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Abstract

Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for

over 800 million people. Flowering is one of the most important breeding challenges in cas-

sava because in most lines flowering is late and non-synchronized, and flower production is

sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined

angiosperms. The objective of the current work was to determine the potential roles of the

FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed

into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was

found to be overexpressed constitutively. FT overexpression hastened flower initiation and

associated fork-type branching, indicating that cassava has the necessary signaling factors

to interact with and respond to the atFT gene product. In addition, overexpression stimulated

lateral branching, increased the prolificacy of flower production and extended the longevity

of flower development. While FT homologs in some plant species stimulate development of

vegetative storage organs, atFT inhibited storage-root development and decreased root

harvest index in cassava. These findings collectively contribute to our understanding of

flower development in cassava and have the potential for applications in breeding.

Introduction

In storage-root crops such as cassava (Manihot esculenta, Crantz), research on flowering has

received relatively little attention. This is partially because floral, fruit and seed organs are not

the harvested parts of the plant. However, in cassava breeding, delayed and non-synchronous

flowering is a major impediment for crossing selected lines [1, 2]. Many elite lines with desirable

agronomic traits including high yield of storage-roots and erect non-branched shoot architec-

ture, are difficult to use as parents because their flowering is late and sparse [2]. Understanding
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the factors that regulate flowering in cassava would be valuable to facilitate progress in breeding

programs. Furthermore, if the regulatory system were better understood, it might be possible to

develop methods for hastening floral initiation so that desirable alleles, which are otherwise

“locked up” in parents with poor flowering, will become available. Controllable flower induc-

tion could help breeders make more rapid progress by enabling earlier crosses, thereby shorten-

ing the breeding cycle [3].

Flowering Locus T (FT) in Arabidopsis (atFT) is now recognized as the key component

whose expression is regulated by upstream signaling components that perceive photoperiod,

vernalization (cool temperatures of winter), and other factors in leaves [4]. The translated pro-

tein of atFT is the flowering stimulus which interacts with signaling factors in the apical meri-

stem [5–7]. The “florigenic” signal is the translated protein of the FT gene that is transported

via phloem from leaves to the apical meristem where it causes the switch from vegetative to

reproductive development [8].

The role of the FT gene in flower induction has been established in many species of angio-

sperms, including all examined dicots and monocots [4–6, 9]. There is evidence that FT signaling

plays a role in photoperiodic and developmental regulation in species closely related to cassava. In

Barbados nut (Jatropha curcas), which like cassava is in the Euphorbiaceae family, an FT homolog

is primarily expressed in the reproductive organs and is thought to play a role in flower induction

[10, 11]. In leafy spurge (Euphorbia esula), long photoperiods (16 h light) stimulates accumulation

of FT homologs in a diurnal manner consistent with flower induction. On the other hand, under

long days and cooling temperatures, FT expression is down regulated, and DAM (DORMANCY
ASSOCIATED MADSBOX) is up-regulated, a response associated with induction of overwinter-

ing bud dormancy [12]. Similarly, Böhlenius et al. [13] demonstrated that in poplar (Populus tri-
chocarpa), which is in the Salicaceae family, closely related to Euphorbiaceae, flowering is induced

by long days and corresponding induction of diurnal expression of PtFT1, while shortening days

induce growth cessation and vegetative bud set in advance of winter.

Overexpression of transgenic atFT has been shown to induce early flowering in woody

plants with long juvenile phases such as blueberry (Vaccinium corymbosum L.) [14] and euca-

lyptus (Eucalyptus grandis x Eucalyptus urophylla) [15]. Also, overexpression of an FT homolog

from Jatropha curcas was constitutively overexpressed with CaMV-35S in J. curcas to demon-

strate enhanced flowering [10], and FT overexpression in various paired species has acceler-

ated flowering in apple (Malus spp.) [16, 17], and poplar (Populus trichocarpa) [18]. Given the

effectiveness of this approach, it has been suggested that FT overexpression could be used to

hasten flowering in breeding programs [15, 18–20]. In cassava, breeding might benefit if geno-

types with abundant production of the FT signal were used as understocks in grafting such

that breeding lines would not be stably transformed [21].

The objective of the current study was to overexpress the Arabidopsis FT gene in cassava and

determine whether the cassava signaling system interacts with and responds to the Arabidopsis

FT with earlier flower induction. Our findings indicate that cassava responds to overexpression

of Arabidopsis FT with extremely early flowering. FT overexpression also substantially increased

the number of flowers produced and lengthened the duration of cassava flowering such that

abundant mature flowers were obtained. These studies improve our understanding of flowering

regulation in cassava and indicate the potential for application in breeding programs.

Methods and materials

Molecular cloning and plant transformation

The ORF of FT (At1g65480) was amplified by PCR, using GATEWAYTM compatible primers

(FTGWFW-GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTCTATAAATATAAGAGCCCTC
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and FTGWRV-GGGGACCACTTTGTACAAGAAAGCTGGGTCTAAAGTCTTCTTCCTCCGCAG
CCA). The resultant attB-FT-PCR product was cloned into the pDONR207 vector (Thermo

Fischer Scientific) using BP Clonase, and the sequence-validated insert from FT-pENTRY

clone was subcloned into the pNew-Mik1-antisense GATEWAY-compatible vector (Destina-

tion vector; Bekir Ülker, MPIPZ), using LR Clonase (Gateway; Invitrogen). The plant expres-

sion vector created expresses FT-cDNA under the control of a CaMV35S promoter and an

ethanol inducible system (Fig 1). This plasmid was introduced into Agrobacterium ABI [22]

by electroporation and transferred to friable embryogenic callus (FECs) of cassava genotype

60444 by the Agrobacterium-mediated transfer method, as described by Gonzalez et al. [23],

with modifications that promote transformation in several cassava varieties [24]. For these

studies transformants from independent transformation events, designated FT-02, FT-11, FT-

13, FT-17 and a non-transformed control, 60444 are reported. To confirm that the transgene

was incorporated into cassava according to expectations, we performed a PCR of genomic

DNA that shows the amplified product of atFT gene in the four transformants, the untrans-

formed cassava, and in Arabidopsis control DNA (S1 Fig).

Plant materials and growth conditions

The in vitro-maintained putative transgenic cassava plantlets which are maintained at CIAT

(http://genebank.ciat.cgiar.org) were grown from subcultured stem segments for about 4

weeks to about the 3-leaf stage [25]. The plantlets were carefully removed from test tubes, agar

was washed off, and planted in sterile peat/vermiculite/pearlite rooting medium. The plantlets

were covered to maintain a humid environment with inverted clear polystyrene cups. After

about one week cups were replaced with polyethylene bags, which were progressively punc-

tured more and more over about three weeks to gradually lower humidity and promote root

growth. Plantlets were carefully watered, as needed. They were then transferred to the green

house where they were maintained with temperature controlled at 30˚C (day)/25˚C (night),

under long days (14h light and 10h dark) with natural illumination supplemented with about

150 μmol m-2 s-1 of photosynthetically active radiation (400 to 700 nm) from metal halide

lamps. These plants were propagated into four batches of plants which were used for subse-

quent studies of their architecture and expression of the introduced FT gene. Three batches

were grown directly from in vitro plantlets; ethanol treatments were initiated at 4 months after

planting (MAP) (batch 1 and 2) or 3 MAP (batch 4). Batch 3 was established from stem cut-

tings taken from batch 1, and ethanol treatments were initiated at 3 MAP. In the FT-trans-

formed lines in batches 2, 3, and 4, branch shoots and developing flowers were pruned off as

soon as they appeared to create a more uniform plant architecture consisting of a single central

stem. When ethanol treatments were initiated no further pruning was conducted. Plants in

each batch were randomly assigned ethanol or water drench treatments. Each genotype by

treatment combination, Batches 1, 2, 3, and 4 had 1, 1, 2, and 3 within-batch replicate plants,

Fig 1. Schematic representation of the transformation vector. Arabidopsis FT cDNA was inserted into the

construct through Gateway cloning. pAnos, nopaline synthase polyadenylation signal; pat, phosphinothricin

acetyltransferase; Tnos, terminator of nopaline synthase; pAlcA, promoter of alcohol dehydrogenase I (Adh-I)

encoded by the alcA gene; FT cDNA, cDNA of Flowering Locus (FT) gene; pA35S, polyadenylation sequence

of Cauliflower mosaic virus 35S gene; nos, nopaline synthase terminator; ALCR, transcriptional factor which

binds to AlcA promoter; p35S, Cauliflower Mosaic Virus 35S promoter; LB, left border; RB, right border.

https://doi.org/10.1371/journal.pone.0181460.g001
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respectively. Ethanol/Water treatments consisted of twice weekly drenching of the soil with

500 mL of 1% (v/v) of ethanol/water over five weeks. Leaf tissue was sampled from the second

most recently matured leaf on each plant, 24 hours after the fourth treatment. Leaf tissue was

immediately frozen in liquid N2, and transferred to -80˚C for storage until RNA extraction.

Gene expression studies

Tissue was ground to powder with mortar and pestle under liquid N2. Total RNA was extracted

using a modified CTAB protocol reported by Monger et al. [26] and quantified by absorption at

260 nm (NanoDrop ND-1000, Wilmington, DE, USA). Two μg of the total RNA was used for

cDNA synthesis. Prior to the synthesis, RNA was treated with 10U/μl DNase I (Roche) with

DNase 1 Buffer and incubated at 37˚C for 30 min to remove any residual genomic DNA. cDNA

synthesis was performed by qScript cDNA Supermix (Quanta) and Superscript III First strand

synthesis supermix (Invitrogen), following the manufacturer’s instructions. Quantitative Real

Time PCR was performed using PerfeCTaTM SYBR1 Green FastMixTM (Quanta) in a Bio-Rad

CFX96TM Real-Time System, C1000TM Thermal Cycler. Primers for cassava 18S RNA were

18SF- ATG ATA CGA CGG ATC GC and 18SR- CTT GGA TGT GGT AGC CGT TT and for ubi-

quitin (UBQ10F-GCAACT TGA GGA TGG CCG AA and UBQ10R-CTCCCC TCA AAC GCA
GAA CA); these genes were used as internal controls. The Real-time quantitative PCR was re-

peated with 7 biological replicates (1 each from batch 1 and 2; 2 from batch 3; and 3 from batch

4), and each sample was assayed in duplicate using primers AtFTL2-AAG TCC TAG CAA CCC
TCA CCT C and AtFTR2-CAC CCT GGT GCA TAC ACT GTT. Data for the number of PCR

cycles to reach the threshold (Ct), were normalized for 18S Ct values in each specimen by sub-

traction (ΔCt). Values were also normalized for each specimen’s UBQ Ct value, and the 18S and

UBQ normalized ΔCt values were averaged. These ΔCt values were further normalized against

the 60444 water-treated controls in each batch (ΔΔCt) and interpreted as normalized fold ex-

pression (log2) assuming a PCR efficiency of 1.0. When the data were plotted on this log2 scale

they were normally distributed, a requirement for statistical analysis. These Ct values were sub-

jected to analysis of variance (ANOVA), as described below.

Flowering traits

In cassava, flowering is associated with fork-type branching which occurs via outgrowth of

axillary meristems subtending the shoot apical meristem [27]. After the first fork, two to four

second-tier shoots develop and each of them initiates flowers at their shoot apexes (second

tier flowers). Third and subsequent tiers of flowering develop similarly. Flowering traits were

recorded weekly in Batches 3 and 4, which had 2 and 3 biological replicates each, respectively

to determine: a) date of flower or inflorescence appearance, b) number of flowers that ex-

ceeded a 2-mm diameter threshold size, and c) initial date of flower (and/or inflorescence)

senescence. From these weekly records, the total number of flowers at each forking tier were

calculated.

Plant growth traits

At 4.5 months after plant establishment in soil, plant height was measured and plants from

Batches 1 to 4 were harvested. The number of shoot nodes between the soil surface and first

forks, between the first-tier and second-tier forks, and between the second- and third-tier

forks were counted. Lateral branches which formed in the axils of leaves on the main stem

were counted and the presence/absence of flowering at their shoot apexes was recorded. Stor-

age-roots were excavated from soil and counted. Storage-roots and above-ground plant parts

were dried at 70˚C to a constant weight, and weighed. Fibrous roots were not recovered.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0181460 July 28, 2017 4 / 15

https://doi.org/10.1371/journal.pone.0181460


Harvest index (HI) was calculated as: HI = (storage-root dry mass)/[(storage-root dry mass) +

(above-ground dry mass)].

Statistical analysis

Gene expression, flowering, and growth traits were subjected to analysis of variance (ANOVA)

using a model for determining effects due to ethanol drench treatment (T), effects due to FT
overexpression genotype (G), effects due to batches (block) (B), and effects due to interaction

of T×G. Each trait was analyzed using the linear model in R (version 3.1.1, R Foundation for

Statistical Computing, http://www.r-project.org/).

Results

Cassava transgenic lines over-express Arabidopsis FT

The construct used for transformation of cassava line 60444 contained an ethanol-inducible

promoter upstream of the Arabidopsis FT (atFT) gene (Fig 1). The transgenic events generated

from the agrobacterium-mediated transfer were numbered from 1 to 22. Of these initial inde-

pendent transformation events, many of them were weak and slow growing with many flowers

relative to leaves such that only four of them survived after several months in culture. For this

manuscript, the four surviving transformants were used. The Arabidopsis-derived FT tran-

script, expressed on a logarithmic scale such that data are normally distributed, was abundant

in all the transgenic cassava lines (FT-02, FT-11, FT-13 and FT-17), while it was not detected

in the untransformed control (60444) (Fig 2). Contrary to expectation, in most of the trans-

formed lines (FT-02, FT-11 and FT-17), ethanol treatment did not further enhance expression

in leaf tissue (Fig 2). Only in the transgenic line FT-13 did ethanol significantly (P� 0.05)

increase expression of the FT transcript in comparison to its water treated counterpart. The

wild type, untransformed control, had no detectable atFT message with or without ethanol

treatment.

The Arabidopsis FT gene hastens flowering in cassava

Due to our interest in hastening reproductive timing, we evaluated the timing of flower ap-

pearance in the atFT transformed lines throughout their development. The untransformed

line, 60444, displayed its first fork-type branching and corresponding floral stalks at 120 days

after transplanting (Fig 3). In contrast, the transformed lines first formed flowers while the

plants were still at the seedling stage (Fig 4A–4D), and had numerous branching events associ-

ated with flowering. Indeed, flowers were observed during in vitro growth before transplanting

to soil (Fig 4A).

To create a set of atFT-transformed material that would be well matched in size and initial

architecture so that the potential effects of ethanol-induced expression of atFT could be tested,

we pruned away flowers and branches so that initially each plant would have just one main

stem. These plants were then allowed to form fork-type branches and flowers in the absence

of ethanol treatment. The atFT plants treated in this way flowered at about 75 d after trans-

planting (Fig 3). Drenching with ethanol to induce the expression of atFT did not significantly

(P� 0.05) hasten the second and subsequent forking and flowering events (S2 Fig). Given the

absence of effect of ethanol treatment, the data on flowering phenology are presented as the

overall average for treatments with and without ethanol treatment. Corresponding data for

each of the ethanol and control treatments are shown in (S2–S8 Figs). Second fork-type

branches and associated flowering occurred at only 25 to 32 days after the first flush of flowers,

and in two of the transformed lines (FT-11 and FT-17) a third tier of flowering occurred about
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28 days after the second tier (Fig 3). The four transformed lines did not differ significantly in

the time interval between the first and second flowering events; however, FT-02 and FT-13 did

not advance to a third tier of flowering during the observation period. Another indication of

the timing of floral initiation events is the number of nodes between forking. Overexpression

of FT had similar effects on the number of nodes between fork-type branches (Fig 3B). In

atFT13, despite having an increased expression of FT in response to ethanol treatment, flower-

ing was not further hastened between the first and second or subsequent forking and associ-

ated flowering events (S2 Fig).

Overexpression of Arabidopsis FT in cassava results in profuse

flowering

While expression of atFT has been observed to hasten flowering time in many plant species, an

additional effect in the current study was sustained flower development and greater longevity

of flowers (Fig 3D). We counted the number of flowers at each tier (fork) in each plant (Fig

3C) and also observed the length of time they continued to develop in each tier before they

began senescing (Fig 3D). In the non-transformed controls, plants forked, and developed an

inflorescence stalk with immature flower buds less than the 3-mm minimum for counting

that wilted and senesced within 2–3 days (Fig 3D). In the transgenic lines, however, flower

development at each tier was sustained such that more flowers were formed, and flowers con-

tinued development through anthesis rather than aborting development and senescing, as was

observed in the untransformed 60444 control. Flower development traits differed in the four

transformed lines corresponding to the earliness of floral initiation. The average number of

flowers in FT-02, the latest to flower, was 33, followed by that of line FT-11 with 55 flowers

(summed over the first and second tier). FT-13 and FT-17, the earliest lines to flower, had 77

Fig 2. Expression of Arabidopsis FT gene in cassava. The qRT-PCR results were obtained from four

biological replicates and two technical replicates for each sample. 60444 represents the non-transformed

wildtype line and FT-02, FT-11, FT-13 and FT-17 represent the four independent transformants. The levels of

detected amplification were normalized using 18S and Ubiquitin as reference genes. The expression cassette

had an ethanol-inducible promoter. In each case, potted cassava transgenic plants were either watered

normally (H2O), or the soil was drenched with 1% (v/v) ethanol for two weeks before leaves were harvested

and analyzed.

https://doi.org/10.1371/journal.pone.0181460.g002

Flowering in FT overexpression lines of cassava

PLOS ONE | https://doi.org/10.1371/journal.pone.0181460 July 28, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0181460.g002
https://doi.org/10.1371/journal.pone.0181460


and 60 flowers (summed over all tiers), respectively. Although third-tier flowering had com-

menced during the observation period in FT-11 and FT-17 (Fig 3A and 3B), flowering at tier 3

was not advanced sufficiently to obtain flower counts in any of the genotypes (Fig 3C). The

longevity of the flowers produced by the over-expressing lines was also affected. Plants overex-

pressing atFT plants produced numerous female and male flowers, which developed fully and

reached anthesis. Whereas nontransformed controls began senescing at 3 days after appear-

ance, flower development in the transformed lines continued for almost a month and did

not begin senescing until 25 to 27 days on the first tier, and 21 to 25 days on the second tier

(Fig 3D).

In addition to fork-type branching by outgrowth of axillary meristems subtending the

shoot apical meristem, atFT overexpression stimulated the outgrowth of lateral branches in

the axils of leaves (Fig 5A), all of which forked at their apexes and formed flowers during the

observation period (Fig 5B). Whereas the non-transformed control did not form lateral

branches from axillary bud outgrowth, the transformed lines developed between seven (FT-02

and FT-17) and eleven (FT-11 and FT-13) lateral branches (Fig 5).

Fig 3. Flowering traits in non-transformed wildtype line (60444) and in the four independent transformants. (a) Flowering time in days from

establishment in soil to flowering at the 1st, 2nd, and 3rd tier of flowering, as defined by fork-type branching at the apical meristems. (b) Number of shoot

nodes to forking events where inflorescences develop. The number of nodes between the soil surface and the first fork, between the first-tier and second-tier

forks, and between the second- and third-tier forks. (c) Number of flowers per tier, per plant. (d) Time to start of floral and/or inflorescence senescence. Floral

traits were recorded weekly to determine the date of inflorescence appearance, and initial date of floral senescence. The total number of days from flower

appearance to start of inflorescence and/or flower senescence was calculated from these weekly records. Shown are the means ± SEM.

https://doi.org/10.1371/journal.pone.0181460.g003
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Yield characters are hampered in cassava over-expressing FT gene

Storage-root dry weight, total plant dry biomass, harvest index and root count of the trans-

genic plants as well as the control, were all measured as a function of crop yield and productiv-

ity. In general, the FT transformants were shorter (S8 Fig), had less storage-root production

(Fig 6A), less total plant dry biomass (Fig 6B), a lower harvest index (Fig 6C), and root count

than in the non-transformed wildtype (Fig 6D). The non-transformed line (60444) had the

highest amount of storage-root production and harvest index, followed by FT-02, the interme-

diate line; and the three lines with the best flowering, FT-11, FT-13 and FT-17 had the lowest

storage-root weights and harvest index (Fig 6A and 6C).

Discussion

Delayed and scarce flowering in cassava has been a long-standing hurdle faced by conventional

breeders, molecular biologists and geneticists in their attempts to cross desirable parents for

Fig 4. Transformed and non-transformed plants at various stages of floral development. (a): FT-17 transgenic plant at 2 months in vitro. (b and c): FT-

17 transgenic plantlet at one month after transfer from in vitro to culture box and soil respectively. (d): Advanced stage transgenic plants flowering at 3

months. (e): Non-transformed (left) vs. transformed (right) plants at 5 months old. (f and g): Close up view of the apical region of 5-month old non-transformed

(f) and transformed (g) plants, respectively. Arrows indicate flowers.

https://doi.org/10.1371/journal.pone.0181460.g004

Fig 5. Lateral branch development in the axils of leaves on the main stem. Lateral branches and flowers that formed in fork-type branches at the apex

of these lateral branches were counted in the non-transformed wildtype line (60444) and in the four independent transformants. (a) Number of lateral

branches per plant. (b) Total number of flowers on lateral branches. Shown are the means ± SEM.

https://doi.org/10.1371/journal.pone.0181460.g005
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improvement of cassava [1, 3]. The difficulties arising from the flowering biology of cassava

have limited the development of inbred and hybrid lines for use in cassava genetic enhance-

ment and reduced the potential impact of genomic selection [1, 3]. In the current work, we

overexpressed Arabidopsis FT in cassava cultivar 60444, which is normally late flowering [28].

Expression was driven with the ALCR/alcA promotor system, which is designed to be ethanol

inducible [29] and has been used as such in several plant species [30–34]. We applied ethanol

as a soil drench, which is expected to result in root uptake of ethanol and its delivery via the

transpiration stream to leaves where expression is induced, as others have shown [34]. How-

ever, in this study, leaf expression of the atFT transcript was already high in the controls (water

drench treatments) of all four independent transformation events, and was not increased fur-

ther by ethanol treatment (P�0.05) except in the FT-13 line (Fig 2). In addition to expression

in leaves, we also observed expression of a similar magnitude in flower buds and tissue of the

apical region including unexpanded leaves and shoot meristem in transformed plants, whereas

the untransformed cassava plants had insignificant atFT expression (S9 Fig). Furthermore, in

the transgenic lines the plants given water versus ethanol treatment did not differ significantly

for flower development traits (S2, S3 and S4 Figs). Apparently the promoter gave constitutive

overexpression in the absence of added ethanol. It is possible that cassava tissues produced suf-

ficient ethanol to drive expression from the promoter. Studies have shown that hypoxia can

develop in internal plant tissues such as vasculature [35], which might have elicited ethanol

production in cells of internal tissue such as the phloem. A similar finding of constitutive

expression was found with the ALCR/alcA promoter system in tobacco tissue cultures [33].

Fig 6. Root and shoot production in non-transformed wildtype (60444) and the four independent transformants at harvest. (a) Storage-root dry

weight; (b) total plant dry weight; (c) harvest index (HI), calculated as HI = (storage-root dry mass)/ [(storage-root dry mass) + (above-ground dry mass)]; (d)

number of storage-roots. Shown are the means ± SEM.

https://doi.org/10.1371/journal.pone.0181460.g006
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The current study showed that Arabidopsis FT (atFT) overexpression substantially reduced

the time to flowering (Fig 3) to the extent that flowering occurred in seedling plants grown in
vitro (Fig 4). This finding is in agreement with earlier work in other species where it has been

established that the FT gene is a key signaling factor whose expression is regulated by photope-

riod and other environmental factors, and its translated protein is the phloem-transported fac-

tor that initiates flower development in shoot meristems [4, 8, 16, 36, 37]. While flowering has

been known to be sparse and delayed in cassava, it was not previously known whether this was

due to deficiencies upstream or downstream of FT signal production. In another member of

the Euphorbiaceae family, Jatropha curcas, an FT homolog was isolated, and when Jatropha

plants were transformed with this gene under the control of the strong constitutive 35S-CaMV

promotor, plants flowered extremely early [10], as expected for FT involvement. The current

findings are also in agreement with studies in several species where overexpression of Arabi-

dopsis FT induced earlier flowering. For example, in the late-flowering tree Eucalyptus, when

atFT was driven by the 35S-CMV promotor plants flowered very early, within 1 to 5 months

after transplanting [15]. Also, in apple trees, overexpression of Arabidopsis FT driven by

35S-CaMV promotor resulted in flower development directly from callus [16], and in poplar

trees, atFT overexpression driven by a heat inducible promotor gave substantially earlier flow-

ering [19]. Such studies, as well as the current investigation with cassava, indicate that the nec-

essary components of the FT response system downstream of FT production are present and

functional in the shoot apical meristems of these species, and that they are capable of interact-

ing with the Arabidopsis FT gene-product to induce flowers much earlier than normal.

In cassava, branching occurs by outgrowth of axillary meristems subtending the shoot apical

meristem (SAM), which results in two or more new shoot branches at the fork, occurs simulta-

neously with initiation of flower development at the original SAM [21, 27]. In the first tier of fork-

type branching it is common in a large fraction of cassava genotypes for abortion of inflorescences

and flowers such that these structures do not develop sufficiently to produce any mature flowers

[27]. This was observed in the current study in the non-transformed genotype, 60444, which pro-

duced small flower stalks but did not produce any flower buds that exceeded the 2-mm diameter

threshold for counting (Fig 3C). In striking contrast, all four atFT over-expression lines produced

abundant, fully developed flowers (Figs 3C, 4 and 5B). Furthermore, flower production on inflo-

rescences continued over a longer time-frame such that more flowers were produced and flowers

at each tier had greater longevity before senescence (Fig 3D). Previous studies of FT overexpres-

sion have not reported this effect on flower prolificacy and longevity. Apparently cassava, with its

limited flower development on the first-tier inflorescences, has revealed another effect of FT on

enhancing the continued development of flowers that goes beyond floral initiation.

An additional effect of FT overexpression was shoot architectural alterations in the cassava

atFT overexpression lines. In contrast with the absence of lateral branches in the non-trans-

formed 60444 line, all lines overexpressing atFT produced abundant lateral branches, each of

which forked and produced flowers (Fig 5A and 5B). This finding agrees with studies in which

the overexpression of FT in cotton increased the extent of branching, apparently by altering

the balance between FT and the flowering inhibitor, TFL [38]. Increased branching has also

been reported in transgenic plants overexpressing FT in tobacco (Nicotiana spp.) [11] and

Eucalyptus [15]. In contrast to flower initiation, flower prolificacy, and branching, flower and

leaf organogenesis was not apparently affected by FT overexpression in cassava, as leaves and

flowers were the same size and shape as in non-transformed plants (Fig 4). This agrees with

the outcome in most reported studies, but contrasts with findings in FT-overexpressing lines

of apple, which had more numerous petals, fewer stamens, and no pistils [16], and in FT over-

expression lines of tobacco where there was also altered leaf morphology, increased leaf chloro-

phyll content and photosynthetic rates, and flower abscission [11].
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In some plant systems that have vegetative storage organs, one or more FT homologs have

been associated with stimulating the initiation and growth of these organs. For example, in

onion, bulb formation is regulated by two antagonistic FT-like genes. AcFT1 promotes bulb

formation, while AcFT4 prevents AcFT1 upregulation and inhibits bulbing in transgenic

onions [39]. Another paralog, AcFT2 plays direct role in floral induction. Also, in potatoes

(Solanum tuberosum), floral and tuberization transitions are controlled by two different FT-

like paralogues [40, 41]. In the storage-root crop sugar beet, one FT homolog acts as a stimula-

tor of flowering while a second FT homolog functions in repression of flowering [42, 43]. In

Jatropha curcas and Populus spp (poplar), which are species closely related to cassava, JcFT

plays an inductive role in flowering while the Populus paralogs PtFT1 and PtFT2 both function

to induce flowering but also perform other roles associated with growth cessation, promotion

of vegetative growth and bud set [10, 13, 44].

In the present study, we observed that the transgenic lines overexpressing the Arabidopsis

FT in cassava showed reduced storage-root development as indicated by less storage-root dry

weight per plant (Fig 6A) and fewer number of storage-roots per plant (Fig 6D). The transfor-

mants also had a smaller total plant size (Fig 6B), possibly because their increased development

of flower primordia compromised the extent of new leaf production and hence restricted total

plant growth. Alternatively, increased forking and axillary branch outgrowth and associated

flowering in the atFT overexpression lines might have decreased production of leaves, which

in turn affected whole-plant photosynthesis and growth. Studies have indicated that when

branching is restricted, cassava storage-root yield is improved [45]. Moreover, the cassava

atFT overexpression lines had a lower harvest index (fraction of total dry matter in storage-

roots) (Fig 6C), indicating that rather than stimulating storage-root development, atFT might

have had an inhibitory effect. Given that cassava is grown for storage-organ production, it is

possible that domestication and breeding has led to genetic changes in FT that have the effect

of increased storage-root production at the expense of flower development [46]. We hypothe-

size that cassava operates similarly to the species with vegetative storage organs discussed

above, and may have regulatory pathways for floral development and storage-root develop-

ment that are controlled by different FT-like genes.

We propose that this FT-expression system could be exploited to improve cassava breeding.

Overexpression lines of cassava could be used as grafting partners, whereby the overexpression

of atFT in understocks could provide a graft transmissible signal to scions of poor flowering

lines. Graft-induced flowering with a profuse-flowering genotype as the understock has been

used in other plant systems [7, 19, 47, 48], including cassava [21]. FT overexpression might

serve as a particularly effective means of producing and delivering the flower-inducing signal

from understocks to scions.

In conclusion, we have demonstrated that atFT overexpression in cassava hastens flower

initiation, and increases lateral branching, similar to reports in other species. In addition, our

findings provide the first report that in cassava, atFT overexpression substantially improves

the prolificacy of flower production and the longevity of flower development. We also show

that while cassava has the necessary signaling factors to respond to atFT such that flower devel-

opment was enhanced, atFT did not stimulate storage-root development. These findings have

the potential for furthering our understanding of flower development and for use in stimulat-

ing flower production in breeding.

Supporting information

S1 Fig. PCR of atFT in transgenic cassava and Arabidopsis genomic DNA. Lanes (left to

right): cassava transgenic lines are labelled FT-02, FT-11, FT-13 and FT-17; No Template
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Control (NTC); non-transformed Arabidopsis Columbia ecotype (Col-0), and 60444 is the

untransformed cassava plant. The amplification product size of atFT is 189 bp in the cassava

transformants. Lane Col-0 is Arabidopsis Col-0 DNA; the � indicates the PCR product (1026

bp) of native FT including introns. Non-specific amplification products are labeled F. Lane M

contains a 1kB ladder (Thermo Scientific GeneRuler 1kb Plus DNA Ladder).

(TIF)

S2 Fig. Number of nodes between forking events in non-transformed wildtype line (60444)

and in four independent transformants. The number of shoot nodes between the soil surface

and first forks, between the first-tier and second-tier forks, and between the second- and

third-tier forks were counted at 5–6 months post planting in non-transformed wildtype line

(60444) and in four independent transformants treated with water and 1% ethanol respec-

tively. Shown are the means ± SEM.

(TIF)

S3 Fig. Total number of flowers per plant in water and ethanol treated control and trans-

genic plants. The number of flowers per plant were counted and recorded weekly, in non-

transformed wildtype line (60444) and in the four independent transformants treated with

water and 1% ethanol respectively. Shown are the means ± SEM.

(TIF)

S4 Fig. Time to start of flower senescence in water vs. ethanol treated transgenic plants

and control. Flowering traits at each tier were recorded weekly to determine the time from

flower appearance to initial date of flower senescence. Shown are the means ± SEM.

(TIF)

S5 Fig. Harvest index in water vs. ethanol treated transgenic plants and control. Shown are

the means ± SEM.

(TIF)

S6 Fig. Storage-root dry weight in water vs. ethanol treated transgenic plants and control.

Shown are the means ± SEM.

(TIF)

S7 Fig. Total plant dry weight in water vs. ethanol treated transgenic plants and control.

Shown are the means ± SEM.

(TIF)

S8 Fig. Harvest index in water vs. ethanol treated transgenic plants and control. Shown are

the means ± SEM.

(TIF)

S9 Fig. Total number of flowers per plant on lateral branches. Data for plants treated with

water and 1% ethanol were averaged. Shown are the means ± SEM.

(TIF)
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