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Stability of mixed convection in an anisotropic vertical porous channel

P. Bera and A. Khalili®
Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany

(Received 18 January 2001; accepted 18 January 2002; published 19 Margh 2002

This paper addresses the stability of mixed convective buoyancy assisted flow due to external
pressure gradient and buoyancy force in a vertical fluid saturated porous channel with linearly
varying wall temperature. The porous medium is assumed to be both hydrodynamically and
thermally anisotropic. Two different types of temperature perturbationsero temperature an(d)

zero heat flux, have been considered to study the effect of anisotropic permeability and thermal
diffusivity on the flow stability. The stability analysis indicated that the least stable mode is
two-dimensional. Furthermore, the results show that for the same Reynolds number, the fully
developed base flow is highly unstalféable for high (low) permeable porous media as well as for

a porous medium with smallarge thermal diffusivity ratio. Depending on the magnitude of all
parameters studied, three types of instabilitesear, thermal, and mixed instabilityccurred. The
transition of instability from one type to another took place smoothly, except when the permeability
ratio exceeded 6. Based on the value of the permeability ratio, the flow in an anisotropic medium for
a specific Reynolds number may be either more or less stable than the flow in an isotropic medium.
In addition, the fully developed flow is more stable for relatively small values of the modified Darcy
number than for larger values. The effect of Brinkman as well as Forchheimer terms are negligible
for the set of other parameters studied here. In contrast to a pure viscous fluid or an isotropic porous
medium, which are characterized by unicellular convective cells, in anisotropic porous media
convective cells may be unicellular or bicellular. The stability analysis of mixed convection in
channels filled either with a viscous fluid or with an isotropic saturated porous medium may be
obtained as special cases of the general study presented he2602 American Institute of
Physics.[DOI: 10.1063/1.1460879

I. INTRODUCTION rous medium have been reported by Combarnous antf Bia
on the effect of flow on the onset of convection, and by
In recent years, much work has been dedicated to theheng, who investigated in several studies the effect of
area of convective heat transfer in porous media because @iixed convection about inclined surfacésbout a horizon-
its relevance to a variety of situations occurring in engineerta| flat plate embedded in a porous medium with aiding ex-
ing and nature. Among these works, natural and forced conernal flow and constant heat fli%and about a horizontal
vection studies occupy the majority of investigations. Thesyrface with a heat fluX For the same geometry, Lai and
interfacial area of mixed convection which connects naturakyjacki® Renken and Paulikakbshave given an estima-

and forced convection, in comparison, has not been givefion of the boundary layer thickness via similarity solution
due attention in porous media. Mixed convection problemsypg experiments, respectively.
in porous media occur very often in nature, e.g., in studies of  pore recently, Prasaet al*® studied a horizontal porous
shallow-water and deep-sea hydrodynamics. One importamhyer heated from below and investigated numerically the
example of mixed convection in shallow-water seas is giverxonditions for forced flow and buoyant effects for a wide
by hydrothermal vents by which hot, mineral-rich water ;ange of Rayleigh and Peclet numbers. Most of the investi-
ejects through a permeable seabetiThis problem consti-  gations considering the effect of anisotropy have been car-
tutes a very new research area, and theoretical investigatigqdaq out for the onset of natural convection in horizontal
of it has been largely overlooked. For fluid environments,porous layers. For example, Castinel and Combariaies
however, there are many papers which deal with mixed congyeq the criterion for the stability of a porous medium which
vection, for example, in connection with fluid flow in a ver- g anisotropic in permeability. The same was given by
t|caI6|73|pe (Scheele and _Hanratfy,l_(emeny and Somers, Epheré® when the diffusivity is regarded as anisotropic, and
Yao,’ Su and Chunfy, in a vertical annulus(Yao and "5 combined form of anisotropic permeability and thermal
Roger$), and in a vertical channdBuslov and Paoluccf, diffusivity by Khalili et al?* Later, Tyvand? accounted for
Chelg a”‘?' Churﬁj).. ¢ mixed ) h h the effect of hydrodynamic dispersion caused by a uniform
ew investigations of mixed convection through a po-p.qic fiow, The onset of convection as well as slightly super-
critical convection through anisotropic multilayered porous
dAuthor to whom correspondence should be addressed; electronic mair.nedla were investigated by McKibbin and TyvazﬁdThe
akhalili@mpi-bremen.de onset of Rayleigh—B®ard convection in a horizontal porous

1070-6631/2002/14(5)/1617/14/$19.00 1617 © 2002 American Institute of Physics
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in the negativex direction. The thermophysical properties of
anisotropic the fluid are assumed to be constant except for density de-
@[[I:[[) pendency of the buoyancy term in the momentum equations.
porous @([[[D) The porous medium is saturated with a fluid that is in local
. @ thermodynamic equilibrium with the solid matrix. The me-
media ([[ID ®<[[I]:D dium is anisotropic in permeability and thermal diffusivity.
The longitudinal and transverse components of the perme-
ability as well as thermal diffusivity are denoted Ky, K,
andk,, ky, respectively. In expressing the equation for the
flow in the porous medium, it should be noted that the Darcy
model presents a linear relationship between velocity of dis-
charge and the pressure gradient. As the Darcy model does
y not hold when the flow velocity is not sufficiently small, or

o

T +Cx
-
T +Cx

)

3 = 3 when the permeability is high, extensions to this model
E g ES known as Brinkman-extended or Forchheimer-extended
B~ B~ models exist>?°In short, the Brinkman term is found to be
(]:I]D) @ needed for satisfying a no-slip boundary condition at solid
@ {”]]) walls, whereas the Forchheimer term accounts for the form
@ drag. Also in analogy with the Navier—Stokes equations, the
([[I]:[)@ Darcy model has been extended by including the material
derivative?’ The necessity of the simultaneous inclusion of
all or some of these extensions has been discussed in the
oL literature?®—**Therefore, in order to cover extreme values of
\ input parametersi.e., high permeability, high velocity, and
low thermal diffusivity), the governing equations for the flow
and heat transfer in Cartesian coordinate systg/r,¢) are
given by
Fully developed flow v-v=0, @
FIG. 1. Schematic of the problem considered. pi E ﬂ+ iZV-VV-i- ?F |V|V
e dt ¢ HKHUZ
layer with anisotropic permeability was investigated by Ty- vV
vand and Storeslettéfi. These works have not yet been ex- =—VP+pg+ ﬁVZV—,uf—z, 2
tended to vertical porous geometries. K
The present paper is concerned with studying the effect
of anisotropy in permeability and thermal diffusivity on the " 4 .y T—Vv.k-VT=0, 3
stability of mixed convection in a vertical channel filled with
a porous medium. Because the response of the stability of thﬁg: pll=Br(T—Tu)} ()

system depends on the nature of the boundary condition, two B

types of boundary conditions, namely constant temperaturaith K andk being the second-order permeability and ther-
as well as constant heat flux, are maintained at the boundingial diffusivity tensors, respectively, given by

vertical channel walls. An outline of the paper is as follows: K 0 0 K 0 0

the mathematical formulation is given in Sec. I, which con- B y B y

tains details of the stability analysis starting from the equa- K=| 0 K, 0|, k=|0 k, O

tions for the basic state, the perturbed equations, and their 0 0 K, 0 0 k,

solution followed by the energy analysis. Section Il dis- )

cusses the effect of different anisotropic parameters on thi the above equation¥/(v,u,w), P, T, andp; are the flow
stability of the fluid flow and heat transfer. Finally, some Velocity, pressure, temperature and fluid density, respec-

important features of the analysis are summarized in Sec. \Nively.  Further, g, &, ce, &, ps, Br, and o
=(pC)m/(pcp); are the gravitational acceleration, porosity,

form drag coefficient, effective viscosity, fluid viscosity,

volumetric thermal expansion coefficient, and ratio of heat
We consider a fully developed mixed convection flow capacities, respectively. The varialdledenotes the specific

caused by an external pressure gradient and a buoyancy forbeat, and the subscripts andf stand for porous “medium”

in a vertical porous channel of widthL2(see Fig. 1L The and “fluid,” respectively.

wall temperature T,,) is linearly varying withx asT,,=Tg Using nondimensional quantitiesx* =x/L, P*

+Cx, whereC is a positive constant arify is the upstream =PL?/p7?,  t*=tPPy/L?%  V*=VL/TPy,, ©O=(T

reference wall temperature. The gravitational force is aligned-T,,)/CL Pr* P4, Egs.(1)—(4) become(asterisks neglected

Il. MATHEMATICAL FORMULATION
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FIG. 2. Velocity profile(a) and tem-
perature fieldb) of the basic state for
K,;=0.1, k=0.2, D& =102, F=1.
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a®+ a®+ a®+ 0
Tt TYax Ty TV az

1 az®+k (92®+k 7?0 .

T pr | a2 TRagyr Thegz U, @
where Py=—dP/dx is the pressure gradient, Da
=uK,/usL? is the modified Darcy number, F
=ceLPy/KY? is the Forchheimer number, Ra

=gB:CL*7k, is the Rayleigh number, P=7/k, is the
modified Prandtl numbef; is the effective kinematic viscos-
ity, ki=ky/k, and k=Kk,/k, are thermal diffusivity ratios.

Further, the parametét, is given by

Ko:”Rﬁnll/;
KX
and
Ky 0 O
M= 0 1 0
0 0 K

is the modified permeability tensor, where
Ki=Ki/Ky, Ky=K,/K,.

For the quantity|K|“2 the infinity norm defined by
3

”R”:m-anZl L
N

is taken.

A. Basic state

The basic state is a fully developed, unidirectional,
steady, and laminar flow. Under this circumstance the gov-

erning equationg5)—(7) are reduced to
2

1 F d2U,
l_§UO_K_O|U0|UO+Ra®O+ _dy2 :0, (8)
d?e,
0= K1 dy2 ’ (9)

with Uy and ® being the base velocity and base tempera-
ture. The associated boundary conditions for velocity and
temperature are §+=0,=0 aty==*1. With these condi-
tions, (8) and(9) can be solved numerically, using finite dif-
ferences. Typical basic velocity and temperature profiles nor-
malized by mean velocity ¢and 0. (i.e., ©, at y=0),
respectively, are given in Figs(& and Zb), respectively,

for different Raleigh numbers. As can be seen, the velocity
profile for Ra=20, 50 with k=0.2, D& =102, F=1 con-
tains points of inflection which could give rise to instability.

B. Disturbance

Having calculated the basic state solution, its stability is
investigated by means of linear thedfy28 Using infinitesi-
mal disturbances on the fully developed laminar base flow,
the solution of the three-dimensional problem can be written
in the form

(V,P,0)=(Uo(y)€,Po(X),00(y)) +(V',P",0").
(10)

The primed quantities denote the infinitesimal disturbances
on the corresponding terms and can be represented by
(V',P",0")T=gllextAz=ach v ply) @(y))T, with « andB
being real-valued wave numbers in tReand z direction,
respectively, andc=¢,+i€; the complex wave speed. The
growth and decay of the disturbances depends§;orThree
different cases may be distinguished, i.e., stable, neutrally
stable, or unstable depending on whetiéex 0, ¢;=0, or
¢;>0, respectively. Upon substitution @10) into (5)—(7)
and eliminating the pressure, the governing linear equations
for the infinitesimal disturbances may be written as
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a5 d2

Pg d*% d?
O —2(a +,82) +(a +,82)2u+|a

Uo
2
Uody2 + ay? v+(a +B7)Ugd

1 2,82+a d? o 1aB(Ky—1) d7 2 d do . .
rdie Wdszle(a +p%)0 i Pyl vi il Fpvwya ) Loy |U°|d_y +(a®+ B F|Uld
iaB d®  Py[ d% s o
(a +,8) mdy(|U0|77) laRad—y=|ac? —d—y2+((1 +ﬂ )l) s (11)
d2;7+ B ria dugt g Moy g O+ 5= B K n+ kD
dy2 (a 3)77 ia— 2 077 B 2 d ﬂ a (a +IB) (a2+32)( 2)d_y
B’ . ap do = Pg,
e Fm|UO|77+( 2+Bz m|Uo|dy:|aC?g771 (12
! kd2®+ 21 1,820 | +iaUyd+ 92% 4 ! OIA+ i 13
ngr* ldy2 (a Zﬂ ) la 0 dy v ngr*( 2+B ) ,377 =laCoV, ( )
|
whereF,,=F/Kq and C. Method of solution
3= B— aW. (14) In order to solve the coupled differential equatigh’)—

(13) along with any of the boundary conditio(5) or (16),

For the velocity, the usual no-slip condition is taken. For thel
perturbed temperature, however, two types of boundary corfOn tyPe I, we have taken

ditions are employed: N N
BC type +—zero temperature perturbation: 5220 anén(y), ;7:,120 bndn(y), @=HZO dndn(y),
do . (17)
v= ay 7=0=0, y=*1 (15 with the corresponding base functions

E(Y)=(1=y))?Pu(y), La(y)=(1-y*)Py(y), (18
which satisfy(15). In Eq. (18), P,(y) denotes the Legendre
polynomial of ordern. Multiplying Eqg. (1) by &,, Egs.
=5=—=0, y=+1. (16) (12 _and (13) by ¢, and integrating them along, one
dy y obtains

N 1 d2
2 a L[s f;;+2<a2+ﬁ2)§n§m+<a2+ﬁz>fmfn]dy+—2—2 a [(d—yfﬂazw%uo)fnfm ofgfm}dy

(K22 + a?)
_1| (a®+pB?)

K
§m§n+K1(a’ +B )gmgn}dy Da* (I(B(2+2B) Z b f gnfmdy

2

o
@+t

1
+
Da* ngo &n

N
1
FmZ ap |UO|§r,1§r,ndy
n=0 -1

N 1 N 1
+(a2+,82)|:m2 an |UO|§m§ndy_iaRaE dnf gégde"‘
n=0 -1 n=0 -1
z " |Uolé z
-ic 2+B) Fo b f Ueléhindy= jac? anf (g0t (a2t B Entn)dy, (19
/32 an [ Uo(Lhint Lmél) dy— BRaE d f gmzndy+2 b f [0+ B2) Eint ]y

N
(Kya®+ B9) (1-Ky)ap
Da (E an {mlndy+i LR E f §n§de)

+|—2 bf Uolmén

2

N 1 = N
g TP bnfflluolgmgndyﬂca;gngo bulmdndy, (20

1
tita 2+B)F 2 a | |UolZméndy+

the Galerkin technique has been used. For boundary condi-
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! 1 ) a N 1 X 1
_ngo an _1®0(§m§n+§m§n)dy+| mz anf_lgmgndy""anzo dnj_luogmgn dy

n=0
N

1 X 1 B 1 N 1
1ot 2 2 —i
B 2 O f  Halnli+ (o + k) Endaldy+ gz gy 24 o f  Iméndy=iaco 2, dy f  Gméndy,

(21)

in which the primed quantities denote differentiation with where the angular brackets represent the volumetric aver-
respect toy. Note that for boundary condition type Il, the age over the volume of disturbance wave. The disturbance
base function fol® of Eq. (13 has to be replaced bg,,  kinetic energy terms, E E,, Ep, Er, and K in (24) are due
which is defined by to work done by shear force, thermal buoyancy, surface drag
(Darcy term), form drag (Forchheimer termp and viscous
(1=y*)Pn(y) +2P, for odd n, force, respectively. In Eq(25), quantities termed ., T4,
andT, are associated with disturbance thermal energy due to
convection, rate of heat diffusion, and disturbance thermal
energy due to work done by the thermal buoyancy. All de-
rivatives are approximated by fourth-order finite difference
Ax=cBx, (23)  in the given domain except at boundaries. Integrals are cal-

with ¢ being the eigenvalue anddenotes the eigenvector of culated using fourth-order Simpson’s extended rule. The
field entities.A and B are the matrix representations of the rélative error in the kinetic energy baland;, is defined as
set of linear volume equations and boundary conditions. Th&e residual normalized by the sum of the absolute values of
above-presented system can be solved by standard routinghear production of disturbance kinetic energy and distur-
Here, thepGvLcG of the IMSL library®® was employed. The bance kinetic energy due to thermal buoyant potential, and
routine is based on thez algorithm due to Moler and @€ given by
Stewart!® The first step of this algorithm is to simulta- |Ec+ Byt Ep+ Ep+ Ey
neously reducé\ to upper Heisenberg form ariél to upper k= [EJ+|Ey )
triangular form. Then, orthogonal transformations are used to S b
reduceA to quasi-upper-triangular form while keepigup- ~ While
per triangular. The generalized eigenvalues and eigenvectors I To+ Tyt Ty
for the reduced problem are then computed. = -

" ma Tl [Tl [T}

D. Energy analysis is used to account for the error of the thermal energy balance.

énly) (22

- (1-y?»)P,(y)+ 2P, for evenn.

Finally, Egs.(19—<21) can be written as the general eigen-
value problem

Once the critical value of Ra is known, the physical
reason for the instability can be explained by considering th
- II. RESULTS
energy transfer between the basic state and the neutral mode.
The rate of change of nondimensional kinetic and thermal A rigorous stability analysis has been performed here to

energy are answer the question of the condition for the occurrence of the
Py /1 maximum stability. As can be seen from Table I, when the
— {5+ 2 +w'?) wave number in the spanwise directigs),is equal to zero,
g dt\2 - . . . o .
the minimum critical Ra is achieved. This implies that the
Pg 0 1 least stable mode is two-dimensional. Hence, throughout the
=—— U,U,— +R6<ur®r>_ <u/2+Klv/2 . _ . R
€ dy Da* analysis presented her8=0 has been considered. This re-
) ) ) ) ) sult coincides also with those found for the stability consid-
+ KW' 2 = F (| Ul (2u"“+ 0 2 +wW' %)) = ((Vu’) eration in both viscouéChen and Churig) as well as porous

(Vo) (VW) = Eot Eyt Ep +Ert By, (24 media(Tyvand and Storesletté}). Furthermore, the Prandt

2
+k,

respectively. In the following, the Reynolds number Re
B 1 90’ 2+k 90’
T PgPrE L ax | T ay

a, respectively. A logarithmic scale has been used along the

ZPQUO has been employed to find the neutral stable mode
do, 1 ) ) _ ) - .
—{0'v’ - (O'U)Y=Ty+ T+ Ty, vertical axis to display all the instability boundaries on a

number Pt, Forchheimer numbeF, porosity €, and heat

d 1®,2 capacity ratioo, always take the values 1, 1, 0.9, and 1,
T\ 2

90'"\2 . , ,

for other different parameters studied here. Throughout this

9z section, critical Raand «, have been represented by Ra and
Py Pr* single (Re,Ra plane. In all contour plots, dashed lines de-

(25 note negative values whereas solid lines stand for positive
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TABLE |. Dependence of the critical Rayleigh number grfor different TABLE II. Dependence of the critical Rayleigh number on number of grid

cases (Re500). points as well as on order of the base polynomi#ls=0.1, k=1, Da"
=102, F=1).
Ky kq Da* F B Ra
Grid dimension N Re Ra a

0.1 1 102 1 100.16
0.1 1 102 1 0.5 100.75 51 25 400 102.19 2.62
0.1 1 102 1 1.0 102.25 51 30 400 102.19 2.62
0.1 1 10°? 1 15 105.75

101 25 400 107.19 2.58
1 1 10°2 1 0 160.94 101 30 400 107.19 2.60
1 1 102 1 0.5 164.50 101 35 400 107.81 2.60
1 1 102 1 1 177.50

201 30 400 108.43 2.54
10 1 10°2 1 0 1368.75 201 35 400 108.43 2.50
10 1 102 1 0.5 1715.00
10 1 102 1 15 443750 301 30 400 108.43 2.60

301 35 400 108.43 2.60
0.1 0.2 102 1 0 18.16
01 0.2 102 1 1 18.34 401 30 400 108.43 2.60
0.1 5 102 1 0 647.50
0.1 5 102 1 0.5 657.50
0.1 5 102 1 1 687.50
0.1 5 102 1 15 757.50 A. Validation of code
01 1 101 1 0 42.89 In order to validate the results presented in this work, the
0.1 1 10 1 0.5 43.02 following steps were carried out. First, the response of insta-
0.1 1 10 1 1 43.45 " : o

1 bility boundaries to grid sizeM) and order of base polyno-
0.1 1 10 1 15 44.23 ) o2 :
mial (N) variation were tested. Second, we examined
0.1 1 102 1 0 2725.00 whether or not the change of total disturbance kinetic and
8'1 i 153 i Oi5 23??88 thermal energy vanishes at the instability boundaries. Third,
01 1 10°3 1 15 10 175.00 the general results presented here were compared with those
, given in the literature for special cases.

0.1 1 107 10t 0 143.44 Using the base solutions, the critical values for the Ray-
0.1 1 10 10t 0.5 144.50 . ; .
o1 1 102 10° 1 146.50 leigh number and streamwise wave number were obtained
0.1 1 102 10¢ 15 151.50 for different number of grid points as well as order of base

polynomials, and are shown in Table Il. As can be seen from
N ] . Table I, a further increase dfl andN beyond 301 and 30,
values. In addition, for streamfunction, solid and daShedrespectiver, does not have an impact on Raanence, in
Iines. are associgted with a clockwise and counter-clockwisghe Jinear stability analysis given below 301 grid points and
rotation, respectively. _an order of polynomial 30 have been considered as standard
Depending on the nature of boundary walls and fluid,y4jes. A severe tegsee Table 11) for both basic state and
two different boundary conditions for perturbed temperaturginear stability calculation is provided by the energy balance.
are possible. If the bounding walls of the fluid layer havepq; g calculations presented in the following, the errors in
high heat conductivity and large heat capacity, then its temgarmal energy balance;, and in kinetic energy balance,
perature would be spatially uniform and unchanging in time.5K, are<0.3%. Note that for solving basic state flow itera-
In other words, the temperature of the boundary would bgjyely, a residual limit of 10 was set for best convergence,
unperturbed by any flow or temperature perturbation in thgnoygh it was noticed that I8 would have been sufficient.
fluid domain. Therefore, it would be appropriate to take thepe 1o these relatively low errors, one may conclude that all
disturbed wall temperature equal to zero, which is referred tqiq\y and stability features are well resolved. A final check is

as the boundary condition of the first kitBC I). However,  made by a comparison between the published results for a
this fixed temperature boundary conditions at the surface of

the fluid layer may be too restrictive because there will be

heat exchange between the solid conductive wall and the

fluid. Hence. a constant heat flux at the wall would be thelBLE Il Kinetic and thermal energy errors for different permeability
1 . _ _ . _ 72

other possibility(BC 11). In order to cover a wider range of "210s(Re=500, k=01, k=1, F=1, D& =10 ).

applicgtions, both types of boundary conditions have been S5 (%) 5+(%) Ra o

taken into account here. For each of these cases, the effect of

different parameters has been studied in detail. Before dis- g'g 8'53 igg';g g'gg

cussing the effect of different parameters on the stability of 1, 007 0.30 1368.75 104

the system, a verification of the code is given.
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TABLE IV. Comparison between published resulRef. 11 and present plane for a viscous fluid, for an isotropic porous medium
results(e=1, Pr=07, K=1, ky=1, D&’ =10°, F=0). (K,=1), anisotropic medium with high permeability {K
Ra Ra o o '=0.1), and anisotropic porous medium with low permegbil-
Re  (present (Chen—Ref. 11  (present (Chen—Ref. 11 ity (K,;=10) along they axis. As can be observed from Fig.
3, fully developed flow is more stable in the case of porous

100 43.57 41.65 0.85 0.87 di d to that of a vi fluid. and |

215 37.50 37.60 105 0.98 medium compared to that of a viscous fluid, and low perme-
500 32.62 32.65 1.21 1.22 able medium is more stable than high permeable one. This
1000 30.24 30.26 1.31 1.35 result can be explained by examining the extreme values of

disturbance stream functidy) and temperatured’) for a
given Re, e.g., Re1000 (Table V). As demonstrated in
Table V, among all cases considered, a low permeable me-

fluid-filled vertical channel as a particular case of our resultsdium (K,=10) leads to the minimum disturbance in both

Table IV compares the critical Ra amdof the present study ) . A
: = - - ¥(=0.08) and®’(=0.16), whereas viscous fluid gives the
\I;v:}‘h—tgo7seAcs)fc(;2ebneasr:eder? Tﬁgo:ese:nleynlt:i_soyo?g TI'f%tgze Varn]aximum disturbancey=0.11, ®'=0.51). Consequently,
L ' 9 good. Fe system has the maximum stability in the former and

. o . t
ous tests provide a strong validation of our numerical resultsr.ninimum stability in the latter case.
An important feature of the instability boundaries on the

(Re,Ra plane is that, for all cases, a drastic change of the Ra

The effect of different parameters on the stability of flow is observed before a threshold value of Reynolds number
and heat transfer, i.e., on the critical Raleigh number Ra anfFig. 3(a)], whereas beyond this value, a smooth and slow
critical wave numbera as a function of Reynolds number change occurs. A similar behavior in the vicinity of the
Re, has been studied. The parameters considered are pernggreshold value of Re may also be observed in the wave
ability ratio K;, thermal diffusivity ratio k, and modified number[Fig. 3b)]. At a quantitative level, this phenomena
Darcy number Da. can be explained by the distinct behavior of the disturbance
kinetic energy components undergoing points of extremum
around the threshold values of Régs. 4a)—4(d)], denoting

In this section, k=1 and F=1 have been set for all that the energy supply to the flow instability attains a sudden
cases except when, for the sake of comparison, the fluid-onlghange in these regions. The reason for this change can be
case is considered, for which=1, F=0, and D& =10 seen in the fact that when the walls of the vertical channel
have been taken. are maintained at a uniform temperature, the upward forced

Our numerical experiments showed that the disturbancéiow is unconditionally stable for infinitesimal disturbance
velocity component along the axis, W, was always almost even for very large Reynolds numbers. However, in the case
zero. At the same timgg=0 was found to provide the maxi- of nonisothermally heated vertical walls, the stability of the
mum instability. Putting these facts together, frgi#) one  flow will also depend on the heating condition. Under the
obtains% equal to zero. Further, insertirig=0 in (11) and  heating condition, a slow flow can carry denser fluid upward
(13) implies that K does not come into the picture. Hence, into the region of lighter fluid, as pointed out by Yao and
the effect of permeability variations can be studied througtRogers’ While doing so, in addition to the energy due to
K;. Note that for a given Da(which fixesK,), variation of  shear force existing in a viscous fluid, for a porous medium,
K, is due to an independent change Kf. Therefore, to a new source of disturbance energy, namely the one caused
study the effect of permeability along the main flow directionby surface dragassociated with the modified Darcy term
(x), Darcy number has to be taken into account. appears in the region of high velocity. As a consequence, a

Figure 3a) shows the instability boundaries ¢Re,Ra  point of inflection develops leading to a local high-shear

B. Zero temperature perturbation

1. Dependence of Ra and « on permeability

(@) (b)

e——r—Tr T T S—r—T—— T T

10°F

FIG. 3. Dependence of the critical
Rayleigh number@ and wave num-
ber (b) on Re for different permeabil-
ity ratios.
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layer. In this situation, small enhancement of Re makes th&ilar patterns occurred in the disturbance stream function
convection in the direction of main flow stronger, and morewhen the channel was filled with a viscous or isotropic po-
dense fluid can be transported upwards to destabilize theus medium(figures not shown

flow, and hence the critical heating condition falls drastically.  Studying the variation of the kinetic energy helps to find
As Re is increased further, the difference between fluid veout which types of instabilities occur as the Reynolds num-
locity in the denser and lighter zones reduces, which resultger changes. For the case of a viscous fli). 4@)], the

in the reduction of the rate of Change of critical Ra as Ainetic energy generated by buoyancy force)(E the domi-
function of Re. The extreme jump in the behavior of kinetic nant term in balancing the dissipation of kinetic energy due
energy for a low permeable mediuffig. 4d)] made us {4 viscosity () throughout the Re range, and except for a
examine the flow pattern near the location where the threshyeak forced flow, it leads to the existence of a pure thermal

old value of Re appears. The interesting finding was that thﬁstability. This phenomena has been observed in the
flow pattern undergoes a shift from bicellular to a unicellular|j;o a1 relt

one (see Fig. 5, and in the case of &= 6, the latter pattern

again shifts to a bicellular one. The pattern resh!ftlng de'bility mode differs. For isotropic or anisotropic porous me-
pends on the valge of K F_or example, for K=10, it ap- dia, namely, thermal, mixed and shear instability may occur
peared when Re is approximately 1951. However, no b|celéls Reynolds number increases. Figurés) 4nd 4c) show
that the sum of the dissipation of kinetic energy due to sur-
face drag () and due to viscosity (g is balanced by
kinetic energy due to thermal buoyancyfEor extremely
low Re, kinetic energy due to sheag fér high Re, which in

turn, gives thermal instability at low Re and shear instability

However, in the presence of a porous medium the insta-

TABLE V. Maximum and minimum magnitude of disturbance stream func-
tion and temperature for different permeable metig=1, Da =102,
F=1) and viscous fluidk;=1, D& =10°, F=0) at Re=1000.

Ki 10 1 0.1 Viscous at high Re. For moderate values of Re the energy dissipation
ymax +0.08 +0.084 +0.11 +0.11 is balanced by both Fand g, and mixed mode instability is
@ max 4016 4029 +0.28 +051 given. In short, it can be stated that for low permeable media

min

(K;=6), the transition of one instability mode to an-
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(a) (b) The neutral stability curves on th&e,Ra and (Req)
plane for K=0.1, k=1, and different Darcy numbers are
shown in Fig. 6. As can be seen from Fidak first, with a
decrease in Dg more stable flow is observed, which is
based on the fact that enhancing*Da due to an increase of
permeability in the vertical direction. As a consequence, the
flow strength increases and becomes unstable even for lower
heating. Second, when Bamoves from 10! to 10 2, the
logarithmic value of Ra increases by the facterl.2
throughout the Re range above the threshold value. However,
for decreasing Dafrom 10 2 to 10 3, this factor increases
and lies between 1.9 and 1.6 with growing Re. Simulta-
neously, the frequency of the disturbance in the main flow
direction exceeds more than 3.6 for :REG00 and D&
=101 [Fig. 6b)] or its wavelength of disturbance reduces
to below 87.3% of channel width. This indicates that the
local disruption of the velocity field which is induced by
temperature fluctuation causes the flow instability in the
channel. With the help of the disturbance energy, streamline,
and temperature contours, more insight into the physics in-
volved can be given. A comparison of Figgayand 7b)
shows that the dissipation of kinetic energy due to surface
S BN drag increases as Balecreases from 10 to 10 3, whereas
-1 05 0 05 1 the same due to viscosity decreag@smagnitude. Figures
y y 7(a) and 1b) also reveal that for anisotropic porous media
_ , with Da* =103, the contributions of Ein the production of
FIG. 5. The disturbance streamlines for;®K10; (@) Re=299 (¢ kinetic energy, and Eand E, in the dissipation of kinetic
=—-0.052, §/ina=0.052 and (b) Re=300 (¢/in=—0.044, ;. =0.044 for U
one period. energy are negligible. Note that for a small Darcy number
(Da*=10"%), only thermal instability occurs, whereas for
relatively large D&, thermal, mixed, and shear instabilities
other is abruptin the case of K=10 at Re=300 and 195},  exist simultaneously. Furthermore, comparing the flow and
whereas for isotropi§Fig. 4(c)] as well as high permeable temperature field for Da=10"1 with that of D& =103,
anisotropic medidFig. 4(b)], the change takes place in a the following observations can be made. As Darcy number
smooth manner. decreases, the shape of the streamlines changes from oblate
The analysis of thermal energy balance has been petriangles to quasi-squar¢bigs. §a) and &b)], which have
formed for the above-mentioned parameter range. Howevetheir vertical sides parallel to the channel wall. This pattern
because of the qualitative similarity among the behavior ofdenotes the existence of a vertically dominant motion with
all cases, the diffusion of thermal energl,j was balanced near zero horizontal component, which reduces the heat
by disturbance thermal energy due to convectidp) (in al-  transfer by convection in the direction. From the other side,
most the entire Re range, except for small Re below thehe temperature isolines move from the center toward the
threshold value where the disturbance thermal energy due tthannel wallgFigs. 9a) and 9b)], and become parallel to
buoyancy T,) has a sizable contribution. them in the near-wall region. These facts together denote that

0

(@ (b)
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100 E

FIG. 6. Dependence of the critical
Rayleigh number(@ and wave num-
ber (b) on Re for different modified
Darcy number.
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10*

the transfer of the disturbance temperature takes place
mainly by diffusion, leading to a more stable flow configu-
ration. This can be also confirmed when the largest distur-
bance stream function and temperature are compared. Both
these values fall drastically from 0.183 to 0.053 and from
0.235 to 0.06, respectively, when the Darcy number de-

10° creases from 10! to 10 3.

2. Dependence of Ra and « on thermal diffusivity

The instability boundaries on thée,Ra plane for k
=0.2, 1, and 5 when K=0.1, =1, D& =10 2 are shown
in Fig. 10. As thermal diffusivity increases, the critical Ray-
I 3 leigh number increases, making the system more stable. To
T T e - describe the shift of the neutral stability curve as a function
. of thermal diffusivity ratio, the disturbance stream functions
1 and temperature were plotted for a specific (Red00) for
k;=0.2 and 5(see Figs. 11 and 12By more closely exam-
ining the maximum values off and®’, it is found thatys
0 500 1000 1500 2000 2500 increases from 0.023 to 0.12, and that®f decreases from
Re 0.39 to 0.041. Obviously, the first trend is contradicting the
above-noted observation on the system stability, whereas the

Ra

107

10'

FIG. 10. Dependence of the critical Rayleigh number on Re for different
thermal diffusivity ratios.

(a) (b)

FIG. 11. The disturbance streamlines
for Re=500 and K=0.1; (a) k;=0.2
(l/’min:_o-023v ¢max:0-023| (b) kq
=5 (Ymin=—0.12, hpar=0.12 for
one period.

FIG. 12. The disturbance temperature
field for Re=500 and K=0.1; (a) k;
=0.2 (0,;,=—0.39,0,,=0.39, (b)
ki=5 (0,,=—0.041, 0 ,=0.04)
for one period.
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1.6

T I . I T I T sized, and in consequence, any thermal fluctuation in the
flow field will damp out quickly. When the thermal diffusiv-
ity ratio is very small, in contrast, thermal fluctuations cannot
be smoothed out by conduction and remain localized.

A further interesting feature, namely, the response of the
1 wave speedd, =¢, /Uy) to thermal diffusivity variations, is
shown in Fig. 13. For all cases of kit was observed that,
falls rapidly before a threshold value of Re is reached. After
4 this value, changes are slow and monotonic, and the values
are larger than unity. Recalling that the wave speed was non-
- dimensionalized by the average base velocity, it is interesting
to note that for the anisotropic media studied, the minimum
wave speed is always greater than average value of the base
12k N\o——= ~] velocity. A similar finding has been presented by Chen and
Chund? for a channel filled with a fluid having a Prandtl
- . number of 7.

15

iy
'S

Critical wave speed
)

1 .1 L I L I L I L I L
0 500 1000 1500 2000 2500

Re Similar to boundary condition |, a brief study of the
FIG. 13. Dependence of the critical wave speed on Re for different therma?ffect OT dlfferent anisotropic parameters on instability
diffusivity ratios. boundaries in(Re,Ra and (Rea) planes has been under-
taken for boundary condition Il. A variation of critical Ray-
leigh number as a function of Re for the perturbed BC type |
second one is in favor of it. Here, the question of which ofand BC type Il is displayed in Fig. 14 for two different
the above-mentioned trends has more influence still remaingalues of K. As can be depicted from the figure, the Ra
to be determined. To explain this behavior, use is made of theurve for zero heat flux coincides almost perfectly with that
energy spectra. The disturbance kinetic energy was analyzed zero temperature when K 0.1. A similar situation is
for low, moderate, and high values of thermal diffusivity given for K;=10 beyond Re-1000, whereas significant de-
ratios. It was found that the stability mode is generally aviations exist below it. This scenario holds also for the criti-
mixed mode instabilitfas the results were similar to those cal wave numbefsee Fig. 14b)]. Hence, for low permeable
presented in Fig. @), they are not displayed hdrdn addi- media, zero temperature perturbation leads to a more stable
tion, for Re=500, the contribution of energy production due flow than zero heat flux when Re lies below 1000. This state-
to the buoyancy term was found to be almost twice that ofment is based on the analysis of the disturbance stream func-
the shear term. Quantitatively, Bnd E changed from 0.665 tion as well as temperature, which showed that for BC |l
to 0.675, and 0.335 to 0.325, respectively, asckanged these variables exceed the same for BC I, denoting that BC
from 0.2 to 5. This change can be regarded as a clear indtype Il is less stable compared to BC type I. The influence of
cation that the disturbance temperature is the key factor ithe anisotropic thermal diffusivity ratio on the system stabil-
deciding the location of the neutral stability curve in theity is plotted in Figs. 18) and 18b), which is qualitatively
Re—Ra plane. Furthermore, since the Prandtl number is kegimilar to that of anisotropic permeability ratio given previ-
constant(k, is fixed), for high thermal diffusivity ratios, the ously. Quantitatively, however, there exist two different sub-
conduction effect in the streamwise direction is emphaidintervals below Re-900, in which the dominance of stability

C. Zero heat flux perturbation

(@
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10*
FIG. 14. Dependence of critical Ray-
leigh number(a) and wave numbe(b)

for different permeability ratios(k;
=1, D& =10"2) under zero heat flux
boundary condition. Dashed and dash-
dotted lines show zero temperature
boundary condition.
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[ FIG. 15. Dependence of the critical
Rayleigh numbei(a) and wave num-
ber (b) for different thermal diffusivity
ratios (K;=1, D& =10"2) under zero
heat flux boundary condition. Dashed
and dash-dotted lines show zero tem-
perature boundary condition.
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of zero temperature perturbation over zero heat flux fluctunearly the entire Re range. Furthermore, it was also found
ates. We note that when the porous medium has a low pethat the dissipation energy associated with the Brinkman
meability (K;=10) or provides low diffusivity &¢;=0.2), term is more significant than that associated with the Darcy
the threshold value for zero heat flux is larger than that foterm. However, in the case of lower values of modified

zero temperature boundary condition. This situation reversefarcy number, flow becomes more stable and the distur-
however, when the medium has higher permeability, (K bance thermal buoyant energy dominates in the entire Re

=0.1) or higher diffusivity @;=5). range. Simultaneously, the impact of the Brinkman term in
dissipating the kinetic energy becomes negligible compared
IV. CONCLUSIONS to that of the Darcy term. Thus, inclusion of the Brinkman

. . . . term, the Forchheimer term, and the nonlinear convective
In this work, we report the instability mechanism of the . i . :

. . . term in the momentum equations is a function of the perme-

fluid flow driven by an external pressure gradient and buoy-; .. )

. . . ability of porous medium. For the parameter range of the

ancy force in a porous vertical channel. In particular, the

influence of anisotropypermeability as well as thermal dif- present paper, trapsition of instability from one type to an-
fusivity) on the shift of the neutral stability curve is dis- other takes place in a smooth manner, except when perme-

cussed. The linearly varying wall temperature is studied unf”‘b'“ty ratio K, exceeds 6. Wave number experiences an

. : abrupt jump for most of the parameter ranges studied when
der two different types of perturbations, namely zero L
Reynolds number reaches a threshold value. Quantitatively,
temperature and zero heat flux. The Prandtl numbér, Pr )
. . . . the Reynolds number threshold value depends on the input
Forchheimer number, heat capacity ratip and porositye

arameters and the specific boundary conditions. In all the
were kept constant throughout the paper, and were set to 1, . .
. cases studied, the disturbance flow moved upwards as alter-
1, and 0.9, respectively.

. _ native single or double cells. It is worth mentioning that,
It has been demonstrated that mixed convection in a ver: .
. . . . beyond a certain threshold value of Re, the type of boundary
tical porous channel is unstable in a large portion of an ap- s . - r
) . : condition did not alter the stability characteristics of the sys-
propriate parameter space under which the following conclu-
sions can be made. Fully developed flow is most unstable in
a highly permeablgwhich is a consequence of very low
value of K; or high value of D&) as well as in very low
diffusivity medium. It was observed that a reduction of per-
meability in the main flow direction by one ordére., a
reduction of D4 from 10 2 to 10 %) makes the system re-
main stable for R& 770, whereas the flow become unstable

even for Ra 150 when permeability in the streamwise di- ACKNOWLEDGMENT
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ratio, the flow in an anisotropic medium may be both more

(K;<1) orless (K>1) stable than that in an isotropic one.
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1630 Phys. Fluids, Vol. 14, No. 5, May 2002 P. Bera and A. Khalili

4G. F. Scheele and T. J. Hanratty, “Effect of natural convection on stability??P. A. Tyvand, “Heat dispersion effect on thermal convection in anisotropic
of flow in a vertical pipe,” J. Fluid Mech14, 244 (1962. porous media,” J. Hydrol34, 335(1977).

5G. A. Kemeny and E. V. Somers, “Combined free and forced convective?*R. McKibbin and P. A. Tyvand, “Anisotropic modeling of thermal con-
flow in vertical circular tubes—experiments with water and oil,” Trans.  vection in multilayered porous media,” J. Fluid Mectl8 315 (1982.

ASME, Ser. C: J. Heat Transf&4, 339(1962. 2p. A. Tyvand and L. Storesletten, “Onset of convection in an anisotropic

SL. S. Yao, “Is a fully-developed and non-isothermal flow possible in a porous medium with oblique principal axes,” J. Fluid Med@®26, 371
vertical pipe?” Int. J. Heat Mass Trans30, 707 (1987. (1991).

L. S. Yao, “Linear stability analysis for opposed mixed convection in a 2°M. Kaviany, Principles of Heat Transfer in Porous Medi&pringer, New
vertical pipe,” Int. J. Heat Mass Trans30, 810(1987. York, 1995.

8Y. C. Su and J. N. Chung, “Linear stability analysis of mixed-convection 2°D. A. Nield and A. Bejan,Convection in Porous MediéSpringer, New
flow in a vertical pipe,” J. Fluid Mech422, 141 (2000. York, 1999.

°L. S. Yao and B. B. Rogers, “The linear stability of mixed convection in a 2’R. A. Wooding, “Steady state free thermal convection of liquid in a satu-
vertical annulus,” J. Fluid Mech201, 279 (1989. rated permeable medium,” J. Fluid Mech.273(1957.

105, A. Suslov and S. Paolucci, “Stability of mixed-convection flow in a tall 2°R. C. Givler and S. A. Altobelli, “A determination of the effective viscos-
vertical channel under non-Boussinesq conditions,” J. Fluid M868, 91 ity for the Brinkman—Forchheimer flow model,” J. Fluid Meck68 355
(1995. (1994).

1y, Chen and J. N. Chung, “The linear stability of mixed convection in a ?°N. Martys, D. P. Bentz, and E. J. Garboczi, “Computer simulation study of
vertical channel flow,” J. Fluid Mech325, 29 (1996. the effective viscosity in Brinkman’'s equation,” Phys. Flui@s 1434

12M. Combarnous and P. Bia, “Combined free and forced convection in (1994).
porous media,” Soc. Pet. Eng. 11, 399 (1972). 3D, F. James and A. M. J. Davis, “Flow at the interface of a model fibrous

13p_ Cheng, “Combined free and forced boundary layer flows about inclined porous medium,” J. Fluid Mech426, 47 (2001).
surfaces in a porous medium,” Int. J. Heat Mass Tra@6f.807 (1977). 31K, Vafai, “Convective flow and heat transfer in variable-porosity media,”

14p_Cheng, “Similarity solutions for mixed convection from horizontal im-  J. Fluid Mech.147, 233(1984.
permeable surfaces in saturated porous media,” Int. J. Heat Mass Transi?V. Prasad, F. A. Kulacki, and M. Keyhani, “Natural convection in porous

20, 893(1977. media,” J. Fluid Mech150, 89 (1985.
15p, Cheng, “Convective heat transfer in porous layers by integral meth=3K. Vafai and R. Thiyagaraja, “Analysis of flow and heat transfer at the
ods,” Lett. Heat Mass Transfes, 243 (1978. interface region of a porous medium,” Int. J. Heat Mass TraB8f.1391

1E C. Lai, F. A. Kulacki, and V. Prasad, “Mixed convection in horizontal  (1987).
porous layers: Effects of thermal boundary conditions,” ASME Heat **G. Lauriat and V. Prasad, “Non-Darcian effects on natural convection in a
Transfer Division84, 91 (1987). vertical porous enclosure,” Int. J. Heat Mass TrargZ, 2135(1989.
7K. J. Renken and D. Poulikakos, “Mixed convection experiments about a°A. J. Basu and A. Khalili, “Computation of flow through fluid—sediment
horizontal isothermal surface embedded in a water-saturated packed bed ofnterface in a benthic chamber,” Phys. Fluitl 1395(1999.
spheres,” Int. J. Heat Mass Tran&3, 1370(1990. 363, Chandrasekhaklydrodynamic and Hydromagnetic Stabilitpover,
18y, Prasad, F. C. Lai, and F. A. Kulacki, “Mixed convection in horizontal ~ New York, 1962.
porous layers heated from below,” ASME J. Heat Transié0, 395 7P, G. Drazin and W. H. Reidjydrodynamic StabilityCambridge Univer-
(1988. sity Press, Cambridge, 1981
18G. Castinel and M. Combarnous, “Natural convection in an anisotropic®®P. Huerre and M. Rossi, “Hydrodynamic instabilities in open flows,” in
porous layer,” Int. Chem. Endl7, 605(1977). Hydrodynamics and Nonlinear Instabilitiesdited by C. Godiehe and P.
203, F. Epherre, “Criterion for the appearance of natural convection in an Manneville (Cambridge University Press, Cambridge, 1998
anisotropic porous layer,” Int. Chem. Engj7, 615(1977). 39MSL, International Mathematical and Statistical Librat982.
2IA. Khalili, 1. S. Shivakumara, and M. Huettel, “Effects of throughflow “°C. Moler and G. W. Stewart, “An algorithm for generalized matrix eigen-
and internal heat generation on convective instabilities in an anisotropic value problems,” SIAM(Soc. Ind. Appl. Math. J. Numer. Anal.10, 241
porous layer,” J. Porous Medi@o be published (1973.



