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Abstract

The theory of kinetic ballooning modes (KBMs) in a magnetically confined toroidal plasma is

studied analytically and numerically by means of gyrokinetic simulations. A physics-based ordering

for β (the ratio of kinetic to magnetic plasma pressure) with small asymptotic parameters is found.

This allows us to derive several simplified limits of previously known theories. We introduce a

variational approach which provides explicit dispersion relations in terms of integrals of quadratic

forms constructed from numerical eigenfunctions. It is found that, for large pressure gradients, the

growth rate and frequencies computed by gyrokinetic codes show excellent agreement with those

evaluated by using a diamagnetic modification of ideal MHD if geometric drifts are kept consistent

with the equilibrium pressure gradient. For moderate pressure gradients, a new finite-β formulation

of KBM theory is proposed. Also in this case, good agreement between numerical simulations and

analytical theory is found.
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I. INTRODUCTION

In a toroidal magnetic fusion device, the curvature of the confining magnetic field and

the plasma pressure gradient cause a destabilization of hydromagnetic modes with long

wavelengths along and short wavelengths across the magnetic field. The nature of the drive

of the instability, which is inextricably related to magnetic field and pressure gradients,

makes such instabilities rather pervasive.

The high-mode-number toroidal instabilities were first successfully studied within the

ideal magnetohydrodynamic (MHD) model using the ballooning transform [1]. Accounting

for kinetic effects lead to the development of a framework for the study of Kinetic Balloon-

ing Modes (KBM) [2, 3]. The equations that describe kinetic ballooning modes were put

forward in the seminal works of Antonsen and Lane [2], and of Tang, Connor and Hastie

[3]. However, the complex structure of the general equations presented by these authors

prevents a straightforward analytical prediction for the KBM.

Kinetic ballooning modes are routinely observed in finite-β gyrokinetic numerical sim-

ulations under the same conditions that would produce an electrostatic ion-temperature-

gradient (ITG) driven instability [4–6].
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Figure 1. A typical transition of the spectrum of microinstabilities in a local flux tube simulation.

From electrostatic ITG (β = 0%) to KBM (β = 1.5%). Here γ is the growth rate, kyρs the mode

wavelength, with ρs the sound ion Larmor radius.

In this context, the parameter β = 8πp/B2, the ratio of plasma to magnetic pressure,

is a measure of the importance of electromagnetic effects. The typical β-dependence of
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these instabilities is illustrated in Fig. 1, which shows the growth rate of the most unstable

microinstabilities evaluated with local flux-tube simulations. The electrostatic ITG mode

(β = 0%) is partly stabilized by a finite β ∼ 1%. For larger β, a long-wavelength mode gets

destabilized: the KBM.

To date, it is not clear under which circumstances gyrokinetic simulations of the finite β

temperature-gradient-driven microinstability produce results compatible with the theory of

ideal ballooning modes. The purpose of this work is to shed light on this matter.

We extend a recent electromagnetic analysis of ITG modes [7] and derive an optimal

ordering for all relevant expansion parameters that allows us to greatly simplify the original

KBM equation of Ref [3]. It is shown that, at long-wavelengths, a finite-β theory of KBMs

can be adequately described by a simple diamagnetic modification of the ideal MHD equation

as long as local magnetic drifts are kept consistent to the equilibrium constraint j×B = ∇p.

This analytical result is then tested numerically with the gyrokinetic codes GS2 [8, 9] and

GENE [10, 11] by using a simple ŝ − α equilibrium model [1]. We assess the quantitative

effect of the equilibrium constraint on the instability and predict the KBM growth rate for

both large and moderate temperature gradients.

For large temperature gradients, the gyrokinetic codes show excellent quantitative agree-

ment with a diamagnetic modification of ideal MHD. In this case, instability occurs only

for Re(ω) ≡ ωr = ωpi/2, where ω the complex mode frequency, ωr is its real part and ωpi

the ion diamagnetic frequency associated with the ion pressure gradient. The instability is

most unstable at long wavelength. For moderate temperature gradients, we observe that the

mode frequency tends to a value ωr > ωpi/2. The maximum growth rate occurs at small but

finite wavelength. A higher-order theory that generalizes the intermediate-frequency regime

of Ref. [3] to finite β is also introduced. The moderate-gradient regime is quantitatively

described by this theory.

This work is structured in the following way: in Section II, we derive the natural ordering

of β and b = k2⊥ρ
2
i /2, with ρi the ion Larmor radius that allows us simplify the general KBM

theory of Ref. [3]. In Section III we introduce a variational approach which allows us to

verify numerically the analytical results of the Section II. The conclusions are summarized in

Section IV. The appendices include information about velocity-space integrals (Appendix A),

GS2 and GENE gyrokinetic codes benchmark (Appendix B) and the influence of magnetic

shear on KBM stability (Appendix C).
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II. HIGH−β ORDERING FOR KBMs

The basic theory of kinetic ballooning modes was developed in Ref. [3]. Here, the

authors solve the gyrokinetic equation by expanding in ε = v2thi/ω
2l2c � 1, where vthi is the

ion thermal speed, lc the connection length and ω � vthe/lc is the mode frequency, with vthe

the electron thermal speed. The general KBM equation retains magnetic drift resonances,

gyro-averaging and magnetic compressibility effects. The result is a second order differential

equation for the electrostatic potential φ, that reads:

1

βiB

2v2ths/l
2
c

ω2

∂

∂z
bB

∂φ

∂z
= Kφ, (1)

with

K =

{[
Q−

(
1− ω∗i

ω

)] [
α0,e

(
1 +

βi
2
R

)
− α1,eτQ

′βi
2

]

− βi
2

(Q′ + α1,e) [α0,eQ
′ + α1,e (1 + τ − τQ)]

}
×

{
(1 + τ − τQ)

(
1 +

βi
2
R

)
+ τQ′2

βi
2

}−1
− α1,e

ωκ + ωB
ω

,

(2)

where the normalization length lc and the coordinate z along the field are defined so that

lc∇‖ = ∂z, αn,j = 1 − (ω∗i/ω) (1 + nηj), τ = Ti/Te, ηi = Lni
/LTi , ω∗i = 1

2
kyρi,evth/Ln.

Furthermore:

Q =

∫
d3v

F0

n0

J2
0

(
ω − ωT∗
ω − ωd

)
, (3)

Q′ =

∫
d3v

F0

n0

d

db
J2
0

(
ω − ωT∗
ω − ωd

)
, (4)

R =
2

b

∫
d3v

F0

n0

v4⊥J
2
1

(
ω − ωT∗
ω − ωd

)
, (5)

with

ωd = 2

(
ωB

v2⊥
2

+ ωκv
2
‖

)
,

ωB =
kyρi

2

vthi
R

[
cos z + (ŝz − α sin z) sin z

]
,

ωκ = ωB +
kyρi

2

vthi
R

α

2q2

≡ kyρi
2

vthi
R

[
cos z + (ŝz − α sin z) sin z

]
+
βi
2

[
ω∗i (1 + ηi)− ω∗e (1 + ηe)

] (6)
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where F0 is the Maxwellian distribution function with density n0, q is the safety factor and

α = −Rq2β′ is the normalized pressure gradient parameter, where β′ = βi
[
ω∗i (1 + ηi) −

ω∗e (1 + ηe)
]
. We consider a circular ŝ − α equilibrium model. Eq. (1) has a complex

structure, but it can be significantly simplified under certain conditions.

In the long-wavelength b� 1, non-resonant limit b ∼ ωd/ω, Q→ 1− ω∗i
ω

+O(ε), as seen

from Eq. (15) in Appendix A. Therefore, the first term of the numerator of Eq. (2) in the

first pair of the curly brackets cancels to zeroth order, restricting the second term in the

first curly brackets (which is order β, since αi,j ∼ 1) to order ε i.e. β ∼ ε. The last term

of the right-hand side of Eq. (2) (in order to compete with the first term) is of the same

order as the first just discussed and is retained when ωd/ω ∼ ε. The resulting ordering

is β ∼ b ∼ ωd/ω ∼ ε, which is consistent with the fact that with increasing temperature

gradient the KBM tends to have maximum growth rate at long wavelengths (i.e. b ∼ ε).

We refer to β ∼ ε as the ”high-β ordering” as opposed to the low-β ordering β ∼ ε2 of Ref.

[7].

Thus, expanding K to first order in ε, Eq.(1) takes the form:

1

βi

v2thi
ω2l2c

∂

∂z
bB

∂φ

∂z
= −ωB + ωκ

ω2
ωpφ− bα1,iφ−

βi
2

ωp
2

ω2
φ, (7)

where ωp = ω∗i (1 + ηi)− ω∗e (1 + ηe) ≡ ωpi + ωpe.

Note here that our high-β ordering does not permit us to use the common approximation

ωκ ≈ ωB. Equation (6) can be rewritten as (βi/2)ω2
p/ω

2 = (ωκ − ωB)ωp/ω
2 [3]. Equation

(7) is thus the familiar ideal-MHD equation with a diamagnetic correction [12]:

1

βi

v2thi
ω2l2c

∂

∂z
bB

∂φ

∂z︸ ︷︷ ︸
field line bending

= −2ωκωp
ω2

φ︸ ︷︷ ︸
curvature

− b
[
1− ω∗i

ω
(1 + ηi)

]
φ.︸ ︷︷ ︸

diamagnetic

(8)

Equation (8) is much simpler than Eq. (1), and yet takes into account FLR effects (through

the last term) and magnetic compressibility at high β ∼ ε. This is an unexpected result,

since electromagnetic corrections, in particular magnetic compressibility, have a zeroth-order

effect on the electromagnetic ITG for β ∼ ε2
[
see Eq.(22) of Ref. [7]

]
, and yet Eq. (8)

(derived for β ∼ ε) coincides with Eq.(20) of Ref. [7] for the electromagnetic ITG when

ηi � 1. Section III demonstrates that this equation is an adequate approximation of the

high-temperature-gradient regime of KBM.

For moderate temperature-gradients, as we shall see, the frequency of the mode increases,

making the field-line-banding term on the LHS of Eq. (1) smaller, and compelling us to
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consider higher-order terms on the RHS of Eq. (1). The extent to which such small terms

ought to be retained is dictated by the action of the equilibrium pressure gradient. We can

see how we must include terms that are second order in the original ordering b ∼ ωd/ω ∼ ε.

Indeed, the driving term is ωκωp/ω
2 ∼ k2yρ

2
i v

2
thi/(RLpω

2), which tends to be not a function of

kyρi for ω ∝ kyρi and starts, for decreasing R/LT , competing with ω2
κ/ω

2 ∼ k2yρ
2
i v

2
thi/(R

2ω2)

which is formally O(ε2). Thus, for moderate pressure gradients, a decreasing R/Lp tends to

render the next order correction of the original ordering non negligible.

With all second-order (in ε) terms, Eq. (1) takes the form:

1

βi

v2thi
ω2l2c

∂

∂z
bB

∂φ

∂z
= −2ωκωp

ω2
φ− bα1,iφ+

(ωκ + ωB)2

ω2
τ
α2
1,i

α0,e

φ+ 2
3
2
ω2
κ + ωBωκ + ω2

B

ω2
α2,iφ︸ ︷︷ ︸

A©:
ω2
d

ω2∼ε2

−

−2(ωκ + ωB)

ω
bτ
α2
1,i

α0,e

φ+ b2(τ
α2
1,i

α0,e

+
α2,i

8
)φ− bα2,i

ωκ + 2ωB
ω

φ︸ ︷︷ ︸
B©:

ωd
ω
b∼b2∼ε2

+

+βiα2,iωp
2ωκ + ωB

ω2
φ+

β2
i

4

ω2
p

ω2
(τ
α2
1,i

α0,e

+
3

2
α3,i)φ+ (

ωκ + ωB
ω︸ ︷︷ ︸

C©:
ωd
ω
β∼β2∼ε2

−b)τβi
α2
1,i

α0,e

ωp
ω
φ− 3

2
bβiα2,i

ωp
ω
φ︸ ︷︷ ︸

D©: bβ∼ε2

,

(9)

where the origin of each contribution is given. For more details see Appendix A. This

equation is found to approximate KBM modes in a broad range of parameters, as discussed

in Section III. While Eq. (9) might look cumbersome, it is sufficient to describe KBMs for

realistic pressure gradients.

Let us be more specific about possible subsidiary expansions . In particular, the balance

of the O(ε) terms of Eq. (9) gives:

ω ∼
√
ωκωp
b

,

suggesting the existence of three small expansion parameters:

β � 1, b� 1,
ωκ
ωp
∼ δ =

Lp
R
� 1.

The comparison of the first term on the right-hand side of Eq. (9) and the first term from

group A gives:
(ωκ + ωB)2

ω2

/ωκωp
ω2
∼ ωκ
ωp
∼ δ,
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which only scales with Lp/R. The same procedure applied to the other groups of Eq. (9)

gives for group B:

ωκ + ωB
ω

b
/
b ∼ ωκ

ω
∼

√
bωκ
ωp
∼
√
bδ;

for group C:

βωp
2ωκ + ωB

ω2

/ωκωp
ω2
∼ β;

for group D:

bβ
ωp
ω

/
b ∼ β

ωp
ω
∼ β

√
bωp
ωκ
∼ β

√
b

δ
.

For small b, the terms of group B and D are negligible. Those of group C are relevant

only for very large gradients (Lp/R ∼ β) therefore can be neglected in a moderate gradient

regime. For finite-β, terms of group D will set an upper bound for negligible second order

terms, because of their β dependence.

Therefore, as pressure gradients decrease, δ increases making terms of group A (which

only scale with δ) increasingly important. Formally, this occurs for:

β2/3b1/3 � Lp
R
� 1

β
.

In this limit Eq. (9) simplifies significantly:

1

βi

v2thi
ω2l2c

∂

∂z
bB

∂φ

∂z
= −2ωκωp

ω2
φ− bα1,iφ+

(ωκ + ωB)2

ω2
τ
α2
1,i

α0,e

φ+ 2
3
2
ω2
κ + ωBωκ + ω2

B

ω2
α2,iφ. (10)

This equation indeed represents the long wavelength limit of KBMs as shown in Section III.

In Ref.[3] an ideal-MHD limit of the KBM Eq. (1) was suggested to take the form [Eq.

(3.40)]:
1

βi

v2thi
ω2l2c

∂

∂z
bB

∂φ

∂z
= −2ωκωp

ω2
φ− bα1,iφ+

ω2
κ

ω2
[7α2,i + 4τ

α2
1,i

α0,e

]φ, (11)

where a typo has been corrected. Although Eq. (11) resembles Eq. (8) and Eq. (10), it

appears to be more limited than the latter two due to the aforementioned lack of ordering

in β. Equation (11) was derived from Eq. (1) in the limit where b and ωd/ω are small

parameters and β � 1, but the authors do not specify how small β should be. We notice

that Eq. (11) is indeed recovered from Eq. (10) if we set ωκ = ωB. Here, we can only say

that, for this to be true, β and β′ must be both small enough to set ωκ = ωB. This can

perhaps be achieved with a subsidiary ultra-low β expansion which, however, must be kept

consistent to the original high-β ordering (β ∼ ε).
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In the next sections the validity of Eqs. (8)-(10) in different regimes will be checked

against numerical simulations with the GENE and GS2 codes.

III. NUMERICAL VERIFICATION

When the coefficients of Eqs. (8)-(10) are constant, a Fourier analysis is possible. This is

done for Eq. (8) in Appendix D. However, pursuing the goal to examine the characteristics

of KBMs in toroidal geometry, we introduce a variational approach.

Equations (8)-(10) are multiplied by the complex conjugate φ∗ and integrated by parts

resulting in the following relation for ω:

ω(ω − ωpi)
∫ ∞
−∞

b|φ|2

B
dz = −2ωp

∫ ∞
−∞

ωκ|φ|2

B
dz +

1

βi

v2thi
l2c

∫ ∞
−∞

b
∣∣∣∂φ
∂z

∣∣∣2dz, (12)

where we are showing the procedure for Eq.(8) for illustrative purposes. For each ky, we

substitute the eigenfunctions φ obtained with the GENE code, perform the integration and

solve for the complex ω. The result is then compared to the original eigenvalue given by

GENE.

3.1. SIMULATION DETAILS

We consider hydrogen plasma and Cyclone Base Case (CBC, Ref.[13]) parameters in the

collisionless regime, in the simple ŝ−α geometry, with electromagnetic effects and consistent

pressure gradients (see Appendix B for benchmark details and GS2-GENE comparison),

therefore: Ti/Te = 1, mi/me = 1836, R/Lni,e = 2.22, R/LT i,e = 6.89, r/a = 0.5, R/a =

2.7775, r/R = 0.18, q = 1.4, ŝ = 0.786. Here, Ti,e are the ion and electron temperature, R is

the major radius, r is the minor radius, LT i,e and Ln are the characteristic gradient lengths

for temperature and density, a is a GS2 equilibrium reference normalization length (we use

the value a = 1.08 m) and ŝ is the magnetic shear. In the present work β is defined as:

βGS2/GENE = βi,e =
β

2
=

8πni0Tref
B2
ref

,

where Tref is a reference temperature, Bref a reference magnetic field and ni0 is the equilib-

rium ion density. Note that βGS2/GENE = βtotal/2.
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The curvature and ∇B drift frequencies in code units are:

ωB =
kyρref

2

vref
Lref

{
cos z + (ŝz − α sin z) sin z

}
, (13)

ωκ =
kyρref

2

vref
Lref

{
cos z + (ŝz − α sin z) sin z +

β

2

[ R
LT i

+ τ
R

LTe
+ (1 + τ)

R

Ln

](
1 +

r

R
cos z

)2}
.

(14)

The extra part of curvature drift connected with the pressure gradient was implemented

in the GS2 code and verified using GENE results (see Appendix B, Fig.6). All data (unless

stated otherwise) were obtained considering this additional part of curvature drift. Note

that b = k2yρ
2
i /2[1 + (ŝz − α sin z)2], B = B0(1 + r/R cos z)−1, which is also used in our vari-

ational analysis.

3.2. RESULTS

Equation (12) implies that a necessary condition for instability is Re(ω) = ωpi/2. This

is indeed observed for large temperature gradients. Thus we consider two distinct regimes:

large temperature gradients, where, we argue, Eq. (8) is appropriate, and moderate temper-

ature gradients, where corrections given in Eq. (9) will be required.

3.2.1. LARGE TEMPERATURE GRADIENTS

The KBMs obtained from GENE (solid curves) and from the variational approach of

Eq. (12) are shown in Fig.2. Here β = 1.5%, q = 1.4, R/Lni,e = 2.22 and R/LT i,e = 35, 40, 45.

Note that ωr is the real part of the complex frequency in Eqs. (8)-(10).

9



0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

γ
,ω

r
/(
c s
/R

)

kyρs

GENE ωr
GENE γ

diam. MHD ωr
diam. MHD γ

ω∗pi/2

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

γ
,ω

r
/(
c s
/R

)

kyρs

0

2

4

6

8

10

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

γ
,ω

r
/(
c s
/R

)

kyρs

Figure 2. Spectra for R/LT i,e = 35, 40, 45 from left to right respectively. On the plot GENE

simulations γ: solid curve (×) and ωr: solid curve (+) against results obtained solving Eq. (8) (γ:

squares and ωr: stars) are presented. The dashed line represents the ω∗pi/2 frequency.

We stress the importance of the real frequency in the identification of different KBM

regimes. This aspect has been neglected in many numerical studies in the literature. The

frequency of the mode is indeed ωr ≈ ωpi/2. The maximum growth rate is at ky = 0, where

ωr ≈ 0. The agreement of the GENE results and our model is excellent and improves with

increasing temperature gradient.

This comparison shows that the suggested simplified model of ideal MHD with diamag-

netic correction [i.e. Eq. (8)] appears to reasonably approximate the quite complex general

KBM model of Eq. (1) for large temperature gradients, enabling further analytical analysis

of this regime. For instance, the critical value for β for destabilisation based on Eq. (8) is

derived in Appendix D in the local limit.

3.2.2. MODERATE TEMPERATURE GRADIENTS

For moderate temperature gradients the importance of the drift terms becomes evident.

These terms are associated with the effects of the curvature and ∇B drifts, and generally

cause a stabilisation of the mode.

Figures 3 and 4 summarize the results of the numerical computations of γ and ωr with

GENE and their corresponding values obtained from the variational approach for the case of

moderate gradients (R/LT i,e = 15). The diamagnetic modification of ideal MHD
[
Eq. (8)

]
(left plot in Fig. 3) does not longer adequately describe the mode. The second-order terms
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of the long-wavelength limit
[
Eq.(10)

]
improve the agreement at small ky (filled dots on the

right plot of Fig. 3), while also providing an improving correction to ωr, which is now above

ωpi/2.

To extend the agreement to the finite-kyρs region all second order of Eq. (9) terms can be

retained. These terms tend to further stabilise the mode. The values of γ and ωr resulting

from the variational analysis of Eq. (9) [as well as its long wavelength limit Eq. (10)] are

shown in Figs. 3 (right) and 4 for R/LT i,e = 15 and R/LT i,e = 12.5, 20 respectively. We

observe very good agreement for growth rates, while frequencies are not as satisfactory.

However, in the low-ky end of the spectrum, where the mode is most unstable, the agreement

between theory and code is still remarkable.
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Figure 3. Spectra for R/LT i,e = 15. On the left GENE simulations γ: solid curve (×) and ωr:

solid curve (+) against results obtained solving Eq. (8) (γ: squares and ωr: stars) are presented.

On the right results obtained solving Eq. (10) (γ: filled dots and ωr: stars) and Eq. (9) (γ: open

dots and ωr: triangles) are presented. The dashed line represents the ω∗pi/2 frequency.
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Figure 4. Spectra for R/LT i,e = 12.5, 20 from left to right respectively. GENE simulations γ: solid

curve (×) and ωr: solid curve (+) against results obtained solving Eq. (10) (γ: filled dots and ωr:

stars) and Eq. (9) (γ: open dots and ωr: triangles) are presented. The dashed line represents the

ω∗pi/2 frequency.

For even smaller temperature gradients (R/LT i,e = 7.5), the mode frequency falls in the

interval ωpi > ωr > ωpi/2 for kyρs > 0.3 and ωr > ωpi for kyρs < 0.3. The most unstable

mode wavelength is kyρi ≈ 0.25 (see Fig.5). Both these tendencies are captured correctly in

Eqs. (9) and (10), while some other stabilising effect (e.g. Ion Landau Damping and finite-

Larmor-radius effects) might be missing in the simplified model as the maximum growth

rate exceeds the GENE prediction.
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Figure 5. Spectra for R/LT i,e = 7.5. On the left GENE simulations γ: solid curve (×) against

results obtained solving Eq. (10) (γ – filled dots) and Eq. (9) (γ – open dots) are presented.

On the right GENE simulations ωr: solid curve (+) against results obtained solving solving Eq.

(10) (ωr: stars) and Eq. (9) (ωr: triangles) are presented. The dashed line represents the ω∗pi/2

frequency, and the dotted line represents the ω∗pi frequency.

IV. CONCLUSION

In the present work, we have revisited the problem of kinetic ballooning mode instability.

We have derived an appropriate ordering for β, which allows us to greatly simplify previous

KBM theories.

We introduced a variational approach to verify numerically the analytical results against

linear GENE simulations, which are also repeated with GS2 code, demonstrating excellent

agreement.

The results of the kinetic instability analysis and its comparison with numerics lead us

to distinguish between ”high temperature-gradient” and ”moderate temperature-gradient”

KBM regimes. The real frequency plays an important role in the identification of different

KBM regimes.

For large temperature gradients instability occurs only for ωr = ωpi/2. The maximum

growth rate occurs at very long wave length. In this case, if magnetic drifts are kept consis-

tent with the equilibrium pressure gradient, the gyrokinetic codes show excellent quantita-
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tive agreement with a diamagnetic modification of ideal MHD
[
Eq. (8)

]
derived in high-β

ordering, generalizing the electromagnetic ITG theory of Ref. [7], which was specifically

constructed for β ∼ ε2 and coincides with the present model for ηi � 1.

For moderate temperature gradients, we observe that the mode frequency tends to a value

ωpi > ωr > ωpi/2 or even ωr > ωpi. The growth rate now peaks at finite ky. This regime is

described by Eq.(9), where all corrections connected with both high-β ∼ ε and b ∼ ε (which

is especially important for finite kyρi) are included. The solution of Eq.(9) provides good

agreement for growth rates and shows the correct trend for the mode frequency.

In our study, we did observe a destabilisation of KBMs when frequencies fall in the

range ωpi > ωr > ωpi/2, but only for large to moderate pressure gradients. However, as

R/Lp decreases towards marginal values, these conditions seem to be stabilizing (see Fig.5,

where the code results show a decreasing growth rate for ky such that ωpi > ωr > ωpi/2).

Nevertheless, if we consider the discrepancy between the points in Fig.5, which come from

the fluid approximation of Eqs. (9-10), and the solid line, generated by the full kinetic

numerical simulation, Eqs. (9-10) seem to overestimate the growth rate for ωr > ωpi.

For ωpi > ωr > ωpi/2, Eqs. (9-10) underestimate growth rates. This discrepancy for

ωpi > ωr > ωpi/2 could perhaps be attributed to either resonant ion-transit destabilisation

[15], or finite-Larmor-radius effects.
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APPENDIX A (VELOCITY-SPACE INTEGRALS)

In the velocity-space integrals of Eqs.(3)-(5), we expand the denominator for ωd � ω and

the Bessel functions for b� 1 to obtain:
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Q ≈ 2

∫ ∞
0

dv̂⊥v̂⊥

∫ ∞
−∞

dv̂||
e−(v̂

2
||+v̂

2
⊥)

√
π

{
1− ω∗i

ω

[
1 + ηi

(
v̂2|| + v̂2⊥ −

3

2
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1 +

ωB
ω
v̂2⊥

+ 2
ωκ
ω
v̂2||

)(
1− k2⊥ρ

2
i

2
v̂2⊥

)
≈ 1− ω∗i

ω
+

(
ωB + ωκ

ω
− k2⊥ρ

2
i

2

)[
1− ω∗i

ω
(1 + ηi)
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3ω2
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B
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ωB + ωκ

ω
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k2⊥ρ

2
i

2
+

(
k2⊥ρ

2
i

2

)2
8

[1− ω∗i
ω

(1 + ηi)
]
,

(15)

Q′ ≈ 2

∫ ∞
0

dv̂⊥v̂⊥

∫ ∞
−∞

dv̂||
e−(v̂

2
||+v̂

2
⊥)

√
π

{
1− ω∗i

ω

[
1 + ηi

(
v̂2|| + v̂2⊥ −

3

2

)]}(
1 +

ωd
ω

)−2v̂2⊥
k⊥ρi

(k⊥ρi
2

v̂2⊥

− 3

16
k3⊥ρ

3
i v̂

3
⊥

)
≈ −

[
1− ω∗i

ω
(1 + ηi)

]
− 2ωB + ωκ

ω

[
1− ω∗i

ω
(1 + 2ηi)

]
+

3

4
k2⊥ρ

2
i

[
1− ω∗i

ω
(1 + 2ηi)

]
,

(16)

R ≈ 2

∫ ∞
0

dv̂⊥v̂⊥

∫ ∞
−∞

dv̂||
e−(v̂

2
||+v̂

2
⊥)

√
π

{
1− ω∗i

ω

[
1 + ηi

(
v̂2|| + v̂2⊥ −

3

2

)]}(
1 +

ωd
ω

)
v̂4⊥

(1

4
v̂2⊥

− v̂4⊥
16
k2⊥ρ

2
i

)
≈ 3

2

[
1− ω∗i

ω
(1 + 3ηi)

]
+

3

2

(4ωB + ωκ)

ω

[
1− ω∗i

ω
(1 + 4ηi)

]
− 3

2
k2⊥ρ

2
i

[
1− ω∗i

ω
(1 + 4ηi)

]
.

(17)

By substituting these results in Eq.(1), for β ∼ ε, we obtained Eq.(8) of the text.

APPENDIX B (BENCHMARK, GENE-GS2 COMPARISON)

The computational results presented in this work were obtained with the GS2 and GENE

codes. Both codes are used to solve the gyrokinetic equations in the local flux tube limit

in five-dimensional phase space. In general, we observed a good agreement between the two

codes.
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Figure 6. KBM spectra for R/LT = 6.89, β=1.5% 1) GENE, ωκ 6= ωB, filled circles; 2) GS2,

ωκ 6= ωB, open circles; 3) GS2, ωκ = ωB, stars.

The GS2 code was modified to take into account of the difference between curvature and

∇B drifts for finite equilibrium pressure gradients
[
Eqs. (13), (14) of the main text

]
. In

Fig.(6) the growth rate for the KBM mode is shown for two cases: ωκ 6= ωB
[
calculated

with GENE (filled circles) and GS2 (open circles), good agreement is observed after the GS2

modification
]

and ωκ = ωB (calculated with GS2, stars). Note the significant decrease of

the growth rate in the latter case.
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Figure 7. KBM spectra for several cases with different LT i,e.

Fig.(7) shows a good agreement between GS2 and GENE calculations for various q and
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R/LT i,e in a scenario based on Cyclone Base Case: q = 1.4, R/LTi,e = 6.89 (+), 7.5 (×), 9

(stars) and q = 1.6, R/LTi,e = 4.5 (squares), 5.5 (triangles), 6.1 (circles). We also note that

calculation results presented in Fig.(1) are in a good agreement with other CBC studies [6],

[14].

APPENDIX C (MAGNETIC SHEAR)

The GS2 calculation of the KBM linear growth rate as a function of the temperature gra-

dient in the collisionless limit in shown in Fig. 8. The calculations are based on the Cyclone

Base Case parameters in ŝ−α geometry. A flat density gradient and equal temperature for

ions and electrons are assumed. Three values of the magnetic shear ŝ are considered: 0.786,

0.486, 0.386.
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ŝ=0.386
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Figure 8. The linear growth rate of electromagnetic KBM mode, β = 1.5%, with different magnetic

shear ŝ.

In the low R/LT domain lower magnetic shear leads to a higher KBM growth rate. The

opposite is observed in the high R/LT domain. The critical value of R/LT is located between

R/LT = 10 and R/LT = 15, which corresponds to the different KBM regimes discussed in

Section III (i.e. the moderate and the high temperature gradient regimes).

17



APPENDIX D (LOCAL ANALYSIS)

If we consider the simple case in which the equilibrium magnetic field is independent of

the coordinate along B and k2⊥ = k2y then, after Fourier transformation, Eq. (8) becomes

b

βi

k2zv
2
thi

ω2
=
ωB + ωκ
ω2

ωp +
k2yρ

2
i

2

[
1− ω∗i

ω
(1 + ηi)

]
+
βi
2

ωp
2

ω2
.

Let us set ω = ωr + iγ, then

ω2
r − ωrω∗i (1 + ηi)− γ2 =

1

βi
k2zv

2
thi −

βi
2b
ω2
p −

(ωB + ωκ)ωp
b

,

which allows us to find:

ωr =
1

2
ω∗i (1 + ηi) =

kyρi
4

vthi
R

R

Ln
(1 + ηi) , (18)

γ =

√
−
[
kyρi

4

vthi
R

R

Ln
(1 + ηi)

]2
−
[

1

βi
k2zv

2
thi −

βi
2b
ω2
p −

(ωB + ωκ)ωp
b

]
. (19)

The stability condition is:[
kyρi

4

vthi
R

R

Ln
(1 + ηi)

]2
<

[
− 1

βi
k2zv

2
thi +

βi
2b
ωp

2 +
(ωB + ωκ)ωp

b

]
.

To evaluate kymax of the maximum growth rate we set ∂ky [γ (ky)] = 0, thus obtaining:

kymax = 0.

This is consistent with the nonlocal analysis at large pressure gradients. From Eq.(18)-(19)

and considering kymax = 0:

ωr(kymax) = 0,

γ(kymax) =

√
− 1

βi
k2zv

2
thi +

βi
2b
ω2
p +

(ωB + ωκ)ωp
b

.

From Eq.(19), we see that instability occurs for:

4

[
− 1

βi
k2zv

2
thi +

βi
2b
ω2
p +

(ωB + ωκ)ωp
b

]
> ω2

∗i (1 + ηi)
2 ,
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which allows us to derive the expression for a critical β in this local limit:

βi >
b

8
(1− ηi)2

ω2
∗i
ω2
p

− ωB
ωp

+

√[ωB
ωp
− b

8
(1− ηi)2

ω2
∗i
ω2
p

]2
+ b

k2zv
2
thi

ω2
p

≡ βdiam,

or, at very long wave length:

βdiam =

√
ωB
ωp

[ωB
ωp

+ 2β2

]
− ωB
ωp
,

where β2 = bk2zv
2
thi/(2ωBωp), which would be βMHD of Ref.[7] for βi ∼ ε2. By expressing

explicitly all quantities in terms of R/Lp, kz and q we find:

βdiam ∼
Lp
R

{√
1 + 2k2zR

2 − 1

}
=
Lp
R

{√
1 +

2

q2
− 1

}
,

which gives us for small q value:

βdiam ∼
1

q

Lp
R
,

and for large q:

βdiam ∼
1

q2
Lp
R
.

These limits are reported for the sake of completeness and should be taken cum grano salis.
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