupied by the
particles); u=(c¢) is the "macroscopic” velocity of the par-
ticles where ¢ is the instantaneous particle velocity; T=((c
—u)?/dim) is the mean square of the fluctuation velocity of
particles (i.e., the fluctuation kinetic energy of particles or
the pseudothermal energy), commonly known as the "granu-
lar” temperature; dim is the dimension. A separate balance
equation for 7 is needed since the transport coefficients de-
pend on 7. In the momentum balance equation, g is the
gravitational acceleration, F, the drag force due to interstitial
fluid, and 3 the stress tensor for the particle phase. In the
energy balance equation, the first term on the right-hand side
V- q represents the flux of pseudothermal energy, the second
term 2. : Vu the shear work, the third term E the total source
of fluctuation energy due to the hydrodynamic interaction
and bulk forcing, the fourth term D the loss of fluctuation
energy due to the inelastic nature of particle collisions, and
the last term D, the loss of fluctuation energy due to viscous
dissipation of the interstitial fluid. Note that E=E), + E; where
E;, represents the source of fluctuation energy due to the
hydrodynamic interaction between the fluid and the particle
phase, and E the source of energy due to bulk excitation (as
detailed in Sec. III A).

In the present model, the particle-fluid mixture is modeled
by the single-phase equations for dry granular flows, and the
effects of interstitial fluid phase are taken into account via

PHYSICAL REVIEW E 77, 041305 (2008)

three terms: (1) the drag force F; in the momentum equation,
(2) the viscous dissipation D,, and (3) the hydrodynamic
source of energy E), in the fluctuation energy equation. Since
F, and E, depend on the slippage (see Sec. II A 2) between
the macroscopic velocity of the particle phase and the fluid
velocity, the fluid velocity field (or the slippage velocity)
needs to be specified a priori.

It should be noted that the basis of the effective single-
phase description of a particle-fluid mixture hinges on the
assumption that the coupling between two phases is weak.
This assumption of weak coupling is strictly valid in the
limit of large Stokes number (the ratio between the particle
relaxation time and the external time scale), and hence this
model is more appropriate for a gas-particle suspension (see
Sec. III B for details). However, we believe that many dy-
namical features of a high-Stokes-number particulate suspen-
sion carry over to those of a low-Stokes-number suspension
too [19].

A. Constitutive model
1. Constitutive model for the particle phase

Here we use the theory of Lun ef al. [16] as the constitu-
tive model for the particle phase; this model as well as its
variants have been extensively used to investigate various
canonical problems in rapid granular flows [2].

The stress tensor and the heat flux for the particle phase
can be written as

S=[p- UV wl-2u8, )

q=-«VT, (5)

respectively, where p is the pressure, u the shear viscosity, ¢
the bulk viscosity, and « the pseudothermal conductivity of
the particle assembly, S is the deviatoric strain rate tensor,
and I is the unit tensor. The expressions for p, u, {, k, and
the collisional dissipation D are given by

pP= pprl(¢)7 (lu” é’) = ppdT]/z[f2(¢)7f3(¢)]’ (6)
k=p,dTfi($). D="LT(g), (7)

respectively, where d is the particle diameter, and the f;’s are
nondimensional functions of particle volume fraction that are
taken to be those for a dense system of hard spheres [16]:

J1(@) = (1 +4¢x),
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12
fs(p)==(1-e)x. (®)
N

Here, x(¢) is the contact radial distribution function, which
is taken to be of the following form [20]:

_1425¢+5.04°+45¢°
X(¢) - [1 - (¢/¢max)3]2/3

This expression agrees with the Carnahan-Starling function
almost perfectly up to a particle volume fraction of ¢=0.5
and diverges at the random close packing limit (¢,
=0.65).

)

2. Coupling with fluid

The constitutive model for the coupling terms in the
particle-phase balance equations is adapted from the theory
of Sangani er al. [18]. In the following we briefly outline
different terms and the reader is referred to the original paper
for further details.

The constitutive expression for the drag force for a system
of monodisperse particles is taken to be of the form

Fy= 2w, w)fy(¢) (10)
where
uyu-u="U (11)

is the slippage velocity between fluid and particle phases, 7,
is the relaxation time of a particle,

m

= , 12
" Smday (12)

with u, being the shear viscosity of the interstitial fluid, and
the nondimensional function fg is [21]

fo(#) = pR (&)

with

RA#)=— 0t (141501 -6). (13
(1-9)

Note that the first term in Eq. (13) represents the well-known
Carman-Kozeny correlation for a dense suspension. This ex-
pression for the drag function R,(¢) is assumed to be valid
for the whole range of volume fractions under homogeneous
flow as confirmed recently via lattice Boltzmann simulations
[21], and differs from the one suggested by Sangani er al.
[18], which is valid for ¢<<0.4. The drag function is directly
related to the permeability of the two-phase medium for
which an equation was derived by Brinkman [22] that is
valid for a dilute suspension. Brinkman’s formula was sub-
sequently improved by Kim and Russel [23] for the whole
range of particle volume fractions using asymptotic expan-

sions of pertinent governing equations.
The rate of viscous dissipation per unit volume due to the

presence of the interstitial fluid is [18]:
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D, = 215,(4). (14)
where
( 3p 135
(@) =3pl 1+ —=+——¢In p+11.264(1 -5.1¢
V2 64
+16.57¢*-21.77¢%) — ¢px In em>, (15)

where €, is the lubrication cutoff scale [18], which is pro-
portional to the ratio between the mean free path of the fluid
molecules and the particle diameter. The related viscous dis-
sipation function [18] R =f5,/3¢ can be thought of as an
effective drag coefficient of a sphere which is moving
through a fixed bed of particles in the presence of a mean
flow [23]. Tt can be verified [18] that Ry agrees with the
drag function [R; in Eq. (13)] up to the terms of O(¢ In ¢),
and the higher-order terms in Eq. (15) have been obtained by
curve-fitting the particle simulation results as discussed by
Sangani et al. The above constitutive expression (15) has
been verified [18] to hold up to a particle volume fraction of
¢=04.

The slippage between the fluid and the particle phase is
responsible for the generation of fluctuating kinetic energy

[18]:

p,d
E,= ﬁlﬂfm(d’), (16)
where U=(u;~u) is the slippage velocity and
fu(d)=——¢RE, ad R 1
(D) = —=¢R, an o= = .
7" 16vm ¢ " x(1+3.5Vp+5.9¢)

(17)

III. OSCILLATORY SUSPENSION

Consider a collection of particles on a plate (immersed in
a fluid), oscillated horizontally via a harmonic oscillation

x(t) = A sin(wt), (18)

where A is the amplitude of oscillation and w=2mxf is the
angular frequency of oscillation; the particle-fluid suspension
is assumed to be in a fluidized state via this “uniform” shak-
ing. In this paper, we restrict ourselves to an effective two-
dimensional suspension in the (x,y) plane of infinite extent,
with a thin layer of particles along the vertical direction; here
x is directed along the driving path and y is perpendicular to
it on the same plane, as shown schematically in Fig. 1.

A. Boundary conditions: Effective terms

Here we outline how to incorporate boundary conditions
at the oscillating plate. Note that the base plate is oscillating
with a velocity V,,(f)=Aw cos wt in the (x,y) plane. Since we
are considering a thin layer of particles, we can disregard this
velocity boundary condition at the plate but instead we as-
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FIG. 1. Schematic of a suspension of particles of diameter d
under horizontal oscillation. A is the oscillation amplitude and ®
=2f is the angular frequency of oscillation.

sume that the suspension is subjected to an accelerating force

dv
F,(t) = pEH =— pp¢Aw2 sin wt (19)

along the driving direction.

Within the thin-layer approximation, our suspension is
two dimensional [in the horizontal (x,y) plane], and disre-
garding the boundary conditions at the plate is equivalent to
adding two terms in the governing equations: (i) an acceler-
ating force F, in the x momentum equation, and (ii) an en-
ergy source term E| in the granular energy equation, which is
calculated in Sec. III A 1. While the first term is equivalent
to specifying the velocity boundary condition, the latter term
is equivalent to specifying a boundary condition on the
granular temperature at the plate.

1. Energy source due to uniform excitation

Here we estimate the amount of fluctuation energy that is
being pumped into the system via the shaker in terms of the
oscillation parameters (A and w) and the suspension param-
eters (¢ and T). For sinusoidal shaking, the mean velocity is
zero but the mean square of the plate velocity is

1(" 1 (7 A0
(V)= _f Va(1)dt = —f A2 cos? wr d = ——,
7Jo 7Jo 2

where 7=27/w is the period of oscillation. Assuming that
the suspension is uniformly shaken, the average shear rate
across a layer of height % is given by

(2
Wy _Ae
h \2h

and hence the shear stress experienced by the suspension is

Aw
S=pu X (average shear rate) = u| — |,
\2h

where w is the shear viscosity of the particle phase, which
can be taken as that discussed in Sec. II A 1. Assuming that
the suspension is characterized by a constant granular tem-
perature 7, an expression for the input fluctuation energy E,
(energy input per unit volume per unit time) is given by the
product of the shear stress and the average shear rate:
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E;=8§ X (average shear rate)

A’w?

d —
e Pp(ﬁ>f7(¢)\TA2w2, (20)

with f7 being a nondimensional function of particle volume
fraction,

1) =349, e

It must be noted that the above expression of E remains
valid as long as the suspension is uniformly shaken across its
height, which amounts to negligible inhomogeneity due to
gravitational compaction, which is the case if the suspension
is thin along the vertical direction. Heretofore, focusing on a
monolayer of suspension, we set h=d in Eq. (20).

B. Mean flow: Granular temperature and particle velocity

Since the suspension is of infinite extent in both x and y
directions, we can make the following assumptions on the
mean flow (base-state) quantities: ¢(x,z), u(x,7), and T(x,¢)
are spatially homogeneous, i.e., V(¢,u,T)=0.

It follows from the mass balance equation that d¢/dr=0,
i.e., the particle volume fraction ¢ is time independent. The
granular temperature is, however, time dependent which is
governed by

dT
Pp E=E—D_Dv- (22)

It has been verified that the source of granular energy due to
hydrodynamic interactions, Ej, is small compared to that
supplied via the uniform oscillation

E,<E,

if the slippage between the particle and fluid velocities is
small and/or if the Stokes number

St=wr, (23)

is large; hence E=E+E,~E,. Using tg=w™' and Tp=d’w?
as the reference time and temperature, respectively, the di-
mensionless granular energy equation simplifies to

ar oS f_‘)zﬁ} =
¢dt ——fS[T*+St fS\T*—<d 7. T, (24)

where T*: =T/d*®? is the nondimensional granular tempera-
ture. This equation has an exact solution,

1+ (Bl/ﬁz)e“”)

Tl L, -
T (1) = 2(,31 +By) + 2('81 B2)< 1= (By/Bye™

(25)
where
_ L fsf \/ 2 2f5f7)
B = —2 St_f5 ( 14+ +/1+4(A/d)"St fﬁu >0,
_ 1 f5u 1 \/ 2 2fif7)
Bh= —2 St_f5 ( 1 1+ 4(A/d)=St _f§U <0,
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L \/1 +4(A/d)25t2ff‘f7
2¢ St fiv

In the asymptotic time limit (z— ©°), this unsteady tempera-
ture field relaxes to a steady value:

L fs ( 1+\/1+4(A/d)23t2@>.
2 St fs £,

(26)

T2 (t — o) — Bi=

For the stability analysis in Sec. IV, we use this relaxed,
steady temperature field as the base state.

It is clear that the steady, spatially uniform granular tem-
perature can be obtained simply from a balance between the
input energy from the shaker and the net dissipation due to
the inelastic collision of particles and the viscous interaction
due to the interstitial fluid:

E=D+D,. 27)

In the limit of large Stokes number (St> 1), the collisional
dissipation dominates over the viscous dissipation:

D>7D, as

St — oo,

which corresponds to the limit of rapid flows of dry granular
materials for which the interaction with the interstitial fluid
can be neglected. Equating the power input with the inelastic
dissipation (E=D), we obtain

2
T= ?(%) dw*=T,,. (28)
5

On the other hand, for particles with perfectly elastic colli-
sions, the collisional dissipation is identically zero. Hence, in
this limit the input energy is balanced by the viscous dissi-
pation (E=D,), leading to

T= St( >f7d2 2=T,. (29)
d f5U

One of these two limiting solutions (28) and (29) provides an
upper bound on the steady granular temperature 7', depend-
ing on the relative dominance of viscous dissipation over
inelastic dissipation, and vice versa. For the general case, we
have a quadratic equation for T having a positive solution,
given by Eq. (26).

Figure 2 displays the variation of the steady granular tem-
perature T/d*w” with particle volume fraction (¢) for differ-
ent oscillation frequencies. The amplitude of oscillation is
set to A/d=2, with other parameters ¢=0.9, d=1.0 mm,
and p,=2.5 gm/cm?. (With increasing A/d, T increases,
with other parameters being fixed.) The properties of the
interstitial fluid are taken to be those of air and water, respec-
tively, in Figs. 2(a) and 2(b). For a given oscillation strength,
the granular temperature decreases sharply with increasing
¢ and reaches a plateau in the dense limit. Comparing
Figs. 2(a) and 2(b), we find that for the same driving and
the particle parameters the granular temperature is lower in
water than that in air. Since the particle relaxation time is
inversely proportional to the fluid viscosity, the larger the
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FIG. 2. Variation of the granular temperature 7" with particle
volume fraction for (a) air (pf=1.165><10‘3 g/cm’; n=1.86
X107 g/cm/s), and (b) water (p=1.0 g/em®; p,=8.0
%1073 g/cm/s), at different shaking frequencies with A/d=2. For
air, the Stokes numbers are St=46.9 (1 Hz) and 469 (10 Hz); for
water, St=1.09 (1 Hz) and 10.9 (10 Hz). Material parameters are
¢=0.9, d=1.0 mm, and p,=2.5 g/cm’.

viscosity the smaller the Stokes number, leading to a lower
granular temperature in water. With parameter values as in
Fig. 2, the Stokes numbers for a gas-particle suspension are
46.9 and 469.1 at f=1 and 10 Hz, respectively; the corre-
sponding Stokes numbers for a water-particle suspension are
1.1 and 10.9, respectively, Since the adopted constitutive
model is valid in the limit of large Stokes number for which
the coupling between the fluid and particles is weak, our
results are, therefore, more appropriate for a gas-particle sus-
pension.

To obtain an expression for the mean velocity of the par-
ticles, we integrate the x momentum equation,

du
Py~ =

o F,+F,

to yield
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u(t) =Aw cos wt — <£>wf U (r)dt,
¢St

which boils down to the plate velocity if the drag force is
zero (F;=0). As mentioned before, in the present modeling
approach we need to specify the slippage velocity, which is
time periodic, U ()=U cos wt, where the magnitude of the
slippage velocity U is unknown. Therefore, the mean veloc-
ity of the suspension is

@=<é>cos wt—(M)(ﬂ)sin wt, (30)
dw d St dw

where R,(¢) is the drag function, given by Eq. (13).

C. Nondimensional scales

We use the following reference scales for nondimension-
alization:

LR=d, tR=w_l, UR=LR/tR=d(.U, TR=U12?' (31)

The dimensionless forms of the stress tensor 2, the drag
force F,, the granular heat flux q, the bulk energy input E,
the inelastic dissipation D, and the viscous dissipation D, are
given by

e[ - OV - 24
ppUR
% Fd %
F,=————=—(u;-u"f,,
‘" p,UslLy AL
q*_ q% ——K*V*]—*’
PpUkR
sk Es [
s 3 f7VT*?
pUklLe
. E, 1 U*?

*_ D - fﬁ 3/2
ppUrlly =7
o Do Lo

and the dimensionless expressions for the pressure, shear vis-
cosity, bulk viscosity, and thermal conductivity are

* p * M V’_
pr=—m=HT, w= =T,
ppUIZQ ppLRUR
= ¢ =T, K=—=fT
— = 3 / N = — 4 / N
ppLrUR ppLrUR

respectively. In the following, the asterisks on dimensionless
quantities are dropped for simplicity.
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IV. LINEAR STABILITY: FLOQUET ANALYSIS

For the linear stability analysis, each of the dynamical
variables is decomposed into a base state (i.e., the mean flow,
denoted by a superscript 0) and a small-amplitude perturba-
tion (denoted by a prime) as

P(x.y.0) = ¢+ ' (x,y.1),
u(x,y,0)=u’+u'(x,y,1),

T(x,y,0) =T+ T' (x,,1),

and the governing equations are linearized about the mean
flow, by retaining terms which are linear in the perturbation
variables and their derivatives. This results in a set of linear
partial differential equations

). ¢ ,

P ox’, (32)
where X'(x,y,f)=(¢’,u’,T") represents the vector of state
variables, and Q is the associated linear partial differential
operator that depends on the mean flow and the driving pa-
rameters as detailed in the Appendix.

The stability operator Q(¢) is fime dependent, but trans-
lationally invariant in x and y (the latter being a consequence
of our assumption that the suspension is of infinite extent in
both x and y directions). The translation invariance of Q
allows us to seek a normal mode solution for the perturbation
variables,

(¢ u' 0" T N, y,0) = [ §,04,0,T](1) e+ (33)

where k, and k, are the wave numbers for the x and y direc-
tions, respectively. Substituting this ansatz into the linear
perturbation equations in the Appendix, we obtain a set of

ordinary differential equations

dX )

— =L(1)X, 34

5 =L (34)
with £(r)=L(¢+27) being a time-periodic matrix. The sta-
bility matrix £(f) can be decomposed into time-independent
and time-dependent parts:

L:(t) =£0+£1(t), (35)

where the time periodicity of £,(f)=L(t+2m) arises from
the convective terms in each equation, and the drag and ac-
celeration terms (F), and F)) in the x momentum equation.

Since the stability matrix £(r) is time periodic, we use
Floquet theory [24,25] to ascertain the instability or stability
of the flow. More specifically, we need to determine the Flo-
quet exponents s; (j=1,2,3,4) of L(z) using the fundamen-
tal solution matrix [25,26] of Eq. (34) which is calculated
numerically [26]. The instability criteria are as follows: (i) if
the real part of any Floquet exponent [say, Re(s;)] is positive
(negative), then the flow is unstable (stable); (ii) if there is a
Floquet exponent Re(s;)=0 with multiplicity greater than 1,
then the flow is unstable. For details on Floquet theory, the
reader is referred to Coddington and Levinson [25].
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V. RESULTS AND DISCUSSION
A. Disturbances with k,=0: Channel modes

Here we consider disturbances for which there is no varia-
tion along the driving direction, i.e., d/dx(.)=0. This corre-
sponds to disturbances with modulations along the y direc-
tion (i.e., orthogonal to the driving direction), and such
disturbances can aptly be called "channel” modes since they
lead to channelization in density (i.e., alternate layers of
high- and low-density bands along the y direction) in an
otherwise uniform system. For this case, the linearized dis-
turbance equations are

—— ==, 36
o ¢ oy (36)
du’ Fu'

4’0;:#0_& T+ Fyd +Foyd', (37)

v’ ' aT' v’

0 0 0 0 0

— =P P+ 2 +\)—, (38
d)z?t pd’ﬁy pT&y 2u )&y (38)

T’ dv’
# =KV~ poa—y +(Ey—Dy-D) )¢’

+(E3-DY-D 1. (39)

Note that the time periodicity due to convective terms van-
ishes for k,=0, but the perturbation equations remain time
periodic due to the drag and acceleration terms in the x mo-
mentum equation. For all results below, the slippage velocity
is taken to be a constant, U/dw=1.0, and the qualitative
nature of our results remains the same with a different nu-
merical value of the slippage velocity.

A set of phase diagrams in the (¢,k,) plane is shown in
Fig. 3 for three different oscillation amplitudes A/d. The
oscillation frequency is set to f=1 Hz, with other parameters
as in Fig. 2(a) and the interstitial fluid being air. In each
panel, the contours of positive growth rate of the most un-
stable mode [sﬁ:supj Re(s;)>0] are shown, along with the
neutral stability contour (i.e., the one with zero growth rate,
s'=0) that demarcates the regions of stable and unstable
flows. For A/d=2 in Fig. 3(a), it is observed that the flow is
unstable only at low volume fractions for a range of trans-
verse wave number k,. Note that the instability is stationary
in nature since the corresponding phase speed is zero (not
shown). In Fig. 3(b), the neutral contour for A/d=2 has been
superimposed (denoted by the thick solid line) on the phase
diagram for A/d=10. Comparing the two neutral contours
for A/d=2 and 10, we find that the size of the unstable zone
has decreased substantially with increasing A/d. With a fur-
ther increase in A/d to 50 [Fig. 3(c)], however, the size of
the unstable zone remains relatively unaffected, but the
growth rate increases. The variations of the growth rate of
the most unstable mode (si) with transverse wave number k,
are shown in Fig. 4 for different A/d at a particle volume
fraction ¢=0.1; other parameters are as in Fig. 3. It is ob-
served that the flow is unstable for a range of k, for each
A/d; increasing the value of A/d from 10 to 50 decreases the
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FIG. 3. Effect of driving amplitude A/d on the phase diagram in
the (¢,k,) plane for k,=0 at f=1 Hz. A/d= (a) 2; (b) 10; (c) 50.
In each panel, the contours of positive growth rates are displayed
along with the neutral contour (zero growth rate). Thick solid line in
(b) represents the neutral contour for A/d=2. Material parameters
are as in Fig. 2(a) and the interstitial fluid is air.

range of unstable wave numbers marginally, but the maxi-
mum growth rate increases by about a factor of 5.

The effect of oscillation frequency on the observed insta-
bility is shown in Fig. 5(a). For this plot, f=10 Hz, with
other parameters as in Fig. 3(a); the thick line in Fig. 5(a)
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FIG. 4. Effect of driving amplitude A/d on the variation of the
growth rate of the most unstable mode with transverse wave num-
ber k, for k,=0, f=1 Hz, and ¢=0.1. Other parameters are as in
Fig. 3.

denotes the neutral contour for f=1 Hz. As in the case of
increasing A/d, the size of the unstable zone in the (¢,k,)
plane decreases with increasing f; with further increase in f
to 50 Hz (not shown), the unstable zone remains the same
size approximately. For all cases, the instability is stationary.
The variations of the growth rate of the most unstable mode
with transverse wave number k, are shown in Fig. 5(b) for
f=1, 10, and 50 Hz at a particle volume fraction ¢=0.1.
Recall that the reference time scale for nondimensionaliza-
tion is w'ocf!. Therefore, the instability growth rate in-
creases with increasing shaking frequency f as is evident in
Fig. 5(b).

To summarize, the oscillatory suspension admits a station-
ary instability if the particle volume fraction is below some
critical value (¢=¢.~0.15). This instability corresponds to
alternate layers of high- and low-density bands of particles,
with the particle bands being aligned parallel to the driving
direction (since k,=0). In other words, the predicted instabil-
ity would lead to channel formation (channelization) along
the driving direction, and hence we call it the channel-mode
instability.

B. Disturbances with k, # 0: Oblique modes

Here we present results for oblique disturbances having
variations in both x and y directions (k,,k,#0). A special
case with k,=0 will also be discussed for which the particle
bands are orthogonal to the driving direction.

The contours of the most unstable growth rates in the
(k,,k,) plane are shown in Figs. 6(a)-6(d) for four particle
volume fractions $=0.05, 0.1, 0.3, and 0.5, with driving pa-
rameters being set to A/d=2 and f=1 Hz. In Figs. 6(a) and
6(b), it is observed that the flow is unstable for a range of k,
and k, at long wavelengths. Recall that the flow is unstable to
k,=0 modes at ¢=0.05,0.1 [Fig. 3(a)] which is evident in
Figs. 6(a) and 6(b), but is stable for ¢> ¢.~0.15. The in-
teresting finding is that the flow can be unstable even for ¢
> ¢, for a range of k, at k,=0 as seen in Figs. 6(c) and 6(d).
With increasing ¢, the size of the unstable zone in the (k,,k,)

PHYSICAL REVIEW E 77, 041305 (2008)

0.1

0.08f

0.02f,

0.02 0.04 0.06 008 0.1 0.12 0.14

(@)

0.03

0.025

0.02

0.015

0.01

Growth Rate

0.005

0

-0.005

-0.01
0 0.02 0.04 0.06 0.08 0.1

(b) y

FIG. 5. (a) Phase diagram in the (¢,k,) plane for k,=0 and
A/d=2 at f=10 Hz; the thick solid line repfesents the neutral con-
tour for f=1 Hz. (b) Effect of driving frequency f on the variation
of the growth rate of the most unstable mode with &, for k,=0 and
Ald=2 at ¢=0.1.

plane increases marginally [Figs. 6(c) and 6(d)]; the growth
rate of the most unstable mode also increases with increasing
¢ as is evident in Fig. 7(a), which displays the variation
of the growth rate of the most unstable mode with k,. From
the corresponding phase speed (cph=sf/ \J'kf+k§, where sﬁ is
the imaginary part of the least stable Floquet mode) varia-
tions in Fig. 7(b), we find that the observed instabilities are
due to traveling waves; this conclusion holds for all insta-
bilities with k,#0 (such as in Fig. 6). Note that the phase
speeds are, in general, higher for denser flows. For both
Figs. 7(a) and 7(b), k,=0.02 and the other parameters are as
in Fig. 6(c).

The effects of driving amplitude and frequency on ob-
served instabilities can be ascertained from Figs. 8(a) and
8(b), respectively; for both plots, ¢=0.3 and ¢=0.9. For Fig.
8(a), the frequency is set to f=1 Hz and the amplitude is
varied, while for Fig. 8(b) the amplitude is A/d=2 and the
frequency is varied. For both cases, the size of the unstable
zone in the (k,,k,) plane shrinks and approaches zero with
increasing driving strength. Therefore, the traveling instabili-
ties with k,# 0 will disappear at high-amplitude and high-
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FIG. 6. Phase diagrams in the (k,,k,) plane for A/d=2 and f=1 Hz. ¢= (a) 0.05; (b) 0.1; (c) 0.3; (d) 0.5. Other parameters are as in
Fig. 3 and the interstitial fluid is air. In each panel, the contours of positive growth rates are displayed along with the neutral contour (zero

growth rate).

frequency oscillations. This is in contrast to the channel-
mode instability (k,=0 and k,#0, ¢<¢.~0.15) which
becomes stronger for high-amplitude and high-frequency os-
cillations.

It may be noted that, for modes with &, # 0 and k,=0, the
disturbances have variations only along the x direction, and
hence such modes are responsible for the formation of par-
ticle bands, orthogonal to the driving direction; for nonzero
values of both k, and k, the particle banding is oblique to the
driving direction. The orthogonal particle bands are reminis-
cent of the ripples (i.e., peaks and valleys of particle density
along the driving direction) in a sand bed under an oscilla-
tory driving force.

C. Factors responsible for instability

Since there are many control parameters in the present
problem, here we carry out a parametric study to isolate fac-
tors that are responsible for the predicted instabilities.

Figure 9(a) shows the phase diagrams in the (¢,k,) plane
for two restitution coefficients e=0.7 and 1, with pérameter
values as in Fig. 3(a). For a comparison, the neutral contour
for e=0.9 is also superimposed, denoted by the thick solid

line. It is seen that the suspension remains unstable (shaded
region) even in the elastic limit e=1; decreasing the value of
e increases the size of the unstable zone in the (¢,ky) plane
and the growth rates are also larger. These overall observa-
tions hold also for instabilities with k., # 0 modes as is evi-
dent in Fig. 9(b). We can conclude that the inelastic dissipa-
tion is not necessary for the onset of these instabilities;
however, the strength of instabilities increases with increas-
ing inelasticity. The last effect mirrors a similar observation
on instabilities in dry granular shear flows [26-28].

The effects of viscous dissipation on observed instabilities
are shown in Figs. 10(a) and 10(b). The shaded zone in each
panel, for which the viscous dissipation is set to zero, is
unstable which should be compared with the corresponding
neutral contour (thick line) for nonzero viscous dissipation. It
is clear that the inclusion of viscous dissipation makes the
flow unstable for a larger range of parameters. On the whole,
the effects of viscous dissipation on these instabilities mirror
that of collisional dissipation.

Lastly, we probe the effects of the drag force. The onset of
the channel-mode instability (k,=0) is not influenced by the
perturbation drag force (F)) which was verified by setting
the drag force to zero in the stability equations; the pertur-
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FIG. 7. Variations of the (a) growth rate and (b) phase speed of
the most unstable mode with k, for k,=0.02 at different ¢. Other
parameters are as in Fig. 6(c).

bation acceleration force (F L,l) also does not influence this
instability. This can be proved analytically: in the absence of
F) and F,, the x momentum equation (37) gets decoupled
from the other three stability equations. For this case, the
streamwise velocity perturbation decays as

u' (1) =u'(0)exp(— tk)z,,uo/df)) =u'(0)exp(-1/7,), (40)

with a decay rate 7,'=(u’k;/¢"); hence the observed insta-
bility arises due to the coupling among perturbations in den-
sity (¢'), transverse velocity (v'), and granular temperature
(T"). Tt is clear that the drag force does not influence the
channel-mode instability. In contrast, however, the traveling-
wave instabilities (k,#0) owe their existence to the drag
force. This is shown in Fig. 11, with parameter values as in
Fig. 6(c). The size of the instability zone in the (k,,k,) plane
diminishes with decreasing magnitude of the drag force, and
the flow becomes stable when the drag force is set to zero.
Since the drag force is linearly proportional to the slippage
velocity [F,oc U, Eq. (10)], the above conclusions are di-
rectly tied to the slippage velocity too. Therefore, the slip-
page velocity (and hence the drag force) between the particle
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FIG. 8. Effects of driving parameters on phase diagrams in the
(ky,ky) plane for ¢=0.3. Only neutral contours are shown: (a)
A/d=2 (solid), 5 (dot-dashed), 10 (dotted) with f=1 Hz; (b) f
=1 Hz (solid), 5 Hz (dot-dashed), 10 Hz (dotted) with A/d=2.
Other parameters are as in Fig. 6(c).

phase and the fluid is responsible for the emergence of
traveling-wave oblique (k, # 0) instabilities.

VI. SUMMARY AND OUTLOOK

Drawing on analogies with the theories of rapid granular
flows [2,16] and rapid suspensions [17,18], we have outlined
an effective continuum model for a particulate suspension.
The balance equations for the particle phase have been aug-
mented by certain interaction terms for the fluid phase, leav-
ing aside the balance equations for the fluid phase altogether.
The present continuum model is a "higher-order” model since
we have an additional balance equation for the fluctuation
energy of the particle phase. We considered a monolayer
suspension of infinite extent which is driven harmonically in
the horizontal plane; the effects of the oscillating plate are
taken into account in the governing equations in a mean-field
manner. The mean flow of this oscillatory suspension is char-
acterized by a time-dependent granular temperature, having
no spatial gradient; this unsteady temperature relaxes to a
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FIG. 9. (a) Effect of restitution coefficient on the phase dia-
grams in the (¢,k,) plane: parameters as in Fig. 3(a), except for e
=0.7 for dotted contours and e=1 for the shaded zone. (b) Effect of
restitution coefficient on the phase diagrams in the (k,.k,) plane:
parameters as in Fig. 6(c), except for e=0.7 for dotted contours and
e=1 for the shaded zone. The thick line in each panel represents the
neutral contour for e=0.9.

steady value in the asymptotic time limit. Increasing the
shaking strength increases the granular temperature of the
suspension, implying that the suspension is more fluidized. It
should be noted that, since our adopted constitutive model is
valid at large Stokes’ number, our results are more appropri-
ate for a gas-particle suspension.

While there are many linear stability works (see [26-28],
and for reviews [2,4]) on particulate flows with steady mean
flows, the present work is directed toward analyzing insta-
bilities in a time-dependent mean flow. Since the base state
of our suspension is time periodic, we have used Floquet
theory to determine stability characteristics of this flow. Our
results indicate that the oscillatory suspension is unstable to
modes with k,=0 (i.e., disturbances having no variation
along the driving direction) for a range of transverse wave
number k, if the particle volume fraction is below a critical
value (¢p<¢p.~0.15). The disturbances with k,=0 and k,
# 0 correspond to the banding of particles parallel to the
driving direction, leading to channel formation (i.e., alternate
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FIG. 10. (a) Effect of viscous dissipation on the phase diagrams
in the (¢,k,) plane. Parameters as in Fig. 3(a), except that the
viscous dissipation term (D,) is zero, for which the flow is unstable
in the shaded zone. (b) Effect of viscous dissipation on the phase
diagrams in the (k,,k,) plane. Parameters as in Fig. 6(c), except that
the viscous dissipation term (D,) is zero, for which the flow is
unstable in the shaded zone. The thick line in each panel represents
the neutral contour for nonzero viscous dissipation.

layers of high- and low-density particle bands). This
channel-mode instability, which is stationary in nature, be-
comes stronger with increasing amplitude and frequency of
oscillation.

For general disturbances, we found that the flow is un-
stable even at higher particle volume fractions to traveling-
wave disturbances with k,=0 and k, # 0 or a combination of
k, and k, (oblique disturbance). These traveling-wave insta-
bilities correspond to band formation perpendicular to the
driving direction (k,=0 and k,#0) or at an oblique angle to
the driving direction (k,,k,#0); they disappear at high-
amplitude and high-frequency oscillations which is in con-
trast to the channel-mode instability.

The present work clearly underscores the important role
played by the interstitial fluid on pattern formation in a
model oscillatory suspension. While the stationary channel-
mode (k,=0) instability requires both particle-particle and/or
fluid-particle interaction terms (D and D,) in the granular
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energy balance equation, the traveling-wave instabilities (k,
#0) owe their existence to the fluid-particle drag force (F,)
in the momentum equation. These results could be checked
via molecular dynamics simulations of an oscillatory
particle-fluid suspension. Such an exercise would help to un-
derline the range of validity of the proposed model.

The inclusion of an additional set of balance equations for
the fluid phase would be the next step in the hierarchy of
model development. Possible implications of the present sta-
bility results for ripple formation under oscillatory flow [29]
can then be explored by solving the resultant mathematical
problem with appropriate boundary conditions [30]. Never-
theless we believe the problem formulated here provides a
suitable starting point to study more complex phenomena
associated with pattern formation in driven particle-fluid
mixtures.

One limitation of our model is the assumption that the
particle-fluid mixture is already in a fluidized state. (This
issue is inherent in all theories of rapid granular flows which
are the starting point of our model [2].) Consequently, our
model is unable to predict any lower threshold on driving
parameters (A/d and f) beyond which the predicted instabili-
ties would appear. The existence of a lower threshold has
been observed in laboratory experiments [9] on the oscilla-
tory flow over a sandy layer, which is, however, different
from our uniformly oscillating suspension. Nevertheless, the
above possible shortcoming of our model can be rectified in
two ways. First, we could assume that the state of uniform
fluidization occurs when the driving parameters (A/d and f)
exceed some threshold value, and hence the energy source
term (20) will vanish if Aw is small enough [compared to
L/ 7, say, which translates into a Stokes number St=(L/A),
where L is some length scale]. Second, we could use a
Bingham-type constitutive model for the stress tensor of the
particle phase. These important issues, along with numerical
and experimental verification of predicted instabilities, will
be taken up in future studies.
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APPENDIX: LINEARIZED PERTURBATION EQUATIONS

The linearized mass, momentum, and energy balance
equations are

¢ ¢’

ou’ v’
0 0 0
+u’()y—=—¢’'— - p’—, Al
at u()o"x d)o"x d)&y (Al
3 d g’ aT
0 0 2
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0,10
+ +\ , A3
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d Jd du' v’
B2 et ) ovir 22
at ax ox  dy
0 0 0\ 17
+(E3-DY-D )T (A4)
The linear perturbation in the drag term is given by
’ dFd ' 0 ' . 0 -
Fd=(%)¢w¢ =Fy,¢' with Fy,=St"'fo,Ucost,
(AS)
and the linearized acceleration force term is
F =F’,¢ with F°,=— Al t (A6)
«=Fag wi aw="\7 sin f.

Both these terms are time periodic (with a period 277) and so
is the base state mean velocity:

u’(r) = (%)cos t— (%) Usint. (A7)
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