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Stability of mixed convection in an anisotropic vertical porous channel
P. Bera and A. Khalilia)

Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany

~Received 18 January 2001; accepted 18 January 2002; published 19 March 2002!

This paper addresses the stability of mixed convective buoyancy assisted flow due to external
pressure gradient and buoyancy force in a vertical fluid saturated porous channel with linearly
varying wall temperature. The porous medium is assumed to be both hydrodynamically and
thermally anisotropic. Two different types of temperature perturbations,~i! zero temperature and~ii !
zero heat flux, have been considered to study the effect of anisotropic permeability and thermal
diffusivity on the flow stability. The stability analysis indicated that the least stable mode is
two-dimensional. Furthermore, the results show that for the same Reynolds number, the fully
developed base flow is highly unstable~stable! for high ~low! permeable porous media as well as for
a porous medium with small~large! thermal diffusivity ratio. Depending on the magnitude of all
parameters studied, three types of instabilities~shear, thermal, and mixed instability! occurred. The
transition of instability from one type to another took place smoothly, except when the permeability
ratio exceeded 6. Based on the value of the permeability ratio, the flow in an anisotropic medium for
a specific Reynolds number may be either more or less stable than the flow in an isotropic medium.
In addition, the fully developed flow is more stable for relatively small values of the modified Darcy
number than for larger values. The effect of Brinkman as well as Forchheimer terms are negligible
for the set of other parameters studied here. In contrast to a pure viscous fluid or an isotropic porous
medium, which are characterized by unicellular convective cells, in anisotropic porous media
convective cells may be unicellular or bicellular. The stability analysis of mixed convection in
channels filled either with a viscous fluid or with an isotropic saturated porous medium may be
obtained as special cases of the general study presented here. ©2002 American Institute of
Physics.@DOI: 10.1063/1.1460879#

I. INTRODUCTION

In recent years, much work has been dedicated to the
area of convective heat transfer in porous media because of
its relevance to a variety of situations occurring in engineer-
ing and nature. Among these works, natural and forced con-
vection studies occupy the majority of investigations. The
interfacial area of mixed convection which connects natural
and forced convection, in comparison, has not been given
due attention in porous media. Mixed convection problems
in porous media occur very often in nature, e.g., in studies of
shallow-water and deep-sea hydrodynamics. One important
example of mixed convection in shallow-water seas is given
by hydrothermal vents by which hot, mineral-rich water
ejects through a permeable seabed.1–3 This problem consti-
tutes a very new research area, and theoretical investigation
of it has been largely overlooked. For fluid environments,
however, there are many papers which deal with mixed con-
vection, for example, in connection with fluid flow in a ver-
tical pipe ~Scheele and Hanratty,4 Kemeny and Somers,5

Yao,6,7 Su and Chung8!, in a vertical annulus~Yao and
Rogers9!, and in a vertical channel~Suslov and Paolucci,10

Chen and Chung11!.
Few investigations of mixed convection through a po-

rous medium have been reported by Combarnous and Bia12

on the effect of flow on the onset of convection, and by
Cheng, who investigated in several studies the effect of
mixed convection about inclined surfaces,13 about a horizon-
tal flat plate embedded in a porous medium with aiding ex-
ternal flow and constant heat flux,14 and about a horizontal
surface with a heat flux.15 For the same geometry, Lai and
Kulacki,16 Renken and Paulikakos17 have given an estima-
tion of the boundary layer thickness via similarity solution
and experiments, respectively.

More recently, Prasadet al.18 studied a horizontal porous
layer heated from below and investigated numerically the
conditions for forced flow and buoyant effects for a wide
range of Rayleigh and Peclet numbers. Most of the investi-
gations considering the effect of anisotropy have been car-
ried out for the onset of natural convection in horizontal
porous layers. For example, Castinel and Combarnous19 de-
rived the criterion for the stability of a porous medium which
is anisotropic in permeability. The same was given by
Ephere20 when the diffusivity is regarded as anisotropic, and
in a combined form of anisotropic permeability and thermal
diffusivity by Khalili et al.21 Later, Tyvand22 accounted for
the effect of hydrodynamic dispersion caused by a uniform
basic flow. The onset of convection as well as slightly super-
critical convection through anisotropic multilayered porous
media were investigated by McKibbin and Tyvand.23 The
onset of Rayleigh–Be´nard convection in a horizontal porous
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layer with anisotropic permeability was investigated by Ty-
vand and Storesletten.24 These works have not yet been ex-
tended to vertical porous geometries.

The present paper is concerned with studying the effect
of anisotropy in permeability and thermal diffusivity on the
stability of mixed convection in a vertical channel filled with
a porous medium. Because the response of the stability of the
system depends on the nature of the boundary condition, two
types of boundary conditions, namely constant temperature
as well as constant heat flux, are maintained at the bounding
vertical channel walls. An outline of the paper is as follows:
the mathematical formulation is given in Sec. II, which con-
tains details of the stability analysis starting from the equa-
tions for the basic state, the perturbed equations, and their
solution followed by the energy analysis. Section III dis-
cusses the effect of different anisotropic parameters on the
stability of the fluid flow and heat transfer. Finally, some
important features of the analysis are summarized in Sec. IV.

II. MATHEMATICAL FORMULATION

We consider a fully developed mixed convection flow
caused by an external pressure gradient and a buoyancy force
in a vertical porous channel of width 2L ~see Fig. 1!. The
wall temperature (Tw) is linearly varying withx asTw5T0

1Cx, whereC is a positive constant andT0 is the upstream
reference wall temperature. The gravitational force is aligned

in the negativex direction. The thermophysical properties of
the fluid are assumed to be constant except for density de-
pendency of the buoyancy term in the momentum equations.
The porous medium is saturated with a fluid that is in local
thermodynamic equilibrium with the solid matrix. The me-
dium is anisotropic in permeability and thermal diffusivity.
The longitudinal and transverse components of the perme-
ability as well as thermal diffusivity are denoted byKx , Ky

andkx , ky , respectively. In expressing the equation for the
flow in the porous medium, it should be noted that the Darcy
model presents a linear relationship between velocity of dis-
charge and the pressure gradient. As the Darcy model does
not hold when the flow velocity is not sufficiently small, or
when the permeability is high, extensions to this model
known as Brinkman-extended or Forchheimer-extended
models exist.25,26 In short, the Brinkman term is found to be
needed for satisfying a no-slip boundary condition at solid
walls, whereas the Forchheimer term accounts for the form
drag. Also in analogy with the Navier–Stokes equations, the
Darcy model has been extended by including the material
derivative.27 The necessity of the simultaneous inclusion of
all or some of these extensions has been discussed in the
literature.28–35Therefore, in order to cover extreme values of
input parameters~i.e., high permeability, high velocity, and
low thermal diffusivity!, the governing equations for the flow
and heat transfer in Cartesian coordinate system (y,x,z) are
given by

“"V50, ~1!

r fF1

«

]V

]t
1

1

«2
V"“V1
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iK% i1/2
uVuVG
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r5r f$12bT~T2Tw!% ~4!

with K% andk% being the second-order permeability and ther-
mal diffusivity tensors, respectively, given by

K% 5F Ky 0 0

0 Kx 0

0 0 Kz

G , k% 5F ky 0 0

0 kx 0

0 0 kz

G .

In the above equations,V(v,u,w), P, T, andr f are the flow
velocity, pressure, temperature and fluid density, respec-
tively. Further, g, «, cF , m̃, m f , bT , and s
5(rc)m /(rcP) f are the gravitational acceleration, porosity,
form drag coefficient, effective viscosity, fluid viscosity,
volumetric thermal expansion coefficient, and ratio of heat
capacities, respectively. The variablec denotes the specific
heat, and the subscriptsm and f stand for porous ‘‘medium’’
and ‘‘fluid,’’ respectively.

Using nondimensional quantitiesx* 5x/L, P*
5PL2/r f ñ

2, t* 5t ñPg /L2, V* 5VL/ ñPg , Q5(T
2Tw)/CL Pr* Pg , Eqs.~1!–~4! become~asterisks neglected!

FIG. 1. Schematic of the problem considered.
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where Pg52dP/dx is the pressure gradient, Da*
5m̃Kx /m fL

2 is the modified Darcy number, F
5cFLPg /Kx

1/2 is the Forchheimer number, Ra
5gbTCL4/ ñkx is the Rayleigh number, Pr* 5 ñ/kx is the
modified Prandtl number,ñ is the effective kinematic viscos-
ity, k15ky /kx and k25kz /kx are thermal diffusivity ratios.
Further, the parameterK0 is given by

K05
iK% i1/2

Kx
1/2

and

M% 5F K1 0 0

0 1 0

0 0 K2

G
is the modified permeability tensor, where

K15Kx /Ky , K25Kx /Kz .

For the quantityiK% i1/2, the infinity norm defined by

iK% i5max
i

(
j 51

3

uKi j u

is taken.

A. Basic state

The basic state is a fully developed, unidirectional,
steady, and laminar flow. Under this circumstance the gov-
erning equations~5!–~7! are reduced to

12
1

Da*
U02

F

K0
uU0uU01RaQ01

d2U0

dy2 50, ~8!

U05k1

d2Q0

dy2 , ~9!

with U0 and Q0 being the base velocity and base tempera-
ture. The associated boundary conditions for velocity and
temperature are U05Q050 at y561. With these condi-
tions, ~8! and~9! can be solved numerically, using finite dif-
ferences. Typical basic velocity and temperature profiles nor-
malized by mean velocity U0̄ and Qc ~i.e., Q0 at y50!,
respectively, are given in Figs. 2~a! and 2~b!, respectively,
for different Raleigh numbers. As can be seen, the velocity
profile for Ra520, 50 with k150.2, Da* 51022, F51 con-
tains points of inflection which could give rise to instability.

B. Disturbance

Having calculated the basic state solution, its stability is
investigated by means of linear theory.36–38 Using infinitesi-
mal disturbances on the fully developed laminar base flow,
the solution of the three-dimensional problem can be written
in the form

~V,P,Q!5~U0~y!eW x ,P0~x!,Q0~y!!1~V8,P8,Q8!.
~10!

The primed quantities denote the infinitesimal disturbances
on the corresponding terms and can be represented by
(V8,P8,Q8)T5ei (ax1bz2act)(V̂,P(̂y),Q (̂y))T, with a andb
being real-valued wave numbers in thex and z direction,
respectively, andc5 ĉr1 i ĉ i the complex wave speed. The
growth and decay of the disturbances depends onĉi . Three
different cases may be distinguished, i.e., stable, neutrally
stable, or unstable depending on whetherĉi,0, ĉi50, or
ĉi.0, respectively. Upon substitution of~10! into ~5!–~7!
and eliminating the pressure, the governing linear equations
for the infinitesimal disturbances may be written as

FIG. 2. Velocity profile~a! and tem-
perature field~b! of the basic state for
K150.1, k150.2, Da* 51022, F51.
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whereFm5F/K0 and

ĥ5bû2aŵ. ~14!

For the velocity, the usual no-slip condition is taken. For the
perturbed temperature, however, two types of boundary con-
ditions are employed:

BC type I—zero temperature perturbation:

v̂5
dv̂
dy

5ĥ5Q̂50, y561. ~15!

BC type II—zero heat flux perturbation:

v̂5
dv̂
dy

5ĥ5
dQ̂

dy
50, y561. ~16!

C. Method of solution

In order to solve the coupled differential equations~11!–
~13! along with any of the boundary conditions~15! or ~16!,
the Galerkin technique has been used. For boundary condi-
tion type I, we have taken

v̂5 (
n50

N

anjn~y!, ĥ5 (
n50

N

bnzn~y!, Q̂5 (
n50

N

dnzn~y!,

~17!

with the corresponding base functions

jn~y!5~12y2!2Pn~y!, zn~y!5~12y2!Pn~y!, ~18!

which satisfy~15!. In Eq. ~18!, Pn(y) denotes the Legendre
polynomial of ordern. Multiplying Eq. ~11! by jm , Eqs.
~12! and ~13! by zm , and integrating them alongy, one
obtains
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in which the primed quantities denote differentiation with
respect toy. Note that for boundary condition type II, the
base function forQ̂ of Eq. ~13! has to be replaced byfn ,
which is defined by

fn~y!5H ~12y2!Pn~y!12P1 for odd n,

~12y2!Pn~y!1 2
3 P2 for even n.

~22!

Finally, Eqs.~19–~21! can be written as the general eigen-
value problem

Ax5cBx, ~23!

with c being the eigenvalue andx denotes the eigenvector of
field entities.A and B are the matrix representations of the
set of linear volume equations and boundary conditions. The
above-presented system can be solved by standard routine.
Here, theDGVLCG of the IMSL library39 was employed. The
routine is based on theQZ algorithm due to Moler and
Stewart.40 The first step of this algorithm is to simulta-
neously reduceA to upper Heisenberg form andB to upper
triangular form. Then, orthogonal transformations are used to
reduceA to quasi-upper-triangular form while keepingB up-
per triangular. The generalized eigenvalues and eigenvectors
for the reduced problem are then computed.

D. Energy analysis

Once the critical value of Ra is known, the physical
reason for the instability can be explained by considering the
energy transfer between the basic state and the neutral mode.
The rate of change of nondimensional kinetic and thermal
energy are

Pg

«
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Pg Pr* ^Q8u8&5Td1Tc1Tb ,

~25!

where the angular brackets^ & represent the volumetric aver-
age over the volume of disturbance wave. The disturbance
kinetic energy terms, Es, Eb , ED , EF, and Ed in ~24! are due
to work done by shear force, thermal buoyancy, surface drag
~Darcy term!, form drag ~Forchheimer term!, and viscous
force, respectively. In Eq.~25!, quantities termedTc , Td ,
andTb are associated with disturbance thermal energy due to
convection, rate of heat diffusion, and disturbance thermal
energy due to work done by the thermal buoyancy. All de-
rivatives are approximated by fourth-order finite difference
in the given domain except at boundaries. Integrals are cal-
culated using fourth-order Simpson’s extended rule. The
relative error in the kinetic energy balance,dK , is defined as
the residual normalized by the sum of the absolute values of
shear production of disturbance kinetic energy and distur-
bance kinetic energy due to thermal buoyant potential, and
are given by

dK5
uEs1Eb1ED1EF1Edu

uEsu1uEbu
,

while

dT5
uTc1Td1Tbu

max$uTcu,uTdu,uTbu%

is used to account for the error of the thermal energy balance.

III. RESULTS

A rigorous stability analysis has been performed here to
answer the question of the condition for the occurrence of the
maximum stability. As can be seen from Table I, when the
wave number in the spanwise direction,b, is equal to zero,
the minimum critical Ra is achieved. This implies that the
least stable mode is two-dimensional. Hence, throughout the
analysis presented here,b50 has been considered. This re-
sult coincides also with those found for the stability consid-
eration in both viscous~Chen and Chung11! as well as porous
media~Tyvand and Storesletten24!. Furthermore, the Prandtl
number Pr* , Forchheimer numberF, porosity e, and heat
capacity ratios, always take the values 1, 1, 0.9, and 1,
respectively. In the following, the Reynolds number Re
5PgŪ0 has been employed to find the neutral stable mode
for other different parameters studied here. Throughout this
section, critical Rac andac have been represented by Ra and
a, respectively. A logarithmic scale has been used along the
vertical axis to display all the instability boundaries on a
single ~Re,Ra! plane. In all contour plots, dashed lines de-
note negative values whereas solid lines stand for positive
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values. In addition, for streamfunction, solid and dashed
lines are associated with a clockwise and counter-clockwise
rotation, respectively.

Depending on the nature of boundary walls and fluid,
two different boundary conditions for perturbed temperature
are possible. If the bounding walls of the fluid layer have
high heat conductivity and large heat capacity, then its tem-
perature would be spatially uniform and unchanging in time.
In other words, the temperature of the boundary would be
unperturbed by any flow or temperature perturbation in the
fluid domain. Therefore, it would be appropriate to take the
disturbed wall temperature equal to zero, which is referred to
as the boundary condition of the first kind~BC I!. However,
this fixed temperature boundary conditions at the surface of
the fluid layer may be too restrictive because there will be
heat exchange between the solid conductive wall and the
fluid. Hence, a constant heat flux at the wall would be the
other possibility~BC II!. In order to cover a wider range of
applications, both types of boundary conditions have been
taken into account here. For each of these cases, the effect of
different parameters has been studied in detail. Before dis-
cussing the effect of different parameters on the stability of
the system, a verification of the code is given.

A. Validation of code

In order to validate the results presented in this work, the
following steps were carried out. First, the response of insta-
bility boundaries to grid size (M ) and order of base polyno-
mial (N) variation were tested. Second, we examined
whether or not the change of total disturbance kinetic and
thermal energy vanishes at the instability boundaries. Third,
the general results presented here were compared with those
given in the literature for special cases.

Using the base solutions, the critical values for the Ray-
leigh number and streamwise wave number were obtained
for different number of grid points as well as order of base
polynomials, and are shown in Table II. As can be seen from
Table II, a further increase ofM andN beyond 301 and 30,
respectively, does not have an impact on Ra anda. Hence, in
the linear stability analysis given below 301 grid points and
an order of polynomial 30 have been considered as standard
values. A severe test~see Table III! for both basic state and
linear stability calculation is provided by the energy balance.
For all calculations presented in the following, the errors in
thermal energy balance,dT , and in kinetic energy balance,
dK , are<0.3%. Note that for solving basic state flow itera-
tively, a residual limit of 10211 was set for best convergence,
though it was noticed that 1029 would have been sufficient.
Due to these relatively low errors, one may conclude that all
flow and stability features are well resolved. A final check is
made by a comparison between the published results for a

TABLE I. Dependence of the critical Rayleigh number onb for different
cases (Re5500).

K1 k1 Da* F b Ra

0.1 1 1022 1 0 100.16
0.1 1 1022 1 0.5 100.75
0.1 1 1022 1 1.0 102.25
0.1 1 1022 1 1.5 105.75

1 1 1022 1 0 160.94
1 1 1022 1 0.5 164.50
1 1 1022 1 1 177.50
1 1 1022 1 1.5 223.00

10 1 1022 1 0 1 368.75
10 1 1022 1 0.5 1 715.00
10 1 1022 1 1 3 270.00
10 1 1022 1 1.5 4 437.50

0.1 0.2 1022 1 0 18.16
0.1 0.2 1022 1 0.5 18.22
0.1 0.2 1022 1 1 18.34
0.1 0.2 1022 1 1.5 18.59

0.1 5 1022 1 0 647.50
0.1 5 1022 1 0.5 657.50
0.1 5 1022 1 1 687.50
0.1 5 1022 1 1.5 757.50

0.1 1 1021 1 0 42.89
0.1 1 1021 1 0.5 43.02
0.1 1 1021 1 1 43.45
0.1 1 1021 1 1.5 44.23

0.1 1 1023 1 0 2 725.00
0.1 1 1023 1 0.5 2 925.00
0.1 1 1023 1 1 4 175.00
0.1 1 1023 1 1.5 10 175.00

0.1 1 1022 104 0 143.44
0.1 1 1022 104 0.5 144.50
0.1 1 1022 104 1 146.50
0.1 1 1022 104 1.5 151.50

TABLE II. Dependence of the critical Rayleigh number on number of grid
points as well as on order of the base polynomials~K150.1, k151, Da*
51022, F51!.

Grid dimension N Re Ra a

51 25 400 102.19 2.62
51 30 400 102.19 2.62

101 25 400 107.19 2.58
101 30 400 107.19 2.60
101 35 400 107.81 2.60

201 25 400 108.43 2.54
201 30 400 108.43 2.54
201 35 400 108.43 2.50

301 25 400 108.43 2.56
301 30 400 108.43 2.60
301 35 400 108.43 2.60

401 25 400 108.43 2.60
401 30 400 108.43 2.60
401 35 400 108.43 2.60

TABLE III. Kinetic and thermal energy errors for different permeability
ratios ~Re5500, K150.1, k151, F51, Da* 51022!.

K1 dK(%) dT(%) Ra a

0.1 0.15 0.23 100.16 2.54
1 0.22 0.28 160.94 2.02
10 0.07 0.30 1368.75 1.04
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fluid-filled vertical channel as a particular case of our results.
Table IV compares the critical Ra anda of the present study
with those of Chen and Chung11 for «51, F50, Da* 5105,
Pr* 50.7. As can be seen, the agreement is good. These vari-
ous tests provide a strong validation of our numerical results.

B. Zero temperature perturbation

The effect of different parameters on the stability of flow
and heat transfer, i.e., on the critical Raleigh number Ra and
critical wave numbera as a function of Reynolds number
Re, has been studied. The parameters considered are perme-
ability ratio K1 , thermal diffusivity ratio k1 , and modified
Darcy number Da* .

1. Dependence of Ra and a on permeability

In this section, k151 and F51 have been set for all
cases except when, for the sake of comparison, the fluid-only
case is considered, for which«51, F50, and Da* 5105

have been taken.
Our numerical experiments showed that the disturbance

velocity component along thez axis, ŵ, was always almost
zero. At the same time,b50 was found to provide the maxi-
mum instability. Putting these facts together, from~14! one
obtainsĥ equal to zero. Further, insertingĥ50 in ~11! and
~13! implies that K2 does not come into the picture. Hence,
the effect of permeability variations can be studied through
K1 . Note that for a given Da* ~which fixesKx!, variation of
K1 is due to an independent change ofKy . Therefore, to
study the effect of permeability along the main flow direction
(x), Darcy number has to be taken into account.

Figure 3~a! shows the instability boundaries on~Re,Ra!

plane for a viscous fluid, for an isotropic porous medium
(K151), anisotropic medium with high permeability (K1

50.1), and anisotropic porous medium with low permeabil-
ity (K1510) along they axis. As can be observed from Fig.
3, fully developed flow is more stable in the case of porous
medium compared to that of a viscous fluid, and low perme-
able medium is more stable than high permeable one. This
result can be explained by examining the extreme values of
disturbance stream function~c! and temperature (Q8) for a
given Re, e.g., Re51000 ~Table V!. As demonstrated in
Table V, among all cases considered, a low permeable me-
dium (K1510) leads to the minimum disturbance in both
c(50.08) andQ8(50.16), whereas viscous fluid gives the
maximum disturbance~c50.11, Q850.51!. Consequently,
the system has the maximum stability in the former and
minimum stability in the latter case.

An important feature of the instability boundaries on the
~Re,Ra! plane is that, for all cases, a drastic change of the Ra
is observed before a threshold value of Reynolds number
@Fig. 3~a!#, whereas beyond this value, a smooth and slow
change occurs. A similar behavior in the vicinity of the
threshold value of Re may also be observed in the wave
number@Fig. 3~b!#. At a quantitative level, this phenomena
can be explained by the distinct behavior of the disturbance
kinetic energy components undergoing points of extremum
around the threshold values of Re@Figs. 4~a!–4~d!#, denoting
that the energy supply to the flow instability attains a sudden
change in these regions. The reason for this change can be
seen in the fact that when the walls of the vertical channel
are maintained at a uniform temperature, the upward forced
flow is unconditionally stable for infinitesimal disturbance
even for very large Reynolds numbers. However, in the case
of nonisothermally heated vertical walls, the stability of the
flow will also depend on the heating condition. Under the
heating condition, a slow flow can carry denser fluid upward
into the region of lighter fluid, as pointed out by Yao and
Rogers.9 While doing so, in addition to the energy due to
shear force existing in a viscous fluid, for a porous medium,
a new source of disturbance energy, namely the one caused
by surface drag~associated with the modified Darcy term!
appears in the region of high velocity. As a consequence, a
point of inflection develops leading to a local high-shear

TABLE IV. Comparison between published results~Ref. 11! and present
results~e51, Pr* 50.7, K151, k151, Da* 5105, F50!.

Re
Ra

~present!
Ra

~Chen—Ref. 11!
a

~present!
a

~Chen—Ref. 11!

100 43.57 41.65 0.85 0.87
215 37.50 37.60 1.05 0.98
500 32.62 32.65 1.21 1.22
1000 30.24 30.26 1.31 1.35

FIG. 3. Dependence of the critical
Rayleigh number~a! and wave num-
ber ~b! on Re for different permeabil-
ity ratios.
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layer. In this situation, small enhancement of Re makes the
convection in the direction of main flow stronger, and more
dense fluid can be transported upwards to destabilize the
flow, and hence the critical heating condition falls drastically.
As Re is increased further, the difference between fluid ve-
locity in the denser and lighter zones reduces, which results
in the reduction of the rate of change of critical Ra as a
function of Re. The extreme jump in the behavior of kinetic
energy for a low permeable medium@Fig. 4~d!# made us
examine the flow pattern near the location where the thresh-
old value of Re appears. The interesting finding was that the
flow pattern undergoes a shift from bicellular to a unicellular
one ~see Fig. 5!, and in the case of K1>6, the latter pattern
again shifts to a bicellular one. The pattern reshifting de-
pends on the value of K1 . For example, for K1510, it ap-
peared when Re is approximately 1951. However, no bicel-

lular patterns occurred in the disturbance stream function
when the channel was filled with a viscous or isotropic po-
rous medium~figures not shown!.

Studying the variation of the kinetic energy helps to find
out which types of instabilities occur as the Reynolds num-
ber changes. For the case of a viscous fluid@Fig. 4~a!#, the
kinetic energy generated by buoyancy force (Eb) is the domi-
nant term in balancing the dissipation of kinetic energy due
to viscosity (Ed) throughout the Re range, and except for a
weak forced flow, it leads to the existence of a pure thermal
instability. This phenomena has been observed in the
literature.11

However, in the presence of a porous medium the insta-
bility mode differs. For isotropic or anisotropic porous me-
dia, namely, thermal, mixed and shear instability may occur
as Reynolds number increases. Figures 4~b! and 4~c! show
that the sum of the dissipation of kinetic energy due to sur-
face drag (ED) and due to viscosity (Ed) is balanced by
kinetic energy due to thermal buoyancy (Eb) for extremely
low Re, kinetic energy due to shear Es for high Re, which in
turn, gives thermal instability at low Re and shear instability
at high Re. For moderate values of Re the energy dissipation
is balanced by both Es and Eb, and mixed mode instability is
given. In short, it can be stated that for low permeable media
(K1>6), the transition of one instability mode to an-

TABLE V. Maximum and minimum magnitude of disturbance stream func-
tion and temperature for different permeable media~k151, Da* 51022,
F51! and viscous fluid~k151, Da* 5105, F50! at Re51000.

K1 10 1 0.1 Viscous

cmin
max 60.08 60.084 60.11 60.11

Q8min
max 60.16 60.29 60.28 60.51

FIG. 4. The rate of change of kinetic
energy as a function of Re~a! for vis-
cous fluid,~b! K150.1, ~c! K151, and
~d! K1510.
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other is abrupt~in the case of K1510 at Re5300 and 1951!,
whereas for isotropic@Fig. 4~c!# as well as high permeable
anisotropic media@Fig. 4~b!#, the change takes place in a
smooth manner.

The analysis of thermal energy balance has been per-
formed for the above-mentioned parameter range. However,
because of the qualitative similarity among the behavior of
all cases, the diffusion of thermal energy (Td) was balanced
by disturbance thermal energy due to convection (Tc) in al-
most the entire Re range, except for small Re below the
threshold value where the disturbance thermal energy due to
buoyancy (Tb) has a sizable contribution.

The neutral stability curves on the~Re,Ra! and ~Re,a!
plane for K150.1, k151, and different Darcy numbers are
shown in Fig. 6. As can be seen from Fig. 6~a!, first, with a
decrease in Da* , more stable flow is observed, which is
based on the fact that enhancing Da* is due to an increase of
permeability in the vertical direction. As a consequence, the
flow strength increases and becomes unstable even for lower
heating. Second, when Da* moves from 1021 to 1022, the
logarithmic value of Ra increases by the factor'1.2
throughout the Re range above the threshold value. However,
for decreasing Da* from 1022 to 1023, this factor increases
and lies between 1.9 and 1.6 with growing Re. Simulta-
neously, the frequency of the disturbance in the main flow
direction exceeds more than 3.6 for Re.1600 and Da*
51021 @Fig. 6~b!# or its wavelength of disturbance reduces
to below 87.3% of channel width. This indicates that the
local disruption of the velocity field which is induced by
temperature fluctuation causes the flow instability in the
channel. With the help of the disturbance energy, streamline,
and temperature contours, more insight into the physics in-
volved can be given. A comparison of Figs. 7~a! and 7~b!
shows that the dissipation of kinetic energy due to surface
drag increases as Da* decreases from 1021 to 1023, whereas
the same due to viscosity decreases~in magnitude!. Figures
7~a! and 7~b! also reveal that for anisotropic porous media
with Da* 51023, the contributions of Es in the production of
kinetic energy, and EF and Ed in the dissipation of kinetic
energy are negligible. Note that for a small Darcy number
(Da* 51023), only thermal instability occurs, whereas for
relatively large Da* , thermal, mixed, and shear instabilities
exist simultaneously. Furthermore, comparing the flow and
temperature field for Da* 51021 with that of Da* 51023,
the following observations can be made. As Darcy number
decreases, the shape of the streamlines changes from oblate
triangles to quasi-squares@Figs. 8~a! and 8~b!#, which have
their vertical sides parallel to the channel wall. This pattern
denotes the existence of a vertically dominant motion with
near zero horizontal component, which reduces the heat
transfer by convection in they direction. From the other side,
the temperature isolines move from the center toward the
channel walls@Figs. 9~a! and 9~b!#, and become parallel to
them in the near-wall region. These facts together denote that

FIG. 5. The disturbance streamlines for K1510; ~a! Re5299 ~cmin

520.052,cmax50.052! and ~b! Re5300 ~cmin520.044,cmax50.044! for
one period.

FIG. 6. Dependence of the critical
Rayleigh number~a! and wave num-
ber ~b! on Re for different modified
Darcy number.
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FIG. 7. The rate of change of kinetic
energy as a function of Re;~a! Da*
51021, ~b! Da* 51023.

FIG. 8. The disturbance streamlines
for Re5500 and K150.1; ~a! Da*
51021 ~cmin520.182, cmax50.182!
and ~b! Da* 51023 ~cmin520.053,
cmax50.053! for one period.

FIG. 9. The disturbance temperature
field for Re5500 and K150.1; ~a!
Da* 51021 ~Qmin520.235, Qmax

50.235!, ~b! Da* 51023 ~Qmin

520.06,Qmax50.06! for one period.
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the transfer of the disturbance temperature takes place
mainly by diffusion, leading to a more stable flow configu-
ration. This can be also confirmed when the largest distur-
bance stream function and temperature are compared. Both
these values fall drastically from 0.183 to 0.053 and from
0.235 to 0.06, respectively, when the Darcy number de-
creases from 1021 to 1023.

2. Dependence of Ra and a on thermal diffusivity

The instability boundaries on the~Re,Ra! plane for k1
50.2, 1, and 5 when K150.1, F51, Da* 51022 are shown
in Fig. 10. As thermal diffusivity increases, the critical Ray-
leigh number increases, making the system more stable. To
describe the shift of the neutral stability curve as a function
of thermal diffusivity ratio, the disturbance stream functions
and temperature were plotted for a specific Re~5500! for
k150.2 and 5~see Figs. 11 and 12!. By more closely exam-
ining the maximum values ofc and Q8, it is found thatc
increases from 0.023 to 0.12, and that ofQ8 decreases from
0.39 to 0.041. Obviously, the first trend is contradicting the
above-noted observation on the system stability, whereas the

FIG. 10. Dependence of the critical Rayleigh number on Re for different
thermal diffusivity ratios.

FIG. 11. The disturbance streamlines
for Re5500 and K150.1; ~a! k150.2
~cmin520.023, cmax50.023!, ~b! k1

55 ~cmin520.12, cmax50.12! for
one period.

FIG. 12. The disturbance temperature
field for Re5500 and K150.1; ~a! k1

50.2 ~Qmin520.39, Qmax50.39!, ~b!
k155 ~Qmin520.041, Qmax50.041!
for one period.
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second one is in favor of it. Here, the question of which of
the above-mentioned trends has more influence still remains
to be determined. To explain this behavior, use is made of the
energy spectra. The disturbance kinetic energy was analyzed
for low, moderate, and high values of thermal diffusivity
ratios. It was found that the stability mode is generally a
mixed mode instability@as the results were similar to those
presented in Fig. 4~b!, they are not displayed here#. In addi-
tion, for Re5500, the contribution of energy production due
to the buoyancy term was found to be almost twice that of
the shear term. Quantitatively, Eb and Es changed from 0.665
to 0.675, and 0.335 to 0.325, respectively, as k1 changed
from 0.2 to 5. This change can be regarded as a clear indi-
cation that the disturbance temperature is the key factor in
deciding the location of the neutral stability curve in the
Re–Ra plane. Furthermore, since the Prandtl number is kept
constant~kx is fixed!, for high thermal diffusivity ratios, the
conduction effect in the streamwise direction is empha-

sized, and in consequence, any thermal fluctuation in the
flow field will damp out quickly. When the thermal diffusiv-
ity ratio is very small, in contrast, thermal fluctuations cannot
be smoothed out by conduction and remain localized.

A further interesting feature, namely, the response of the

wave speed (cr5 ĉr /Ū0) to thermal diffusivity variations, is
shown in Fig. 13. For all cases of k1 , it was observed thatcr

falls rapidly before a threshold value of Re is reached. After
this value, changes are slow and monotonic, and the values
are larger than unity. Recalling that the wave speed was non-
dimensionalized by the average base velocity, it is interesting
to note that for the anisotropic media studied, the minimum
wave speed is always greater than average value of the base
velocity. A similar finding has been presented by Chen and
Chung11 for a channel filled with a fluid having a Prandtl
number of 7.

C. Zero heat flux perturbation

Similar to boundary condition I, a brief study of the
effect of different anisotropic parameters on instability
boundaries in~Re,Ra! and ~Re,a! planes has been under-
taken for boundary condition II. A variation of critical Ray-
leigh number as a function of Re for the perturbed BC type I
and BC type II is displayed in Fig. 14~a! for two different
values of K1 . As can be depicted from the figure, the Ra
curve for zero heat flux coincides almost perfectly with that
of zero temperature when K150.1. A similar situation is
given for K1510 beyond Re'1000, whereas significant de-
viations exist below it. This scenario holds also for the criti-
cal wave number@see Fig. 14~b!#. Hence, for low permeable
media, zero temperature perturbation leads to a more stable
flow than zero heat flux when Re lies below 1000. This state-
ment is based on the analysis of the disturbance stream func-
tion as well as temperature, which showed that for BC II
these variables exceed the same for BC I, denoting that BC
type II is less stable compared to BC type I. The influence of
the anisotropic thermal diffusivity ratio on the system stabil-
ity is plotted in Figs. 15~a! and 15~b!, which is qualitatively
similar to that of anisotropic permeability ratio given previ-
ously. Quantitatively, however, there exist two different sub-
intervals below Re5900, in which the dominance of stability

FIG. 13. Dependence of the critical wave speed on Re for different thermal
diffusivity ratios.

FIG. 14. Dependence of critical Ray-
leigh number~a! and wave number~b!
for different permeability ratios~k1

51, Da* 51022! under zero heat flux
boundary condition. Dashed and dash-
dotted lines show zero temperature
boundary condition.
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of zero temperature perturbation over zero heat flux fluctu-
ates. We note that when the porous medium has a low per-
meability (K1510) or provides low diffusivity (a150.2),
the threshold value for zero heat flux is larger than that for
zero temperature boundary condition. This situation reverses,
however, when the medium has higher permeability (K1

50.1) or higher diffusivity (a155).

IV. CONCLUSIONS

In this work, we report the instability mechanism of the
fluid flow driven by an external pressure gradient and buoy-
ancy force in a porous vertical channel. In particular, the
influence of anisotropy~permeability as well as thermal dif-
fusivity! on the shift of the neutral stability curve is dis-
cussed. The linearly varying wall temperature is studied un-
der two different types of perturbations, namely zero
temperature and zero heat flux. The Prandtl number Pr* ,
Forchheimer number, heat capacity ratios, and porositye
were kept constant throughout the paper, and were set to 1, 1,
1, and 0.9, respectively.

It has been demonstrated that mixed convection in a ver-
tical porous channel is unstable in a large portion of an ap-
propriate parameter space under which the following conclu-
sions can be made. Fully developed flow is most unstable in
a highly permeable~which is a consequence of very low
value of K1 or high value of Da* ! as well as in very low
diffusivity medium. It was observed that a reduction of per-
meability in the main flow direction by one order~i.e., a
reduction of Da* from 1022 to 1023! makes the system re-
main stable for Ra,770, whereas the flow become unstable
even for Ra5150 when permeability in the streamwise di-
rection is reduced by an order of 2~i.e., when K1 is increased
from 0.1 to 10!. Depending on the value of permeability
ratio, the flow in an anisotropic medium may be both more
(K1,1) or less (K1.1) stable than that in an isotropic one.

In contrast to the viscous fluid case and that of an iso-
tropic porous medium, where only unicellular flow pattern
occur, in the case of anisotropic porous media, the flow pat-
tern appears as single cells as well as double cells. For higher
values of modified Darcy numbers, production of kinetic en-
ergy due to the shear term dominates over the same due to
the buoyant term, to balance the total dissipation of energy in

nearly the entire Re range. Furthermore, it was also found
that the dissipation energy associated with the Brinkman
term is more significant than that associated with the Darcy
term. However, in the case of lower values of modified
Darcy number, flow becomes more stable and the distur-
bance thermal buoyant energy dominates in the entire Re
range. Simultaneously, the impact of the Brinkman term in
dissipating the kinetic energy becomes negligible compared
to that of the Darcy term. Thus, inclusion of the Brinkman
term, the Forchheimer term, and the nonlinear convective
term in the momentum equations is a function of the perme-
ability of porous medium. For the parameter range of the
present paper, transition of instability from one type to an-
other takes place in a smooth manner, except when perme-
ability ratio K1 exceeds 6. Wave number experiences an
abrupt jump for most of the parameter ranges studied when
Reynolds number reaches a threshold value. Quantitatively,
the Reynolds number threshold value depends on the input
parameters and the specific boundary conditions. In all the
cases studied, the disturbance flow moved upwards as alter-
native single or double cells. It is worth mentioning that,
beyond a certain threshold value of Re, the type of boundary
condition did not alter the stability characteristics of the sys-
tem.

Obviously, it is interesting and important to investigate
the effect of variation of other parameters such as porosity,
heat capacity ratio, and the Forchheimer number on the sta-
bility characteristics in more detail. This problem is left for a
future study.
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